
GOOGLEMAP2
The GOOGLEMAP2 control is used to provide for Google Maps support within Application Designer
pages. The control internally makes use of the Google Maps API. In order to use the control on your site,
you need to sign up for a Google Maps API key at http://code.google.com/apis/maps/signup.html. Make
sure that you agree with the Google Maps API Terms of Use
(http://code.google.com/apis/maps/terms.html).

The following topics are covered below:

Before You Start

Example

Typical Problems

Properties

Before You Start
In order to use the GOOGLEMAP2 control, you need to sign up for a Google Maps API key. A key is
valid for a single "directory" on your web server only, i.e. you sign up for a URL like
http://www.mysite.com/mywebapp/myproject. With a standard installation of Application Designer on
localhost, you may sign up for the URL http://localhost:8080/mywebapp/myproject. Typically, you
develop your Application Designer web application not on the site on which you run it later in productive
mode. Therefore, you may sign up for two different sites (development and production site).

Required Steps

1. Choose the project directory that keeps the layouts using the GOOGLEMAP2 control.

2. Sign up for a Google Maps API key at http://code.google.com/apis/maps/signup.html for this project
directory (e.g. http://localhost:8080/mywebapp/myproject).

3. Create the API key page. Store the key page in the registered project directory. You are free in
naming the file (the file extension must be "html"). The GOOGLEMAP2 control embeds your API
key as a subpage. The subpage must have the following minimum structure:

<html>
 <head>
 <script src=" http://maps.google.com/maps?file=api&v=2.x&key=YOUR_API_KEY"></script>
 <script src="../HTMLBasedGUI/general/googlemapsscript.js"></script>
 </head>
 <body>
 <div id="map" style="position:absolute; top0; left:0;"></div>
 </body>
</html>

You see that the page includes two JavaScript libraries. The first line refers to the Google Maps API.
Replace the placeholder "YOUR_API_KEY" with your Google Maps API key. With the second line,
the page includes the control’s scripting (calls from Application Designer to the Google Maps). The
page body is quite simple: it contains a single div tag with the ID "map". This div is used as an
anchor to insert Google Maps controls dynamically.

1

GOOGLEMAP2GOOGLEMAP2

http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/terms.html
http://code.google.com/apis/maps/signup.html

Example
The following topics are covered below:

General Usage

Marker Management

General Usage

The map options are taken from the property infoprop . On this object, you may set the address (or
latitude and longitude), the zoom level and the map size as well as the map type.

Note:
The usage of address or longitude/latitude is mutually exclusive.

The above map is controlled by the following adapter code:

public class GoogleMap2Adapter extends Adapter
{
 // property >gm2Info<
 GOOGLEMAP2Info m_gm2Info = new GOOGLEMAP2Info(
 GOOGLEMAP2Info.NO_MAPTYPE_CONTROL,
 GOOGLEMAP2Info.SMALL_MAP);
 public GOOGLEMAP2Info getGm2Info(){ return m_gm2Info; }
 public void setGm2Info(GOOGLEMAP2Info value){ m_gm2Info = value; }
 // Marker items
 private class HotelMarker extends GOOGLEMAP2Item
 {
 // [see section "Marker Management"]

2

ExampleGOOGLEMAP2

 }

 private Hashtable hotels = new Hashtable();

 /** initialisation - called when creating this instance */
 public void init()
 {
 m_gm2Info.setAddress("Darmstadt, Germany");
 m_gm2Info.setZoomlevel("13");
 setupHotels();
 }

 // property >hotelSelection<
 String m_hotelSelection = "";
 public String getHotelSelection(){ return m_hotelSelection; }
 public void setHotelSelection(String value){ m_hotelSelection = value; }

 // property >validHotSel<
 COMBODYNValidValues m_validHotSel = new COMBODYNValidValues();
 public COMBODYNValidValues getValidHotSel(){ return m_validHotSel; }

 /** */
 public void onSelect()
 {
 HotelMarker hotel = (HotelMarker) hotels.get(m_hotelSelection);
 m_gm2Info.centerMarker(hotel);
 }

 // property >hotelDesc<
 String m_hotelDesc = "";
 public String getHotelDesc(){ return m_hotelDesc; }
 public void setHotelDesc(String value){ m_hotelDesc = value; }

 // property >hotelName<
 String m_hotelName = "";
 public String getHotelName(){ return m_hotelName; }
 public void setHotelName(String value) { m_hotelName = value; }

 /** */
 public void onPlaceOwn()
 {
 if (m_hotelName.equals(""))
 {
 outputMessage(MT_ERROR, "Please specify a name.");
 return;
 }

