
Writing Reports by Using the REPORT
Control
The REPORT control can be considered as a white sheet of paper in which you render reporting output.
The output may consist of:

grids

text

images (jpg/svg)

From the control definition point of view, the REPORT control is very easy: you just have to define the
size of the control and a reference to an adapter property that represents the control on the server side. Let
us start building up a simple report step by step.

This chapter covers the following topics:

The Very Beginning - A White Report Area

Rendering a Grid into the REPORT Control

Using Special Styles for Cell Output

Adding Some Text

Adding a Second Grid

Adding an Image

HTML Rendering - PDF Rendering

Reacting on Mouse Clicks

REPORTInfo API

REPORT Controls versus TEXTGRID Control

Properties

The Very Beginning - A White Report Area
Let us first define the page layout:

1

Writing Reports by Using the REPORT ControlWriting Reports by Using the REPORT Control

The layout definition is:

<page model="Demo_Report_Adapter">
 <titlebar name="Demo Report">
 </titlebar>
 <pagebody takefullheight="true">
 <rowarea name="Demo Report" height="100%">
 <report reportprop="report" height="100%" showpdf="true">
 </report>
 </rowarea>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

The adapter code is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.REPORTCellFormat;
import com.softwareag.cis.server.util.REPORTInfo;

public class Demo_Report_Adapter
 extends Adapter
{
 // property >report<
 REPORTInfo m_report = new REPORTInfo(this);
 public REPORTInfo getReport() { return m_report; }
}

On the layout side, you see the REPORT control referencing the property report . The property itself is
of type REPORTInfo .

2

The Very Beginning - A White Report AreaWriting Reports by Using the REPORT Control

Please note: in the XML layout definition, the property showpdf is set to "true". If you do so, you also
have to create the instance of REPORTInfo by calling the constructor in which the instance of the
adapter object that manages the control is passed.

Rendering a Grid into the REPORT Control
The following extension is done to the adapter class:

public void init()
{
 renderGrid();
}

/**
 * Renders a grid with 4 columns and 3 data rows.
 */
private void renderGrid()
{
 m_report.addHeadlineCell("Title 1","150");
 m_report.addHeadlineCell("Title 2","70");
 m_report.addHeadlineCell("Title 3","100");
 m_report.addHeadlineCell("Title 4","80");
 m_report.addNewLine();
 for (int i=0; i<3; i++)
 {
 m_report.addContentCell("A Cell " + i);
 m_report.addContentCell("B Cell " + i);
 m_report.addContentCell("C Cell " + i);
 m_report.addContentCell("D Cell " + i);
 m_report.addNewLine();
 }
}

The control now looks as follows:

3

Writing Reports by Using the REPORT ControlRendering a Grid into the REPORT Control

You see that grids are rendered in a simple way. By using the API of REPORTInfo , you can add
headline and content cells. You append the grid information cell by cell, indicating new lines between.

Using Special Styles for Cell Output
The grid uses style sheet definitions that are part of the normal Application Designer style sheet files.
They are taken from the TEXTGRID definitions inside the style sheet file.

You can override these style definitions explicitly. In the following example, the renderGrid()
method is extended to display a summary line at the end of the grid:

4

Using Special Styles for Cell OutputWriting Reports by Using the REPORT Control

The code is:

private void renderGrid()
 {
 m_report.addHeadlineCell("Title 1","150");
 m_report.addHeadlineCell("Title 2","70");
 m_report.addHeadlineCell("Title 3","100");
 m_report.addHeadlineCell("Title 4","80");
 m_report.addNewLine();
 for (int i=0; i<3; i++)
 {
 m_report.addContentCell("A Cell " + i);
 m_report.addContentCell("B Cell " + i);
 m_report.addContentCell("C Cell " + i);
 m_report.addContentCell("D Cell " + i);
 m_report.addNewLine();
 }
 REPORTCellFormat sumFormat = new REPORTCellFormat();
 sumFormat.setBackgroundColor("#D0FFD0"); // light green
 sumFormat.setTextColor("#FF0000"); // red
 sumFormat.setFontWeight(REPORTCellFormat.FONTWEIGHT_BOLD);
 sumFormat.setAlign(REPORTCellFormat.ALIGN_CENTER);
 m_report.addContentCell("This is the summary line.", // text
 4, // cellspan
 sumFormat); // cell format
 }

You see that the API for adding cells offers a variant by which you can pass a columns span definition and
a REPORTCellFormat object.

