
Configuration of Application Designer
In general, you can use Application Designer from scratch, that is: without any further configuration. This
chapter explains certain options for fine-tuning Application Designer. The following topics are covered:

Overview of Configuration Files

web.xml

cisconfig.xml

controllibraries.xml - Adding Control Libraries

editortemplates.xml

editor.xml - Available Controls

startapps.xml - Applications to be Started

Customizing Configuration Files

Overview of Configuration Files
The web.xml file is located according to the servlet specification:

<webapplication>/WEB-INF/web.xml

Inside the Application Designer installation’s web application there is a directory cis/config in which you
can find the Application Designer configuration files.

<webapplication>/cis/config/cisconfig.xml
<webapplication>/cis/config/controllibraries.xml
<webapplication>/cis/config/editor.xml
<webapplication>/cis/config/editortemplates.xml
<webapplication>/cis/config/startapps.xml

web.xml
The web.xml file contains:

technical information about the servlets that are defined inside Application Designer and how they
are accessed, and

configuration information.

This section only focuses on the configuration information.

Inside the definition for the servlet Connector there are two init-param elements that are relevant
for the system configuration:

1

Configuration of Application DesignerConfiguration of Application Designer

<servlet id="Connector">
 <servlet-name>Connector</servlet-name>
 <display-name>Connector</display-name>
 <servlet-class>com.softwareag.cis.server.Connector</servlet-class>
 <init-param id="CISHOME">
 <param-name>cis.home</param-name>
 <param-value>REALPATH</param-value>
 </init-param>
 <init-param id="CISLOG">
 <param-name>cis.log</param-name>
 <param-value>REALPATH/../../../log/</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

2

web.xmlConfiguration of Application Designer

cis.home This parameter points to the directory location of the web application - if you are using it
in design time mode. During design time, Application Designer needs to know this file
location in order to correctly place generated page files and other information. At
runtime, especially if running the Application Designer web application in a clustered
application server scenario, this parameter should be wiped out. For further information,
see the section Design Time Mode and Runtime Mode.

The parameter can either be set to a directory name (for example,
c:/cisinstall/tomcat/webapps/cis/) or to the parameter REALPATH.

REALPATH is dynamically interpreted at runtime. The name is internally requested by
using the getRealpath() method of the servlet context.

Caution:
The above mentioned method is not supported by all servlet containers, it is only
supported by the servlet containers that explicitly deploy into the file system (such as
Tomcat, Jetty and IBM Websphere).

cis.log This parameter points to the directory to which log information is written. Take care in a
clustered scenario that the directory is not set to a fixed directory value: the directory
may not be available on each cluster node.

You can use the REALPATH parameter and you can specify the log location relative to
the directory (for example, REALPATH/log).

You can specify TEMP to indicate that the log is written to a temporary directory that
every servlet container must provide as part of the servlet specification. When using
TEMP, your application is clusterable - the application server will tell Application
Designer for each node where to store log information.

There is a second parameter influencing the log: this parameter is located in the file
cisconfig.xml, its name is startmonitoringthread . The Application Designer log
file is only written if this parameter is set to "true". Reason: the log is not directly written
to the log file but is always buffered in memory first. The monitoring thread is started
every 5 seconds and writes the buffered data to the file system. If the
startmonitoringthread is not started, the log is automatically written to the
logging that is provided by the servlet container. (Internally, the servlet context’s log
method is used.) The same will happen if you wipe out the CISLOG section from the
web.xml file. In this case, Application Designer will use the log interface provided by the
servlet context for writing log information.

cisconfig.xml
The following topics are covered below:

General Parameters

Directory for Performance Traces

Central Class Path Extensions for Development

3

Configuration of Application Designercisconfig.xml

General Parameters

The cisconfig.xml file contains some general control information. The following is a very basic example:

<cisconfig startmonitoringthread="true"
 requestclienthost="false"
 debugmode="false"
 loglevel="EWI"
 logtoscreen="false"
 sessiontimeout="3600"
 xmldatamanager="com.softwareag.cis.xmldata.filebased.XMLDataManager"
 useownclassloader="true"
 browserpopuponerror="false"
 framebuffersize="3"
 onlinehelpmanager="com.softwareag.cis.onlinehelp.projectbased.FrameHelpOHManager"
 textencoding="UTF-8"
 enableadapterpreload="true">
</cisconfig>

animatecontrols Default: true.

