
TREENODE3 in Control Grid
(ROWTABLEAREA2)
This chapter covers the following topics:

Example

Editing the Text of the Tree Node

Embedding Controls into TREENODE3

Loading Large Trees - Step by Step

Drag-and-Drop Inside a TREENODE3 Tree

Dynamic Setting of Tree Icons

Properties

Example
The following image shows an example for a tree management:

graphics/image144.png

The grid contains three columns: the first column shows the tree node, the other two columns display
some text information.

The XML layout definition is:

<rowarea name="Tree">
 <rowtablearea2 griddataprop="treeGridInfo" rowcount="8" width="500" withborder="false">
 <tr>
 <label name="Tree Node" width="200" asheadline="true">
 </label>
 <label name="Toggle Count" width="100" asheadline="true"
 labelstyle="text-align:right">
 </label>
 <label name="Select Count" width="100" asheadline="true"
 labelstyle="text-align:right">
 </label>
 </tr>
 <repeat>
 <tr>
 <treenode3 width="200" withplusminus="true"
 imageopened="images/fileopened.gif"
 imageclosed="images/fileclosed.gif"
 imageendnode="images/fileendnode.gif">
 </treenode3>
 <textout valueprop="toggleCount" width="100" align="right">
 </textout>
 <textout valueprop="selectCount" width="100" align="right">
 </textout>

1

TREENODE3 in Control Grid (ROWTABLEAREA2)TREENODE3 in Control Grid (ROWTABLEAREA2)

 </tr>
 </repeat>
 </rowtablearea2>
</rowarea>

You see that the TREENODE3 control is placed inside the control grid just as a normal control. There are
certain properties available which influence the rendering: in the example, the name of the tree node
images is statically overwritten. The flag withplusminus is set to true - consequently, small "+"/"-"
icons are placed in front of the node.

The corresponding adapter code is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.NODEInfo;
import com.softwareag.cis.server.util.TREECollection;

public class tree_01Adapter
 extends Adapter
{
 // class >TreeGridInfoItem<
 public class Item extends NODEInfo
 {
 int m_toggleCount = 0;
 int m_selectCount = 0;

 public Item(String text)
 {
 super(text);
 }
 public void reactOnToggle() { m_toggleCount++; }
 public void reactOnSelect() { m_selectCount++; }
 public int getToggleCount() { return m_toggleCount; }
 public int getSelectCount() { return m_selectCount; }
 }

 // property >treeGridInfo<
 TREECollection m_treeGridInfo = new TREECollection();
 public TREECollection getTreeGridInfo() { return m_treeGridInfo; }

 /** initialisation - called when creating this instance*/
 public void init()
 {
 m_treeGridInfo = new TREECollection();
 Item item = new Item("Top");
 m_treeGridInfo.addTopNode(item,false);
 m_treeGridInfo.addSubNode(new Item("Sub 1"),item,true,false);
 Item subItem = new Item("Sub 2");
 m_treeGridInfo.addSubNode(subItem,item,false,false);
 Item subItem21 = new Item("Sub 2-1");
 m_treeGridInfo.addSubNode(subItem21,subItem,false,false);
 m_treeGridInfo.addSubNode(new Item("Sub 2-1-1"),subItem21,true,false);
 m_treeGridInfo.addSubNode(new Item("Sub 2-1-2"),subItem21,true,false);
 Item subItem22 = new Item("Sub 2-2");
 m_treeGridInfo.addSubNode(subItem22,subItem,false,false);
 m_treeGridInfo.addSubNode(new Item("Sub 2-2-1"),subItem22,true,false);
 m_treeGridInfo.addSubNode(new Item("Sub 3"),item,true,false);

2

ExampleTREENODE3 in Control Grid (ROWTABLEAREA2)

 // open top node
 m_treeGridInfo.toggleNode(item);
 }
}

The grid collection is an instance of the class TREECollection from the package
com.softwareag.cis.server.util . (Remember that the class GRIDCollection is used for
normal grids.) The TREECollection has all functions that are required for:

server-side scrolling,

selecting tree nodes,

opening and closing tree nodes.

