
Application Designer Workplace Framework
The demo workplace (as well as the IDE workplace) provides examples of workplaces built on base of
this framework.

The workplace framework bases on the multi frame page management described in the previous part. It
offers the following:

flexible arrangement of frames,

predefined frames containing workplace logic,

dynamic loading of available functions,

possibility to change the environment at runtime via the Java API,

execution of multiple tasks between which the user can switch ("multi document interface").

This chapter covers the following topics:

Framework Overview

Functions Frame: MFWPFUNCTIONS

1

Application Designer Workplace FrameworkApplication Designer Workplace Framework

Active Functions Frame: MFWPACTIVEFUNCTIONS

Content Frame: MFWPCONTENT

Filling the MFWPFUNCTIONS Frame

Tree Node Types

Filling the MFWPFUNCTIONS Frame without any Java Coding: MFWPBOOTSTRAPINFO

Customizing the MFWPFUNCTIONS Behavior

Session Management inside the Workplace

Other Frames

Workplace API for Dynamic Manipulation

Example - Double Line Menu Workplace

Usage Example - Calling the Application Designer Workplace with Directly Opening a Page

Framework Overview
An Application Designer workplace is a certain arrangement of frames in a multi frame page. Some of the
frames have predefined tasks. Have a look at the demo workplace in which you can already see the most
important frames:

2

Framework OverviewApplication Designer Workplace Framework

The "Functions" frame contains the available functions that can be chosen and invoked by the user. The
"Content" frame contains the page or page sequence that is opened if a function is selected. The "Active
Functions" frame shows the functions that were opened by the user and allows the user to navigate
between the active functions.

Have a look at the XML layout definitions for this workplace; it consists of an inner definition in which
the main frames are arranged and an outer definition that adds some additional decoration around. The
inner page (com.softwareag.cis.workplace.MFInner.xml) is:

<mfpage separation="rows" sizing="20,*">
 <mfwpactivefunctions resizable="false" withborder="false" scrolling="false"
 framestyle="border: 0px solid #000000">
 </mfwpactivefunctions>
 <mfframeset target="ZZZ" separation="cols" sizing="265,*">
 <mfframeset target="LEFTPART" separation="rows" sizing="*,87" border="true"
 framesetstyle="border: 1px solid #808080">
 <mfwpfunctions bootstrapclass="com.softwareag.cis.workplace.MFDefaultBootstrapInfoProvider"
 serversidescrolling="false" framestyle="border: 1 solid #808080;">
 </mfwpfunctions>
 <mfhtmlframe target="NEWS" url="../HTMLBasedGUI/workplace/welcome.html"
 resizable="true" withborder="false" scrolling="true"
 framestyle="border: 1px solid #808080">
 </mfhtmlframe>
 </mfframeset>
 <mfwpcontent resizable="true" withborder="true" scrolling="false"
 framestyle="border: 1 solid #808080;">
 </mfwpcontent>
 </mfframeset>
</mfpage>

3

Application Designer Workplace FrameworkFramework Overview

You see that there are three special frame controls that are used internally: MFWPFUNCTIONS,
MFWPACTIVEFUNCTIONS and MFWPCONTENT. In addition, there is one HTML page arranged
below the MFWPFUNCTIONS control.

Let us take a closer look at each of the three workplace frame controls.

"Functions" Frame: MFWPFUNCTIONS
This is the frame to hold the available functions to be selected by the user. The control has the following
properties:

Basic

bootstrapclass Name of the class that is responsible for passing the initial
workplace configuration. The class must support interface
"IMFWorkplace2" and must support a constructor without
parameters.

When being displayed the workplace creates an instance
of this class and asks for an object that represents the
workplace setup. Have a look into the
javadoc-documentation for interface "IMFWorkplace2"
for more information.

Optional

bootstrapinfourl URL to an .xml file that holds the initial workplace
configuration. Do not use BOOTSTRAPINFOURL and
BOOSTRAPCLASS at the same time!

Use /project/directory/doc.xml as syntax, e.g.
/HTMLBasedGUI/workplace/bootstrapworkplaceinfo.xml.

Optional

serversidescrolling Flag that decides if the function tree providing the
available workplaces functions support client side
scrolling (default, "false") or supports server side scrolling
("true"). Server side scrolling should be used if a function
tree containes more than 100 nodes.

Optional true

false

defaultcontentpage URL of a page that is shown in the ’content area’ by
default.

Optional

comment Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor’s tree view.

Optional

Appearance

contentstylesheet Style sheet that should be used for the content that is
started inside the workplace.

Optional

framestyle Style that is passed to the HTML-FRAME definition that
is internally generated.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

4

"Functions" Frame: MFWPFUNCTIONSApplication Designer Workplace Framework

bordercolor Sets the border color of the frame set. Optional #FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

marginheight Defines top and bottom margin height. Value is a pixel
value. Default is "0".

Optional 1

2

3

int-value

marginwidth Defines left and right margin width. Value is a pixel value.
Default is "0".

Optional 1

2

3

int-value

activefunctionsvariantDefines how the MFWPACTIVEFUNCTIONS frame
displays the list of started pages. You can either use a
STRIPSEL or TABSTRIP control. Default is "tabstrip".

Optional tabstrip

stripsel

withownborder Flag that indicates if the functions page shows an
additional border. Default is false.

Optional true

false

workplacestylesheet Style sheet that should be used for the workplace itself.Optional

withplusminus If set to "true" then +/- Icons will be rendered in front of
the mfwpfuntions.

Optional true

false

"Active Functions" Frame: MFWPACTIVEFUNCTIONS
This frame shows the functions that the user started and between which the user can switch.

Basic

resizable Decision if the user is able to resize the frame. This
property must be in synch with the definition in the
"neighbour frames". If the neighbour frames do not
support resizing then it will not be offered to the user as
consequence.

Valid values are "true" and "false". Default is "true".

Optional true

false

withborder Boolean value defining if the frame has a border on its
own. Default is "false".

Optional true

false

5

Application Designer Workplace Framework"Active Functions" Frame: MFWPACTIVEFUNCTIONS

scrolling Boolean that indicates whether the frame can be
scrolled. Default is true.

Optional true

false

framestyle Style that is passed to the HTML-FRAME definition
that is internally generated.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

bordercolor Sets the border color of the frame set. Optional #FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

marginheightDefines top and bottom margin height. Value is a pixel
value. Default is "0".

Optional 1

2

3

int-value

marginwidth Defines left and right margin width. Value is a pixel
value. Default is "0".

Optional 1

2

3

int-value

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

"Content" Frame: MFWPCONTENT
This is the frame in which content is started that is selected from the functions area.

Basic

resizable Decision if the user is able to resize the frame. This
property must be in synch with the definition in the
"neighbour frames". If the neighbour frames do not
support resizing then it will not be offered to the user
as consequence.

Valid values are "true" and "false". Default is "true".

Optional true

false

6

"Content" Frame: MFWPCONTENTApplication Designer Workplace Framework

withborder Boolean value defining if the frame has a border on its
own. Default is "false".

Optional true

false

scrolling Boolean that indicates whether the frame can be
scrolled. Default is true.

Optional true

false

framestyle Style that is passed to the HTML-FRAME definition
that is internally generated.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

bordercolor Sets the border color of the frame set. Optional #FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

marginheight Defines top and bottom margin height. Value is a pixel
value. Default is "0".

