
Java Bean Property Binding
This chapter covers the following topics: 

Class Binding

Method Binding

Property Binding

Access Path Restrictions

Class Binding
The page binding is defined in the PAGE tag of your page definition. The PAGE tag points to a class
supporting the interface com.softwareag.cis.server.IModel . There is a class 
com.softwareag.cis.server.Adapter  which implements this interface - which should be used
to build adapter classes as subclasses of Adapter . 

Example: 

<page model="com.softwareag.cis.demo.DemoAdapter" ...>
  ...
  ...
  ...
</page>

The above definition points to a class which looks as follows:

package com.softwareag.cis.demo;

import com.softwareag.cis.server.*;

public class DemoAdapter
    extends Adapter
{
    // constructor - either no constructor or a constructor
    // without any parameters
    public DemoAdapter()
    {
    }
    ...
    ...
}

Note that the adapter class has at least a default constructor (without any parameters). 

Method Binding
Controls triggering a method inside the adapter are bound to a method name of the adapter. The method
implementation itself must be a method without any parameters. 

1

Java Bean Property BindingJava Bean Property Binding



Example:

<button name="Save" method="doSave" ...>
</button>

The above button definition points to a method inside the adapter class which looks as follows: 

public void doSave()
{
    ...
    ...
}

Property Binding
Controls presenting or manipulating data of the adapter are bound to properties of the adapter. There is a
flexible concept available that makes it possible for you to use the following: 

Simple Properties which are Provided Directly by the Adapter

Simple Properties which are Provided by Embedded Objects of the Adapter

Array Properties which are Provided Directly by the Adapter

Array Properties which are Provided by Embedded Objects of the Adapter

Simple Properties which are Provided Directly by the Adapter 

This is the easiest way of binding: the property name which you specify in the definition of the control is
provided directly by the adapter object - by a corresponding set and get method. It depends on the control
whether you have to provide both set and get methods or just one of them. 

Following the Java Bean conventions, the first character of the property name is written as a capital letter
inside the corresponding set or get method. 

The get method must return a value which is either a simple data type or a "simple" object. A list of
supported return values is shown in Appendix C - Data Types to be Used by Adapter Properties. The set
method must offer one parameter to update its value at runtime. The parameter type must either be a
simple data type or one of the classes that are listed in appendix C. 

Example: 

<field valueprop="name" ...></field>
<field valueprop="age" ...></field>
<field valueprop="weight" ...></field>
<field valueprop="birthday" ...></field>

The above field definitions are bound to the following set/get methods: 

2

Property BindingJava Bean Property Binding



public void setName(String value) { ... }
public String getName() { ... }

public void setAge(int value) { ... }
public String getAge() { ... }

public void setWeight(float value) { ... }
public float getWeight() { ... }

public void setBirthday(Cdate value) { ... }
public Cdate getBirthday() { ... }

The correct property name starts with a lowercase letter, because the first letter is always converted to
lowercase. Example: 

<field valueprop="cAPITAL" ...></field>

The above field definition.is bound to the following set/get method: 

public void setCAPITAL(String value) { ... }
public String getCAPITAL() { ... }

Simple Properties which are Provided by Embedded Objects of the Adapter 

Properties can also be provided by an embedded object of the adapter. The embedded object itself must be
accessible by a corresponding get method. 

Example: 

<field valueprop="address.street"></field>

The above field definition points to a value which is provided in the following way: 

public class XYZAdapter
    extends com.softwareag.cis.server.Adapter
{
    // access in the adapter to the address object
    public Address getAddress() { ... }
}

public class Address
{
    public String getStreet() { ... }
    public void setStreet(String value) { ... }
}

You can build any chaining of properties you desire.

As shown in the example, embedded objects need not be adapter objects. Only the root object is required
to be an adapter. 

Array Properties which are Provided Directly by the Adapter

You can use array properties and can access them directly within your binding definitions. An array
property always returns an array of objects, each object providing either simple properties or array
properties. The type of the object array is not relevant for the Application Designer runtime. If you just
return "Object[]" as a result of the method, this is sufficient. 

3

Java Bean Property BindingSimple Properties which are Provided by Embedded Objects of the Adapter



Example: 

<field valueprop="addresses[0].street" ...></field>

The above field definition points to a property which is implemented in the following way: 

public class XYZAdapter
    extends com.softwareag.cis.server.Adapter
{
    // access in the adapter to the address object
    public Address[] getAddresses() { ... }
}

public class Address
{
    public String getStreet() { ... }
    public void setStreet(String value) { ... }
}

Note that the name used inside the control definition for binding (addresses[0].street  in the our
example) can either be entered manually or is implicitly created by some controls. Example: in a
TEXTGRID control, specify an array property for the entire control and a simple property inside the
COLUMN definition: 

<textgrid arrayprop="addresses" ...>
    <column property="street" ...></column>
    <column property="city" ...></column>
</textgrid>

The TEXTGRID control itself uses these definitions to ask for the properties addresses[0].street , 
addresses[0].city , addresses[1].street , addresses[1].city  etc. at runtime. 

Note that it is not possible to access an array of simple objects directly. It is not possible to define a field
in the following way 

<field valueprop="streets[0]"></field>

having a method:

public String[] getStreets() { ... }

You always have to go through an array of objects where each element itself provides access to simple
properties. 

Array Properties which are Provided by Embedded Objects of the Adapter 

You can use any combination of Simple Properties which are Provided by Embedded Objects of the 
Adapter and Array Properties which are Provided Directly by the Adapter. 

Example: define access to array properties in the following way:

<field valueprop="person.addresses[0].street" ...></field>

<textgrid arrayprop="person.addresses" ...>
    <column property="street" ...></column>
    <column property="city" ...></column>
</textgrid>

4

Array Properties which are Provided by Embedded Objects of the AdapterJava Bean Property Binding



Access Path Restrictions
At runtime, Application Designer transfers the data from the adapter to the client. For accessing the data,
it uses the following strategy: 

It asks the adapter object for all properties. This means, it calls all get methods that are defined as
public methods. 

If the get method returns a simple value, is marked to be transferred. (Whether it is really transferred,
depends also on the delta management between the client and the server.) 

If the get method returns an object (e.g. an address object as used in the previous sections) or an array
of objects, these objects are used for further drill down. 

This mechanism is flexible on the one side, but dangerous on the other side: the Application Designer
runtime will load all objects by following up the get methods. 

Consequently, there is a certain access path restriction inside the Application Designer environment: if
you generate a page (either by the Layout Painter or by the logical interfaces to the HTML generator) an
access path restriction file is generated in addition. The HTML generator parses all tags of a page; the
controls themselves are bound to properties. This information is collected and written to a file. 

This file is stored in the directory /accesspath below the project directory. Please have a look at the files
generated implicitly with your pages: the file contains a list of all access paths that are valid to be
followed by runtime. 

The name of the access path file is the same as the name of the page, but has the extension .access. Be
aware of the fact that this access path file is inevitably important to avoid "mass loading" of data.
Therefore, it must be a part of your software deployment. 

5

Java Bean Property BindingAccess Path Restrictions


	Java Bean Property Binding
	Class Binding
	Method Binding
	Property Binding
	Simple Properties which are Provided Directly by the Adapter
	Simple Properties which are Provided by Embedded Objects of the Adapter
	Array Properties which are Provided Directly by the Adapter
	Array Properties which are Provided by Embedded Objects of the Adapter

	Access Path Restrictions


