
Application Designer

Working with Pages

Version 8.0 (2010-08-18)

August 2010

This document applies to Application Designer Version 8.0 (2010-08-18).

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2010 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Table of Contents

1 Working with Pages .. 1
2 Working with Page Navigation ... 3
3 Page Navigation .. 5

The First Navigation .. 6
Preparing the Adapter before Navigating ... 6
Including the Adapter while Navigating .. 7

4 Session Management ... 9
Session, Subsession, Adapter ... 10
Garbage Collection ... 11

5 Opening Modal Pop-up Dialogs ... 13
Special Pop-up Dialog Parameters within the XML Layout Definition 15
Passing Pop-up Dialog Parameters before Opening a Pop-up 15
Closing a Pop-up Dialog .. 16
Changing the Size within an Opened Pop-up ... 16

6 URL to Choose when Navigating ... 17
7 Value Help Pop-up Dialogs ... 19

Standard Method openIdValueHelp .. 31
Standard Method openIdValueCombo .. 23

8 Standard Pop-up Dialogs .. 25
OK Pop-up .. 26
Yes/No Pop-up ... 26
Log Pop-up ... 28
Example: Asking Whether the User Really Wants to Quit 29

9 Page-based Pop-up Dialogs ... 31
10 Embedding Pages into Pages ... 33
11 SUBCISPAGE2 Control .. 35

Simple Example .. 36
SUBCISPAGE2 Properties .. 39

12 ROWTABSUBPAGES Control ... 43
Properties ... 45
Performance Considerations .. 48

13 Remark on Modularisation .. 49
14 Multi Frame Pages ... 51
15 What are Multi Frame Pages? .. 53
16 Definition of Multi Frame Pages ... 55

MFPAGE ... 56
MFCISFRAME .. 57
MFHTMLFRAME .. 60
MFFRAMESET ... 61

17 Example ... 63
The Multi Frame Page Around .. 89
The Left Frame ... 65
The Right Frame ... 68

iii

18 Communication between Frames .. 69
API inside the Adapter Class ... 70
Pay Attention to Request Processing ... 70
Session Management (I) ... 71
Session Management (II) .. 71

19 Combination with Normal Application Designer Pages .. 73
20 Embedding Pages into a Workplace .. 75
21 Application Designer Workplace Framework ... 77

Framework Overview .. 79
Functions Frame: MFWPFUNCTIONS .. 80
Active Functions Frame: MFWPACTIVEFUNCTIONS ... 82
Content Frame: MFWPCONTENT .. 83
Filling the MFWPFUNCTIONS Frame .. 84
Tree Node Types ... 87
Filling the MFWPFUNCTIONS Frame without any Java Coding:
MFWPBOOTSTRAPINFO ... 88
Customizing the MFWPFUNCTIONS Behavior ... 98
Session Management inside the Workplace ... 107
Other Frames .. 107
Workplace API for Dynamic Manipulation ... 108
Example - Double Line Menu Workplace .. 110
Usage Example - Calling the Application Designer Workplace with Directly
Opening a Page ... 113

22 Integration into Other Workplace/Portal Scenarios ... 119
Passing Parameters to your Application Designer Page .. 120

23 Extended Functions in the Application Designer Workplace 121
Interface IMFWorkplaceEventListener .. 122
Example .. 123

24 Building OwnWorkplaces as a Frameset Definition ... 125
Basics .. 126
Defining the Frameset .. 126
Simple Way of Opening Pages in Frames .. 128
A More Complex Way of Opening Pages in Frames .. 129
When to Use the Complex Way ... 132
Opening Normal HTML Pages inside Frames ... 133
Frame Communication ... 133
Multiple Frame Operations .. 135
When Building your Own Workplaces .. 135

Working with Pagesiv

Working with Pages

1 Working with Pages

This documentation deals withmore complex applications in which you have sequences of pages.
The information is subdivided into the following parts:

Describes how to develop a sequence for page navigation.Working with Page Navigation

Describes how to develop a master page and embed other
pages within it.

Embedding Pages into Pages

Describes how to generate a HTML frameset page.Multi Frame Pages

Describes how to integrate pages into portal or workplace
environments.

Embedding Pages into a Workplace

1

2

2 Working with Page Navigation

In more complex applications, you often have to cope with situations in which you have to go
through a sequence of pages. For example, for entering a purchase order, you have to specify first
some header information (like customer, address, etc.), go to a list of items you want to order,
open detail information page(s) on a selected item, etc.

The navigation can be quite complex on its own - there are several frameworks available which
deal with this topic.

What Application Designer offers is a way to navigate between different pages. How you find out
when and where to navigate to (server-side business logic) - is not of interest for Application De-
signer. As soon as you know where to go to, tell Application Designer your decision.

The information provided in this part is organized under the following headings:

Page Navigation

Session Management

Opening Modal Pop-up Dialogs

URL to Choose when Navigating

Value Help Pop-up Dialogs

Standard Pop-up Dialogs

Page-based Pop-up Dialogs

3

4

3 Page Navigation

■ The First Navigation .. 6
■ Preparing the Adapter before Navigating ... 6
■ Including the Adapter while Navigating .. 7

5

Page navigation is triggered by the adapter class. Typically, it is a method call which is triggered
by a button click. The Adapter class from which you derive your adapter class, offers some
methods which make page navigation very simple.

The First Navigation

The most simple way of navigating can be seen in the following code example:

public void showNextPage()
{
 // check if navigation is possible
 if (... any check is wrong...)
 {
 ...
 this.outputMessage("E","Please first input all fields");
 return;
 }
 // open new page
 this.switchToPage("pageName.html");
}

In this method, first there is a check whether navigation is “appropriate” in the current situation.
If not, an error message is shown in the status bar. Otherwise, navigation is done by the inherited
method switchToPage(pageName).

Preparing the Adapter before Navigating

In our example, the next screen is - as usual - linked with a specific adapter class. An instance of
this adapter class is generated by the session management.

If you want to prepare the adapter of the next screen in a certain way, you proceed as follows.

Before navigating to the next page, you can ask for the adapter which is linked to the next page:

public void showNextPage()
{
 // check if navigation is possible
 if (... any check is wrong...)
 {
 ...
 this.outputMessage("E","Please first input all fields");
 return;
 }
 // prepare adapter object which corresponds to next page
 XYZModel m = (XYZModel)this.findAdapter(XYZModel.class);

Working with Pages6

Page Navigation

 m.setParam1(...);
 m.setParam2(...);
 ...
 ...
 // open new page
 this.switchToPage("pageName.html");
}

Themethod findAdapter returns the adapter object which is assigned to the next page. Therefore,
you are able to prepare the adapter by setting any information youwant to show in the next screen.

Including the Adapter while Navigating

The following example shows how to increase performance for page navigation using themethod
includeAdapterInResponse. It is typically used with:

■ switchToPage();

■ openPopup();

■ openCISPageInTarget()

Example:

public void showNextPage()
{
 // open new page
 switchToPage("pageName.html");
 // initialize the corresponding Adapter of pageName.html
 includeAdapterInResponse("pageName.html", true);
}

The method includeAdapterInResponse includes the adapter of the second page (page B) into
the response processing of the first page (page A). The adapter is processed in the same way as it
is processed when being called by an explicit HTTP request coming from the browser. This is an
effective mechanism for reducing the number of roundtrips between the browser and the server
(it reduces the number of roundtrips from two to one). This is illustrated by the following diagram:

7Working with Pages

Page Navigation

Note: In a local area network (LAN) environment, the gain in performance will not be sig-
nificant. However, in a slowwide area network (WAN) environment, the performance will
be improved significantly.

Working with Pages8

Page Navigation

4 Session Management

■ Session, Subsession, Adapter ... 10
■ Garbage Collection .. 11

9

You might ask: who controls the life cycle of the adapter classes? If I navigate from page "A" to
page "B" and go back to page "A": do I come back to the adapter object I was already using, or do
I get a new adapter instance?

Session, Subsession, Adapter

The management of the adapters inside the server is done by the session management of Applic-
ation Designer. Typically you do not have to take care of it - it is done automatically in front of
your adapters.

Every browser instance connected to Application Designer creates a session and is assigned to it
at the server side. If you start another browser instance, a second session is created internally
which is completely decoupled from all other sessions. And so on.

A session is divided into subsessions. A subsession is a logical separation of independent activities
which run parallel within the context of one session. Example: in the workplace, you can run
various applications in parallel. You can switch from one application to the other. Each running
application is represented by an instance of a subsession at the server side. The subsessions are
also completely isolated from each other.

Within a subsession, the adapter instances are held. The basic rules for managing these instances
inside one subsession are:

■ For each adapter class one instance is kept. This means: if a page requests an adapter, it is first
determined whether this adapter instance is already created within the subsession. If yes, the
existing instance is used, otherwise a new adapter instance is created and registered.

■ The adapter instance is held for the whole life cycle of the subsession - as long as not explicitly
removed by the adapter logic.

■ All variant and page navigation is done inside a subsession as described in this section.

Working with Pages10

Session Management

Page navigation within the browser is a navigation between adapter instances of the same subses-
sion.

Garbage Collection

The final garbage collection of adapter instances is done by removing a subsession - if not explicitly
controlled in a differentway by the adapter logic. The adapter class offers themethod endProcess()
which removes the subsession you are just working with:

public void exit()
{
 // check if you really want to exit
 if (...)
 {
 ...
 this.outputMessage("E","Cannot exit due to...");
 return;
 }
 // exit
 this.endProcess();
}

11Working with Pages

Session Management

Whenever a user logs off, the session - including all subsessions and its assigned adapter instances
- is removed from the session management and released for garbage collection.

Working with Pages12

Session Management

5 Opening Modal Pop-up Dialogs

■ Special Pop-up Dialog Parameters within the XML Layout Definition .. 15
■ Passing Pop-up Dialog Parameters before Opening a Pop-up .. 15
■ Closing a Pop-up Dialog ... 16
■ Changing the Size within an Opened Pop-up .. 16

13

Pop-up dialogs are just normal Application Designer pages (except for a small difference) which
are opened inmodal pop-upmode. The pop-upmanagement does not start a newbrowser instance
- everything is done in the same instance in which you are working.

Invoking a pop-up dialog follows the same rules as navigating between pages. The Java source
of the adapter looks as follows:

public void showPopup()
{
 // check if navigation is possible
 if (... any check is wrong...)
 {
 ...
 this.outputMessage("E","Opening pop-up is not possible...");
 return;
 }
 // open new page
 this.openPopup("pageName.html");
}

The adapter - which is used as a server-side counterpart of the pop-up dialog - is managed like
navigating between pages. Therefore, you can access the adapter before opening the pop-up dialog
and prepare some content:

public void showPopup()
{
 // check if navigation is possible
 if (... any check is wrong...)
 {
 ...
 this.outputMessage("E","Opening pop-up is not possible...");
 return;
 }
 // prepare adapter object which corresponds to next page
 XYZModel m = (XYZModel)this.findAdapter(XYZModel.class);
 m.setParam1(...);
 m.setParam2(...);
 ...
 ...
 // open new page
 this.openPopup("pageName.html");
}

Working with Pages14

Opening Modal Pop-up Dialogs

Special Pop-up Dialog Parameters within the XML Layout Definition

Any Application Designer page can be opened as a pop-up dialog. Inside the PAGE tag of the
page, you can define how to open the pop-up dialog. There are a couple of properties which can
be used for this purpose:

■ popupwidth

■ popupheight

■ popupfeature

For further information, see the PAGE property definition in Typical Page Layoutwhich is part of
the Layout Elements documentation.

Passing Pop-up Dialog Parameters before Opening a Pop-up

The pop-up parameters (width, height, features) can also be passed before calling a pop-up. The
Adapter class offers corresponding interfaces. The following code shows how to open a pop-up
with a certain title and with a certain size and position:

/** */
public void onOpenPopup()
{
 setPopupFeatures(100, // x-position
 100, // y-position
 300, // width
 200, // height
 "" // additional features as string (see PAGE-POPUPFEATURES
docu)
);
 setPopupTitle("This is the title of the pop-up");
 openPopup("25_PositionedPopup1.html");
}

The parameters you pass override the parameters that may be defined in the pop-up page's layout
definition.

15Working with Pages

Opening Modal Pop-up Dialogs

Closing a Pop-up Dialog

A pop-up dialog can be closed by its corresponding adapter by the closePage()method which
is inherited from the Adapter class:

/** This method is bound to the exit button of the pop-up page. */
public void exitPopup()
{
 // check if can be closed
 ...
 ...
 // close pop-up
 this.closePage();
}

In addition, a user can always close a dialog by pressing ALT+F4 or by choosing the close icon at
the top right corner of the window title. The adapter - both adapters, the pop-up adapter and the
adapter of the page from which the pop-up dialog was called - are not informed about this action
and so it always has to be taken into consideration that a pop-up dialog might be closed by the
user.

Changing the Size within an Opened Pop-up

Sometimes you need to resize the pop-up in which the user is currently working. For example,
you want to show additional information and therefore have to increase the height of the pop-up.

The following code is inside the adapter object that belongs to the opened pop-up page:

public void onXxxxxx()
{
 findFunctionsLivingPopup().setPopupSize(m_newWidth,m_newHeight);
}

Working with Pages16

Opening Modal Pop-up Dialogs

6 URL to Choose when Navigating

By the switchToPage(...) and the openPopup(...)methods, aURL is passed as a string parameter
to Application Designer for navigation. How can the URL be defined?

You can use relative links as long as the page to which you navigate is in the same directory as
the page from which you navigate. This is especially important when navigating between pages
which belong to the same application project. See alsoApplication Project Management in the Special
Development Topics.

If youwant to navigate outside your project, you have to specify a link startingwith the document
root of your HTTP server. For each application project, a new context path is set up with the name
of the project. Navigating from one project's file to another can be done by specifying the full URL
like /<project>/<projectfile.html>.

Pages created without the project management (such as the Hello World example) are accessible
by the default context /HTMLBasedGUI/.

17

18

7 Value Help Pop-up Dialogs

■ Standard Method openIdValueHelp ... 31
■ Standard Method openIdValueCombo ... 23

19

In case youwant to provide help in form of a pop-up dialog - based on a certain field - Application
Designer offers a technique for implementing a value selection help:

■ The FIELD control offers the property popupmethod. With this property, amethod of the adapter
class is called whenever the user requests a value help inside the field - by pressing F4 or F7 in
the field or by double-clicking on the field.

■ A pop-up dialog opens displaying possible data selections.

The value help pop-up dialogs are just normal pop-up dialogswhich just have a dedicated purpose.

Standard Method openIdValueHelp

Inherited from the Adapter class, there is a very simpleway to provide a value help pop-up dialog.
The method openIdValueHelp is implemented in a generic way and can be used as follows:

■ In your adapter, implement a method findValidValuesForXxx(). Replace "Xxx" with the name
of the property field.

■ Thismethodmust return an array of com.softwareag.cis.server.util.ValidValueLine objects.
This array contains pairs of IDs and values which are valid data options for the Xxx property.

■ When requesting a value help for the corresponding field, a pop-up dialog displays the
ValidValueLine objects which are passed back from your method. If the user selects an item in
the pop-up dialog, the value is placed in the setXXXmethod of the property.

The following Java source shows an example:

// property >department<
 String m_department;
 public String getDepartment() { return m_department; }
 public void setDepartment(String value) { m_department = value; }

 public ValidValueLine[] findValidValuesForDepartment()
 {
 Vector v = new Vector();
 v.addElement(new ValidValueLine("EXEC","Executive Board"));
 v.addElement(new ValidValueLine("PRO1","Production Line1"));
 v.addElement(new ValidValueLine("PRO2","Production Line2"));
 v.addElement(new ValidValueLine("SALE","Sales"));
 ValidValueLine[] result = new ValidValueLine[v.size()];
 v.copyInto(result);
 return result;
 }

The XML layout looks as follows:

Working with Pages20

Value Help Pop-up Dialogs

<rowarea name="Field with Value Help">
 <itr>
 <label name="Department" width="100">
 </label>
 <field valueprop="department" width="150" popupmethod="openIdValueHelp">
 </field>
 </itr>
</rowarea>

The result is a field which automatically opens a pop-up dialog when the user presses F4 or F7, or
double-clicks on the field.

