
Integrating Application Designer Controls in
HTML Pages
Application Designer provides an "outside-in approach" which allows you to integrate Application
Designer controls and functionality in standard HTML pages using a standard HTML editor such as
Adobe Dreamweaver or a text editor such as UltraEdit.

Important:
The HTML document containing your Application Designer controls must be XHTML-formatted. As a
rule, XHTML format has to be switched on manually.

This chapter covers the following topics:

Example

Details on the Implementation

Invoking the Page in the Browser

PGHEAD Properties

PGCONTAINER Properties

Example
The following is a standard HTML page that contains a registration form for a technical discussion forum.
This registration form contains Application Designer controls.

1

Integrating Application Designer Controls in HTML PagesIntegrating Application Designer Controls in HTML Pages

The layout of the above page is defined in the following way:

<html>
<head>
<pghead stylesheetfile="../cis/styles/CIS_DEFAULT.css"></pghead>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>TechForum Registration </title>
</head>
<body>
<table>...</table>

2

ExampleIntegrating Application Designer Controls in HTML Pages

 // standard HTML coding here

 <pgcontainer model="RegistrationAdapter">
 // normal Application Designer XML coding
 <pagebody>
 ...
 </pagebody>
 <statusbar>
 </statusbar>
 </pgcontainer>

 // standard HTML coding here

</body>
</html>

Details on the Implementation
To include Application Designer controls in an HTML page, you simply use an HTML editor or text
editor to write the HTML code and then you include the following HTML elements in this code:

PGHEAD
This element is placed in the HTML header.

In the above example, the following code is used:

<pghead stylesheetfile="../cis/styles/CIS_DEFAULT.css">

The stylesheetfile attribute references the style sheet file that is to be used for the Application
Designer controls. In this example, it references the standard CIS_DEFAULT.css file.

Make sure to specify a valid file reference. Have a close look at this reference, especially when your
web application uses one or more subdirectories (for example, when your page is placed in
<web-application>/sub1/sub2/mypage.html).

PGCONTAINER
This element is placed in the HTML body. You put the Application Designer controls into this
element. The code is the same as for a standard Application Designer page.

Make sure you have valid Application Designer XML in this container element. We strongly
recommend that you use Application Designer’s XSD file editor.xsd for XML validation. For
information on how to get an up-to-date editor.xsd, see XML Schema (XSD) in the Development
Workplace documentation.

In the above example, the following code is used:

<pgcontainer model="RegistrationAdapter">

The model attribute references the associated adapter in which you use standard Application
Designer classes:

3

Integrating Application Designer Controls in HTML PagesDetails on the Implementation

// This class is a generated one.
...
public class RegistrationAdapter
extends Adapter
{
 /** initialisation - called when creating this instance*/
 public void init()
 {
 ...
 }
}

Invoking the Page in the Browser
In the browser, an HTML page containing Application Designer controls is addressed the same way as a
normal Application Designer page. For example:

http://localhost:51000/cis/servlet/StartCISPage?PAGEURL=/cismyproject/mypage.html

PGHEAD Properties

Basic

stylesheetfile URL of a style sheet file used for control rendering.

i.e. ’../cis/styles/CIS_DEFAULT.css’.

Obligatory css

addstylesheetfileURL of an additional style sheet file.

You may use this additional style sheet file in order to define more
styles than are provided in the "normal" style sheet file. Typical
situations are:

(A) Some controls offer the possibility to render defined content
by style-class definitions (e.g. inside a TEXTGRID you can
dynamically define which style-class is used for a certain cell).

(B) If you define own controls by using the control extension
framework and if these controls require own style classes then
these style classes may be provided inside the additional style
sheet file.

By using the additional style sheet file you are able to avoid doing
manipulations to the "normal" style sheet files that come from CIS
or that are generated inside the tool "Style Sheet Editor".

