
API Gateway Configuration Guide

Version 10.5

October 2019

This document applies to webMethods API Gateway 10.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2016-2024 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: YAI-CG-105-20240221

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..5
Document Conventions...6
Online Information and Support...6
Data Protection...7

1 API Gateway Architecture...9
API Gateway Deployment..10
API Gateway Deployment Scenarios...11

2 API Gateway Data Store..17
Overview of API Gateway Data Store...18
Administering API Gateway Data Store...18
Securing Communication with API Gateway Data Store...30
Command Line to Manage API Gateway Data Store...39

3 API Gateway Configuration...43
API Gateway Cluster Configuration...44
Externalizing Configurations..58
Connecting to an External Elasticsearch...69
Connecting to an External Kibana...74
Configuring Multiple Instances of API Gateway in a Single Installation................................77
Changing the JVM Heap Size to Tune API Gateway Performance...77
Accessing the API Gateway User Interface..78
Restarting API Gateway Using Scripts..78
Restarting API Gateway Using User Interface...79

4 Securing API Gateway and its Components..81
Overview...82
How Do I Secure API Gateway Server Communication with API Clients?............................82
How Do I Secure API Gateway Server Communication with Backend Services?..................89
How do I Secure API Gateway User Interface Communication?..93
How do I Configure a Secure Communication Channel between API Gateway and API
Portal?...95
How do I Secure API Gateway Data Store Communication?..96
Creating a Custom Keystore with Self-Signed Certificates..109

5 API Gateway Configuration with Command Central...111
Overview...112
Installing API Gateway using Command Central...113
Manage API Gateway Data Store Configurations in Command Central..............................133
Manage API Gateway Product Configurations in Command Central...................................133
Manage Inter-component and Cluster configurations..142

API Gateway Configuration Guide 10.5 iii

6 Docker Configuration...149
Overview...150
Building the Docker Image for an API Gateway Instance..151
Retrieving Port Information of the API Gateway Image..155
Running the API Gateway Container..155
Load Balancer Configuration with the Docker Host...156
Stopping the API Gateway Container...156
Managing API Gateway Images...156
API Gateway Docker Container with Externalized Elasticsearch and Kibana.....................157
API Gateway Container Cluster Configuration...160
Running API Gateway Docker Containers with Docker Compose..163

7 Kubernetes Support..169
Overview...170
Deploying API Gateway Pod with API Gateway and Elasticsearch Containers..................171
Deploying API Gateway Pod with API Gateway Container connected to an Elasticsearch
Kubernetes Service...172
Kubernetes Sample Files..174
Helm Chart..174
Using Helm to Start the API Gateway Service...175
OpenShift Support..175

8 Configuration Properties...181
Configuration Types and Properties..182

9 API Gateway Data Management..189
Data Backup and Restore..190
API Gateway Backup and Restore Commands..193
Backing up API Gateway Configuration Data...194
Restoring API Gateway Configuration Data..198

10 API Gateway Staging and Promotion...201
Staging and Promotion..202
Asset Promotion in API Gateway..202
Promoting Assets Using webMethods Deployer...203
Promoting Assets Using Promotion Management API..206

11 Mediator Migration to API Gateway..209
Migrating Mediator to API Gateway...210

iv API Gateway Configuration Guide 10.5

Table of Contents

About this Guide

■ Document Conventions .. 6

■ Online Information and Support ... 6

■ Data Protection ... 7

API Gateway Configuration Guide 10.5 5

This guide describes how you can install, and configure API Gateway and other API Gateway
components to effectivelymanageAPIs for services that youwant to expose to consumers,whether
inside your organization or outside to partners and third parties.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires credentials for Software AG's Product Support
site Empower. If you do not have Empower credentials, you must use the TECHcommunity
website.

6 API Gateway Configuration Guide 10.5

http://documentation.softwareag.com
http://documentation.softwareag.com

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.asp and give us
a call.

Software AG TECHcommunity

You can finddocumentation and other technical information on the SoftwareAGTECHcommunity
website at http://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

API Gateway Configuration Guide 10.5 7

mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

8 API Gateway Configuration Guide 10.5

1 API Gateway Architecture

■ API Gateway Deployment ... 10

■ API Gateway Deployment Scenarios ... 11

API Gateway Configuration Guide 10.5 9

API Gateway Deployment

You can deploy API Gateway in two editions based on the type of license used:

API Gateway: Standard Edition. This edition of API Gateway offers only API protection.

APIGateway: Advanced Edition. This edition of API Gateway offers both API protection and
mediation capabilities.

You can view the type of license by selecting Username > About. The information is displayed
under Product Information section. You can change the type of license at any time from the
Standard Edition to the Advanced Edition.

Note:
For details about API Gateway License management see, webMethods Integration Server
Administrator’s Guide.

This table lists the capabilities available in the Standard and theAdvanced Editions of APIGateway.

Advanced EditionStandard EditionFeature

Administrators and API
Provider

AdministratorsUsers and Roles

YesYesAdministration

Ports

License management

Load balancing

Keystore configuration

YesNoAdministration

Extended settings

YesNoAlias management

YesNoService management

YesYesPolicy management

Threat protection rules

YesNoPolicy management

Global policies

Policy templates

YesNoExport and Import

10 API Gateway Configuration Guide 10.5

1 API Gateway Architecture

Advanced EditionStandard EditionFeature

APIs

Global policies

YesNoApplication management

YesNoPlans and packages

YesYesAnalytics

Threat protection rule
violations

YesNoAnalytics

Service

Applications

Consumers

YesNoClustering and auto
synchronization

API Gateway Deployment Scenarios

API Gateway enforces threat protection, policies and routing capabilities for APIs. This section
describes high-level API Gateway architecture for various deployment scenarios.

Deployment scenario 1: Paired gateway deployment

This setup consists of:

One or more standard edition API Gateways for threat protection and connected to a load
balancer in DMZ.

One or more advanced version API Gateways clustered in the green zone to enforce policies
and provide routing capabilities. You can have multiple instances of API Gateways connected
through a load balancer and clustered using Terracotta Server Array. You can add an extra
layer of protection by using reverse invoke.

A firewall protects the API Gateway infrastructure in the paired deployment. You can add an
extra layer of protection by using reverse invoke. The API Gateways communicate between the
zones using the reverse invoke approach.

The following diagram provides an architectural overview of the paired gateway deployment:

API Gateway Configuration Guide 10.5 11

1 API Gateway Architecture

Note:
If you have multiple instances of API Gateway connected using a load balancer for threat
protection and you change the enforced rules on one of the API Gateway instances, you must
restart the other instances to synchronize the rule enforcement across all the API Gateway
instances.

To learn how to configure threat protection and invoke an API using REST API, read the API
Gateway standard edition in DMZ & API Gateway advanced edition in Green zone section
from the Threat protection in API Gateway article.

Deployment scenario 2: API Gateway in the DMZ with reverse invoke configuration

This setup consists of:

One or more advanced edition API Gateways clustered and connected to a load balancer in
DMZ. You can have multiple instances of API Gateways connected through a load balancer
and clustered using Terracotta Server Array. A single API Gateway is used for enforcing
authentication and routing capabilities.

The ESB services in Integration Server reside in the green zone behind the firewall.

If you use reverse invoke for communication between API Gateway and the internal ESB, ensure
that the endpoint in the routing policy applied is configured as
apigateway://registrationPort-aliasname/relative path of the service. For details, see the Ports section
and the Routing policies section in webMethods API Gateway User's Guide.

The following diagram provides an architectural overview of the API Gateway deployment in a
DMZ for webMethods customers:

12 API Gateway Configuration Guide 10.5

1 API Gateway Architecture

http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Threat%20protection%20in%20API%20Gateway

Deployment scenario 3: API Gateway with a Load Balancer in the DMZ

This setup consists of:

One or more advanced edition API Gateways clustered and connected to a load balancer in
DMZ. A single API Gateway is used for enforcing all policies or rules. You can have multiple
instances of API Gateways connected through a load balancer and clustered using Terracotta
Server Array.

The native services reside in the green zone behind the firewall. As the native services are
directly invoked, you must open the native service port to the gateway network.

The following diagram provides an architectural overview of the API Gateway deployment for
non webMethods customers:

API Gateway Configuration Guide 10.5 13

1 API Gateway Architecture

Deployment scenario 4: API Gateway in the green zone with a Load Balancer in the
DMZ

This setup consists of:

One or more advanced edition API Gateways clustered in the green zone and connected to a
load balancer in DMZ. A single API Gateway is used for enforcing authentication and routing
capabilities. This deployment does not require threat protection. However, you can configure
and enforce threat protection, if required. You can have multiple instances of API Gateways
connected through a load balancer and clustered using Terracotta Server Array.

The ESB services in Integration Server reside in the green zone behind the firewall. Because
the API Gateway and the ESB services reside in the green zone, the ESB services are directly
invoked.

The following diagram provides an architectural overview of the API Gateway deployment in the
green zone for webMethods customers:

14 API Gateway Configuration Guide 10.5

1 API Gateway Architecture

API Gateway Configuration Guide 10.5 15

1 API Gateway Architecture

16 API Gateway Configuration Guide 10.5

1 API Gateway Architecture

2 API Gateway Data Store

■ Overview of API Gateway Data Store .. 18

■ Administering API Gateway Data Store .. 18

■ Securing Communication with API Gateway Data Store .. 30

■ Command Line to Manage API Gateway Data Store ... 39

API Gateway Configuration Guide 10.5 17

Overview of API Gateway Data Store

webMethods API Gateway Data Store is a data store for use only with webMethods API Gateway.

You can have only one API Gateway Data Store instance per Software AG installation. You can
configure API Gateway Data Store as a single node storage, or you can combine multiple nodes
to form a cluster.

You must install the following products to monitor and configure API Gateway Data Store:

Software AG Command Central

Software AG Platform Manager

Administering API Gateway Data Store

This section describes the following administering tasks for API Gateway Data Store:

“Starting, Stopping, and Restarting API Gateway Data Store” on page 18

“Changing the API Gateway Data Store HTTP Port” on page 20

“Changing the API Gateway Data Store TCP Port” on page 23

“Configuring Custom API Gateway Data Store Properties” on page 26

“Configuring Elasticsearch Properties” on page 27

“Securing Communication with API Gateway Data Store” on page 30

Starting, Stopping, and Restarting API Gateway Data Store
API Gateway Data store uses Elasticsearch 7.2.0.

You can start, stop, and restart your API GatewayData Store instance using the CommandCentral
web user interface and command line interface. Additionally, you can use scripts on Unix and
Windows, and the Windows Start menu on Windows to manage the runtime status of your API
Gateway Data Store instance.

Note:
Elasticsearch uses the OS temp directory when the ES_TMPDIR environment variable is not
configured. If the OS temp directory does not have the executing permissions, the Elasticsearch
does not start.

Starting API Gateway Data Store in Command Central

Use the following procedure to start API Gateway Data Store in the Command Central web user
interface.

To start API Gateway Data Store

18 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store.

2. Click the status icon for API Gateway Data Store .

3. From the Lifecycle Actions drop-down menu, select Start.

Stopping API Gateway Data Store in Command Central

Use the following procedure to stop API Gateway Data Store in the Command Central web user
interface.

To stop API Gateway Data Store

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store.

2. Click the status icon for API Gateway Data Store.

3. From the Lifecycle Actions drop-down menu, select Stop.

Starting, Stopping, and Restarting API Gateway Data Store on Windows

When you install API Gateway Data Store on aWindows operating system, you can start and stop
your API Gateway Data Store instance using the Windows Start menu or using scripts.

To start or stopAPIGatewayData Store using theWindows Startmenu, go toStart > All Programs
> Software AG , select Start Servers or Stop Servers, and then select Start API Gateway Data
Store 10.5 or Stop API Gateway Data Store 10.5, respectively.

To start, stop, or restart API Gateway Data Store using scripts, run:

Start API Gateway Data Store - Software AG_directory
\InternalDataStore\bin\config\startup.bat.

Stop API Gateway Data Store - Software AG_directory
\InternalDataStore\config\bin\shutdown.bat.

Restart API Gateway Data Store - Software AG_directory
\InternalDataStore\config\bin\restart.bat.

Starting, Stopping, and Restarting API Gateway Data Store on LINUX

API Gateway Data store uses Elasticsearch 7.2.0. Elasticsearch cannot be run as the root user on a
Linux system, so you must create a data store user and install and run the data store as that user.

API Gateway Configuration Guide 10.5 19

2 API Gateway Data Store

Elasticsearch does several checks before starting up. Software AG recommends that you review
the bootstrap checks and important system configuration settings before starting the data store.
In particular, you may need to adjust these settings:

Check the settings for the system-widemaximumnumber of file descriptors (kernel parameter
fs.file-max) by executing the command sysctl -a | fgrep fs.file-max . If the value is less
than 65536, log on as the root user and increase the value by executing sysctl -w
fs.file-max=200000 or echo "fs.file-max=65536" >> /etc/sysctl.conf, then activate the new
value by executing sysctl -p .

Check the data store user settings for themaximumnumber of openfile descriptors by executing
the commands ulimit -Hn and ulimit -Sn, where -Hn is the hard limit and -Sn is the soft limit.
If the value is less than 65536, log on as the data store user and increase the value to at least
65536 by executing ulimit -n 65536. To permanently save this setting for the user, execute
the following:
echo "user_name soft nofile 65536" >> /etc/security/limits.conf
echo "user_name hard nofile 65536" >> /etc/security/limits.conf

Check the setting for the system-wide maximum map count (kernel
parametervm.max_map_count) by executing the command sysctl -a | fgrepvm.max_map_count.
If the value is less than 262144, log on as the rootuser and increase the value to at least 262144
by executing sysctl -wvm.max_map_count=262144 or echo " vm.max_map_count=262144" >>
/etc/sysctl.conf, then activate the new value by executing sysctl -p.

Check the data store user settings for the maximum number of processes by executing the
command ulimit -u. If the value is less than 4096, log on as the data store user and increase
the value to at least 4096 by executing ulimit -n 4096. To permanently save this setting for
the user, execute the following:
echo "user_name soft nproc 4096" >> /etc/security/limits.conf
echo "user_name hard nproc 4096" >> /etc/security/limits.conf

You can start, stop, and restart API Gateway Data Store by running the following commands on
LINUX:

Start API Gateway Data Store.
./startup.sh

Stop API Gateway Data Store.
./shutdown.sh

Restart API Gateway Data Store.
./restart.sh

Changing the API Gateway Data Store HTTP Port
The default HTTP port that clients use to make calls to API Gateway Data Store is 9240. Use the
following procedure to change the HTTP port number.

