
Building Own Workplaces as a Frameset
Definition
A set of functions is available which simplify the usage of Application Designer HTML pages inside a
given HTML frameset definition. The functions are not only usable in the scope of workplace/portal
management, but can also be used apart from this.

This chapter covers the following topics:

Basics

Defining the Frameset

Simple Way of Opening Pages in Frames

A More Complex Way of Opening Pages in Frames

When to Use the Complex Way

Opening Normal HTML Pages inside Frames

Frame Communication

Multiple Frame Operations

When Building your Own Workplaces

Basics
The basic functions cover the following aspects:

You can define an HTML page containing any kind of frameset you want. In this page, you design
the frames, their sizes, their scroll behavior, their behavior when resizing the screen, etc. For each
frame which which you want to interact, you define an identifier name.

You open Application Designer pages inside the frames. There are two possibilities:

1. Open these pages with a URL as described in the previous section.

2. Open these pages with adapter methods (server-side processing).

This section will focus on the second possibility since the first is just a certain usage of what is described
in the previous section. This offers you an explicit control about what happens inside the frames: e.g. a
page within frame "A" should be replaced by another page. Before proceeding, the user should be asked
whether to store unsaved data (or not).

It is possible to communicate with frames on the client side. This means, you can build up interaction (e.g.
you want to update another frame’s content) without any flickering in the target frame.

1

Building Own Workplaces as a Frameset DefinitionBuilding Own Workplaces as a Frameset Definition

Defining the Frameset
In the following screen, a page is shown which is divided into three frames:

The corresponding frameset definition of the page is:

<html>

<head>
<title>New Page 2</title>
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
</head>

 <frameset cols="200,*">
 <frameset rows="*,*">
 <frame name="lefttop" src="/cis/servlet/StartCISPage?PAGEURL=/cisdemos/frameleft.html">
 <frame name="leftbottom" src="blank.html">
 </frameset>
 <frame name="right" src="blank.html">
 </frameset>

</html>

The frameset contains three frames with the IDs lefttop , leftbottom and right . The lefttop
frame opens the Application Designer page /cisdemos/frameleft.html. This page contains buttons for some
functions and acts like a "menu page".

Simple Way of Opening Pages in Frames
When choosing the Customer Orders button, the corresponding Application Designer page is opened in
the leftbottom frame:

2

Defining the FramesetBuilding Own Workplaces as a Frameset Definition

The page shows a list of customer orders. It is a normal Application Designer page. How can it be opened
by choosing the Customer Orders button?

The /cisdemos/frameleft.html page (acting as a "menu page") is hooked on to a Java adapter class which
looks as follows:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class FrameLeftAdapter
 extends Adapter
{
 /** */
 public void onArticleMaster()
 {
 // TODO Auto-generated method stub
 }

 /** */
 public void onCustomerMaster()
 {
 // TODO Auto-generated method stub
 }

 /** */
 public void onCustomerOrders()
 {
 this.openCISPageInTarget("OpenCustomerOrders.html", "leftbottom");
 }
}

By choosing the Customer Orders button, the method onCustomerOrders is called. This method
performs a method openCISPageInTarget inherited from class Adapter . The first parameter of the
method is the page that is to be opened; the second parameter defines the ID of the frame in which the
page is to be opened.

3

Building Own Workplaces as a Frameset DefinitionSimple Way of Opening Pages in Frames

The page OpenCustomerOrders.html, which is opened when choosing the Customer Orders button, is
running inside the same subsession as the page from which it was called. If you need to access the page
adapter before opening the page inside the "leftbottom" frame, use the findAdapter method inside
your adapter.

A More Complex Way of Opening Pages in Frames
When selecting an order in the leftbottom area of the previous example, a customer order page is
displayed in the right frame:

The data from the order you selected is transferred into the corresponding fields of the customer order
page. Have a closer look at the details.

