
TEXTGRID2
This chapter covers the following topics:

A Simple Example

Selecting Rows in a TEXTGRID2

Triggering Adapter Methods when Selecting a Row

TEXTGRID2 Properties

COLUMN Properties

Dynamic Setting of Text Styles in TEXTGRID2

Example: Displaying an ASCII Protocol

Example: Using Images inside the TEXTGRID2 Control

Specifying the Width of a TEXTGRID2 Control

Change Index Management

Flexible Columns with CSVCOLUMN

CSVCOLUMN Properties

A Simple Example
The following example shows a TEXTGRID2 control:

There are two columns which hold data. There is one column at the very left which displays a selection
icon - in addition to a yellow background for a selected line. Even and odd lines are displayed in slightly
different colors. At the very right of each title column, there is a symbol which indicates the sorting status;
if you double-click on this symbol, the column is sorted first in ascending direction and, when clicking

1

TEXTGRID2TEXTGRID2

again, in descending direction. Change the sequence of columns by dragging the title of a column and
dropping it on another column’s title. Depending from where you drop, the column is either moved left or
right.

The asterisk in the upper left corner of the grid is used to select/deselect all lines in the grid. The behavior
depends on the setting of the singleselect property which determines whether multiple lines can be
selected in the grid (default) or whether only one line can be selected:

Multiple Line Selection Mode
When you choose the asterisk for the first time, all lines are selected. When you choose the asterisk a
second time, all lines are deselected.

Single Line Selection Mode
When you choose the asterisk (no matter how often), an existing selected line is deselected.

The XML layout definition is:

<rowarea name="Textgrid">
 <itr takefullwidth="true" fixlayout="true">
 <textgrid2 griddataprop="lines" width="100%" height="200" selectprop="selected"
 hscroll="true">
 <column name="First Name" property="firstName" width="50%">
 </column>
 <column name="Last Name" property="lastName" width="50%">
 </column>
 </textgrid2>
 </itr>
 <vdist height="5">
 </vdist>
</rowarea>

The TEXTGRID2 definition is bound to a grid data property lines . This is a special collection that
mirrors the server data. Technically, it is treated in the same way as a normal collection. It supports the
Collection and List interface.

Inside the TEXTGRID2 control definition there are two columns. These columns are bound to the
properties firstName and lastName .

This is the Java adapter source:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.SelectableLine;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

// This class is a generated one.

public class TextGridAdapter
 extends Adapter
{
 // class >LinesItem<
 public class LinesItem
 extends SelectableLine
 {
 // property >firstName<
 String m_firstName;
 public String getFirstName() { return m_firstName; }

 // property >lastName<

2

A Simple ExampleTEXTGRID2

 String m_lastName;
 public String getLastName() { return m_lastName; }

 // property >selected<
 boolean m_selected;
 public boolean getSelected() { return m_selected; }
 public void setSelected(boolean value) { m_selected = value; }
 }

 // property >lines<
 TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
 public TEXTGRIDCollection getLines() { return m_lines; }

 /** initialisation - called when creating this instance*/
 public void init()
 {
 for (int i=0; i< 50; i++)
 {
 LinesItem l = new LinesItem();
 l.m_firstName = "First " + i;
 l.m_lastName = "Last " + i;
 m_lines.add(l);
 }
 }
}

The adapter class provides a property lines . This property returns an instance of the class
TEXTGRIDCollection which itself is a special collection and comes with the Application Designer
runtime. The instance is filled in the init() method of the adapter - just as a normal collection. But it
automatically brings in all the functions for sorting and - if desired - server-side scrolling (see the
TEXTGRIDSSS2 description).

The collection is filled with objects of the inner class Line . Each object supports a property
firstName , lastName and selected . (The class Line is an inner class in the example - but of
course it could also be a normal class). Make sure to make the class publicly accessible, because the
Application Designer runtime requires public access to the corresponding properties.

The whole TEXTGRID2 definition is bound by the griddataprop property to the lines collection -
and each COLUMN definition is bound to a property of class Line , i.e. the class representing elements of
the collection.

Selecting Rows in a TEXTGRID2
Maybe you wonder why there is a selected property in the class Line of the previous example.

This property is required for indicating which lines are currently selected and which are not. Each line
which is displayed in the TEXTGRID2 control is represented at the server side by an object of the class
Line . Therefore, the selection status of the grid (which lines are selected and which lines are not) is
mirrored by the corresponding selected property of each line.

The code below shows an extension of the previous example. It demonstrates how to build a method for
taking the line selection into consideration.

Below the TEXTGRID2 definition, there is a button that triggers a method for removing the selected lines.

3

TEXTGRID2Selecting Rows in a TEXTGRID2

The XML layout definition is improved in the following way:

<rowarea name="Textgrid">
 <itr takefullwidth="true" fixlayout="true">
 <textgrid2 griddataprop="lines" width="100%" height="200" selectprop="selected"
 hscroll="true">
 <column name="First Name" property="firstName" width="50%">
 </column>
 <column name="Last Name" property="lastName" width="50%">
 </column>
 </textgrid2>
 </itr>
 <vdist height="5">
 </vdist>
 <itr>
 <button name="Remove Selected Items" method="onRemoveSelectedItems">
 </button>
 </itr>
 <vdist>
 </vdist>
</rowarea>

Note that inside the TEXTGRID2 definition, there is a property selectprop that points to the name of
the item property used for storing the selection information accordingly.

