
Appendix B - Usage of Methods Inherited
from the Adapter Class
Inside the Application Designer management, adapters have to provide a defined interface to be managed
correctly by the system. This interface is declared by com.softwareag.cis.Server.IAdapter .
In order to have a high level of comfort during developing adapters, you should derive your adapter
classes from the super-class com.softwareag.cis.Server.Adapter . This class already provides
some useful methods.

This chapter covers the following topics:

Access to Lookup Session Context

Access to Application Designer Session Context

Access to other Adapters

Error Output

Page Navigation

Opening of Pop-up Dialogs

Frame Communication

Closing of a Page

Multi Language Management

Access to Lookup Session Context
As you know, session management defines sessions (corresponding to one browser instance) and
subsessions (corresponding to one process inside the Application Designer workplace). There is the
possibility to bind and look for parameters on both levels:

Adapter.findSessionContext() - returns the context which is on top of all subsessions. All
adapters inside one session refer to the same session context.

Adapter.findSubSessionContext() - returns the context which is held per subsession.
Only adapters - belonging to the same subsession - share this context.

The result is a context supporting the interface
com.softwareag.cis.context.ILookupContext . This interface provides two important
methods:

public Object lookup(String s, boolean reactWithErrorIfNotExist);
public void bind(String s, Object o);

1

Appendix B - Usage of Methods Inherited from the Adapter ClassAppendix B - Usage of Methods Inherited from the Adapter Class

The session context is used, for example, to refer to the current user who is logged in, the chosen
language, etc. The subsession context is used to share data inside a subsession.

Do not use the context as global variable buffers in a very intensive way. It will end up in programs
relying on a lot of context information to be available - and sooner or later no one knows what has to be in
the context when starting the program.

Via the methods

Adapter.findSessionId()

Adapter.findSubsessionId()

you can access the internally used representations of session ID and subsession ID.

Access to Application Designer Session Context
Application Designer uses its own lookup session management in order to store information of a session.
You can access and manipulate this information by calling your adapter’s method:

Adapter.findCISessionContext() - returns a concrete session context object.

Inside the session context, the following parameters are kept:

date format

time format

language

style

decimal separator

and other information.

Have a look at the JavaDoc API documentation for more details.

Access to other Adapters
Access other adapters inside the same subsession by the methods:

Adapter.findAdapter(class) - returns the adapter instance for a given class. Method
init() is already called when passing back the instance - but only if the adapter was not used
before.

Use this method before navigating between pages in order to prepare the adapter that will be used by the
next page.

2

Access to Application Designer Session ContextAppendix B - Usage of Methods Inherited from the Adapter Class

Error Output
You can display error messages inside the status bar (if it is defined in the page layout) by using the
methods:

outputMessage(String, String (, String))

First, pass a string for the type of message. This is needed to display a corresponding icon inside the status
bar. There are constants defined inside the Adapter for specifying the type:

Adapter.MT_ERROR

Adapter.MT_WARNING

Adapter.MT_SUCCESS

The second string is the message being shown.

The third string - which is optional - is the long text description of the message. It becomes visible by a
dialog if the user clicks with the mouse on the message. If you do not specify a long description, the
normal message is used.

Page Navigation
Navigate to a page by using the method:

switchToPage(String pageName)

The "pageName" is the URL - either relative or absolute - of the next page.

Opening of Pop-up Dialogs
You can open a page inside a pop-up dialog by using the method:

openPopup(String pageName) .

The "pageName" is the URL - either relative or absolute - of the page that is displayed inside the dialog.

You can specify pop-up parameters of the pop-up you open with openPopup() by using the methods:

setPopupTitle(String title)

setPopupPageFeatures(String pageFeatures)

Frame Communication
There are various methods to communicate to other frames:

openPageInTarget

3

Appendix B - Usage of Methods Inherited from the Adapter ClassError Output

openCISPageInTarget

invokeMethodInTarget

refreshTarget

sizeTarget

Closing of a Page
The default method used for closing a page is endProcess() . It is provided by the Adapter class.
The tasks performed by the endProcess() method are:

The current subsession is closed and de-registered inside the session management.

The current page is de-registered from the workplace management - if it was registered before.

Calling the endProcess() method ensures that all memory resources are released for the
corresponding subsession.

The endProcess() method is called by clicking inside the page on the close icon at the top right corner
of the page. You can also call it directly inside an adapter, e.g. if you want to close the subsession as
reaction to the user’s entered data.

Multi Language Management
You can access the multi language management using the methods:

replaceLiteral(String application, String textid)

replaceLiteral(String application, String textid, String param1)

replaceLiteral(String application, String textid, String param1,
String param2)

replaceLiteral(String application, String textid, String param1,
String param2, Stirng param3)

The application is the name for the abbreviation of a defined application area for which literals are
defined. In the file-based multi language management, it represents the name of a CSV file that holds the
text identified by a text ID.

4

Closing of a PageAppendix B - Usage of Methods Inherited from the Adapter Class

	Appendix B - Usage of Methods Inherited from the Adapter Class
	Access to Lookup Session Context
	Access to Application Designer Session Context
	Access to other Adapters
	Error Output
	Page Navigation
	Opening of Pop-up Dialogs
	Frame Communication
	Closing of a Page
	Multi Language Management