This is the source of the adapter for listing customer orders:

import java.util.Iterator;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IInteractionSessionMgr;
import com.softwareag.cis.server.InteractionSessionMgrFactory;
import com.softwareag.cis.server.util.SelectableLine;
import com.softwareag.cis.server.util.TEXTGRIDCollection;
import com.softwareag.cis.util.CDate;

public class OpenCustomerOrdersAdapter
 extends Adapter
{
 // --
 // inner classes
 // --

 public class Order
 extends SelectableLine
 {
 public Order(String number, String date, String customer)
 {
 m_customer = customer;
 m_date = new CDate(date);

4

A More Complex Way of Opening Pages in FramesBuilding Own Workplaces as a Frameset Definition

 m_number = number;
 }

 // property >orders[*].customer<
 String m_customer;
 public String getCustomer() { return m_customer; }
 public void setCustomer(String value) { m_customer = value; }

 // property >orders[*].date<
 CDate m_date;
 public CDate getDate() { return m_date; }
 public void setDate(CDate value) { m_date = value; }

 // property >orders[*].number<
 String m_number;
 public String getNumber() { return m_number; }
 public void setNumber(String value) { m_number = value; }
 }

 // --
 // property access
 // --

 // property >orders<
 TEXTGRIDCollection m_orders = new TEXTGRIDCollection();
 public TEXTGRIDCollection getOrders() { return m_orders; }

 // --
 // public adapter methods
 // --

 public void onOrderSelect()
 {
 // find the selected item
 Order selectedOrder = null;
 Iterator iter = m_orders.iterator();
 while (iter.hasNext())
 {
 selectedOrder = (Order)iter.next();
 if (selectedOrder.getSelected() == true)
 break;
 else
 selectedOrder = null;
 }
 if (selectedOrder == null)
 return;
 // session management: "refresh" subsession
 String sessionId = this.m_interactionProcess.getSessionId();
 IInteractionSessionMgr iism = InteractionSessionMgrFactory.getInteractionSessionMgr();
 iism.removeSubsession(sessionId,"subsession_right");
 iism.createNewSubsession(sessionId,"subsession_right");
 // prefetch and manipulate adapter inside the refreshed subsession
 CustomerOrderDetailAdapter coda = (CustomerOrderDetailAdapter)iism.findAdapterInSubsession
 (sessionId, // sessionID
 "subsession_right", // subsessionId
 CustomerOrderDetailAdapter.class.getName(), // class
 "", // pageId, typically ""
 findPageApplication()); // application project
 coda.setNumber(selectedOrder.getNumber());
 coda.setName(selectedOrder.getCustomer());
 // navigate to page
 openCISPageInTarget("CustomerOrderDetail.html","subsession_right","right");
 }

 // --
 // standard adapter methods
 // --

 // property >messageType< implemented in Adapter
 // property >messageShortText< implemented in Adapter

5

Building Own Workplaces as a Frameset DefinitionA More Complex Way of Opening Pages in Frames

 // property >messageLongText< implemented in Adapter

 /** initialisation - called when creating this instance*/
 public void init()
 {
 m_orders.add(new Order("4711","20020706","Software AG"));
 m_orders.add(new Order("4734","20020702","Banana Import Export Ltd."));
 m_orders.add(new Order("4798","20020604","Johnsons’s Bread"));
 }
}

With method onOrderSelect , the selected line is determined first.

In the next steps, frame communication is prepared and finally done. The difference to the previous
"simple" scenario is that the page which is opened runs in a different subsession inside the session
management of Application Designer.

Remember that each browser instance internally requests one session, and that each session is divided into
various subsessions. Adapters are running inside subsessions. The subsession is responsible for keeping
and releasing resources. It corresponds to one interaction process which has a defined life cycle - e.g. the
data input of a customer order. For more information, see the section Session Management. Each
subsession has an identifier - in this example, the name of the subsession is subsession_right . You
can also create a unique ID with the class com.softwareag.cis.util.UniqueIdMgmt .

Our example program first removes the subsession subsession_right . Everything which is currently
managed inside the subsession will be released. Since there is no subsession when being called the first
time, no error will occur.