The items of the tree collection are derived from a predefined class NODEInfo from the package
com.softwareag.cis.server.util . By overwriting the methods reactOnToggle() and
reactOnSelect() , you can react on user interaction. Each tree node is represented by one single
instance of this item class.

The tree is built inside the init() method of the adapter. For filling the tree, the following methods of
the TREECollection class are used:

addTopNode()

addSubNode()

See the JavaDoc documentation for more information on these methods and other methods for
manipulating the tree.

The tree can be filled "all at once" - as shown in this example - or loaded step by step on the server side.
For example, the tree can be extended in the reactOnToggle() method when a node is being opened.

Editing the Text of the Tree Node
You may already have seen the property withtextinput which you may set to "true". If doing so, then
the user can double-click on a tree node and edit the node’s text:

graphics/image145.png

By pressing TAB or ENTER, the input is taken over into the tree node and is by default transferred to the
adapter with the next request (e.g. when a button is chosen on the screen). Users can also use the ESC key
- in this case, the tree node is set back to its former value. The server-side adapter can pick the text by the
normal getText() method which is available in the tree node and is implemented on NODEInfo level.

If you want your server program to be explicitly notified by the text change, then override the
setText() method inside your tree node implementation:

...

...

...
public class TreeItem extends NODEInfo
{
 ...
 ...

3

TREENODE3 in Control Grid (ROWTABLEAREA2)Editing the Text of the Tree Node

 ...
 public void setText(String value)
 {
 super.setText(value);
 // do your own implementation here
 outputMessage(MT_SUCCESS,"Node text changed: " + value);
 }

 ...
 ...
}
...
...
...

You can also explicitly define the point of time when the text change in the user interface is transferred to
the server. As with normal input controls (FIELD, CHECKBOX, etc.), the text change is by default
registered in the browser, but does not trigger an immediate transfer to the server-side adapter. By using
the property flush , you can control this: setting this property to "server" will immediately synchronize
the client with the adapter; setting it to "screen" will immediately synchronize inside the browser.

There is still one issue: inside the tree node item, there is the method
setDisableTextInput(boolean) . Calling this method will switch off the editing behavior for this
tree node. Consequently, you can explicitly define tree nodes that allow to edit text and others that do not
allow to do so. In case the user double-clicks onto a node that is explicitly set to be not editable, the text
will be displayed in disabled format so that the user receives visual feedback that this operation is not
supported for this node.

Embedding Controls into TREENODE3
It is possible to add further controls into the tree node. The typical cases are:

a check box,

an icon,

a toggle control.

The toggle control offers the possibility to manipulate a boolean value - it is similar to a check box, but
allows to explicitly define a "true-image" and a "false-image". When using the toggle control inside the
tree node, there is one useful feature: the toggle control allows to be defined in such a way that it show
three different images:

"true-image"

"false-image"

"partial-image"

In trees, you typically have selections in which you want to select by toggle control one item and all of its
subitems. The same goes for deselecting. But you also want to be able to express that inside one node,
there are some selected subitems, but not all subitems are selected. The toggle control exactly matches
these requirements. For more information, see the description of the TOGGLE control.

4

Embedding Controls into TREENODE3TREENODE3 in Control Grid (ROWTABLEAREA2)

Loading Large Trees - Step by Step
In the example at the beginning of this TREENODE3 section, the whole TREECollection inside the
adapter was filled in one step. The following example shows how to dynamically load elements into a tree
that gets larger and larger due to the user’s navigation in the tree.