20 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

Note:
You cannot add a new port from this section. You can only edit existing port details.

To change the API Gateway Data Store HTTP port

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store > Configuration.

2. Select Ports from the drop-down menu.

3. Click http port and specify values for each field in the table as outlined in the description
column:

DescriptionField

Required. The HTTP port number. The default value is 9240.Port Number

Optional. Enable Secure Sockets Layer (SSL) to secure communication
with API Gateway Data Store .

Use SSL

Note:

When you enable SSL for the HTTP port, you automatically
enable SSL for the TCP port as well.
API Gateway Data Store uses the Search Guard SSL plugin for
Elasticsearch. For more information about the Search Guard
plugin, see the Search Guard documentation.

4. Optionally, click Test to verify your configuration.

5. Save your changes.

6. Stop API Gateway instance, if it is running.

API Gateway Configuration Guide 10.5 21

2 API Gateway Data Store

7. Update the Elasticsearch entry in the config.properties file located at
SAG_Installdir/IntegrationServer/instances/tenant_name/packages/WmAPIGateway/config/resources/elasticsearch/.

Instead of changing the entriesmanually you can include these changes in one of the following
ways:

Through the externalization of configurations feature. For details, see “Externalizing
Configurations ” on page 58.

Through Command Central. For details, see “Configuring Elasticsearch Connection
Settings” on page 142.

8. Restart the API Gateway instance.

Changing the API Gateway Data Store HTTP Port using Template

You can change the HTTP Port details using the following Command Central template:
sagcc exec templates composite import -i ports.yaml
sagcc exec templates composite apply sag-apigw-datastore-port nodes=local
port.alias=port_alias port.number=port_number

Sample ports configuration file:
alias: sag-apigw-datastore-port
description: API Gateway Data Store Port configuration
layers:
runtime:

templates:
- apigw-datastore-port

templates:
apigw-datastore-port:

products:
CEL:
default:

configuration:
CEL:

COMMON-PORTS:
COMMON-PORTS-defaultHttp:

Port:
'@alias': ${port.alias}
Number: ${port.number}
Protocol: HTTP
ExtendedProperties:

Property:
- '@name': ssl

$: 'false'

provision:
default:

runtime: ${nodes}

22 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

Changing the API Gateway Data Store TCP Port
Java clients use the TCP port to make calls to API Gateway Data Store . In addition, the nodes in
anAPIGatewayData Store cluster use the TCPport to communicatewith one another. The default
TCP port is 9340.

Important:
If you change the default TCP port, you must change the respective TCP port value in the
Clustering configuration.

To change the API Gateway Data Store TCP port

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store > Configuration.

2. Select Ports from the drop-down menu.

3. Click tcp port and specify values for each field in the table as outlined in the description
column:

DescriptionField

Required. The TCP port number. The default value is 9340.Port Number

Optional. Enable Secure Sockets Layer (SSL) for the TCP port.Use SSL

Note:

When you enable SSL for the TCP port, you automatically
enable SSL for the HTTP port as well.
API Gateway Data Store uses the Search Guard SSL plugin for
Elasticsearch. For more information about the Search Guard
plugin, see the Search Guard documentation.

4. Optionally, click Test to verify your configuration.

5. Save your changes.

6. Restart the API Gateway Data Store instance.

In a cluster setup, if you change the TCP port in one node, then you have to change the respective
cluster configuration in other nodes. You can change the cluster configuration through Command
Central. For details, see “Configuring an API Gateway Data Store Cluster” on page 24.

API Gateway Configuration Guide 10.5 23

2 API Gateway Data Store

Configuring an API Gateway Data Store Cluster
You can run an API Gateway Data Store instance as a single node, or you can configure multiple
API Gateway Data Store instances to run as a cluster to provide high availability and redundancy.

You can configure API Gateway Data Store Cluster in one of the following ways:

Through Command Central

Through elasticsearch.yml file

This section describes configuring an API GatewayData Store cluster through CommandCentral.
For details on configuring a cluster using the elasticsearch.yml file, see “API Gateway Data Store
Cluster Configuration” on page 45.

You must specify at least one host and port pair for your configuration in Command Central. API
Gateway Data Store comes with a default host and port pair.

To configure an API Gateway cluster

1. In Command Central, for each API Gateway Data Store instance that is part of the cluster,
navigate to Environments > Instances > All > API Gateway Data Store > Configuration.

2. Select Clustering from the drop-down menu, and then click Edit.

3. Specify values for each field in the table as outlined in the description column:

DescriptionField

Required. The name of the cluster. All instances must have the same
cluster name.

Cluster Name

Required. Click , and then do the following to add host and port
information for each API Gateway Data Store instance that is part of
the cluster:

Cluster Discovery
Nodes

a. In the Host column, specify the host information for an API
Gateway Data Store instance. The default host is localhost.

b. In the Port column, specify the port for an API Gateway Data
Store instance. The default port is 9340.

c. In the Node name column, specify the provide the node name
details of the API Gateway Data Store instance. Ensure that this
name matches with node.name property of the Elasticsearch
instance.

24 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

4. Optionally, click Test to verify that your configuration is valid.

5. Save your changes.

6. Select Properties from the drop-down menu, and then click Edit.

7. Specify the Elasticsearch configuration property details.When youwant to form a cluster with
nodes on other hosts, you must use the discovery.seed_hosts setting to provide a list of other
nodes in the cluster that are master-eligible and likely to be live and can be contacted in order
to seed the discovery process. This setting should normally contain the addresses of all the
master-eligible nodes in the cluster as follows:

discovery.seed_hosts:
- "<HostName>:<TCPPort>"
- "<HostName>:<TCPPort>"

Example:
discovery.seed_hosts:
- "Host1:9340"
- "Host2:9340"

8. Click Apply to save your changes.

9. Restart the API Gateway Data Store instance.

Configuring Data Store Cluster using Template
You can configure the Data Store cluster using the following Command Central template:
sagcc exec templates composite import -i clustering.yaml
sagcc exec templates composite apply sag-apigw-datastore-clustering nodes=local
node.name=node_name node.host=node_host node.port=node_port

API Gateway Configuration Guide 10.5 25

2 API Gateway Data Store

Sample clustering configuration template:
alias: sag-apigw-datastore-clustering
description: API Gateway Data Store Clustering Configuration
layers:
runtime:

templates:
- apigw-datastore-clustering

templates:
apigw-datastore-clustering:

products:
CEL:
default:

configuration:
CEL:

COMMON-CLUSTER:
COMMON-CLUSTER-default:

Enabled: 'true'
Name: SAG_EventDataStore
Servers:
Server:

ExtendedProperties:
Property:
- '@name': node

$: ${node.name}
- '@name': host

$: ${node.host}
- '@name': port

$: ${node.port}

provision:
default:

runtime: ${nodes}

Configuring Custom API Gateway Data Store Properties
You can specify custom properties for your Internal Data Store configuration.

To specify custom properties for API Gateway Data Store

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store > Configuration.

2. Select Properties from the drop-down menu and click Edit.

3. In the Content field, specify custom parameters. Use YAML syntax and the property_name :
value format.

4. Restart the API Gateway Data Store instance.

26 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

Configuring Elasticsearch Properties
FromCommandCentral, you can edit the properties of Elasticsearch that are used byAPIGateway
Data Store. The changes made to the properties are saved in the elasticsearch.yml file.

To configure Elasticsearch Properties

1. In Command Central, for each API Gateway Data Store instance that is part of the cluster,
navigate to Environments > Instances > All > API Gateway Data Store > Configuration.

2. Select Properties from the drop-down menu, and then click Edit.

This section lists properties maintained in elasticsearch.yml file.

3. Make the required your changes.

4. Restart the API Gateway Data Store instance.

Configuring Elasticsearch Properties using Template
You can configure the Elasticsearch properties using the following Command Central template:
sagcc exec templates composite import -i properties.yaml (properties.yaml)
sagcc exec templates composite apply sag-apigw-datastore-properties nodes=local

Sample template:
alias: sag-apigw-datastore-properties
description: API Gateway Data Store Properties

API Gateway Configuration Guide 10.5 27

2 API Gateway Data Store

layers:
runtime:

templates:
- apigw-datastore-properties

templates:
apigw-datastore-properties:

products:
CEL:
default:

configuration:
CEL:

CUSTOM-PROPERTIES:
CUSTOM-PROPERTIES-default: |

searchguard.ssl.transport.enforce_hostname_verification: false
path.logs: "C:\\sag\\cc\\InternalDataStore/newlogs"
path.repo:
- "C:\\sag\\cc\\InternalDataStore/archives"
searchguard.ssl.http.clientauth_mode: "OPTIONAL"
searchguard.check_snapshot_restore_write_privileges: true
cluster.initial_master_nodes:
- "nodename"
searchguard.ssl.transport.resolve_hostname: false
searchguard.restapi.roles_enabled:
- "SGS_ALL_ACCESS"
searchguard.enable_snapshot_restore_privilege: true
searchguard.ssl.transport.enable_openssl_if_available: true
searchguard.authcz.admin_dn:
- "CN=sgadmin"

provision:
default:

runtime: ${nodes}

Configuring API Gateway Data Store to run Executables
The temporary directory created in the API Gateway Data Store does not allow you to run
Elasticsearch executables.

You must perform the following configuration before you run an Elasticsearch executable.

To configure API Gateway Data Store to run executables

1. Navigate to the following location: SAGInstallDir/InternalDataStore/.

2. Create a new folder and name it temp.

3. Open the jvm.options file from the following location:
SAGInstallDir/InternalDataStore/config.

4. Specify temp as value for -Djava.io.tmpdir.

5. Save the changes and close the file.

28 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

6. Navigate to the following location: SAGInstallDir/InternalDataStore/bin/.

7. Open the el_initd.sh file in Editmode.

8. Add the following line:

export ES_TMPDIR=temp

9. Save the changes and close the file.

10. Restart API Gateway Data Store.

You can run Elasticsearch runnables on API Gateway Data Store.

Renaming Data Store Windows Service
You can rename API Gateway Data Store only if you have installed it as a windows service.

1. Stop the Data Store windows service.

2. Open command prompt.

3. To rename run the following commands in the SAG_Install_Directory\InternalDataStore\bin
folder in the system where the API Gateway Data Store is installed:

elasticsearch-service.bat remove current_service_name
elasticsearch-service.bat install new_service_name

For example,
<SAG_Install_Directory>\InternalDataStore\bin>elasticsearch-service.bat remove
datastore
<SAG_Install_Directory>\InternalDataStore\bin>elasticsearch-service.bat install
newstore

4. Restart the Data Store windows service.

API Gateway Configuration Guide 10.5 29

2 API Gateway Data Store

Securing Communication with API Gateway Data Store

When you install API Gateway Data Store it comes with a pre-configured SSL certificate, and
default keystore and trustore files. The keystore and truststore function as repositories for the
storage of keys and certificates necessary for SSL authentication, encryption/decryption, and digital
signing/verification services. You can find the default truststore and keystore files in the following
locations:

Software AG_directory /InternalDataStore/plugins/search-guard/sgconfig/demouser-keystore.jks

Software AG_directory /InternalDataStore/plugins/search-guard/sgconfig/truststore.jks

API Gateway Data Store is enabled for SSL through the Elasticsearch Search Guard plugin. You
do not need to interact with the Search Guard plugin configuration to use SSL with API Gateway
Data Store. However, if you want to customize your Search Guard configuration, you can use the
sgadmin command line tool.

To modify the Search Guard configuration of an SSL-enabled API Gateway Data Store, you must
authenticate the sgadmin tool with a .jks-based keystore and truststore. Run one of the following
scripts to access the sgadmin tool:

For Linux - Software AG_directory /InternalDataStore/repo/search-guard-7/tools/sgadmin.sh.

For Windows - Software AG_directory
\InternalDataStore\repo\search-guard-7\tools\sgadmin.bat.

For more information about modifying your Search Guard configuration, see the Search Guard
documentation.

If you useAPIGatewayData Store in a production environment, youmust replace theAPIGateway
Data Store default certificates, keystore and truststore fileswith customfiles. Formore information
about creating keystores and truststores, importing keys and certificates into keystores and
truststores, and other operations with these files, see the documentation for your certificate
management tool.

Configuring API Gateway Data Store Keystores
By default, API Gateway Data Store has the following pre-configured keystores:

HTTP Keystore - A keystore for HTTP clients.

TCP Keystore - A keystore for TCP clients.

sgadmin Keystore - A keystore that authenticates the sgadmin tool.

You cannot add or remove the pre-configured keystores. However, you can use custom keystore
files instead. For more information about creating keystores, see the documentation of your
certificate management tool.

Configuring the API Gateway Data Store HTTP Keystore

30 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

Use the following procedure tomodify the keystore for theHTTP port of the SearchGuard plugin.

To modify the keystore for the HTTP port of the Search Guard plugin

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store > Configuration.

2. Select Keystores from the drop-down menu.

3. In the Alias column, click HTTP_KEYSTORE and then click Edit.

4. Specify values for each field in the table as outlined in the description column:

DescriptionField

Optional. Specify a description for the keystore for the HTTP port of
the Search Guard plugin.

Description

Required. Specify the absolute filepath to the Java keystore file as
follows: folder/sub_folder/filename. The default value is:
../plugins/search-guard/sgconfig/node-0-keystore.jks

Location

Optional. Specify the password for the keystore.Password

5. Optionally, click Test to verify that your configuration is valid.

6. Save your changes.

7. Restart the API Gateway Data Store instance.

8. Alternatively, you can configure theKeystore using the followingCommandCentral template:

Use these commands to configure the Keystore.
sagcc exec templates composite import -i keystores.yaml
sagcc exec templates composite apply sag-apigw-datastore-keystore nodes=local
keystore.location=location_of_keystore keystore.password=password

Sample keystore configuration template:
alias: sag-apigw-datastore-keystore
description: API Gateway Data Store Keystore Configuration
layers:
runtime:

templates:
- apigw-datastore-keystore

templates:
apigw-datastore-keystore:

products:
CEL:

default:

API Gateway Configuration Guide 10.5 31

2 API Gateway Data Store

configuration:
CEL:

COMMON-KEYSTORES:
COMMON-KEYSTORES-defaultHttp:

Keystore:
'@alias': HTTP_KEYSTORE

Description: This is a keystore for the HTTP port of the Search
Guard® plugin

Type: JKS
Location: ${keystore.location}
Password: ${keystore.password}

provision:
default:

runtime: ${nodes}

Configuring the API Gateway Data Store TCP Keystore

Use the following procedure to modify the keystore for the TCP port of the Search Guard plugin.

