
ROWTABLEAREA2 - The Flexible Control
Grid
The ROWTABLEAREA2 is a container control that allows other controls to be arranged inside its grid
management.

This chapter covers the following topics:

Example

Using rowcount and height

Making Grids Look like Grids

Special Events in ROWTABLEAREA2 Processing

ROWTABLEAREA2 Properties

STR Properties

Example
There is a grid that contains a header row and 10 lines. Each line contains one check box and two fields.
Some of the lines are highlighted.

The XML layout definition is:

1

ROWTABLEAREA2 - The Flexible Control GridROWTABLEAREA2 - The Flexible Control Grid

<rowarea name="Grid">
 <rowtablearea2 griddataprop="lines" rowcount="10" width="100%" withborder="true">
 <tr>
 <hdist>
 </hdist>
 <label name="First Name" asheadline="true">
 </label>
 <label name="Last Name" asheadline="true">
 </label>
 </tr>
 <repeat>
 <str valueprop="selected">
 <checkbox valueprop="selected" flush="screen" width="30">
 </checkbox>
 <field valueprop="firstname" width="50%">
 </field>
 <field valueprop="lastname" width="50%">
 </field>
 </str>
 </repeat>
 </rowtablearea2>
 <vdist height="10">
 </vdist>
 <itr>
 <button name="Add new Line" method="onAddLine">
 </button>
 <hdist>
 </hdist>
 <button name="Remove selected Lines" method="onRemoveLines">
 </button>
 </itr>
</rowarea>

Note the following:

There is a ROWTABLEAREA2 definition with the property griddataprop="lines" . There is
a rowcount definition of "10". This is the same as for the text grid processing: the grid container is
bound to a server-side collection. Similar to the TEXTGRIDSSS2 definition, there is a row count that
defines the number of lines.

Inside the ROWTABLEAREA2 definition, there is first the definition of a normal table row (TR) in
which a distance and two labels are defined. The labels are rendered with asheadline="true" .

Inside the REPEAT definition, there is a special table row definition "STR" (selectable table row)
that itself contains one CHECKBOX and two FIELD definitions. CHECKBOX and FIELDs are
bound to properties themselves.

After the ROWTABLEAREA2 definition, there is a vertical distance and a row that contains two
buttons with which a user can manipulate the grid.

The content of the REPEAT block is repeated as many times as defined inside the rowcount definition
of ROWTABLEAREA2. The content holds a table row (STR) - therefore the result is a grid.

The Java code of the adapter is:

// This class is a generated one.

import java.util.Iterator;
import java.util.Vector;

2

ExampleROWTABLEAREA2 - The Flexible Control Grid

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.GRIDCollection;

public class rowtabarea2_adapterAdapter
 extends Adapter
{
 // --
 // inner classes
 // --
 // class >LinesItem<
 public class LinesItem
 {
 // property >firstname<
 String m_firstname;
 public String getFirstname() { return m_firstname; }
 public void setFirstname(String value) { m_firstname = value; }

 // property >lastname<
 String m_lastname;
 public String getLastname() { return m_lastname; }
 public void setLastname(String value) { m_lastname = value; }

 // property >selected<
 boolean m_selected;
 public boolean getSelected() { return m_selected; }
 public void setSelected(boolean value) { m_selected = value; }
 }
 // --
 // property access
 // --
 // property >lines<
 GRIDCollection m_lines = new GRIDCollection();
 GRIDCollection getLines() { return m_lines; }

 // --
 // public adapter methods
 // --
 /** */
 public void onAddLine()
 {
 LinesItem l = new LinesItem();
 m_lines.add(l);
 }

 /** */
 public void onRemoveLines()
 {
 Vector v = new Vector();
// collect all elements to be deleted
 Iterator iter = m_lines.iterator();
 while (iter.hasNext())
 {
 LinesItem l = (LinesItem)iter.next();
 if (l.getSelected() == true)
 v.addElement(l);
 }
// delete elements
 iter = v.iterator();

3

ROWTABLEAREA2 - The Flexible Control GridExample

 while (iter.hasNext())
 m_lines.remove(iter.next());
 }
}

Programming the grid is very simple. Define an instance of the class GRIDCollection in which you
hold the items. This instance is referenced by the griddataprop definition inside the
ROWTABLEAREA2 tag.

Each element inside the collection itself supports the properties that are referenced by the controls inside
the REPEAT block. In our example, the properties are referenced by the STR, CHECKBOX and FIELD
controls.

