
FIELD
The FIELD control is used for entering data. It provides the following features:

Normal input/output of text.

Password input.

Dynamic control if input is allowed.

Dynamic highlighting of field in case of errors.

Flush the input directly to the server when leaving the field.

Start a server method on pressing F4 or F7 or on click - useful for value help pop-up dialogs

Adapt the output to a data type (e.g. transfer "YYYYMMDD" to a visible date field)

The following topics are covered below:

Example

Dynamically Defining the Input Status

Client Side Validation

Decimal Number Input

Value Help

Value Help - Predefined Reaction Methods

Input-Sensitive Value Help

Touch Screen Support

Properties

Example

The XML layout definition is:

<rowarea name="Fields">
 <itr>
 <field valueprop="factor4" flush="screen" length="10">
 </field>
 <hdist>
 </hdist>
 <field valueprop="factor4" flush="screen" length="10" password="true">

1

FIELDFIELD

 </field>
 <hdist>
 </hdist>
 <field valueprop="factor4" flush="screen" length="10" displayonly="true">
 </field>
 <hdist>
 </hdist>
 <field valueprop="factor4" flush="screen" length="10">
 </field>
 <hdist>
 </hdist>
 </itr>
</rowarea>

For better visibility, distance controls were added between the FIELD controls.

Dynamically Defining the Input Status
As mentioned previously, you can dynamically control the input status of a FIELD by a property of the
adapter class. The following example shows how to do this.

The XML layout looks as follows:

<rowarea name="Dynamic Field">
 <itr>
 <field valueprop="factor1" flush="server" length="10">
 </field>
 <hdist>
 </hdist>
 <field valueprop="factor1" flush="server" statusprop="factor1status" length="10">
 </field>
 </itr>
</rowarea>

There are two fields that show the same adapter property factor1 . The first field definition is without
any restrictions, the second one depends on the input status of the property factor1Status .

The adapter program looks as follows:

// property >factor1<
int m_factor1=5;
public int getFactor1() {return m_factor1;}
public void setFactor1(int value) { m_factor1 = value; }

// property >factor1status<
String m_factor1status;
public String getFactor1status()
{
 if (m_factor1 > 100) return "DISPLAY";
 else if (m_factor1 > 10) return "ERROR";
 else return "EDIT";
}
public void setFactor1status(String value) { m_factor1status = value; }

Now let us see what happens if different numbers are entered:

2

Dynamically Defining the Input StatusFIELD

The right field changes its input status according to the value of the property factor1Status . There
are four different values that can be returned as status information:

EDIT
The field is displayed as a normal field.

ERROR
The field indicates an error with its value.

DISPLAY
The field is only displayed.

FOCUS
The field is displayed as a normal field; it requests the focus.

Client Side Validation
By using regular expressions, you can check the user’s input into a field in a very powerful way. Regular
expressions are a standardized way (W3C) of describing the format of strings. You can use it, for
example, to check whether the user entered an article number correctly - following some conventions that
are defined inside your application.

Regular expressions can be plugged to a field control so that it checks the input of the user against the
expression. The check is done when the user has left the field. If the check is successful, nothing happens -
if it fails, an error message pops up indicating to the user that the input did not match the field’s
requirements.

There are two ways of plugging regular expressions to the field:

Static Definition
The regular expression is directly defined inside the control’s definition.

Dynamic Definition
Inside the control, you specify a property that passes the expression at runtime.

The following example shows a field in which you enter a telephone number. A regular expression checks
whether the number is entered in the right format:

3

FIELDClient Side Validation

The field is defined in the following way:

<field valueprop="phone" width="100" validation="[0-9)(-/+]+">
</field>

The regular expression "[0-9)(-/+]+" indicates that the following can be entered

A string that has any number of characters: "[]+".

A string that has only characters which are "0-9)(-/+".

If the user enter a wrong value, the following message appears:

Decimal Number Input
In the field, you can specify the float value for the datatype property. Consequently, the field’s input
will automatically be interpreted as float input - and e.g. decimal separators will be added.

In addition, you can specify the number of valid decimal digits: the number is not defined in a fixed way
inside the control but is derived from a server side property (decimaldigitsprop property). Maybe
you have an application that inputs and outputs amounts with a certain currency reference. Depending on
the currency, the number of decimal digits behind the comma may be different.