To modify the keystore for the TCP port of the Search Guard plugin

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store > Configuration.

2. Select Keystores from the drop-down menu.

3. In the Alias column, click TCP_KEYSTORE and then click Edit.

4. Specify values for each field in the table as outlined in the description column:

DescriptionField

Optional. Specify a description for the keystore for the TCP port of
the Search Guard plugin.

Description

Required. Specify the absolute filepath to the Java keystore file as
follows: folder/sub_folder/filename. The default value is:
../plugins/search-guard/sgconfig/node-0-keystore.jks

Location

Optional. Specify the password for the keystore.Password

32 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

5. Optionally, click Test to verify that your configuration is valid.

6. Save your changes.

7. Restart the API Gateway Data Store instance.

Configuring the API Gateway Data Store sgadmin Keystore

The sgadmin tool authenticates itself against the SSL-enabled API Gateway Data Store with a
keystore.

To modify the keystore for the sgadmin tool

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store > Configuration.

2. Select Keystores from the drop-down menu.

3. In the Alias column, click SGADMIN_KEYSTORE and then click Edit.

4. Specify values for each field in the table as outlined in the description column:

DescriptionField

Optional. Specify a description for the keystore for the sgadmin tool.Description

Required. Specify the absolute filepath to the Java keystore file as
follows: folder/sub_folder/filename. The default value is:
../plugins/search-guard/sgconfig/sgadmin-keystore.jks

Location

Optional. Specify the password for the keystore.Password

5. Optionally, click Test to verify that your configuration is valid.

API Gateway Configuration Guide 10.5 33

2 API Gateway Data Store

6. Save your changes.

7. Restart the API Gateway Data Store instance.

Configuring the API Gateway Data Store Truststore
By default, API Gateway Data Store has a single pre-configured truststore for both the TCP and
the HTTP ports.

If you use API Gateway Data Store in a production environment, replace the API Gateway Data
Store default trustsore file with a custom file. For more information about creating truststore files,
see the documentation of your certificate management tool.

To modify the default API Gateway Data Store truststore

1. In Command Central, navigate to Environments > Instances > All > API Gateway Data
Store > Configuration.

2. Select Truststores from the drop-down menu and click Edit.

3. Specify values for each field in the table as outlined in the description column:

DescriptionField

Optional. Specify a description for the truststore for the SearchGuard
plugin.

Description

Required. Specify the absolute filepath to the truststore file as follows:
folder/sub_folder/filename. The default value is:
../plugins/search-guard/sgconfig/truststore.jks

Location

Optional. Specify the password for the truststore.Password

34 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

4. Optionally, click Test to verify that your configuration is valid.

5. Save your changes.

6. Restart the API Gateway Data Store instance.

Configuring the API Gateway Data Store Truststore using
Template
You can configure the Data Store Truststore using the following Command Central template:
sagcc exec templates composite import -i truststores.yaml
sagcc exec templates composite apply sag-apigw-datastore-truststore nodes=local
truststore.location=location_of_truststore
truststore.password=password

Sample Truststores configuration template:
alias: sag-apigw-datastore-truststore
description: API Gateway Data Store Truststore Configuration
layers:
runtime:

templates:
- apigw-datastore-truststore

templates:
apigw-datastore-truststore:

products:
CEL:

default:
configuration:

CEL:
COMMON-TRUSTSTORES:

COMMON-TRUSTSTORES-default:
Truststore:
'@alias': DEFAULT_TRUSTSTORE

API Gateway Configuration Guide 10.5 35

2 API Gateway Data Store

Description: This is a truststore for the Search Guard plugin
Type: JKS
Location: ${truststore.location}
Password: ${truststore.password}

provision:
default:

runtime: ${nodes}

Secure API Gateway Data Store
API Gateway Date Store, by default, is not secured. Elasticsearch Security and Search Guard are
the two popular options to secure API Gateway Data Store. API Gateway, by default, ships open
source version of Search Guard.

The high level steps to be performed to secure the API Gateway Data Store are:

1. Secure API Gateway Data Store server

2. Prepare various clients

3. Verify API Gateway functions properly

Formore information onElasticsearch Security, see https://www.elastic.co/products/x-pack/security.

For more information on Search Guard, see https://floragunn.com/searchguard/

Note:
Whenever there is a change in network or firewall settings, API Gateway Data Store might not
be able to connect. You must restart Integration Server to connect to API Gateway Data Store.

Securing API Gateway Data Store

1. Shutdown API Gateway.

2. Open SAG_root/InternalDataStore/bin/enable_ssl.sh and comment the last line
/plugins/search-guard-7/tools/sgadmin.sh and save the changes.

3. Copy sagconfig from
SAG_root/IntegrationServer/instances/Instance_Name/packages/WmAPIGateway/config/resources/elasticsearch
to SAG_root/InternalDataStore.

4. Execute SAG_root/InternalDataStore/bin/enable_ssl.sh.

5. Execute SAG_root/InternalDataStore/bin/shutdown.sh to shutdown API Gateway Data Store.

6. Open SAG_root/InternalDataStore/config/elasticsearch.yml. Remove all properties that start
with searchguard, and add the following properties.

searchguard.ssl.transport.keystore_type: JKS

36 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

https://www.elastic.co/products/x-pack/security
https://floragunn.com/searchguard/

searchguard.ssl.transport.keystore_filepath: ../sagconfig/node-0-keystore.jks
searchguard.ssl.transport.keystore_alias: cn=node-0
searchguard.ssl.transport.keystore_password: a362fbcce236eb098973
searchguard.ssl.transport.truststore_type: JKS
searchguard.ssl.transport.truststore_filepath: ../sagconfig/truststore.jks
searchguard.ssl.transport.truststore_alias: root-ca-chain
searchguard.ssl.transport.truststore_password: 2c0820e69e7dd5356576
searchguard.ssl.transport.enforce_hostname_verification: false
searchguard.ssl.transport.resolve_hostname: false
searchguard.ssl.transport.enable_openssl_if_available: true

searchguard.ssl.http.enabled: false
searchguard.ssl.http.keystore_type: JKS
searchguard.ssl.http.keystore_filepath: ../sagconfig/node-0-keystore.jks
searchguard.ssl.http.keystore_alias: cn=node-0
searchguard.ssl.http.keystore_password: a362fbcce236eb098973
searchguard.ssl.http.truststore_type: JKS
searchguard.ssl.http.truststore_filepath: ../sagconfig/truststore.jks
searchguard.ssl.http.truststore_alias: root-ca-chain
searchguard.ssl.http.truststore_password: 2c0820e69e7dd5356576
searchguard.ssl.http.clientauth_mode: OPTIONAL

searchguard.authcz.admin_dn:
- "CN=sgadmin"

7. Save the changes made to the file elasticsearch.yml.

8. Execute SAG_root/InternalDataStore/bin/startup.sh to start API Gateway Data Store.

9. Go to SAG_root/InternalDataStore/plugins/search-guard-7/tools and execute the following
command:

sgadmin.sh -cd ../../../sagconfig/ -ks
../../../sagconfig/sgadmin-keystore.jks -kspass 49fc2492ebbcfa7cfc5e

-ts
../../../sagconfig/truststore.jks -tspass 2c0820e69e7dd5356576 -nhnv

-p 9340
-cn SAG_InternalDataStore

-p is the TCP port and -cn is the cluster name.

10. Execute SAG_root/InternalDataStore/bin/shutdown.sh. This is required only if theAPIGateway
is configured to start the API GatewayData Store on startupwhich is the default configuration.

11. Alternatively, you can configure the Properties using the followingCommandCentral template:

Use these commands to configure the properties.
sagcc exec templates composite import -i properties.yaml
sagcc exec templates composite apply sag-apigw-datastore-properties nodes=local

Sample properties configuration template:
alias: sag-apigw-datastore-properties
description: API Gateway Data Store Properties
layers:

API Gateway Configuration Guide 10.5 37

2 API Gateway Data Store

runtime:
templates:
- apigw-datastore-properties

templates:
apigw-datastore-properties:

products:
CEL:
default:
configuration:

CEL:
CUSTOM-PROPERTIES:

CUSTOM-PROPERTIES-default:
searchguard.ssl.transport.enforce_hostname_verification: false
path.logs: "C:\\sag\\cc\\InternalDataStore/newlogs"
path.repo:
- "C:\\sag\\cc\\InternalDataStore/archives"
searchguard.ssl.http.clientauth_mode: "OPTIONAL"
searchguard.check_snapshot_restore_write_privileges: true
cluster.initial_master_nodes:
- "nodename"
searchguard.ssl.transport.resolve_hostname: false
searchguard.restapi.roles_enabled:
- "SGS_ALL_ACCESS"
searchguard.enable_snapshot_restore_privilege: true
searchguard.ssl.transport.enable_openssl_if_available: true
searchguard.authcz.admin_dn:
- "CN=sgadmin"

provision:
default:

runtime: ${nodes}

Now all TCP connections are secured with two-way authentication and HTTPS is enabled with
basic authentication for the credentialsAdministrator andmanage (with no two-way authentication)
with the out of the box self-signed certificates.

Preparing the Clients

1. Preparing Kibana.

a. Open SAG_root/profiles/IS_Instance_Name/apigateway/dashboard/config/kibana.yml and
remove the comment tag for elasticsearch.username,elasticsearch.password and
elasticsearch.ssl.verify.

2. Preparing JVM.

a. Import the SAG_root/ into the truststore configured or default store
(SAG_root/jvm/jvm/jre/lib/security/cacerts) of JVM.

This is required only for self-signed certificates.

3. Preparing Browsers.

38 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

a. Import the SAG_root/ in the browser or accept the exception for self-signed certificates that
is displayed when you access the browser for the first time.

Verifying API Gateway and Browsers

1. Verify API Gateway.

a. Start API Gateway.

b. Watch for exceptions in logs.

You should be able to login and create APIs. You should be able to access the analytics page
without any prompt for user credentials.

2. Verify the Browser.

a. Navigate to https://host:port, where the port refers to the API Gateway Data Store HTTP
port.

A prompt for user credentials appears.

b. Provide the user credentials.

The basic details about the API Gateway Data Store node appears.

Command Line to Manage API Gateway Data Store

You canmanageAPIGatewayData Store using command line. This section provides details about
the various commands and configuration types that the Data Store supports, the run-time
monitoring statuses and the lifecycle actions for the Data Store.

Commands that API Gateway Data Store Supports
API Gateway Data Store supports the Platform Manager commands listed in the following table.
The table also lists where you can find information about each command.

Additional InformationCommands

For general information about the command, see
Software AG Command Central Help.

sagcc get configuration data

For general information about the command, see
Software AG Command Central Help.

sagcc update configuration data

For general information about the command, see
Software AG Command Central Help.

sagcc get configuration instances

API Gateway Configuration Guide 10.5 39

2 API Gateway Data Store

Additional InformationCommands

For general information about the command, see
Software AG Command Central Help.

sagcc list configuration instances

For general information about the command, see
Software AG Command Central Help.

sagcc get configuration types

For general information about the command, see
Software AG Command Central Help.

sagcc list configuration types

For general information about the command, see
Software AG Command Central Help.

sagcc exec configuration validation
update

For general information about the command, see
Software AG Command Central Help.

sagcc exec lifecycle

For general information about the command, see
Software AG Command Central Help.

sagcc get monitoring

Configuration Types that API Gateway Data Store Supports
The following table lists the configuration types that the API Gateway Data Store run-time
component supports, along with the description of each configuration type:

DescriptionConfiguration Type

Settings for an API Gateway Data Store cluster. You can
configure the name of the cluster and the host and port
pairs of the server endpoints of the cluster.

COMMON-CLUSTER

Note:
The changes that you make to a cluster configuration
take effect after you restart API Gateway Data Store.

Configuration instance for a keystore alias that identifies
a keystore file.

COMMON-KEYSTORES

Configuration instances for HTTP and TCP ports.COMMON-PORTS

Configuration instance for a truststore alias that identifies
a truststore file.

COMMON-TRUSTSTORES

Additional properties for the configuration of an API
Gateway Data Store server.

CUSTOM-PROPERTIES

40 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

Run-Time Monitoring Statuses for API Gateway Data Store
The following table lists the run-time statuses that theAPIGatewayData Store run-time component
can return in response to the sagcc get monitoring state command, along with the meaning of
each run-time status.

MeaningRun-time Status

The API Gateway Data Store instance is running.ONLINE

The API Gateway Data Store instance is stopped.STOPPED

Lifecycle Actions for API Gateway Data Store
The following table lists the actions that API Gateway Data Store supports with the sagcc exec
lifecycle command, along with the description of each action:

DescriptionAction

Starts the API Gateway Data Store instance.start

Stops the API Gateway Data Store instance.stop

Restarts the API Gateway Data Store instance.restart

You can also perform these actions in the Command Central web user interface.

API Gateway Configuration Guide 10.5 41

2 API Gateway Data Store

42 API Gateway Configuration Guide 10.5

2 API Gateway Data Store

3 API Gateway Configuration

■ API Gateway Cluster Configuration .. 44

■ Externalizing Configurations ... 58

■ Connecting to an External Elasticsearch ... 69

■ Connecting to an External Kibana .. 74

■ Configuring Multiple Instances of API Gateway in a Single Installation 77

■ Changing the JVM Heap Size to Tune API Gateway Performance 77

■ Accessing the API Gateway User Interface .. 78

■ Restarting API Gateway Using Scripts ... 78

■ Restarting API Gateway Using User Interface ... 79

API Gateway Configuration Guide 10.5 43

API Gateway Cluster Configuration

This section provides information about nodes and clusters in API Gateway and how to configure
an API Gateway cluster after you have installed the product software. For installation procedures
for the product software, see Installing webMethods Products.

Nodes and Clusters
API Gateway supports clustering to achieve horizontal scalability and reliability. The following
figure illustrates an API Gateway cluster consisting of multiple API Gateway nodes.

Each API Gateway cluster node holds all the API Gateway components including UI, the API
Gateway package running in webMethods Integration Server, and an API Gateway Data Store
instance for storing assets. A load balancer distributes the incoming requests to the cluster nodes.
The synchronization of the nodes is performed through a Terracotta server array andAPIGateway
Data Store clustering that is defined across the API Gateway Data Store instances.