Optional 1

2

3

int-value

marginwidth Defines left and right margin width. Value is a pixel
value. Default is "0".

Optional 1

2

3

int-value

withownborder Flag that indicates if started pages show an own
border. Default is false.

Optional true

false

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

Filling the MFWPFUNCTIONS Frame
The MFWPFUNCTIONS frame itself connects to an instance of the class that is named inside the
bootstrapclass property. This class must support a constructor without parameters and must support
an interface
com.softwareag.cis.workplace.IMFWorkplaceBootstrapInfoProvider2 :

7

Application Designer Workplace FrameworkFilling the MFWPFUNCTIONS Frame

public interface IMFWorkplaceBootstrapInfoProvider2
{
 public MFWorkplaceInfo getWorkplaceInfo(IMFWorkplaceBootstrapInfo envInfo);
}

The interface contains one method getWorkplaceInfo(...) that returns an object of type
MFWorkplaceInfo . Inside the MFWorkplaceInfo object, the logical structure of the functions that
are offered to the user is defined.

The MFWPFUNCTIONS frame consists of certain subcomponents:

Each topic holds one function tree. The tree is opened when the user chooses the corresponding button.
The tree contains nodes; each node is associated with a certain function, e.g. a node may start a page
inside the content area of the workplace. Some nodes may be selected as favorites and are shown in a
favorite bar.

The MFWorkplaceInfo object that is required by the interface definition above is the logical reflection
of this structure. The following code shows the code for setting up the demo workplace:

public class MFDefaultBootstrapInfoProvider
 implements IMFWorkplaceBootstrapInfoProvider2,
 MFWorkplaceConstants
{
 // --
 // public access
 // --

 /** */
 public MFWorkplaceInfo getWorkplaceInfo(IMFWorkplaceBootstrapInfo envInfo)
 {
 MFWorkplaceTopic topic;
 MFWorkplaceTreeNodeFolder topNode;
 TREECollection tc;

 MFWorkplaceInfo workplaceInfo = new MFWorkplaceInfo("/HTMLBasedGUI/empty.html",
 "../softwareag/styles/CIS_DEFAULT.css");

 // --
 // Demo topic
 // --

 topic = new MFWorkplaceTopic("Demos",workplaceInfo);
 tc = topic.getTree();

 topNode = new MFWorkplaceTreeNodeFolder("First Demo");;
 topNode.setOpened(TREECollection.ST_OPENED);
 tc.addTopNode(topNode,false);

8

Filling the MFWPFUNCTIONS FrameApplication Designer Workplace Framework

 MFWorkplaceTreeNodeCISPage helloWorldNode =
 new MFWorkplaceTreeNodeCISPage("Hello World!",
 "/cisdemos/DEMO_HelloWorld.html",true,true);
 tc.addSubNode(helloWorldNode,topNode,true,false);
 workplaceInfo.addFavourite(helloWorldNode,"images/fav_hello.gif");

 topNode = new MFWorkplaceTreeNodeFolder("Normal Controls");
 topNode.setOpened(TREECollection.ST_OPENED);
 tc.addTopNode(topNode,false);

 tc.addSubNode(new MFWorkplaceTreeNodeCISPage("Control Overview",
 "/cisdemos/DEMO_ControlOverview.html",true,true),topNode,true,false);
 tc.addSubNode(new MFWorkplaceTreeNodeCISPage("Combo Box",
 "/cisdemos/DEMO_ComboDyn.html",true,true),topNode,true,false); }

 ...
 ...
 ...
 ...

 // --
 // Development topic
 // --

 topic = new MFWorkplaceTopic("Development",workplaceInfo);
 tc = topic.getTree();

 topNode = new MFWorkplaceTreeNodeFolder("Layout");
 topNode.setOpened(TREECollection.ST_OPENED);
 tc.addTopNode(topNode,false);

 tc.addSubNode(new MFWorkplaceTreeNodeCISPage("Project Manager",
 "/HTMLBasedGUI/com.softwareag.cis.editor.projectmgr.html",true,true),
 topNode,true,false);

 MFWorkplaceTreeNodeCISPage layoutNode =
 new MFWorkplaceTreeNodeCISPage("Layout Manager",
 "/HTMLBasedGUI/com.softwareag.cis.editor.editorgenerate.html",true,true);
 tc.addSubNode(layoutNode,topNode,true,false);

 workplaceInfo.addFavourite(layoutNode,"DISTANCE");
 workplaceInfo.addFavourite(layoutNode,"images/fav_layoutpainter.gif");

 ...
 ...
 ...
 ...

 return workplaceInfo;
 }
}

See the JavaDoc API documentation for more details on the API.

Tree Node Types
There are different types of tree nodes that you place inside a topic’s tree. In the example above, you
already saw two tree node types: MFWorkplaceTreeNodeFolder and
MFWorkplaceTreeNodeCISPage . The complete list of tree node types is:

9

Application Designer Workplace FrameworkTree Node Types

Type Description

MFWorkplaceTreeNodeFolder A folder in the tree. Has no further functions.

MFWorkplaceTreeNodeCISPage A node that opens an Application Designer page in the content
area.

MFWorkplaceTreeNodeHTMLPageA node that opens a normal URL in the content area.

MFWorkplaceTreeNodeCISPopup A node that starts an Application Designer page inside a
pop-up.

MFWorkplaceTreeNodeHTMLPopupA node that starts a normal URL inside a pop-up.

MFWorkplaceTreeNodeCISTarget A node that starts an Application Designer page inside a named
target frame that is part of the workplace multi frame page.

MFWorkplaceTreeNodeHTMLTargetA node that starts a normal URL inside a named target frame
that is part of the workplace multi frame page.

MFWorkplaceTreeNodeCallback A node that invokes a "dark" API in order to just call a function
without visual output. The function may, for example, modify
the workplace content.

A detailed description of the Java API can be found in the JavaDoc API documentation.

Filling the MFWPFUNCTIONS Frame without any Java
Coding: MFWPBOOTSTRAPINFO
There is also the possibility to fill the MFWPFUNCTIONS frame without any Java coding by using the
bootstrapinfourl property. This property expects an URL to an XML file that represents the
workplace setup (for example, HTMLBasedGUI\workplace\defaultbootstrapinfo.xml).

Have a look at the corresponding XML file:

<mfwpbootstrapinfo
 defaultcontentpage="/HTMLBasedGUI/empty.html"
 workplacestylesheet="../cis/styles/CIS_DEFAULT.css"
 synchtabnavigation="true"
 showdustbin="true"
 withtakeouttopopup="false"
 withcloseallwindowsicon="false"
 mfworkplaceeventlistener="com.softwareag.cis.workplace.MFDefaultEventListener"
 targetnameofresizableleftpart="AVAILABLEACTIVITIES"
 translationproject="cisdemos"
 translationreference="mfworkplace">

<!-- Start Topic ’Demos’-->
 <mfwptopic
 name="Demos"
 textid="topic.demos"
 treeclass="WORKPLACETOPIC1ClientTree">

<!--TREE Begin First Demo -->
 <mfwpfolder
 name="First Demo"
 draginfo="First Demo"
 opened="true">

10

Filling the MFWPFUNCTIONS Frame without any Java Coding: MFWPBOOTSTRAPINFOApplication Designer Workplace Framework

 <mfwpopencispage
 name="Hello World!"
 activityurl="/cisdemos/DEMO_HelloWorld.html"
 onlyoneinstance="true"
 followpageswitches="true"
 draginfo="DEMO_HelloWorld">
 </mfwpopencispage>

 </mfwpfolder>
<!--TREE End First Demo -->

...