The method onRemoveSelectedItems was added into the adapter code of the previous example:

public void onRemoveSelectedItems()
{
 for (int i=m_lines.size()-1; i>=0; i--)
 {
 LinesItem l = (LinesItem)m_lines.get(i);
 if (l.getSelected() == true)
 m_lines.remove(i);
}

The collection is iterated from its last element to its first. All elements which hold a selected property
with value "true" are removed.

4

Selecting Rows in a TEXTGRID2TEXTGRID2

Note:
In this example, you are able to select multiple rows inside the grid. If you want to allow selecting only
one item, use the property singleselect inside the TEXTGRID2 definition.

Triggering Adapter Methods when Selecting a Row
In the previous section, you saw how to manage selections inside a TEXTGRID2 control. Sometimes, you
want to trigger a certain function when selecting a row - maybe you want to react directly to the selected
item.

To do so, you can use some additional properties inside the TEXTGRID2 definition:

The onclickmethod property is used to point to a method of your adapter class which is called
when a click event occurs.

The ondblclickmethod property is used when the user double-clicks a grid row.

You can use "direct triggering of method" together with single line selection mode or with multiple line
selection mode. In case of using it with multiple line selection, you have to find out which was the "last
selected index", i.e. the line index of the clicked/double-clicked line.

There is a property lastselectedprop inside the TEXTGRID2 definition. Using this definition, you
can bind the value to an integer property of your adapter class. The index value which is selected is passed
into this property.

TEXTGRID2 Properties

Basic

griddataprop Name of adapter property that represents the grid
on server side. The property must be of type
"TEXTGRIDCollection".

var m_items = new TEXTGRIDCollection()

Pay attention: once you have created an instance
of TEXTGRIDCollection inside your adapter
always exactly use this one instance. Do not
re-instantiate collection objects! - Example:

Instead of...

WRONG: m_items = new
TEXTGRIDCollection();

...use...

CORRECT: m_items.clear();

Obligatory

5

TEXTGRID2Triggering Adapter Methods when Selecting a Row

width Width of the control.

There are three possibilities to define the width:

(A) You do not define a width at all. In this case
the width of the control will either be a default
width or - in case of container controls - it will
follow the width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g.
"100").

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element
of the control properly defines a width this
control can reference. If you specify this control
to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a
width then the rendering result may not represent
what you expect.

Obligatory 100

120

140

160

180

200

50%

100%

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As
consequence the control will be rendered with its
default height. If the control is a container control
(containing) other controls then the height of the
control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g.
"20").

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element
of the control properly defines a height this
control can reference. If you specify this control
to have a height of 50% then the parent element
(e.g. an ITR-row) may itself define a height of
"100%". If the parent element does not specify a
width then the rendering result may not represent
what you expect.

Obligatory 100

150

200

250

300

250

400

50%

100%

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

Selection

6

TEXTGRID2 PropertiesTEXTGRID2

selectableprop Name of the adapter parameter used for selectable
property for the textgrid(textgridsss) control.

Optional

selectprop Name of property of the item objects -
representing the individual rows of the text grid -
that is used for selecting rows.

Must be of type "boolean"/ "Boolean".

If the user selects a text grid row then the value
"true" is passed into the corresponding row
object’s property.

Optional

singleselect If set to "true" then only one row can be selected
inside the text grid. - If set to "false" then multiple
lines can be selected by using Ctrl- and Shift-key
during mouse selection.

Default is "false".

Optional true

false

singleselectprop Name of adapter property that dynamically
defined whether SINGLESELECT is true or
false. Must return ’true’ or ’false’.

Optional

onclickmethod Adapter method that is called when the user
selects a row.

Inside the adapter you can find the selected rows
by iterating through the row objects and finding
out which one’s selection-property is switched to
"true". In case of multiple row selection you can
also use the method "findLastSelectedItem()" of
your corresponding TEXTGRIDCollection
object.

Optional

ondblclickmethod Adapter method that is called when the user
selects a row by a double click.

Inside the adapter you can find the selected rows
by iterating through the row objects and finding
out which one’s selection-property is switched to
"true". In case of multiple row selection you can
also use the method "findLastSelectedItem()" of
your corresponding TEXTGRIDCollection
object.

Optional

withselectioncolumn When defining a SELECTPROP property then
automatically a selection column is added as first
left column of the grid. Inside the column an icon
inidicates if a row is currently selected.

Set this property to "false" in order to avoid the
selection column.

Optional true

false

7

TEXTGRID2TEXTGRID2 Properties

withselectioncolumniconFlag that indicates whether the selection column
shows a "select all" icon on top. Default is true.

Optional true

false

fgselect if switched to true then an additional "graying" of
selected lines will be activated. Switch this
property to "true" if you have coloured textgrid
cells: the selection colour will not override the
colour of each cell, as consequence you require
an additional effect in order to make the user see
which row is selected.

