
FLEXLINE - Flexible Columns in Control
Grids
In a previous example, the grid was completely defined as part of the layout definition: the sequence of
columns was internally defined by defining the controls that are part of an STR row.

The FLEXLINE control offers the option to define the columns of a grid dynamically at runtime. That is:
the application decides at runtime which column controls to use with which properties. Consequently, you
can build a control grid with some system configuration in mind, in which the layout of control grids is
customized.

This chapter covers the following topics:

Example

FLEXLINE Properties

Increasing the Performance

Example
Have a look at the following example:

1

FLEXLINE - Flexible Columns in Control GridsFLEXLINE - Flexible Columns in Control Grids

The grid looks like a normal ROWTABLEAREA2 grid, but it is built in a more dynamic way.

The XML layout definition is:

<page model="flexline_01Adapter">
 <titlebar name="Flexline Example">
 </titlebar>
 <header withdistance="false">
 <button name="Save">
 </button>
 </header>
 <pagebody>
 <rowarea name="Example">
 <vdist height="5">
 </vdist>
 <rowtablearea2 griddataprop="lines" rowcount="10" width="395" withborder="true">
 <tr>
 <label name=" " asheadline="true">
 </label>
 <flexline infoprop="headline">
 </flexline>
 </tr>
 <repeat>
 <str valueprop="selected">
 <checkbox valueprop="selected" flush="screen" width="30">
 </checkbox>
 <flexline infoprop="/rowline">
 </flexline>
 <hdist width="100%">
 </hdist>
 </str>
 </repeat>
 </rowtablearea2>
 <vdist height="10">
 </vdist>
 </rowarea>
 <vdist height="5">
 </vdist>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

You see that there are two FLEXLINE control definitions inside the ROWTABLEAREA2 definition:

One definition represents the headline of the grid.

The other definition is part of each row’s content.

Each definition points to a property that passes the configuration at runtime. Within the second definition,
you may see something which is new for you: the VALUEPROP references to a property /rowline .
The "/" character at the beginning indicates that this property is always picked from the adapter - and not
from the object representing the row item.

This is the Java code on the server side:

// This class is a generated one.

import java.math.BigDecimal;

import com.softwareag.cis.file.CSVManager;
import com.softwareag.cis.server.Adapter;

2

ExampleFLEXLINE - Flexible Columns in Control Grids

import com.softwareag.cis.server.util.FLEXLINEInfo;
import com.softwareag.cis.server.util.GRIDCollection;

public class flexline_01Adapter
 extends Adapter
{
 // class >LinesItem<
 public class LinesItem
 {
 // property >selected<
 boolean m_selected;
 public boolean getSelected() { return m_selected; }
 public void setSelected(boolean value) { m_selected = value; }

 String m_article;
 BigDecimal m_price;

 public void remove()
 {
 m_lines.remove(this);
 }

 public String getArticle() { return m_article; }
 public void setArticle(String article) { m_article = article; }
 public BigDecimal getPrice() { return m_price; }
 public void setPrice(BigDecimal price)
 {
 m_price = price.setScale(2,BigDecimal.ROUND_UP);
 }
 }

 // property >headline<
 FLEXLINEInfo m_headline = new FLEXLINEInfo();
 public FLEXLINEInfo getHeadline() { return m_headline; }

 // property >rowline<
 FLEXLINEInfo m_rowline = new FLEXLINEInfo();
 public FLEXLINEInfo getRowline() { return m_rowline; }

 // property >lines<
 GRIDCollection m_lines = new GRIDCollection();
 public GRIDCollection getLines() { return m_lines; }

 /** initialisation - called when creating this instance*/
 public void init()
 {
 // configure controls in headline
 m_headline.addLabel(this,CSVManager.encodeString(new String[]
 {
 "name","Article",
 "width","250",
 "asheadline","true"
 }));
 m_headline.addLabel(this,CSVManager.encodeString(new String[]
 {
 "name","Price",
 "width","100",
 "textalign","right",
 "asheadline","true"
 }));
 // configure controls in row
 m_rowline.addField(this,CSVManager.encodeString(new String[]