graphics/image146.png

Every time the user opens a folder, the folders "Sub 0" to "Sub 4" and the end nodes "Node 0" to "Node 4"
are input into the tree hierarchy:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.NODEInfo;
import com.softwareag.cis.server.util.TREECollection;

public class tree_03Adapter
 extends Adapter
{
 // class >TreeItem<
 public class TreeItem extends NODEInfo
 {
 boolean m_subNodesAvailable = false;
 public TreeItem(String text)
 {
 super(text);
 }
 public void reactOnSelect() {}
 public void reactOnToggle()
 {
 if (m_subNodesAvailable == false)
 {
 m_subNodesAvailable = true;
 addSubNodesFor(this);
 }
 }
 // property >tree<
 TREECollection m_tree = new TREECollection();
 public TREECollection getTree() { return m_tree; }

 public void init()
 {
 TreeItem top;
 for (int i=0; i<10; i++)
 {
 top = new TreeItem("Top " + i);
 m_tree.addTopNode(top,false);
 }
 }

 private void addSubNodesFor(TreeItem top)
 {
 TreeItem sub;
 for (int i=0; i<5; i++)
 {
 sub = new TreeItem("Sub " + i);
 sub.setDisableTextInput(true);
 m_tree.addSubNode(sub,top,false,false);
 sub.setOpened(TREECollection.ST_CLOSED);

5

TREENODE3 in Control Grid (ROWTABLEAREA2)Loading Large Trees - Step by Step

 }
 for (int i=0; i<5; i++)
 {
 sub = new TreeItem("Node " + i);
 m_tree.addSubNode(sub,top,true,false);
 }
 }
}

Inside the tree node class (TreeItem), a boolean member m_subNodesAvailable indicates whether
subnodes for this instance have already been loaded. In the method reactOnToggle() , new nodes are
added by calling the addSubNodesFor(...) method - depending on the m_subNodesAvailable
value.

If you are "very eager" or if you have for some good reason to be very strict in memory-house-keeping,
then you could also remove all subnodes of a node when the node is closed.

Drag-and-Drop Inside a TREENODE3 Tree
Implementing drag-and-drop inside your tree is easy - you just have to do two things:

Set the enabledrag property to "true" inside the TREENODE3 definitiion.

Add a method reactOnContextMenuRequestDragTarget() into your node class and
implement your reaction.

The tree node inside your page will automatically offer the following behavior: when selecting one or
more nodes, you can click on the node’s text, drag the nodes, and drop them onto another node’s text.

Sorry for the name reactOnContextMenuRequestDragTarget() - it assumes that you ought to
open a context menu, but you can do any other reaction as well. Of course, it is a nice feature to offer a
context menu when the user drops items onto another item - showing the user what functions can be
executed with the dropped items.

The following simple demo shows an example in which the node on which other nodes are dropped
outputs the text of the dropped nodes:

...

...

...
// class >TreeItem< representing node object
public class TreeItem extends NODEInfo
{
 ...
 ...
 ...
 public void reactOnContextMenuRequestDragTarget()
 {
 // iterate through selected tree nodes and concatenate text
 NODEInfo[] selItems = m_tree.findSelectedItems();
 StringBuffer sb = new StringBuffer();
 for (int i=0; i<selItems.length; i++)
 {
 if (i != 0) sb.append(", ");
 sb.append(selItems[i].getText());
 }
 outputMessage(MT_SUCCESS,"Drop result: " + sb.toString());

6

Drag-and-Drop Inside a TREENODE3 TreeTREENODE3 in Control Grid (ROWTABLEAREA2)

 }
 ...
 ...
 ...
}
...
...
...

In the method reactOnContextMenuRequestDragTarget , the selected items are identified by
using the tree collection’s method findSelectedItems() .

Note:
With the TREENODE3 property singleselect , you can change the tree from its default "single select
mode" into "multi select mode".

Dynamic Setting of Tree Icons
There are three ways to define icons for a tree node:

No definition at all. The nodes will be rendered with the default icons.

Fixed definition of icons. Using the TREENODE3 properties imageopened , imageclosed and
imageendnode , you can define the icons to be used.

Dynamic definition of icons. Each node can be assigned an own icon. The icon is defined by a
property of the server-side node object. The name of the property is defined inside the TREENODE3
property imageprop .

Have a look at the following example:

graphics/image147.png

Each of the subnodes has its own icon, depending on its category. (An individual icon can also be used for
folder nodes.)