<!-- End Topic ’Demos’-->
 </mfwptopic>

...

</mfwpbootstrapinfo>

Note:
To make sure that you are using a proper bootstrapinfo.xml file, use the XML Schema editor.xsd (and all
corresponding XSD files) to validate your XML file (for example, in XMLSpy).

Overview of the bootstrapinfo hierarchy:

<mfwpbootstrapinfo> // root tag
 <mfwptopic> // new topic
 <mfwpfolder> // MFWorkplaceTreeNodeFolder
 <mfwpopencispage> // MFWorkplaceTreeNodeCISPage
 <mfwpopencispopup> // MFWorkplaceTreeNodeCISPopup
 <mfwpopencistarget> // MFWorkplaceTreeNodeCISTarget
 <mfwpcallback> // MFWorkplaceTreeNodeCallback
 <mfwpopenhtmlpage> // MFWorkplaceTreeNodeHTMLPage
 <mfwpopenhtmlpopup> // MFWorkplaceTreeNodeHTMLPopup
 <mfwpopenhtmltarget> // MFWorkplaceTreeNodeHTMLTarget

Each of the 8 sublevel tags can contain all 8 sublevel tags as subnodes, including itself.

The following topics are covered below:

MFWPBOOTSTRAPINFO Properties

MFWPTOPIC Properties

MFWPFOLDER Properties

MFWPOPENCISPAGE Properties

MFWPOPENCISPOPUP Properties

MFWPOPENCISTARGET Properties

MFWPCALLBACK Properties

11

Application Designer Workplace FrameworkFilling the MFWPFUNCTIONS Frame without any Java Coding: MFWPBOOTSTRAPINFO

MFWPOPENHTMLPAGE Properties

MFWPOPENHTMLPOPUP Properties

MFWPOPENHTMLTARGET Properties

MFWPBOOTSTRAPINFO Properties

Basic

defaultcontentpage The workplace consists out of several frames, one of it the content
frame. If there is no active activity in the workplace then the
defaultContentPage is displayed inside the content frame. You can use
this in two ways:

(1) Either create one "background page" which always is shown in an
"empty" workplace.

(2) Or create one "background page" which the workplace opens by
default. E.g. you want in a start-workplace to first present to the user a
logon page.

EXAMPLE: "/HTMLBasedGUI/empty.html"

Optional

workplacestylesheet The stlye sheet which is used for the left and top frame of the
workplace. If no style sheet is specified then the workplace adapts to
the standard style sheet which is kept in the CISsession context. You
typically want to use one fix child for a workplace - because the
workplace is typically embedded in some other frames arranging some
graphics/etc. around, and you do not want the workplace colour’s to
change independent from this.

EXAMPLE: "/cis/styles/XYZ_STLYE.css"

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

translationproject Name of the project where the actual used multilanguage file is located.

e.g. cisdemos

Optional

translationreference Name of the multilanguage .csv file.

e.g. test

(if the file test.csv should be used)

Optional

comment Comment without any effect on rendering and behaviour. The comment
is shown in the layout editor’s tree view.

Optional

Appearance

12

MFWPBOOTSTRAPINFO PropertiesApplication Designer Workplace Framework

mfworkplaceeventlistener Use this interface to react on workplace events.

(1) Create an implementation of this interface

(2) Use method
MFWorkplaceInfo.registerMFWorkplaceEventListener
to register your class

(3) Use method NODEInfo.setDropInfo on each tree item to be
able to drag that item

Step two and three are typically done within the "bootstrap info
provider"-class

A CISworkplace is a certain arrangement of frames in a multi frame
page. The "functions"-frame (MFWPFUNCTIONS) holds the available
functions to be selected by the user (click with the left mouse Button).
In addition you can provide for right mouse button menu or drag and
drop within the function tree. With that you may allow users to
add/remove/shift menu items (personalization).

Optional

targetnameofresizableleftpartThe workplace may contain a favourite list. At the bottom of the
favourite list there are some items by which you can influence the size
of the corresponding left part of the workplace. The name of the target
frame to be resized is passed with this method.

Optional

View

showdustbin Flag that indicates wether the dustbin (have a look at the DEMO
WORKPLACE) is shown or not.

Boolean value, default is false.

Optional true

false

synchtabnavigation Set flag that decides if the tree "on the left" is synchronized with the tab
navigation "on the top". If the user selects an opened activity in the tab
strip then the corresponsding tree node and topic is shown as
consequence.

Pay attention: the base of the synchronization is the naming of nodes.
There is currently no naming concept beyond (that e.g. assigns ids to
nodes). Make sure, your tree nodes are set in a way that each one holds
a unique name. Use the tabText (setTabText) in order to make nodes
unique!

true ==> synchronization is done; false ==> synchronization is not
done;

default is false.

Optional true

false

withcloseallwindowsicon Flag that indicates whether the CloseAllWindowsIcon is shown in the
workplace or not.

Boolean value, default is false.

Optional true

false

withtakeouttopopup Flag that indicates Optional true

false

MFWPTOPIC Properties

13

Application Designer Workplace FrameworkMFWPTOPIC Properties

Basic

name Text of the topic. Obligatory

textid Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Optional

comment Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor’s tree view.

Optional

Appearance

buttonstyle Style info that is passed to the button representing the
topic.

Optional

iconurl The button that represents this topic may have an
additional icon in front of the text. Use this parameter to
set the icon URL.

Optional

treestyle Background style for the tree. You can e.g. define
background colors and background pictures. Avoid the
usage of ’ and " characters.

Please also have a look onto the method "setStyleClass" -
via this method you can pass a reference to a CSS class.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

treeclass Sets the style class for rendering the tree area of the topic.
There are 10 standard style classes available in the
default style sheet: PLACETOPIC1ClientTree to
WORKPLACETOPIC10ClientTree. These style sheets
can be maintained within the CISstyle sheet editor.

Optional

tooltip Tooltip of the node. Optional

tooltipid Text ID of the tooltip. Optional

MFWPFOLDER Properties

14

MFWPFOLDER PropertiesApplication Designer Workplace Framework

Basic

name Text of the tree node folder. Obligatory

textid Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

Appearance

draginfo Any information that is useful to react on a drop event.
Characters ’ and \ are not allowed.

Optional

opened Flag that indicates whether the folder is opened or not.

Boolean value

Optional true

false

tooltip Text of the tooltip of the tree node folder. Optional

tooltipid Text ID of the tooltip. Optional

MFWPOPENCISPAGE Properties

15

Application Designer Workplace FrameworkMFWPOPENCISPAGE Properties

Basic

name Text of the node. Obligatory

textid Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string at
runtime.

Do not specify a "name" inside the control if specifying a
"textid".