Note:API Gateway does not require an external RDBMS for clustering.

As each node of an API Gateway cluster offers the same functionality, nodes can be added or
removed from an existing cluster. The synchronization of any new node happens automatically.
The synchronization includes configuration items, and runtime assets like APIs, policies, and
applications. The synchronized runtime assets become active automatically.

44 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

The minimum requirements to achieve high availability in API Gateway are as follows:

Two API Gateway instances.

Three API Gateway Data Store instances.

Two Terracotta Server instances (Active-Passive).

Note:

Though only twoAPIGateway instances are sufficient, SoftwareAG recommends the usage
of three instances. If you use only two API Gateway instances, then you must have an
additionalAPIGatewayData Store instance (Elasticsearch). The three Elasticsearch instances
are required to form a proper Elasticsearch cluster to avoid split-brain scenario.
If you haveAPIGatewayAdvanced Edition instances, clustering theAPIGateway instances
requires clustering of Elasticsearch and clustering of API Gateway nodes using Terracotta.
If you have API Gateway Standard Edition instances, you do not require clustering for API
Gateway and Elasticsearch. You must configure each of the API Gateway nodes
independently.
When youuse one Terracotta server formultiple product clusters (for example, APIGateway
cluster, Integration Server cluster) in parallel, provide unique names for each cluster in
order to avoid conflicts.

Configuring an API Gateway Cluster
Configuring an API Gateway cluster requires the following:

Configuring API Gateway cluster

Configuring API Gateway Data Store cluster

Configuring Terracotta Server array

Configuring load balancer

Configuring ports

API Gateway Cluster Configuration

You can enable API Gateway clustering through the API Gateway user interface. For more
information on enablingAPIGateway clustering, see Enabling Clustering for API Gateway section
under API Gateway Administration chapter in the webMethods API Gateway User's Guide.

Note:
You cannot configure anAPIGateway cluster acrossmultiple data centers, becauseAPIGateway
Data Store (Elasticsearch) cannot be clustered across multiple data centers.

API Gateway Data Store Cluster Configuration

For cluster configuration, the API Gateway Data Store instances should also be clustered using
Elasticsearch clustering properties, by modifying the
SAG_root/InternalDataStore/config/elasticsearch.yml file on each instance. You must provide the

API Gateway Configuration Guide 10.5 45

3 API Gateway Configuration

cluster configurations in the elasticsearch.yml file in the SAG_root/InternalDataStore/config/ folder
before starting the Elasticsearch for the very first time. When you start Elasticsearch, the node
auto-bootstraps itself into a new cluster. You cannot change the configuration after bootstrap and
thus, Elasticsearch does not merge separate clusters together after they have formed, even if you
subsequently try and configure all the nodes into a single cluster. For more information, see the
Elasticsearch documentation on clustering at https://www.elastic.co/.

Configuring Elasticsearch Cluster

Before you start, ensure that the Elasticsearch is not started after API Gateway installation.

To configure an Elasticsearch cluster

1. If you have started API Gateway before setting up the Elasticsearch cluster configuration,
perform the following steps before proceeding to the configuration step:

Log off and exit from API Gateway.

Delete the nodes folder from the SAG_root\InternalDataStore\data folder.

Make the necessary cluster configuration and start API Gateway.

Start Elasticsearch.

A node is created in the Elasticsearch cluster.

2. Open elasticsearch.yml from SAG_root/InternalDataStore/config/elasticsearch.yml in
any node that you want to cluster.

The following configuration is a sample of how the configuration appears initially.
cluster.name:"SAG_EventDataStore"
node.name: node1
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["node1:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']
cluster.initial_master_nodes:["node1"]

discovery.seed_hosts. You provide a list of nodes to the Elasticsearch that it should try to
contact. Once the node contacts a member of the unicast list, it receives a full cluster state that
lists all nodes in the cluster. It then proceeds to contact the master and join the cluster.

path.repo. This is the location where the Elasticsearch writes the snapshots to. Hence, it is
important to have a location that is accessible to all the nodes. This is a common location for
all the Elasticsearch nodes in the cluster and acts as a shared folder so that all the Elasticsearch
nodes can access the same location.

cluster.initial_master_nodes. This parameter must be set so that when you start a cluster
for the first time cluster bootstrapping is performed. The parameter must contain the names
of the master-eligible nodes in the initial cluster and must be defined on every master-eligible

46 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

https://www.elastic.co/

node in the cluster. This setting helps prevent split-brain, the existence of two masters in a
single cluster.

3. Provide the name of the cluster in the cluster.name property.

Nodes with same cluster names form a cluster. That is, if there are three nodes in the cluster,
the value in the cluster.name property must be same across all three nodes. In other words,
Elasticsearch forms a cluster with nodes that have the same cluster.name.

For example,
cluster.name:"SAG_EventDataStore"

4. Provide the names of all participating nodes, as seen in the node.name property, and the ports
they use, as seen in the http.port property, in the discovery.seed_hosts property in the
following format:

host_name:port_name

If there are three nodes in the cluster, the value in the discovery.seed_hosts property is as
shown in this example:
discovery.seed_hosts: ["node1:9340","node2:9340","node3":"9340"]

The names of all nodes appear in the cluster.initial_master_nodes property. The node name
displayed in this property is same as seen in the node.name property.

Sample configuration of a node is as follows:
cluster.name:"SAG_EventDataStore"
node.name: node1
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["hostname1:9340","hostname2:9340","hostname3:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']
cluster.initial_master_nodes:["node1","node2","node3"]

The specified nodes are clustered.

Adding New Node to an Elasticsearch Cluster

This section explains how to add a new node to an Elasticsearch cluster. You can add nodes to a
cluster by configuring new nodes to find an existing cluster and start them up.

For example, consider that a new node, node 4, is added to a cluster that already has three nodes
in it namely, node1, node2, and node3.

To add new node to a cluster

1. Open elasticsearch.yml from SAG_root/InternalDataStore/config/elasticsearch.yml from
the system where the new node is being added.

API Gateway Configuration Guide 10.5 47

3 API Gateway Configuration

The following configuration is a sample of how the configuration appears initially.
cluster.name:"SAG_EventDataStore"
node.name: node4
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["node4:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']
cluster.initial_master_nodes:["node4"]

2. Provide the name of the node, as seen in the node.name property, and port number used by
the node, as seen in the http.port property, in the discovery.seed_hosts property in the
following format:

host_name:port_name

For example
node4:9340

Sample configuration after providing the new node details:
cluster.name:"SAG_EventDataStore"
cluster.initial_master_nodes:["node1","node2","node3"]
node.name: node4
path.logs: SAG_root\InternalDataStore/logs
network.host:0.0.0.0
http.port:9240
discovery.seed_hosts: ["node1:9340","node2:9340","node3":"9340","node4:9340"]
transport.tcp.port:9340
path.repo:['SAG_root\InternalDataStore/archives']

3. Save the configuration and restart the cluster. The new node is added to the cluster.

Note:
When you restart an Elasticsearch cluster, you must restart the master node first.

If you want to remove a node from a cluster do the following:

1. Open the elasticsearch.yml file located at SAG_root/InternalDataStore/config/.

2. Remove the node listed in the format host_name:port_name in the discovery.seed_hosts
property.

3. Save the elasticsearch.yml file and restart the Elasticsearch cluster. The specified node is now
removed from the cluster.

Terracotta Server Array Configuration

APIGateway requires a Terracotta Server array installation. Formore information, seewebMethods
Integration Server Clustering Guide and the Terracotta documentation located at http://
www.terracotta.org/.

48 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

http://www.terracotta.org/
http://www.terracotta.org/

A sample Terracotta configuration file is as follows:
<?xml version="1.0" encoding="UTF-8" ?>

<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tc-properties>
<property name="l2.nha.dirtydb.autoDelete" value="true"/>
<property name="l2.nha.dirtydb.rolling" value="2"/>
<property name="logging.maxLogFileSize" value="512"/>
<property name="logging.maxBackups" value="20"/>
<property name="l2.nha.tcgroupcomm.reconnect.timeout" value="10000"/>
<property name="l2.l1reconnect.timeout.millis" value="10000"/>

</tc-properties>

<servers>
<mirror-group group-name="group1">

<server host="${host}" name="server1" bind="0.0.0.0">

<data>/opt/softwareag/tsa/server-data</data>
<logs>/opt/softwareag/tsa/server-logs</logs>
<index>/opt/softwareag/tsa/server-index</index>
<authentication/>

<dataStorage size="2g">
<offheap size="2g"/>

</dataStorage>

</server>

<server host="${host}" name="server2" bind="0.0.0.0">

<data>/opt/softwareag/tsa/server-data</data>
<logs>/opt/softwareag/tsa/server-logs</logs>
<index>/opt/softwareag/tsa/server-index</index>
<authentication/>
<dataStorage size="2g">

<offheap size="2g"/>
</dataStorage>

</server>

</mirror-group>

<garbage-collection>
<enabled>true</enabled>
<verbose>false</verbose>
<interval>3600</interval>

</garbage-collection>

<restartable enabled="false"/>
<failover-priority>AVAILABILITY</failover-priority>

<client-reconnect-window>360</client-reconnect-window>

</servers>

<clients>
<logs>logs-%i</logs>

</clients>

API Gateway Configuration Guide 10.5 49

3 API Gateway Configuration

</tc:tc-config>

Load Balancer Configuration

You can use a custom load balancer for an API Gateway cluster. Here you use the load balancer
nginx.

On a Linux machine, the load balancer configuration file /etc/nginx/nginx.conf is as follows:
user nginx;
worker_processes 1;
error_log /var/log/nginx/error.log debug;
pid /var/run/nginx.pid;

events {
worker_connections 1024;

}

http {
include /etc/nginx/mime.types;
default_type application/octet-stream;

log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;

sendfile on;
#tcp_nopush on;
keepalive_timeout 65;
gzip on;

upstream apigateway {
server localhost:5555;
server localhost:5556;
server localhost:5557;

}

upstream apigatewayui {
ip_hash;
server server1:9072;
server server2:9072;
server server3:9072;

}
server {

listen 8000;
location / {

proxy_pass http://apigateway;
}

}

}

Use sudo nginx -s reload or sudo nginx -s start to reload or start nginx. In a test environment,
the command nginx-debug is used for greater debugging. The load needs to be exposed through
the firewall that is protecting the host the firewall is running on.

50 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

For accessing API Gateway, Software AG recommends sticky sessions for UI calls. In the sample
load balancer configuration file you would see that the API Gateway UI port 9072 is configured
with all the three server instances so that the incoming requests are directed to either of the servers.

Ports Configuration

By default, API Gateway does provide synchronization of the port configuration across API
Gateway cluster nodes. If you do notwant the ports to be synchronized acrossAPIGateway cluster
nodes, set the portClusteringEnabled parameter available under Username > Administration >
General > Extended settings in API Gateway to false.

Note:
When this parameter is set to true, all the existing port configurations except the diagnostic
port (9999) and the primary port (5555) are removed.

Synchronization of ports configuration does not cover temporary disconnects of a node, therefore,
to get a node synchronized, you must restart it. Also, if you do not remove the port configuration,
the port can be re-synchronized byperforming another update on the same configuration. Therefore,
to activate the ports synchronization, do the following:

1. Set the portClusteringEnabled parameter to true.

2. Restart all the cluster nodes.

API Gateway Availability and Health Status

You can monitor the availability and health status of API Gateway using the Availability REST
API. The Availability API is used to report the overall health of the API Gateway.

The REST API is not deployed by default but can be defined by importing the Swagger file
APIGatewayAvailability.json from the folder located at SAG_Root/IntegrationServer/instances/
default/packages/WmAPIGateway/resources/apigatewayservices. For details, see the REST APIs
section in webMethods API Gateway User's Guide.

You can check API Gateway health using the HTTP requests against
http://localhost:5555/gateway/availability. This REST call also verifies the exposure and
availability of theAPIGatewayRESTAPI. Youmust have theView administration configurations
privileges to invoke the Availability API to view the availability and health status of API Gateway.

Each health check request displays a status field as the first entry. The status can have the values
green, yellow or red describing the overall status of the components to check. This means that
when any of the components signals a problem, then the status is set to red. When the status is
green and yellow, the request ends with HTTP 200, however when the status is red, then the
request ends with HTTP 500.

The REST API provides the following resources and methods:

GET /gateway/availability/admin

The request retrieves the availability and health status of the API Gateway administration
service (UI, Dashboards).

API Gateway Configuration Guide 10.5 51

3 API Gateway Configuration

Request: GET http://localhost:5555/gateway/availability/admin

The overall admin status is assessed based on the UI ports (the port can be HTTP or HTTPS)
status as follows:

When the HTTP and the HTTPS ports are accessible, the overall status is green.

When both ports are configured and they are inaccessible, the overall status is red.

When both ports are configured and one of the ports is inaccessible, the overall status is
yellow.

When there is a SSL handshake failure while checking the HTTPS port, the overall status
is yellow.

The overall admin status is assessed based on the Kibana status as follows:

When Kibana's port is accessible, the overall status is green.

When Kibana's port is inaccessible, the overall status is red.

When Kibana's communication with Elasticsearch is not established, the overall status is
red.

A sample HTTP response looks as follows:
{

"status": "green",
"ui": {

"https_port_9073": "ok",
"http_port_9072" "ok",
"status": "green",
"response_time_ms": "727"

},
"kibana": {

"status": {
"overall": {

"state": "green",
"nickname": "Looking good"'
"icon": "success",
"uiColor": "secondary"

}
}
"response_time_ms": "78"

}
}

The sample HTTP response shows a green status as both the ports and Kibana are available.

GET /gateway/availability/engine

The request retrieves the availability and health status of the API Gateway to process API
invocations and requests (ElasticSearch cluster, IS and Terracotta).

Request: GET http://localhost:5555/gateway/availability/engine

The overall status is assessed based on the Elasticsearch status as follows:

52 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

When the internal status of Elasticsearch signals green or yellow, the overall status is green.

When the internal status of Elasticsearch signals red, the overall status is red.

When Elasticsearch port is inaccessible, the overall status is red.

The overall status is assessed based on the IS status as follows:

When one of the resource types memory, diskspace, and servicethread reveals a resource
problem, then the overall engine status is set to yellow.