Optional true

false

focusedprop Name of property of the item objects -
representing the individual rows of the text grid -
that indicates if the line should receive focus.

Must be of type "boolean"/ "Boolean".

Optional

Right Mouse Button

oncontextmenumethod If clicking on a row of the text grid with the right
mouse button then always the method
"reactOnContexMenuRequest()" is called inside
the corresponding row item object (that itself is
kept inside the TEXTGRIDCollection object).

If the user clicks with the right mouse button onto
an empty area of the grid then there is no object
to call - instead the adapter method that is
specified by this property is called.

Optional

singleselectcontextmenuWith SHIFT and CTRL key the user can select
multiple lines (use property SINGLESELECT to
suppress this feature). Use this property to ensure
that the context menu is requested only for a
single line.

Default is "false".

Optional true

false

noselection

enabledefaultcontextmenuUse this property to enable the default context
menu of the browser within the textgrid. Please
note: do not enable the browser’s context menu if
your application itself provides for a context
menu.

Default is "false".

Optional true

false

Appearance

width (already explained above)

height (already explained above)

8

TEXTGRID2 PropertiesTEXTGRID2

minapparentrows Number of rows that are displayed independent of
the size of the server side collection.

Optional 1

2

3

int-value

hscroll Definition of the horizontal scrollbar’s
appearance.

You can define that the scrollbars only are shown
if the content is exceeding the control’s area
("auto"). Or scrollbars can be shown always
("scroll"). Or scrollbars are never shown - and the
content is cut ("hidden").

Default is "auto".

Sometimes
obligatory

auto

scroll

hidden

withtitlerow If defined as "false" then no top title row is
shown.

"True" is default.

Optional true

false

colspan Column spanning of control.

If you use TR table rows then you may
sometimes want to control the number of columns
your control occupies. By default it is "1" - but
you may want to define the control to span over
more than one columns.

The property only makes sense in table rows that
are snychronized within one container (i.e. TR,
STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not
synched.

Optional 1

2

3

4

5

50

int-value

rowspan Row spanning of control.

If you use TR table rows then you may
sometimes want to control the number of rows
your control occupies. By default it is "1" - but
you may want to define the control two span over
more than one columns.

The property only makes sense in table rows that
are snychronized within one container (i.e. TR,
STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not
synched.

Optional 1

2

3

4

5

50

int-value

9

TEXTGRID2TEXTGRID2 Properties

personalizable If defined to "false" then no re-arranging of
columns is offered to the user.

Default is "true". This means: if using COLUMN
controls inside the grid definition then the user
can re-arrange the sequence of columns by
dragging and dropping them within the top title
row.

Optional true

false

stylevariant Some controls offer the possibility to define style
variants. By this style variant you can address
different styles inside your style sheet definition
file (.css). If not defined "normal" styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style
sheet defintion and use them multiple times by
addressing them via the "stylevariant" property.
CIS currently offerst two variants "VAR1" and
"VAR2" but does not predefine any semantics
behind - this is up to you!

Optional VAR1

VAR2

backgroundstyle CSS style definition that is directly passed into
this control.

With the style you can individually influence the
rendering of the control. You can specify any
style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame’s source"
function.

Optional

vscroll Definition of the vertical scrollbar’s appearance.

You can define that scrollbars only are shown if
the content is exceeding the control’s area
("auto"). Or scrollbars can be shown always
("scroll"). Or scrollbars are never shown - and the
content is cut ("hidden").

Default is "auto".

Optional auto

scroll

hidden

10

TEXTGRID2 PropertiesTEXTGRID2

withrollover The textgrid controls provide for a so called "roll
over" effect. The row that is currently below the
mouse pointer is highlighted in a certain way. Use
this property to disable the roll over effect
(Default is TRUE).

Optional true

false

fixedcolumnsizes When switching the FIXEDCOLUMNSIZES
property to value "true" then internally the grid is
arranged in a way that the area always determines
its size out of the width specification of the
COLUMN controls. The browser does not look
into the column contents in order to try to
optimise the size of the area - but always follows
the width that you define.

Optional true

false

requiredheight Minimum height of the control in pixels. Use this
property to ensure a minimum height if the
overall control’s height is a percentage of the
available space - i.e. if value of property HEIGHT
is a percentage (e.g. 100%).

Please note:You must not use FIXLAYOUT at
the surrounding row container (ITR and
ROWAREA). Otherwise: if the available space is
less than the required height the end of the control
is just cut off.

Optional 1

2

3

int-value

disablecolumnresizing Flag that indicates if the user can change the
width of the grid columns. Default is false.

Optional true

false

disablecolumnmoving Flag that indicates if the user can change the
order of grid columns. Default is false.

Optional true

false

tabindex Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional -1

0

1

2

5

10

32767

Drag And Drop

11

TEXTGRID2TEXTGRID2 Properties

draginfoprop Name of the row item property that passes back
the line’s "drag info". When using this attribute
the grid lines can be dragged onto "drop targets"
(e.g. DROPICON control). The dragged line is
identified by its "drag info". Use any
string/information applicable.

Optional

Deprecated

directselectevent Use ONCLICKMETHOD and
ONDBLCLICKMETHOD instead.

