
Exception Management Inside an Adapter
Object
Application Designer binds its page processing to adapter objects providing properties and methods - as
explained in the previous sections. What happens if an error happens at runtime, e.g. an error occurs in the
method of an adapter object that is called after the user pressed a button?

This chapter covers the following topics:

Normal Exceptions are to be Handled by the Application

Errors and Runtime Exceptions - The Default Behavior

Interrupting the Application Designer Request Processing - AdapterNotAvailableError

Errors and Runtime Exceptions - The Special Behavior

Normal Exceptions are to be Handled by the Application
The first rule is: normal exceptions (i.e. no "Errors", no "Runtime Exceptions") are to be handled by the
application itself.

This means: a property is provided by the corresponding set/get methods (or by an equivalent method
when using dynamic binding). The methods must not throw any exception, i.e. in their declarations there
is no "throws" element.

Example for a correct implementation:

public void setFirstName(String value)
{
 ...
 ...
}
public String getFirstName()
{
 ...
 ...
}

The following example is an incorrect implementation because application exceptions are thrown:

public void setFirstName(String value)
 throws ApplException
{
 ...
 ...
}
public String getFirstName()
 throws ApplException
{
 ...
 ...
}

1

Exception Management Inside an Adapter ObjectException Management Inside an Adapter Object

Consequence: Application Designer passes values from the browser front end into the adapter object,
invokes certain activities inside this object and collects data from the object to pass data changes back to
the browser. Application exceptions are not relevant from Application Designer’s point of view - they
only affect the application internally.

Errors and Runtime Exceptions - The Default Behavior
Of course your application still can throw "Error" exceptions or "Runtime" exceptions. These are the
exceptions that need not be declared inside a method’s code - but that can be thrown any time at any
place.

If Application Designer receives an error or runtime exception, Application Designer displays a page by
default in which the error information is shown.

In addition, Application Designer writes a full stack dump into its runtime log.

Interrupting the Application Designer Request Processing -
AdapterNotAvailableError
There may be some situations - within a special environment context - that do not allow to process the
page at all. Maybe you have a page that requires a user to be logged on; if the Application Designer
request processing starts now, you may decide with the method reactOnDataCollectionStart
that you do not want to start the request since it does not make sense at all and just causes exceptions.

2

Errors and Runtime Exceptions - The Default BehaviorException Management Inside an Adapter Object

The only thing you want to do in such a scenario is to "escape" to a page which helps out of the situation.
For example, if you miss logon information, you want to "escape" to the logon page and return to your
original page afterwards.

The Java error class AdapterNotAvailableError is provided for this reason. The following adapter
code shows an example on how to handle this error:

package com.softwareag.cis.demoapps;

...

...

public class Rescue1Adapter
 extends Adapter
{
 ...
 ...
 /** start of data transfer */
 public void reactOnDataTransferStart()
 {
 super.reactOnDataTransferStart();
 // fetch user and sytem info from session context
 m_user = (String)findSessionContext().lookup("rescueexample/user",false);
 m_system = (String)findSessionContext().lookup("rescueexample/system",false);
 // if not logged on ==> switch to rescue2 page
 if (m_user == null ||
 m_system == null)
 {
 // prepare Rescue2 page
 Rescue2Adapter r2a = (Rescue2Adapter)findAdapter(Rescue2Adapter.class);
 r2a.init("Rescue1.html");
 // throw error in order to interrupt normal processing and switch
 // to Rescue2 page
 throw new AdapterNotAvailableError("Rescue2.html");
 }
 }
 ...
 ...
}

Inside the reactOnDataTransferStart method, a user and a system variable are read from the
session context. If one of them is null, the adapter decides to switch to page Rescue2.html and throws an
AdapterNotAvailableError error. Before, it pre-fetches the page adapter of the page to escape to
and initializes the page with certain information (in this example, it passes its own page name).

The error page is opened inside the same subsession as the one throwing the error.

Errors and Runtime Exceptions - The Special Behavior
There is a set of methods available in the adapter with which you can influence the standard error
behavior:

handleErrorDuringInitPhase()

handleErrorDuringSetPhase()

3

Exception Management Inside an Adapter ObjectErrors and Runtime Exceptions - The Special Behavior

handleErrorDuringInvokePhase()

handleErrorDuringGetPhase()

Depending on the method you have the following possibilities:

handleErrorDuringInitPhase()
This method is called when an error occurs in the init method of the adapter.

handleErrorDuringSetPhase() and handleErrorDuringGetPhase()
These methods are called when an error occurs during the set and the get phase of the adapter request
processing.

You may throw an AdapterNotAvailableError to navigate to a page of your own in order to
present to the user detailed error information - and maybe also some way to solve the error.

handleErrorDuringInvokePhase()
This method is called when an error occurs during the invoke phase of the adapter request
processing.

You can decide whether normal Application Designer runtime processing continues, whether you
want to navigate to an error handling page (via PageNotAvailableError), or whether the
standard error processing of Application Designer is done.

See the API documentation (Java Doc) for further details.

4

Errors and Runtime Exceptions - The Special BehaviorException Management Inside an Adapter Object

	Exception Management Inside an Adapter Object
	Normal Exceptions are to be Handled by the Application
	Errors and Runtime Exceptions - The Default Behavior
	Interrupting the Application Designer Request Processing - AdapterNotAvailableError
	Errors and Runtime Exceptions - The Special Behavior