Value Help
The FIELD control supports a value help - i.e. you can offer the user a support pop-up for a field that e.g.
lets the user select valid values instead of typing them manually. The value help bases on a generic
mechanism that allows you to define any kind of your own value help pop-ups - but there are also two
predefined ways to quickly create a simple value help that lets the user select values from a list.

First, the description of the generic framework: The FIELD control has a property popupmethod . If you
fill this property, then there are two consequences:

4

Decimal Number InputFIELD

The field shows a little icon on the very right.

The field is value help-sensitive: if the user clicks on the icon or clicks with the right mouse button
into the field, then the method on server side that is referenced by the popupmethod property is
called.

You see that the value help is triggered in the client, but the actual value help processing is launched from
the server adapter method that is referenced. What the method does is completely up to you - in most
cases, it shows a certain pop-up.

Have a look at the following example:

The XML layout definition is:

<rowarea name="Address">
 <itr>
 <label name="Titel" width="120">
 </label>
 <field valueprop="titel" width="50" popupmethod="openIdValueHelp">
 </field>
 </itr>
</rowarea>

The implementation in the adapter is:

// property >titel<
String m_titel;
public String getTitel() { return m_titel; }
public void setTitel(String value) { m_titel = value; }

public void onValueHelpTitel()
{
 openPopup("/HTMLBasedGUI/empty.html");
}

When the user chooses the icon in the title field, onValueHelpTitle() is called. The method itself
opens a certain pop-up. It is completely up to you to specify the reaction - maybe you do not want to open
a pop-up but want to navigate to another page.

See Working with Page Navigation in the Working with Pages documentation for more details on pop-up
management. Be aware of the fact that - just as with any other method which is, for example, called by a
button - all the data of the screen is first transferred into your adapter before the method is called. For
example, if the user enters "M" into the title field and then invokes the value help, then setTitle() is
invoked first and after this onValueHelpTitle() is invoked. The same happens to any other data that
was modified on the screen prior to the help request.

Sometimes you want to define a generic way of reacting to value requests - you do not want to have one
explicit method per field to be called - but you want to define one method referenced by all fields. For this
purpose, there is a method findValueRequestProperty() that you inherit from the Adapter class.
This method returns the name of the property that is referenced as valueprop inside the corresponding
field.

5

FIELDValue Help

Value Help - Predefined Reaction Methods
Based on the popupmethod mechanism that is explained in the previous section, there are simple ways
of providing a standard value help for field inputs:

The predefined pop-up method openIdValueHelp requests a list of valid values from the adapter
and displays the list in a pop-up from which the user can select a value. The list is fetched by
following a certain naming convention: the adapter must provide for a method with the name
findValidValuesForXxx() where "Xxx" is the name of the property.

The predefined pop-up method openIdValueCombo uses the same
findValidValuesForXxx() method, but displays the result similar to a combo box:

6

Value Help - Predefined Reaction MethodsFIELD

The predefined pop-up method openIdValueComboOrPopup is a mixture of the methods
described above. For performance reasons, small lists are displayed in a combo box and large lists are
displayed in a pop-up. By default, lists containing up to 100 entries are shown in a combo box. Using the
parameter maxitemsinfieldcombo of the configuration file cisconfig.xml, you can control the
maximum number of entries that are to be shown in the combo box.

The corresponding adapter code is:

// property >titel<
String m_titel;
public String getTitel() { return m_titel; }
public void setTitel(String value) { m_titel = value; }

public ValidValueLine[] findValidValuesForTitel()
{
 ValidValueLine[] result = new ValidValueLine[3];
 result[0] = new ValidValueLine("Mrs.","Misses");
 result[1] = new ValidValueLine("Mr.","Mister");
 result[2] = new ValidValueLine("Dr.","Doctor");
 return result;
}

Note that the method is called at the point of time when the user requests value help.

The ValidValueLine also supports a constructor in which only the value of the field is passed -
without further description.

Input-Sensitive Value Help
When having read the previous sections on value help, be aware that at the point in time when the value
help is called (e.g. when findValidValuesFor...() is called), all data input that was done on the
browser client has already been transferred into your adapter object.

This means: you already have access to the property that a user entered before invoking the value help.

Consequence: inside your reaction on the value help request (e.g. in your implementation of
findValidValuesFor...()), you can already filter the valid values against what the user has
already entered.

Touch Screen Support
As mentioned in the property list, the field is able to offer touch screen support. Have a look at the
following example:

7

FIELDInput-Sensitive Value Help

If the user clicks into the area in which you can see a keyboard shining through as background, the user
will get one of the following pop-ups - depending on the data type assigned to the FIELD control.