Use any "normal controls" inside the REPEAT block. For example, use either the BUTTON control or the
ICON control. Properties of these included controls are called inside the item class lines and not
directly in the adapter class.

The class GRIDCollection is the parent of TEXTGRIDCollection . It manages all aspects of
server-side scrolling that is used internally.

Using rowcount and height
Similar to the TEXTGRIDSSS2 control, the ROWTABLEAREA2 controls offers two properties for
defining its height:

rowcount and

height

If only rowcount is defined, the control will be always rendered with exactly the same number of lines -
the one defined by the rowcount property.

If the height is specified additionally, the height of the grid will follow the height definition. The
number of rows consequently follows the available vertical space. In this case, rowcount is the
maximum number of rows that is exchanged.

Background information: if you have a look at the generated HTML page for an XML layout definition
containing a ROWTABLEAREA2 grid, then you will see that each row of the grid is rendered into
corresponding controls. If a ROWTABLEAREA2 contains 10 lines where each line has three FIELD
controls, then the result will be an HTML page containing 30 fields.

Consequently, the rowcount property - when also specifying the height - should be carefully selected.
You must not simply define a rowcount of "100" because then you will get very large HTML pages that
become too large to be operated in a fast way. On the other hand, the rowcount should fit into normal
screen sizes and should not be too low. Have in mind the screen sizes of your users and decide
accordingly.

When does it make sense to have a height and a rowcount definition? Typically, it does not make
sense to define a fixed height (for example, "200") for ROWTABLEAREA2 controls: instead of defining
fixed heights, you should size the grid by using rowcount only. But it makes sense if you have flexible
heights, for example, a height of "100%". In this case, the actual height depends on the size of the user’s
screen and the grid can thus be sized in a flexible way.

4

Using rowcount and heightROWTABLEAREA2 - The Flexible Control Grid

Making Grids Look like Grids
Fields typically contain a high number of FIELD controls. Typically, a FIELD control has a certain
rendering that renders a field with a border and with a certain background color.

Be aware that inside the FIELD definition, there are two important properties:

noborder - if set to "true", no border will be drawn

transparentbackground - if set to "true", the field will always take over the background of the
controls in which it is positioned (e.g. STR row).

Have a look at the difference between the following screens. One screen uses the properties, the other
screen does not use them.

This is a grid:

This is collection of fields:

5

ROWTABLEAREA2 - The Flexible Control GridMaking Grids Look like Grids

For information on how to build the lines of a grid dynamically, see the description of the FLEXLINE
control.

Special Events in ROWTABLEAREA2 Processing
If using input controls (FIELD, CHECKBOX, COMBOBOX) inside a grid, then there are two special
events that may be passed to your application.

FWDTABKEYMETHOD of ROWTABLEAREA2: this is the method that is called when the user
presses the TAB key within the rightmost field of the grid.

BWDTABKEYMETHOD of ROWTABLEAREA2: this is the method that is called when the user
presses SHIFT+TAB on the leftmost control of the grid.

You can use these events for various purposes:

You may create a new item below the existing one when the user leaves the rightmost field.

You may want to trigger the scrolling of the grid if the user tabs through the last right field.

In the following example, every time the user leaves the rightmost field of the grid, a new item is created:

When the user now presses TAB in the last field, the screen will look as follows:

6

Special Events in ROWTABLEAREA2 ProcessingROWTABLEAREA2 - The Flexible Control Grid

The XML layout is:

...

...

...
<rowtablearea2 griddataprop="lines" rowcount="10" fwdtabkeymethod="endofLineProcessing">
 <tr>
 <label name=" " width="30" asheadline="true" labelstyle="text-align:center">
 </label>
 <label name="Item" width="30" asheadline="true">
 </label>
 <label name="Article" width="400" asheadline="true">
 </label>
 <label name="Quantity" asheadline="true" labelstyle="text-align:right">
 </label>
 <label name="Price" width="50" asheadline="true" labelstyle="text-align:right">
 </label>
 </tr>
 <repeat>
 <str valueprop="selected">
 <checkbox valueprop="selected" flush="screen" width="30">
 </checkbox>
 <textout valueprop="itemNumber" width="30" textoutstyle="text-align:center">
 </textout>
 <field valueprop="article" width="100%" noborder="true"
 transparentbackground="true">
 </field>
 <field valueprop="quantity" width="50" noborder="true"
 transparentbackground="true">
 </field>
 <field valueprop="price" width="50" noborder="true"
 transparentbackground="true" datatype="float" decimaldigits="2">
 </field>
 <hdist>
 </hdist>
 </str>
 </repeat>
</rowtablearea2>
...
...