Optional

activityurl URL to be started when user clicks on node. You can append
parameters to the URL by appending them via
"andamp;param1=value1andamp;param2=value2"

Obligatory

followpageswitchesIf the user navigates inside the called page (e.g. switches from
one page to the other) then this navigation is registered. True
means:

when reinvoking the page through the tree then the user come
back exactly to the page where he/she stayed. False means: the
user id brought back to the starting page always.

Obligatory

onlyoneinstance A page with the corresponding text is only started once inside
the workplace. If the page already exists no new pages is
started but the existing one is picked.

Obligatory true

false

comment Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor’s tree view.

Optional

Appearance

draginfo Any information that is useful to react on a drop event.
Characters ’ and \ are not allowed.

Optional

iconurl URL for the icon in front of the text. The workplace iself is
running in project "HTMLBasedGUI" - you have to go up first
"../" to address your icons.

Optional

tooltip Text of the tooltip of the tree node. Optional

tooltipid Text ID of the tooltip. Optional

MFWPOPENCISPOPUP Properties

Basic

name Text of the node. Obligatory

textid Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

16

MFWPOPENCISPOPUP PropertiesApplication Designer Workplace Framework

activityurl URL to be started when user clicks on node. You can
append parameters to the URL by appending them via
"andamp;param1=value1andamp;param2=value2"

Obligatory

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

Appearance

draginfo Any information that is useful to react on a drop event.
Characters ’ and \ are not allowed.

Optional

iconurl URL for the icon in front of the text. Must start with
"../project".

Optional

tooltip Tooltip of the node. Optional

tooltipid Text ID of tooltip. Optional

width Set the dimension of the popup in pixels. (width) Optional 1

2

3

int-value

height Set the dimension of the popup in pixels. (height) Optional 1

2

3

int-value

left Set the dimension of the popup in pixels. (left) Optional 1

2

3

int-value

top Set the dimension of the popup in pixels. (top) Optional 1

2

3

int-value

MFWPOPENCISTARGET Properties

17

Application Designer Workplace FrameworkMFWPOPENCISTARGET Properties

Basic

name Text of the node. Obligatory

textid Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

activityurl URL to be started when user clicks on node. You can
append parameters to the URL by appending them via
"andamp;param1=value1andamp;param2=value2".

Obligatory

target Name of the target Frame in which the CIS page is going
to be opened.

During workplace definition each frame you define gets
assigned a target-id.

Obligatory

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

Appearance

draginfo Any information that is useful to react on a drop event.
Characters ’ and \ are not allowed.

Optional

iconurl URL for the icon in front of the text. Must start with
"../project".

Optional

tooltip Tooltip of the node. Optional

tooltipid Text ID of the tooltip. Optional

MFWPCALLBACK Properties

18

MFWPCALLBACK PropertiesApplication Designer Workplace Framework

Basic

name Text of the item. Obligatory

textid Text ID of the items text. Optional

class Command that is executed if the node is selected. Obligatory

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

Appearance

draginfo Any information that is useful to react on a drop event.
Characters ’ and \ are not allowed.

Optional

iconurl Icon of the node. Must be something like "../project/... -
the workplace itself is running in project
"HTMLBasedGUI", you have to move up first as
consequence.

Optional

tooltip Tooltip of the item. Optional

tooltipid Tooltip Text ID of the item. Optional

MFWPOPENHTMLPAGE Properties

Basic

name Text of the node. Optional

textid Multi language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

Do not specify a "name" inside the control if specifying a "textid".

Optional

activityurl URL to be started when user clicks on node. Optional

onlyoneinstanceA page with the corresponding text is only started once inside the
workplace. If the page already exists no new pages is started but the
existing one is picked.

Optional true

false

comment Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor’s tree view.

Optional

Appearance

draginfo Any information that is useful to react on a drop event. Characters ’
and \ are not allowed.

Optional

iconurl URL for the icon in front of the text. Must start with "../project" Optional

tooltip Tooltip of the node. Optional

tooltipid Text ID of the tooltip. Optional

19

Application Designer Workplace FrameworkMFWPOPENHTMLPAGE Properties

MFWPOPENHTMLPOPUP Properties

Basic

name Text of the node. Optional

textid Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

activityurl URL to be started when user clicks on node. Obligatory

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

Appearance

iconurl URL for the icon in front of the text. Must start with
"../project"

Optional

draginfo Any information that is useful to react on a drop event.
Characters ’ and \ are not allowed.

Optional

tooltip Tooltip of the node. Optional

tooltipid Text ID of the tooltip. Optional

width Set the dimension of the popup in pixels. (width) Optional 1

2

3

int-value

height Set the dimension of the popup in pixels. (height) Optional 1

2

3

int-value

left Set the dimension of the popup in pixels. (left) Optional 1

2

3

int-value

20

MFWPOPENHTMLPOPUP PropertiesApplication Designer Workplace Framework

top Set the dimension of the popup in pixels. (top) Optional 1

2

3

int-value

MFWPOPENHTMLTARGET Properties

Basic

name Text of the node. Obligatory

textid Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

Do not specify a "name" inside the control if specifying
a "textid".

Optional

activityurl URL to be started when user clicks on node. Obligatory

target Name of the target Frame in which the HTML Page is
going to be opened.

When defining a workplace page you assign a target-id
per frame.

Obligatory

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

Appearance

iconurl URL for the icon in front of the text Must start with
"../project".

Optional

draginfo Any information that is useful to react on a drop event.
Characters ’ and \ are not allowed.

Optional

tooltip Tooltip of the node. Optional

tooltipid Text ID of the tooltip. Optional

Customizing the MFWPFUNCTIONS Behavior
The mfworkplaceeventlistener property of MFWPBOOTSTRAPINFO defines a Java class
name. This class listens to events raised by the workplace and reacts accordingly. Examples for such
events are context menu requests, or reactions to opening, closing, removing or switching of content
pages. You can write your own event handler class by providing a Java class which implements the
com.softwareag.cis.workplace.IMFWorkplaceEventListener2 interface (see the
JavaDoc documentation).

21

Application Designer Workplace FrameworkCustomizing the MFWPFUNCTIONS Behavior

Often, you do not want to write a complete event handler class. Instead, you would like to keep most of
the default behavior, but simply customize pop-up messages and/or the shown context menus for the
different nodes in the function tree. The following topics describe how to do simple customizations for the
default event handler implementation.

You start with the class com.softwareag.cis.workplace.MFCustomEventListener . If you
only want to customize pop-up messages, you can simply extend this class. If you would like to customize
context menus and/or reactions to other events, you can use the MFCustomEventListener class as a
template for writing your own custom event listener. The MFCustomEventListener class extends the
MFEventListenerBase class which implements basic event reactions.

The following topics are covered below:

Customizing Pop-up Messages

Customizing Context Menus

Implementing Custom Event Reactions (Advanced)

Source Code for com.softwareag.cis.workplace.MFCustomEventListener

Customizing Pop-up Messages

If you only want to customize pop-up messages and keep the default context menu and event reaction,
proceed as follows.

Create a class (for example, MyCustomEventListener) and implement the following methods (see
also the example below):

String getPopupMessageNumberOfWorkplaceActivitiesReached(...)

String getPopupTitelMaxNumberOfWorkplaceActivitiesReached(...)