3

FLEXLINE - Flexible Columns in Control GridsExample

 {
 "valueprop","article",
 "width","250",
 "flush","server",
 "noborder","true",
 "transparentbackground","true"
 }));
 m_rowline.addField(this,CSVManager.encodeString(new String[]
 {
 "valueprop","price",
 "width","100",
 "textalign","right",
 "noborder","true",
 "transparentbackground","true"
 }));
 // create lines
 for (int i=1; i<=20; i++)
 {
 LinesItem li = new LinesItem();
 li.setArticle("Article " + i);
 li.setPrice(new BigDecimal(i*0.99));
 m_lines.add(li);
 }
 }
}

For each FLEXLINE control, there is a FLEXLINEInfo property. The properties are initialized during
the init() phase of the adapter. Of course, you can also change the FLEXLINEInfo configuration
later: there is a corresponding clear() method for doing so.

Inside the FLEXLINEInfo class, there is a Java interface with which you can add:

labels

check boxes

buttons

combo boxes

There is a method for each object. As part of the method, you always pass the owner (i.e. the current
model) and the configuration of the control.

The configuration is passed as a comma separated string that is built using the CSVManager class. You
could also directly write the CSV string (valueprop;price;width;100;noborder;true) but
then have to be careful to replace every "real" semicolon character with "\;". You can use and combine
any properties that are available for the controls. This means there is no difference in managing controls
that you flexibly add and controls that are defined in a fixed way inside a layout definition.

All the other processing around the FLEXLINE management is the same as you know it from layouts that
are defined in a fixed way.

Note:
Application Designer now provides a FLEXGRID control. While FLEXLINE still is supported (and
necessary), FLEXGRID offers a simpler API to build dynamically controlled control grids. Basically,
FLEXGRID is a combination of ROWTABLEAREA2, FLEXLINE and GRIDCOLHEADER. See the
description of the FLEXGRID control.

4

ExampleFLEXLINE - Flexible Columns in Control Grids

FLEXLINE Properties

Basic

infoprop Name of the adapter property that provides the server
side information for this control. The adapter property
must be of type "FLEXLINEInfo". Inside the property
the sequence of controls is defined.

Obligatory

withborder Flag that indicates if a border is drawn between the
controls that are rendered inside the FLEXLINE control.
Default is "false", i.e. no border is drawn.

Optional true

false

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

Increasing the Performance
In the above example, the grid was filled by adding FIELD controls into a FLEXLINE control. In larger
grids with a high number of columns and rows, you may consider displaying your data within plain <TD>
elements. Thus, the grid becomes more lightweight and the performance increases significantly. You can
output images and use your own cell style. Direct cell input, however, is not possible.

In the following example, the grid looks like a ROWTABLEAREA2 grid, but it is built in a more dynamic
way.

The XML layout definition is:

<page model="FlexlineTDSAdapter">
 <titlebar name="FLEXLINE-TDS">
 </titlebar>
 <header withdistance="false">
 </header>
 <pagebody>
 <rowarea name="Demo">
 <rowtablearea2 griddataprop="lines" rowcount="5" width="100%" firstrowcolwidths="true">
 <tr>
 <label name=" " width="30" asheadline="true">
 </label>
 <label name="Product" width="60%" asheadline="true">

5

FLEXLINE - Flexible Columns in Control GridsFLEXLINE Properties

 </label>
 <label name="Price&amp;nbsp;" width="20%" asheadline="true" textalign="right">
 </label>
 <label name="Stock&amp;nbsp;" width="20%" asheadline="true" textalign="right">
 </label>
 </tr>
 <repeat>
 <str valueprop="selected" withalterbackground="true">
 <selector valueprop="selected">
 </selector>
 <flexline infoprop="/contentFL">
 </flexline>
 </str>
 </repeat>
 </rowtablearea2>
 </rowarea>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

You see that there is one FLEXLINE control definition inside the ROWTABLEAREA2 definition. This
definition points to a property that passes the configuration at runtime. Within the definition, the
infoprop references to a property "/contentFL". The slash (/) at the beginning indicates that this
property is always picked from the adapter (it is not picked up from the object representing the row item).

This is the Java code on the server side:

// This class is a generated one.