7

ROWTABLEAREA2 - The Flexible Control GridSpecial Events in ROWTABLEAREA2 Processing

Be aware that the method that is associated with the "tab" event is called in the item object in which the
"tab" event was thrown.

The server-side processing looks as follows:

...

...
public class rowtab2_specEventsAdapter
 extends Adapter
{
 // class >LinesItem<
 public class LinesItem
 {
 public LinesItem(int itemNumber)
 {
 m_itemNumber = itemNumber;
 m_focussedItemNumber = itemNumber;
 }

 public String getArticleStatus()
 {
 if (m_itemNumber == m_focussedItemNumber)
 return "FOCUS";
 else
 return "EDIT";
 }

 int m_itemNumber;
 public int getItemNumber() { return m_itemNumber; }
 public void setItemNumber(int value) { m_itemNumber = value; }

 int m_focussedItemNumber;
 public int getfocussedItemNumber() { return m_itemNumber; }
 public void setfocussedItemNumber(int value) { m_itemNumber = value; }

 // property >article<
 String m_article;
 public String getArticle() { return m_article; }

 // property >price<
 double m_price;
 public double getPrice() { return m_price; }

 // property >quantity<
 int m_quantity;
 public int getQuantity() { return m_quantity; }

 // property >selected<
 boolean m_selected;
 public boolean getSelected() { return m_selected; }
 public void setSelected(boolean value) { m_selected = value; }

 public void endOfLineProcessing()
 {
 if (m_itemNumber == m_lines.size())
 {
 LinesItem item = new LinesItem(m_lines.size() + 1);
 m_lines.add(item);
 m_lines.displayItem(item);
 }

8

Special Events in ROWTABLEAREA2 ProcessingROWTABLEAREA2 - The Flexible Control Grid

 }
 }
...
...

Inside the method endOfLineProcessing() that is defined on item level, the new item is created. In
addition, you see that there is a certain focus management behind the field representing the article: the
focus management is used in a way that the focus is directly set into the article field when a new item is
created.

The full XML and code is available inside the project cisdemos.

ROWTABLEAREA2 Properties

Basic

griddataprop Name of adapter property
representing the grid on server side.

Must be of type "GRIDCollection".
The whole grid is represented by the
GRIDCollection-object, each
individual row of the grid is
represented by one item inside the
collection.

If using the control for building trees
(TREENODE-control inside the
grid’s items) then use
"TREECollection" on server side.

Obligatory

9

ROWTABLEAREA2 - The Flexible Control GridROWTABLEAREA2 Properties

rowcount Number of rows that is renderes
inside the control.

There are two ways of using this
property - dependent on whether you
in addition define the HEIGHT
property:

If you do NOT define the HEIGHT
property then the control is rendered
with exactly the number of rows that
is defined as ROWCOUNT value.

If a HEIGHT value is defined an
addition (e.g. as percentage value
"100%") then the number of rows
depends on the actual height of the
control. The ROWCOUNT value in
this case indicates the maximum
number of rows that is picked from
the server. You should define this
value in a way that it is not too low -
otherwise your grid will not be fully
filled. On the other hand it should not
be defined too high ("100") because
this causes more communication
traffic and more rendering effort
inside the browser.

Optional

10

ROWTABLEAREA2 PropertiesROWTABLEAREA2 - The Flexible Control Grid

height Height of the control.

There are three possibilities to define
the height:

(A) You do not define a height at all.
As consequence the control will be
rendered with its default height. If
the control is a container control
(containing) other controls then the
height of the control will follow the
height of its content.

(B) Pixel sizing: just input a number
value (e.g. "20").

(C) Percentage sizing: input a
percantage value (e.g. "50%"). Pay
attention: percentage sizing will only
bring up correct results if the parent
element of the control properly
defines a height this control can
reference. If you specify this control
to have a height of 50% then the
parent element (e.g. an ITR-row)
may itself define a height of "100%".
If the parent element does not specify
a width then the rendering result may
not represent what you expect.

Optional 100

150

200

250

300

250

400

50%

100%

11

ROWTABLEAREA2 - The Flexible Control GridROWTABLEAREA2 Properties

width Width of the control.

There are three possibilities to define
the width:

(A) You do not define a width at all.
In this case the width of the control
will either be a default width or - in
case of container controls - it will
follow the width that is occupied by
its content.