21Working with Pages

Value Help Pop-up Dialogs

An additional feature available: instead of displaying pairs of ID and name, the dialog can display
a list of IDs only. There is a constructor of the ValidValueLine class with only passing an ID to it:

public ValidValueLine[] findValidValuesForDepartment_02()
 {
 Vector v = new Vector();
 v.addElement(new ValidValueLine("EXEC"));
 v.addElement(new ValidValueLine("PRO1"));
 v.addElement(new ValidValueLine("PRO2"));
 v.addElement(new ValidValueLine("SALE"));
 ValidValueLine[] result = new ValidValueLine[v.size()];
 v.copyInto(result);
 return result;
 }

Now the pop-up dialog contains only a column containing the IDs:

Working with Pages22

Value Help Pop-up Dialogs

Standard Method openIdValueCombo

See the description of the FIELD control for information on how to implement a valid value help
with the openIdValueCombomethod. This method does not open a pop-up but it open a combo-
like selection.

The interface on the server side is exactly the same as for openIdValueHelp - just the rendering
result is different:

Further information is provided in the description of the FIELD control.

23Working with Pages

Value Help Pop-up Dialogs

24

8 Standard Pop-up Dialogs

■ OK Pop-up ... 26
■ Yes/No Pop-up ... 26
■ Log Pop-up .. 28
■ Example: Asking Whether the User Really Wants to Quit ... 29

25

There are standard pop-up dialogs available for general usage which you do not have to code
yourself.

OK Pop-up

The OK pop-up is used for displaying a text with an OK button.

The following is an example of an OK pop-up:

The code of the adapter is:

public void showOKPopup()
{
 PopupOKModel pok = (PopupOKModel)findAdapter(PopupOKModel.class);
 pok.init("This is some text inside the pop-up.
"+
 "It may use any kind of HTML tags internally." +
 "It should not exceed the size of this window!");
 this.openPopup("/HTMLBasedGUI/popupok.html");
}

Yes/No Pop-up

The Yes/No pop-up is used for asking the user a question. Depending on user’s decision, activities
are started inside the adapter.

The following is an example of a Yes/No pop-up:

Working with Pages26

Standard Pop-up Dialogs

The code of the adapter is:

public class YESCommand implements com.softwareag.cis.server.util.ICommand
{
 public void execute()
 { outputMessage("S","Yes command was called"); }
}
public class NOCommand implements com.softwareag.cis.server.util.ICommand
{
 public void execute()
 { outputMessage("S","No command was called"); }
}
public void showYESNOPopup()
{
 PopupYesNoModel pyn = (PopupYesNoModel)findAdapter(PopupYesNoModel.class);
 pyn.init("Do you really want to do this?",
 new YESCommand(),
 new NOCommand());
 this.openPopup("/HTMLBasedGUI/popupyesno.html");
}

The pop-up dialog is initialised by passing the question and two “reaction objects” to it. One “re-
action object” is called when choosing the Yes button, the other is called when choosing theNo
button.

The “reaction objects” have to implement the interface com.softwareag.cis.server.util.Icommand
which just needs a simple execute()method. In our example, the “reaction objects” are implemen-
ted as inner classes of the adapter class.

27Working with Pages

Standard Pop-up Dialogs

Log Pop-up

The Log pop-up is used for displaying a log text.

The following is an example of a Log pop-up:

The code inside the adapter is:

Working with Pages28

Standard Pop-up Dialogs

public void showLOGPopup()
{
 PopupLogModel plm = (PopupLogModel)findAdapter(PopupLogModel.class);
 plm.init("You can put any kind of log into this pop-up.\n\n"+
 "The log is scrollable and you can do cut & paste from "+
 "the log into any other program. You cannot use HTML "+
 "to format the log.");
 this.openPopup("/HTMLBasedGUI/popuplog.html");
}

Example: Asking Whether the User Really Wants to Quit

This is a typical example: the user works on a page of your application for a while and then choose
the close icon in the right top corner of the page. Check whether the user has changed something
and ask using a pop-up dialog if the user really wants to close the page.

The following Java source shows an implementation in the adapter class:

/** */
public void endProcess()
{
 if (m_changed == true)
 {
 PopupYesNoModel pyn = (PopupYesNoModel)findAdapter(PopupYesNoModel.class);
 pyn.init("You modified some data. Do you really want to exit?",
 new ICommand() { public void execute() { executeEndProcess(); }},
 null);
 this.openPopup("/HTMLBasedGUI/popupyesno.html");
 }
 else
 {
 executeEndProcess();
 }
}

/** */
public void executeEndProcess()
{
 super.endProcess();
}

The endProcess()method is called by the closing function of the page. It is provided by the
Adapter class from which the adapter is inherited. The endProcess()method does already
everything which is required for removing the subsession.

Overwrite the endProcess()method and embed the code which opens a Yes/No pop-up to ask
whether the user really wants to quit the application. The original closing function is shifted to
the method executeEndProcess(). The Yes/No pop-up got for the “Yes” method an inner class

29Working with Pages

Standard Pop-up Dialogs

pointing to the executeEndProcess()method. The “No” method is null and means that nothing
should be done.

Working with Pages30

Standard Pop-up Dialogs

9 Page-based Pop-up Dialogs

Page-based pop-up dialogs look and behave different from the standard pop-up dialogs. The
content of a page-based pop-up dialog is not opened within a modal browser window. This has
the following advantages:

■ Page-based pop-up dialogs are faster than the standard pop-up dialogs.
■ There are no browser window drawbacks. A page-based pop-up dialog does not have a close
icon; the user must always choose a command button before the page-based pop-up dialog is
closed. There is no status bar in which an URL can be shown.

■ Page-based pop-up dialogs are not affected by pop-up blockers.
■ Page-based pop-up dialogs are page-modal only. This means that they do not block the whole
browser window. Other pages can be opened in a subpage or in an other frame.

To open standard pop-up dialogs and page-based pop-up dialogs, you have to use the following
API calls:

31

■ Open a standard pop-up dialog in a browser window:

openPopup(page)

■ Open a page-based pop-up dialog:

openPagePopup(page)

Working with Pages32

Page-based Pop-up Dialogs

10 Embedding Pages into Pages

In Application Designer, there is the possibility to embed pages into other pages. Or vice versa:
you can create pages which consist of other embedded pages. In this case, the (master) page and
the embedding page operate independently from each other by having a channel to cooperate.

Use this technique to build pages for different scenarios. Example: embed a page showing an order
detail into another page displaying a list of all orders. When you select an order from the list, it
will be displayed in detail in the “inner” page.

The technology described in this part is very nice for modularising complex or large screens. It is
not appropriate to use this technology for very fine modularisation, e.g. for just a couple of fields.
(For more information on how to deal with “fine modularisation”, see the Customized Controls
documentation.)

There are two controls which support embedding of pages into pages:

■ The SUBCISPAGE2 control represents a rectangular area inside a page inwhich anotherApplic-
ation Designer page can be included.

■ The ROWTABSUBPAGES control is a tab selection control where a dynamic set of pages can
be arranged.

The information provided in this part is organized under the following headings:

SUBCISPAGE2 Control

ROWTABSUBPAGES Control

Remark on Modularisation

33

34

11 SUBCISPAGE2 Control

■ Simple Example .. 36
■ SUBCISPAGE2 Properties .. 39

35

The SUBCISPAGE2 control allows you to place one page into another page. Youmay already have
read the section describing the SUBPAGE control which allows to place any HTML page into an
Application Designer page. The differences between the SUBCISPAGE2 and the SUBPAGE tag
are:

■ With SUBCISPAGE2, you embed Application Designer pages, not normal HTML pages.
■ Application Designer pages are normally started using a servlet "StartCISPage" which creates
an embedding frame in which the Application Designer page is placed. The SUBCISPAGE2
control automatically creates this frame, you do not have to take care of this.

■ There is a defined communication channel allowing the “outside page” to interact with the
“embedded page”, and vice versa.

■ The embedded page is automatically linked to the Application Designer session management.
It runs in the same session - and typically also in the same subsession as the embedding page.

Simple Example

The following example shows the input of an article number and its article detail data:

Working with Pages36

SUBCISPAGE2 Control

The detail data page is embedded into the whole (outer) page. The XML code of the outer page
is:

<page model="OuterPageAdapter" pagename="Demo.html">
 <titlebar name="Page with embedded page">
 </titlebar>
 <header>
 </header>
 <pagebody takefullheight="true">
 <rowarea name="Page Name Input">
 <itr>
 <label name="Article" width="100">
 </label>
 <field valueprop="article" length="20">
 </field>
 </itr>
 <vdist height="5">

37Working with Pages

SUBCISPAGE2 Control

 </vdist>
 <itr>
 <hdist width="100">
 </hdist>
 <button name="Show Details" method="showDetails">
 </button>
 </itr>
 <vdist height="5">
 </vdist>
 <rowtable0>
 <itr width="100%">
 <subcispage2 subcispageprop="innerPage" width="100%"
height="350" borderwidth="1">
 </subcispage2>
 </itr>
 </rowtable0>
 <vdist height="5">
 </vdist>
 </rowarea>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

The SUBCISPAGE2 control references a property innerPagewhich is provided by the adapter
class of the page. The height can be specified depending on the whole page's height or can be
fixed.

The corresponding adapter source is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.SUBCISPAGEInfo;

public class SubCisPage2Adapter
 extends Adapter
{
 // property >innerPage<
 SUBCISPAGEInfo m_innerPage = new SUBCISPAGEInfo();
 public SUBCISPAGEInfo getInnerPage() { return m_innerPage; }

 // property >article<
 String m_article;
 public void setArticle(String value) { m_article = value; }
 public String getArticle() { return m_article; }

 /** */
 public void init()
 {
 m_innerPage.showPage("ArticlePage.html");

Working with Pages38

SUBCISPAGE2 Control

 }

 /** */
 public void showDetails()
 {
 // fetch adapter of inner page
 ArticlePageAdapter ipa = (ArticlePageAdapter)
findAdapter(ArticlePageAdapter.class);
 ipa.init(m_article);

 // trigger a refresh of the innerpage
 m_innerPage.refreshContentOfCurrentPage();
 }
}

The property innerPage is of type com.softwareag.cis.server.util.SUBCISPAGEInfo. With
method SUBCISPAGEInfo.showPage, the article page is started within the subarea. This does not
have to be flexible all the time - but it may be on request. (Maybe there are several versions of
displaying the detail data, depending on the article type).

When choosing the Show Details button, the method showDetails() is called. It prepares the
adapter of the inner page to display the detail data of the requested article. Afterwards, the
method SUBCISPAGEInfo.refreshContentOfCurrentPage is called in order to reload the embedded
page. Consequently, the article details are shown.

See the JavaDoc documentation of class SUBCISPAGEInfo.

SUBCISPAGE2 Properties

Basic

OptionalName of adapter property representing the control on server side.subcispageprop

The property must be of type "TABSUBPAGESInfo". View the Java
API Documentation for further information.

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

39Working with Pages

SUBCISPAGE2 Control

100%can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will
be renderedwith its default height. If the control is a container control

250(containing) other controls then the height of the control will follow
the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50% then

100%the parent element (e.g. an ITR-row) may itself define a height of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

(already explained above)height

1OptionalBorder size of control in pixels. Specify "0" not to render any border
at all.

borderwidth

2

3

int-value

trueOptionalDefault is false. If WITHOWNBORDER is set to true, the subcispage2
control is rendered with its own 3D lookalike border. Set
BORDERWIDTH to 0 if WITHOWNBORDER is set to true.

withownborder

false

OptionalCSS style definition that is directly passed into this control.pagestyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating themwith
a semicolon.

Working with Pages40

SUBCISPAGE2 Control

Sometimes it is useful to have a look into the generated HTML code
in order to knowwhere direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then youmay sometimes want to control the
number of columns your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then youmay sometimes want to control the
number of rows your control occupies. By default it is "1" - but you
maywant to define the control two span overmore than one columns. 3

4The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 5

50

int-value

41Working with Pages

SUBCISPAGE2 Control

42

12 ROWTABSUBPAGES Control

■ Properties .. 45
■ Performance Considerations ... 48

43

The ROWTABSUBPAGES control allows to switch between several Application Designer pages
using tabs. The displayed number of tabs and names are derived dynamically from its adapter
properties.

Optionally, the ROWTABSUBPAGES control may contain exactly one STRAIGHTTABPAGE as
a subnode. STRAIGHTTABPAGEmust be the first tab. This allows for combining ROWTABAREA
behavior with ROWTABSUBPAGES behavior. Having a STRAIGHTTABPAGE as the first tab
improves the loading behavior of ROWTABSUBPAGES. For an example, see the 80_straighttabpage
layout in the cisdemos project.

The XML definition is:

Working with Pages44

ROWTABSUBPAGES Control

<pagebody>
 <rowtabsubpages pagesprop="tabpages" height="600" borderwidth="0">
 </rowtabsubpages>
</pagebody>

TheROWTABSUBPAGES control references a property tabPageswhich is provided by the adapter
class of the page. The height can be specified depending on the whole page’s height or can be fix.
The page style can be manipulated directly.

The corresponding adapter source is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TABSUBPAGESInfo;

public class RowTabSubPageAdapter
 extends Adapter
{
 // property >tabpages<
 TABSUBPAGESInfo m_tabPages = new TABSUBPAGESInfo();
 public TABSUBPAGESInfo getTabpages() { return m_tabPages; }

 /** initialisation - called when creating this instance*/
 public void init()
 {
 m_tabPages.addItem("Hello World","HelloWorld.html");
 m_tabPages.addItem("Tree","trees_01.html");
 //m_tabPages.addItem("Dynamic Combo", "HelloWorld.html");
 m_tabPages.addItem("Chart", "HelloWorld.html");
 }
}

The property tabPages is of type com.softwareag.cis.server.util.TABSUBPAGESInfo. There
aremethods for adding and removing items from the tabPages object. See the JavaDoc document-
ation. The number of items can be changed at any time.

Properties

Basic

ObligatoryName of adapter property representing the control on server side.pagesprop

The property must be of type "TABSUBPAGESInfo". View the Java
API Documentation for further information.

trueOptionalFlag indicating whether the adapter should be triggered if the user
switches between pages. If set to true, method trigger() inside the

triggerserver

falseTABSUBPAGESInfo object is called - before switching the page.

45Working with Pages

ROWTABSUBPAGES Control

Therefore the adapter can abort a page switch - maybe a user has
to enter some data first on the current page before switching to
another one.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%

100%then the parent element (e.g. an ITR-row)may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

trueOptionalIf set to "true" then small icons will appear on the right border of
the control. If the size of the "tabs" is too big and some tabs are cut

scrollable

falseas consequence then you can use these icons for scrolling left and
right.

OptionalMulti language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

trueOptionalIf this property is switched to "true" (default is "false") then the
contained subpages are buffered in a way that switching between

fastbufferswitch

falsetabs is not done by loading a new page but by just switching the
visibility of pages. Please pay attention to that switching between
pages in this case does not reload the page content from the server
when switching!