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class FlexlineTDSAdapter extends Adapter
{
 // class >LinesItem<
 public class LinesItem
 {
 // property >selected<
 boolean m_selected;

 public boolean getSelected()
 {
 return m_selected;
 }

 public void setSelected(boolean value)
 {
 m_selected = value;
 }

 // property >tdsValue<
 String m_tdsValue;

 public String getTdsValue()
 {
 return m_tdsValue;
 }

 // property >tdsColors<
 String m_tdsColor;

 public String getTdsColor()
 {
 return m_tdsColor;

6

Increasing the PerformanceFLEXLINE - Flexible Columns in Control Grids

 }

 // property >tdsBGColors<
 String m_tdsBGColor;

 public String getTdsBGColor()
 {
 return m_tdsBGColor;
 }

 // property >tdsAlign<
 String m_tdsAlign;

 public String getTdsAlign()
 {
 return m_tdsAlign;
 }

 // property >imageURL<
 String m_imageURL;

 public String getImageURL()
 {
 return m_imageURL;
 }
 }

 // property >contentFL<
 FLEXLINEInfo m_contentFL = new FLEXLINEInfo();

 public FLEXLINEInfo getContentFL()
 {
 return m_contentFL;
 }

 // property >lines<
 GRIDCollection m_lines = new GRIDCollection();

 public GRIDCollection getLines()
 {
 return m_lines;
 }

 /** initialization - called when creating this instance */
 public void init()
 {
 m_contentFL.addTds(this,
 "colcount;5;" +
 "valueprop;tdsValue;" +
 "fgcolorprop;tdsColor;" +
 "bgcolorprop;tdsBGColor;" +
 "alignprop;tdsAlign;" +
 "imageprop;imageURL;" +
 "font-weight;bold");

 LinesItem item = new LinesItem();
 item.m_tdsValue = "Half fat margarine (with a very-long text for description);0,99;2300";
 item.m_tdsColor = "#000000;#000000;#000000";
 item.m_tdsBGColor = ";;";
 item.m_imageURL = ";../HTMLBasedGUI/images/helpiconblue.gif;";
 item.m_tdsAlign = "left;right;right";
 m_lines.add(item);

 item = new LinesItem();
 item.m_tdsValue = "Earl Grey Tea;1,99;340";
 item.m_tdsColor = "#000000;#000000;#000000";
 item.m_tdsBGColor = ";;";

7

FLEXLINE - Flexible Columns in Control GridsIncreasing the Performance

 item.m_imageURL = ";;";
 item.m_tdsAlign = "left;right;right";
 m_lines.add(item);

 item = new LinesItem();
 item.m_tdsValue = "White Salmon;4,99;10";
 item.m_tdsColor = "#000000;#000000;#FFFFFF";
 item.m_tdsBGColor = ";;#FF0000";
 item.m_imageURL = ";;";
 item.m_tdsAlign = "left;right;right";
 m_lines.add(item);

 }
}

For each FLEXLINE control, there is a FLEXLINEInfo property. The properties are initialized during
the init() phase of the adapter. You can also change the FLEXLINEInfo configuration later: there is
a corresponding clear() method for doing so.

Inside the FLEXLINEInfo class, there is a Java interface with which you can add the following:

addTds(Adapter owner, String properties);

Semicolons are used to separate the values in the property list. The properties may contain the following
values:

colcount

The number of columns that have to be provided for the contents.

valueprop

The property name of the row item class that returns a list of column values which are separated by
semicolons.

fgcolorprop

The property name of the row item class that returns a list of foreground color values which are
separated by semicolons.

bgcolorprop

The property name of the row item class that returns a list of background color values which are
separated by semicolons.

alignprop

The property name of the row item class that returns a list of cell alignment values which are
separated by semicolons. Possible values: left, center, right.

imageprop

The property name of the row item class that returns a list of image URLs which are separated by
semicolons. A single TD contains either text (see valueprop) or an image. If you provide an image
URL and text for same cell, the text is suppressed.

8

Increasing the PerformanceFLEXLINE - Flexible Columns in Control Grids

font-weight

The weight of the font.

A width is not passed. It is assumed that the width is defined by the environment (for example, by a
ROWTABLEAREA2 control where the columns have a fixed size).

Note:
It is currently only possible to add exactly one Tds control to one FLEXLINE control.

9

FLEXLINE - Flexible Columns in Control GridsIncreasing the Performance

	FLEXLINE - Flexible Columns in Control Grids
	Example
	FLEXLINE Properties
	Increasing the Performance