Optional css

openajaxsupportAdds registration code into the page that registers globally used
objects / evets etc. to the Open AHAX Hub in order to potencially
synchronize the co-existance of different toolsets within one page.
Only used when being familiar with OpenAJAX aspects.

Optional true

false

4

Invoking the Page in the BrowserIntegrating Application Designer Controls in HTML Pages

PGCONTAINER Properties

Basic

model This is the name of the Java class that is the logical
counter part of the page on server side. The name must
include the full class name e.g. including the package
name.

Example: if you have a class DemoAdapter inside the
package com.xyz.demo, the MODEL value is:
com.xyz.demo.DemoAdapter.

The class must be a valid adapter class i.e. it must
support the interface
"com.softwareag.cis.server.IModel". This is implicitly
done when deriving your adapter class from
"com.softwareag.cis.server.Model". The class source
code may be generated by using the Code Assistant - or
may be directly coded in a development environment
of your choice.

You may use the class "DummyAdapter" for testing
your layout - before specifying your "real" class.

Optional

5

Integrating Application Designer Controls in HTML PagesPGCONTAINER Properties

translationreference This is the "translation reference" that is passed to the
multi language management.

The "tranlation reference" is a logical term representing
a group of textids together with their translation. If
using the standard file based multi language
management that comes with CIS as default then a
"translation reference" represents one file containing
text-ids and translations in a comma separated format.

Translation information is loaded by the multi
language management "per translation reference". I.e.
if a page links to a certain translation reference then all
the translation information that is avaible through this
reference is loaded in one step and is also buffered.

You can set up different scenarios: either each page
may address an own translation reference. E.g. if your
page is named "abc.xml" then it references to "abc" - as
consequence there is (per language) one abc.csv file
holding translation information for this page. If you
have a second page "def.xml" then you may define
"def" accordingly. In this case each page is
independent from the other. - On the other side you are
required to translate certain "common text-ids"
mulitple times.

If you on the other hand define one translation
reference for multiple pages then you can share text-ids
throughout the various pages.

Please set up a strategy for using translation references
when starting using the multi language management.
The strategy should also include a structured way of
naming text-ids. Text-ids may only be shared in an
efficient way if it is clear what they stand for. E.g. you
may names of buttons in the following way: "btn_save"
and "btn_saveas".

Optional

popupwidth Each CIS page can be opened as a popup dialog. This
properties define the pixel width preferred for the page.
- See the property "popupheight" for more information.

Optional 100px

200px

300px

400px

6

PGCONTAINER PropertiesIntegrating Application Designer Controls in HTML Pages

popupheight Each CIS page can be opened as a popup dialog. This
property defines the pixel height preferred for the page.

A popup is typically opened by calling the
"openPopup"-method in your adapter code. If no
further definition is done then the popup will open in
the height that is defined by this value. You can also
dynamically manipulate the size and position of the
popup by using the Model-method "setPopupFeatures"
- please read corresponding documentation inside the
Java API documentation.

Optional 100px

200px

300px

400px

popupfeatures In addition to POPUPWIDTH and POPUPHEIGHT
you can control the appearance of the popup dialog in
which the current page may be displayed. You define a
string to maintain different feature aspects, separated
by semi-colon.

center:yes|no

edge:sunken|raised

resizable:yes|no

scroll:yes|no

status:yes|no (to display or hide a status bar)

An example string looks as follows:
"dialogLeft:100px"

There is one special function built in by which you can
position a popup relative to its caller’s window (the
dialogLeft and dialogTop definition normally refer to
absolute coordinates of the screen): by specifying
"dialogLeft: SCRX(100)px" you define that the
position is 100 pixels right from the left top corner of
the current window. - Use "dialogTop: SCRY(100)px"
in the same way for vertical positioning.

Please also pay attention to the methods
"setPopupTitle()" and "setPopupPageFeatures()" in the
com.casabac.server.Model class. By using these
method you can define popup parameters in a dynamic
way inside your adapter implementation.

