
Control Concept
This chapter gives you an overview about the control concept. It covers the following topics:

Page Generation

Control Interface

Library Concept

Binding Concept

Integrating Controls into the Layout Painter

Summary

Page Generation
The page generation is the process of transferring an XML layout definition into an HTML/JavaScript
page. It is automatically executed inside Application Designer’s Layout Painter when previewing a layout.
It can also be called from outside processing.

1

Control ConceptControl Concept

A generator program (com.softwareag.cis.gui.generate.HTMLGenerator) is receiving a
string which contains the XML layout definition. The generator program parses this string with a SAX
parser and as a consequence processes the string tag by tag.

The generation of HTML pages is done in two steps:

Macro Execution
First, each tag of the XML layout is checked if it is a so called "macro tag". A macro tag is a tag
which does not produce HTML output itself but which itself produces Application Designer XML
tags. Imagine a control rendering an address input: this controls is using Application Designer
controls in order to create some defined output area representing an address. The HTML is not
produced by the address control directly - the address control internally creates normal Application
Designer controls (e.g. fields, buttons, etc.) which themselves produce corresponding HTML code.

The execution of macro tags is recursively done until no macro tag is contained in the XML layout
anymore; i.e. macro tag themselves can internally use macro tags.

HTML Generation
After having executed the macros, the rendering of HTML is started: for each tag, the renderer
creates one object of a tag handler class, that it finds via library definitions and naming conventions.

Each tag handler is called via a defined interface
(com.softwareag.cis.gui.generate.ITagHandler) and is invited to take part in the
generation process. It gets all the tag data including the attributes from the layout definition and it
gets the HTML string "on the right" and is allowed to append own information into this HTML
string.

A tag handler instance is called at three different point of times by the generator:

when the tag is starting (e.g. generator finds "<page…>"),

when the tag is closing (e.g. generator finds ""),

when the generator creates one defined JavaScript method which is called at runtime when the page
is built up.

It is now the task of the tag handler to create HTML/JavaScript statements at the right point of time.

Control Interface
The following topics are covered below:

IMacroTagHandler

ITagHandler

Call Sequence

Extensions of IMacroTagHandler and ITagHandler

2

Control InterfaceControl Concept

IMacroTagHandler

The interface com.softwareag.cis.gui.generate.IMacroTagHandler contains two
methods which represent the different point of times when the generator calls the tag handler during the
macro execution phase.

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;
import com.softwareag.cis.gui.protocol.ProtocolItem;

public interface IMacroTagHandler
{
 public void generateXMLForStartTag(String tagName,
 AttributeList attrlist,
 StringBuffer sb,
 ProtocolItem pi);
 public void generateXMlForEndTag(String tagName,
 StringBuffer sb);
}

A detailed information about the methods can be found inside the Javadoc documentation which is part of
your Application Designer installation.

ITagHandler

The interface com.softwareag.cis.gui.generate-ITagHandler contains three methods that
represent the different point of times when the generator calls a tag handler during the HTML generation
phase.

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;
import com.softwareag.cis.gui.protocol.*;

public interface ITagHandler
{
 public void generateHTMLForStartTag(int id,
 String tagName,
 AttributeList attrlist,
 ITagHandler[] handlersAbove,
 StringBuffer sb,
 ProtocolItem protocolItem);

 public void generateHTMLForEndTag(String tagName,
 StringBuffer sb);

 public void generateJavaScriptForInit(int id,
 String tagName,
 StringBuffer sb);
}

A detailed information about the methods can be found inside the Javadoc documentation which is part of
your Application Designer installation.

3

Control ConceptIMacroTagHandler

Call Sequence

A tag is processed by the generator in a certain way that is now described for the HTML generation phase.
(The macro execution phase is processed in an analogue way.)

The generator finds the tag, reads its attributes and assigns an ID. The ID is unique inside one page.

The generator creates a new instance of the tag handler which is responsible for processing the tag.

The generator calls the generateHTMLForStartTag method. It passes the list of attributes, the
string buffer which represents the HTML/JavaScript string and a protocol item in which the tag
handler can store further information.

The generator calls the generateJavaScriptForInit method. It passes as main parameter a
string representing the method body of the initialisation method. You can append JavaScript
statements to this string.

(If the generator finds tags below the current tag, these tags are processed in the same way now.)