String getPopupMessagePopupMenuClosedByUser()

String getPopupTitelPopupMenuClosedByUser()

public class MyCustomEventListener extends MFCustomEventListener
{
protected String getPopupMessageNumberOfWorkplaceActivitiesReached(
 int maxactivities)
{
 return "THIS IS MY OWN MESSAGE";
}

protected String getPopupTitleNumberOfWorkplaceActivitiesReached(
 int maxactivities)
{
 return "THIS IS MY OWN POP-UP TITLE";
}

protected String getPopupMessagePopupMenuClosedByUser()
{
 return "THIS IS MY OWN MESSAGE";
}

protected String getPopupTitlePopupMenuClosedByUser()

22

Customizing Pop-up MessagesApplication Designer Workplace Framework

{
 return "THIS IS MY OWN POP-UP TITLE";
}
}

Specify the MyCustomEventListener class in your bootstrapinfo (see below) and put the class file
into the classpath of your web application.

<mfwpbootstrapinfo
 defaultcontentpage="/HTMLBasedGUI/empty.html"
 ...
 mfworkplaceeventlistener="com.mycompany.MyCustomEventListener"
...

Customizing Context Menus

If you would like to have your own context menus, you need to implement the following methods:

TREECollection buildContextMenu(...)

TREECollection buildDropMenu(...)

TREECollection buildFunctionContextMenu(...)

TREECollection buildMFTopicContextMenu(...)

All of these methods return a TREECollection object with the nodes for the context menu. For details
of the different methods, see the corresponding JavaDoc documentation of the
com.softwareag.cis.workplace.MFEventListenerBase class.

Recommendation:

1. Write your own class (for example, AnotherCustomEventListener) which extends
MFEventListenerBase .

2. Use the MFCustomEventListener class as a template. Here you can see how a
TREECollection object is built. You can copy all required information and paste it in your own
class.

A TREECollection is an object which describes a tree of nodes. Each node implements some standard
commands such as Remove, Cut or Paste. If you look at the MFCustomerEventListener class, you
will see the class MFCustomMenuNodeInfo which extends the class MFMenuNodeInfoBase . The
MFMenuNodeInfoBase class contains the implementation of a set of standard commands which are
defined as CMDID_* fields in the class. See the corresponding JavaDoc documentation for details. You
can reuse the standard commands, or you can implement your own commands.

Recommendation for implementing your own commands:

1. Write your own node class (for example, MyCustomMenuNodeInfo) which extends
MFMenuNodeInfoBase .

2. In the same way as the MFCustomEventListener class builds the TREECollection objects
from MFCustomMenuNodeInfo nodes, your AnotherCustomEventListener class will
build the TREECollection objects from the MyCustomMenuNodeInfo nodes.

23

Application Designer Workplace FrameworkCustomizing Context Menus

To use your newly implemented event listener class AnotherCustomEventListener , specify the
AnotherCustomEventListener class in your bootstrapinfo (see below) and put the class file into
the classpath of your web application.

<mfwpbootstrapinfo
 defaultcontentpage="/HTMLBasedGUI/empty.html"
 ...
 mfworkplaceeventlistener="com.mycompany.AnotherCustomEventListener"
...

Implementing Custom Event Reactions (Advanced)

If you also want to implement own reactions to other events, you create your own class (for example,
MyAdvancedEventListener) which implements the interface
com.softwareag.cis.workplace.IMFWorkplaceEventListener2 . See the JavaDoc
documentation for details.

Your class must implement the react* methods of this interface:

public class MyAdvancedEventListener implements IMFWorkplaceEventListener2
{
 public void reactOnDrop(...){...}
 public Boolean reactOnCloseWindowRequest(...){...}
 ...
}

To add your MyAdvancedEventListener class to the bootstrapinfo, proceed in the same way as
described in the previous topics.

Source Code for com.softwareag.cis.workplace.MFCustomEventListener
package com.softwareag.cis.workplace;

import com.softwareag.cis.server.util.TREECollection;

/**
 * This class is an example of a simple custom event listener based on the
 * <code>MFEventListenerBase</code> default implementation. The source code is
 * available in the documentation.
 * <p>
 * It shows how to simply customize pop-up messages, pop-up titles and/or context
 * menus without having to write a complete event listener.
 * <p>
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase
 *
 */
public class MFCustomEventListener extends MFEventListenerBase
{

 /**
 * Objects of this class represent a context menu item. It extends the
 * default implementation for context menu items {@link #MFMenuNodeInfoBase}.
 * This default implementation defines default items for the basic commands
 * like CUT, PASTE, REMOVE.
 * <p>
 *
 * @see com.softwareag.cis.workplace#MFMenuNodeInfoBase
 *
 */
 public class MFCustomMenuNodeInfo extends MFMenuNodeInfoBase
 {
 /**
 * Constructor
 *
 * @param eventListener the event listener
 */
 MFCustomMenuNodeInfo(MFEventListenerBase eventListener)
 {
 super(eventListener);
 }

24

Implementing Custom Event Reactions (Advanced)Application Designer Workplace Framework

 /* (non-Javadoc)
 * @see com.softwareag.cis.workplace.MFMenuNodeInfoBase#init(java.lang.String,
 * java.lang.String, com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.server.util.TREECollection,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral[],
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral,
 * com.softwareag.cis.workplace.MFWorkplaceTopic)
 */
 protected void init(String text,
 String image,
 IMFWorkplace workplace,
 TREECollection tree,
 MFWorkplaceTreeNodeGeneral[] treeNodes,
 MFWorkplaceTreeNodeGeneral treeNode2,
 MFWorkplaceTopic topic)
 {
 super.init(text, image, workplace, tree, treeNodes, treeNode2, topic);
 }

 /* (non-Javadoc)
 * @see com.softwareag.cis.workplace.MFMenuNodeInfoBase#init(int,
 * com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.server.util.TREECollection,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral[],
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral,
 * com.softwareag.cis.workplace.MFWorkplaceTopic)
 */
 protected void init(int cmdid,
 IMFWorkplace workplace,
 TREECollection tree,
 MFWorkplaceTreeNodeGeneral[] treeNodes,
 MFWorkplaceTreeNodeGeneral treeNode2,
 MFWorkplaceTopic topic)
 {
 super.init(cmdid, workplace, tree, treeNodes, treeNode2, topic);
 }

 }

 /*
 * (non-Javadoc)
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#buildDropMenu(com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.workplace.MFWorkplaceTopic,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral[])
 */
 protected TREECollection buildDropMenu(IMFWorkplace workplace,
 MFWorkplaceTopic topic,
 MFWorkplaceTreeNodeGeneral targetNode,
 MFWorkplaceTreeNodeGeneral[] droppedItems)
 {
 TREECollection menu = new TREECollection();
 MFCustomMenuNodeInfo menuNode = null;
 if (targetNode.getOpened() == 2)
 {
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_MOVEBEFORE, workplace, topic.getTree(), droppedItems, targetNode, topic);
 menu.addTopNode(menuNode, true);
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_MOVEBEHIND, workplace, topic.getTree(), droppedItems, targetNode, topic);
 menu.addTopNode(menuNode, true);
 }
 else
 {
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_MOVEASFIRST, workplace, topic.getTree(), droppedItems, targetNode, topic);
 menu.addTopNode(menuNode, true);
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_MOVEASLAST, workplace, topic.getTree(), droppedItems, targetNode, topic);
 menu.addTopNode(menuNode, true);
 }
 return menu;
 }