Request: GET http://localhost:5555/gateway/availability/engine

A sample HTTP response looks as follows:
{

"status": "green",
"elasticsearch": {

"cluster_name": "SAG_EventDataStore",
"status": "green",
"number_of_nodes": "3",
"number_of_data_nodes": "3",
"timed_out": "false",
"active_shards": "236",
"initializing_shards": "0",
"unassigned_shards": "0",
"task_max_waiting_in_queue_millis": "0",
"port_9240": "ok",
"response_time_ms": "29"

},
"is": {

"status": "green",
"diskspace": {

"status": "up",
"free": "8249233408",
"inuse": "2476650496",
"threshold": "1072588390",
"total": "10725883904"

},
"memory": {

"status": "up",
"freemem": "252558496",
"maxmem": "954728448",
"threshold": "55679385",
"totalmem": "556793856"

},
"servicethread": {

"status": "up",
"avail": "71",
"inuse": "4",
"max": "75",
"threshold": "7"

},
"response_time_ms": "315"

},
"cluster": {

"status": "green",
"isClusterAware": "false",
"message": "Non-Clustered node",

API Gateway Configuration Guide 10.5 53

3 API Gateway Configuration

"response_time_ms": "16"
}

}

The overall status is green since all components work as expected.

GET /gateway/availability/externalServices

The request retrieves the availability of external services accessed byAPIGateway. The external
services include destinations and external accounts. The checked external accounts include
Service registries and Integration Servers.

The status field of externalServices displays the values green or yellow, if at least one of the
destination resources is not available. In case of a problem, the error field displays the details
of the problem encountered.

Request: GET http://localhost:5555/gateway/availability/externalServices

HTTP response looks as follows:
{

"status": "yellow",
"destinations": [

{
"type": "centrasite",
"name": "centrasite",
"status": "yellow",
"error": "Port 53307 not active",
"response_time_ms": "1006"

},
{

"type": "centrasite",
"name": "centrasite_snmp",
"status": "yellow",
"error": "Port 8181 not active",
"response_time_ms": "1005"

},
{

"type": "api_portal",
"name": "api_portal",
"status": "not configured",
"response_time_ms": "9"

},
{

"type": "snmp",
"name": "snmp",
"status": "yellow",
"error": "Port 8189 not active",
"response_time_ms": "1004"

},
{

"type": "email",
"name": "email",
"status": "green",
"response_time_ms": "9"

},
{

"type": "elasticsearch",
"name": "elasticsearch",

54 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

"status": "not configured",
"response_time_ms": "0"

}
],
"external_accounts": [

{
"type": "service_registry",
"name": "ServiceConsulDefault",
"status": "green",
"response_time_ms": "12"

},
{

"type": "service_registry",
"name": "EurekaDefault",
"status": "yellow",
"error": "Error: HttpResponse: 500 (Connect to http://daefermion3:9092

failed): ",
"response_time_ms": "1026"

}
]

}

The sample response shows the status of all external services including those that are not
configured. As the CentraSite destination is not properly configured, as shown in the sample
response, this turns the overall status to yellow.

GET /gateway/availability/all

The request retrieves the availability of the administration service of the policy enforcement
engine and of the external services accessed by API Gateway.

Request: GET http://localhost:5555/gateway/availability/all

HTTP response looks as follows:
{

"status": "green",
"ui": {

"https_port_9073": "ok",
"http_port_9072" "ok",
"status": "green",
"response_time_ms": "727"

},
"kibana": {

"status": {
"overall": {

"state": "green",
"nickname": "Looking good"'
"icon": "success",
"uiColor": "secondary"

}
}
"response_time_ms": "78"

},
"elasticsearch": {
"cluster_name": "SAG_EventDataStore",
"status": "green",
"number_of_nodes": "3",
"number_of_data_nodes": "3",

API Gateway Configuration Guide 10.5 55

3 API Gateway Configuration

"timed_out": "false",
"active_shards": "236",
"initializing_shards": "0",
"unassigned_shards": "0",
"task_max_waiting_in_queue_millis": "0",
"port_9240": "ok",
"response_time_ms": "7"

},
"is": {

"status": "green",
"diskspace": {

"status": "up",
"free": "8249327616",
"inuse": "2476556288",
"threshold": "1072588390",
"total": "10725883904"

},
"memory": {

"status": "up",
"freemem": "232997664",
"maxmem": "954728448",
"threshold": "57094963",
"totalmem": "570949632"

},
"servicethread": {

"status": "up",
"avail": "71",
"inuse": "4",
"max": "75",
"threshold": "7"

},
"response_time_ms": "127"

},
"cluster": {

"status": "green",
"isClusterAware": "false",
"message": "Non-Clustered node",
"response_time_ms": "16"

},
"destinations": [

{
"type": "centrasite",
"name": "centrasite",
"status": "yellow",
"error": "Port 53307 not active",
"response_time_ms": "1006"

},
{

"type": "centrasite",
"name": "centrasite_snmp",
"status": "yellow",
"error": "Port 8181 not active",
"response_time_ms": "1005"

},
{

"type": "api_portal",
"name": "api_portal",
"status": "not configured",
"response_time_ms": "9"

},

56 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

{
"type": "snmp",
"name": "snmp",
"status": "yellow",
"error": "Port 8189 not active",
"response_time_ms": "1004"

},
{

"type": "email",
"name": "email",
"status": "green",
"response_time_ms": "9"

},
{

"type": "elasticsearch",
"name": "elasticsearch",
"status": "not configured",
"response_time_ms": "0"

}
],
"external_accounts": [

{
"type": "service_registry",
"name": "ServiceConsulDefault",
"status": "green",
"response_time_ms": "12"

},
{

"type": "service_registry",
"name": "EurekaDefault",
"status": "yellow",
"error": "Error: HttpResponse: 500 (Connect to http://daefermion3:9092

failed): ",
"response_time_ms": "1026"

}
]

}

Note:

To perform the following API Gateway Availability REST calls you must have the View
Administration Configuration privileges.

GET /gateway/availability/externalServices
GET /gateway/availability/all

To perform the following API Gateway Availability REST calls you must be a valid API
Gateway user.

GET /gateway/availability/admin
GET /gateway/availability/engine

You can use the existing health check request GET http://localhost:5555/rest/apigateway/health,
without any authentication being set, to retrieve the health of API Gateway that monitors the
availability and health status of Kubernetes and Docker containers . This returns a HTTP 200
response without additional data.

API Gateway Configuration Guide 10.5 57

3 API Gateway Configuration

Externalizing Configurations

In API Gateway, the inter-component and cluster configurations are stored in different files. These
configurations help to define how API Gateway connects with components such as Elasticsearch,
Kibana, and Filebeat. You also use these configurations to define cluster configuration for API
Gateway. With this feature, you can manage and provision the configurations from a centralized
location using one ormore configuration files. The configuration files can be in YAMLor properties
format. It can be either of the following ways:

A consolidated configuration file (defining all the inter-components and cluster configuration
settings).

A set of individual files defining each of the inter-components (such as Elasticssearch, Kibana,
and Filebeat connections) and cluster (Elasticsearch and Terracotta) configuration settings.

The above mentioned configuration files are listed in the master configuration file, config-
sources.yml. Both the master configuration and external configuration files are located in the
SAGInstallDir\IntegrationServer\instances\instance_name\packages\WmAPIGateway\resources\
configuration folder. Externalizing configuration helps the API Gateway administrator and
operational teams to provision the API Gateway configurations dynamically.

Using the Externalized Configuration Files
The API Gateway administrator provides configuration settings in one or more external
configuration files and creates themaster configuration file listing the external configuration files.
On startup, API Gateway reads config-sources.yml file and loads all the external configuration
source files that it references. The settings in the externalized configuration files override the
respective internal configuration settings (such as uiconfiguration.properties, server.cnf). Once
the API Gateway configuration space is updated, the rest of the API Gateway package gets loaded
with the updated configuration settings.

Note:
For settings that are not given in the externalized configuration files, API Gateway use the
settings given in the internal configuration files.

The below sample externalized configuration file template contains the configuration settings that
the API Gateway administrator wants to externalize. The given external configuration settings
overwrite the respective internal configuration settings. For the configuration settings that are not
specified in the externalized configuration file, the settings given in the respective internal
configuration files take precedence.
apigw:
elasticsearch:

.....
kibana:

.....
filebeat:

......
cluster:

......
uiConfig:

58 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

.......

Elasticsearch Configuration

Note:
Install and run Elasticsearch, version 7.2, if you are configuring an external instance of
Elasticsearch.

The Elasticsearch configuration and details section contains all the necessary properties for an
Elasticsearch HTTP client using which API Gateway connects to either an externally running
Elasticsearch server or to the Elasticsearch-powered API Gateway data store in API Gateway. The
key configurations are as follows:

tenantId. The API Gateway tenant id, using which the Elasticsearch indices are created for
that tenant.

hosts. A comma separated list of external Elasticsearch instances. Example:
host1:9200,host2:9240.

autostart. Optional. If the value is not provided, by default it would be false. API Gateway
would connect to the given external Elasticsearch hosts. If the value is set to true, API Gateway
automatically starts the API Gateway data store. In this case, the hosts should point to API
Gateway data store host and port. The default host for the API Gateway data store is
localhost:9240.

http. The basic authentication credentials and HTTP-connection specific properties.

https. If the enabled property within https is set to true, API Gateway uses the other https
properties to connect to the configured hosts.

sniff. These properties help in adding a new Elasticsearch node to the Elasticsearch cluster.

outboundproxy. Outbound proxy settings between API Gateway and Elasticsearch.

clientHttpResponseSize. Maximum Response payload size in MB.

A sample Elasticsearch configuration is as follows:
apigw:
elasticsearch:

tenantId: apigateway
hosts: localhost:9200
autostart: false
http:

username: elastic
password: changeme
keepAlive: true
keepAliveMaxConnections: 10
keepAliveMaxConnectionsPerRoute: 100
connectionTimeout: 1000
socketTimeout: 10000
maxRetryTimeout: 100000

https:
enabled: false

API Gateway Configuration Guide 10.5 59

3 API Gateway Configuration

keystoreFilepath: C:/softwares/elasticsearch/config/keystore-new.jks
truststoreFilepath: C:/softwares/elasticsearch/config/truststore-new.ks
keystoreAlias: root-ca
keystorePassword: 6572b9b06156a0ff778c
truststorePassword: manage
enforceHostnameVerification: false

sniff:
enable: false
timeInterval: 1000

outboundProxy:
enabled: false
alias: somealias

clientHttpResponseSize: 1001231

Kibana Configuration

Note:
Install Kibana, version 7.2, if configuring an external instance of Kibana.

The Kibana configuration supports setting the Kibana server URL, which can point to either the
one that is run byAPIGateway or any externally running server. It also contains the SSL certificate
related settings that would be used to connect to the SSL protected Elasticsearch server. The key
configurations are as follows.

dashboardInstance. The Kibana server URL in the format scheme://hostname:port. Example:
http://vmabc:5601.

autostart. Optional. If the value is not provided, by default it would be false. API Gateway
would connect to the given external Kibana server. If the value is set to true, API Gateway
automatically starts the internal Kibana server. In this case, the hosts should point to internal
Kibana server host and port. The default value is http://localhost:9405.

sslCA. A list of paths to the PEM file for the certificate authority for the Elasticsearch instance.

sslCert. The path to the PEM format certificate for SSL client authentication.

sslKey. The client certificate key used for client authentication. These files are used to verify
the identity of Kibana to the Elasticsearch server when it is SSL protected.

A sample Kibana configuration is as follows:
apigw:
kibana:

dashboardInstance: http://localhost:9405
autostart: true
elasticsearch:

sslCA: C:/softwares/elasticsearch/config/SAG-B1HPWT2.pem
sslCert: C:/softwares/elasticsearch/config/SAG-B1HPWT2.crt
sslKey: C:/softwares/elasticsearch/config/SAG-B1HPWT2.key

Filebeat Configuration

The Filebeat configuration supports configuring the SSL certificate related settings that are used
to connect to the SSL protected Elasticsearch server. The key configurations are as follows:

60 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

sslCA. A list of paths to the PEM file for the certificate authority for the Elasticsearch instance.

sslCert. The path to the PEM format certificate for SSL client authentication.

sslKey. The client certificate key used for client authentication. These files are used to verify
the identity of Kibana to Elasticsearch server when it is SSL protected.

A sample Filebeat configuration is as follows:
apigw:
filebeat:

output:
elasticsearch:

sslCA: C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem
sslCert: C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.crt
sslKey: C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.key

Cluster Configuration

Note:
Install and run Terracotta server (a version that is compatible with API Gateway 10.5) for
clustering API Gateway instances.

The cluster configuration contains the Terracotta clustering settings. The key configurations are
as follows:

aware, name, tsaUrls, sessTimeout, actionOnStartupError. All are Terracotta cluster settings
that are set in the server watt properties.

terracottaLicenseFileName. The Terracotta server license file name. The file should be present
in the folder SAGInstallDir/common/conf. API Gateway would use this file for joining the
Terracotta cluster.

A sample Cluster configuration is as follows:
apigw:
cluster:

aware: true
name: APIGatewayTSAcluster
tsaUrls: VMYAI105BVT06:9510
terracottaLicenseFileName: terracotta-license.key
sessTimeout: 20
actionOnStartupError: standalone

For terracottaLicenseFileNameproperty a valid license file should be present in the SAGInstallDir/
common/conf location, otherwise the property is ignored.

Note:
When cluster settings are given in the configuration files, the API Gateway server, on startup,
would update the internal settings with the values from the configuration files but the node
does not join the cluster. You have to restart the server for the cluster settings to become effective
and for the node to join the cluster.

API Gateway Configuration Guide 10.5 61

3 API Gateway Configuration

API Gateway UI Configuration

The API Gateway UI configuration supports configuring the login page of API Gateway when
the SSO configuration is enabled. The key configurations are as follows:

apigwAuthPriority. Displays the login page based on the value.

If the configuration is set as apigwAuthPriority: form, then API Gateway login page
appears displaying the Login with SSO option link.

If the configuration is set as apigwAuthPriority:"saml", then API Gateway redirects you
to SSO login page.

A sample API Gateway UI configuration is as follows:
apigw:
uiConfig:

apigwAuthPriority: form

Consolidating Externalized Configuration Files

You can consolidate the configurations of different inter-components and cluster in a single
configuration file.

