
DBQUERY
The DBQUERY control is designed to significantly reduce the effort for developing queries against
relational databases. In the control definition, you specify the SELECT string, the filter criteria and the
output columns - the rest is done automatically. The sequence, sorting and grouping of the output grid can
be defined in a very flexible way. You even can store so-called variants: if you have certain filter criteria
you always want to use in a query, then you can store them under a name in order to have quick access to
often-used queries. The following typical aspects of a query are covered:

Filter criteria (ad hoc input, saved in query variants).

Result output (server-side scrolling, context menu).

Report variants (column visibility and column order, sorting, grouping, etc.).

(Default) PDF generation.

This chapter covers the following topics:

Example

DBQUERY Properties

DBFILTER Properties

DBCOLUMN Properties

DBPARAMSINGLEVALUE Properties

DBPARAMDOUBLEVALUE Properties

Variant Management

PDF Generation

Example

1

DBQUERYDBQUERY

There is a DBQUERY control with its inner components. Look at the corresponding layout definition:

<dbquery valueprop="dBQueryInfo" query="SELECT * FROM ADDRESS AS A, BUSINESSPARTNER AS B
 WHERE A.BUSINESSPARTNERID = B.ID" datasource="addressdb" title="Adress Report"
 rowareaname="Report Demo" executebuttonname="Execute" maxrows="200"
 image="images/addresses.gif" height="100%" rowcount="40" titletext="Address Report">
 <dbfilter labelname="Title" labelwidth="150" querycolumn="title" valuehelptable="title"
 valuehelpcolumn="id" fieldwidth="200" hideout="true">
 </dbfilter>
 <dbfilter labelname="First Name" labelwidth="150" querycolumn="firstname" fieldwidth="200">
 </dbfilter>
 <dbfilter labelname="Lat Name" labelwidth="150" querycolumn="lastname" fieldwidth="200">
 </dbfilter>
 <dbcolumn name="Title" column="TITLE" width="50" widthpdf="2cm" groupby="true">
 </dbcolumn>
 <dbcolumn name="Last Name" column="LASTNAME" width="100" widthpdf="3cm" sortorder="1"
 sortascending="true" groupby="true">
 </dbcolumn>
 <dbcolumn name="First Name" column="FIRSTNAME" width="100" widthpdf="3cm" sortorder="2"
 sortascending="true">
 </dbcolumn>
 <dbcolumn name="Street" column="STREET" width="150" widthpdf="5cm">
 </dbcolumn>
 <dbcolumn name="Country" column="COUNTRY" width="50" widthpdf="2cm">
 </dbcolumn>
 <dbcolumn name="State" column="STATE" width="100%" widthpdf="5cm">
 </dbcolumn>
</dbquery>

Look at the following items:

There is a DBQUERY definition with the property valueprop "dBQueryInfo" . The property
query contains the SELECT string.

2

ExampleDBQUERY

There are DBFILTER definitions for each filter criterion.

There are DBCOLUMN definitions for each grid column of the result area.

The adapter code is the following:

// This class is a generated one.

import java.sql.Connection;
import java.sql.DriverManager;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IDynamicAccess;
import com.softwareag.cis.server.util.DBQUERYDataObject;
import com.softwareag.cis.server.util.DBQUERYInfo;
import com.softwareag.cis.server.util.DBTEXTGRIDCollection;
import com.softwareag.cis.server.util.DBTEXTGRIDLine;
import com.softwareag.cis.server.util.DelegateError;
import com.softwareag.cis.server.util.IDBQUERYConnectionProvider;
import com.softwareag.cis.server.util.IDBQUERYContextMenuRequestListener;
import com.softwareag.cis.server.util.IDBQUERYGeneratePDFRequestListener;
import com.softwareag.cis.server.util.IDBQUERYOptimizer;
import com.softwareag.cis.server.util.MENUNODEInfo;
import com.softwareag.cis.server.util.TREECollection;
import com.softwareag.cis.server.util.ValidValueLine;

public class DBQUERYAdapter
 extends Adapter
 implements IDBDemoAdapter
{
 // --
 // inner classes
 // --