In order to enable fast switching you have to set the framebuffersize
in cisconfig (n +1), n being the number of tabs to switch.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

1OptionalBorderwidth (in pixels) of the sub-page that is contained inside this
control. Define "0" to avoid rendering any border.

borderwidth

2

3

int-value

Working with Pages46

ROWTABSUBPAGES Control

1OptionalInserts a horizontal distance left of the first "tab" and shifts the "tabs"
to the right as consequence. The value you may define represents
the number of pixels that are inserted.

leftindent

2

3

int-value

1OptionalNumber of pixels which you want to keep as margin between the
tab control's left border and the inner sub page. Default is 5 pixel.

paddingleft

2

3

int-value

1OptionalNumber of pixels which you want to keep as margin between the
upper tab row and the inner sub page. Default is 5 pixel.

paddingtop

2

3

int-value

1OptionalNumber of pixels which you want to keep as margin between the
tab control's right border and the inner sub page. Default is 5 pixel.

paddingright

2

3

int-value

1OptionalNumber of pixels which you want to keep as margin between the
bottom of the tab control and the inner sub page. Default is 5 pixel.

paddingbottom

2

3

int-value

OptionalCSS style definition that is directly passed into this control.pagestyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

47Working with Pages

ROWTABSUBPAGES Control

Sometimes it is useful to have a look into the generatedHTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source"
or "View frame's source" function.

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be later
on used within your test tool in order to do the object identification

testtoolid

Performance Considerations

Many users like the subdivision of pages into “tabs”. Application Designer offers several controls
for this - let us compare the ROWTABSUBPAGES control described in this section with the
ROWTABAREA control described in the Layout Elements documentation.

The ROWTABAREA control has certain content areas (TABPAGEs) and alwaysmakes one of them
visible. This means: the page has much more HTML code and controls then are visible. The size
of the page is important for the performance of the page in the browser: the bigger the size, the
longer it takes the browser to render a page (also if it is already cached).

The ROWTABSUBPAGES control offers a subpage in which you can place contained pages.

Now imagine that you have 500 fields to be displayed inside “tabs”: in this case, it is more per-
formant to build one “mother page” containing the ROWTABSUBPAGES control and to have five
“detail pages”, one for each “tab”, than having one big page with all 500 fields, arranged by a
ROWTABAREA control.

In the demo workplace, there is an example in which you can “feel” the difference - please have
a look!

Working with Pages48

ROWTABSUBPAGES Control

13 Remark on Modularisation

This section describes one - important - technique for modularisation: embedding of pages into
other pages.

This technique is useful for “rough granular” integration aspects: it is used to arrange pages with
a dedicated task (e.g. themaintenance of an order) into other screens (e.g. an overview of all orders).
Each page - both the “outer” page and the “inner” page - keep their “page behavior”, i.e. they are
talking independently to the server.

The hour glass icon indicates that a page is talking to its server adapter. If an “outer” page refreshes
its “inner” page, the “outer” page first talks to the server, and afterwards the “inner” page.
Therefore, there is more than one roundtrip between the client and the server.

As a consequence, it does not make sense (and it is not intended at all by Application Designer)
to build up fine granular integration scenarios in which a group of fields is defined as an embed-
dable unit being used in several screens. This is the job of controls to easily build up your own
one. Controls which you build render a group of controls (e.g. an area for entering an address)
and can be re-used in different pages. Controls always talk to the serverwithin the same roundtrip.
They are available as design time controls - if you change the behavior of one control definition,
all pages using this control have to be regenerated.

It is comparable with C programming. You have libraries that you put directly into your compil-
ation process. If the libraries change, you have to recompile. This is the level of controls. On the
other hand, you have units of rougher granularity: e.g. DLLs. These can be changedwithout letting
your program know. This is the level of page integration.

49

50

14 Multi Frame Pages

The information provided in this part is organized under the following headings:

What are Multi Frame Pages?

Definition of Multi Frame Pages

Example

Communication between Frames

Combination with Normal Application Designer Pages

51

52

15 What are Multi Frame Pages?

Multi frame pages are a special set of pages. Normal pages represent a generated HTML page - a
multi frame page represents a generated HTML frameset page.

A multi frame page does not contain controls but frames in which other pages are positioned.
Each frame is associated with an ID (called “target” in this section). A frame may be:

■ a normal HTML page
■ an intelligent Application Designer page
■ a frameset itself containing frames

Multi frame pages are the preferred way of arranging Application Designer pages in a frameset.
Besides enhanced possibilities of communication between frames,multi frame pages automatically
take care of keeping all Application Designer frames inside the same session. See section Session
Management for more details.

53

54

16 Definition of Multi Frame Pages

■ MFPAGE ... 56
■ MFCISFRAME .. 57
■ MFHTMLFRAME ... 60
■ MFFRAMESET ... 61

55

The definition ofmulti frame pages is donewith the Layout Painter.When you create a new layout,
a dialog appears in which you select a template. To create a multi frame page, you have to select
the "Multi Frame Page" template. The Layout Painter will open just as usual, but instead of having
the PAGE control as the highest control, you now see the control MFPAGE. You can reach a
number of controls that are related to multi frame page management.

The following controls are “normal frame controls” (they are described below):

■ MFPAGE - the top element of multi frame pages.
■ MFCISFRAME - a frame in which an Application Designer HTML page is loaded.
■ MFHTMLFRAME - a frame in which a normal HTML page is loaded.
■ MFFRAMESET - an area that can be subdivided into frames itself.

The following controls are “workplace controls” (they are described in the section Application
Designer Workplace Framework. The Application Designer workplace - which is described in the
Development Workplace documentation - is based on these controls.

■ MFWPFUNCTIONS
■ MFWPACTIVEFUNCTIONS
■ MFWPCONTENT

MFPAGE

The MFPAGE is the top node of every multi frame page. It can be subdivided into frames or
framesets.

Basic

rowsObligatorySpecifies how the corresponding internally used frameset
is subdivided: choose "rows" for subdividing into rows,
"cols" for subdividing into columns.

separation

cols

ObligatoryDefines the size of the contained sub-frames. If you have
three sub-frames to show up inside the page then you

sizing

might specify "200,200,*" to specify how the height (if
SEPARATION is "rows") or the width (if SEPARATION
is "cols") is distributed among the frames.

You can speficy per frame either a pixel value or a "*".

OptionalCommentwithout any effect on rendering andbehaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

Working with Pages56

Definition of Multi Frame Pages

1OptionalSpace between frames contained in the frameset that is
internally built up.

border

2

3

int-value

#FF0000OptionalSets the border color of the frame set.bordercolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

trueOptionalDefines if to display a border around the contained
frames. Valid values are "true" or "false".

frameborder

false

1OptionalDefines the amount of additional space between the
frames. Value is a pixel value.

framespacing

2

3

int-value

background-color:
#FF0000

OptionalStyle passed to the HTML-frameset definition that is
internally generated.

framesetstyle

color: #0000FF

font-weight: bold

MFCISFRAME

TheMFCISFRAME represents a frame inwhich anApplicationDesigner page is shown. The name
of the page is passed as a parameter.

57Working with Pages

Definition of Multi Frame Pages

Basic

ObligatoryId of the frame.Must be unique inside the frameset page.
Must only contain alphanumeric characters.

target

The id is important! CIS offers certain methods inside
theModel-class that allow an adapter to start operations
for a certain frame (e.g. openeCIPageInFrame(...)). As
part of the parameters of these methods a target-id is
passed. The target-id is exactly the id you specifiy with
the TARGET property.

ObligatoryURL of the page to be shown inside. Use
/project/page.html as syntax, e.g.
"/HTMLBasedGUI/empty.html".

cisurl

Do NOT use only page.html believing that you do not
have to specify the project because themulti frame page
runs in the same project than the page youwant to open
- you ALWAYS have to specify the project!

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

Appearance

trueOptionalDecision if the user is able to resize the frame. This
property must be in synch with the definition in the

resizable

false"neighbour frames". If the neighbour frames do not
support resizing then it will not be offered to the user
as consequence.

Valid values are "true" and "false". Default is "true".

trueOptionalBoolean value defining if the frame has a border on its
own. Default is "false".

withborder

false

background-color:
#FF0000

OptionalStyle that is passed to theHTML-FRAMEdefinition that
is internally generated.

framestyle

color: #0000FF

font-weight: bold

#FF0000OptionalSets the border color of the frame set.bordercolor

#00FF00

#0000FF

#FFFFFF

#808080

Working with Pages58

Definition of Multi Frame Pages

#000000

1OptionalDefines top and bottom margin height. Value is a pixel
value. Default is "0".

marginheight

2

3

int-value

1OptionalDefines left and right margin width. Value is a pixel
value. Default is "0".

marginwidth

2

3

int-value

trueOptionalFlag that indicates if started pages show an own border.
Default is false.

withownborder

false

Unload Behaviour

NOTHINGOptionalReaction that CIS should take if the page inside the frame
is closed. Possible values are "NOTHING" for doing

unloadbehaviour

REMOVESESSIONnothing and "REMOVESESSION" for removing the
session on server side.

Do not define this property just "by accident" but leave
it to the default ("NOTHING").

You only switch to "REMOVESESSION" if you want
that the server side session is destroyed when leaving
the page. This is the case if you have one page that
clearly indicates the closing of a session at the point of
time when the page is closed.

Applications can change the page that is shown inside the MFCISFRAME by using the method
Adapter.openCISPageInTarget(...).

59Working with Pages

Definition of Multi Frame Pages

MFHTMLFRAME

TheMFHTMLFRAME represents a frame in which a normal HTML page is shown. This page can
be a static HTML page or any URL - e.g. a URL referring to a certain JSP page.

Basic

ObligatoryId of the frame. Must be unique inside the frameset page.
Must only contain alphanumeric characters.

target

The id is important! CIS offers certain methods inside the
Model-class that allow an adapter to start operations for a
certain frame (e.g. openeCIPageInFrame(...)). As part of the
parameters of these methods a target-id is passed. The
target-id is exactly the id you specifiy with the TARGET
property.

ObligatoryURL to be opened inside the frame. The URL can be defined
relative to the multi frame page or can be defined in an
absolute way..

url

Example: You can define
"../HTMLBasedGUI/workplace/header2.html" - or
"http://www.softwareag.com".

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalDecision if the user is able to resize the frame. This property
must be in synch with the definition in the "neighbour

resizable

falseframes". If the neighbour frames do not support resizing then
it will not be offered to the user as consequence.

Valid values are "true" and "false". Default is "true".

trueOptionalBoolean value defining if the frame has a border on its own.
Default is "false".

withborder

false

trueOptionalBoolean that indicates whether the frame can be scrolled.
Default is true.

scrolling

false

background-color:
#FF0000

OptionalStyle that is passed to the HTML-FRAME definition that is
internally generated.

framestyle

color: #0000FF

font-weight: bold

Working with Pages60

Definition of Multi Frame Pages

#FF0000OptionalSets the border color of the frame set.bordercolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

1OptionalDefines top and bottommargin height. Value is a pixel value.
Default is "0".

marginheight

2

3

int-value

1OptionalDefines left and right margin width. Value is a pixel value.
Default is "0".

marginwidth

2

3

int-value

MFFRAMESET

The MFFRAMESET represents a frame that is internally again divided into frames. The MF-
FRAMESET definition decides whether to divide into rows or columns, and how to size the inner
frames.

Basic

ObligatoryId of the frame. Must be unique inside the frameset page.
Must only contain alphanumeric characters.

target

The id is important! CIS offers certain methods inside the
Model-class that allow an adapter to start operations for a
certain frame (e.g. openeCIPageInFrame(...)). As part of the
parameters of these methods a target-id is passed. The
target-id is exactly the id you specifiy with the TARGET
property.

rowsObligatorySpecifies how the corresponding internally used frameset
is subdivided: choose "rows" for subdividing into rows,
"cols" for subdividing into columns.

separation

cols

61Working with Pages

Definition of Multi Frame Pages

ObligatoryDefines the size of the contained sub-frames. If you have
three sub-frames to showup inside the page then youmight

sizing

specify "200,200,*" to specify how the height (if
SEPARATION is "rows") or the width (if SEPARATION is
"cols") is distributed among the frames.

You can speficy per frame either a pixel value or a "*".

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

1OptionalSpace between frames contained in the frameset that is
internally built up.

border

2

3

int-value

#FF0000OptionalSets the border color of the frame set.bordercolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

trueOptionalDefines if to display a border around the contained frames.
Valid values are "true" or "false".

frameborder

false

1OptionalDefines the amount of additional space between the frames.
Value is a pixel value.

framespacing

2

3

int-value

background-color:
#FF0000

OptionalStyle passed to the HTML-frameset definition that is
internally generated.

framesetstyle

color: #0000FF

font-weight: bold

Working with Pages62

Definition of Multi Frame Pages

17 Example

■ The Multi Frame Page Around ... 89
■ The Left Frame ... 65
■ The Right Frame ... 68

63

The example that will be built in this section produces the following output:

When selecting a customer on the left, the customer detail screen is displayed on the right:

When the user selects another record on the left, the screen on the right is updated accordingly.

Working with Pages64

Example

The Multi Frame Page Around

First let us have a look at the multi frame page itself. The layout definition is as follows:

<mfpage separation="rows" sizing="70,*">
 <mfhtmlframe target="HEADER"
 url="../HTMLBasedGUI/workplace/welcome.html"
 resizable="true"
 withborder="false"
 scrolling="false"
 framestyle="border: 1px #808080 solid">
 </mfhtmlframe>
 <mfframeset target="AROUND"
 separation="cols"
 sizing="200,*">
 <mfcisframe target="INNERLEFT"
 cisurl="/cisdemos/25_mfinnerleft.html"
 framestyle="border-right: 1px solid #808080;
 border-bottom: 1px solid #808080">
 </mfcisframe>
 <mfcisframe target="INNERRIGHT"
 cisurl="/HTMLBasedGUI/empty.html"
 framestyle="border: 1px solid #808080">
 </mfcisframe>
 </mfframeset>
</mfpage

The page is subdivided into three frames: "HEADER", "INNERLEFT" and "INNERRIGHT". Two
of them are Application Designer frames, one is an HTML frame. Every frame is pointing to a
certain page.

The Left Frame

The INNERLEFT frame's page displays a text grid and lets the user select from the list of items.
The layout definition is:

<page model="MFInnerLeftAdapter">
 <pagebody horizdist="false" takefullheight="true">
 <itr height="100%" fixlayout="true" width="100%">
 <textgrid2 griddataprop="customers" width="100%" height="100%"
selectprop="selected"
 singleselect="true" hscroll="true"
directselectmethod="onSelect"
 directselectevent="onclick">
 <column name="Id" property="id" width="100">

65Working with Pages

Example

 </column>
 <column name="Name" property="name" width="400">
 </column>
 </textgrid2>
 </itr>
 </pagebody>
</page>

The adapter implementation is done in the following way:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.ServerLog;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

public class MFInnerLeftAdapter
 extends Adapter
{
 // --
 // inner classes
 // --

 public class CustomerInfo
 {
 boolean m_selected;
 String m_id;
 String m_name;
 public String getId() { return m_id; }
 public String getName() { return m_name; }
 public boolean getSelected() { return m_selected; }
 public void setId(String string) { m_id = string; }
 public void setName(String string) { m_name = string; }
 public void setSelected(boolean b) { m_selected = b; }
 }
 // --
 // members
 // --

 TEXTGRIDCollection m_customers = new TEXTGRIDCollection();

 // --
 // property access
 // --

 public TEXTGRIDCollection getCustomers() { return m_customers; }

 // --
 // public methods
 // --

 public void init()
 {
 super.init();

Working with Pages66

Example

 for (int i=0; i<40; i++)
 {
 CustomerInfo info = new CustomerInfo();
 ci.setId(""+i);
 ci.setName("Customer " + i);
 m_customers.add(ci);
 }
 }

 public void onSelect()
 {
 try
 {
 CustomerInfo info = (CustomerInfo)m_customers.findLastSelectedItem();
 // prepare adapter of right frame
 MFInnerRightAdapter mfira =
 (MFInnerRightAdapter)findAdapter(MFInnerRightAdapter.class);

 mfira.prepare(ci.getId());
 // preload adapter so that only one request is executed
 includeAdapterInResponse("../_DevelopersGuide/mfinnerright.html",false);
 // refersh target
 refreshTarget("INNERRIGHT");
 }
 catch (Throwable t) { ServerLog.appendException(t); }
 }
}

The class contains the following:

■ An inner class for the text grid items.
■ An initmethod for filling the text grid.
■ A onSelect()method that is called when the user selects a text grid line.