 HotelMarker MyHotel = new HotelMarker(m_hotelName);
 MyHotel.setInfoText("" + m_hotelName + "\n" + m_hotelDesc);

 m_gm2Info.addMarkerToLastSelectedPoint(MyHotel);
 }

 /** */
 public void onRemove()
 {
 m_gm2Info.removeLastSelectedMarker();
 }

 /** */
 public void onRemoveAll()

3

GOOGLEMAP2General Usage

 {
 m_gm2Info.clear();
 hotels.clear();
 m_validHotSel.clear();
 m_hotelSelection = "";
 }

 /** */
 public void onShowAll()
 {
 onRemoveAll();
 setupHotels();
 }

 private void setupHotels()
 {
 setupHotel("Bestwestern, Parkhaus-Hotel",
 "Grafenstraße 31, 64283 Darmstadt");
 setupHotel("
 // deactivate last added marker
 m_gm2Info.setSelectedMarker(null);
 }

 private void setupHotel(String name, String address)
 {
 HotelMarker hotel = new HotelMarker(name, address);
 hotel.setInfoText("" + name + "\n" + address.replaceAll(", ", "\n"));
 m_gm2Info.addMarker(hotel, false);
 if (name.length() > 23)
 name = name.substring(0, 23) + "...";
 m_validHotSel.addValidValue(String.valueOf(hotel.getId()), name);
 hotels.put(String.valueOf(String.valueOf(hotel.getId())), hotel);
 }

 // property >naviCity<
 String m_naviCity;
 public String getNaviCity(){ return m_naviCity; }
 public void setNaviCity(String value){ m_naviCity = value; }

 // property >naviCountry<
 String m_naviCountry;
 public String getNaviCountry(){ return m_naviCountry; }
 public void setNaviCountry(String value){ m_naviCountry = value; }

 // property >naviStreet<
 String m_naviStreet;
 public String getNaviStreet(){ return m_naviStreet; }
 public void setNaviStreet(String value){ m_naviStreet = value; }

 /** */
 public void onNavigate()
 {
 String address = "";

 if (!m_naviStreet.equals(""))
 {
 address += m_naviStreet + ", ";
 }
 if (!m_naviCity.equals(""))
 {
 address += m_naviCity + ", ";
 }

4

General UsageGOOGLEMAP2

 if (!m_naviCountry.equals(""))
 {
 address += m_naviCountry;
 }

 m_gm2Info.setAddress(address);
 }

}

The above map is initialized with the instantiation of the GOOGLEMAP2Info object and just a few simple
lines of code in the init() method.

The constructor of the GOOGLEMAP2Info class takes the following arguments:

Map Type Control Setting
Using the constant "MAPTYPE_CONTROL" (instead of "NO_MAPTYPE_CONTROL" which is
used in the above example) would result in three buttons in the upper right corner of the map, which
enable the user to change the map view between "Map", "Satellite" and "Hybrid" mode.

Note:
The range of zoom levels may differ for different map types in the same region.

Map Size Setting
For the above map the map size property is set to the constant "SMALL_MAP" which results in the
four navigation arrows and the zoom buttons in the upper left corner. The constant "LARGE_MAP"
would alternatively provide more precise navigation controls allocating more of the map area in
exchange.

The GOOGLEMAP2Info class provides for a second constructor without any arguments. Using this
constructor is equal to the usage of the described constructor with the constants
"NO_MAPTYPE_CONTROL" and "SMALL_MAP".

In the init() method, the map view is positioned via the setAddress method. The same result would
be achieved using the setLatLng method with the argument "49,879046" (for latitude) and "8,670112"
(for longitude). It is obligatory to set the map view using one of these variants or using a marker (see
Marker Management for further information). Otherwise the map will not be displayed.

The range of values for the zoomlevel property may vary according to the map region. The value "4" is
used by default if zoomlevel is not set explicitly.

The GOOGLEMAP2 control listens to changes on the address (or latitude/longitude) and the
zoomlevel property.