Optional dialogLeft:
200px

dialogTop:
100px

edge:
sunken

resizable:
yes

status: no

7

Integrating Application Designer Controls in HTML PagesPGCONTAINER Properties

imagestopreload Semicolon separated list of image-URLs that are
directly preloaded in an invisible area of the page. If
images are used inside a tree or a text grid then they are
loaded by dynamically generated HTML that is placed
into a corresponding area of the page. In order to
optimise the loading you can preload such images by
listing them in this property.

The URL of the images must be relative to your
generated HTML page.

Example: if your page has a tree with certain node
images then you may define: "images/nodeopened.gif"
images/nodeclosed.gif; images/nodeendnode.gif".

Optional

occupiedimage URL of the image that is displayed to indicate that the
screen is just communicating to the server. This is the
image that is located in the top left corner and which
by default is a flashing hour glass.

You can specify any image, e.g. also animated GIF
files. If you want your image not to be visible in the
top left corner but "somewhere" in the screen then
draw an image with some transparent area on the left
and above the image that you want to show.

Optional

occupiedpixelheight When the screen is busy, because the client is
exchanging information with the server, an hour glass
image is displayed at the top left corner. With this
property you define the pixel height of this hour glass
image.

Optional

occupiedpixelwidth When the screen is busy, because the client is
exchanging information with the server, an hour glass
image is displayed at the top left corner. With this
property you define the pixel width of this hour glass
image.

Optional

helpid This is the id that is passed into the help management
for the page.

If a user clicks F1 inside the page and if there is no
specific context sensitive control help available (e.g.
help for field) then the help for the page is popped up.

Optional

8

PGCONTAINER PropertiesIntegrating Application Designer Controls in HTML Pages

visiblevalueifundefinedSeveral CIS controls support a VISIBLEPROP
property. The VISIBLEPROP contains the binding to
an adapter property that decides at runtime if a control
is visible or not.

This property defines how these controls behave if
there is no implementation available for the property.

Example: the VISIBLEPROP of a CHECKBOX is
binding to a property "cbvisible" but there is not
corresponding implementation "getCbvisible". If set to
"true" then all controls with undefined visibility are
displayed. If set to "false" then they are hidden.

Optional true

false

addjavascriptlibs Comma separated list of URLs of additional javascript
libraries. Example: "../yourproject/js/yourlib.js". Used
to include non-CIS javascript. Example of Usage: with
the DATEINPUT control you can run own rules to
convert and validate user input.

Optional

contextmenumethod Name of an adapter method that is invoked if the user
clicks into the page with the right mouse button and no
other control (e.g. texgrid, tree,...) handled the click so
far.

Optional

hotkeys Comma separated list of hot keys. A hotkey consists of
a list of keys and a method name. Separate the keys by
"-" and the method name again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two hot
keys. Method onCtrlAltA is invoked if the user presses
Ctrl-Alt-A. Method "onEnter" is called if the user
presses the ENTER key.

Use the popup help within the Layout Painter to input
hot keys.

Optional

immediatedisplay Flag that indicates if the screen is visible within the
initial loading phase. Default is false. When using the
default you see a light HTML page showing a "just
loading" image. Use property "justloadingurl" to
specify a page of choice.

Optional true

false

flushmethod Name of an adapter method that is invoked in case the
page loses the focus.

Optional

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

9

Integrating Application Designer Controls in HTML PagesPGCONTAINER Properties

justloadingurl URL of the page that is displayed to indicate that
screen is just loading. Typically this is a light HTML
page showing a loading image of choice. Use plain
HTML - not a generated CIS page.

Optional

adapterlisteners Semicolon separated list of classes which connect to
the server side adapter processing as adapter listeners
(each one supporting the interface IAdapterListener).

Optional

10

PGCONTAINER PropertiesIntegrating Application Designer Controls in HTML Pages

	Integrating Application Designer Controls in HTML Pages
	Example
	Details on the Implementation
	Invoking the Page in the Browser
	PGHEAD Properties
	PGCONTAINER Properties

