
ROWDYNAVIS and COLDYNAVIS
The ROWDYNAVIS or COLDYNAVIS container is used to add dynamic reaction to your layout.

The container is not visible - similar to the TABLE0 container. What is the difference? You control the
appearance of the container by an adapter property. Have a look at the following example.

If you enter "United States" as a country, the input line for the state will appear under the input line for the
country:

The XML code looks as follows:

<rowarea name="Address Input">
 <itr>
 <label name="Country" width="100">
 </label>
 <field valueprop="country" flush="true" length="30">
 </field>
 </itr>
 <rowdynavis valueprop="visible">
 <itr>
 <label name="State" width="100">
 </label>
 <field valueprop="state" length="30">
 </field>
 </itr>
 </rowdynavis>
</rowarea>

A ROWDYNAVIS container is placed inside the ROWAREA container. The ROWDYNAVIS container
is bound to the adapter class property visible .

The adapter class looks as follows:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class RowTable0Adapter
 extends Adapter
{
 // property >factor1<
 String m_factor1;
 public String getFactor1() { return m_factor1; }
 public void setFactor1(String value) { m_factor1 = value; }

 // property >factor2<

1

ROWDYNAVIS and COLDYNAVISROWDYNAVIS and COLDYNAVIS

 String m_factor2;
 public String getFactor2() { return m_factor2; }
 public void setFactor2(String value) { m_factor2 = value; }

 // property >country<
 String m_country;
 public String getCountry() { return m_country; }
 public void setCountry(String value) { m_country = value; }

 // property >state<
 String m_state;
 public String getState() { return m_state; }
 public void setState(String value) { m_state = value; }

 // property >visible<
 boolean m_visible = true;
 public boolean getVisible()
 {
 if (m_country != null && m_country.equalsIgnoreCase("United States"))
 return true;
 else
 return false;
 }
 public void setVisible(boolean value) { m_visible = value;}
}

The property visible depends on the user input of the country property. It returns a boolean value.
Since a ROWDYNAVIS area is a container, it can contain rows - with input lines - and containers.
Therefore, you can add dynamic reaction to your layout definitions in a very flexible way.

The following topics are covered below:

ROWDYNAVIS Properties

COLDYNAVIS Properties

Some Comments on Controlling the Visibility of Controls

ROWDYNAVIS Properties

Basic

valueprop Name of adapter property that defines if the area is visible
("true") or invisible ("false"). Must be of type "boolean" /
"Boolean".

Obligatory

2

ROWDYNAVIS PropertiesROWDYNAVIS and COLDYNAVIS

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the
control is a container control (containing) other controls
then the height of the control will follow the height of its
content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control
properly defines a height this control can reference. If you
specify this control to have a height of 50% then the parent
element (e.g. an ITR-row) may itself define a height of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

Optional 100

150

200

250

300

250

400

50%

100%

style CSS style definition that is directly passed into this
control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame’s
source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

comment Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor’s tree view.

Optional

3

ROWDYNAVIS and COLDYNAVISROWDYNAVIS Properties

fixlayout The fixlayout property is important for saving rendering
performance inside your browser. To become effective it
requires to have specified the height and the width (if
available as property) of the control.

If setting fixlayout to "true" then the control’s area is
defined as area which is not sized dependent on its content
(as normally done with table rendering). Instead the size is
predefined from outside without letting the browser "look"
into the content of the area. If the content is not fitting into
the area then it is cut.

You typically use this control if the content of the
control’s area is flexibly sizable. E.g. if the content (e.g. a
TEXTGRID control) is following the size of the container.

When using vertical percentage based sizing you should
pay attention to set the fixlayout-property to "true" as
often as possible. - The browser as consequence will be
much faster in doing its rendering because a screen
consists out of "building blocks" with simple to calculate
sizes.

Optional true

false

COLDYNAVIS Properties
The properties of COLDYNAVIS are very similar to those of ROWDYNAVIS.

Basic

valueprop Name of adapter property that defines if the area is
visible ("true") or invisible ("false"). Must be of type
"boolean" / "Boolean".

Obligatory

4

COLDYNAVIS PropertiesROWDYNAVIS and COLDYNAVIS

width Width of the control.

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the
width of the control will either be a default width or -
in case of container controls - it will follow the width
that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only
bring up correct results if the parent element of the
control properly defines a width this control can
reference. If you specify this control to have a width of
50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element
does not specify a width then the rendering result may
not represent what you expect.

Optional 100

120

140

160

180

200

50%

100%

takefullheight Indicates if the content of the control’s area gets the
full available height.

If you use percentage sizing inside the control’s area
then this property must be switched to ’true’. If you
use no explicit vertical sizing at all - or you use vertical
pixel sizing for your controls - the property must be
switched to ’false’.

Background information: container control’s internally
open up a table in which you place rows (ITR/TR)
which then hold controls (e.g. LABEL/FIELD). The
table that is opened up normally has no explicit height
and grows with its content as consequence. By
specifying "takefullheight=true" the table itself is sized
to fill the maximum height of the available area.

Optional true

false

5

ROWDYNAVIS and COLDYNAVISCOLDYNAVIS Properties

style CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame’s source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

fixlayout The fixlayout property is important for saving
rendering performance inside your browser. To
become effective it requires to have specified the
height and the width (if available as property) of the
control.

If setting fixlayout to "true" then the control’s area is
defined as area which is not sized dependent on its
content (as normally done with table rendering).
Instead the size is predefined from outside without
letting the browser "look" into the content of the area.
If the content is not fitting into the area then it is cut.

You typically use this control if the content of the
control’s area is flexibly sizable. E.g. if the content
(e.g. a TEXTGRID control) is following the size of the
container.

When using vertical percentage based sizing you
should pay attention to set the fixlayout-property to
"true" as often as possible. - The browser as
consequence will be much faster in doing its rendering
because a screen consists out of "building blocks" with
simple to calculate sizes.

Optional true

false

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

6

COLDYNAVIS PropertiesROWDYNAVIS and COLDYNAVIS

Some Comments on Controlling the Visibility of Controls
ROWDYNAVIS and COLDYNAVIS are container controls that are explicitly defined to provide an area
which can be explicitly switched on and off. In addition you will later on see that many controls can
control their visiblity and their input status by themselves. For example, a FIELD control can specify if it
is invisible, editable, holding an error input etc. in a dynamic way. You may also have noticed that an ITR
row definition has an associated visibleprop property - linking to a data property that dynamically
controls the visibility of the row at runtime.

Use ROWDYNAVIS and COLDYNAVIS for explicitly defining container areas to be switched on/off.
Use the control’s binding to properties to do the fine-granular control of visibility inside one container.

A bad example of usage would be if you place a COLDYNAVIS container around each FIELD that you
want to control in means of visibility. Use the FIELD’s statusprop property instead.

7

ROWDYNAVIS and COLDYNAVISSome Comments on Controlling the Visibility of Controls

	ROWDYNAVIS and COLDYNAVIS
	ROWDYNAVIS Properties
	COLDYNAVIS Properties
	Some Comments on Controlling the Visibility of Controls

