Appendix D - Class Loader Concepts Appendix D - Class Loader Concepts

Appendix D - Class L oader Concepts

An explicit class loader management was introduced to support the following scenarios:

® Classes are automatically found in the context of Application Designer without specifying a
CLASSPATH variable.

® (Classes can be stored inside an application project directory - separated from other application
projects.

e During development time, easily run new pages together with the latest classes without restarting the
server.

This chapter explains the class loader concepts used inside Application Designer. It covers the following
topics:

e Design Time - Runtime
® Class Loader Hierarchy

® Preparing for Runtime

Design Time - Runtime

The class loader concepts are designed to simplify the development of pages and their logical
representations on the server side: adapters.

At runtime, they should only be used if you are not running in a cluster - i.e. if you do not distribute your
application server on multiple nodes. When running in a cluster, classes should be located exactly there,
where Java EE specifications allow them to be located. Inside the Application Designer configuration, you
can select which mode you are running in - for detailsPssign Time Mode and Runtime Mode in the
Configuration documentation.

After explaining the class loader concepts in this chapter, at the end we explain what to do in order to
change a design time environment into a runtime environment.

Class L oader Hierarchy

Application Designer runs as a web application inside a servlet engine - by default, the Tomcat servlet
engine is used. The class loader used by the servlet engine is called "web application loader" in the
following text.

The Application Designer environment itself is running in the context of the web application loader. This
class loader is looking for classes as specified by the servlet engine. Therefore the Application Designer
runtime must be accessable by this class loader. For Tomcat, this is achieved by plat&jgrtfike

inside the<installdir>/tomcat/webapps/ROOT/WEB-INF/lib directory.

The following topics are covered below:



Appendix D - Class Loader Concepts Application Class Loader

Application Class Loader

Initialisation of Your Application

Guidelines for Development

Classpath Extensions in cisconfig.xml

Loading Resource Files

Application Class L oader

The application classes (adapter classes) are loaded by the class loader management of Application
Designer. This class loader looks for Java classes as follows:

® All .classfiles inside the directory:
<webapp>/softwar eag/appclasses/classes

e All ,jar files inside the directory:
<webapp>/softwar eag/appclasses/lib

e All .classfiles inside any application project under the directory:
<webapp> /< project>/appclasses/classes

e All jar files inside any application project under the directory:
/<webapp>/< project>/appclasses/lib

e All classes that are referenced in the classpath extension that can be defined in the Application
Designer configuratiornc{sconfig.xml).

Unlike normal class loader hierarchies, the application class loader always tries to resolve a class inside its
application directories first. Only if the class is not found, the parent class loader is called - the web
application loader. The benefit is that application classes are totally separated from the servlet engine
classes - e.g. by using XML parser libraries. You are not bound to the parser delivered with the servlet
engine.

Inside the Application Designer session management, a session is bound to an application class loader
instance. Therefore the application class loader - which was instanciated when the session was created - is
kept in the session during its whole life cycle. All objects created inside this session use this instance of
the class loader.

In case of changing classes insidegbfevareag/appclasses or the corresponding application-project
subdirectories, you can force to create a new class loader used in all sessions which are created afterwards.
This means, that you can upgrade your system without disturbing running sessions. Old sessions are still
using their old classes; new sessions are using new classes.

The creation of a new instance of a class loader is triggered inside the monitoring tdtdnBeeng in
the Devel opment Workplace documentation.



Initialisation of Your Application Appendix D - Class Loader Concepts

By choosing the buttobse latest Version of Applicationsfor new Sessions, a new class loader instance
is generated.

A new class loader instance can also be created during development inside the Layout Painter. See also
the "Hello World!" example in thBirst Steps and its sectiofif you Change the Adapter.

Initialisation of Your Application

Every time a new instance of a class loader generated, the initialisation process of your application is also
performed. This guarantees that, for example, all static variables you may use internally can be correctly
initialised by your initialisation procedure.

The initialisation of applications is described in Beeoming a Member of the Startup Process part of the
Soecial Development Topics.

Guidelinesfor Development
The guidelines you have to follow during development are quite simple:

e Always putall your application/adapter classes insidestfevar eag/appclasses directory or in the
corresponding project directories. When using the project management (which is strongly
recommended), store the classes in the project directories so that you can easily copy projects as
self-containing units between different Application Designer installations.

® Do not put classes into the servlet engine’s class loader’s class path.

® Avoid class duplicates (alassfile in the/classes subdirectory also contained inax file inside the
/lib subdirectory).

® Reload the classes by creating a new class loader instance. To see the effects re-logon. (The re-logon
can be done by refreshing the browser.)

Classpath Extensionsin cisconfig.xml

In thecisconfig.xml file, you can define the possibility to explicitly include defined directories or
jar/zipletc. files in the application class loader. The following example shavssaafig.xml file
containing a class loader extension:

<cisconfig ...>

<cl asspat hext ensi on pat h="c:/devel oprment/central cl asses/cl asses/"/>

<cl asspat hext ensi on path="c:/devel oprment/central cl asses/libs/central.jar"/>
</ ci sconfi g>

Consequence: you can also include classes that are located outside the web application’s directory
structure into the application class loader of Application Designer.

Pay attention: if defining directories that contaiiass files, then the path definition inside the classpath
extension must end with a slash (/).



Appendix D - Class Loader Concepts Preparing for Runtime

L oading Resour ce Files

The Application Designer application class loader does only load classes to be loaded into the Java virtual
machine. It is not able to load resource files that you might access from your code.

Place resource files into the web application class loader, below the directory
<webapps>/WEB-INF/classed so that they are loaded in a correct way.
Preparing for Runtime
The following topics are covered below:

® Basics

e Example
Basics

As explained in the previous section, the Application Designer class loader concepts are very useful for
design time purposes. What is the price? The Application Designer class loader finds its classes by
accessing the file system. It uses for this reasonitlke hore parameter inside the
<webapp>/WEB-INF/web.xml file in order to know the file root directory of the web application.

At runtime - especially if your application server distributes the load on several physical nodes - this is
dangerous: each node may have its own directory structure and you cannot specify one root directory
anymore in which the web application is located.

Consequence: for running in these scenarios, you have to prepare your application accordingly - i.e. you
have to place your classes at the places where the Java EE definition defines them to be located.

The normal directories to put classes in are:
o <webapp>/WEB-INF/lib for libraries (jar files).
® <webapp>/WEB-INF/classes for single class files.¢lass files).

In addition, you must switch off the flag "useownclassloader" insidei sbanfig.xml. Consequently, the
Application Designer application class loader will not be used at all - all classes are loaded by the web
application loader.

Example

Example: let us assume that you have set up the Application Designer application project "projectxyz".
The classes for this project are located in

® <webapp>/projectxyz/appclasses/classes/* .class and
® <webapp>/projectxyz/appclasses/lib/* .jar

so that the Application Designer class loader can reach them.



Example Appendix D - Class Loader Concepts

For changing to the runtime scenario, just copy*thiass and* .jar files from your project directory into
the corresponding Java EE standard directories.



	Appendix D - Class Loader Concepts
	Design Time - Runtime
	Class Loader Hierarchy
	Application Class Loader
	Initialisation of Your Application
	Guidelines for Development
	Classpath Extensions in cisconfig.xml
	Loading Resource Files

	Preparing for Runtime
	Basics
	Example