The “critical” lines of code are inside the onSelect()method. Inside the method

■ the selected line is determined,
■ the adapter of the right neighbor screen is prepared so that it shows the data of the selected line,
■ the right page is switched to the detail page (if first call) or
■ the right page is refreshed to present the correct adapter information.

67Working with Pages

Example

The Right Frame

The right frame is loaded with /HTMLBasedGUI/empty.html first. With the first selection in the text
grid, the detail page is opened inside the right frame. Afterwards, the detail page is refreshed to
update its content.

Working with Pages68

Example

18 Communication between Frames

■ API inside the Adapter Class ... 70
■ Pay Attention to Request Processing ... 70
■ Session Management (I) ... 71
■ Session Management (II) .. 71

69

You already saw some methods in the previous section enabling one frame to open pages in an-
other frame and to refresh information of other frames.

API inside the Adapter Class

The following table shows a summary of functions that you can reach in your adapter class which
inherits from com.softwareag.cis.server.Adapter. See the JavaDoc documentation for imple-
mentation details.

DescriptionMethod

Opens a certain Application Designer HTML page inside a certain frame
which is identified by its target ID. There is a set ofmethodswith different
parameter notation.

openCISPageInTarget(...)

The default method just needs to know the page URL and the ID of the
frame. Other methods expect more information, e.g. if you want to open
the Application Designer page in a different subsession.

Refreshes the target's frame content. This method is to be used if you
want the target frame not to change its page but to update its content.

refreshTarget(...)

In the example in the previous section, this method is used after having
updated the right frame's adapter on the server side.

Invokes amethod in the target frame's ApplicationDesignerHTMLpage.
The call is triggered from the client - for example, imagine that a button

invokeMethodInTarget(...)

supporting the method is pressed in the target frame's Application
Designer HTML page.

Manipulate the size of the target. Each target gets a certain size by the
frame set definition on top of it (e.g. if the frame set definition has a sizing

sizeTarget(...)

of "200,300,*", then the second frame has a size of "300". You can change
the size of a target by using this method.

Pay Attention to Request Processing

Be aware of the request processing in the browser: only the page which sends a request (e.g. the
left page in the example) is the active page and will process the response. All other pages living
in neighboring frames are by default not affected.

Consequence: if you want to change or refresh these pages, you have to explicitly do so using the
API presented in one of the previous sections.

Important: The adapter that processes the request is the one to call the API methods.

Working with Pages70

Communication between Frames

Session Management (I)

Maybe you have already tried to build multi frame pages on your own, using HTML framesets:

...

...
<frameset cols="*,*">
 <frame src="../servlet/StartCISPage?PAGEURL=/project/left.html">
 <frame src="../servlet/StartCISPage?PAGEURL=/project/right.html">
</frameset>
...
...

If so, you will have seen that in each of the frames, the Application Designer page will be opened
correctly. However, both pages are running in independent sessions (not subsessions).

Opening the samepages usingApplicationDesigner’sMF* controls (MFFRAMESET,MFCISPAGE)
will keep both pages inisde the same session and subsession.

Note: Details on session management are provided in the section Session Management.

Session Management (II)

When communicating between frames, e.g. by using themethod Adapter.openCISPageInTarget(),
the default is that the page that is opened in another target will be opened in the same session/sub-
session as the one that initiated the frame communication. Session ID and subsession ID are taken
over by default.

There are certain variants of the openCISPageInTarget()method that allow to control the man-
agement of a subsession in a more fine granular way: you may pass as parameter the ID of the
subsession in which a page should be opened in another page; i.e. you can explicitly decouple the
other frame’s subsession from your own one.

The workplace that comes with Application Designer makes use of this: every time you open a
content window, this content is managed in its own subsession, being decoupled from the work-
place’s subsessions and being decoupled from other content pages’ subsessions.

Use these functions with care: typically all application adapters should run in one subsession, and
only an “outside function” (such as the workplace management) should take care of starting
various contents in various subsessions.

71Working with Pages

Communication between Frames

72

19 Combination with Normal Application Designer Pages

There is no problem to integrate multi frame pages into other Application Designer pages. The
mechanisms described in the section Embedding Pages into Pages are valid for both normal Ap-
plication Designer pages and multi frame Application Designer pages.

This means:

■ You can embedmulti framepages into normalApplicationDesigner pages via the SUBCISPAGE2
control.

■ You can embed multi frame pages into normal Application Designer pages via the ROWTAB-
SUBPAGES control.

73

74

20 Embedding Pages into a Workplace

In the First Steps, you learned already how to build pages that are generated by the Layout Painter.
This part explains how to integrateApplicationDesigner pages intoworkplace/portal environments.
There are different scenarios that are described here:

■ Usage of the Application Designer workplace framework that lets you design and implement
individual workplaces for your application.

■ Integrating Application Designer pages into various portal scenarios by opening them with a
URL.

■ Writing a workplace framework on your own - i.e. use Application Designer in order to build
your workplace, but not on base of the Application Designer workplace framework.

The information provided in this part is organized under the following headings:

Application Designer Workplace Framework

Integration into Other Workplace/Portal Scenarios

Extended Functions in the Application Designer Workplace

Building OwnWorkplaces as a Frameset Definition

75

76

21 Application Designer Workplace Framework

■ Framework Overview ... 79
■ Functions Frame: MFWPFUNCTIONS ... 80
■ Active Functions Frame: MFWPACTIVEFUNCTIONS ... 82
■ Content Frame: MFWPCONTENT .. 83
■ Filling the MFWPFUNCTIONS Frame .. 84
■ Tree Node Types ... 87
■ Filling the MFWPFUNCTIONS Frame without any Java Coding: MFWPBOOTSTRAPINFO 88
■ Customizing the MFWPFUNCTIONS Behavior .. 98
■ Session Management inside the Workplace .. 107
■ Other Frames ... 107
■ Workplace API for Dynamic Manipulation ... 108
■ Example - Double Line Menu Workplace .. 110
■ Usage Example - Calling the Application Designer Workplace with Directly Opening a Page 113

77

The demo workplace (as well as the IDE workplace) provides examples of workplaces built on
base of this framework.

The workplace framework bases on the multi frame page management described in the previous
part. It offers the following:

■ flexible arrangement of frames,
■ predefined frames containing workplace logic,
■ dynamic loading of available functions,
■ possibility to change the environment at runtime via the Java API,
■ execution of multiple tasks between which the user can switch (“multi document interface”).

Working with Pages78

Application Designer Workplace Framework

Framework Overview

An Application Designer workplace is a certain arrangement of frames in a multi frame page.
Some of the frames have predefined tasks. Have a look at the demo workplace in which you can
already see the most important frames:

The "Functions" frame contains the available functions that can be chosen and invoked by the user.
The "Content" frame contains the page or page sequence that is opened if a function is selected.
The "Active Functions" frame shows the functions that were opened by the user and allows the
user to navigate between the active functions.

Have a look at the XML layout definitions for this workplace; it consists of an inner definition in
which themain frames are arranged and an outer definition that adds some additional decoration
around. The inner page (com.softwareag.cis.workplace.MFInner.xml) is:

79Working with Pages

Application Designer Workplace Framework

<mfpage separation="rows" sizing="20,*">
 <mfwpactivefunctions resizable="false" withborder="false" scrolling="false"
 framestyle="border: 0px solid #000000">
 </mfwpactivefunctions>
 <mfframeset target="ZZZ" separation="cols" sizing="265,*">
 <mfframeset target="LEFTPART" separation="rows" sizing="*,87" border="true"
 framesetstyle="border: 1px solid #808080">
 <mfwpfunctions
bootstrapclass="com.softwareag.cis.workplace.MFDefaultBootstrapInfoProvider"
 serversidescrolling="false" framestyle="border: 1 solid
#808080;">
 </mfwpfunctions>
 <mfhtmlframe target="NEWS" url="../HTMLBasedGUI/workplace/welcome.html"
 resizable="true" withborder="false" scrolling="true"
 framestyle="border: 1px solid #808080">
 </mfhtmlframe>
 </mfframeset>
 <mfwpcontent resizable="true" withborder="true" scrolling="false"
 framestyle="border: 1 solid #808080;">
 </mfwpcontent>
 </mfframeset>
</mfpage>

You see that there are three special frame controls that are used internally: MFWPFUNCTIONS,
MFWPACTIVEFUNCTIONSandMFWPCONTENT. In addition, there is oneHTMLpage arranged
below the MFWPFUNCTIONS control.

Let us take a closer look at each of the three workplace frame controls.

Functions Frame: MFWPFUNCTIONS

This is the frame to hold the available functions to be selected by the user. The control has the
following properties:

Basic

OptionalName of the class that is responsible for passing the initial
workplace configuration. The class must support interface

bootstrapclass

"IMFWorkplace2" and must support a constructor without
parameters.

When being displayed the workplace creates an instance of
this class and asks for an object that represents theworkplace
setup. Have a look into the javadoc-documentation for
interface "IMFWorkplace2" for more information.

OptionalURL to an .xml file that holds the initial workplace
configuration. Do not use BOOTSTRAPINFOURL and
BOOSTRAPCLASS at the same time!

bootstrapinfourl

Working with Pages80

Application Designer Workplace Framework

Use /project/directory/doc.xml as syntax, e.g.
/HTMLBasedGUI/workplace/bootstrapworkplaceinfo.xml.

trueOptionalFlag that decides if the function tree providing the available
workplaces functions support client side scrolling (default,

serversidescrolling

false"false") or supports server side scrolling ("true"). Server side
scrolling should be used if a function tree containes more
than 100 nodes.

OptionalURL of a page that is shown in the 'content area' by default.defaultcontentpage

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

OptionalStyle sheet that should be used for the content that is started
inside the workplace.

contentstylesheet

background-color:
#FF0000

OptionalStyle that is passed to the HTML-FRAME definition that is
internally generated.

framestyle

color: #0000FF

font-weight: bold

#FF0000OptionalSets the border color of the frame set.bordercolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

1OptionalDefines top and bottommargin height. Value is a pixel value.
Default is "0".

marginheight

2

3

int-value

1OptionalDefines left and right margin width. Value is a pixel value.
Default is "0".

marginwidth

2

3

int-value

81Working with Pages

Application Designer Workplace Framework

tabstripOptionalDefineshowtheMFWPACTIVEFUNCTIONSframedisplays
the list of started pages. You can either use a STRIPSEL or
TABSTRIP control. Default is "tabstrip".

activefunctionsvariant

stripsel

trueOptionalFlag that indicates if the functions page shows an additional
border. Default is false.

withownborder

false

OptionalStyle sheet that should be used for the workplace itself.workplacestylesheet

trueOptionalIf set to "true" then +/- Icons will be rendered in front of the
mfwpfuntions.

withplusminus

false

Active Functions Frame: MFWPACTIVEFUNCTIONS

This frame shows the functions that the user started and between which the user can switch.

Basic

trueOptionalDecision if the user is able to resize the frame. This
property must be in synch with the definition in the

resizable

false"neighbour frames". If the neighbour frames do not
support resizing then it will not be offered to the user as
consequence.

Valid values are "true" and "false". Default is "true".

trueOptionalBoolean value defining if the frame has a border on its
own. Default is "false".

withborder

false

trueOptionalBoolean that indicateswhether the frame can be scrolled.
Default is true.

scrolling

false

background-color:
#FF0000

OptionalStyle that is passed to the HTML-FRAMEdefinition that
is internally generated.

framestyle

color: #0000FF

font-weight: bold

#FF0000OptionalSets the border color of the frame set.bordercolor

#00FF00

#0000FF

Working with Pages82

Application Designer Workplace Framework

#FFFFFF

#808080

#000000

1OptionalDefines top and bottom margin height. Value is a pixel
value. Default is "0".

marginheight

2

3

int-value

1OptionalDefines left and right margin width. Value is a pixel
value. Default is "0".

marginwidth

2

3

int-value

OptionalCommentwithout any effect on rendering andbehaviour.
The comment is shown in the layout editor's tree view.

comment

Content Frame: MFWPCONTENT

This is the frame in which content is started that is selected from the functions area.

Basic

trueOptionalDecision if the user is able to resize the frame. This
property must be in synch with the definition in the

resizable

false"neighbour frames". If the neighbour frames do not
support resizing then it will not be offered to the user
as consequence.

Valid values are "true" and "false". Default is "true".

trueOptionalBoolean value defining if the frame has a border on its
own. Default is "false".

withborder

false

trueOptionalBoolean that indicates whether the frame can be
scrolled. Default is true.

scrolling

false

background-color:
#FF0000

OptionalStyle that is passed to the HTML-FRAME definition
that is internally generated.

framestyle

83Working with Pages

Application Designer Workplace Framework

color: #0000FF

font-weight: bold

#FF0000OptionalSets the border color of the frame set.bordercolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

1OptionalDefines top and bottommargin height. Value is a pixel
value. Default is "0".

marginheight

2

3

int-value

1OptionalDefines left and right margin width. Value is a pixel
value. Default is "0".

marginwidth

2

3

int-value

trueOptionalFlag that indicates if started pages show an own border.
Default is false.

withownborder

false

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

Filling the MFWPFUNCTIONS Frame

The MFWPFUNCTIONS frame itself connects to an instance of the class that is named inside the
bootstrapclass property. This class must support a constructor without parameters and must
support an interface com.softwareag.cis.workplace.IMFWorkplaceBootstrapInfoProvider2:

Working with Pages84

Application Designer Workplace Framework

public interface IMFWorkplaceBootstrapInfoProvider2
{
 public MFWorkplaceInfo getWorkplaceInfo(IMFWorkplaceBootstrapInfo envInfo);
}

The interface contains one method getWorkplaceInfo(...) that returns an object of type
MFWorkplaceInfo. Inside the MFWorkplaceInfo object, the logical structure of the functions that
are offered to the user is defined.

The MFWPFUNCTIONS frame consists of certain subcomponents:

Each topic holds one function tree. The tree is opened when the user chooses the corresponding
button. The tree contains nodes; each node is associated with a certain function, e.g. a node may
start a page inside the content area of the workplace. Some nodes may be selected as favorites and
are shown in a favorite bar.

The MFWorkplaceInfo object that is required by the interface definition above is the logical reflection
of this structure. The following code shows the code for setting up the demo workplace:

public class MFDefaultBootstrapInfoProvider
 implements IMFWorkplaceBootstrapInfoProvider2,
 MFWorkplaceConstants
{
 // --
 // public access
 // --

 /** */
 public MFWorkplaceInfo getWorkplaceInfo(IMFWorkplaceBootstrapInfo envInfo)
 {
 MFWorkplaceTopic topic;
 MFWorkplaceTreeNodeFolder topNode;
 TREECollection tc;

85Working with Pages

Application Designer Workplace Framework

 MFWorkplaceInfo workplaceInfo = new
MFWorkplaceInfo("/HTMLBasedGUI/empty.html",

"../softwareag/styles/CIS_DEFAULT.css");

 // --
 // Demo topic
 // --

 topic = new MFWorkplaceTopic("Demos",workplaceInfo);
 tc = topic.getTree();

 topNode = new MFWorkplaceTreeNodeFolder("First Demo");;
 topNode.setOpened(TREECollection.ST_OPENED);
 tc.addTopNode(topNode,false);

 MFWorkplaceTreeNodeCISPage helloWorldNode =
 new MFWorkplaceTreeNodeCISPage("Hello World!",
 "/cisdemos/DEMO_HelloWorld.html",true,true);
 tc.addSubNode(helloWorldNode,topNode,true,false);
 workplaceInfo.addFavourite(helloWorldNode,"images/fav_hello.gif");

 topNode = new MFWorkplaceTreeNodeFolder("Normal Controls");
 topNode.setOpened(TREECollection.ST_OPENED);
 tc.addTopNode(topNode,false);

 tc.addSubNode(new MFWorkplaceTreeNodeCISPage("Control Overview",

"/cisdemos/DEMO_ControlOverview.html",true,true),topNode,true,false);
 tc.addSubNode(new MFWorkplaceTreeNodeCISPage("Combo Box",
 "/cisdemos/DEMO_ComboDyn.html",true,true),topNode,true,false);
 }

 ...
 ...
 ...
 ...