(B) Pixel sizing: just input a number
value (e.g. "100").

(C) Percentage sizing: input a
percantage value (e.g. "50%"). Pay
attention: percentage sizing will only
bring up correct results if the parent
element of the control properly
defines a width this control can
reference. If you specify this control
to have a width of 50% then the
parent element (e.g. an ITR-row)
may itself define a width of "100%".
If the parent element does not specify
a width then the rendering result may
not represent what you expect.

Sometimes
obligatory

100

120

140

160

180

200

50%

100%

firstrowcolwidths If set to "true" then the grid is sized
according to its first row. This first
row typically is a header-TR-row in
which GRIDCOLHEADER controls
are used as column headers for the
subsequent rows.

Default is "false", i.e. the grid is
sized according to its "whole
content".

Please note: when using the
GRIDCOLHEADER control within
the header-TR-row this property
must be set to "true" - otherwise
column resizing (by drag and drop)
does not work correctly.

Sometimes
obligatory

true

false

12

ROWTABLEAREA2 PropertiesROWTABLEAREA2 - The Flexible Control Grid

onloadbehaviour Loading behaviour of the items into
the client.

"block" (=default) means that the
client always requests the currently
visible items from the server
(=Server-Side Scrolling).

"collection" means that the client
requests all items at the beginning
from the server. The client itself
implements the scrolling in the
JavaScript/SWT (=Client-Side
Scrolling)

New in CIT81: "collectionorblock"
means that the runtime
automicatically switches between
Client-Side Scrolling and
Server-Side Scrolling.

Optional block

collection

comment Comment without any effect on
rendering and behaviour. The
comment is shown in the layout
editor’s tree view.

Optional

Appearance

withborder If set to "false" then no thin border is
drawn around the controls that are
contained in the grid.

Default is "true".

Optional true

false

hscroll Definition of the horizontal
scrollbar’s appearance.

You can define that the scrollbars
only are shown if the content is
exceeding the control’s area ("auto").
Or scrollbars can be shown always
("scroll"). Or scrollbars are never
shown - and the content is cut
("hidden").

Default is "auto".

Optional auto

scroll

hidden

13

ROWTABLEAREA2 - The Flexible Control GridROWTABLEAREA2 Properties

vscroll Definition of the vertical scrollbar’s
appearance.

You can define that scrollbars only
are shown if the content is exceeding
the control’s area ("auto"). Or
scrollbars can be shown always
("scroll"). Or scrollbars are never
shown - and the content is cut
("hidden").

Default is "auto".

Optional auto

scroll

hidden

firstrowcolwidths (already explained above)

clipboardaccess If switched to true then the content of
the grid can be selected and exported
into the client’s clipboard.

Optional true

false

withblockscrolling If switched to "true" then the grid
will show small scroll icons by
which the user can scroll the grid’s
content. Scrolling typically is done
by using the grid’s scrollbar - the
scroll icons that are switched on by
this property are an additional
possibility to scroll.

Optional true

false

touchpadinput If set to "true" then touch screen
icons for scrolling are displayed in
addition.

Default is "false".

Optional true

false

requiredheight Minimum height of the control in
pixels. Use this property to ensure a
minimum height if the overall
control’s height is a percentage of the
available space - i.e. if value of
property HEIGHT is a percentage
(e.g. 100%).

Please note:You must not use
FIXLAYOUT at the surrounding row
container (ITR and ROWAREA).
Otherwise: if the available space is
less than the required height the end
of the control is just cut off.

Optional 1

2

3

int-value

14

ROWTABLEAREA2 PropertiesROWTABLEAREA2 - The Flexible Control Grid

tablestyle CSS style definition that is directly
passed into this control.

With the style you can individually
influence the rendering of the
control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by
appending and separating them with
a semicolon.

Sometimes it is useful to have a look
into the generated HTML code in
order to know where direct style
definitions are applied. Press right
mouse-button in your browser and
select the "View source" or "View
frame’s source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

darkbackground Normally the background is in light
colour but the CIS style sheets also
have a dark(er) grey colour to be
used.

If DARKBACKGROUND is set to
true then the darker background
colour is chosen. This property
typically is used to integrate light
coloured controls into darker
container areas.

Optional true

false

invisiblemodeincompletelastrowIf set to "invisible" an incomplete
last row is not shown.

Optional invisible

visible

withsliderfreeze Setting this to "true" prevents
unwisched slider jumps while
scrolling up/down in a grid with a
huge number of lines (for example
20000).