8

Touch Screen SupportFIELD

The XML layout definition is:

<rowarea name="Demo">
 <itr>
 <label name="Integer Input" width="100">
 </label>
 <field valueprop="intValue" width="150" touchpadinput="true" datatype="int">
 </field>
 </itr>
 <itr>
 <label name="Float Input" width="100">
 </label>
 <field valueprop="floatValue" width="150" touchpadinput="true" datatype="float">
 </field>
 </itr>
 <itr>
 <label name="Text Input" width="100">
 </label>
 <field valueprop="stringValue" width="250" touchpadinput="true">
 </field>
 </itr>
</rowarea>

In all FIELD controls, the property touchpadinput is set to "true". The server side adapter processing
does not differ in any way from the normal adapter processing.

Properties

Basic

valueprop Server side property representation of the
control.

Obligatory

9

FIELDProperties

width Width of the control.

There are three possibilities to define the
width:

(A) You do not define a width at all. In this
case the width of the control will either be a
default width or - in case of container controls
- it will follow the width that is occupied by
its content.

(B) Pixel sizing: just input a number value
(e.g. "100").

(C) Percentage sizing: input a percantage
value (e.g. "50%"). Pay attention: percentage
sizing will only bring up correct results if the
parent element of the control properly defines
a width this control can reference. If you
specify this control to have a width of 50%
then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent
element does not specify a width then the
rendering result may not represent what you
expect.

Sometimes
obligatory

100

120

140

160

180

200

50%

100%

comment Comment without any effect on rendering and
behaviour. The comment is shown in the
layout editor’s tree view.

Optional

Appearance

width (already explained above)

length Width of FIELD in amount of characters.
WIDTH and LENGTH should not be used
together. Note that the actual size of the
control depends on the font definition if using
the LENGTH property.

Optional 5

10

15

20

int-value

maxlength Maximum number of characters that a user
may enter into this FIELD. This property is
not depending on the LENGTH property -
please do not get confused by the similar
naming. MAXLENGTH has nothing to do
with the optical sizing of the control but only
with the number of characters you may input.

Optional 5

10

15

20

int-value

textalign Alignment of text inside the control. Optional left

center

right

password If set to "true", each entered character is
displayed as a ’*’.

Optional true

false

10

PropertiesFIELD

displayonly If set to true, the FIELD will not be accessible
for input. It is just used as an output field.

Optional true

false

uppercase If "true" then all input is automatically
transferred to upper case characters.

Optional true

false

align Horizontal alignment of control in its column.

Each control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimes the size of the column is bigger
than the size of the control itself. In this case
the "align" property specifies the position of
the control inside the column. In most cases
you do not require the align control to be
explicitly defined because the size of the
column around the controls exactly is sized in
the same way as the contained control.

If you want to directly control the alignment
of text: in most text based controls there is an
explicit property "textalign" in which you
align the control’s contained text.

Optional left

center

right

valign Vertical alignment of control in its column.

Each control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).
Sometimtes the size of the column is bigger
than the size of the control. In this case the
"align" property specify the position of the
control inside the column.

Optional top

middle

bottom

colspan Column spanning of control.

If you use TR table rows then you may
sometimes want to control the number of
columns your control occupies. By default it is
"1" - but you may want to define the control to
span over more than one columns.

The property only makes sense in table rows
that are snychronized within one container
(i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are
explicitly not synched.

Optional 1

2

3

4

5

50

int-value

11

FIELDProperties

rowspan Row spanning of control.

If you use TR table rows then you may
sometimes want to control the number of rows
your control occupies. By default it is "1" - but
you may want to define the control two span
over more than one columns.

The property only makes sense in table rows
that are snychronized within one container
(i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are
explicitly not synched.

Optional 1

2

3

4

5

50

int-value

fieldstyle CSS style definition that is directly passed into
this control.

With the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending
and separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame’s source"
function.

Optional background-color: #FF0000

color: #0000FF

font-weight: bold

noborder Boolean value defining if the control has a
border. Default is "false".

Optional true

false

transparentbackground Boolean value defining if the control is
rendered with a transparent background.
Default is "false".

Optional true

false

bgcolorprop Property of the adapter object to provide the
background color of the control.

Optional

fgcolorprop Name of adapter property that passes back a
color value (e.g. "#FF0000" for red color).
The color value is used as text color in the
control. - The background color is
automatically chosen dependent from the text
color: for light text colors the background
color is black, for dark text colors the color is
default. Use BGCOLORPROP to choose both
- text and background color.