Defines how Application Designer handles the animation of controls. There are
several controls that can be rendered in an animated way and in a standard
way.

Setting this parameter to "false" can help to improve performance, especially if
you are not using the newest hardware.

Values: true/false.

browserpopuponerror Default: false.

Defines how Application Designer handles it if the application behind an
Application Designer page throws an error.

By default (false), the browser switches to an error screen. In the screen, the
user can only abort the current function. This is the default way in which any
kind of inconsistency is automatically omitted.

When you set browserpopuponerror to "true", the browser opens a
pop-up window in which the error is output. This setting should only be used
during development because it may cause inconsistencies in the application.

Values: true/false.

createhttpsession Default: false.

Internally, Application Designer does not require HTTP session management
that is provided by the servlet container. Some application servers (especially
in clustered scenarios in which Application Designer runs in several nodes)
require an explicit HTTP session ID to be used in order to route requests from
a browser client always to the right application server node in the cluster. Set
createhttpsession to "true" in this case.

Values: true/false.

4

General ParametersConfiguration of Application Designer

debugmode Default: false.

A log is written permanently into Application Designer’s log directory. When
debugmode is set to "true", a lot of information which normally is not
required is written to the log.

Be aware that you can also set the debug mode dynamically within your
running system. Application Designer provides a monitoring tool in which you
can switch the debug mode on and off.

Values: true/false.

defaultlanguage Default: en (English).

Defines the language that is to be used by default when starting Application
Designer. If not set, "en" is used. See Multi Language Management for
detailed information on using different languages with Application Designer.

designtimeclassloader By default, Application Designer uses an own class loader for accessing
adapter classes at design time. (You can switch this off by specifying
useownclassloader="false" .)

With the designtimeclassloader , you can explicitly select a class
loader class that Application Designer is to use. This allows you to use class
loaders that offer special functions such as reading encrypted class files.

Value: the name of a class loader class.

enableadapterpreload Default: true.

By default, the server sends all required responses at once to the client, even if
different adapters are involved.

If set to "false", a separate data transfer occurs for each involved adapter.

errorreactionadapter In case of an unhandled application error, the Application Designer runtime
navigates to an error page. The class name specified in
errorreactionadapter is the Java adapter for this error page.

If an error reaction adapter is not specified, a default adapter is used which
shows the error’s stack trace.

The Application Designer framework contains a second error reaction adapter
with the class name
com.softwareag.cis.server.SecureErrorReactionAdapter .
For security reasons, this adapter does not show a stack trace but only an error
message.

You can write your own error reaction adapter and create your own error page.
An error reaction adapter must implement one of the interfaces
com.softwareag.cis.server.ISecureErrorReactionAdapter
or com.softwareag.cis.server.IErrorReactionAdapter . For
more information, see the corresponding Java documentation.

fieldnumerictypesrightaligned Default: false.

Set this parameter to "true" in order to right-align text within the FIELD
control when using the data type int , long or float .

Values: true/false.

5

Configuration of Application DesignerGeneral Parameters

framebuffersize Default: 3.

Each page in the browser client runs inside a surrounding page. This
surrounding page offers a couple of internal functions, one of them to buffer
contained Application Designer pages: if a user opens the first page and then
navigates to a second page, the first page is internally kept inside a frame
buffer. If returning to the first page later on, the browser does not have to build
up the first page from scratch but just switches to the buffered page.

The framebuffersize defines the number of buffered pages. Increasing
the framebuffersize means that more resources are used on the client
(browser) side. When changing this value, you should test the memory
consumption on the client side before rolling out the change to productively
running implementations.

Value: integer number.

loglevel Default: EWI.

Defines the message types that are to be logged. Values:

E (error)
W (warning)
I (information)
D (debug)

You can specify any combination of message types by concatenating the
message types.

Example: "EW" logs all error and warning messages. "EWI" additionally logs
information messages.

Caution:
When having set debugmode to "true", the loglevel filter is automatically
bypassed and all messages are logged. debugmode is stronger than
loglevel .

logtoscreen Default: false.

If this parameter is set to "true", all Application Designer log information is
also output to the command screen from which you started Application
Designer. This parameter should only be set to "true" if running in
development mode.

Values: true/false.

maxitemsinfieldcombo Default: 100.

The FIELD control provides for a predefined pop-up method
openIdValueComboOrPopup . Depending on the size of the list of valid
values, the list is either shown in a combo box or in a pop-up. Use this
parameter to control the maximum number of entries that are to be shown in
the combo box.