Marker Management

To use the marker management of the GOOGLEMAP2 control, you need an implementation of the
GOOGLEMAP2Item class. For the above example, the following code was used:

private class HotelMarker extends GOOGLEMAP2Item
{
 private String m_name;

 public HotelMarker(String name)
 {

5

GOOGLEMAP2Marker Management

 super(true);
 m_name = name;
 }

 public HotelMarker(String name, String address)
 {
 super(address, true);
 m_name = name;
 }

 public void reactOnSelect()
 {
 outputMessage(MT_SUCCESS, "Hotel ’" + m_name + "’ selected.");
 }

 public void reactOnDrag()
 {
 outputMessage(MT_SUCCESS, "Hotel ’" + m_name + "’ has moved.");
 }

 public void reactOnDeactivate()
 {
 outputMessage(MT_SUCCESS, "Hotel ’" + m_name + "’ deselected.");
 }
}

The methods reactOnSelect() , reactOnDrag() and reactOnDeactivate() have to be
implemented in order to define the behavior for the following events:

Select
The user clicks on the corresponding marker on the map.

If the user clicks the button, for example, five times, this event is fired five times, even if the button
remains active.

Drag
The user drags the marker to a different position on the map and drops it.

It is possible to switch dragging on and off for each marker using the marker’s
setDraggable(boolean) method. By default, all markers are draggable.

Deactivate
The user clicks a different marker or somewhere else on the map when the marker is active.

A marker is considered active from selection until deactivation.

Markers may be added to specific positions or to the position the user has clicked last on the map,
removed, activated, deactivated or centered using the infoprop property. As mentioned above in the
section General Usage, a marker may be used to set the map’s view if it is told to center on the marker.

Each marker may have an infoText that is shown within the pop-up when the marker is selected by the
user. Changes to this text will be updated on the client side. If no text is set, a pop-up will not appear.
Since the infoText is treated as HTML code, it may be formatted like HTML. Only breaks will
automatically be replaced.

6

Marker ManagementGOOGLEMAP2

The GOOGLEMAP2 control listens to changes on markers, address (or latitude/longitude) and
infoText property.

Typical Problems
The following topics are covered below:

Google Map API Key

Map Remains Gray

Google Map API Key

Your Google Maps API key is bound to a directory on a certain web server (i.e. you sign up for the URL
http://mycomputer.mydomain.com:8080/mywebapp/myproject). If you use your key for another URL,
Google shows an error message:

Reasons that cause the error:

You have registered your computer using the computer’s name (e.g. http://mycomputer...). But the
Application Designer development workplace is started using the URL http://localhost....

Solution: start the Application Designer workplace with http://mycomputer....

The registered directory (e.g. .../mywebapp/myproject) does not match your installation (either a
mistake in writing when signing up for the key or you have renamed the web application or project
after registration).

Solution: rename your web application or project to match the registered names. Or sign up for a new
key and insert the new key into the API key page. In the latter case, delete the content of the
browser’s cache. Otherwise, the browser will use the former API key page (and thus the old key).

Map Remains Gray

If you use longitude and latitude for placing the marker on the map, their values may exceed the map top
(or bottom) border. If you are able to find the map by scrolling down (or up), then this is the case. Check
the values for longitude and latitude in this case.

Properties

Basic

7

GOOGLEMAP2Typical Problems

infoprop Name of adapter property representing the control on server
side.

The property must be of type GOOGLEMAPInfo. Read
further information inside the Java API Documentation.

Obligatory

apikeypagenameName of the Maps API Key page. Example:
mygooglemapsapikey.html. Keep this file within the project
directory (directory within the CIS HTML pages are kept).
The GOOGLEMAP-control expects this file within certain
Javascript includes and content. Have look into chapter
"Google Map - Before You Start" within the Developers
Guide

Obligatory

width Width of the control.

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width of
the control will either be a default width or - in case of
container controls - it will follow the width that is occupied by
its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a
width this control can reference. If you specify this control to
have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result may
not represent what you expect.

Optional 100

120

140

160

180

200

50%

100%

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control
is a container control (containing) other controls then the
height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct
results if the parent element of the control properly defines a
height this control can reference. If you specify this control to
have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result may
not represent what you expect.

Optional 100

150

200

250

300

250

400

50%

100%

8

PropertiesGOOGLEMAP2

comment Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor’s tree view.

Optional

Appearance

pagestyle CSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame’s source" function.

Optional

rowspan Row spanning of control.

If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default
it is "1" - but you may want to define the control two span
over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are
explicitly not synched.

Optional 1

2

3

4

5

50

int-value

colspan Column spanning of control.

If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to
span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows).
It does not make sense in ITR rows, because these rows are
explicitly not synched.

Optional 1

2

3

4

5

50

int-value

9

GOOGLEMAP2Properties

	GOOGLEMAP2
	Before You Start
	
	Required Steps

	Example
	General Usage
	Marker Management

	Typical Problems
	Google Map API Key
	Map Remains Gray

	Properties