 /*
 * (non-Javadoc)
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#buildContextMenu(com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.workplace.MFWorkplaceTopic,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral,
 * com.softwareag.cis.workplace.MFWorkplaceTreeNodeGeneral[])
 */
 protected TREECollection buildContextMenu(IMFWorkplace workplace,
 MFWorkplaceTopic topic,
 MFWorkplaceTreeNodeGeneral item,
 MFWorkplaceTreeNodeGeneral[] selection)
 {
 TREECollection tree = topic.getTree();
 TREECollection menu = new TREECollection();

 // --------------------- Show with sub menu

25

Application Designer Workplace FrameworkSource Code for com.softwareag.cis.workplace.MFCustomEventListener

 MFCustomMenuNodeInfo menuNode = null;
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_SHOW, workplace, tree, selection, null, topic);
 menu.addTopNode(menuNode, false);

 MFCustomMenuNodeInfo subNode = null;
 subNode = new MFCustomMenuNodeInfo(this);
 subNode.init(MFMenuNodeInfoBase.CMDID_SHOW_CONTENT_FRAME, workplace, tree, selection, null, topic);
 menu.addSubNode(subNode, menuNode, true, false);

 subNode = new MFCustomMenuNodeInfo(this);
 subNode.init(MFMenuNodeInfoBase.CMDID_SHOW_NEW_WINDOW, workplace, tree, selection, null, topic);
 menu.addSubNode(subNode, menuNode, true, false);

 // --------------- CUT
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_CUT, workplace, tree, selection, null, topic);
 menu.addTopNode(menuNode, true);

 // --------------- PASTE
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_PASTE, workplace, tree, selection, null, topic);
 menu.addTopNode(menuNode, true);
 if (super.getClipboardSize() == 0 ||
 item.getOpened() == 2) menuNode.setInactive(true);

 // --------------- Separator
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init("&SEPARATOR", null, workplace, tree, selection, null, topic);
 menu.addTopNode(menuNode, true);

 // --------------- REMOVE
 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_REMOVE, workplace, tree, selection, null, topic);
 menu.addTopNode(menuNode, true);

 return menu;
 }

 /*
 * (non-Javadoc)
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#buildFunctionContextMenu(com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.workplace.MFWorkplaceTopic)
 */
 protected TREECollection buildFunctionContextMenu(IMFWorkplace workplace,
 MFWorkplaceTopic selectedTopic)
 {
 TREECollection menu = new TREECollection();
 MFCustomMenuNodeInfo menuNode = null;

 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_REFRESHTOPIC, workplace, selectedTopic.getTree(), null, null, selectedTopic);
 menu.addTopNode(menuNode, true);

 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_REMOVEALL, workplace, selectedTopic.getTree(), null, null, selectedTopic);
 menu.addTopNode(menuNode, true);

 return menu;
 }

 /*
 * (non-Javadoc)
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#buildMFTopicContextMenu(com.softwareag.cis.workplace.IMFWorkplace,
 * com.softwareag.cis.workplace.MFWorkplaceTopic)
 */
 protected TREECollection buildMFTopicContextMenu(IMFWorkplace workplace,
 MFWorkplaceTopic selectedTopic)
 {
 TREECollection menu = new TREECollection();
 MFCustomMenuNodeInfo menuNode = null;

 menuNode = new MFCustomMenuNodeInfo(this);
 menuNode.init(MFMenuNodeInfoBase.CMDID_REFRESHTOPIC, workplace, selectedTopic.getTree(), null, null, selectedTopic);
 menu.addTopNode(menuNode, true);
 return menu;
 }

 /*
 * (non-Javadoc)
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#getMaxNumberActivitiesMode()
 */
 protected int getMaxNumberActivitiesMode()
 {
 return MAX_NUMBER_ACTIVITIES_POPUP;
 }

 /*
 * (non-Javadoc)

26

Source Code for com.softwareag.cis.workplace.MFCustomEventListenerApplication Designer Workplace Framework

 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#getPopupMessageNumberOfWorkplaceActivitiesReached(int)
 */
 protected String getPopupMessageNumberOfWorkplaceActivitiesReached(int maxactivities)
 {
 // use default
 return null;
 }

 /*
 * (non-Javadoc)
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#getPopupTitelMaxNumberOfWorkplaceActivitiesReached(int)
 */
 protected String getPopupTitelMaxNumberOfWorkplaceActivitiesReached(int maxactivities)
 {
 // use default
 return null;
 }

 /*
 * (non-Javadoc)
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#getPopupMessagePopupMenuClosedByUser()
 */
 protected String getPopupMessagePopupMenuClosedByUser()
 {
 // use default
 return null;
 }

 /*
 * (non-Javadoc)
 *
 * @see com.softwareag.cis.workplace.MFEventListenerBase#getPopupTitelPopupMenuClosedByUser()
 */
 protected String getPopupTitelPopupMenuClosedByUser()
 {
 // use default
 return null;
 }

}

Session Management inside the Workplace
When the user selects functions in the MFWPFUNCTIONS frame, then pages are opened in the content
frame, or as pop-ups or in a named target frame.

The workplace offers a "multi document interface" - i.e. you can work in parallel in several activities and
you can switch between these activities. This structure is reflected in the server-side session structure. The
section Details on Session Management in the Special Development Topics explains this in a detailed way.
However, some information is given below.

The session management of Application Designer knows sessions (typically representing a browser
instance) and subsessions (reflecting a user activity with a defined life cycle). A session contains one or
more subsessions. Inside one subsession, the adapter object are kept which are required by a page or a
page sequence. Subsessions are isolated from one another.

The workplace proceeds in the following way:

Every activity that is started inside the content is represented by a subsession of its own. If you have
opened five Application Designer pages via the function tree inside the content area of the
workplace, then there are five subsessions on the server side. If the user navigates between the
activities (e.g. via the MFWPACTIVEFUNCTIONS frame), then from session point of view the user
navigated between subsessions.

The workplace itself also occupies one subsession. If Application Designer pages are opened in a
pop-up or in a named target, then these pages are living inside the subsession of the workplace.

27

Application Designer Workplace FrameworkSession Management inside the Workplace

When programming content pages, you do not notice the session management: every page that you design
and test in the Layout Painter behaves in the same way in the workplace. Due to the separation into
subsessions, you are not aware of "neighboring" subsessions.

Other Frames
You can add any further frames to the multi frame page of the workplace, as described in the section Multi
Frame Pages. The workplace is just a functional framework using this technology - but not limiting it
somehow.

Example: in the demo workplace, you see a NEWS frame below the MFWPFUNCTIONS frame that
holds a certain HTML document.

Via the node types MFWorkplaceTreeNodeCISTarget and
MFWorkplaceTreeNodeHTMLTarget , you can directly load pages into given frames, but you can
also use the frames from your normal applications.

Workplace API for Dynamic Manipulation
Internally, the workplace is started when the workplace frameset page is loaded. So far you got to know
the framework to set up the workplace in a dynamic way by implementing the bootstrap class referenced
in the MFWPFUNCTIONS frame. "In a dynamic way" means that there is a program to provide for the
required data - the program can build the function trees on its own, e.g. based on the user’s role.