Optional ondblclick

onclick

directselectmethod Use ONCLICKMETHOD and
ONDBLCLICKMETHOD instead.

Optional

COLUMN Properties
The COLUMN tag is the typical tag that is placed inside a TEXTGRID2 definition. The COLUMN
definition defines a column with its binding to a property of the collection elements.

Tip:
If you set the property headernowrap="false" , you usually have to increase the height of the header
in the style sheet of your layout page. You can do this in the Style Sheet Editor: Go to the Style Details
tab, expand the tree for TEXTGRID and then adjust the height value for
TEXTGRIDCellHeaderUnsorted .

Basic

name Text that is displayed inside the control. Please
do not specify the name when using the multi
language management - but specify a "textid"
instead.

Sometimes
obligatory

textid Multi language dependent text that is displayed
inside the control. The "textid" is translated into
a corresponding string at runtime.

Do not specify a "name" inside the control if
specifying a "textid".

Sometimes
obligatory

property Property of the row item object that represents
the column’s content.

The content typically is straight text but can also
be "complex HTML".

Obligatory

12

COLUMN PropertiesTEXTGRID2

width Width of the control.

There are two possibilities to define the width:

(A) Pixel sizing: just input a number value (e.g.
"100").

(B) Percentage sizing: input a percentage value
(e.g. "50%"). Pay attention: percentage sizing
will only bring up correct results if the parent
element (textgrid2, textgridsss2) of the control
properly defines a width this control can
reference.

Obligatory 100

120

140

160

180

200

50%

100%

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

Appearance

13

TEXTGRID2COLUMN Properties

datatype By default, the control is managing its content
as string. By explicitly setting a datatype you
can define that the control will format the data
coming from the server: if the field has datatype
"date" and the user inputs "010304" then the
input will be translated into "01.03.2004" (or
other representation, dependent on date format
settings).

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format
number. The server side representation may be a
float value, but also can be a double or a
BigDecimal property.

Optional date

float

int

long

time

timestamp

color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

xs:byte

xs:short

align Horizontal alignment of the control’s content. Optional left

center

right

straighttext If the text of the control contains HTML tags
then these are by default interpreted by the
browser. Specifiying STRAIGHTTEXT as
"true" means that the browser will directly
render the characters without HTML
interpretation.

Example: if you want to output the source of an
HTML text then STRAIGHTTEXT should be
set to "true".

MOZILLA: this property is not available in
Mozilla!

Optional true

false

14

COLUMN PropertiesTEXTGRID2

convertspaces If switched to "true" then all spaces inside the
text that is rendered into the column are
converted to non breakable spaces (andnbsp\").

Use this option if you have "meaningful" spaces
inside the values you return from the server
adapter object, e.g. if outputting some ASCII
protocol inside a column.

Optional true

false

cuttextline If switched to "false" then the content of the
column is broken if it excceeds the column’s
width definition. Default is "true" i.e. if the
content is too big for the column cell then it is
cut.

Optional true

false

withsorticon Flag that indicates if a small sort indicator is
shown within the right corner of the control.
Default is TRUE.

Optional true

false

headerimage URL of image that is displayed inside the
control. Any image type (.gif, .jpg, ...) that your
browser does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project’s
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional

headernowrap The textual content of the header is not wrapped
automatically. No line break will be performed
automatically by the browser. If you want the
text of the header to be wrapped, set the value to
"false".

Optional true

false

Binding

property (already explained above)

textstyleprop Name of the property of the row item object that
passes back a style-string that is used for
rendering the column’s content.

As consequence you can indiviudally assign a
CSS-style to each cell of your text grid.

Optional

15

TEXTGRID2COLUMN Properties

textclassprop Name of the property of the row item object that
defines a style class to be used for rendering the
content.

You can set up a limited number of style classes
inside your style sheet definition - and
dynamically reference them per grid cell.

Optional

imageprop Name of the property of the row item object
passing back an image URL. The image is
rendered at the very left of the column’s area -
in front of the text (PROPERTY property
definition).

Optional

linkmethod Name of a method within the row item object
that is called if user clicks the column’s text.

Optional

celllinkmethodpropName of the row item property that passes back
the name of a method or null. If the method
name is not null then the corresponding column
(cells) will show the text as method link. On
click the provided row item cell method is
called.

Optional

celltitleprop Name of the property of the row item object that
passes back the tooltip of this cell.

Optional

Online help

title Text that is shown as tooltip for the control.

Either specify the text "hard" by using this
TITLE property - or use the TITLETEXTID in
order to define a language dependent literal.

Optional

titletextid Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

sorttitle Text that is shown as tooltip for the sort
indicator.

Either input text by using this SORTTITLE
property - or use the SORTTITLETEXTID in
order to define a language dependent literal.

Optional

sorttitletextid Text ID that is passed to the multi lanaguage
management - representing the tooltip text for
the sort indicator.