After releasing this subsession, a new subsession is immediately created. With the interaction session
manager, you can access a method which passes back an adapter instance inside a given subsession. Like
the method findAdapter of class Adapter , this method returns an adapter object which is managed
inside the same subsession in which the adapter is running. With the interaction session manager, you can
also access adapters inside different subsessions.

The returned adapter instance gets the selected data. Finally, the frame communication takes place: pay
attention that the ID of the subsession has to be passed inside the openCISPageInTarget method.

When to Use the Complex Way
The complex way should be your "standard thinking" in this scenario. When dealing with Application
Designer pages inside different frames, you have to take care about how you manage your sessions at the
server side.

The content which runs inside the frames (e.g. the Customer Order screen) is not aware of these session
management dependencies. But the designer of the workplace has to take care of the interaction
possibilities inside the workplace.

Opening Normal HTML Pages inside Frames
In addition to the methods openCISPageInTarget , there is an equivalent method
openPageInTarget which you inherit from the Adapter class. This page opens a normal HTML
page inside one frame.

6

When to Use the Complex WayBuilding Own Workplaces as a Frameset Definition

Frame Communication
When working with frames, it is possible to open a client-side communication channel between frames: by
the client, you call an adapter method of an Application Designer page which is opened in a different
frame. This is done by the method invokeMethodInTarget(methodName,targetName) which
you inherit from the com.softwareag.cis.server.Adapter class.

This sounds strange at first: in the adapter processing of frame LEFT, you call an adapter method of frame
RIGHT and the call is executed by the client - what is the reason for this? The advantage of calling the
method by the client is that the call is initiated by the page which runs inside the target frame. This means
that the target frame sends the request for method execution and updates its content as a reaction of the
request’s response. In other words: you can update pages in other frames without redrawing the page, i.e.
without flickering.

This is a very powerful way of allowing communication between frames - but there are some restrictions
which you have to keep in mind:

The frame which initiates the interaction as well as the target frame must be in the same frameset
page - in other words: they must share the same "document parent".

The page shown in the target frame must be received by the same server and port as the page which
initiates the communication. Otherwise, you will receive a JavaScript security exception - it is (by
default) not allowed to establish a client communication between pages coming from different hosts.

7

Building Own Workplaces as a Frameset DefinitionFrame Communication

The frame communication framework acts upon error situations in a quite tolerant way:

If you invoke a method inside a frame target and the frame does not exist, nothing will be done on
the client side.

If you invoke a method inside a frame target and there is no valid Application Designer page inside
the frame, nothing will be done.

If you invoke a method inside a frame target and the corresponding "target adapter" does not provide
the requested method, the content of the frame target’s page will be synchronized with its adapter.
This is similar to defining a BUTTON control and specifying a method which does not exist inside
the adapter.

Tip:
Only use frame communication if you want to update the content of another frame page. Do not use this
method for "normal" interaction between adapters, without any changes on the page.

Multiple Frame Operations
You can call the methods openCISPageInTarget , openPageInTarget and
invokeMethodInTarget multiple times inside one request, for example, if there are multiple frames
you want to manipulate at the same time.

When Building your Own Workplaces
As you learned in this section, Application Designer provides powerful mechanisms to build flexible
workplace/portal scenarios. Be aware that workplace management means more than bringing up some
pages into different frames. Workplace management also means, for example, that you take care of
opening and closing the session state (in Application Designer: subsession state) and that you have to
provide global data (like the currently logged in user) shared by all adapters, etc.

8

Multiple Frame OperationsBuilding Own Workplaces as a Frameset Definition

	Building Own Workplaces as a Frameset Definition
	Basics
	Defining the Frameset
	Simple Way of Opening Pages in Frames
	A More Complex Way of Opening Pages in Frames
	When to Use the Complex Way
	Opening Normal HTML Pages inside Frames
	Frame Communication
	Multiple Frame Operations
	When Building your Own Workplaces