But you can also dynamically manipulate the workplace. There are two typical usages:

You can exchange all workplace definitions dynamically. Maybe you offer the user a "reduced"
workplace just allowing the user to log on at the beginning. Afterwards, the "real" workplace for the
user is built up - containing all functions available for the user.

You can manipulate workplace definitions in an existing workplace. For example, you modify the
title of an activity that is shown in the MFWPACTIVEFUNCTIONS area. Or you want to add certain
nodes to an existing tree.

For this purpose, there is a Java API containing the workplace functions that you can use from your
adapter code.

Interface IMFWorkplace

The interface IMFWorkplace contains the methods you can call. The interface is accessible inside an
adapter through the session context in the following way:

IMFWorkplace wp = (IMFWorkplace)findSessionContext().
 lookup(IMFWorkplace.IWORKPLACE_LOOKUP,false);

Pay attention: the interface instance is only returned if the page is running inside the workplace. If a page
is running, for example, inside the Layout Painter or if a page is directly started via the "StartCISPage"
servlet, then "null" will returned.

The IMFWorkplace interface contains a set of methods for accessing and manipulating the workplace.
There is one method updateWorkplace(...) that is especially important: when changing the
workplace you have to call this method at the end to make the changes visible in the user interface. The

28

Other FramesApplication Designer Workplace Framework

method expects an adapter to be passed: this is the adapter that currently processes the request from the
browser.

Exchanging complete MFWorkplaceInfo

Via the method exchangeMFWorkplaceInfo(...) , you can exchange the complete settings of the
workplace. Example: you may have a logon screen in which the adapter method for handling the logon
looks as follows:

public void onLogon()
{
 // check user and password
 ...
 ...
 // build up workplace for user
 MFWorkplaceInfo wi = new MFWorkplaceInfo();
 ...
 ...
 ...
 // exchange workplace
 IMFWorkplace wp;
 wp = (IMFWorkplace)findSessionContext,lookup(IMFWorkplace.IWORKPLACE_LOOKUP,false);
 wp.exchangeMFWorkplaceInfo(wi);
 wp.updateWorkplace(this);
}

Opening Pages in the Workplace

There are the functions that you can use to open new pages in the content area:

showPageInWorkplace

addPageToWorkplace

showHTMLPageInWorkplace

addHTMLPageToWorkplace

You either open Application Designer pages (...Page...) or URLs (...HTML...). Pages are either
added as new activities (add...) or the workplace first finds out whether a page with the same name was
already started before opening a new one (show...).

There is the method with which you can switch to an already opened activity inside the workplace:

switchToSubsession

Fine Granular Updates

There is a method that you use in order to update the title that is shown for the page in the
MFWPACTIVEFUNCTIONS frame:

updatePageTitle

There is a method that passes back the currently active MFWorkplaceInfo object:

29

Application Designer Workplace FrameworkWorkplace API for Dynamic Manipulation

getMFWorkplaceInfo

Inside the MFWorkplaceInfo object, there are various methods for updating the object.

Example - Double Line Menu Workplace
With the available framework components

multi frame pages,

workplace frame controls, and

workplace API,

you can build your own powerful workplaces that do not look like the "typical" Application Designer
workplaces. Have a look at the following workplace:

In the workplace, a small set of functions is arranged in a double line menu. When selecting the functions
from the menu, the content is shown in the content frame.

The workplace’s multi frame page is defined in the following way:

30

Example - Double Line Menu WorkplaceApplication Designer Workplace Framework

<mfpage separation="rows" sizing="*" border="0">
 <mfframeset target="AAA" separation="rows" sizing="0,41,25,*" border="0">
 <mfwpfunctions bootstrapclass="com.softwareag.cis.test25.DLWPInit">
 </mfwpfunctions>
 <mfcisframe target="DLMENU" cisurl="/cisdemos/25_dlworkplacemenu.html">
 </mfcisframe>
 <mfhtmlframe target="CURRENTACTIVITIES" url="../HTMLBasedGUI/workplace/loading.html">
 </mfhtmlframe>
 <mfhtmlframe target="CONTENT" url="../HTMLBasedGUI/workplace/loading.html">
 </mfhtmlframe>
 </mfframeset>
</mfpage>

The workplace holds the three workplace frames you know from a previous section: the
MFWPFUNCTIONS frame, though it is sized to be invisible ("0"). The bootstrap class that is referenced
(com.softwareag.cis.test25.DLWPInit) is only a dummy and returns an empty MFWorkplaceInfo
object.

There is a frame, DLMENU, in which by using a normal Application Designer page
(/cisdemos/25_dlworkplacmenu.html), the double line menu is displayed. The implementation of this page
on the server side looks like:

package com.softwareag.cis.test25;

// This class is a generated one.

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;
import com.softwareag.cis.workplace.IWorkplace;

public class DLWPMenuAdapter
 extends Adapter
{
 // --
 // property access
 // --

 public class MyDLMenuSubItem extends DLMenuSubItem
 {
 String m_url;
 public MyDLMenuSubItem(DLMenuTopItem topItem,
 String text,
 String url)
 {
 super(topItem, text);
 m_url = url;
 }

 public void invoke()
 {
 showPage(m_url,getText());
 }
 }

 DLMenu m_dlmenu = new DLMenu();
 public DLMenu getDlmenu() { return m_dlmenu; }

 // --
 // public usage
 // --

31

Application Designer Workplace FrameworkExample - Double Line Menu Workplace

 public void init()
 {
 // fill menu
 DLMenuTopItem top;

 top = new DLMenuTopItem(m_dlmenu,"First Demo");
 new MyDLMenuSubItem(top,"Hello world","/cisdemos/DEMO_HelloWorld.html");

 top = new DLMenuTopItem(m_dlmenu,"Normal Controls");
 new MyDLMenuSubItem(top,"Control Overview","/cisdemos/DEMO_ControlOverview.html");
 new MyDLMenuSubItem(top,"Combo Box","/cisdemos/DEMO_ComboDyn.html");
 }

 public void showPage(String url,
 String text)
 {
 IWorkplace wp = (IWorkplace)findSessionContext().
 lookup(IWorkplace.IWORKPLACE_LOOKUP,false);
 if (wp != null)
 {
 wp.showPageInWorkplace(url,text);
 wp.updateWorkplace(this);
 }
 }

}

The class uses the workplace API for opening pages in order to make the right page visible in the content
area when the user clicks into the double line menu.

Usage Example - Calling the Application Designer
Workplace with Directly Opening a Page
Let us imagine the following scenario: you want to open an Application Designer workplace from
somewhere else (e.g. from a portal application), showing your workplace setup just as normal. In the
workplace, you want one (or more) application(s) to be already opened.

To do so, you have to:

define one starter page that you call from the "somewhere else" application,

pass the name of the HTML page to be opened inside the workplace as a parameter to this starter
page; the adapter of the starter page will write this parameter into the session context and will then
execute a "switch page" to the workplace,

define an empty page inside the workplace that looks at the session context and uses the workplace
API functions to start the application inside the workplace.