Optional

celltitleprop (already explained above)

16

COLUMN PropertiesTEXTGRID2

Dynamic Setting of Text Styles in TEXTGRID2
The example from the previous sections will now be enhanced in order to demonstrate how to control the
style of cells inside a TEXTGRID2 control dynamically:

Some of the cells in the TEXTGRID2 control are rendered with a different style than the normal one.
Each COLUMN definition has the property textstyleprop :

<rowarea name="Textgrid">
 <itr takefullwidth="true" fixlayout="true">
 <textgrid2 griddataprop="lines" width="100%" height="200" selectprop="selected"
 hscroll="true">
 <column name="First Name" property="firstName" width="50%"
 textstyleprop="firstNameStyle">
 </column>
 <column name="Last Name" property="lastname" width="50%"
 textstyleprop="lastNameStyle">
 </column>
 </textgrid2>
 </itr>
 <vdist height="5">
 </vdist>
 <itr>
 <button name="Remove Selected Items" method="onRemoveSelectedItems">
 </button>
 </itr>
</rowarea>

The referenced property inside the COLUMN definition is on the same level as the normal property that is
responsible for the content of the columns and which is referenced by the normal property property.
Have a look at the Java source:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.SelectableLine;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

// This class is a generated one.

17

TEXTGRID2Dynamic Setting of Text Styles in TEXTGRID2

public class TextGridAdapter
 extends Adapter
{
 // class >LinesItem<
 public class LinesItem
 extends SelectableLine
 {
 // property >firstName<
 String m_firstName;
 public String getFirstName() { return m_firstName; }

 // property >lastName<
 String m_lastName;
 public String getLastName() { return m_lastName; }

 // property >selected<
 boolean m_selected;
 public boolean getSelected() { return m_selected; }
 public void setSelected(boolean value) { m_selected = value; }

 // property >firstNameStyle<
 String m_firstNameStyle;
 public String getFirstNameStyle() { return m_firstNameStyle; }
 public void setFirstNameStyle(String value) { m_firstNameStyle = value; }

 // property >lastNameStyle<
 String m_lastNameStyle;
 public String getLastNameStyle() { return m_lastNameStyle; }
 public void setLastNameStyle(String value) { m_lastNameStyle = value; }
 }

 // property >lines<
 TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
 public TEXTGRIDCollection getLines() { return m_lines; }

 ...

 /** initialisation - called when creating this instance*/
 public void init()
 {
 for (int i=0; i< 50; i++)
 {
 LinesItem l = new LinesItem();
 l.m_firstName = "First " + i;
 l.m_lastName = "Last " + i;
 if (i%3 == 2)
 l.setFirstNameStyle("color: #FF0000;");
 if (i%4 == 3)
 l.setLastNameStyle("color: #0000FF; background-color: #C0C0C0");
 m_lines.add(l);
 }
 }
}

The properties lastNameStyle and firstNameStyle are available on item level. They are filled in
the init() method.

18

Dynamic Setting of Text Styles in TEXTGRID2TEXTGRID2

Example: Displaying an ASCII Protocol
The following example shows the output of an ASCII protocol. The example demonstrates the usage of
the COLUMN properties textstyleprop and convertspaces .

The XML layout definition looks as follows:

<page model="Ascii_Protocol_Adapter">
 <titlebar name="ASCII Protocol">
 </titlebar>
 <header withdistance="false">
 <button name="Save">
 </button>
 </header>
 <pagebody>
 <rowarea name="Protocol Output">
 <itr takefullwidth="false" height="350" fixlayout="true">
 <textgrid2 griddataprop="items" width="100%" height="100%" hscroll="true"
 vscroll="true" backgroundstyle="background-color:#000000">
 <column name="Protocol" property="protocolText" width="1000"
 textstyleprop="protocolStyle" convertspaces="true">
 </column>
 </textgrid2>
 </itr>
 </rowarea>

19

TEXTGRID2Example: Displaying an ASCII Protocol

 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

The following is defined in the above layout definition:

Inside the TEXTGRID2 definition, a black background is defined (backgroundstyle property).

Inside the COLUMN definition, a style property is referenced (textstyleprop property).

Inside the COLUMN definition, the property convertspaces is set to "true".

The Java source looks as follows:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

// This class is a generated one.

public class Ascii_Protocol_Adapter
 extends Adapter
{
 // --
 // inner classes
 // --

 // class >ItemsItem<
 public class Item
 {
 // property >protocolStyle<
 String m_centralStyle = "font-family: courier; color: #00FFFF; background-color: #000000;";
 String m_protocolStyle;
 public String getProtocolStyle() { return m_centralStyle; }

 // property >protocolText<
 String m_protocolText;
 public String getProtocolText() { return m_protocolText; }
 public void setProtocolText(String value) { m_protocolText = value; }
 }
 // --
 // property access
 // --

 // property >items<
 TEXTGRIDCollection m_items = new TEXTGRIDCollection();
 public TEXTGRIDCollection getItems() { return m_items; }

 // --
 // standard adapter methods
 // --

 /** initialisation - called when creating this instance*/
 public void init()
 {
 Item item;
 item = new Item(); item.setProtocolText("BATCH RUN (01.04.2002)"); m_items.add(item);
 item = new Item(); item.setProtocolText("======================"); m_items.add(item);
 item = new Item(); item.setProtocolText(""); m_items.add(item);
 item = new Item(); item.setProtocolText("Time consuumed : 48.000 ms");
 m_items.add(item);
 item = new Item(); item.setProtocolText("Waiting time : 3.452 ms");
 m_items.add(item);
 item = new Item(); item.setProtocolText("Database time : 32.203 ms");
 m_items.add(item);
 item = new Item(); item.setProtocolText("App Server time : 10.485 ms");
 m_items.add(item);