 /** class used for a simple connection management. */
 public class ConnectionProvider
 implements IDBQUERYConnectionProvider
 {
 public Connection getDBConnection(String datasource)
 {
 try
 {
 Class.forName("org.hsqldb.jdbcDriver");
 return DriverManager.getConnection("jdbc:hsqldb:hsql://localhost", "sa", "");
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }
 }
 /** class used for SQL optimization. */
 public class SQLOptimizer
 implements IDBQUERYOptimizer
 {
 public String optimizeQuery(String query, String[] gridColumns)
 {
 // do checks + optimization here
 return query;
 }
 }
 /** class used for pop-up menu. */
 public class MyMenuNodeInfo
 extends MENUNODEInfo

3

DBQUERYExample

 {
 IDynamicAccess m_row; // = row for that the context menu is requested
 public MyMenuNodeInfo(IDynamicAccess row, String text, String image)
 {
 super(text, image);
 m_row = row;
 }
 public void reactOnSelect()
 {
 outputMessage("S", getText() + " selected");
 }
 }
 /** class used to create the context menu within the result grid. */
 public class ResultAreaContextMenu
 implements IDBQUERYContextMenuRequestListener
 {
 public void reactOnContextMenuRequestFor(IDynamicAccess row)
 {
 // opens a pop-up menu with two entries
 TREECollection cm = new TREECollection();
 cm.addTopNode(new MyMenuNodeInfo(row, "Edit", "images/edit.gif"),true);
 cm.addTopNode(new MyMenuNodeInfo(row,"Remove", "images/remove.gif"),true);
 showPopupMenu(cm);
 }
 }
 /** class used for PDF conversion. */
 public class GeneratePDFRequestListener
 implements IDBQUERYGeneratePDFRequestListener
 {
 public void generatePDFAndDisplayDocument(DBQUERYDataObject dataObject)
 {
 // create PDF document here
 }
 }

 DBQUERYInfo m_dBQueryInfo = new DBQUERYInfo(this,new ConnectionProvider(),
 new ResultAreaContextMenu(),
 new SQLOptimizer(),
 new GeneratePDFRequestListener());
 public DBQUERYInfo getDBQueryInfo() { return m_dBQueryInfo; }
}

Programming the DBQUERY is quite simple. Define an instance of the class DBQUERYInfo. This
instance is referenced by the valueprop definition inside the DBQUERY tag. The DBQUERYInfo
offers a set of constructors.

Mandatory Parameters

Same to all constructors are the (two) mandatory parameters. First you have to pass the adapter object that
defines the DBQUERYInfo instance. This object is used, for example, to open a pop-up inside the
DBQUERY control. With the second, you have to pass an implementation of interface
IDBQUERYConnectionProvider . As the DBQUERYInfo class does not open a database connection
on its own, it uses this object to obtain a connection. The connection is only used to read data from the
database. There are no updates (insert/update/delete) done with this connection. Internally, the provided
connection is buffered and used each time the query is executed. As the DBQUERYInfo does not open
the connection, it does not care about closing the connection.

4

ExampleDBQUERY

Optional Parameters

The constructors vary in the list of their optional parameters. By construction, you may pass an
implementation of interface IDBQUERYContextMenuRequestListener . This object is called (with
method reactOnContextMenuRequestFor) if the user clicks into a line inside of the report result
grid with right mouse button. See the Javadoc documentation of interface
IDBQUERYContextMenuRequestListener for details.

If you want to check/optimize the SQL statement prior its execution, you may pass an implementation of
interface IDBQUERYOptimizer . The object is called with method optimizeQuery each time the
report is executed. See the Javadoc documentation of interface IDBQUERYOptimizer for details.