Step by step:

32

Usage Example - Calling the Application Designer Workplace with Directly Opening a PageApplication Designer Workplace Framework

The name of the starter page in this example is /cisworkplace/starter_withStartPage.html. Its XML code is
quite simple:

<page model="StarterWithStartPageAdapter">
 <pagebody>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

The adapter code is:

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class StarterWithStartPageAdapter
 extends Adapter
{
 String m_pageToBeStarted;
 public void setPageToBeStarted(String value)
 {
 m_pageToBeStarted = value;
 }

 public void reactOnDataTransferEnd()
 {
 super.reactOnDataTransferEnd();
 if (m_pageToBeStarted != null)
 {
 // prepare empty for starting
 findSessionContext().bind("test/pageToBeStarted",m_pageToBeStarted);
 // start workplace
 switchToPage("workplace_withStartPage.html");
 }
 else

33

Application Designer Workplace FrameworkUsage Example - Calling the Application Designer Workplace with Directly Opening a Page

 {
 outputMessage(MT_ERROR,"No page found to be started!");
 }
 }

}

As you can see from the code, the starter page’s adapter does nothing else than providing the property
pageToBeStarted and a method reactOnDataTransferEnd that is processed at the end of the
set phase. In the method, the pageToBeStarted property is written into the session context and a
switch to the workplace page workplace_withStartPage.html is done.

This starter page is opened in the following way:

http:// <host>: <port>/ <webapp>/servlet/StartCISPage?PAGEURL=/cisworkplace/starter_withStartPage.html&pageToBeStarted=/ <project>/ <page.html>

The starter page itself will only become visible if an error occurs (e.g. no parameter pageToBeStarted
is passed). Otherwise, it will always switch to the workplace page.

The workplace page is just a normal Application Designer workplace that you build using Application
Designer’s Layout Painter:

<mfpage separation="rows" sizing="40,20,*">
 <mfhtmlframe target="TITLEPAGE" url="../cisworkplace/workplace/header.html" resizable="false"
 withborder="false" scrolling="false" framestyle="border: 0px solid #000000" marginheight="0" marginwidth="0">
 </mfhtmlframe>
 <mfwpactivefunctions resizable="false" withborder="false" scrolling="false"
 framestyle="border: 0px solid #000000">
 </mfwpactivefunctions>
 <mfframeset target="ZZZ" separation="cols" sizing="265,*">
 <mfframeset target="LEFTPART" separation="rows" sizing="*,87">
 <mfwpfunctions bootstrapclass="WorkplaceWithStartPageProvider"
 serversidescrolling="false" framestyle="border: 1 solid #808080;">
 </mfwpfunctions>
 <mfhtmlframe target="NEWS" url="../cisworkplace/workplace/welcome.html" resizable="true"
 withborder="false" scrolling="true" framestyle="border: 1px solid #808080">
 </mfhtmlframe>
 </mfframeset>
 <mfwpcontent resizable="true" withborder="true" scrolling="false" framestyle="border: 1 solid #808080;">
 </mfwpcontent>
 </mfframeset>
</mfpage>

It somewhere contains the MFWPFUNCTIONS frame that internally points to a class, called "bootstrap"
class. This is the class that (as runtime object) configured the workplace with its topics and function trees:

public class WorkplaceWithStartPageProvider
 implements IMFWorkplaceBootstrapInfoProvider2
{
 public MFWorkplaceInfo getWorkplaceInfo()
 {
 // create workplace info object, define the page that is shown
 // in content area if no other content page is shown
 MFWorkplaceInfo result = new MFWorkplaceInfo("/cisworkplace/empty_withStartPage.html");

 MFWorkplaceTopic topic;
 TREECollection tree;
 MFWorkplaceTreeNodeFolder folder;
 MFWorkplaceTreeNodeCISPage page;

 // create first topic
 topic = new MFWorkplaceTopic("Topic 1",result);
 tree = topic.getTree();
 folder = new MFWorkplaceTreeNodeFolder("Simple Demos");
 tree.addTopNode(folder,false);
 page = new MFWorkplaceTreeNodeCISPage("Hello World","/cisdemos/DEMO_HelloWorld.html",true,true);

34

Usage Example - Calling the Application Designer Workplace with Directly Opening a PageApplication Designer Workplace Framework

 tree.addSubNode(page,folder,true,false);
 ...
 ...
 ...

This is a "just normal" bootstrap class implementation, opening the page
/cisworkplace/empty_withStartPage.html as an empty page. Remember: the empty page is the one that is
shown inside the workplace content when no other application is opened. It is shown as the default content
page inside the workplace with no active function.

Now let us have a look at the empty page. The XML code is again very simple (typically the empty page
is some kind of background page that, for example, contains some nice images).

<page model="EmptyWithStarterAdapter">
 <pagebody>
 </pagebody>
</page>

The important thing is what happens inside the adapter of the empty page:

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;
import com.softwareag.cis.workplace.IWorkplace;

public class EmptyWithStarterAdapter
 extends Adapter
{
 boolean m_firstCall = true;

 public void reactOnDataTransferEnd()
 {
 super.reactOnDataTransferEnd();
 // call workplace
 if (m_firstCall == true)
 {
 String pageToBeStarted =
 (String)findSessionContext().lookup("test/pageToBeStarted",false);
 if (pageToBeStarted != null)
 {
 IWorkplace wp =
 (IWorkplace)findSessionContext().lookup(IWorkplace.IWORKPLACE_LOOKUP,false);
 if (wp != null)
 {
 wp.addPageToWorkplace(pageToBeStarted,"Page to be started");
 wp.updateWorkplace(this);
 }
 }
 m_firstCall = false;
 }
 }
}

The first time the adapter is called (i.e. the first time the page is shown), it checks if someone left an
information inside the session context to start a certain page - exactly the information that is written into
the context in the starter page. If there is some information, the corresponding page is opened as the
content page of the workplace.

35

Application Designer Workplace FrameworkUsage Example - Calling the Application Designer Workplace with Directly Opening a Page

	Application Designer Workplace Framework
	Framework Overview
	"Functions" Frame: MFWPFUNCTIONS
	"Active Functions" Frame: MFWPACTIVEFUNCTIONS
	"Content" Frame: MFWPCONTENT
	Filling the MFWPFUNCTIONS Frame
	Tree Node Types
	Filling the MFWPFUNCTIONS Frame without any Java Coding: MFWPBOOTSTRAPINFO
	MFWPBOOTSTRAPINFO Properties
	MFWPTOPIC Properties
	MFWPFOLDER Properties
	MFWPOPENCISPAGE Properties
	MFWPOPENCISPOPUP Properties
	MFWPOPENCISTARGET Properties
	MFWPCALLBACK Properties
	MFWPOPENHTMLPAGE Properties
	MFWPOPENHTMLPOPUP Properties
	MFWPOPENHTMLTARGET Properties

	Customizing the MFWPFUNCTIONS Behavior
	Customizing Pop-up Messages
	Customizing Context Menus
	Implementing Custom Event Reactions (Advanced)
	Source Code for com.softwareag.cis.workplace.MFCustomEventListener

	Session Management inside the Workplace
	Other Frames
	Workplace API for Dynamic Manipulation
	
	Interface IMFWorkplace
	Exchanging complete MFWorkplaceInfo
	Opening Pages in the Workplace
	Fine Granular Updates

	Example - Double Line Menu Workplace
	Usage Example - Calling the Application Designer Workplace with Directly Opening a Page