 // --
 // Development topic
 // --

 topic = new MFWorkplaceTopic("Development",workplaceInfo);
 tc = topic.getTree();

 topNode = new MFWorkplaceTreeNodeFolder("Layout");
 topNode.setOpened(TREECollection.ST_OPENED);
 tc.addTopNode(topNode,false);

 tc.addSubNode(new MFWorkplaceTreeNodeCISPage("Project Manager",

Working with Pages86

Application Designer Workplace Framework

"/HTMLBasedGUI/com.softwareag.cis.editor.projectmgr.html",true,true),
 topNode,true,false);

 MFWorkplaceTreeNodeCISPage layoutNode =
 new MFWorkplaceTreeNodeCISPage("Layout Manager",
 "/HTMLBasedGUI/com.softwareag.cis.editor.editorgenerate.html",true,true);
 tc.addSubNode(layoutNode,topNode,true,false);

 workplaceInfo.addFavourite(layoutNode,"DISTANCE");
 workplaceInfo.addFavourite(layoutNode,"images/fav_layoutpainter.gif");

 ...
 ...
 ...
 ...

 return workplaceInfo;
 }
}

See the JavaDoc API documentation for more details on the API.

Tree Node Types

There are different types of tree nodes that you place inside a topic's tree. In the example above,
you already saw two tree node types: MFWorkplaceTreeNodeFolder and
MFWorkplaceTreeNodeCISPage. The complete list of tree node types is:

DescriptionType

A folder in the tree. Has no further functions.MFWorkplaceTreeNodeFolder

A node that opens anApplicationDesigner page in the content area.MFWorkplaceTreeNodeCISPage

A node that opens a normal URL in the content area.MFWorkplaceTreeNodeHTMLPage

A node that starts an Application Designer page inside a pop-up.MFWorkplaceTreeNodeCISPopup

A node that starts a normal URL inside a pop-up.MFWorkplaceTreeNodeHTMLPopup

A node that starts an Application Designer page inside a named
target frame that is part of the workplace multi frame page.

MFWorkplaceTreeNodeCISTarget

A node that starts a normal URL inside a named target frame that
is part of the workplace multi frame page.

MFWorkplaceTreeNodeHTMLTarget

A node that invokes a “dark” API in order to just call a function
without visual output. The function may, for example, modify the
workplace content.

MFWorkplaceTreeNodeCallback

A detailed description of the Java API can be found in the JavaDoc API documentation.

87Working with Pages

Application Designer Workplace Framework

Filling the MFWPFUNCTIONS Frame without any Java Coding: MFWPBOOT-
STRAPINFO

There is also the possibility to fill theMFWPFUNCTIONS framewithout any Java coding by using
the bootstrapinfourl property. This property expects an URL to an XML file that represents the
workplace setup (for example, HTMLBasedGUI\workplace\defaultbootstrapinfo.xml).

Have a look at the corresponding XML file:

<mfwpbootstrapinfo
 defaultcontentpage="/HTMLBasedGUI/empty.html"
 workplacestylesheet="../cis/styles/CIS_DEFAULT.css"
 synchtabnavigation="true"
 showdustbin="true"
 withtakeouttopopup="false"
 withcloseallwindowsicon="false"

mfworkplaceeventlistener="com.softwareag.cis.workplace.MFDefaultEventListener"
 targetnameofresizableleftpart="AVAILABLEACTIVITIES"
 translationproject="cisdemos"
 translationreference="mfworkplace">

<!-- Start Topic 'Demos'-->
 <mfwptopic
 name="Demos"
 textid="topic.demos"
 treeclass="WORKPLACETOPIC1ClientTree">

<!--TREE Begin First Demo -->
 <mfwpfolder
 name="First Demo"
 draginfo="First Demo"
 opened="true">

 <mfwpopencispage
 name="Hello World!"
 activityurl="/cisdemos/DEMO_HelloWorld.html"
 onlyoneinstance="true"
 followpageswitches="true"
 draginfo="DEMO_HelloWorld">
 </mfwpopencispage>

 </mfwpfolder>
<!--TREE End First Demo -->

...

<!-- End Topic 'Demos'-->

Working with Pages88

Application Designer Workplace Framework

 </mfwptopic>

...

</mfwpbootstrapinfo>

Note: To make sure that you are using a proper bootstrapinfo.xml file, use the XML Schema
editor.xsd (and all corresponding XSD files) to validate your XML file (for example, in
XMLSpy).

Overview of the bootstrapinfo hierarchy:

<mfwpbootstrapinfo> // root tag
 <mfwptopic> // new topic
 <mfwpfolder> // MFWorkplaceTreeNodeFolder
 <mfwpopencispage> // MFWorkplaceTreeNodeCISPage
 <mfwpopencispopup> // MFWorkplaceTreeNodeCISPopup
 <mfwpopencistarget> // MFWorkplaceTreeNodeCISTarget
 <mfwpcallback> // MFWorkplaceTreeNodeCallback
 <mfwpopenhtmlpage> // MFWorkplaceTreeNodeHTMLPage
 <mfwpopenhtmlpopup> // MFWorkplaceTreeNodeHTMLPopup
 <mfwpopenhtmltarget> // MFWorkplaceTreeNodeHTMLTarget

Each of the 8 sublevel tags can contain all 8 sublevel tags as subnodes, including itself.

The following topics are covered below:

■ MFWPBOOTSTRAPINFO Properties
■ MFWPTOPIC Properties
■ MFWPFOLDER Properties
■ MFWPOPENCISPAGE Properties
■ MFWPOPENCISPOPUP Properties
■ MFWPOPENCISTARGET Properties
■ MFWPCALLBACK Properties
■ MFWPOPENHTMLPAGE Properties
■ MFWPOPENHTMLPOPUP Properties

89Working with Pages

Application Designer Workplace Framework

■ MFWPOPENHTMLTARGET Properties

MFWPBOOTSTRAPINFO Properties

Basic

OptionalThe workplace consists out of several frames, one of it the
content frame. If there is no active activity in the workplace

defaultcontentpage

then the defaultContentPage is displayed inside the content
frame. You can use this in two ways:

(1) Either create one "backgroundpage"which always is shown
in an "empty" workplace.

(2) Or create one "backgroundpage"which theworkplace opens
by default. E.g. you want in a start-workplace to first present
to the user a logon page.

EXAMPLE: "/HTMLBasedGUI/empty.html"

background-color:
#FF0000

OptionalThe stlye sheet which is used for the left and top frame of the
workplace. If no style sheet is specified then the workplace

workplacestylesheet

color: #0000FF
adapts to the standard style sheetwhich is kept in theCISsession
context. You typically want to use one fix child for a workplace

font-weight: bold
- because the workplace is typically embedded in some other
frames arranging some graphics/etc. around, and you do not
want the workplace colour's to change independent from this.

EXAMPLE: "/cis/styles/XYZ_STLYE.css"

OptionalName of the project where the actual used multilanguage file
is located.

translationproject

e.g. cisdemos

OptionalName of the multilanguage .csv file.translationreference

e.g. test

(if the file test.csv should be used)

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

OptionalUse this interface to react on workplace events.mfworkplaceeventlistener

(1) Create an implementation of this interface

(2) Use method
MFWorkplaceInfo.registerMFWorkplaceEventListener
to register your class

Working with Pages90

Application Designer Workplace Framework

(3) Use method NODEInfo.setDropInfo on each tree item to
be able to drag that item

Step two and three are typically donewithin the "bootstrap info
provider"-class

A CISworkplace is a certain arrangement of frames in a multi
frame page. The "functions"-frame (MFWPFUNCTIONS) holds
the available functions to be selected by the user (click with the
left mouse Button). In addition you can provide for rightmouse
button menu or drag and drop within the function tree. With
that you may allow users to add/remove/shift menu items
(personalization).

OptionalThe workplace may contain a favourite list. At the bottom of
the favourite list there are some items by which you can

targetnameofresizableleftpart

influence the size of the corresponding left part of the
workplace. The name of the target frame to be resized is passed
with this method.

View

trueOptionalFlag that indicateswether the dustbin (have a look at theDEMO
WORKPLACE) is shown or not.

showdustbin

false
Boolean value, default is false.

trueOptionalSet flag that decides if the tree "on the left" is synchronizedwith
the tab navigation "on the top". If the user selects an opened

synchtabnavigation

falseactivity in the tab strip then the corresponsding tree node and
topic is shown as consequence.

Pay attention: the base of the synchronization is the naming of
nodes. There is currently no naming concept beyond (that e.g.
assigns ids to nodes). Make sure, your tree nodes are set in a
way that each one holds a unique name. Use the tabText
(setTabText) in order to make nodes unique!

true ==> synchronization is done; false ==> synchronization is
not done;

default is false.

trueOptionalFlag that indicateswhether the CloseAllWindowsIcon is shown
in the workplace or not.

withcloseallwindowsicon

false
Boolean value, default is false.

trueOptionalFlag that indicateswithtakeouttopopup

false

91Working with Pages

Application Designer Workplace Framework

MFWPTOPIC Properties

Basic

ObligatoryText of the topic.name

OptionalMulti language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

OptionalStyle info that is passed to the button representing the topic.buttonstyle

OptionalThe button that represents this topic may have an additional
icon in front of the text. Use this parameter to set the icon URL.

iconurl

background-color:
#FF0000

OptionalBackground style for the tree. You can e.g. define background
colors and background pictures. Avoid the usage of ' and "
characters.

treestyle

color: #0000FF
Please also have a look onto the method "setStyleClass" - via
this method you can pass a reference to a CSS class. font-weight: bold

OptionalSets the style class for rendering the tree area of the topic. There
are 10 standard style classes available in the default style sheet:

treeclass

PLACETOPIC1ClientTree toWORKPLACETOPIC10ClientTree.
These style sheets can be maintained within the CISstyle sheet
editor.

OptionalTooltip of the node.tooltip

OptionalText ID of the tooltip.tooltipid

MFWPFOLDER Properties

Basic

ObligatoryText of the tree node folder.name

OptionalMulti language dependent text that is displayed inside the control. The "textid"
is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Appearance

OptionalAny information that is useful to react on a drop event. Characters ' and \ are
not allowed.

draginfo

Working with Pages92

Application Designer Workplace Framework

trueOptionalFlag that indicates whether the folder is opened or not.opened

falseBoolean value

OptionalText of the tooltip of the tree node folder.tooltip

OptionalText ID of the tooltip.tooltipid

MFWPOPENCISPAGE Properties

Basic

ObligatoryText of the node.name

OptionalMulti language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

ObligatoryURL to be started when user clicks on node. You can append
parameters to the URL by appending them via
"andamp;param1=value1andamp;param2=value2"

activityurl

ObligatoryIf the user navigates inside the called page (e.g. switches from one
page to the other) then this navigation is registered. True means:

followpageswitches

when reinvoking the page through the tree then the user come back
exactly to the page where he/she stayed. False means: the user id
brought back to the starting page always.

trueObligatoryA page with the corresponding text is only started once inside the
workplace. If the page already exists no new pages is started but the
existing one is picked.

onlyoneinstance

false

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

OptionalAny information that is useful to react on a drop event. Characters
' and \ are not allowed.

draginfo

OptionalURL for the icon in front of the text. The workplace iself is running
in project "HTMLBasedGUI" - you have to go up first "../" to address
your icons.

iconurl

OptionalText of the tooltip of the tree node.tooltip

OptionalText ID of the tooltip.tooltipid

93Working with Pages

Application Designer Workplace Framework

MFWPOPENCISPOPUP Properties

Basic

ObligatoryText of the node.name

OptionalMulti language dependent text that is displayed inside the control. The
"textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

ObligatoryURL to be started when user clicks on node. You can append parameters
to the URL by appending them via
"andamp;param1=value1andamp;param2=value2"

activityurl

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

OptionalAny information that is useful to react on a drop event. Characters ' and
\ are not allowed.

draginfo

OptionalURL for the icon in front of the text. Must start with "../project".iconurl

OptionalTooltip of the node.tooltip

OptionalText ID of tooltip.tooltipid

1OptionalSet the dimension of the popup in pixels. (width)width

2

3

int-value

1OptionalSet the dimension of the popup in pixels. (height)height

2

3

int-value

1OptionalSet the dimension of the popup in pixels. (left)left

2

3

int-value

1OptionalSet the dimension of the popup in pixels. (top)top

2

3

Working with Pages94

Application Designer Workplace Framework

int-value

MFWPOPENCISTARGET Properties

Basic

ObligatoryText of the node.name

OptionalMulti language dependent text that is displayed inside the control. The "textid"
is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

ObligatoryURL to be started when user clicks on node. You can append parameters to the
URLby appending themvia "andamp;param1=value1andamp;param2=value2".

activityurl

ObligatoryName of the target Frame in which the CIS page is going to be opened.target

During workplace definition each frame you define gets assigned a target-id.

OptionalCommentwithout any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Appearance

OptionalAny information that is useful to react on a drop event. Characters ' and \ are
not allowed.

draginfo

OptionalURL for the icon in front of the text. Must start with "../project".iconurl

OptionalTooltip of the node.tooltip

OptionalText ID of the tooltip.tooltipid

MFWPCALLBACK Properties

Basic

ObligatoryText of the item.name

OptionalText ID of the items text.textid

ObligatoryCommand that is executed if the node is selected.class

OptionalCommentwithout any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Appearance

OptionalAny information that is useful to react on a drop event. Characters ' and \ are
not allowed.

draginfo

OptionalIcon of the node. Must be something like "../project/... - the workplace itself is
running in project "HTMLBasedGUI", you have to move up first as consequence.

iconurl

OptionalTooltip of the item.tooltip

OptionalTooltip Text ID of the item.tooltipid

95Working with Pages

Application Designer Workplace Framework

MFWPOPENHTMLPAGE Properties

Basic

OptionalText of the node.name

OptionalMulti language dependent text that is displayed inside the control. The
"textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

OptionalURL to be started when user clicks on node.activityurl

trueOptionalA page with the corresponding text is only started once inside the
workplace. If the page already exists no new pages is started but the
existing one is picked.

onlyoneinstance

false

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

OptionalAny information that is useful to react on a drop event. Characters ' and
\ are not allowed.

draginfo

OptionalURL for the icon in front of the text. Must start with "../project"iconurl

OptionalTooltip of the node.tooltip

OptionalText ID of the tooltip.tooltipid

MFWPOPENHTMLPOPUP Properties

Basic

OptionalText of the node.name

OptionalMulti language dependent text that is displayed inside the control. The
"textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

ObligatoryURL to be started when user clicks on node.activityurl

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

OptionalURL for the icon in front of the text. Must start with "../project"iconurl

OptionalAny information that is useful to react on a drop event. Characters ' and
\ are not allowed.

draginfo

OptionalTooltip of the node.tooltip

OptionalText ID of the tooltip.tooltipid

1OptionalSet the dimension of the popup in pixels. (width)width

2

Working with Pages96

Application Designer Workplace Framework

3

int-value

1OptionalSet the dimension of the popup in pixels. (height)height

2

3

int-value

1OptionalSet the dimension of the popup in pixels. (left)left

2

3

int-value

1OptionalSet the dimension of the popup in pixels. (top)top

2

3

int-value

MFWPOPENHTMLTARGET Properties

Basic

ObligatoryText of the node.name

OptionalMulti language dependent text that is displayed inside the control. The "textid"
is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

ObligatoryURL to be started when user clicks on node.activityurl

ObligatoryName of the target Frame in which the HTML Page is going to be opened.target

When defining a workplace page you assign a target-id per frame.

