
Special Issues
This chapter covers the following topics:

Protocol Item

Bringing Controls into the Layout Painter

Text ID/Multi Language Controls

Protocol Item
Inside a tag handler, you receive a protocol item. There are some mandatory tasks that you have to do with
a protocol item:

You must tell the protocol item every property you are referencing from your control.

This information is required because only these properties are transferred from the server to the client
at runtime which are referenced inside the page.

You must tell the protocol item every text ID you are referencing from your control.

Again this information is used to send the right text IDs to the client processing.

In case of using macro controls, one macro control is rendered into many normal controls. Each normal
control is treated in the way that it generates corresponding HTML/JavaScript and in the way that it itself
tells which properties it binds to; i.e. each normal control adds its properties/text IDs itself: when your
macro control contains some FIELD controls, then each FIELD control will tell during generation the
adapter properties it binds to - there is no necessity for you to re-tell on macro control level.

But: you might tell on macro control level, that all the contained adapter properties are not provided via
one-by-one implementation but by implementing a server side class already providing all sub-properties.
In this case, you can use the protocol item in the following way:

Call addProperty(’nameOfProperty’,’serverSideClass’) . For example:

addProperty(m_addressprop,’ADDRESSInfo’)

Tell that all property definitions made by internally contained controls are not relevant for
implementation by calling the method suppressFurtherCodeGenEntries() .

Bringing Controls into the Layout Painter
The Layout Painter is configured via a file editor.xml inside the <installdir>/cis/config/ directory. This
file contains information about all controls which are available inside the editor. For each control, the list
of attributes and the list of possible subnodes is listed.

Have a look at the file - the structure is self-explaining.

1

Special IssuesSpecial Issues

With early versions, you had to bring own controls into the editor.xml file by editing it accordingly. The
disadvantage was that every time Application Designer changed the editor.xml file, you had to reapply
your changes. Application Designer now offers a dynamic way of adding own controls into the logical
structure of the editor.xml.

Write an editor_xyz.xml file and place it into the same directory as editor.xml. "xyz" should be the same
name as the one you chose as the prefix for your control library. Each editor_xyz.xml file holds
information about the controls of the xyz control library:

data types of a tag

name of control tags

attributes of tags

subnodes a tag may have

subnode extensions for existing Application Designer tags - this means, you define below which
Application Designer controls your new tags should be positioned

The following definition shows the usage of the editor_xyz.xml file:

<!--
Dynamic extension of editor.xml file.
-->

<controllibrary>
 <editor>

 <!-- datatype TEXT -->
 <datatype name="demo:count">
 <value id="1st" name="First"/>
 <value id="2nd" name="Second"/>
 <value id="3rd" name="Third"/>
 </datatype>

 <!-- control DEMOCONTROL -->
 <tag name="demo:democontrol">
 <attribute name="text" datatype="demo:count"/>
 </tag>
 <tagsubnodeextension control="itr" newsubnode="demo:democontrol"/>
 <tagsubnodeextension control="tr" newsubnode="demo:democontrol"/>

 <!-- control DEMOCONTROLDYN -->
 <tag name="demo:democontroldyn">
 <attribute name="textprop"/>
 </tag>
 <tagsubnodeextension control="itr" newsubnode="demo:democontroldyn"/>
 <tagsubnodeextension control="tr" newsubnode="demo:democontroldyn"/>

 <!-- control ADDRESSROWAREA -->
 <tag name="demo:addressrowsarea">
 <attribute name="addressprop"/>
 </tag>
 <tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea"/>

 </editor>
</controllibrary>

2

Bringing Controls into the Layout PainterSpecial Issues

Note that the structure of the file directly corresponds to the structure of the original editor.xml file. The
data is an add-on that is logically added to the information from the editor.xml file.

Note also that both new data types and new control tags are named together with their prefix - in order not
to mix up with standard Application Designer controls or with controls of other control library providers.

Text ID/Multi Language Controls
Please contact Software AG in case you create new controls with language-dependent information - and if
you want to use the same translation methods as Application Designer does for these controls.

3

Special IssuesText ID/Multi Language Controls

	Special Issues
	Protocol Item
	Bringing Controls into the Layout Painter
	Text ID/Multi Language Controls