Optional true

false

Binding

15

ROWTABLEAREA2 - The Flexible Control GridROWTABLEAREA2 Properties

oncontextmenumethod Name of adapter method that is
called when the user presses right
mouse button into the grid - but not
on an existing row (then the row item
object is responsible for handling the
right mouse button) but on "empty
area" of the grid.

Optional

fwdtabkeymethod Name of an adapter method that is
called if the user presses the TAB
key within the very last cell of the
grid (last cell within the last line).
Use property
FWDTABKEYFILTER to associate
this call with a grid column.

Optional

fwdtabkeyfilter By default the
FWDTABKEYMETHOD is called if
the user presses the TAB key within
the veryfirst cell of the grid. Input the
name of a cell’s VALUEPROP to
associate the method call with any
other column.

Optional

bwdtabkeymethod Name of an adapter method that is
called if the user presses SHIFT and
TAB keys within the first cell of a
grid line. Use property
BWDTABKEYFILTER to associate
this call with a cell of choice.

Optional

bwdtabkeyfilter By default the
BWDTABKEYMETHOD is called
if the user presses the SHIFT and
TAB keys within the very first cell of
the grid. Input the name of a cell’s
VALUEPROP to associate the
method call with any other column.

Optional

Hot Keys

16

ROWTABLEAREA2 PropertiesROWTABLEAREA2 - The Flexible Control Grid

hotkeys Comma separated list of hot keys. A
hotkey consists of a list of keys and a
method name. Separate the keys by
"-" and the method name again with
a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter
...defines two hot keys. Method
onCtrlAltA is invoked if the user
presses Ctrl-Alt-A. Method
"onEnter" is called if the user presses
the ENTER key.

Use the popup help within the
Layout Painter to input hot keys.

Optional

STR Properties
STR (selectable table row) is a normal table row (TR) that highlights its background depending on an
adapter property.

17

ROWTABLEAREA2 - The Flexible Control GridSTR Properties

Basic

valueprop Name of the adapter property that defines if the row is
selected (value "true") or not selected ("false").

Obligatory

withalterbackgroundFlag that indicates if the grid line shows alternating
background color (like rows within a textgrids). Default is
false. Please note: controls inside the row must have
transparent background. In case of the FIELD control simply
set property TRANSPARENTBACKGROUND to true.

Optional true

false

showifempty Flag that indicates if an unused row is visible. Example: if set
to false a grid with rowcount ten and a server side collection
size of seven will hide the three remaining rows.

Default is false.

Optional true

false

comment Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor’s tree view.

Optional

Binding

valueprop (already explained above)

onclickmethod Name of the method inside the row item class that is called if
the user clicks a line.

Optional

ondblclickmethod Name of the method inside the row item class that is called if
the user double clicks a line.

Optional

contextmenumethodName of the method on adapter level that is called when the
user presses the right mouse button in an empty area.

Optional

proprefprop Name of the property inside the row item class that is called if
the user clicks a FIELD control. The VALUEPROP of the
clicked field control will passed.

Optional

backgroundcolorpropName of the adapter property that dynamically sets the
background color for the control.

Optional

In the above example, the selection itself is done by a CHECKBOX. Both CHECKBOX and STR
definitions are bound to the same Boolean value property (selected). Because of the flush definition
inside the CHECKBOX, the table row is highlighted immediately after clicking the check box.

Inside the REPEAT definition, you can use also normal table rows (TR instead of STR). You cannot use
ITR table rows to form a well-structured grid, because all columns have to be synchronized in their width.

It is recommended to use STR rows. The reasons are:

The STR row refers to a property representing its selection status (property valueprop). If this
property is not available, the STR row automatically deactivates its contained controls. This means: if
the STR row is not represented by a corresponding data object on the server side (because the grid
contains more rows than are made available by the grid collection), then all controls of the STR row
are automatically deactivated.

18

STR PropertiesROWTABLEAREA2 - The Flexible Control Grid

Special grid functions like up/down cursor navigation and cut/paste operations with the right mouse
button are only available with the STR row, not with TR.

19

ROWTABLEAREA2 - The Flexible Control GridSTR Properties

	ROWTABLEAREA2 - The Flexible Control Grid
	Example
	Using rowcount and height
	Making Grids Look like Grids
	Special Events in ROWTABLEAREA2 Processing
	ROWTABLEAREA2 Properties
	STR Properties