A sample consolidated configuration file is as follows:
apigw:
elasticsearch:
tenantId: "apigateway"
hosts: "localhost:9240"
autostart: "true"
http:

username: ""
password: "@secure.elasticsearch.http.password"
keepAlive: "true"
keepAliveMaxConnections: 10
keepAliveMaxConnectionsPerRoute: 100
connectionTimeout: 1000
socketTimeout: 10000
maxRetryTimeout: 100000

https:
enabled: "false"
truststoreFilepath: "C:/softwares/elasticsearch-version/config/truststore-new.ks"

keystoreAlias: "root-ca"
truststorePassword: "@secure.elasticsearch.http.truststore.password"
enforceHostnameVerification: "false"

sniff:
enable: "false"
timeInterval: 1000

outboundProxy:
enabled: "false"
alias: "esoutboundproxyalias"

clientHttpResponseSize: 1001231
kibana:

62 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

dashboardInstance: "http://localhost:9405"
autostart: "true"

elasticsearch:
sslCA: "C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem"

filebeat:
output:
elasticsearch:
sslCA: "C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem"

cluster:
aware: "true"
name: "APIGatewayTSAcluster"
tsaUrls: "VMYAI105BVT06:9510"
terracottaLicenseFileName: "terracotta-license.key"
sessTimeout: "20"
actionOnStartupError: "standalone"
uiConfig:

apigwAuthPriority: form

Similarly, you consolidate separate property files into a single file as shown in the following
sample.
apigw.elasticsearch.tenantId=apigateway
apigw.elasticsearch.autostart=true
apigw.elasticsearch.hosts=localhost:9240
apigw.elasticsearch.clientHttpResponseSize=1001231
apigw.elasticsearch.http.keepAlive=true
.
.
.
apigw.kibana.dashboardInstance=http://localhost:9405
apigw.kibana.elasticsearch.sslCert=/path/to/your/client.crt
apigw.kibana.elasticsearch.sslKey=/path/to/your/client.key
apigw.kibana.elasticsearch.sslCA=C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem
.
.
.
.
apigw.filebeat.output.elasticsearch.sslCert=/path/to/your/client.crt
apigw.filebeat.output.elasticsearch.sslKey=/path/to/your/client.key
apigw.filebeat.output.elasticsearch.sslCA=C:/softwares/elasticsearch-version/config/SAG-B1HPWT2.pem
.
.
.
apigw.cluster.tsaUrls=VMYAI105BVT06:9510
apigw.cluster.actionOnStartupError=standalone
apigw.cluster.name=APIGatewayTSAcluster
apigw.cluster.sessTimeout=20
apigw.cluster.terracottaLicenseFileName=terracotta-license.key

Master configuration YAML file and its usage

The master configuration file, config-sources.yml, contains the paths, metadata, and properties
for the other configuration files. The master configuration file and the other configuration files
should be present in the folder SAGInstallDir\IntegrationServer\instances\instance_name\
packages\WmAPIGateway\resources\configuration. The master configuration file can contain
references to both YAML and Properties file types.

API Gateway Configuration Guide 10.5 63

3 API Gateway Configuration

The master configuration file is read by API Gateway on startup. Using this file API Gateway
reads the different configurations provided in the folder. If any entry has an invalid file name or
path it is ignored but the error is logged into the API Gateway logs.

A sample master configuration file is as follows:
######################## Master configuration ############################
This is the master configuration file which contains the configuration
source definitions.
#
#======================= Sources configuration ==========================
sources:
#--------------------- YAML file configuration source --------------------
- type: YAML
allowEdit: true
properties:

location: allExternal-settings.yml
#------------------- Properties file configuration source ----------------
#- type: PROPERTIES
allowEdit: true
properties:
location: system-settings.properties
#
#================================== END =================================

The table lists and explains the properties of a configuration file source entry.

DetailProperty

Indicates the type of the configuration source. The applicable types are
YAML, PROPERTIES and CC_YAML.

type

YAML. A YAML configuration file.

PROPERTIES. A properties configuration file.

CC_YAML. A YAML configuration file, which is reserved for
Command Central updates.

Indicates whether this file can be updated from API Gateway and is
useful for hiding passwords.

allowEdit

Valid values are true and false.

If the value is set to true, it hides the clear text passwords.

If the value is set to false, it displays the clear text passwords.

Properties that enable API Gateway to connect to the defined
configuration source. For the 10.5 release only the location property
is supported.

properties

location. An absolute or relative path to a component-specific
configuration file. In case of relative path, the file would be located
relative to the system-defined location

64 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

DetailProperty

SAGInstallDir\IntegrationServer\instances\
instance_name\packages\WmAPIGateway\resources\configuration.

Important:
For the CC_YAML file type, the location is fixed as cc-config.yml.
This file must not be modified manually as it is updated directly by
Command Central. Instead, use the Command Central interfaces to
modify this file.

Note:
Themaster configuration filename config-sources.yml is system-defined. A filewith a different
name is not treated as the master configuration file.

Hiding Clear Text Passwords in Configuration Files

To prevent unauthorized users from reading the credentials in the configuration files and other
potential threats, the Administrator can enable hiding of such secrets by setting the allowEdit flag
to true in the master configuration file. When allowEdit is set to true the secret values in the
configuration files are stored in the Password manager and the plain text values in the files are
replaced with the Password manager keys on API Gateway startup. After this, a user can see only
the password keys in the files. On startup, API Gateway would retrieve the passwords for those
settings from the Password manager using those keys and hence it is advised not to alter any of
the password manager key values in the file. The passwords can be modified at any time and the
same are replaced with the Password manager keys in the next API Gateway startup.

This table provides the list of the settings and their respective Password manager keys.

Password manager key replacementSetting

@secure.elasticsearch.http.passwordapigw:
elasticsearch:
http:
username: elastic

@secure.elasticsearch.http.keystore.passwordapigw:
elasticsearch:
https:
keystorePassword:

6572b9b06156a0ff778c

@secure.elasticsearch.http.truststore.passwordapigw:
elasticsearch:
https:
truststorePassword:

6572b9b06156a0ff778c

API Gateway Configuration Guide 10.5 65

3 API Gateway Configuration

Properties File Support for Externalized Configurations

In addition to YAML files, configurations can be saved in Properties files as well. The property
names are the same as those in the YAML configuration files. The property names in Properties
files are delimited by a "." for forming the property name. For example. the tenantId property
under apigw > elasticsearch in YAML, can be specified as apigw.elasticsearch.tenantId in the
properties file.

A sample Properties file is as follows:
apigw.elasticsearch.tenantId=default
apigw.elasticsearch.autostart=false
apigw.elasticsearch.hosts=vmabc\:9240
apigw.elasticsearch.http.password=admin123
apigw.elasticsearch.http.username=admin
apigw.kibana.dashboardInstance=http://localhost:9405
apigw.kibana.elasticsearch.sslCert=/path/to/your/client.crt

Configuring Multiple Configuration Files and Its Effects

The master configuration file can have many entries (0 to N) for defining multiple configuration
files as configuration sources. When such a file is used to start API Gateway, the configuration
values from all the files would be merged into a single effective configuration. If the same
configuration value is present in two files, then the value in the file which has a higher preference
is given priority. The order of preference is in the reverse order in which they are defined in the
master configuration file, that is, the configuration values that are defined in the last configuration
file entry would have the highest preference. A sample use case is explained below.

Assume file1.yml has the following configurations.
apigw:
elasticsearch:

tenantId: default

And, file2.properties has the following configurations.
apigw.elasticsearch.tenantId=apigateway

And, file3.yml has the following configurations.
apigw:
elasticsearch:

http:
username: admin
password: admin123

kibana:
dashboardInstance: http://localhost:5601

Then the combined configuration that becomes effective is as follows.

Effective config.yml configuration:
apigw:
elasticsearch:

tenantId: apigateway

66 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

http:
username: admin
password: admin123

kibana:
dashboardInstance: http://localhost:5601

Limitations

Currently, externalized configurations are limited to inter-component and cluster configurations.

If you have defined cluster configuration in the externalized configuration file, on startup the
API Gateway server updates the internal settings with the values from the externalized
configuration files but the node in the cluster will not be updated. API Gateway server restart
is required for the cluster settings to become effective and to join the cluster.

Default Scenario
By default, on start API Gateway reads the master configuration file and loads all the defined
configuration source files referenced in the master configuration file. If the master configuration
config-sources.yml file does not exist or is not valid, APIGateway falls back to its default behavior,
that is, the values defined in the internal configuration file become effective. Similarly, if any of
the configuration files does not exist or is not valid, then those files are ignored and API Gateway
uses the corresponding internal configuration file. The API Gateway server startup is not blocked
in the above scenarios. Instead, the error logs are logged into API Gateway application logs for
debugging purpose.

Note:
To view the error logs, enable Debug level for the Externalized Configuration facility in the
logging settings.

A sample log for an API Gateway instance using externalized configurations is as follows:
[302]2019-08-16 11:19:02 IST [YAI.0013.8889I] [default][SAG-G43RXF2] Configuration
loaded from configuration sources. APIGatewayConfig:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='apigw', hosts='localhost:9200',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,

clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[301]2019-08-16 11:19:02 IST [YAI.0013.8889I] [default][SAG-G43RXF2] APIGatewayConfig
loaded from ConfigurationSource{type=PROPERTIES, allowEdit=true,

properties={location=components.properties}}:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='apigw', hosts='null',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[300]2019-08-16 11:19:02 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Retrieving
configuration from Properties file source: ConfigurationSource{type=PROPERTIES,

allowEdit=true, properties={location=components.properties}}

[299]2019-08-16 11:19:02 IST [YAI.0013.8889I] [default][SAG-G43RXF2] APIGatewayConfig
loaded from ConfigurationSource{type=YAML, allowEdit=true,

properties={location=components.yml}}:

API Gateway Configuration Guide 10.5 67

3 API Gateway Configuration

APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='null', hosts='localhost:9200',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[298]2019-08-16 11:19:02 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Retrieving
configuration from YAML file source: ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}

[297]2019-08-16 11:19:02 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Loading
configuration from sources: [ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}, ConfigurationSource{type=PROPERTIES,
allowEdit=true, properties={location=components.properties}}]

[293]2019-08-16 11:19:01 IST [YAI.0013.8889I] [default][SAG-G43RXF2] Configuration
loaded from configuration sources. APIGatewayConfig:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='apigw', hosts='localhost:9200',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[292]2019-08-16 11:19:01 IST [YAI.0013.8889I] [default][SAG-G43RXF2] APIGatewayConfig
loaded from ConfigurationSource{type=PROPERTIES, allowEdit=true,
properties={location=components.properties}}:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='apigw', hosts='null',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[291]2019-08-16 11:19:01 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Retrieving
configuration from Properties file source: ConfigurationSource{type=PROPERTIES,
allowEdit=true, properties={location=components.properties}}

[290]2019-08-16 11:19:01 IST [YAI.0013.8889I] [default][SAG-G43RXF2] APIGatewayConfig
loaded from ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}:
APIGatewayConfig{elasticsearch=Elasticsearch{tenantId='null', hosts='localhost:9200',
autostart='null', http=null, https=null, sniff=null, outboundProxy=null,
clientHttpResponseSize=null, pendingRestart='null'}, kibana=null, filebeat=null,
cluster=null}

[289]2019-08-16 11:19:01 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Retrieving
configuration from YAML file source: ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}

[288]2019-08-16 11:19:01 IST [YAI.0013.8887D] [default][SAG-G43RXF2] Debug: Loading
configuration from sources: [ConfigurationSource{type=YAML, allowEdit=true,
properties={location=components.yml}}, ConfigurationSource{type=PROPERTIES,
allowEdit=true, properties={location=components.properties}}]

system-settings.yml

API Gateway ships with a default configuration file system-settings.yml, which contains the
default values for the inter-component and cluster configurations. TheAPIGatewayAdministrator
can start API Gateway with the original (default) configuration values by referring to this file in
the master configuration file (config-sources.yml) with a higher preference.

68 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

Troubleshooting
The following checkpoints may resolve any issues, you may encounter, while externalizing
configurations.

Check whether the master config-sources.yml file exists and it is a valid YAML file.

Check whether the locations of the configuration files are correctly configured in the master
configuration file.

Check whether the configuration files are valid YAML files.

Check whether the configuration files contain the right structure and names for the settings
as provided in the templates.

Check whether the configured external instance (Elasticsearch or Kibana) is running before
starting API Gateway.

Check for the logs by enabling debug level of the Externalized Configuration facility in the
logging settings.

Connecting to an External Elasticsearch

API Gateway uses Elasticsearch as its primary data store to persist different types of assets such
as APIs, Policies, and Applications apart from runtime events and metrics. By default, all assets
are stored in the default Elasticsearch. But, you can configure API Gateway to use an external
Elasticsearch to store the API Gateway assets. For information about the Elasticsearch version that
is compatible with your API Gateway version, refer “API Gateway, Elasticsearch, Kibana
Compatibility Matrix” on page 73.

When you configure external Elasticsearch you can have one of the following configurations:

External Elasticsearch to store only the analytics.

This is achieved by configuring the external Elasticsearch as a destination store the analytics
data in the configured destination. For details about the supported destinations and their
configuration, see webMethods API Gateway User's Guide. In this case the core configurations
(such as APIs, Applications, Policies, Plans, Packages, Administration Settings, Security
Configurations (Keystores/Trustores) and Tokens (OAuth/APIKeys)) are stored in the internal
default Elasticsearch.

External Elasticsearch to store all API Gateway assets.

You can configure this in one of the following ways:

Specifying the appropriate properties in the configurations config.properties file, which is
explained in this section.

Using externalized configuration files. For details, see “ Using the Externalized
Configuration Files” on page 58.

API Gateway Configuration Guide 10.5 69

3 API Gateway Configuration

This section explains the changes that you must make in the config.properties file to enable API
Gateway to communicate with the external Elasticsearch.

The configurations specified in the config.properties file override the values that are configured
in gateway-es-store.xml during runtime and the values in gateway-es-store.xml are not changed.
During the first start-up of API Gateway, default values from gateway-es-store.xml are
automatically copied to config.properties. From the next start-up of API Gateway, values from
config.properties are used. Once the host is specified in config.properties the value is not
over-written from gateway-es-store.xml.

Note:
If you use an external Elasticsearch with same version as API Gateway Data Store, then you
can use the Kibana or dashboard that is shipped with API Gateway, else they have to be
configured separately. To know the compatible Kibana and Filebeat (Beats) versions for your
Elasticsearch, see https://www.elastic.co/es/support/matrix#matrix_compatibility.

To connect to an external Elasticsearch

1. Navigate to WmAPIGateway/config/resources/elasticsearch/config.properties

The config.properties file contains all the properties and Elasticsearch configurations.

