
COMBODYN2
The COMBODYN control is the dynamic counterpart of the COMBOFIX control. Whereas the selection
options inside the COMBOFIX control are defined in a fixed way inside the page definition, the
COMBODYN2 control offers the possibility to derive the selection options dynamically from adapter
properties.

The following topics are covered below:

Example

Typical Problems with COMBODYN2

Properties

Example

The XML layout definition looks as follows:

<rowarea name="ComboDyn">
 <itr>
 <label name="Cost Center" width="120">
 </label>
 <combodyn2 valueprop="costCenter" validvaluesprop="validCostCenters"
 width="200" size="1">
 </combodyn2>
 </itr>
</rowarea>

The definition of the COMBODYN2 control refers to a valueprop property: this is the property of the
adapter class in which the selection is actually passed. In addition, the definition refers to a
validvaluesprop property: this is the property from which the options are taken.

The code of the corresponding adapter class looks as follows:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.COMBODYNValidValues;

// This class is a generated one.

public class ComboFixAdapter
 extends Adapter
{
 // property >costCenter<
 String m_costCenter;
 public String getCostCenter() { return m_costCenter; }
 public void setCostCenter(String value) { m_costCenter = value; }

1

COMBODYN2COMBODYN2

 // property >validCostCenters<
 COMBODYNValidValues m_validCostCenters = new COMBODYNValidValues();
 public COMBODYNValidValues getValidCostCenters() { return m_validCostCenters; }

 /** initialisation - called when creating this instance*/
 public void init()
 {
 m_validCostCenters.addValidValue("0001","Marketing");
 m_validCostCenters.addValidValue("0002","Sales");
 m_validCostCenters.addValidValue("0003","Development");
 }
}

Typical Problems with COMBODYN2
The rendering problems with the internally used HTML control SELECT also apply for the
COMBODYN2 control. See the corresponding information in the section Typical Problems with
COMBOFIX.

For this reason, COMBODYN2 offers the property renderasfield : when switched to "true", the
rendering is not done by using the HTML control SELECT, but by using the normal Application Designer
FIELD with valid value support. Rendering as FIELD has the following advantages:

There are no overlapping conflicts anymore.

Valid values are brought to the client at the point of time when the user requests value help.

But there is also a disadvantage:

When selecting a value from the valid value list, the value is displayed with its ID - not with its
description.

Properties

Basic

valueprop Server side property representation of the control. Obligatory

validvaluesprop Adapter property that provides for the valid values that are
available as selectable options.

The adapter property must be of type
"COMBODYNValidValues".

Obligatory

2

Typical Problems with COMBODYN2COMBODYN2

width Width of the control.

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of
container controls - it will follow the width that is
occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control
properly defines a width this control can reference. If you
specify this control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

Sometimes
obligatory

100

120

140

160

180

200

50%

100%

comment Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor’s tree view.

Optional

Appearance

width (already explained above)

size Number of rows that are displayed inside the control. If
specified as "1" (default) then the control is rendered as
combo box - if ">1" then the control is rendered as multi
line selection.

Optional

displayonly If set to true, the FIELD will not be accessible for input. It
is just used as an output field.

Optional

align Horizontal alignment of control in its column.

Each control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size
of the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control’s contained text.

Optional left

center

right

3

COMBODYN2Properties

valign Vertical alignment of control in its column.

Each control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the
size of the column is bigger than the size of the control. In
this case the "align" property specify the position of the
control inside the column.

Optional top

middle

bottom

colspan Column spanning of control.

If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By
default it is "1" - but you may want to define the control to
span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

Optional 1

2

3

4

5

50

int-value

rowspan Row spanning of control.

If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By
default it is "1" - but you may want to define the control
two span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

Optional 1

2

3

4

5

50

int-value

renderasfield If set to "true" then the combo box is rendered like a
FIELD control that offers valid value support.

Default is "false".

The normal translation of COMBODYN2 into HTML
renders an HTML-select control. This control has certain
limitations inside Internet Explorer: it only offers a very
reduced set of styles to manipulate its look and feel and -
much worse: it always occupies z-index "0" i.e. if you
other areas overlapping the COMBODYN2 area then
COMBODYN2 is always on the top. This is quite ugly if
e.g. a menu is opened and parts of the menu overlap a
COMBODYN2 control.

Optional true

false

allowmultiselection If set to true then multiple selections are allowed. Optional true

false

4

PropertiesCOMBODYN2

combostyle CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame’s
source" function.

Optional

invisiblemode If the visibility of the control is determined dynamically
by an adapter property then there are two rendering modes
if the visibility is "false":

(1) "invisible": the control is not visible.

(2) "disabled": the control is deactivated: it is "grayed"
and does not show any roll over effects any more.

Optional invisible

cleared

tabindex Index that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

Optional -1

0

1

2

5

10

32767

Binding

valueprop (already explained above)

validvaluesprop (already explained above)

displayprop Name of adapter property that controls whether the field is
displayonly(true) or not (false).

By using this property you can dynamically control the
"display"-status of the control by your adapter object.

Optional

5

COMBODYN2Properties

statusprop Name of the adapter property that dynamically passes
information how the field should be rendered and how it
should act.

Optional

titleprop Property of adapter that dynamically defines the title of
the control. The title is displayed as tool tip when ther user
moves the mouse onto the control.

Optional

flush Flushing behaviour of the input control.

By default an input into the control is registered within the
browser client - and communicated to the server adapter
object when a user e.g. presses a button. By using the
FLUSH property you can change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

Optional screen

server

flushmethod When the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit method
to be called when the user updates the content of the
control. By doing so you can distinguish on the server side
from which control the flush of data was triggered.

Optional

Online Help

helpid Help id that is passed to the online help management in
case the user presses F1 on the control.

Optional

titleprop (already explained above)

Miscellaneous

testtoolid Use this attribute to assign a fixed control identifier that
can be later on used within your test tool in order to do the
object identification

Optional

6

PropertiesCOMBODYN2

	COMBODYN2
	Example
	Typical Problems with COMBODYN2
	Properties