The generator finds the end tag and calls the generateHTMLForEndTag method.

The following image illustrates the call sequence:

Be aware of the following:

There is one instance of a corresponding tag handler per tag. If there are three button definitions
inside a layout definition, then during generation there are three instances of the BUTTONHandler
class.

There is one instance of a protocol item which is passed as parameter per tag. Each tag has its own
protocol item. All the protocol items are collected at generation point of time to form one generation
protocol.

4

Call SequenceControl Concept

Extensions of IMacroTagHandler and ITagHandler

There are certain interfaces which extend the framework for specific situations:

com.softwareag.cis.gui.generate.IMacroHandlerWithSubTags - this is an
extension of IMacroHandler and provides the possibility to also receive subtags of a tag,

com.softwareag.cis.gui.generate.ITagWithSubTagsHandler - this is an
extension of the ITagHandler interface and provides the possibility to also receive the sub tags of
a tag.

com.softwareag.cis.gui.generate.IRepeatCountProvider and
com.softwareag.cis.gui.generate.IRepeatBehaviour - these interfaces are
responsible for controlling a special management for the REPEAT processing, which you use, for
example, inside grids (ROWTABLEAREA2).

You do not need to know anything about these extensions to create your first controls. Documentation is
provided inside the Javadoc documentation.

Library Concept
The library concept is responsible for defining the way how the generator finds a tag handler class for a
certain tag. There are two situations:

1. The generator finds a tag without a ":" character. This indicates that this is a native Application
Designer tag - the according tag handler is found inside the package
com.softwareag.cis.gui.generate , the class name is created by converting the tag name
to upper case and appending "Handler".

For example, if the generator finds the tag "header", it tries to use a tag handler class
com.softwareag.cis.gui.generate.HEADERHandler .

2. The generator finds a tag with a ":" character, e.g. demo:address . This indicates to the generator
that an external control library is used. The generator looks into a certain configuration file
(<installdir>/config/controllibraries.xml) and finds out the package name which deals with the
"demo:" library. After having found the package name, the class name is built in the same way as
with standard Application Designer controls.

For example, if the generator finds the tag demo:address and in the configuration file the demo
prefix is assigned to the package com.softwareag.cis.demolibrary, then the full class name of the tag
handler is com.softwareag.cis.demolibrary.ADDRESSHandler .

What happens if the generator does not find a valid class for a certain tag? In this case, it just copies the
tag of the layout definition inside the generated HTML/JavaScript string. Via this mechanism, it is
possible to define, for example, HTML tags inside the layout definition which are just copied into the
HTML/JavaScript generation result.

5

Control ConceptLibrary Concept

Control Libraries

A control library is a Java library containing ItagHandler /IMacroTagHandler implementations.
The corresponding .jar file has to be part of the Application Designer application libraries in order to be
found inside the Layout Painter and Layout Manager; i.e. it can be copied, for example, into the
<webappdir>/<projectdir>/appclasses/lib directory.

The central control file for configuring control libraries in your installation is the file
<webappdir>/cis/config/controllibraries.xml. An example of the file looks as follows:

<controllibraries>
 <library package="com.softwareag.cis.demolibrary"
 prefix="demo">
 </library>
</controllibraries>

Each library is listed with its tag prefix and with the package name in which the generator looks for tag
handler classes.

Binding Concept
The normal binding concept between page and a corresponding class is:

Controls refer to properties and methods.

Properties and methods are directly implemented as set /get method or as straight methods inside
the adapter class.

But: as you might already have read in the part Binding between Page and Adapter of the Special
Development Topics, it is much more flexible. You can define hierarchical access paths for both methods
and properties.

For example, you can define a FIELD control which binds to the property address.street . As a
consequence, the adapter is first asked for an object via a getAddress() method. Then the result of
this method is asked for getStreet() . The same is true for methods: in a BUTTON control, you can
define the method address.clear - as a consequence, the adapter again is first asked for
getAddress() , then the method clear() is called in the result object.

Why is this important with controls? Well, it is especially important for composing controls: you might
want complex controls, e.g. an address control which internally is composed out of 10 FIELD controls, to
be represented on the server side by a corresponding server class which matches the property and method
requirements of the control. Even more: if you add an additional FIELD control to the address control,
then you might not want to update all adapter classes, but just want to update the corresponding server
class.