If you do not want to use the default PDF conversion of the DBQUERY control, you may pass an
implementation of interface IDBQUERYGeneratePDFRequestListener . This object is called (with
method generateAndDisplayPDF) if the user clicks the "PDF" icon within the DBQUERY control.
See the Javadoc documentation of interface IDBQUERYGeneratePDFRequestListener for details.

DBQUERY Properties

Java Binding

valueprop Property VALUEPROP points to a property of
type DBQUERYInfo (package
com.softwareag.cis.server.util). This class
encapsulates the reports execution, the variant
management and the PDF and CSV output.

Obligatory

directselectmethod The DIRECTSELECTMETHOD property is
used to point to a method of your adapter class,
which is called when a selection event occurs
within the result grid.

Optional

directselectevent The DIRECTSELECTEVENT property is used
to define whether the direct select method is
called by a single or a double click. Typically
you use a single click ("onclick") if you want to
select something in the grid and to display
simultaneously details of what was selected in
the same page. Use a double click
("ondblclick") to navigate to the next page.

Optional ondblclick

onclick

DB Binding

datasource Logical identifier of the database on that the
report is executed. This value is passed in the
method "IDBQUERYConnectionProvider.
GetDBConnection".

Obligatory

5

DBQUERYDBQUERY Properties

query SQL statement with a complete SELECT and
FROM clause and with an optional WHERE
clause. With the SELECT clause you define the
result set of the report (each DBCOLUMN
control refers to one element/column name of
this result set via the property COLUMN).
Prior the reports execution the values of the
DBFILTER controls are added to this query.

Obligatory

maxrows Specifies the maximum number of rows
fetched from database. The value "0"
represents unlimited. Default is "200".

Optional 20

50

100

200

500

0

executeonload Flag which indicates if the report is to be
executed on page load. Default is "false".

Optional true

false

filterlinkoperator The values of the DBFILTER controls are
added dynamically to QUERY prior the reports
execution. With this property you can specify
the operator to be used to add the DBFILTER
values. Default is "AND".

Optional and

or

Height

height The height of the DBQUERY control in pixels
or as percentage value.

Obligatory 100

150

200

250

300

250

400

50%

100%

Title

title Name of the database report. Optional

titletextid Text ID (report title) for the multi language
management.

Optional

6

DBQUERY PropertiesDBQUERY

titlelabelwidth Width of the title in pixels or as percentage
value.

Optional 100

120

140

160

180

200

50%

100%

titlestyle Direct manipulation of title style. Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

Row Area

rowareaname Name of the surrounding row area. Optional

rowareatextid Text ID (row area) for the multi language
management.

Optional

foldable The surrounding row area can be shrinked by
clicking on its title. This standard behaviour
can be disabled by setting FOLDABLE to
"false".

Optional true

false

rowareastyle Inline style for the surrounding row area. Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

image URL of the image that is shown at the right
hand of the filters. The URL can be relative or
absolute.

Optional

executebuttonname Name that is displayed on the execute button.Optional

executebuttontextid Text ID (execute button) for the multi language
management.

Optional

outputmesstostatusbarFlag that indicates if messages that are
generated by the report (DBQUERYInfo) are
displayed within the status bar (default) or
inside the DBQUERY control above the result
grid ("false").

Optional true

false

7

DBQUERYDBQUERY Properties

showprintversion If switched to "true" then a small print icon will
appear right from the grid. The print icon opens
up a modal popup from which the HTML
produced inside the report can be directly sent
to the printer.

Pay attention: if specifying "true" then the
adapter property holding the REPORTInfo
object must create the REPORTInfo instance
with passing "this" in the constructor.

Optional true

false

showpdf If set to "true" then a PDF icon is rendered in
the right top corner of the control. When the
user clicks on the icon then the report is
automatically rendered as pdf - and the result
will show up in a popup window.