2. Configure the following properties:

Property and Description

pg.gateway.elasticsearch.autostart

This property specifies whether the Elasticsearch starts automatically. If an external
Elasticsearch is configured it has to bemanually started. This property needs to be set to false
to avoid API Gateway Data Store starting automatically.

Default value: true

pg.gateway.elasticsearch.client.http.response.size

This property specifies the response size, in MB, for API Gateway Elasticsearch cient.

Default value: 100

pg.gateway.elasticsearch.config.location

This property specifies the location of the config file if you want to read port details from
some other Elasticsearch config file

pg.gateway.elasticsearch.hosts

Mandatory

This property lists Elasticsearch hosts and ports. The values are comma separated.

Default value: localhost:9240

70 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

https://www.elastic.co/es/support/matrix#matrix_compatibility

Property and Description

Note:
Once a host is added to this property, this is the value that is used to connect to Elasticsearch
and the host configured in gateway-es-store.xml is not considered.

pg.gateway.elasticsearch.http.keepAlive

Mandatory

This property creates the persistent connection between client and server.

Default value: true

pg.gateway.elasticsearch.http.connectionTimeout

Mandatory

This property specifies the time, in milliseconds, after which the connection times out.

Default value: 10000

pg.gateway.elasticsearch.http.socketTimeout

Mandatory

This property specifies the wait time, in milliseconds, for a reply once the connection to
Elasticsearch is established after which it times out.

Default value: 30000

pg.gateway.elasticsearch.http.maxRetryTimeout

Mandatory

This property specifies the wait time, in milliseconds, for retries after which it times out.

Default value: 100000

It is advisable to set max retry time for a request to (number of nodes * socketTimeOut
)+connectionTimeout

pg.gateway.elasticsearch.http.keepAlive.maxConnections

Mandatory

This property specifies themaximumnumber of persistent connections that can be established
between an API Gateway and Elasticsearch cluster.

Default value: 50

pg.gateway.elasticsearch.http.keepAlive.maxConnectionsPerRoute

Mandatory

API Gateway Configuration Guide 10.5 71

3 API Gateway Configuration

Property and Description

This property specifies themaximumnumber of persistent connections that can be established
per HTTP route to an Elasticsearch server.

Default value: 15

pg.gateway.elasticsearch.http.username

This property specifies the user name to connect to Elasticsearch using basic authentication.

pg.gateway.elasticsearch.http.password

This property specifies the password to connect to Elasticsearch using basic authentication.

pg.gateway.elasticsearch.https.keystore.filepath

This property specifies the Keystore file path for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.truststore.filepath

This property specifies the truststore file path for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.keystore.password

This property specifies the Keystore password for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.keystore.alias

This property specifies the Keystore alias for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.truststore.password

This property specifies the truststore password for establishing HTTPS communication with
Elasticsearch.

pg.gateway.elasticsearch.https.enabled

This property specifies whether you want to enable or disable the HTTPS communication
with Elasticsearch.

Default value: false

If this property is set to false none of the above properties related to HTTPS are respected.

pg.gateway.elasticsearch.outbound.proxy.enabled

This property specifieswhether youwant to enable or disable outboundproxy communication.

Default value: true

72 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

Property and Description

pg.gateway.elasticsearch.outbound.proxy.alias

This property specifies the outbound proxy alias name used to connect to Elasticsearch.

pg.gateway.elasticsearch.https.enforce.hostname.verification

This property enforces the host name verification for SSL communication.

Default value: false

pg.gateway.elasticsearch.sniff.enable

Mandatory

This property enables sniffers to add the other nodes in an Elasticsearch cluster to the client
so that the client can talk to all nodes.

Default value: true

This configuration must be set to false if you are changing the network when API Gateway
or Elasticsearch is running.

pg.gateway.elasticsearch.sniff.timeInterval

Mandatory

This property enables adding the newly added Elasticsearch cluster nodes to existing REST
client in a specified time interval in milliseconds.

Default value: 60000

3. Restart API Gateway for the HTTP client to take effect.

Note:
If hosts and ports are changed for Elasticsearch then you have to update the appropriate
Elasticsearch configuration for Kibana separately and restart the Elasticsearch server aswell
as Kibana.

You can also externalize the Elasticsearch tenant ID and configuration by using a master
configuration file. For details, see “Externalizing Configurations ” on page 58.

API Gateway, Elasticsearch, Kibana Compatibility Matrix
As stated earlier, API Gateway uses Elasticseach as its primary data storage. The compatible
Elasticsearch versions for the API Gateway versions depend on the API Gateway data type.

API Gateway data can be broadly classified into following four types:

Core data. This type includes APIs, Applications, Policies, Plans, Packages, Administration
Settings, Security Configurations (Keystores/Trustores) & Tokens (OAuth/API Keys).

API Gateway Configuration Guide 10.5 73

3 API Gateway Configuration

Transaction data. This type includes the runtime transactions events and metrics data.

Application logs

Audit logs

The table below lists the Elasticsearch versions and corresponding Kibana versions that support
the storage of core data and transaction data of the available API Gateway versions:

Compatible Kibana
version

CompatibleElasticsearchversions

(Transaction data level)

Compatible
Elasticsearch versions

(Core data level)

API
Gateway
version

7.2.0All Elasticsearch versions7.2.010.5

5.6.x, 4.5.xAll Elasticsearch versions5.6.4, 2.3.210.4

5.6.x, 4.5.xAll Elasticsearch versions5.6.4, 2.3.210.3

5.6.x, 4.5.xAll Elasticsearch versions5.6.4, 2.3.210.2

4.5.xAll Elasticsearch versions2.3.210.1

4.5.xAll Elasticsearch versions2.3.29.12

API Gateway ships the OSS versions of Elasticsearch, Kibana and Filebeat; and only the OSS
versions of Kibana and Filebeat are compatible with the OSS version of Elasticsearch.

Connecting to an External Kibana

Considerations when you configure an External Kibana:

Ensure the Kibana version is compatible with the Elasticsearch version as Kibana and
Elasticsearch have a one-to-one mapping. For details on version compatibility, see Support
Matrix.

Turn off Kibana auto start in one of the following ways:

By using Externalized configuration files. For details, see “ Using the Externalized
Configuration Files” on page 58. Software AG recommends using this configuration.

By setting the property apigw.kibana.autostart to false located in C:\API Gateway
instance\profiles\IS_default\apigateway\config\uiconfiguration.properties.

You can have one of the following Kibana configurations:

Default Kibana connected to API Gateway Data Store.

External Kibana connected to API Gateway Data Store.

You can configure this setup as follows:

74 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

https://www.elastic.co/support/matrix
https://www.elastic.co/support/matrix

For an external Kibana to connect to API Gateway Data Store you have to configure the
following properties in the kibana.yml file where you have installed the external Kibana.

DescriptionProperty

Specifies which server port to use.server.port: port number

Example: 9405

Specifies the host to bind the server to.server.host: server host IP address or host name

The default value is localhost, which
means the remote machines will not be
able to connect. To allow connections for
remote users youmust set this parameter
to a non-loopback address.

Example: "0.0.0.0"

Specifies the proxy setting to render the
charts from the external Kibana in API
Gateway UI.

server.basePath: server path of the proxy

The server path you specify must not
end with a /.

Value: "/apigatewayui/dashboardproxy"

Specifies the URLS of the Elasticsearch
instance to use for all your queries.

elasticsearch.hosts: http://hostname:port

Example: "http://localhost:9240"

Specifies the index in Elasticsearch,
which Kibana uses to store saved

kibana.index: gateway_tenant_name_dashboard

searches, visualizations, anddashboards.
It creates a new index if it does not exist.

Example: "gateway_default_dashboard"

You can find these values in the kibana.yml file of the internal Kibana installed location C:\API
Gateway instance\profiles\IS_default\apigateway\dashboard\config. You can copy these
values in the kibana.yml file of the external Kibana in the respective installed location.

If you are using a Kibana version different than the one shipped with API Gateway that is
compatible with the Elasticsearch version, you have to specify the Kibana version in the
config.json file located at C:\API Gateway instance\IntegrationServer\instances\default\
packages\WmAPIGateway\config\resources\kibana\config\7\. For details on version
compatibility, see Support Matrix.

Default Kibana connected to External Elasticsearch.

API Gateway Configuration Guide 10.5 75

3 API Gateway Configuration

https://www.elastic.co/support/matrix

If the external Elasticsearch is used to store all API Gateway assets then configure the
following:

Open the kibana.yml file located at C:\API Gateway instance\profiles\IS_default\
apigateway\dashboard\config and specify the external Elasticsearch host and port details,
which the Kibana has to connect to, as follows:
The Elasticsearch instance to use for all your queries.
elasticsearch.hosts: "http://host_name:port"

If the external Elasticsearch is used to store only the analytics and the core configuration
is stored in the API Gateway Data Store, then configure the following:

Copy the kibana.index (gateway_tenant-name_dashboard) from the Elasticsearch that stores
the core configurations to the Elasticsearch that stores the analytics data. This can be
achieved byusing the reindexAPI. Reindex supports reindexing froma remote Elasticsearch
cluster. The sample payload is as follows:
POST _reindex
{
"source": {

"remote": {
"host": "https://host:port",
"username": "username",
"password": "password"

},
"index": "gateway_tenant-name_dashboard",
},

"dest": {
"index": "gateway_target-tenant-name_dashboard"

}
}

The host parameter must contain a scheme, host, and port. The username and password
parameters are optional, and when they are present _reindex connects to the remote
Elasticsearch node using basic auth.

For details about the reindex API, see https://www.elastic.co/guide/en/elasticsearch/
reference/current/docs-reindex.html#reindex-from-remote.

Remote hosts have to be explicitly allowed in elasticsearch.yml using the
reindex.remote.whitelist property. It can be set to a comma delimited list of allowed
remotehost and port combinations. Scheme is ignored, only the host and port are used.
The list of allowed hosts must be configured on the target node where the index is being
copied.

External Kibana connected to External Elasticsearch.

You can configure this setup by using externalized configuration files. For details, see “ Using
the Externalized Configuration Files” on page 58.

76 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-reindex.html#reindex-from-remote
https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-reindex.html#reindex-from-remote

Configuring Multiple Instances of API Gateway in a Single
Installation

The instance creation script can be used to create another instance of API Gateway in the same
installation. While creating another instance you can choose your preferred HTTP and HTTPS
port for the API Gateway web application using web.http.port and web.https.port respectively
and the back-end REST service endpoint port using primary.port option.

To create a new instance, run the following command:
is_instance.sh create -Dprimary.port=5656 -Dinstance.name=APIGateway
-Dweb.http.port=7474 -Dweb.https.port=7575 -Dpackage.list=WmAPIGateway

Changing the JVM Heap Size to Tune API Gateway Performance

The JVM heap or on-heap size indicates how much memory is allotted for server processes. At
some point, you might want to increase the minimum and maximum heap size to ensure that the
JVM that API Gateway uses does not run out ofmemory. In otherwords, for example, if you notice
OutOfMemoryError: Java heap space for Integration Server process, then you have to increase the
minimum and maximum heap size to overcome the out of memory error.

The heap size is controlled by the following Java properties specified in the custom_wrapper.conf
file.

DescriptionProperty

The minimum heap size.wrapper.java.initmemory

The default value is 256 MB.

The maximum heap size.wrapper.java.maxmemory

The default value is 1024 MB.

Your capacity planning and performance analysis should indicate whether you need to set higher
maximum and minimum heap size values.

To change the heap size

1. Open the custom_wrapper.conf file in a text editor.

You can find the custom_wrapper.conf file in the following location: Software AG_directory
\profiles\IS_instance_name\configuration\.

2. Set the wrapper.java.initmemory and wrapper.java.maxmemory parameters so that they
specify the minimum and maximum heap size required by API Gateway.

For example:
wrapper.java.initmemory=256

API Gateway Configuration Guide 10.5 77

3 API Gateway Configuration

wrapper.java.maxmemory=1024

3. Save and close the file.

4. Restart API Gateway.

If you notice an out of memory issue for Elasticsearch, then you have to tune the Elasticsearch
performance. For example, if you notice OutOfMemoryError: Java heap space for API Gateway
Data Store process (that is,Elasticsearch), then you have to increase the following minimum and
maximum heap size to overcome the out of memory error. Open the jvm.options file located at
Software AG_directory\InternalDataStore\config and set the following parameters to configure the
heap size as 4GB:
-Xms4g
-Xmx4g

where, Xms represents the initial size of total heap and Xmx represents the maximum size of total
heap space. You have to restart the API Gateway Data Store for the changes to take effect.

Accessing the API Gateway User Interface

You can access the API Gateway UI in the following ways:

Navigate to http://host:portwhere port is the HTTP port of API Gateway configured during
installation. For example, http://host:9072.

Log on to Integration Server administration console and click the home page ofWmAPIGateway
package.

Log on to Integration Server administration console and clickAPI Gateway... underSolutions
menu.

Restarting API Gateway Using Scripts

You can use the predefined batch files to restart API Gateway. Use the startup.bat file to restart
API Gateway.When you use scripts to restart API Gateway, the restart process starts immediately.
You do not have the option to hold the process until all the active sessions end. This method
restarts API Gateway immediately.

To restart API Gateway using scripts

1. Open Command Prompt.

2. Navigate to C:\SAGInstallDir\IntegrationServer\instances\default\bin.

3. Run shutdown.bat to stop API Gateway.

4. Run startup.bat to restart API Gateway.

78 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

Restarting API Gateway Using User Interface

You can restart API Gateway through the API Gateway user interface. This lets you restart API
Gateway without shutting it down. You can also restart API Gateway in the Quiesce mode if you
want to end all the active sessions before API Gateway restart. This method may take more time
to restart (as compared to using scripts) based on the options you select.

To restart API Gateway from User Interface

1. Open a browser and type localhost:5555.

Note:
If you have changed the port number during installation, type the new port number.

This launches the WebMethods Integration Server Administrator page.

2. Click Shut Down and Restart.

This opens the Shut Down and Restart page as shown below.

3. In the Shut Down or Restart menu, select one of the following options:

After all sessions end. Select this option to shut down API Gateway after all the active
sessions are completed.

Immediately: Select this option to shut down API Gateway immediately.

Important:
Youmust use the Immediately option only if yourAPIGatewayhas a clustered configuration.
With clustered configuration, all the active sessions are transferred to another API Gateway
node. If you select the Immediately option with a clustered configuration, all your active
sessions are lost.

4. Click one of the following buttons to restart API Gateway:

Restart. Select this option to restart API Gateway normally.