Value: integer number.

6

General ParametersConfiguration of Application Designer

multilanguagemanager Internally, Application Designer uses an interface to retrieve the translation
information for a certain text ID and a certain language. A default
implementation is available that stores the corresponding language information
in files that are part of the web application. You can build your own multi
language manager - by using the
com.softwareag.cis.multilanguage.IMLManager interface - in
case you already have an existing framework for multi language management.

Value: the name of the class that supports Application Designer’s multi
language interface.

onlinehelpmanager Application Designer accesses a certain URL when the user presses F1 on
certain controls (for example, fields, check boxes and others). Application
Designer transfers a corresponding help ID that is defined with the control into
a URL and opens this URL in a pop-up window. If you have your own
mechanisms for defining this URL, you can implement a corresponding
Application Designer Java interface
(com.softwareag.cis.onlinehelp.IOHManager).

Value: the name of the interface.

requestclienthost Default: false.

If a client sends an HTTP request, it is determined for the first request from
which client this request is coming. This operation is sometimes quite
expensive. For this reason, you can switch it off. If switched off, there is no
disadvantage in normal operation, besides in the monitoring tool you cannot
identify which session belongs to which client.

Values: true/false.

requestdataconverter Application Designer allows to pass each value that is input by the user
through an explicit data converter on the server side, prior to passing this value
to the application. In the data converter, you can implement certain security
checks, for example, you can prevent users from inputting string sequences
containing inline JavaScript or SQL scripting. See the interface
com.softwareag.cis.server.IRequestDataConverter for
more information. See also Security Aspects in the Special Development
Topics.

Value: name of a class that implements the interface
com.softwareag.cis.server.IRequestDataConverter .

sessionidasthreadname Default: true.

On start of each page request processing, the Application Designer runtime
calls the method Thread.setName with the current session ID (default).

You can set this parameter to "false" to instruct the Application Designer
runtime not to touch the thread’s name.

Values: true/false.

sessiontimeout Default: 3600 (1 hour).

Application Designer sessions are timed out according to the value defined
with this parameter. This is the definition of the timeout phase in seconds. By
default, 3600 is defined in the configuration file. If no parameter is specified in
the configuration file, 7200 is used.

Value: integer number.

7

Configuration of Application DesignerGeneral Parameters

startmonitoringthread Default: true.

If set to "true", a monitoring thread is opened which wakes up every 5 seconds.
The thread performs the following activities:

1. It initiates a garbage collection periodically (every two minutes).

2. It writes all log information into a log file (every five seconds).

3. It calls the clean up of sessions which are timed out (every two minutes)

What happens if the monitoring thread is not started?

1. No garbage collection will be triggered by Application Designer. This is
then the task of the servlet container around.

2. The log is not automatically written to the file location specified in the
web.xml file, but is written to the servlet container’s logging.

3. Timing out sessions is not done every two minutes but every thousand
requests.

Caution:
Some servlet containers do not allow to let the web application start new
threads (for example, the Sun reference implementations do so). For these
containers, the parameter must be set to "false".

Values: true/false.

textencoding Default: UTF-8.

By default, Application Designer reads and writes text files in UTF-8 format.
You can tell Application Designer to use a different format (for example, for
writing XML layout definitions). But be very careful and very aware of what
you are doing.

See also Unicode in the Multi Language Management documentation.

urlsessiontimeout When Application Designer times out a session (see the sessiontimeout
parameter) and the user tries to continue to work with the session, a page will
be displayed inside the user’s browser, indicating that a timeout happened with
the user’s session. By default, this page is an Application Designer page that
you might not want to show to your application users.

Value: the URL of the page that is to be shown instead of the default page.

usemessagepopup Default: false.

Set this parameter to "true" in order to show status messages as message
pop-ups.

Values: true/false.

8

General ParametersConfiguration of Application Designer

useownclassloader Default: true.

If set to "true", Application Designer uses its own class loader to load
application classes.

This parameter may be set to "false" in certain environments, for example, if
you use Application Designer inside an environment which requires all
application classes to run in the environment’s own class loader environment.

Caution:
The Application Designer class loader automatically searches for classes in
certain directories (<project>/appclasses/classes and
<project>/appclasses/lib). If you do not use the Application Designer class
loader, you have to set up your environment accordingly.