The XML layout definition is:

<page model="com.softwareag.cis.demoapps.TreeDynamicIconsAdapter">
 <titlebar name="Tree with dynamic Icons">
 </titlebar>
 <pagebody>
 <rowarea name="Tree Demo">
 <rowtablearea2 griddataprop="lines" rowcount="10" width="100%" withborder="false">
 <repeat>
 <tr>
 <treenode3 width="100%" imageprop="imageName">
 </treenode3>
 </tr>
 </repeat>
 </rowtablearea2>
 </rowarea>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

7

TREENODE3 in Control Grid (ROWTABLEAREA2)Dynamic Setting of Tree Icons

In the layout definition, you see that the TREENODE3 property imageprop points to the property
imageName.

The adapter code is:

package com.softwareag.cis.demoapps;

// This class is a generated one.

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class TreeDynamicIconsAdapter
 extends Adapter
{
 public class LinesItem extends NODEInfo
 {
 public LinesItem(String text, String imageName)
 {
 super(text);
 m_imageName = imageName;
 }

 String m_imageName;
 public String getImageName() { return m_imageName; }
 public void setImageName(String value) { m_imageName = value; }

 public void reactOnSelect()
 {
 }

 public void reactOnToggle()
 {
 }
 }

 // property >lines<
 TREECollection m_lines = new TREECollection();
 public TREECollection getLines() { return m_lines; }

 public void init()
 {
 LinesItem top = new LinesItem("Printers",null);
 m_lines.addTopNode(top,false);
 m_lines.addSubNode(new LinesItem("LPT1 - Printer","images/print.gif"),top,true,true);
 m_lines.addSubNode(new LinesItem("COM - Printer","images/print.gif"),top,true,true);
 top = new LinesItem("Disks",null);
 m_lines.addTopNode(top,false);
 m_lines.addSubNode(new LinesItem("A: drive","images/save.gif"),top,true,true);
 m_lines.addSubNode(new LinesItem("B: drive","images/save.gif"),top,true,true);
 top = new LinesItem("Pencils",null);
 m_lines.addTopNode(top,false);
 m_lines.addSubNode(new LinesItem("My pencil","images/editdisabled.gif"),top,true,true);
 }

}

The imageName property is implemented on tree node level (i.e. as property inside the inner class
LinesItem). In the init method, the property is defined to be "null" for the top nodes and to hold a
value for the leaf nodes.

8

Dynamic Setting of Tree IconsTREENODE3 in Control Grid (ROWTABLEAREA2)

Again: you could also define an individual icon for the top nodes - in the same way you do it for the leaf
nodes. The example above shows that the different ways of assigning icons build on one another: if the
dynamic icon is not passed (as done with the top nodes), then these icons are selected that are defined with
imageopened /imageclosed /imageendnode properties. If these are not defined (as in the
example), the default icon is used.

Properties

Basic

width Width of the control.

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring up
correct results if the parent element of the control properly
defines a width this control can reference. If you specify
this control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

Optional 1

2

3

int-value

comment Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor’s tree view.

Optional

Appearance

withplusminus If set to "true" then +/- Icons will be rendered in front of
the tree items.

Optional true

false

withlines If set to "true" then the tree elements are connected with
one another by gray lines.

Please pay attention: if switching this property to "true"
then you have to create the instance of your server side
TREECollection object with a special constructor:

Example:

TREECollection m_tree = new TREECollection(true)

Optional true

false

withtooltip If set to "true" then the text of an item is also available as
tool tip. Use this option in case you expect that the
horizontal space of the item will not be sufficient to
display the whole text of the item.

Optional true

false

9

TREENODE3 in Control Grid (ROWTABLEAREA2)Properties

withtextinput If set to "true" then the tree node can also be edited.
Editing is started when the user double clicks the node.

The text that is input is passed into the property "text"
which is implemented in the default NODEInfo
implementation.

Optional true

false

imageopened Image of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by
this property or also may be defined dynamically - see the
corresponding properties defined with this control.

Optional

imageclosed Image of a tree node that has subnodes and that is currently
not showing its nodes. The image either is defined
statically by this property or also may be defined
dynamically - see the corresponding properties defined
with this control.