20

Example: Displaying an ASCII ProtocolTEXTGRID2

 item = new Item(); item.setProtocolText(""); m_items.add(item);
 item = new Item(); item.setProtocolText("Return Code : 0 (OK)"); m_items.add(item);
 }
}

Example: Using Images inside the TEXTGRID2 Control
In the following text grid, graphical information and text information are mixed:

The layout definition looks as follows:

<rowarea name="Textgrid with contained Icons">
 <itr takefullwidth="tue">
 <textgrid2 griddataprop="lines" width="100%" height="200">
 <column name="Icon" width="53" imageprop="iconURL">
 </column>
 <column name="Text" property="text" width="100%">
 </column>
 </textgrid2>
 </itr>
</rowarea>

In the definition of the left column, the property imageprop is used to reference to a property that
provides the URL string of the image to be displayed. The definition of the right column contains the
property property that points to a property providing text information.

The adapter class looks as follows:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

public class Textgrid_02_Adapter
 extends Adapter
 {
 // --
 // inner classes
 // --
 // class >LinesItem<
 public class LinesItem
 {

21

TEXTGRID2Example: Using Images inside the TEXTGRID2 Control

 // property >iconURL<
 String m_iconURL;
 public String getIconURL() { return m_iconURL; }
 public void setIconURL(String value) { m_iconURL = value; }

 // property >text<
 String m_text;
 public String getText() { return m_text; }
 public void setText(String value) { m_text = value; }
 }
 // --
 // property access
 // --
 // property >lines<
 TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
 public TEXTGRIDCollection getLines() { return m_lines; }

 // --
 // standard adapter methods
 // --
 /** initialisation - called when creating this instance*/
 public void init()
 {
 for (int i=0; i<10; i++)
 {
 LinesItem l = new LinesItem();
 l.setIconURL("images/touch_"+i+".gif");
 l.setText("This is icon number " + i);
 m_lines.add(l);
 }
 }

You can also mix text and image by specifying the property and the imageprop property. In this
case, the image will be drawn on the left and the text will be placed to the right of the image.

Specifying the Width of a TEXTGRID2 Control
The sizing of text grids was improved with a previous release: now you can simply set a width of e.g.
"100%" if the text grid should cover the complete width that is available.

Pay attention to the following:

If you do not specify a width inside the TEXTGRID2 definition, the width of the grid will be as wide
as defined by its content. Of course, it does not make sense to define a percentage value inside the
COLUMN definitions - there is nothing to refer to.

If you specify a width in the TEXTGRID2 and you already know that the size of the columns does
not fit into the given width, you must set the flag HSCROLL to "true". Otherwise, there will be no
scrolling at all and the grid will be rendered as wide as required by its content.

If you specify a percentage value as a width for the TEXTGRID2 control, you must place the grid
into an ITR definition that itself has also a WIDTH definition (typically of "100%"). In addition, you
must set the flag FIXLAYOUT to "true" on ITR level. Otherwise the grid will follow the width of its
contained columns.

22

Specifying the Width of a TEXTGRID2 ControlTEXTGRID2

Change Index Management
In order to improve performance on the client side, there is a so-called change index management: a text
grid binds to an array of data records. Every time when the browser client receives updated data from the
server, it finds out whether a text grid has to be updated or not. Updating a text grid is a quite expensive
operation for the client - consequently, it is done only if really necessary.

For this reason, each TEXTGRIDCollection object implicitly administers a change index. A change
index is a property of type long . The value of the property always changes if something inside the
collection changes. The client reads this property and only refreshes the text grid if the property has
changed.

Normally, the property is managed internally - without you being involved. If a
TEXTGRIDCollection is manipulated via its methods (e.g. add or clear), then the property is
automatically updated - and consequently, the client refreshes. But: if a change of data happens inside one
item of a TEXTGRIDCollection , then the call does not go through the TEXTGRIDCollection
API. Consequently, you have to explicitly trigger the update by your program. Inside the
TEXTGRIDCollection , there is a method itemChanged() which indicates that due to the change
of data within one item the grid has to be updated.

The following example shows how to control the change index. In this example, a text grid is built and
manipulated by three buttons:

With the first button, new items are added to the grid. With the second button, all items receive new
content. With the third button, the change index will be updated.

The XML code is:

<rowarea name="Textgrid with Change Index Management">
 <itr>
 <textgrid2 griddataprop="lines_02" width="100%" height="200">
 <column name="Text" property="text" width="100%">
 </column>
 </textgrid2>
 </itr>
 <itr>
 <button name="Add Data Line" method="onAddDataLine">

23

TEXTGRID2Change Index Management

 </button>
 <button name="Update Data Lines" method="onUpdateDataLines">
 </button>
 <button name="Update Change Index" method="onUpdateChangeIndex">
 </button>
 </itr>
</rowarea>

The Java adapter source is shown below. Pay attention to the constructor of the m_lines member (which
passes "true" as a parameter) and to the method m_lines.itemChanged() that is called in order to
update the change index implicitly.