6

Binding ConceptControl Concept

In analogy to the "Adapter", which is the representation of a whole page, the server side classes, which
deal with certain controls, are called "Control Adapter" classes.

This all sounds a bit abstract - wait for the control adapter code example. Then you will see how powerful
and simple this binding concept is.

Integrating Controls into the Layout Painter
Once having created new controls, you want to use them inside the Layout Painter. The Layout Painter is
configured by a set of XML files, all of them located inside <webappdir>/cis/config/:

editor.xml

editor_*.xml

Have a look into the editor.xml file: all controls that come with Application Designer are listed inside this
file. Each control defines the attributes that can be maintained and defines how it fits into other controls.
Data type definitions to provide value help for the attributes is defined as well inside this file.

In short: editor.xml controls the way in which controls are presented inside the Layout Painter.

When creating new controls, you want to integrate your controls into the Layout Painter, i.e. you want to
register them inside editor.xml as well. Instead of letting you directly manipulate editor.xml, there is an
extension concept - in order to keep your definitions untouched by release upgrades. There are some
editor_*.xml files, each of the files containing the definitions of editor.xml for a certain control library.

7

Control ConceptIntegrating Controls into the Layout Painter

Have a look into the editor_demo.xml file:

<!-- DEMO:ADDRESSROWAREA2 -->
 <tag name="demo:addressrowarea2">
 <attribute name="addressprop" mandatory="true"/>
 <protocolitem>
 </protocolitem>
 </tag>
 <tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea2"/>

In this example, a new control demo:addressrowarea2 is defined:

It provides one attribute addressprop .

It can be placed into the existing Application Designer control pagebody .

Or have a look at the following section:

<!-- DEMO:ADDRESSROWAREA3 -->
 <tag name="demo:addressrowarea3">
 <attribute name="addressprop" mandatory="true"/>
 <taginstance>
 <rowarea name="Address">
 <itr>
 <label name="First Name" width="100">
 </label>
 <field valueprop="$addressprop$.firstName" width="150">
 </field>
 </itr>
 <itr>
 <label name="Last Name" width="100">
 </label>
 <field valueprop="$addressprop$.lastName" width="150">
 </field>
 </itr>
 <vdist height="10">
 </vdist>
 <itr>
 <label name="Street" width="100">
 </label>
 <field valueprop="$addressprop$.street" width="300">
 </field>
 </itr>
 <itr>
 <label name="Town" width="100">
 </label>
 <field valueprop="$addressprop$.zipCode" width="50">
 </field>
 <hdist width="5">
 </hdist>
 <field valueprop="$addressprop$.town" width="245">
 </field>
 </itr>
 <vdist height="10">
 </vdist>
 <itr>
 <hdist width="100">
 </hdist>
 <button name="Clear" method="$addressprop$.clearAddress">
 </button>
 </itr>
 </rowarea>
 </taginstance>
 <protocolitem>

8

Integrating Controls into the Layout PainterControl Concept

 <addproperty name="$addressprop$" datatype="ADDRESSInfo" useincodegenerator="true"/>
 </protocolitem>
 </tag>
 <tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea3"/>

The control demo:addressarea3 has the following features:

It provides one attribute addressprop .

It contains the macro XML (between <taginstance> and </taginstance>) for building the
control out of existing Application Designer controls.

It binds to an address property of type ADDRESSInfo (between <protocolitem> and
</protocolitem>).

It can be positioned below the pagebody control.

The editor_*.xml files should not be maintained by yourself directly. Instead, use the Control Editor to
define the file in a comfortable way.

Summary
When defining new controls, there are the following resources:

<webapp>/cis/config/controllibraries.xml - to define control library prefixes and their binding to a
certain Java package holding control implementations.

<webapp>/cis/config/editor_<yourchoice>.xml - to define how controls fit into existing controls.

ITagHandler implementations that transfer XML control definitions into HTML/JavaScript.

IMacroTagHandler implementations that transfer XML control definitions into other XML
control definitions.

The following section contains examples for building macro controls and new controls.

9

Control ConceptSummary

	Control Concept
	Page Generation
	Control Interface
	IMacroTagHandler
	ITagHandler
	Call Sequence
	Extensions of IMacroTagHandler and ITagHandler

	Library Concept
	Control Libraries

	Binding Concept
	Integrating Controls into the Layout Painter
	Summary