Optional

imageendnode Image of a tree node that is an end node (leaf node). The
image either is defined statically by this property or also
may be defined dynamically - see the corresponding
properties defined with this control.

Optional

singleselect If set to "true" then only one item can be selected. If set to
"false" then multiple icons can be selected.

Optional true

false

directselectevent Event that represents a tree node selection. A tree node
selection is done when the user clicks/doubleclicks on the
tree node text. In this case the select() method is called in
the corresponding node object on server side.

Optional ondblclick

onclick

directselectelementIf set to "textonly" only user clicks on the tree node text
will select the node. If set to "allspace" also user clicks
outside the area occupied by the node text will select the
node.

Optional textonly

allspace

selectionstylevariantSome controls offer the possibility to define style variants.
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined
"normal" styles are chosen, if defined (e.g. "VAR1") then
other style definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Optional VAR1

VAR2

10

PropertiesTREENODE3 in Control Grid (ROWTABLEAREA2)

textstylevariant Some controls offer the possibility to define style variants.
By this style variant you can address different styles inside
your style sheet definition file (.css). If not defined
"normal" styles are chosen, if defined (e.g. "VAR1") then
other style definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Optional VAR1

VAR2

pixelshift Number of pixels that each hierarchy level is indented. If
not defined then a standard is used.

Optional 1

2

3

int-value

pixelshiftendnode Number of pixels that end nodes are indented. If not
defined then a standard is used.

Optional 1

2

3

int-value

colspan Column spanning of control.

If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to
span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

Optional 1

2

3

4

5

50

int-value

rowspan Row spanning of control.

If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By
default it is "1" - but you may want to define the control
two span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

Optional 1

2

3

4

5

50

int-value

11

TREENODE3 in Control Grid (ROWTABLEAREA2)Properties

pixelheight Height of the control in pixels. Optional 1

2

3

int-value

tabindex Index that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

Optional -1

0

1

2

5

10

32767

Binding

imageprop Name of property of the item objects that provides for a
image for the tree node.

Each node may provide for its own image, e.g. dependent
on the type of node.

If the adapter property passes back "null" then the image is
taken from the static definitions that you may parallely do
by using the properties IMAGEOPENED,
IMAGECLOSED and IMAGEENDNODE.

Optional

focusedprop Name of property of the item objects - representing the
individual rows of the collection - that indicates if the row
receives the keyboard focus.

Must be of type "boolean"/ "Boolean".

If more than one lines are returning "true" the first of them
is receiving the focus.

Optional

12

PropertiesTREENODE3 in Control Grid (ROWTABLEAREA2)

flush Flush behaviour when using the possibility of having
editable tree nodes. If double clicking on the tree node then
you can edit its content. The FLUSH property defines how
the browser behaves when leaving the tree node’s input
field:

If not defined ("") then nothing happens - the changed tree
node text is communicated to the server side adapter object
with the next roundtrip.

If defined as "server" then immediately when leaving the
field a roundtrip to the server is initiated - in case you want
your adapter logic to directly react on the item change.

If defined as "screen" then the changed tree node text is
populated inside the page inside the front end.

Optional screen

server

flushmethod When the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit method
to be called when the user updates the content of the
control. By doing so you can distinguish on the server side
from which control the flush of data was triggered.

Optional

tooltipprop Name of property of the item objects that provides for a
text that is shown if the user moves the mouse over the tree
item (tooltip).

Optional

validdraginfosprop Name of a property that contains a ’comma separated list’
of valid drag informations.

Optional

Drag and Drop

enabledrag If set to true then drag and drop is enabled within the tree.Optional true

false

13

TREENODE3 in Control Grid (ROWTABLEAREA2)Properties

	TREENODE3 in Control Grid (ROWTABLEAREA2)
	Example
	Editing the Text of the Tree Node
	Embedding Controls into TREENODE3
	Loading Large Trees - Step by Step
	Drag-and-Drop Inside a TREENODE3 Tree
	Dynamic Setting of Tree Icons
	Properties