Pay attention: if setting this property to "true"
then you also have to choose a special
constructor when creating the REPORTInfo
instance on server side, in which the instance
of the model is passed as argument.

Optional true

false

personalizable If defined to "false" then no re-arranging of
columns is offered to the user.

Default is "true". This means: if using
COLUMN controls inside the grid definition
then the user can re-arrange the sequence of
columns by dragging and dropping them within
the top title row.

Optional true

false

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

Result Grid

rowcount The property ROWCOUNT defines the
number of rows that are fetched from the
server.

Optional 1

2

3

int-value

withselectioncolumn Flag which indicates if the result grid does
have a selection column. Default is "true".

Optional true

false

withtitlerow Flag indicates if the result grid does have a title
row (default) or not ("false").

Optional true

false

8

DBQUERY PropertiesDBQUERY

hscroll Indicator if the result grid shows a horizontal
scroll bar.

Optional true

false

fixlayout When switching the FIXLAYOUT property to
value "true" then internally the result grid is
arranged in a way that the area always
determines its size out of the width
specification of the DBCOLUMN controls.
The browser does not look into the column
contents in order to try to optimise the size of
the area - but always follows the width and
height that you define.

Optional true

false

backgroundstyle Direct style manipulation of the table style
which surrounds the table cells inside the result
grid.

Optional

DBFILTER Properties
The DBFILTER tag is the typical tag that is placed inside a DBQUERY definition. The DBFILTER
defines one filter criterion with its binding to a table column (property querycolumn). The parameter
values are added dynamically to the WHERE clause of the SQL query prior to report execution. The SQL
statement is defined within the query property of the DBQUERY control.

DB Binding

querycolumn Name of the column within the reports query the
DBFILTER control is bound to. With this name user
input will be added to the SQL statement on report
execution. The SQL statement is defined in the property
QUERY of the DBQUERY control. Example: If you
define the SQL statement like "SELECT STREET,
ZIPCODE, TOWN FROM ADDRESS" in property
QUERY of the DBQUERY control you can specify any
column name of table "ADDRESS" here.

Obligatory

valuehelptable You may have a table in that the valid values for this
filter are kept. In that case you can provide for a filter
value help by using the properties VALUEHELPTABLE
and VALUEHELPCOLUMN. Input the name of the table
here.

Optional

valuehelpcolumn You may have a table in that the valid values for this
filter are kept. In that case you can provide for a filter
value help by using the properties VALUEHELPTABLE
and VALUEHELPCOLUMN. Input the name of the
column here.

Optional

usequeryforvaluehelpFlag that indicates that the value help is coming from the
query result set.

Optional true

false

9

DBQUERYDBFILTER Properties

columnalias Alias of the database column Optional

Filter Name

labelname Name of the filter. Optional

labeltextid Text ID (filter name) for the multi language management.Optional

labelwidth Width of the filter name in pixels or as percentage value.Optional 100

120

140

160

180

200

50%

100%

Filter Input

fieldwidth Width of the filter input field in pixels or as percentage
value.

Optional 100

120

140

160

180

200

50%

100%

fieldlength Width of the filter input field in amount of characters.
FIELDWIDTH and FIELDLENGTH should not be used
together.

Optional 5

10

15

20

int-value

10

DBFILTER PropertiesDBQUERY

fielddatatype Specifies the data type of the filter. As a consequence the
fields inside the grid of the value help popup are checking
the data during input (e.g. if the DATATYPE is "int", it is
not allowed to enter alphabetic characters) and adds a
logic to transfer the data into various output formats (e.g.
if the DATATYPE is "date", the date is formatted into the
right date format). In addition these fields have a standard
"value help" popup dialog for some data types (e.g. if the
DATATYPE is "date" then automatically a date input
dialog pops up if invoking "value help").

Optional int

float

date

fielduppercase Flag which indicates if the alphabetic characters input
should be converted to upper case if necessary. Default is
"false".