5

Writing Reports by Using the REPORT ControlUsing Special Styles for Cell Output

Adding Some Text
By using the addText(...) methods of REPORTInfo , you can add text to the reporting area:

The adapter code is:

private void renderGrid()
{
 // headline
 REPORTCellFormat hlFormat = new REPORTCellFormat();
 hlFormat.setFontSize("16pt");
 hlFormat.setFontWeight(REPORTCellFormat.FONTWEIGHT_BOLD);
 m_report.addText("Demo Report",hlFormat);
 m_report.addVerticalDistance("10");

 // grid
 ...
 ...
 ... see coding above
 ...
 ...

 // description
 m_report.addVerticalDistance("10");
 m_report.addText("This is a description of the grid. " +
 "This is a description of the grid. " +
 "This is a description of the grid. " +
 "This is a description of the grid. " +
 "This is a description of the grid. ");
}

6

Adding Some TextWriting Reports by Using the REPORT Control

In the code, you see the usage of the addText(...) method. Text can be combined with an explicit
cell format object (as done in the title) or can be output straight forward (as done in the description). In
order to keep a certain distance between the texts and the grid, the method
addVerticalDistance(...) is called.

Adding a Second Grid
You can repeat the add methods for rendering grids, texts, etc. multiple times. The formats (column width
etc.) of each grid are completely independent from one another:

The code of the example was changed in the following way:

public void init()
{
 renderGrid();
 renderGrid2();
}

private void renderGrid()
{
 ...see coding above
}

private void renderGrid2()
{
 m_report.addVerticalDistance("10");

 m_report.setIndent("50");
 m_report.addHeadlineCell("Second Grid’s Title","250");
 m_report.addNewLine();
 m_report.addContentCell("Line 1");

7

Writing Reports by Using the REPORT ControlAdding a Second Grid

 m_report.addNewLine();
 m_report.addContentCell("Line 2");
 m_report.addNewLine();
}

By using the method REPORInfo.setIndent(...) , the second grid was indented by 50 pixels.

Adding an Image
Images that are part of your web application can be added by using the addGIFGraphic(...) or
addJPEGGraphic(...) interface. If adding the following code to your example

public void init()
{
 renderLogo();
 renderGrid();
 renderGrid2();
}

private void renderLogo()
{
 m_report.addGIFGraphic("../HTMLBasedGUI/images/logo.gif","550");
}

then the report will look like:

Pay attention: only add images that are accessible through your web application, e.g. that are part of your
Application Designer project in which you are working. Do not add images by defining an absolute URL
(http://.....) - this will cause problems when transferring the result to PDF.

8

Adding an ImageWriting Reports by Using the REPORT Control

HTML Rendering - PDF Rendering
When clicking on the PDF icon in the right top corner of the REPORT controls, the report will be
rendered into PDF:

The PDF output is not a 100% match to the HTML output but a "as much as possible" match. When
specifying sizes (e.g. column sizes, indent sizes) always use straight values representing pixels - as done
in the examples above. There is a certain calculation factor (that can also be explicitly set by an API)
between "Pixels" and PDF centimeters.

HTML tables are quite forgiving when specifying non-fitting pixel widths - there are optimisation rules
that recalculate widths, e.g. if a text of a cell exceeds the size of the cell. FOP/PDF rendering is not as
forgiving but will let your text overlap into the next cell. Consequence: keep an eye on your PDF output

9

Writing Reports by Using the REPORT ControlHTML Rendering - PDF Rendering

during development.