OptionalCommentwithout any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Appearance

OptionalURL for the icon in front of the text Must start with "../project".iconurl

OptionalAny information that is useful to react on a drop event. Characters ' and \ are
not allowed.

draginfo

OptionalTooltip of the node.tooltip

97Working with Pages

Application Designer Workplace Framework

OptionalText ID of the tooltip.tooltipid

Customizing the MFWPFUNCTIONS Behavior

The mfworkplaceeventlistener property ofMFWPBOOTSTRAPINFOdefines a Java class name.
This class listens to events raised by the workplace and reacts accordingly. Examples for such
events are contextmenu requests, or reactions to opening, closing, removing or switching of content
pages. You can write your own event handler class by providing a Java class which implements
the com.softwareag.cis.workplace.IMFWorkplaceEventListener2 interface (see the JavaDoc
documentation).

Often, you do not want to write a complete event handler class. Instead, you would like to keep
most of the default behavior, but simply customize pop-up messages and/or the shown context
menus for the different nodes in the function tree. The following topics describe how to do simple
customizations for the default event handler implementation.

You start with the class com.softwareag.cis.workplace.MFCustomEventListener. If you only
want to customize pop-up messages, you can simply extend this class. If you would like to cus-
tomize context menus and/or reactions to other events, you can use the MFCustomEventListener
class as a template for writing your own custom event listener. The MFCustomEventListener class
extends the MFEventListenerBase class which implements basic event reactions.

The following topics are covered below:

■ Customizing Pop-up Messages
■ Customizing Context Menus
■ Implementing Custom Event Reactions (Advanced)
■ Source Code for com.softwareag.cis.workplace.MFCustomEventListener

Customizing Pop-up Messages

If you only want to customize pop-up messages and keep the default context menu and event re-
action, proceed as follows.

Create a class (for example, MyCustomEventListener) and implement the following methods (see
also the example below):

■ String getPopupMessageNumberOfWorkplaceActivitiesReached(...)

■ String getPopupTitelMaxNumberOfWorkplaceActivitiesReached(...)

■ String getPopupMessagePopupMenuClosedByUser()

■ String getPopupTitelPopupMenuClosedByUser()

Working with Pages98

Application Designer Workplace Framework

public class MyCustomEventListener extends MFCustomEventListener
{
protected String getPopupMessageNumberOfWorkplaceActivitiesReached(
 int maxactivities)
{
 return "THIS IS MY OWN MESSAGE";
}

protected String getPopupTitleNumberOfWorkplaceActivitiesReached(
 int maxactivities)
{
 return "THIS IS MY OWN POP-UP TITLE";
}

protected String getPopupMessagePopupMenuClosedByUser()
{
 return "THIS IS MY OWN MESSAGE";
}

protected String getPopupTitlePopupMenuClosedByUser()
{
 return "THIS IS MY OWN POP-UP TITLE";
}
}

Specify the MyCustomEventListener class in your bootstrapinfo (see below) and put the class file
into the classpath of your web application.

<mfwpbootstrapinfo
 defaultcontentpage="/HTMLBasedGUI/empty.html"
 ...
 mfworkplaceeventlistener="com.mycompany.MyCustomEventListener"
...

Customizing Context Menus

If youwould like to have your own contextmenus, you need to implement the followingmethods:

■ TREECollection buildContextMenu(...)

■ TREECollection buildDropMenu(...)

■ TREECollection buildFunctionContextMenu(...)

■ TREECollection buildMFTopicContextMenu(...)

All of these methods return a TREECollection object with the nodes for the context menu. For
details of the different methods, see the corresponding JavaDoc documentation of the
com.softwareag.cis.workplace.MFEventListenerBase class.

Recommendation:

99Working with Pages

Application Designer Workplace Framework

1. Write your own class (for example, AnotherCustomEventListener) which extends
MFEventListenerBase.

2. Use the MFCustomEventListener class as a template. Here you can see how a TREECollection
object is built. You can copy all required information and paste it in your own class.

A TREECollection is an object which describes a tree of nodes. Each node implements some
standard commands such as Remove, Cut or Paste. If you look at the MFCustomerEventListener
class, you will see the class MFCustomMenuNodeInfowhich extends the class MFMenuNodeInfoBase.
The MFMenuNodeInfoBase class contains the implementation of a set of standard commandswhich
are defined as CMDID_* fields in the class. See the corresponding JavaDoc documentation for details.
You can reuse the standard commands, or you can implement your own commands.

Recommendation for implementing your own commands:

1. Write your own node class (for example, MyCustomMenuNodeInfo) which extends
MFMenuNodeInfoBase.

2. In the same way as the MFCustomEventListener class builds the TREECollection objects from
MFCustomMenuNodeInfo nodes, your AnotherCustomEventListener class will build the
TREECollection objects from the MyCustomMenuNodeInfo nodes.

To use your newly implemented event listener class AnotherCustomEventListener, specify the
AnotherCustomEventListener class in your bootstrapinfo (see below) and put the class file into
the classpath of your web application.

<mfwpbootstrapinfo
 defaultcontentpage="/HTMLBasedGUI/empty.html"
 ...
 mfworkplaceeventlistener="com.mycompany.AnotherCustomEventListener"
...

Implementing Custom Event Reactions (Advanced)

If you alsowant to implement own reactions to other events, you create your own class (for example,
MyAdvancedEventListener) which implements the interface
com.softwareag.cis.workplace.IMFWorkplaceEventListener2. See the JavaDoc documentation
for details.

Your class must implement the react*methods of this interface:

Working with Pages100

Application Designer Workplace Framework

public class MyAdvancedEventListener implements IMFWorkplaceEventListener2
{
 public void reactOnDrop(...){...}
 public Boolean reactOnCloseWindowRequest(...){...}
 ...
}

To add your MyAdvancedEventListener class to the bootstrapinfo, proceed in the same way as
described in the previous topics.

Source Code for com.softwareag.cis.workplace.MFCustomEventListener

package com.softwareag.cis.workplace;

import com.softwareag.cis.server.util.TREECollection;

/**
 * This class is an example of a simple custom event listener based on the
 * <code>MFEventListenerBase</code> default implementation. The source code is
 * available in the documentation.
 * <p>
 * It shows how to simply customize pop-up messages, pop-up titles and/or context
 * menus without having to write a complete event listener.
 * <p>
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase
 *
 */
public class MFCustomEventListener extends MFEventListenerBase
{

 /**
 * Objects of this class represent a context menu item. It extends the
 * default implementation for context menu items {@link #MFMenuNodeInfoBase}.
 * This default implementation defines default items for the basic commands
 * like CUT, PASTE, REMOVE.
 * <p>
 *
 * @see com.softwareag.cis.workplace#MFMenuNodeInfoBase
 *
 */
 public class MFCustomMenuNodeInfo extends MFMenuNodeInfoBase
 {
 /**
 * Constructor
 *
 * @param eventListener the event listener
 */
 MFCustomMenuNodeInfo(MFEventListenerBase eventListener)
 {
 super(eventListener);

101Working with Pages

Application Designer Workplace Framework

 }

 /* (non-Javadoc)
 * @see
com.softwareag.cis.workplace.MFMenuNodeInfoBase#init(java.lang.String,
 * java.lang.String, com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.server.util.TREECollection,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral[],
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral,
 * com.softwareag.cis.workplace.MFWorkplaceTopic)
 */
 protected void init(String text,
 String image,
 IMFWorkplace workplace,
 TREECollection tree,
 MFWorkplaceTreeNodeGeneral[] treeNodes,
 MFWorkplaceTreeNodeGeneral treeNode2,
 MFWorkplaceTopic topic)
 {
 super.init(text, image, workplace, tree, treeNodes, treeNode2, topic);
 }

 /* (non-Javadoc)
 * @see com.softwareag.cis.workplace.MFMenuNodeInfoBase#init(int,
 * com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.server.util.TREECollection,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral[],
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral,
 * com.softwareag.cis.workplace.MFWorkplaceTopic)
 */
 protected void init(int cmdid,
 IMFWorkplace workplace,
 TREECollection tree,
 MFWorkplaceTreeNodeGeneral[] treeNodes,
 MFWorkplaceTreeNodeGeneral treeNode2,
 MFWorkplaceTopic topic)
 {
 super.init(cmdid, workplace, tree, treeNodes, treeNode2, topic);
 }

 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#buildDropMenu(com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.workplace.MFWorkplaceTopic,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral[])
 */
 protected TREECollection buildDropMenu(IMFWorkplace workplace,

Working with Pages102

Application Designer Workplace Framework

 MFWorkplaceTopic topic,
 MFWorkplaceTreeNodeGeneral targetNode,
 MFWorkplaceTreeNodeGeneral[] droppedItems)
 {
 TREECollection menu = new TREECollection();
 MFCustomMenuNodeInfo menuNode = null;
 if (targetNode.getOpened() == 2)
 {
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_MOVEBEFORE, workplace,
topic.getTree(), droppedItems, targetNode, topic);
 menu.addTopNode(menuNode, true);
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_MOVEBEHIND, workplace,
topic.getTree(), droppedItems, targetNode, topic);
 menu.addTopNode(menuNode, true);
 }
 else
 {
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_MOVEASFIRST, workplace,
topic.getTree(), droppedItems, targetNode, topic);
 menu.addTopNode(menuNode, true);
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_MOVEASLAST, workplace,
topic.getTree(), droppedItems, targetNode, topic);
 menu.addTopNode(menuNode, true);
 }
 return menu;
 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#buildContextMenu(com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.workplace.MFWorkplaceTopic,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral[])
 */
 protected TREECollection buildContextMenu(IMFWorkplace workplace,
 MFWorkplaceTopic topic,
 MFWorkplaceTreeNodeGeneral item,
 MFWorkplaceTreeNodeGeneral[] selection)
 {
 TREECollection tree = topic.getTree();
 TREECollection menu = new TREECollection();

 // --------------------- Show with sub menu
 MFCustomMenuNodeInfo menuNode = null;
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_SHOW, workplace, tree, selection,

103Working with Pages

Application Designer Workplace Framework

null, topic);
 menu.addTopNode(menuNode, false);

 MFCustomMenuNodeInfo subNode = null;
 subNode = new MFCustomMenuNodeInfo(this);
 subNode.init(MFMenuNodeInfoBase.CMDID_SHOW_CONTENT_FRAME, workplace, tree,
selection, null, topic);
 menu.addSubNode(subNode, menuNode, true, false);

 subNode = new MFCustomMenuNodeInfo(this);
 subNode.init(MFMenuNodeInfoBase.CMDID_SHOW_NEW_WINDOW, workplace, tree,
selection, null, topic);
 menu.addSubNode(subNode, menuNode, true, false);

 // --------------- CUT
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_CUT, workplace, tree, selection,
null, topic);
 menu.addTopNode(menuNode, true);

 // --------------- PASTE
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_PASTE, workplace, tree, selection,
null, topic);
 menu.addTopNode(menuNode, true);
 if (super.getClipboardSize() == 0 ||
 item.getOpened() == 2) menuNode.setInactive(true);

 // --------------- Separator
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init("&SEPARATOR", null, workplace, tree, selection, null, topic);
 menu.addTopNode(menuNode, true);

 // --------------- REMOVE
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_REMOVE, workplace, tree, selection,
null, topic);
 menu.addTopNode(menuNode, true);

 return menu;
 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#buildFunctionContextMenu(com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.workplace.MFWorkplaceTopic)
 */
 protected TREECollection buildFunctionContextMenu(IMFWorkplace workplace,
 MFWorkplaceTopic selectedTopic)
 {

Working with Pages104

Application Designer Workplace Framework

 TREECollection menu = new TREECollection();
 MFCustomMenuNodeInfo menuNode = null;

 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_REFRESHTOPIC, workplace,
selectedTopic.getTree(), null, null, selectedTopic);
 menu.addTopNode(menuNode, true);

 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_REMOVEALL, workplace,
selectedTopic.getTree(), null, null, selectedTopic);
 menu.addTopNode(menuNode, true);

 return menu;
 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#buildMFTopicContextMenu(com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.workplace.MFWorkplaceTopic)
 */
 protected TREECollection buildMFTopicContextMenu(IMFWorkplace workplace,
 MFWorkplaceTopic selectedTopic)
 {
 TREECollection menu = new TREECollection();
 MFCustomMenuNodeInfo menuNode = null;

 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_REFRESHTOPIC, workplace,
selectedTopic.getTree(), null, null, selectedTopic);
 menu.addTopNode(menuNode, true);
 return menu;
 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#getMaxNumberActivitiesMode()
 */
 protected int getMaxNumberActivitiesMode()
 {
 return MAX_NUMBER_ACTIVITIES_POPUP;
 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#getPopupMessageNumberOfWorkplaceActivitiesReached(int)

105Working with Pages

Application Designer Workplace Framework

 */
 protected String getPopupMessageNumberOfWorkplaceActivitiesReached(int
maxactivities)
 {
 // use default
 return null;
 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#getPopupTitelMaxNumberOfWorkplaceActivitiesReached(int)
 */
 protected String getPopupTitelMaxNumberOfWorkplaceActivitiesReached(int
maxactivities)
 {
 // use default
 return null;
 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#getPopupMessagePopupMenuClosedByUser()
 */
 protected String getPopupMessagePopupMenuClosedByUser()
 {
 // use default
 return null;
 }

 /*
 * (non-Javadoc)
 *
 * @see
com.softwareag.cis.workplace.MFEventListenerBase#getPopupTitelPopupMenuClosedByUser()
 */
 protected String getPopupTitelPopupMenuClosedByUser()
 {
 // use default
 return null;
 }

}

Working with Pages106

Application Designer Workplace Framework

Session Management inside the Workplace

When the user selects functions in the MFWPFUNCTIONS frame, then pages are opened in the
content frame, or as pop-ups or in a named target frame.

The workplace offers a “multi document interface” - i.e. you can work in parallel in several activ-
ities and you can switch between these activities. This structure is reflected in the server-side session
structure. The sectionDetails on Session Management in the Special Development Topics explains this
in a detailed way. However, some information is given below.

The sessionmanagement ofApplicationDesigner knows sessions (typically representing a browser
instance) and subsessions (reflecting a user activity with a defined life cycle). A session contains
one or more subsessions. Inside one subsession, the adapter object are kept which are required by
a page or a page sequence. Subsessions are isolated from one another.

The workplace proceeds in the following way:

■ Every activity that is started inside the content is represented by a subsession of its own. If you
have opened five Application Designer pages via the function tree inside the content area of the
workplace, then there are five subsessions on the server side. If the user navigates between the
activities (e.g. via the MFWPACTIVEFUNCTIONS frame), then from session point of view the
user navigated between subsessions.

■ The workplace itself also occupies one subsession. If Application Designer pages are opened in
a pop-up or in a named target, then these pages are living inside the subsession of theworkplace.

When programming content pages, you do not notice the session management: every page that
you design and test in the Layout Painter behaves in the same way in the workplace. Due to the
separation into subsessions, you are not aware of "neighboring" subsessions.

Other Frames

You can add any further frames to the multi frame page of the workplace, as described in the
sectionMulti Frame Pages. The workplace is just a functional framework using this technology -
but not limiting it somehow.

Example: in the demo workplace, you see a NEWS frame below the MFWPFUNCTIONS frame
that holds a certain HTML document.

Via the node types MFWorkplaceTreeNodeCISTarget and MFWorkplaceTreeNodeHTMLTarget, you
can directly load pages into given frames, but you can also use the frames from your normal ap-
plications.

107Working with Pages

Application Designer Workplace Framework

Workplace API for Dynamic Manipulation

Internally, the workplace is started when the workplace frameset page is loaded. So far you got
to know the framework to set up the workplace in a dynamic way by implementing the bootstrap
class referenced in the MFWPFUNCTIONS frame. “In a dynamic way” means that there is a pro-
gram to provide for the required data - the program can build the function trees on its own, e.g.
based on the user's role.

But you can also dynamically manipulate the workplace. There are two typical usages:

■ You can exchange all workplace definitions dynamically. Maybe you offer the user a “reduced”
workplace just allowing the user to log on at the beginning. Afterwards, the “real” workplace
for the user is built up - containing all functions available for the user.