Optional true

false

fieldstyle Explicit style information for the input field. Example: if
you want the text to be right aligned, define "text-align:
right".

Optional

fieldhelpid Name that is used to identify the online help page to be
opened if the user presses the F1-key inside the FIELD
control. Please refer to chapter "Online Help
Management" for details.

Optional

Comment

comment Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor’s tree view.

Optional

DBCOLUMN Properties
The DBCOLUMN tag is the typical tag that is placed inside a DBQUERY definition. The DBCOLUMN
definition defines one column within the result grid. It is bound to a name (column name or column alias)
in the result set of the report. This result set is defined by the query property inside the DBQUERY
definition.

DB Binding

column Name of the table column the DBCOLUMN control
refers to. Please pay attention: If you use column
aliases in the SQL query (refer to property QUERY of
the DBQUERY control) you must specify the column
alias here. Example: If you use the query "Select
CUSTNAME as CN FROM CUSTOMER" you have
to use column alias "CN" here. "

Obligatory

Appearance

name Name of the title cell of the grid column. Optional

textid Text ID (name) for the multi language management.Optional

11

DBQUERYDBCOLUMN Properties

width Width of the column in pixels or as percentage value.Optional 100

120

140

160

180

200

50%

100%

widthpdf Width in centimetres the column should occupy inside
the PDF document.

Optional 0.5

0.75

1

2

5

10

align Horizontal alignment of the text within the column.
Default is "left", other values are "center" or "right".

Optional left

center

right

straighttext Flag which indicates whether the text displayed inside
the column if formatted as HTML text or as straight
text. Default is "false".

Optional true

false

convertspacesFlag which indicates if spaces inside the text of a cell
should be converted in "non-breakable-spaces". In
general HTML converts several appearances of
space-characters ("blanks") into one space-character.
If you set CONVERTSPACES to "true", this default
behaviour is switched off.

Optional true

false

cuttextline If a text does not fit into a cell then it is cut off. If you
set CUTTEXTLINE to "false", it will be broken -
following HTML rules for breaking text. Therefore
the cell will contain more than one text line.

Optional true

false

12

DBCOLUMN PropertiesDBQUERY

datatype Data type of the content of the column. Therefore
certain rendering rules are applied (e.g. in case of
"date", a YYYYMMDD date is converted into a
proper date format).

Optional date

float

int

long

time

timestamp

color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

xs:byte

xs:short

Comment

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

DBPARAMSINGLEVALUE Properties
The DBPARAMSINGLEVALUE tag is the typical tag that is placed inside a DBQUERY definition. The
DBPARAMSINGLEVALUE defines a filter criterion. In contrast to the DBFILTER tag, it is not
visualized within the DBQUERY control and is therefore not accessible/changeable by the user.

Example: a table "ADDRESS" may have a column "COUNTRY". You want to restrict the user to see
German addresses only. In this case, use a DBPARAMSINGLEVALUE with the property
querycolumn set to "COUNTRY", operator set to "=" (equal), and value set to "DE".

13

DBQUERYDBPARAMSINGLEVALUE Properties

Basic

querycolumnName of the column the DBPARAMSINGLEVALUE control
refers to. This name is used to add the parameters value to the SQL
statement prior the reports execution. The SQL statement is
defined in the property QUERY of the DBQUERY control.

Obligatory

operator Name of the operator to use to append the value to WHERE clause
of the SQL statement.

Obligatory =

!=

~

!~

>

>=

<

<=

NULL

NOT
NULL

value The parameter value. You can either enter a fixed value or you can
specify the name with that a value can be looked up from the
session context when executing the report.

Obligatory

comment Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor’s tree view.

Optional

DBPARAMDOUBLEVALUE Properties
The DBPARAMDOUBLEVALUE tag is very similar to DBPARAMSINGLEVALUE. The only
difference is that you can specify operators that work on two operands (e.g. "is between").