The sizing of the PDF document is done in the following way.

First the system tries to render the report into an A4 paper, portrait.

If the document exceeds the width, then the document is switched to landscape.

If the document still exceeds the width, then the document size is increased accordingly. The page
width and height will always keep the A4 relationships.

This all happens automatically - you do not have to take care of this.

Reacting on Mouse Clicks
The examples up to now only showed one way reporting. A report was just produced and output.

The REPORT controls also offer the possibility to react on mouse clicks. When a grid is clicked, certain
information is passed to the adapter program that identifies the clicked object. You can either identify
whole rows or single cells within rows.

If clicking onto a row in the top grid, then a corresponding ID is output in the status bar. The same
happens if clicking onto a cell in the bottom grid.

The adapter code is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.REPORTCellFormat;
import com.softwareag.cis.server.util.REPORTInfo;

public class Demo_Report__interactive_Adapter

10

Reacting on Mouse ClicksWriting Reports by Using the REPORT Control

 extends Adapter
{
 public class MyREPORTInfo
 extends REPORTInfo
 {
 public MyREPORTInfo(Adapter Adapter)
 {
 super(model);
 }
 public void reactOnClick(String id)
 {
 outputMessage(MT_SUCCESS, "Clicked id = " + id);
 }
 }

 // property >report<
 REPORTInfo m_report = new MyREPORTInfo(this);
 public REPORTInfo getReport() { return m_report; }

 private void renderGrid1()
 {
 // headline
 REPORTCellFormat hlFormat = new REPORTCellFormat();
 hlFormat.setFontSize("16pt");
 hlFormat.setFontWeight(REPORTCellFormat.FONTWEIGHT_BOLD);
 m_report.addText("Interactivity on Row Level", hlFormat);
 m_report.addVerticalDistance("10");
 // grid
 m_report.addHeadlineCell("Title 1", "150");
 m_report.addHeadlineCell("Title 2", "70");
 m_report.addHeadlineCell("Title 3", "100");
 m_report.addHeadlineCell("Title 4", "80");
 for (int i = 0; i < 3; i++)
 {
 m_report.addNewLine("ROWID_" + i);
 m_report.addContentCell("A Cell " + i);
 m_report.addContentCell("B Cell " + i);
 m_report.addContentCell("C Cell " + i);
 m_report.addContentCell("D Cell " + i);
 }
 }

 private void renderGrid2()
 {
 // headline
 m_report.addVerticalDistance("10");
 REPORTCellFormat hlFormat = new REPORTCellFormat();
 hlFormat.setFontSize("16pt");
 hlFormat.setFontWeight(REPORTCellFormat.FONTWEIGHT_BOLD);
 m_report.addText("Interactivity on Cell Level", hlFormat);
 m_report.addVerticalDistance("10");
 // grid
 m_report.addHeadlineCell("Title 1", "150");
 m_report.addHeadlineCell("Title 2", "70");
 m_report.addHeadlineCell("Title 3", "100");
 m_report.addHeadlineCell("Title 4", "80");
 for (int i = 0; i < 3; i++)
 {
 m_report.addNewLine();
 m_report.addContentCell("A Cell " + i,"CELL_A_" + i);
 m_report.addContentCell("B Cell " + i,"CELL_B_" + i);
 m_report.addContentCell("C Cell " + i,"CELL_C_" + i);

11

Writing Reports by Using the REPORT ControlReacting on Mouse Clicks

 m_report.addContentCell("D Cell " + i,"CELL_D_" + i);
 }
 }

 /** initialisation - called when creating this instance*/
 public void init()
 {
 renderGrid1();
 renderGrid2();
 }
}

You see that there is an own subclass of REPORTInfo that is used within the adapter program. The
subclass has overridden the method reactOnClick(...) . Through the method, it receives an ID.