■ You can manipulate workplace definitions in an existing workplace. For example, you modify
the title of an activity that is shown in the MFWPACTIVEFUNCTIONS area. Or you want to
add certain nodes to an existing tree.

For this purpose, there is a Java API containing the workplace functions that you can use from
your adapter code.

Interface IMFWorkplace

The interface IMFWorkplace contains the methods you can call. The interface is accessible inside
an adapter through the session context in the following way:

IMFWorkplace wp = (IMFWorkplace)findSessionContext().
 lookup(IMFWorkplace.IWORKPLACE_LOOKUP,false);

Pay attention: the interface instance is only returned if the page is running inside the workplace.
If a page is running, for example, inside the Layout Painter or if a page is directly started via the
"StartCISPage" servlet, then "null" will returned.

The IMFWorkplace interface contains a set ofmethods for accessing andmanipulating theworkplace.
There is one method updateWorkplace(...) that is especially important: when changing the
workplace you have to call thismethod at the end tomake the changes visible in the user interface.
Themethod expects an adapter to be passed: this is the adapter that currently processes the request
from the browser.

Working with Pages108

Application Designer Workplace Framework

Exchanging complete MFWorkplaceInfo

Via the method exchangeMFWorkplaceInfo(...), you can exchange the complete settings of the
workplace. Example: you may have a logon screen in which the adapter method for handling the
logon looks as follows:

public void onLogon()
{
 // check user and password
 ...
 ...
 // build up workplace for user
 MFWorkplaceInfo wi = new MFWorkplaceInfo();
 ...
 ...
 ...
 // exchange workplace
 IMFWorkplace wp;
 wp =
(IMFWorkplace)findSessionContext,lookup(IMFWorkplace.IWORKPLACE_LOOKUP,false);
 wp.exchangeMFWorkplaceInfo(wi);
 wp.updateWorkplace(this);
}

Opening Pages in the Workplace

There are the functions that you can use to open new pages in the content area:

■ showPageInWorkplace

■ addPageToWorkplace

■ showHTMLPageInWorkplace

■ addHTMLPageToWorkplace

You either open Application Designer pages (...Page...) or URLs (...HTML...). Pages are either
added as new activities (add...) or the workplace first finds out whether a page with the same
name was already started before opening a new one (show...).

There is themethodwithwhich you can switch to an already opened activity inside theworkplace:

■ switchToSubsession

109Working with Pages

Application Designer Workplace Framework

Fine Granular Updates

There is a method that you use in order to update the title that is shown for the page in the
MFWPACTIVEFUNCTIONS frame:

■ updatePageTitle

There is a method that passes back the currently active MFWorkplaceInfo object:

■ getMFWorkplaceInfo

Inside the MFWorkplaceInfo object, there are various methods for updating the object.

Example - Double Line Menu Workplace

With the available framework components

■ multi frame pages,
■ workplace frame controls, and
■ workplace API,

you can build your own powerful workplaces that do not look like the “typical” Application De-
signer workplaces. Have a look at the following workplace:

Working with Pages110

Application Designer Workplace Framework

In the workplace, a small set of functions is arranged in a double line menu. When selecting the
functions from the menu, the content is shown in the content frame.

The workplace's multi frame page is defined in the following way:

<mfpage separation="rows" sizing="*" border="0">
 <mfframeset target="AAA" separation="rows" sizing="0,41,25,*" border="0">
 <mfwpfunctions bootstrapclass="com.softwareag.cis.test25.DLWPInit">
 </mfwpfunctions>
 <mfcisframe target="DLMENU" cisurl="/cisdemos/25_dlworkplacemenu.html">
 </mfcisframe>
 <mfhtmlframe target="CURRENTACTIVITIES"
url="../HTMLBasedGUI/workplace/loading.html">
 </mfhtmlframe>
 <mfhtmlframe target="CONTENT" url="../HTMLBasedGUI/workplace/loading.html">
 </mfhtmlframe>
 </mfframeset>
</mfpage>

The workplace holds the three workplace frames you know from a previous section: theMFWP-
FUNCTIONS frame, though it is sized to be invisible ("0"). The bootstrap class that is referenced
(com.softwareag.cis.test25.DLWPInit) is only a dummyand returns an empty MFWorkplaceInfo object.

There is a frame, DLMENU, in which by using a normal Application Designer page (/cis-
demos/25_dlworkplacmenu.html), the double line menu is displayed. The implementation of this
page on the server side looks like:

111Working with Pages

Application Designer Workplace Framework

package com.softwareag.cis.test25;

// This class is a generated one.

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;
import com.softwareag.cis.workplace.IWorkplace;

public class DLWPMenuAdapter
 extends Adapter
{
 // --
 // property access
 // --

 public class MyDLMenuSubItem extends DLMenuSubItem
 {
 String m_url;
 public MyDLMenuSubItem(DLMenuTopItem topItem,
 String text,
 String url)
 {
 super(topItem, text);
 m_url = url;
 }

 public void invoke()
 {
 showPage(m_url,getText());
 }
 }

 DLMenu m_dlmenu = new DLMenu();
 public DLMenu getDlmenu() { return m_dlmenu; }

 // --
 // public usage
 // --

 public void init()
 {
 // fill menu
 DLMenuTopItem top;

 top = new DLMenuTopItem(m_dlmenu,"First Demo");
 new MyDLMenuSubItem(top,"Hello world","/cisdemos/DEMO_HelloWorld.html");

 top = new DLMenuTopItem(m_dlmenu,"Normal Controls");
 new MyDLMenuSubItem(top,"Control

Working with Pages112

Application Designer Workplace Framework

Overview","/cisdemos/DEMO_ControlOverview.html");
 new MyDLMenuSubItem(top,"Combo Box","/cisdemos/DEMO_ComboDyn.html");
 }

 public void showPage(String url,
 String text)
 {
 IWorkplace wp = (IWorkplace)findSessionContext().
 lookup(IWorkplace.IWORKPLACE_LOOKUP,false);
 if (wp != null)
 {
 wp.showPageInWorkplace(url,text);
 wp.updateWorkplace(this);
 }
 }

}

The class uses the workplace API for opening pages in order to make the right page visible in the
content area when the user clicks into the double line menu.

Usage Example - Calling the Application Designer Workplace with Directly
Opening a Page

Let us imagine the following scenario: youwant to open an Application Designer workplace from
somewhere else (e.g. from a portal application), showing your workplace setup just as normal. In
the workplace, you want one (or more) application(s) to be already opened.

To do so, you have to:

■ define one starter page that you call from the “somewhere else” application,
■ pass the name of theHTMLpage to be opened inside theworkplace as a parameter to this starter
page; the adapter of the starter page will write this parameter into the session context and will
then execute a “switch page” to the workplace,

■ define an empty page inside the workplace that looks at the session context and uses the
workplace API functions to start the application inside the workplace.

Step by step:

113Working with Pages

Application Designer Workplace Framework

The name of the starter page in this example is /cisworkplace/starter_withStartPage.html. Its XML
code is quite simple:

<page model="StarterWithStartPageAdapter">
 <pagebody>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

The adapter code is:

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class StarterWithStartPageAdapter
 extends Adapter
{
 String m_pageToBeStarted;
 public void setPageToBeStarted(String value)
 {
 m_pageToBeStarted = value;

Working with Pages114

Application Designer Workplace Framework

 }

 public void reactOnDataTransferEnd()
 {
 super.reactOnDataTransferEnd();
 if (m_pageToBeStarted != null)
 {
 // prepare empty for starting
 findSessionContext().bind("test/pageToBeStarted",m_pageToBeStarted);
 // start workplace
 switchToPage("workplace_withStartPage.html");
 }
 else
 {
 outputMessage(MT_ERROR,"No page found to be started!");
 }
 }

}

As you can see from the code, the starter page's adapter does nothing else than providing the
property pageToBeStarted and a method reactOnDataTransferEnd that is processed at the end
of the set phase. In the method, the pageToBeStarted property is written into the session context
and a switch to the workplace page workplace_withStartPage.html is done.

This starter page is opened in the following way:

http://<host>:<port>/<webapp>/servlet/StartCISPage?PAGEURL=/cisworkplace/starter_withStartPage.html&pageToBeStarted=/<project>/<page.html>

The starter page itselfwill only becomevisible if an error occurs (e.g. no parameter pageToBeStarted
is passed). Otherwise, it will always switch to the workplace page.

Theworkplace page is just a normal ApplicationDesignerworkplace that you build usingApplic-
ation Designer's Layout Painter:

<mfpage separation="rows" sizing="40,20,*">
 <mfhtmlframe target="TITLEPAGE" url="../cisworkplace/workplace/header.html"
resizable="false"
 withborder="false" scrolling="false" framestyle="border: 0px solid #000000"
marginheight="0" marginwidth="0">
 </mfhtmlframe>
 <mfwpactivefunctions resizable="false" withborder="false" scrolling="false"
 framestyle="border: 0px solid #000000">
 </mfwpactivefunctions>
 <mfframeset target="ZZZ" separation="cols" sizing="265,*">
 <mfframeset target="LEFTPART" separation="rows" sizing="*,87">

<mfwpfunctions bootstrapclass="WorkplaceWithStartPageProvider"
 serversidescrolling="false" framestyle="border: 1 solid #808080;">
 </mfwpfunctions>
 <mfhtmlframe target="NEWS" url="../cisworkplace/workplace/welcome.html"
resizable="true"

115Working with Pages

Application Designer Workplace Framework

 withborder="false" scrolling="true" framestyle="border: 1px solid
#808080">
 </mfhtmlframe>
 </mfframeset>
 <mfwpcontent resizable="true" withborder="true" scrolling="false"
framestyle="border: 1 solid #808080;">
 </mfwpcontent>
 </mfframeset>
</mfpage>

It somewhere contains theMFWPFUNCTIONS frame that internally points to a class, called
“bootstrap” class. This is the class that (as runtime object) configured theworkplacewith its topics
and function trees:

public class WorkplaceWithStartPageProvider
 implements IMFWorkplaceBootstrapInfoProvider2
{
 public MFWorkplaceInfo getWorkplaceInfo()
 {
 // create workplace info object, define the page that is shown
 // in content area if no other content page is shown
 MFWorkplaceInfo result = new
MFWorkplaceInfo("/cisworkplace/empty_withStartPage.html");

 MFWorkplaceTopic topic;
 TREECollection tree;
 MFWorkplaceTreeNodeFolder folder;
 MFWorkplaceTreeNodeCISPage page;

 // create first topic
 topic = new MFWorkplaceTopic("Topic 1",result);
 tree = topic.getTree();
 folder = new MFWorkplaceTreeNodeFolder("Simple Demos");
 tree.addTopNode(folder,false);
 page = new MFWorkplaceTreeNodeCISPage("Hello
World","/cisdemos/DEMO_HelloWorld.html",true,true);
 tree.addSubNode(page,folder,true,false);
 ...
 ...
 ...

This is a “just normal” bootstrap class implementation, opening the page /cisworkplace/empty_with-
StartPage.html as an empty page. Remember: the empty page is the one that is shown inside the
workplace content when no other application is opened. It is shown as the default content page
inside the workplace with no active function.

Now let us have a look at the empty page. The XML code is again very simple (typically the empty
page is some kind of background page that, for example, contains some nice images).

Working with Pages116

Application Designer Workplace Framework

<page model="EmptyWithStarterAdapter">
 <pagebody>
 </pagebody>
</page>

The important thing is what happens inside the adapter of the empty page:

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;
import com.softwareag.cis.workplace.IWorkplace;

public class EmptyWithStarterAdapter
 extends Adapter
{
 boolean m_firstCall = true;

 public void reactOnDataTransferEnd()
 {
 super.reactOnDataTransferEnd();
 // call workplace
 if (m_firstCall == true)
 {
 String pageToBeStarted =
 (String)findSessionContext().lookup("test/pageToBeStarted",false);
 if (pageToBeStarted != null)
 {
 IWorkplace wp =

(IWorkplace)findSessionContext().lookup(IWorkplace.IWORKPLACE_LOOKUP,false);
 if (wp != null)
 {
 wp.addPageToWorkplace(pageToBeStarted,"Page to be started");
 wp.updateWorkplace(this);
 }
 }
 m_firstCall = false;
 }
 }
}

The first time the adapter is called (i.e. the first time the page is shown), it checks if someone left
an information inside the session context to start a certain page - exactly the information that is
written into the context in the starter page. If there is some information, the corresponding page
is opened as the content page of the workplace.

117Working with Pages

Application Designer Workplace Framework

118

22 Integration into Other Workplace/Portal Scenarios

■ Passing Parameters to your Application Designer Page ... 120

119

In many cases, you want to run Application Designer pages inside your own environments that
are outside of Application Designer.

The requirements of other workplace/portal environments are:

■ Pages must be accessible by URLs.
■ There must be a possibility to pass information to pages. For example, user management is
provided by a portal management. The result (the name of the user who is currently logged in)
should be passed to applications for further processing.

To call Application Designer pages with a URL: normally each single Application Designer page
can be called individually with a corresponding URL. “Normally” means that this is true from
the Application Designer perspective - maybe it is not completely true from your application’s
perspective: one page requires a certain page to be run first, etc.

To call an Application Designer page, simply use the following URL:

http://<host>:<port>/cis/StartCISPage?PAGEURL=<pageURL>

Replace the <pageURL>with the URL of the wanted Application Designer page and it will be
opened.

For information on additional parameters that you can pass via the StartCISPage servlet, see Ap-
pendix E - StartCISPage Servlet .

Passing Parameters to your Application Designer Page

You can append any number of parameters to the URL mentioned in the previous section. Each
parameter consists of the sequence "&<paramName>=<paramValue>". If you want to pass the
customerId to a “customer detail” page, the URL would look like:

http://<host>:<port>/cis/StartCISPage?PAGEURL=/appxyz/customerdetail.html&customerId=4711

Each parameter is bound to a corresponding property of the page adapter. For example, the
“customer detail” page is hooked on the adapter CustomerDetailAdapter. Therefore, it must
provide a corresponding customerId property to which the parameter is passed at runtime:

public class CustomerDetailAdapter extends Adapter
{
 ...
 public void setCustomerId(String value)
 {
 ...
 }
 ...
}

Working with Pages120

Integration into Other Workplace/Portal Scenarios

23 Extended Functions in the Application Designer

Workplace
■ Interface IMFWorkplaceEventListener .. 122
■ Example .. 123

121

The previous section covered the “normal usage mode” of the Application Designer workplace.
But there are extended functions allowing you to more interactively operate with the Application
Designer workplace.

These functions include:

■ Drag-and-drop interface: you can drag and drop icons within the hierarchy of the workplace.
You can drop information that was dragged from any content page into the workplace.

■ Right mouse button interface on workplace nodes.

These functions allow the users to arrange their workplace settings (e.g. functions that are part of
their workplace) in a simple way on their own.

Interface IMFWorkplaceEventListener

The base of the extended functions is the interface
com.softwareag.cis.workplace.IMFWorkplaceEventListener. The interface contains methods
that are called on certain events. The most important methods are:

■ reactOnContextMenuRequest
Thismethod is calledwhen a user presses the rightmouse button on a tree node of theworkplace.
Your implementation can build up a context menu - just as normal context menus are built up
inside the tree management.

■ reactOnDrop
Thismethod is calledwhen the user performes a drag-and-drop operation inside theworkplace.
Your implementation may copy the dragged nodes below the dropped node or may open a
pop-up menu in which the user is asked about what to do with the dragged items.

■ reactOnDropGeneric
Thismethod is calledwhen the user performes a drag-and-drop operation from anyDROPICON
control that is part of content pages.

The implementation of the interface is completely “yours”. Use the workplace interface you got
to know in the previous section to manipulate the workplace, e.g. to access the currently shown
tree and to manipulate it.