Optional

12

PropertiesFIELD

invisiblemode If the visibility of the control is determined
dynamically by an adapter property then there
are two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is
"grayed" and does not show any roll over
effects any more.

Optional invisible

cleared

tabindex Index that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

Optional -1

0

1

2

5

10

32767

Binding

valueprop (already explained above)

alwaysflush If set to TRUE then a specified server
flushmethod is also called in case the value
has not changed. The default is FALSE,
meaning that a server flushmethod is only
called for a changed value.

Optional true

false

13

FIELDProperties

flush Flushing behaviour of the input control.

By default an input into the control is
registered within the browser client - and
communicated to the server adapter object
when a user e.g. presses a button. By using the
FLUSH property you can change this
behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronization
with the server adapter is triggered. As
consequence you directly can react inside your
adapter logic onto the change of the
corresponding value. - Please be aware of that
during the synchronization always all changed
properties - also the ones that were changed
before - are transferred to the adapter object,
not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page.
You use this option if you have redundant
usage of the same property inside one page
and if you want to pass one changed value to
all its representaion directly after changing the
value.

Optional screen

server

flushmethod When the data synchronization of the control
is set to FLUSH="server" then you can
specify an explicit method to be called when
the user updates the content of the control. By
doing so you can distinguish on the server side
from which control the flush of data was
triggered.

Optional

displayprop Name of adapter property that controls
whether the field is displayonly(true) or not
(false).

By using this property you can dynamically
control the "display"-status of the control by
your adapter object.

Optional

statusprop Name of the adapter property that dynamically
passes information how the field should be
rendered and how it should act.

Optional

valuetextprop Name of the adapter property that provides a
"human understandable" description for the
value: in some cases you enter an id into a
FIELD but want to display the id and a
description to the user. At runtime, the values
provided by the VALUEPROP- and the
VALUETEXTPROP-property are combined
into one text (string) that is returned into the
FIELD.

Optional

14

PropertiesFIELD

textidmode If using property "valuetextprop" then a field
knows an id and a text for a certain value.
There are three types of display: either both
are shown together, separated by an "-" (e.g.
"id - text"). Or only text is shown or only the
id is shown. If not defined at all then the
system’s default text id-mode will be chosen.
The default mode can be defined as part of the
CIS session context.

Optional 0

1

2

titleprop Property of adapter that dynamically defines
the title of the control. The title is displayed as
tool tip when ther user moves the mouse onto
the control.

Optional

bgcolorprop (already explained above)

fgcolorprop (already explained above)

autocallpopupmethod Use property AUTOCALLPOPUPMETHOD
to invoke the field’s value help method with a
certain offset (milliseconds) after last key
down event

Optional true

false

maxlengthprop Name of adapter property that passes back the
maximum number of characters that a user
may enter into this FIELD. Consider to use
MAXLENGTH to define this number in a
static way.

Optional

Validation

15

FIELDProperties

datatype By default, the FIELD control is managing its
content as string. By explicitly setting a
datatype you can define that the control...

...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a
field with datatype "int" then a corresponding
error message will popup when the user leaves
the field.

...will format the data coming from the server
or coming form the user input: if the field has
datatype "date" and the user inputs "010304"
then the input will be translated into
"01.03.2004" (or other representation,
dependent on date format settings).

In addition valeu popups are offered for the
user automatically for some datatypes: e.g.
when specifying datatype "date" the
automatically the field provides a calendar
input popup.

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format
number. The server side representation may be
a float value, but also can be a double or a
BigDecimal property.

Optional date

float

int

long

time

timestamp

color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

xs:byte

xs:short

validationrules Contains information used for Data
Validation.

Use the Validation Rules Editor to make
changes!

Optional

validation Regular expression against which the content
of the field is checked on client side when the
user changes the field. If the validation fails
then an error message popup up and informs
the user about the wrong input.

Optional [a-zA-Z0-9_.-]

{1,}\\@[a-zA-Z0-9_.-]

{1,}\\.\\w{2,}\\d{5}

[0-9)(-/+]+

validationprop Property out of which the regular expression is
dynamically read. Works the same way as
VALIDATION but in a dynamic way.

Optional

validationuserhint If a client side validation fails due to wrong
user input then an error popup is opened. If
you define a hint inside this property then the
hint is output to the user in order to tell in
which way to input the value. The hint is not
language dependent.