14

DBPARAMDOUBLEVALUE PropertiesDBQUERY

Basic

querycolumnName of the column the DBPARAMSINGLEVALUE control refers
to. This name is used to add the parameters value to the SQL
statement prior the reports execution. The SQL statement is defined
in the property QUERY of the DBQUERY control.

Example:

If you define the SQL statement like "SELECT STREET, ZIPCODE,
TOWN FROM ADDRESS" in property QUERY of the DBQUERY
control you can specify any column name of table "ADDRESS" here.

Obligatory

operator Name of the operator to use to append the value to WHERE clause of
the SQL statement. The operator specified here must work on two
operands. At the moment "between" and "not between" are supported.

Obligatory >>

!gt;>

value1 The first parameter value. You can either enter a fixed value or you
can specify the name with that a value can be looked up from the
session context when executing the report.

Example:

If you enter "$FROMDATE$" here, the DBPARAMSINGLEVALUE
will try to lookup a value bound to the name "FROMDATE" from the
session context. An exception will be raised if nothing is found.

Obligatory

value2 The second parameter value. Obligatory

comment Comment without any effect on rendering and behaviour. The
comment is shown in the layout editor’s tree view.

Optional

Variant Management
The DBQUERY control provides for so-called query variants. Within a variant, you can save e.g. an
often-used filter criteria combination. If you do not want to use variants at all, you just set the property
personalizable to false.

Persistence

The variant data is stored in the local file system.

Key

The key of a report variant is consists of:

the name of the web application,

the name of the project that contains the HTML page,

the name of the HTML page that contains the DBQUERY control,

15

DBQUERYVariant Management

the actual user logged on (read from the session context on save),

the name of the variant (specified in the save pop-up).

As the name of the page (that embeds the DBQUERY control) is part of the variant key, you can have
multiple pages within one Application Designer project - each with its own variant set. But: as a
consequence, variants do not work inside the Layout Painter. Reason: if you preview the XML layout
definition, the editor first removes the temporary HTML page (name starts with "ZZZZZZZZ") of a
former preview. In a second step, it creates a new page - with a different name (the name contains a
timestamp). This means: inside the Layout Painter, you never view the same HTML page twice. If you
work with the published HTML page, variants will work properly.

Create/Change/Remove

To create a variant, you just save your current input (filter criteria or settings inside the variant properties
pop-up). To save a variant, choose the save icon to the right of the result grid. To change an existing
variant, open the variant (with input field to the right of the report title label), apply your changes (either
by changing the filter criteria or within the variant properties pop-up - icon above the save icon) and save
them. To remove a variant, choose the remove icon (icon below save icon), select one or more variants
and choose ok.

PDF Generation
The DBQUERY control provides for a generation of a PDF document. The generation is invoked when
choosing the "PDF" icon to the right of the result grid. The document is displayed inside a pop-up. It
contains the following data:

Report title (header line).

Timestamp of the reports execution (footer).

Table with used filter criteria (body).

Table with result of the report (body).

How to do the PDF generation on your own?

The DBQUERYInfo class provides for a constructor where you can pass an implementation of interface
IDBQUERYGeneratePDFRequestListener . This implementation is called with the method
generatePDFAndDisplayDocument if the "PDF" icon is chosen. The current data of the
DBQUERY is passed within that call. For details, see the JavaDoc documentation of interface
IDBQUERYGeneratePDFRequestListener and class DBQUERYInfo (both from package
com.softwareag.cis.server.util).

16

PDF GenerationDBQUERY

	DBQUERY
	Example
	
	Mandatory Parameters
	Optional Parameters

	DBQUERY Properties
	DBFILTER Properties
	DBCOLUMN Properties
	DBPARAMSINGLEVALUE Properties
	DBPARAMDOUBLEVALUE Properties
	Variant Management
	
	Persistence
	Key
	Create/Change/Remove

	PDF Generation
	
	How to do the PDF generation on your own?