An instance of the workplace event handler is passed by calling the method
registerMFWorkplaceEventListener inside the MFWorkplaceInfo class:

Working with Pages122

Extended Functions in the Application Designer Workplace

MFWorkplaceInfo workplaceInfo = new MFWorkplaceInfo("/HTMLBasedGUI/empty.html",
 "../softwareag/styles/CIS_DEFAULT.css");

workplaceInfo.setSynchTabNavigation(true);
workplaceInfo.registerMFWorkplaceEventListener(new XYZ(...));

See the Java API documentation for detailed information.

Example

Among other features, theApplicationDesigner demoworkplace framework provides the follow-
ing:

■ Right mouse button click on a workplace menu item (copy, cut, paste, etc.).
■ Drag-and-drop within the workplace menu (to move menu items).

Have a look at the event listener source coding. You can find it in your installation at:

<installdir>/cis/cisdemos/src/com/softwareag/cis/demoworkplace/CISDemoWorkplaceEventListener

123Working with Pages

Extended Functions in the Application Designer Workplace

124

24 Building Own Workplaces as a Frameset Definition

■ Basics ... 126
■ Defining the Frameset .. 126
■ Simple Way of Opening Pages in Frames ... 128
■ A More Complex Way of Opening Pages in Frames .. 129
■ When to Use the Complex Way .. 132
■ Opening Normal HTML Pages inside Frames .. 133
■ Frame Communication .. 133
■ Multiple Frame Operations .. 135
■ When Building your Own Workplaces .. 135

125

Aset of functions is availablewhich simplify the usage ofApplicationDesignerHTMLpages inside
a given HTML frameset definition. The functions are not only usable in the scope of work-
place/portal management, but can also be used apart from this.

Basics

The basic functions cover the following aspects:

■ You can define an HTML page containing any kind of frameset you want. In this page, you
design the frames, their sizes, their scroll behavior, their behavior when resizing the screen, etc.
For each frame which which you want to interact, you define an identifier name.

■ You open Application Designer pages inside the frames. There are two possibilities:

1. Open these pages with a URL as described in the previous section.

2. Open these pages with adapter methods (server-side processing).

This section will focus on the second possibility since the first is just a certain usage of what is
described in the previous section. This offers you an explicit control about what happens inside
the frames: e.g. a page within frame "A" should be replaced by another page. Before proceeding,
the user should be asked whether to store unsaved data (or not).

It is possible to communicatewith frames on the client side. Thismeans, you can build up interaction
(e.g. you want to update another frame’s content) without any flickering in the target frame.

Defining the Frameset

In the following screen, a page is shown which is divided into three frames:

Working with Pages126

Building Own Workplaces as a Frameset Definition

The corresponding frameset definition of the page is:

<html>

<head>
<title>New Page 2</title>
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
</head>

 <frameset cols="200,*">
 <frameset rows="*,*">
 <frame name="lefttop"
src="/cis/servlet/StartCISPage?PAGEURL=/cisdemos/frameleft.html">
 <frame name="leftbottom" src="blank.html">
 </frameset>
 <frame name="right" src="blank.html">
 </frameset>

</html>

The frameset contains three frames with the IDs lefttop, leftbottom and right. The lefttop
frame opens the Application Designer page /cisdemos/frameleft.html. This page contains buttons
for some functions and acts like a “menu page”.

127Working with Pages

Building Own Workplaces as a Frameset Definition

Simple Way of Opening Pages in Frames

When choosing the Customer Orders button, the corresponding Application Designer page is
opened in the leftbottom frame:

The page shows a list of customer orders. It is a normal Application Designer page. How can it
be opened by choosing the Customer Orders button?

The /cisdemos/frameleft.html page (acting as a “menu page”) is hooked on to a Java adapter class
which looks as follows:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class FrameLeftAdapter
 extends Adapter
{
 /** */
 public void onArticleMaster()
 {
 // TODO Auto-generated method stub
 }

 /** */
 public void onCustomerMaster()
 {

Working with Pages128

Building Own Workplaces as a Frameset Definition

 // TODO Auto-generated method stub
 }

 /** */
 public void onCustomerOrders()
 {

this.openCISPageInTarget("OpenCustomerOrders.html", "leftbottom");
 }
}

By choosing the Customer Orders button, the method onCustomerOrders is called. This method
performs amethod openCISPageInTarget inherited from class Adapter. The first parameter of the
method is the page that is to be opened; the second parameter defines the ID of the frame inwhich
the page is to be opened.

The pageOpenCustomerOrders.html, which is openedwhen choosing theCustomerOrders button,
is running inside the same subsession as the page from which it was called. If you need to access
the page adapter before opening the page inside the "leftbottom" frame, use the findAdapter
method inside your adapter.

A More Complex Way of Opening Pages in Frames

When selecting an order in the leftbottom area of the previous example, a customer order page
is displayed in the right frame:

The data from the order you selected is transferred into the corresponding fields of the customer
order page. Have a closer look at the details.

129Working with Pages

Building Own Workplaces as a Frameset Definition

This is the source of the adapter for listing customer orders:

import java.util.Iterator;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IInteractionSessionMgr;
import com.softwareag.cis.server.InteractionSessionMgrFactory;
import com.softwareag.cis.server.util.SelectableLine;
import com.softwareag.cis.server.util.TEXTGRIDCollection;
import com.softwareag.cis.util.CDate;

public class OpenCustomerOrdersAdapter
 extends Adapter
{
 // --
 // inner classes
 // --

 public class Order
 extends SelectableLine
 {
 public Order(String number, String date, String customer)
 {
 m_customer = customer;
 m_date = new CDate(date);
 m_number = number;
 }

 // property >orders[*].customer<
 String m_customer;
 public String getCustomer() { return m_customer; }
 public void setCustomer(String value) { m_customer = value; }

 // property >orders[*].date<
 CDate m_date;
 public CDate getDate() { return m_date; }
 public void setDate(CDate value) { m_date = value; }

 // property >orders[*].number<
 String m_number;
 public String getNumber() { return m_number; }
 public void setNumber(String value) { m_number = value; }
 }

 // --
 // property access
 // --

 // property >orders<
 TEXTGRIDCollection m_orders = new TEXTGRIDCollection();
 public TEXTGRIDCollection getOrders() { return m_orders; }

Working with Pages130

Building Own Workplaces as a Frameset Definition

 // --
 // public adapter methods
 // --

 public void onOrderSelect()
 {
 // find the selected item
 Order selectedOrder = null;
 Iterator iter = m_orders.iterator();
 while (iter.hasNext())
 {
 selectedOrder = (Order)iter.next();
 if (selectedOrder.getSelected() == true)
 break;
 else
 selectedOrder = null;
 }
 if (selectedOrder == null)
 return;
 // session management: "refresh" subsession
 String sessionId = this.m_interactionProcess.getSessionId();
 IInteractionSessionMgr iism =
InteractionSessionMgrFactory.getInteractionSessionMgr();
 iism.removeSubsession(sessionId,"subsession_right");
 iism.createNewSubsession(sessionId,"subsession_right");
 // prefetch and manipulate adapter inside the refreshed subsession
 CustomerOrderDetailAdapter coda =
(CustomerOrderDetailAdapter)iism.findAdapterInSubsession
 (sessionId, // sessionID
 "subsession_right", // subsessionId
 CustomerOrderDetailAdapter.class.getName(), // class
 "", // pageId, typically ""
 findPageApplication()); // application project
 coda.setNumber(selectedOrder.getNumber());
 coda.setName(selectedOrder.getCustomer());
 // navigate to page
 openCISPageInTarget("CustomerOrderDetail.html","subsession_right","right");
 }

 // --
 // standard adapter methods
 // --

 // property >messageType< implemented in Adapter
 // property >messageShortText< implemented in Adapter
 // property >messageLongText< implemented in Adapter

 /** initialisation - called when creating this instance*/
 public void init()
 {
 m_orders.add(new Order("4711","20020706","Software AG"));

131Working with Pages

Building Own Workplaces as a Frameset Definition

 m_orders.add(new Order("4734","20020702","Banana Import Export Ltd."));
 m_orders.add(new Order("4798","20020604","Johnsons's Bread"));
 }
}

With method onOrderSelect, the selected line is determined first.

In the next steps, frame communication is prepared and finally done. The difference to the previous
“simple” scenario is that the pagewhich is opened runs in a different subsession inside the session
management of Application Designer.

Remember that each browser instance internally requests one session, and that each session is di-
vided into various subsessions. Adapters are running inside subsessions. The subsession is respons-
ible for keeping and releasing resources. It corresponds to one interaction process which has a
defined life cycle - e.g. the data input of a customer order. For more information, see the section
SessionManagement. Each subsession has an identifier - in this example, the name of the subsession
is subsession_right. You can also create a unique ID with the class
com.softwareag.cis.util.UniqueIdMgmt.

Our example program first removes the subsession subsession_right. Everything which is cur-
rently managed inside the subsession will be released. Since there is no subsession when being
called the first time, no error will occur.

After releasing this subsession, a new subsession is immediately created. With the interaction
session manager, you can access a method which passes back an adapter instance inside a given
subsession. Like the method findAdapter of class Adapter, this method returns an adapter object
which ismanaged inside the same subsession inwhich the adapter is running.With the interaction
session manager, you can also access adapters inside different subsessions.

The returned adapter instance gets the selected data. Finally, the frame communication takes place:
pay attention that the ID of the subsession has to be passed inside the openCISPageInTarget
method.

When to Use the Complex Way

The complexway should be your “standard thinking” in this scenario.When dealingwithApplic-
ation Designer pages inside different frames, you have to take care about how you manage your
sessions at the server side.

The content which runs inside the frames (e.g. the Customer Order screen) is not aware of these
sessionmanagement dependencies. But the designer of theworkplace has to take care of the inter-
action possibilities inside the workplace.

Working with Pages132

Building Own Workplaces as a Frameset Definition

Opening Normal HTML Pages inside Frames

In addition to themethods openCISPageInTarget, there is an equivalentmethod openPageInTarget
which you inherit from the Adapter class. This page opens a normalHTMLpage inside one frame.

Frame Communication

When working with frames, it is possible to open a client-side communication channel between
frames: by the client, you call an adaptermethod of anApplicationDesigner pagewhich is opened
in a different frame. This is done by themethod invokeMethodInTarget(methodName,targetName)
which you inherit from the com.softwareag.cis.server.Adapter class.

133Working with Pages

Building Own Workplaces as a Frameset Definition

This sounds strange at first: in the adapter processing of frame LEFT, you call an adapter method
of frame RIGHT and the call is executed by the client - what is the reason for this? The advantage
of calling the method by the client is that the call is initiated by the page which runs inside the
target frame. Thismeans that the target frame sends the request formethod execution and updates
its content as a reaction of the request’s response. In other words: you can update pages in other
frames without redrawing the page, i.e. without flickering.

This is a very powerful way of allowing communication between frames - but there are some re-
strictions which you have to keep in mind:

■ The framewhich initiates the interaction aswell as the target framemust be in the same frameset
page - in other words: they must share the same “document parent”.

Working with Pages134

Building Own Workplaces as a Frameset Definition

■ The page shown in the target frame must be received by the same server and port as the page
which initiates the communication. Otherwise, you will receive a JavaScript security exception
- it is (by default) not allowed to establish a client communication between pages coming from
different hosts.

The frame communication framework acts upon error situations in a quite tolerant way:

■ If you invoke a method inside a frame target and the frame does not exist, nothing will be done
on the client side.

■ If you invoke a method inside a frame target and there is no valid Application Designer page
inside the frame, nothing will be done.

■ If you invoke a method inside a frame target and the corresponding “target adapter” does not
provide the requested method, the content of the frame target’s page will be synchronized with
its adapter. This is similar to defining a BUTTON control and specifying a method which does
not exist inside the adapter.

Tip: Only use frame communication if you want to update the content of another frame
page. Do not use this method for “normal” interaction between adapters, without any
changes on the page.

Multiple Frame Operations

You can call the methods openCISPageInTarget, openPageInTarget and invokeMethodInTarget
multiple times inside one request, for example, if there aremultiple frames youwant tomanipulate
at the same time.

When Building your Own Workplaces

As you learned in this section, Application Designer provides powerful mechanisms to build
flexible workplace/portal scenarios. Be aware that workplace management means more than
bringing up some pages into different frames. Workplace management also means, for example,
that you take care of opening and closing the session state (in Application Designer: subsession
state) and that you have to provide global data (like the currently logged in user) shared by all
adapters, etc.

135Working with Pages

Building Own Workplaces as a Frameset Definition

136

	Working with Pages
	Table of Contents
	1 Working with Pages
	2 Working with Page Navigation
	3 Page Navigation
	The First Navigation
	Preparing the Adapter before Navigating
	Including the Adapter while Navigating

	4 Session Management
	Session, Subsession, Adapter
	Garbage Collection

	5 Opening Modal Pop-up Dialogs
	Special Pop-up Dialog Parameters within the XML Layout Definition
	Passing Pop-up Dialog Parameters before Opening a Pop-up
	Closing a Pop-up Dialog
	Changing the Size within an Opened Pop-up

	6 URL to Choose when Navigating
	7 Value Help Pop-up Dialogs
	Standard Method openIdValueHelp
	Standard Method openIdValueCombo

	8 Standard Pop-up Dialogs
	OK Pop-up
	Yes/No Pop-up
	Log Pop-up
	Example: Asking Whether the User Really Wants to Quit

	9 Page-based Pop-up Dialogs
	10 Embedding Pages into Pages
	11 SUBCISPAGE2 Control
	Simple Example
	SUBCISPAGE2 Properties

	12 ROWTABSUBPAGES Control
	Properties
	Performance Considerations

	13 Remark on Modularisation
	14 Multi Frame Pages
	15 What are Multi Frame Pages?
	16 Definition of Multi Frame Pages
	MFPAGE
	MFCISFRAME
	MFHTMLFRAME
	MFFRAMESET

	17 Example
	The Multi Frame Page Around
	The Left Frame
	The Right Frame

	18 Communication between Frames
	API inside the Adapter Class
	Pay Attention to Request Processing
	Session Management (I)
	Session Management (II)

	19 Combination with Normal Application Designer Pages
	20 Embedding Pages into a Workplace
	21 Application Designer Workplace Framework
	Framework Overview
	Functions Frame: MFWPFUNCTIONS
	Active Functions Frame: MFWPACTIVEFUNCTIONS
	Content Frame: MFWPCONTENT
	Filling the MFWPFUNCTIONS Frame
	Tree Node Types
	Filling the MFWPFUNCTIONS Frame without any Java Coding: MFWPBOOTSTRAPINFO
	MFWPBOOTSTRAPINFO Properties
	MFWPTOPIC Properties
	MFWPFOLDER Properties
	MFWPOPENCISPAGE Properties
	MFWPOPENCISPOPUP Properties
	MFWPOPENCISTARGET Properties
	MFWPCALLBACK Properties
	MFWPOPENHTMLPAGE Properties
	MFWPOPENHTMLPOPUP Properties
	MFWPOPENHTMLTARGET Properties

	Customizing the MFWPFUNCTIONS Behavior
	Customizing Pop-up Messages
	Customizing Context Menus
	Implementing Custom Event Reactions (Advanced)
	Source Code for com.softwareag.cis.workplace.MFCustomEventListener

	Session Management inside the Workplace
	Other Frames
	Workplace API for Dynamic Manipulation
	Example - Double Line Menu Workplace
	Usage Example - Calling the Application Designer Workplace with Directly Opening a Page

	22 Integration into Other Workplace/Portal Scenarios
	Passing Parameters to your Application Designer Page

	23 Extended Functions in the Application Designer Workplace
	Interface IMFWorkplaceEventListener
	Example

	24 Building Own Workplaces as a Frameset Definition
	Basics
	Defining the Frameset
	Simple Way of Opening Pages in Frames
	A More Complex Way of Opening Pages in Frames
	When to Use the Complex Way
	Opening Normal HTML Pages inside Frames
	Frame Communication
	Multiple Frame Operations
	When Building your Own Workplaces