The ID is set either when creating a new line or when creating a cell. You are responsible for defining the
format and the semantics behind the ID.

REPORTInfo API
The previous topics showed you by example how to build reports. They did not cover the full interface of
REPORTInfo and related classes. See the corresponding Java API documentation.

REPORT Controls versus TEXTGRID Control
The REPORT is designed to produce flexible output lists. Compared to the text grid, it has the following
advantages:

It is easier to program. The report list is generated inside the Java Code; you do not have to work
both in the Layout Painter and in your Java editor.

It is more flexible. You can span cells, and you can individually colorize them.

It is faster. The HTML for the REPORT is created on the client side and plugged into the client’s
area. There is no additional dynamic rendering at the client side.

It has the following disadvantages:

It does not offer server side scrolling, i.e. the whole report list result is always transferred to the client
in one step. If it is a really large report, this may take a while, especially in WAN scenarios.

It does not offer the same kind of interactivity but is more static. You can only click on rows. It does
not offer right mouse button pop-up menus, highlighting of selections, roll over effects, switching
columns, etc.

Properties

Basic

12

REPORTInfo APIWriting Reports by Using the REPORT Control

reportprop Name of adapter property that is referenced by the
REPORT control.

The adapter property must be of type
"REPORTInfo". See the corresponding Java API
documentation in order to get more information
how to define report output for this control.

Obligatory

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As
consequence the control will be rendered with its
default height. If the control is a container control
(containing) other controls then the height of the
control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g.
"20").

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element of
the control properly defines a height this control
can reference. If you specify this control to have a
height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

Obligatory 100

150

200

250

300

250

400

50%

100%

13

Writing Reports by Using the REPORT ControlProperties

showpdf If set to "true" then a PDF icon is rendered in the
right top corner of the control. When the user clicks
on the icon then the report is automatically
rendered as pdf - and the result will show up in a
popup window.

Pay attention: if setting this property to "true" then
you also have to choose a special constructor when
creating the REPORTInfo instance on server side,
in which the instance of the model is passed as
argument.

Example:

public class XYZAdapter extends Adapter

{

REPORTInfo m_report = new REPORTInfo(this)

...

}

Optional true

false

showprintversionIf switched to "true" then a small print icon will
appear right from the report area. The print icon
opens up a modal popup from which the HTML
produced inside the report can be directly sent to
the printer.

Pay attention: if specifying "true" then the adapter
property holding the REPORTInfo object must
create the REPORTInfo instance with passing
"this" in the constructor.

Optional true

false

areastyle CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame’s source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

14

PropertiesWriting Reports by Using the REPORT Control

areastyleclass CSS style class used for rendering. Optional

fixlayout The fixlayout property is important for saving
rendering performance inside your browser. To
become effective it requires to have specified the
height and the width (if available as property) of the
control.

If setting fixlayout to "true" then the control’s area
is defined as area which is not sized dependent on
its content (as normally done with table rendering).
Instead the size is predefined from outside without
letting the browser "look" into the content of the
area. If the content is not fitting into the area then it
is cut.

You typically use this control if the content of the
control’s area is flexibly sizable. E.g. if the content
(e.g. a TEXTGRID control) is following the size of
the container.

When using vertical percentage based sizing you
should pay attention to set the fixlayout-property to
"true" as often as possible. - The browser as
consequence will be much faster in doing its
rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

Optional true

false

15

Writing Reports by Using the REPORT ControlProperties

	Writing Reports by Using the REPORT Control
	The Very Beginning - A White Report Area
	Rendering a Grid into the REPORT Control
	Using Special Styles for Cell Output
	Adding Some Text
	Adding a Second Grid
	Adding an Image
	HTML Rendering - PDF Rendering
	Reacting on Mouse Clicks
	REPORTInfo API
	REPORT Controls versus TEXTGRID Control
	Properties

