
FLEXGRID - Flexible Grid, Hiding the Grid
Complixity for Developers
In the previous sections, you saw the basics that make a flexible grid:

ROWTABLEAREA2, REPEAT, STR as controls for defining a grid structure.

GRIDCOLHEADER for defining header columns and getting move, resize events.

FLEXLINE for defining a column’s layout (both for header and for items).

SELECTOR for selecting rows.

Even though each control has its dedicated task and is itself fairly uncomplex, the combination of all
controls is not easy for developers to cope with in order to build flexible grids.

The FLEXGRID control is a pre-packaged arrangement of all these controls, combined with a server-side
processing that is available using the corresponding FLEXGRIDInfo class. With a FLEXGRID control,
you can easily (and dynamically) set up the layout of a grid - and all the advantages such as reacting on
moving columns are automatically available.

Have a look at the following grid:

It looks like a normal grid - the corresponding layout definition shows the difference:

<rowarea name="Demo">
 <flexgrid infoprop="grid" selectprop="selected" rowcount="10" singleselect="false">
 </flexgrid>
</rowarea>

The definition of the grid is very compact - only pointing to a certain property on the server side
(gridinfoprop), defining a selection property (selectprop) and a row count.

The server-side code is also quite simple:

package com.softwareag.cis.test40;

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

1

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for DevelopersFLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers

public class FlexGrid2Adapter
 extends Adapter
{
 public class MyLine extends SelectableLine
 {
 String m_firstName;
 String m_lastName;
 boolean m_released;
 public String getFirstName() { return m_firstName; }
 public void setFirstName(String firstName) { m_firstName = firstName; }
 public String getLastName() { return m_lastName; }
 public void setLastName(String lastName) { m_lastName = lastName; }
 public boolean getReleased() { return m_released; }
 public void setReleased(boolean released) { m_released = released; }
 }

 FLEXGRIDInfo m_grid = new FLEXGRIDInfo(this);
 public FLEXGRIDInfo getGrid() { return m_grid; }
 public void setGrid(FLEXGRIDInfo value) { m_grid = value; }

 public void init()
 {
 m_grid.clearColumnStructure();
 m_grid.addFieldColumn("firstName","50%","name;First Name","transparentbackground;true");
 m_grid.addCheckboxColumn("released","30","name;Rel","transparentbackground;true");
 m_grid.addFieldColumn("lastName","50%","name;Last Name","transparentbackground;true");
 m_grid.addButtonColumn("100","name;","name;OK");
 for (int i=0; i<8; i++)
 {
 MyLine ml = new MyLine();
 ml.setFirstName("FN " + i);
 ml.setLastName("LN " + i);
 m_grid.getLines().add(ml);
 }
 }
}

There is a property grid of type FLEXGRIDInfo that is referenced by the control. In the init()
method of the adapter, the grid is prepared: diverse controls are added (the same controls as with
FLEXLINE are available for dynamic adding).

Have a look at the following Java statement:

m_grid.addFieldColumn("firstName","50%","name;First Name","transparentbackground;true");

There are four parameters that are passed:

The name of the "valueprop" for the FIELD control that is internally generated.

The width of the control.

The additional properties of the GRIDCOLHEADER control that is internally generated as header
column.

The additional properties of the FIELD control that is generated as content.

At any point of time, you can change the column layout inside your adapter by calling the method
clearColumnStructure() and then recalling the addField /addCheckbox etc. methods.

This chapter covers the following topics:

2

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for DevelopersFLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers

FLEXGRID Properties

Overriding FLEXGRIDInfo

FLEXGRID Properties

Basic

infoprop Name of the adapter property that provide a
FLEXGRIDInfo object that serves the control on server
side. The structure of columns is defined within this object
using a JAVA API.

Obligatory

selectprop Name of the item property that indicates if a grid line is
selected.

Obligatory

rowcount Number of rows that is renderes inside the control.

There are two ways of using this property - dependent on
whether you in addition define the HEIGHT property:

If you do NOT define the HEIGHT property then the control
is rendered with exactly the number of rows that is defined
as ROWCOUNT value.

If a HEIGHT value is defined an addition (e.g. as percentage
value "100%") then the number of rows depends on the
actual height of the control. The ROWCOUNT value in this
case indicates the maximum number of rows that is picked
from the server. You should define this value in a way that it
is not too low - otherwise your grid will not be fully filled.
On the other hand it should not be defined too high ("100")
because this causes more communication traffic and more
rendering effort inside the browser.

Optional 1

2

3

int-value

3

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for DevelopersFLEXGRID Properties

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control
is a container control (containing) other controls then the
height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring up
correct results if the parent element of the control properly
defines a height this control can reference. If you specify
this control to have a height of 50% then the parent element
(e.g. an ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

Optional 100

150

200

250

300

250

400

50%

100%

vscroll Definition of the vertical scrollbar’s appearance.

You can define that scrollbars only are shown if the content
is exceeding the control’s area ("auto"). Or scrollbars can be
shown always ("scroll"). Or scrollbars are never shown -
and the content is cut ("hidden").

Default is "auto".

Optional auto

scroll

hidden

withblockscrolling If switched to "true" then the grid will show small scroll
icons by which the user can scroll the grid’s content.
Scrolling typically is done by using the grid’s scrollbar - the
scroll icons that are switched on by this property are an
additional possibility to scroll.

Optional true

false

showemptylines Flag that indicates if a line that is not used at the moment is
visible. Example: if set to false a grid with rowcount of ten
and collection size of seven the last three remaining lines
become invisible.

Default is true.

Optional true

false

Selector

4

FLEXGRID PropertiesFLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers

selectorwidth Width of the control.

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is occupied
by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring up
correct results if the parent element of the control properly
defines a width this control can reference. If you specify this
control to have a width of 50% then the parent element (e.g.
an ITR-row) may itself define a width of "100%". If the
parent element does not specify a width then the rendering
result may not represent what you expect.

Optional 100

120

140

160

180

200

50%

100%

singleselect Indicates if the multiple lines can be selected ("false") or
only one line can be selected ("true"). Default is "true".

Optional true

false

withlinenum There are two usage variants: either the line number of the
corresponding row is shown as content of the SELECTOR
control ("true") - or nothing is shown inside ("false").

In case of selecting "true" then the line number is
automatically retrieved, i.e. you do not have to specify a
property on adapter side to indicate the value of the line
number.

Optional true

false

image If specifying WITHLINENUM to be "false" then a small
arrow icon is shown inside the control if selecting a
corresponding row. Input the URL of the icon to be shown if
you do not want to use the default icon.

If specifying WITHLINENUM to be "true" then the line
number of selected lines is output in bold font.

Optional

imageprop The URL of the image to be shown for displaying selected
rows is not hard wires via the IMAGE property but "soft
wired": you refer an adapter property that dynamically
passes the URL of the image to be shown.

Optional

Overriding FLEXGRIDInfo
You can override the FLEXGRIDInfo class at any time and build up your own, extended class. See the
Java API documentation for more details.

5

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for DevelopersOverriding FLEXGRIDInfo

	FLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers
	FLEXGRID Properties
	Overriding FLEXGRIDInfo

