
TEXTOUT
The TEXTOUT control is used to display plain text. The text is not statically defined (as a label) but is
derived from a property of the adapter class.

The following topics are covered below:

Example

Example: Dynamic Labels

Example: Dynamic Labels with Tooltips

Properties

Example

The XML layout definition is:

<rowarea name="Textouts">
 <itr>
 <textout valueprop="factor1" width="100">
 </textout>
 <textout valueprop="factor1" width="100" textsize="1">
 </textout>
 <textout valueprop="factor1" width="100" textsize="3">
 </textout>
 <textout valueprop="factor1" width="100" textsize="6">
 </textout>
 </itr>
</rowarea>

Example: Dynamic Labels
By using the styleclass property of the TEXTOUT control, you can define text output that looks like
a normal LABEL control. However, instead of a fixed text, it has a text that is dynamically derived from
the adapter logic:

The layout definitions is:

1

TEXTOUTTEXTOUT

<rowarea name="Text">
 <itr>
 <textout valueprop="dynprop" width="120" textoutclass="LABELCellNormal">
 </textout>
 <field valueprop="dynlabel" width="200">
 </field>
 </itr>
</rowarea>

In the above example, the left First Name is not a label but a TEXTOUT control, referencing to the style
class LABELCellNormal that normally is a style class belonging to the LABEL control.

Example: Dynamic Labels with Tooltips
By extending the previous example, you can also add tooltips to the dynamic label:

The implementation of the adapter property is:

// property >dynlabel<
String m_dynlabel ="Harald";
public String getDynlabel() { return m_dynlabel; }
public void setDynlabel(String value) { m_dynlabel = value; }

The text of the value that is passed back is encapsulated within an HTML span. The span itself provides
the property title .

Properties

Basic

2

Example: Dynamic Labels with TooltipsTEXTOUT

width Width of the control.

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the
width of the control will either be a default width or
- in case of container controls - it will follow the
width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g.
"100").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only
bring up correct results if the parent element of the
control properly defines a width this control can
reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent
element does not specify a width then the rendering
result may not represent what you expect.

Sometimes
obligatory

100

120

140

160

180

200

50%

100%

valueprop Server side property representation of the control.Obligatory

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

Appearance

width (already explained above)

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As
consequence the control will be rendered with its
default height. If the control is a container control
(containing) other controls then the height of the
control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g.
"20").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only
bring up correct results if the parent element of the
control properly defines a height this control can
reference. If you specify this control to have a
height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

Optional 100

150

200

250

300

250

400

50%

100%

3

TEXTOUTProperties

nowrap If the textual content of the control exceeds the size
of the control then the browser automatically breaks
the line and arranges the text accordingly.

You can avoid this behaviour by setting NOWRAP
to "true". No line break will be performed by the
browser.

Optional true

false

textsize The HTML font size of the text. Corresponding to
the HTML definition "1" means "smallest" and "6"
means "biggest".

Optional 1

2

3

4

5

6

textcolor Colour of the text. Input a value like "#FF0000". Optional #FF0000

#00FF00

#0000FF

#FFFFFF

#808080

#000000

4

PropertiesTEXTOUT

datatype By default, the control is managing its content as
string. By explicitly setting a datatype you can
define that the control will format the data coming
from the server: if the field has datatype "date" and
the user inputs "010304" then the input will be
translated into "01.03.2004" (or other representation,
dependent on date format settings).

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format
number. The server side representation may be a
float value, but also can be a double or a
BigDecimal property.

Optional date

float

int

long

time

timestamp

color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

xs:byte

xs:short

straighttext If the text of the control contains HTML tags then
these are by default interpreted by the browser.
Specifiying STRAIGHTTEXT as "true" means that
the browser will directly render the characters
without HTML interpretation.

Example: if you want to output the source of an
HTML text then STRAIGHTTEXT should be set to
"true".

MOZILLA: this property is not available in Mozilla!

Optional true

false

5

TEXTOUTProperties

align Horizontal alignment of control in its column.

Each control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control’s
contained text.

Optional left

center

right

valign Vertical alignment of control in its column.

Each control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger than the
size of the control. In this case the "align" property
specify the position of the control inside the column.

Optional top

middle

bottom

colspan Column spanning of control.

If you use TR table rows then you may sometimes
want to control the number of columns your control
occupies. By default it is "1" - but you may want to
define the control to span over more than one
columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched.

Optional 1

2

3

4

5

50

int-value

rowspan Row spanning of control.

If you use TR table rows then you may sometimes
want to control the number of rows your control
occupies. By default it is "1" - but you may want to
define the control two span over more than one
columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched.

Optional 1

2

3

4

5

50

int-value

6

PropertiesTEXTOUT

bgcolorprop Name of adapter property that passes back a color
value (e.g. "#FF0000" for red color). The color
value is used as background color in the control. -
The color of the text color is automatically chosen
dependent from the background color: for light
background colors the text color is black, for dark
background colors the color is white. Use
FGCOLORPROP to choose the text color on your
own.

Optional

fgcolorprop Name of adapter property that passes back a color
value (e.g. "#FF0000" for red color). The color
value is used as text color in the control. - The
background color is automatically chosen dependent
from the text color: for dark text colors the
background color is transparent (default), for light
text colors the color is black. Use BGCOLORPROP
to choose both - the text and background color.

Optional

textoutstyle CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame’s source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

textoutclass CSS style class definition that is directly passed into
this control.

The style class can be either one which is part of the
"normal" CIS style sheet files (i.e. the ones that you
maintain with the style sheet editor) - or it can be
one of an other style sheet file that you may
reference via the ADDSTYLESHEET property of
the PAGE tag.

Optional

7

TEXTOUTProperties

stylevariant Some controls offer the possibility to define style
variants. By this style variant you can address
different styles inside your style sheet definition file
(.css). If not defined "normal" styles are chosen, if
defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style
sheet defintion and use them multiple times by
addressing them via the "stylevariant" property. CIS
currently offerst two variants "VAR1" and "VAR2"
but does not predefine any semantics behind - this is
up to you!

Optional VAR1

VAR2

VAR3

VAR4

Binding

valueprop (already explained above)

titleprop Property of adapter that dynamically defines the title
of the control. The title is displayed as tool tip when
ther user moves the mouse onto the control.

Optional

bgcolorprop (already explained above)

fgcolorprop (already explained above)

visibleprop Name of an adapter property that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the
control dynamically.

The server side property needs to be of type
"boolean".

Optional

invisiblemode If the visibility of the control is determined
dynamically by an adapter property then there are
two rendering modes if the visibility is "false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over effects
any more.

Optional invisible

cleared

8

PropertiesTEXTOUT

	TEXTOUT
	Example
	Example: Dynamic Labels
	Example: Dynamic Labels with Tooltips
	Properties