Optional

16

PropertiesFIELD

validationuserhintprop If using validation expressions (either property
"validation" or "validationprop") then a popup
comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property reference.

Optional

digits Number that specifiies how many digits are to
be displayed (ie digits before the comma). If
using this feature then the DATATYPE
property must be set to ’float’. See also
DECIMALDIGITS.

Optional 1

2

3

int-value

digitsprop Property of the adapter that passes back
information how many digits are to be
displayed (ie digits before the comma). If
using this feature then the DATATYPE
property must be set to ’float’.

Optional

decimaldigits Number that specifiies how many decimal
digits are to be displayed. If using this feature
then the DATATYPE property must be set to
’float’.

Optional 1

2

3

int-value

decimaldigitsprop Property of the adapter that passes back
information how many decimal digits are to be
displayed. If using this feature then the
DATATYPE property must be set to ’float’.

Optional

spinrangemin An integer value which defines the lower
bound of the value range.

Optional 1

2

3

int-value

spinrangemax An integer value which defines the upper
bound of the value range.

Optional 1

2

3

int-value

Valuehelp

popupmethod Name of the adapter’s method that is called
when the user requests value help by pressing
F4 or F7 or by clicking into the FIELD with
the right mouse button. See at chapter ’Popup
Dialog Management’ for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

Optional openIdValueCombo

openIdValueHelp

openIdValueComboOrPopup

17

FIELDProperties

popupinputonly Boolean property that control if a field with
POPUPMETHOD defined is still usable for
keyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod’s help.
If set to "true" then no keyboard input is
possible - but only selection from the
popup-method’s help.

Optional true

false

popupprop Name of an adapter’s boolean property to
provide information whether a
POPUPMETHOD is available (true) or not
(false). This feature is used in scenarios in
which a FIELD offers e.g. value help or not,
depending on business logic inside the
adapter.

Optional

popuponalt40 Value help in a field is triggered either by
clicking with the mouse or by pressing a
certain key inside the field. The "traditional"
keys are "cusrsor-down", "F7" or "F4".
Sometimes you do not want to mix other
"cursor-down" behaviour (e.g. scrolling in
lists) with the value help behaviour. In this
case switch this property to "true" - and the
value help will only come up anymore when
"alt-cursor-down" is pressed.

Optional true

false

popupcombowidth Pixel width of the standard
"openIdValueCombo" popup dialog. Default
is field width or at least 150 pixel.

Optional 1

2

3

int-value

popupicon URL of image that is displayed inside the
right corner of the field to indicate to the user
that there is some value help available.. Any
image type (.gif, .jpg, ...) that your browser
does understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page.
Your page is generated directly into your
project’s folder. Specifiying "images/xyz.gif"
will point into a directory parallel to your
page. Specifying
"../HTMLBasedGUI/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

Optional gif

jpg

jpeg

18

PropertiesFIELD

touchpadinput Boolean property that decides if touch pad
support is offered for the FIELD control. The
default is "false". If switched to "true" then
you can input data into the field via a touch
pad. As consequence you can use this control
for making inputs through a touch terminal.

Optional true

false

onlinehelp

helpid Help id that is passed to the online help
management in case the user presses F1 on the
control.

Optional

title Text that is shown as tooltip for the control.

Either specify the text "hard" by using this
TITLE property - or use the TITLETEXTID
in order to define a language dependent literal.

Optional

titletextid Text ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

Optional

formula Contains information used by the Formula
Editor.

Use the Formula Editor to make changes!

Optional

Hot Keys

hotkeys Comma separated list of hot keys. A hotkey
consists of a list of keys and a method name.
Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines
two hot keys. Method onCtrlAltA is invoked
if the user presses Ctrl-Alt-A. Method
"onEnter" is called if the user presses the
ENTER key.

Use the popup help within the Layout Painter
to input hot keys.

Optional

Miscellaneous

testtoolid Use this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

Optional

autocallpopupmethodoffsetThe offset (milliseconds) after the last key
down event for calling the
AUTOCALLPOPUPMETHOD. Makes only
sense if an AUTOCALLPOPUPMETHOD is
specified.

Optional 1

2

3

int-value

19

FIELDProperties

	FIELD
	Example
	Dynamically Defining the Input Status
	Client Side Validation
	Decimal Number Input
	Value Help
	Value Help - Predefined Reaction Methods
	Input-Sensitive Value Help
	Touch Screen Support
	Properties