Values: true/false.

xmldatamanager This parameter defines the file name of the class which implements the
com.softwareag.cis.xmldata.IXMLDataManager interface. You
can specify an own class here. The
com.softwareag.cis.xmldata.XMLDataManagerFactory
creates an instance using a constructor without any parameter.

zipcontent Default: true.

Between the browser and the server, data content is exchanged. By default,
Application Designer zips the content before sending a response from the
server to the browser client.

Sometimes you may want to actually "see" what is being sent (maybe you have
a test tool that captures the HTTP protocol). Set zipcontent to "false" if
you do not want Application Designer to zip the data content returned to the
client.

Values: true/false.

Directory for Performance Traces

The requestrecording section of the cisconfig.xml file indicates the directory in which recorded
performance traces are stored.

<cisconfig ...>
 <requestrecording recordrequests="false"
 recorddirectory="c:/temp/traces/">
 </requestrecording>
</cisconfig>

See also:

Recording a Performance Trace in the Development Workplace documentation.

Recording a Performance Trace in the Ajax Developer documentation.

Central Class Path Extensions for Development

If you want to use your own class path extension, you may add a subsection to the cisconfig.xml file in
which you extend the class path of the Application Designer class loader at development time:

9

Configuration of Application DesignerDirectory for Performance Traces

<cisconfig ...>
 <classpathextension path="c:/development/centralclasses/classes"/>
 <classpathextension path="c:/development/centralclasses/libs/central.jar"/>
</cisconfig>

Each class path extension is listed with a reference to its physical path.

controllibraries.xml - Adding Control Libraries
In this file, all control libraries are registered which you use for your layout definitions. You only need to
modify this file if you use non-Application Designer control libraries. For details, see Customized
Controls.

editortemplates.xml
This file defines the layout templates that are offered for selection when you create a new layout with the
Layout Painter. If you do not want to use the default templates, you can customize them. For details, see
the comments in the editortemplates.xml file.

See also:

Layout Templates in the Development Workplace documentation.

Layout Templates in the Ajax Developer documentation.

editor.xml - Available Controls
This file contains data about all the controls which may be used inside the Layout Painter. You should
never change this file - Application Designer offers a smart way to append your own definitions to the
ones coming from Application Designer: You can create editor_<xxxxx>.xml files in which you specify
your delta compared to editor.xml. For details, see:

Using the Control Editor in the Development Workplace documentation.

startapps.xml - Applications to be Started
It is possible to define that certain applications require to be started immediately inside the start processing
of Application Designer. For details, see Becoming a Member of the Startup Process in the Special
Development Topics.

Customizing Configuration Files
This description applies only available when Application Designer is part of a Natural for Ajax
installation.

You can customize the following default configuration files:

cisconfig.xml
controllibraries.xml
editortemplates.xml

10

controllibraries.xml - Adding Control LibrariesConfiguration of Application Designer

startapps.xml

However, modifying the above default configuration files has the following disadvantage: With each
Application Designer version or update package, Application Designer brings its own default
configuration files. If you forget to save your settings before installing an upgrade, your customized files
will be overwritten by the upgrade. Therefore, it is more convenient if your customized files do not have
the same names as the default files.

The Configuration Manager tool supports the creation of custom configuration files with the following
names:

user_cisconfig.xml
user_controllibraries.xml
user_editortemplates.xml
user_startapps.xml

Instead of modifying the default configuration files, it is recommended that you modify the corresponding
user_*.xml files.

Application Designer always checks whether a custom configuration file with the name user_*.xml exists.
When it exists, Application Designer uses the user_*.xml file and ignores the default file. If a user_*.xml
file does not exist, Application Designer uses the default file.

Note:
editor.xml is not intended to be modified. If you want to add your own controls, you should write your
own editor_<xxxxx>.xml file as described above for the editor.xml file.

 To create custom configuration files (user_*.xml files)

1. Start the development workplace.

2. In the Development Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Configuration Manager.

11

Configuration of Application DesignerCustomizing Configuration Files

3. Choose the Help tab which is shown for the Configuration Manager.

4. See the help text for information on how to proceed.

12

Customizing Configuration FilesConfiguration of Application Designer

	Configuration of Application Designer
	Overview of Configuration Files
	web.xml
	cisconfig.xml
	General Parameters
	Directory for Performance Traces
	Central Class Path Extensions for Development

	controllibraries.xml - Adding Control Libraries
	editortemplates.xml
	editor.xml - Available Controls
	startapps.xml - Applications to be Started
	Customizing Configuration Files