// This class is a generated one.

import java.util.Date;
import java.util.Iterator;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

public class Textgrid_02_Adapter
 extends Adapter
{
 // --
 // inner classes
 // --
 // class >Lines_02Item<
 public class Lines_02Item
 {
 // property >text<
 String m_text;
 public String getText() { return m_text; }
 public void setText(String value) { m_text = value; }
 }
 // --
 // property access
 // --

 // property >lines_02<
 TEXTGRIDCollection m_lines_02 = new TEXTGRIDCollection();
 public TEXTGRIDCollection getLines_02() { return m_lines_02; }

 // --
 // public adapter methods
 // --
 /** */
 public void onAddDataLine()
 {
 Lines_02Item l = new Lines_02Item();
 l.setText((new Date()).toString());
 m_lines_02.add(l);
 }

 /** */
 public void onUpdateChangeIndex()
 {
 m_lines_02.itemChanged();
 }

 /** */
 public void onUpdateDataLines()
 {

24

Change Index ManagementTEXTGRID2

 Iterator iter = m_lines_02.iterator();
 while (iter.hasNext())
 {
 Lines_02Item l = (Lines_02Item)iter.next();
 l.setText((new Date()).toString());
 }
 }
}

The behavior of the text grid control is as follows:

If a new line is added (method onAddDataLine()), the change index will be updated internally -
you do not have to explicitly tell the text grid management that something has changed.

If the lines are updated (method onUpdateDataLines()), changes will not be reflected in the
grid - until you explicitly trigger the method onUpdateChanngeIndex() .

Consequence: every time you change the inner content of the grid data, you have to update the change
index by yourself.

Flexible Columns with CSVCOLUMN
There are situations in which the number and the format of the columns of a text grid cannot be defined in
a fixed way inside the layout definition. The column type CSVCOLUMN allows you to dynamically
define columns of a grid by your adapter program.

Have a look at the following example:

The control looks like a normal text grid. When looking inside the XML layout definition, you find out
that instead of three fixed columns there is one dynamic column definition:

<rowarea name="Rowarea">
 <itr>
 <textgrid2 griddataprop="lines" width="100%" height="150" selectprop="selected"
 singleselect="true" hscroll="true">
 <csvcolumn titlesprop="gridTitles" valuesprop="values" widthsprop="gridWidths"
 alignsprop="gridAligns" backgroundsprop="backgrounds">
 </csvcolumn>
 </textgrid2>
 </itr>
</rowarea>

25

TEXTGRID2Flexible Columns with CSVCOLUMN

Inside the CSVCOLUMN definition, there is a binding to various properties that are provided for by the
corresponding adapter:

// This class is a generated one.

import com.softwareag.cis.file.CSVManager;
import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

public class textgrid_03_Adapter
 extends Adapter
{
 // --
 // inner classes
 // --
 // class >LinesItem<
 public class LinesItem
 {
 public LinesItem (String values, String backgrounds)
 {
 m_values = values;
 m_backgrounds = backgrounds;
 }

 // property >backgrounds<
 String m_backgrounds;
 public String getBackgrounds() { return m_backgrounds; }
 public void setBackgrounds(String value) { m_backgrounds = value; }

 // property >selected<
 boolean m_selected;
 public boolean getSelected() { return m_selected; }
 public void setSelected(boolean value) { m_selected = value; }

 // property >values<
 String m_values;
 public String getValues() { return m_values; }
 public void setValues(String value) { m_values = value; }
 }
 // --
 // property access
 // --
 String m_gridAligns = CSVManager.encodeString(new String[] {
 "left",
 "left",
 "right"
 });
 public String getGridAligns() { return m_gridAligns; }

 String m_gridTitles = CSVManager.encodeString(new String[] {
 "First",
 "Second",
 "Third"
 });
 public String getGridTitles() { return m_gridTitles; }

 String m_gridWidths = CSVManager.encodeString(new String[] {
 "200",
 "200",
 "200"
 });

26

Flexible Columns with CSVCOLUMNTEXTGRID2

 public String getGridWidths() { return m_gridWidths; }

 // property >lines<
 TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
 public TEXTGRIDCollection getLines() { return m_lines; }

 // --
 // public adapter methods
 // --
 /** initialisation - called when creating this instance*/
 public void init()
 {
 m_lines.add(new LinesItem("100;100;100","#FF0000;#00FF00;#0000FF"));
 m_lines.add(new LinesItem("200;200;200","#00FF00;#FF0000;#0000FF"));
 m_lines.add(new LinesItem("300;400;500","#FF0000;#FF0080;#FF00FF"));
 }
}

The information for creating dynamic columns is passed as comma separated values. Comma separated
values are either created directly as a string or by calling a static method of the class
com.softwareag.cis.file.CSVManager .

Note:
When using the CSVManager methods for creating comma separated value strings, this always pays
attention to what happens if strings already include one or more semicolons.

Example: the CSVManager will encode the strings "A", "B1;B2" and "C" to "A;B1\;B2;C". On the client
side, the "\;" is decoded back to ";".

Compare the layout definition with the code example in order to find out the exact binding technique
between the control and the adapter properties.

CSVCOLUMN Properties
Tip:
If you set the property headernowrap="false" , you usually have to increase the height of the header
in the style sheet of your layout page. You can do this in the Style Sheet Editor: Go to the Style Details
tab, expand the tree for TEXTGRID and then adjust the height value for
TEXTGRIDCellHeaderUnsorted .

The properties of the CSVCOLUMN control are:

Basic

titlesprop Name of adapter property provding a semicolon-separated string
containing the titles to be displayed.

Example for a value that is passed back by the property:

"First Name;Last Name;Street""

Obligatory

valuesprop Name of row item property that passes back the content of the
cells - as semicolon-separated string.

Obligatory

27

TEXTGRID2CSVCOLUMN Properties

widthsprop Name of adapter property provding a semicolon-separated string
containing the widths of the columns to be displayed.

Example for a value that is passed back by the property:

"100;200;100%""

Obligatory

alignsprop Name of adapter property provding a semicolon-separated string
containing the horizontal alignment of the columns to be
displayed.

Example for a value that is passed back by the property:

"left\"center;right""

Sometimes
obligatory

backgroundsprop Name of adapter property provding a semicolon-separated string
containing the background color of the columns to be displayed.

Example for a value that is passed back by the property:

"\"#C0C0C0;#FF0000""

Optional

proprefsprop Name of adapter property provding a semicolon-separated string
containing the row item properties that are internally used to
build up the value string.

The property names are used for sorting: if the user invoke the
sorting of the grid by clicking on the corresponding icons inside
the title cell then this column needs to be associated with an
internal property that is used for sorting.

Example: "firstName\"lastName;street""

Optional

comment Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor’s tree view.

Optional

Appearance

straighttext If the text of the control contains HTML tags then these are by
default interpreted by the browser. Specifiying
STRAIGHTTEXT as "true" means that the browser will directly
render the characters without HTML interpretation.

Example: if you want to output the source of an HTML text then
STRAIGHTTEXT should be set to "true".

MOZILLA: this property is not available in Mozilla!

Optional true

false

cuttextline If switched to "false" then the content of the column is broken if
it excceeds the column’s width definition. Default is "true" i.e. if
the content is too big for the column cell then it is cut.

Optional true

false

headernowrap The textual content of the header is not wrapped automatically.
No line break will be performed automatically by the browser. If
you want the text of the header to be wrapped, set the value to
"false".

Optional true

false

28

CSVCOLUMN PropertiesTEXTGRID2

withgridcolheaders Flag that indicates if the user can resize column widths and
re-order columns by drag and drop. Default is false. If set to true
the corresponding adapter program must register as "column
change event" listener. Use method
TEXTGRIDCollection.registerGridColHeaderChangeListener
for that.

Optional true

false

Additional Binding

textstyleprop Name of the property of the row item object that passes back a
style-string that is used for rendering the column’s content.

As consequence you can indiviudally assign a CSS-style to each
cell of your text grid.

Optional

textclassprop Name of the property of the row item object that defines a style
class to be used for rendering the content.

You can set up a limited number of style classes inside your
style sheet definition - and dynamically reference them per grid
cell.

Optional

straighttextprop Name of the property which dynamicalle defines whether
STRAIGHTTEXT is true or false.

Optional

sorttitlesprop Name of adapter property provding a semicolon-separated string
containing the titles to be displayed.

Example for a value that is passed back by the property:

"Click here to sort column First Name\" Click here to sort
column Last Name; Click here to sort column Street""

Optional

tooltiptitlesprop Name of adapter property provding a semicolon-separated string
containing the tooltip tip texts to be displayed when the mouse
is moved over the column headers.

Optional

linkmethodsprop Name of the property of the row item object that passes back
(comma separated) names of row item methods. The
corresponding columns will show the text as method links. On
click the provided row item method is called.

Optional

celllinkmethodspropName of the row item property that passes back (comma
separated) names of cell methods. The corresponding columns
(cells) will show the text as method links. On click the provided
row item cell method is called.

Optional

celltooltiptitleprop Name of the property of the row item object that passes back
(comma separated) tool tip titles. The titles will show up if the
user is moving slowly the mouse over the grid cells.

Optional

imageprop Name of the property of the row item object that passes back
(comma separated) image URLs. The URL must either be an
absolute URL or a relative URL.

Optional

headerimageprop Name of the property that passed back (comma separated)
image URLs. The images are applied to the header.

Optional

29

TEXTGRID2CSVCOLUMN Properties

	TEXTGRID2
	A Simple Example
	Selecting Rows in a TEXTGRID2
	Triggering Adapter Methods when Selecting a Row
	TEXTGRID2 Properties
	COLUMN Properties
	Dynamic Setting of Text Styles in TEXTGRID2
	Example: Displaying an ASCII Protocol
	Example: Using Images inside the TEXTGRID2 Control
	Specifying the Width of a TEXTGRID2 Control
	Change Index Management
	Flexible Columns with CSVCOLUMN
	CSVCOLUMN Properties