Restart in Quiesce Mode. Select this option to restart API Gateway in quiesce mode.

API Gateway Configuration Guide 10.5 79

3 API Gateway Configuration

Starting in quiesce mode allows you to run only few specific packages. If you restart API
Gateway in quiesce mode, you can only use those packages that are designated to run under
quiesce mode. This mode speeds up API Gateway as only selected packages are running. You
can exit this mode anytime by clicking the Exit Quiesce Mode button.

To shut down API Gateway, you can use the Shut Down button.

80 API Gateway Configuration Guide 10.5

3 API Gateway Configuration

4 Securing API Gateway and its Components

■ Overview .. 82

■ How Do I Secure API Gateway Server Communication with API Clients? 82

■ How Do I Secure API Gateway Server Communication with Backend Services? 89

■ How do I Secure API Gateway User Interface Communication? 93

■ How do I Configure a Secure Communication Channel between API Gateway and API
Portal? .. 95

■ How do I Secure API Gateway Data Store Communication? ... 96

■ Creating a Custom Keystore with Self-Signed Certificates .. 109

API Gateway Configuration Guide 10.5 81

Overview

The basic API Management setup comprises of API Gateway, the API Clients, Users, Backend
services, and API Portal. This section describes how to secure communication, by leveraging
SSL/TLS, between API Gateway and the API Clients, Users, Backend services, and API Portal.

TheAPIGateway setup comprises various components, such as, APIGateway server, APIGateway
UI, and API Gateway Data Store. This section also describes how to secure the communication
between the components of API Gateway.

The following figure illustrates how API Gateway communicates securely using HTTPS in the
basic API Management setup.

For ensuring the security of the data being transferred between two components, you can implement
one-way or two-way SSL/TLS. In an API Management setup you can configure a secure
communication between the following:

API Gateway and API clients. For details, see “ How Do I Secure API Gateway Server
Communication with API Clients?” on page 82

API Gateway UI and Users. For details, see “ How do I Secure API Gateway User Interface
Communication? ” on page 93

API Gateway and API Portal. For details, see “ How do I Configure a Secure Communication
Channel between API Gateway and API Portal?” on page 95

API Gateway and API Gateway Data Store. For details, see “ How do I Secure API Gateway
Data Store Communication?” on page 96

How Do I Secure API Gateway Server Communication with API
Clients?

Secure API Gateway server to enable API clients to communicate with the API Gateway server
overHTTPS. This section explains how to secureAPIGateway server communication usingHTTPS
protocol by using the existing server and client certificates.

82 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

Youmust have API Gateway administrator privileges to perform this operation. Also, ensure that
the required client and server certificates are available.

To configure API Gateway server for secure communication with API Clients

1. Locate the keystore and truststore files in the file system.

The default keystore and truststore files are available in the Installation_Dir\common\conf
folder.

Note:
If you want to use a custom keystore with self-signed certificates, see “Creating a Custom
Keystore with Self-Signed Certificates” on page 109 for details on how to create a keystore
and generate the required self-signed certificate.

2. Configure keystore and truststore in the API Gateway UI.

You require a keystore alias for configuring an HTTPS port in API Gateway. You require the
truststore alias for validating client certificates.

a. Log on to API Gateway.

b. Navigate to Administration > Security > Keystore/Truststore.

c. Click Add keystore.

d. Provide the following details:

Alias. A text identifier for the keystore file. The alias name can contain only alphabets,
numbers and underscores. It cannot include a space, hyphen, and special characters.

Select file. Browse and select the file https_keystore.jks file located at Installation_Dir\
common\conf.

Password. Specify the password for the saved keystore file associated with this alias.

Type. Specify the certificate file format of the keystore file, which, by default, is JKS
for keystores.

API Gateway Configuration Guide 10.5 83

4 Securing API Gateway and its Components

e. Click OK.

A warning appears, prompting you to create a password for the key alias.

f. Close the warning dialog box.

The Update keystore dialog box appears.

g. Provide the password for the https_keystore file, for example, manage.

84 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

h. Click Save.

i. Click Add truststore.

j. Provide the following details.

Name. A name for the truststore file.

Upload truststore file. Browse and select the https_truststore.jks file located at
Installation_Dir\common\conf.

Password. Specify the password that is used to protect the contents of the truststore,
for example, manage.

API Gateway Configuration Guide 10.5 85

4 Securing API Gateway and its Components

k. Click Save.

l. In the Configure keystore and truststore settings for inbound messages section, provide
the keystore and truststore aliases for deploying any SOAP message flows that require
signature, encryption, X.509 authentication, and so on, as configured in the Inbound
Authentication - Message policy.

m. Click Save.

3. Create an HTTPS port in API Gateway and associate the keystore and truststore aliases.

a. Navigate to Administration > Security > Port.

b. Click Add ports, and select HTTPS as the port type.

c. Click Add.

d. Provide the following details

Port. Specify the port number you want to use for the HTTPS communication.

Alias. Specify an alias for the port that is unique for this API Gateway instance. The
alias must be between 1 and 255 characters in length and include one or more of the

86 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

following: alphabets (a -z, A-Z), numbers (0-9), underscore (_), period (.), and hyphen
(-).

Backlog. Specify the number of requests that can remain in the queue for an enabled
port before API Gateway begins rejecting requests. The default is 200. The maximum
value is 65535.

Keep alive timeout. Specifywhen to close the connection if the server has not received
a request from the client within this timeout value (in milliseconds) or when to close
the connection if the client has explicitly placed a close request with the server.

e. In the Listener-specific credentials section provide the following information:

Keystore alias. Select HTTPS_KEYSTORE.

Key alias(signing). Select https_keystore.

Truststore alias. Select Truststore.

f. Click Add.

The HTTPS port 8886 is added and displayed in the list of ports.

API Gateway Configuration Guide 10.5 87

4 Securing API Gateway and its Components

g. Enable the new port 8886 by clicking the X mark in the port's Enabled column.

The port 8886 is now enabled and API Gateway server is now ready to accept requests
over HTTPS port 8886.

4. Setup security configuration parameters for the HTTPS port, which is enabled for
communication with API Clients, to determine how API Gateway server interacts with the
clients and defines whether the connection is one-way or two-way SSL.

a. Navigate to Administration > Security > Port. This displays the list of ports.

b. Click the port 8886.

c. In the Security configuration > Client authentication section, select one of the following
values:

Request client certificate. API Gateway requests client certificates for all requests. If
the client does not provide a certificate, the server prompts the client for a userid and
password. The server checks whether the certificate exactly matches a client certificate
on file and is signed by a trusted authority. If so, the client is logged in as the user to
which the certificate is mapped in API Gateway. If not, the client request fails, unless
central user management is configured.

Require client certificate. API Gateway requires client certificates for all requests.
The server checks whether the certificate exactly matches a client certificate on file and
is signed by a trusted authority.

d. Click Update. The security configuration updates are saved.

5. Set port 8886 as primary port. This is an optional step only if you want to change the primary port.

a. Set the port 8886 as primary port by clicking in the port's Primary port column. The port
8886 is now enabled and API Gateway server is now ready to accept requests over HTTPS
port 8886.

b. Disable the port 5555 by clicking the tick mark in the port's Enabled column.

The default primary port 5555 that accepts requests on HTTP is now disabled.

6. Configure the API Gateway UI to access the API Gateway server securely.

This step is required only when the primary port is set to HTTPS.

a. Open the file uiconfiguration.properties located in the folder Installation_Dir\profiles\
IS_default\apigateway\config\.

b. Modify the following properties:

88 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

#IS properties
apigw.is.base.url = https://localhost:8886
apigw.is.rest.directive = /rest
apigw.user.lang.default = en

Herewe configure theHTTPS port 8886 in the baseURLproperty to point theAPIGateway
to communicate to the server URL.

Restart API Gateway server for the changes to take effect. You now have a secure communication
channel established between the API Gateway server and the client.

Harden TLS configuration of the API Gateway server ports

To harden the TLS configuration of the API Gateway server ports, perform the following:

1. Restrict the TLS version by adding the following setting:
watt.net.jsse.server.enabledProtocols=TLSv1.2

2. Reject the client initiated renegotiation by adding the following line to the custom_wrapper.conf
file located in the directory SAG_root /profiles/IS_default/configuration.
wrapper.java.additional.402=-Djdk.tls.rejectClientInitiatedRenegotiation=TRUE

3. Specify a list of secure cipher suites.

For details about the recommended cipher suites, see the cipher suite recommendation by
IANA organization (https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml)
or the https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_
Integration_Server_Administrators_Guide.pdf

4. Set the size of Ephemeral Diffie-Hellman Keys to 2048 depending on the configured cipher
suites. You can do this by adding the following line to the custom_wrapper.conf file located
in the directory SAG_root /profiles/IS_default/configuration:
wrapper.java.additional.401=-Djdk.tls.ephemeralDHKeySize=2048

You can verify the resulting TLS configuration using tools such as testTLS.sh that checks for
vulnerable TLS configurations.

How Do I Secure API Gateway Server Communication with
Backend Services?

SecureAPIGateway server to enable secure communicationwith the backend services overHTTPS.

You must have API Gateway administrator privileges to perform this operation.

To configure API Gateway server for secure communication with Backend Services

1. Locate the keystore and truststore files in the file system.

The default keystore and truststore files are available in the Installation_Dir\common\conf
folder.

API Gateway Configuration Guide 10.5 89

4 Securing API Gateway and its Components

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_Integration_Server_Administrators_Guide.pdf
https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_Integration_Server_Administrators_Guide.pdf

Note:
If you want to use a custom keystore with self-signed certificates, see “Creating a Custom
Keystore with Self-Signed Certificates” on page 109 for details on how to create a keystore
and generate the required self-signed certificate.

2. Configure keystore and truststore in the API Gateway UI.

You require a keystore alias for configuring an HTTPS port in API Gateway. You require the
truststore alias for validating backend serivice certificates.

a. Log on to API Gateway.

b. Navigate to Administration > Security > Keystore/Truststore.

c. Click Add keystore.

d. Provide the following details:

Alias. A text identifier for the keystore file. The alias name can contain only alphabets,
numbers and underscores. It cannot include a space, hyphen, and special characters.

Select file. Browse and select the file https_keystore.jks file located at Installation_Dir\
common\conf.

Password. Specify the password for the saved keystore file associated with this alias.

Type. Specify the certificate file format of the keystore file, which, by default, is JKS
for keystores.

90 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

e. Click OK.

A warning appears, prompting you to create a password for the key alias.

f. Close the warning dialog box.

The Update keystore dialog box appears.

g. Provide the password for the https_keystore file, for example, manage.

API Gateway Configuration Guide 10.5 91

4 Securing API Gateway and its Components

h. Click Save.

i. Click Add truststore.

j. Provide the following details.

Name. A name for the truststore file.

Upload truststore file. Browse and select the https_truststore.jks file located at
Installation_Dir\common\conf.

Password. Specify the password that is used to protect the contents of the truststore,
for example, manage.

k. Click Save.

92 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

3. To communicate securely with the backend services you have to configure the keystore and
truststore settings for outbound connections. This can be configured in one of the following
ways:

Globally, you can configure the keystore and truststore settings for outbound connections
in Administration > Security configuration section as follows:

1. Navigate to Administration > Security > Keystore/Truststore.

2. In the Configure keystore and truststore settings for outbound connections section,
provide the keystore and truststore aliases for securing outgoing SSL connections. The
keystore and key alias are required for outgoing two-way SSL connections.

At an API-level, you can configure the keystore and truststore in the following ways:

Through an endpoint alias configured in the routing policy:

1. Create an endpoint alias where you specify the default URI, and the keystore and
truststore for the backend service. For details about creating an endpoint alias, see
Aliases section in the webMethods API Gateway User's Guide.

2. Specify the endpoint alias in theEndpoint URI field in the routing policy properties
section when you configure the policy. For details, see Routing Policies section in
the webMethods API Gateway User's Guide.

Through a routing policy by specifying the URI of the backend service endpoint, and
the keystore and truststore. For details, see Routing Policies section in the webMethods
API Gateway User's Guide.

Note:
The global keystore and truststore configuration is the default configuration that applies
for all APIs if there is no keystore or truststore configured through an endpoint alias or a
routing policy at an API-level.

You now have a secure communication channel established between the API Gateway server and
the backend services.

How do I Secure API Gateway User Interface Communication?

Secure API Gateway UI (web application), one of the API Gateway components in an API
Management setup, to enable users to access the API Gateway UI securely over HTTPS. This
section explains how to secure API Gateway communication using HTTPS protocol.

API Gateway Configuration Guide 10.5 93

4 Securing API Gateway and its Components

Youmust have API Gateway administrator privileges to perform this operation. Also, ensure that
the required client and server certificates are available.

To configure API Gateway user interface for secure communication

1. Locate the keystore and truststore files in the file system.

The default keystore and truststore files are available in the Installation_Dir\common\conf
folder.

Note:
If you want to use a custom keystore with self-signed certificates, see “Creating a Custom
Keystore with Self-Signed Certificates” on page 109 for details on how to create a keystore
and generate the required self-signed certificate.

2. Configure the keystore and the HTTPS port on which you want to expose API Gateway UI.

a. Navigate to Installation_Dir\profiles\IS_default\configuration\
com.softwareag.platform.config.propsloader and open the property file
com.softwareag.catalina.connector.https.pid-apigateway.properties.

b. Modify the following properties by providing the keystore, passsword, and port details.
keystoreFile=generated_keystore_file_path/https_keystore.jks
port=9073 (https port in which you want to expose webApp)
@secure.keystorePass=password (password used while creating the keystore file)

For details about the configurations, see https://documentation.softwareag.com/webmethods/
wmsuites/wmsuite10-5/Cross_Product/10-5_Software_AG_Infrastructure_Administrators_Guide.pdf
and https://tomcat.apache.org/tomcat-7.0-doc/config/http.html.

To harden TLS configuration of the API Gateway UI port

1. Enable TLSv1.2 by adding the following line to the properties file
com.softwareag.catalina.connector.https.pid-apigateway.properties located in the
directorySAG_root
/profiles/IS_default/configuration/com.softwareag.platform.config.propsloader.
sslEnabledProtocols=TLSv1.2

2. Specify a list of secure cipher suites by adding the following line to the properties file
com.softwareag.catalina.connector.https.pid-apigateway.properties located in the
directorySAG_root
/profiles/IS_default/configuration/com.softwareag.platform.config.propsloader.
ciphers="List of Secure Cipher_Suites"

For details about the recommended cipher suites, see the cipher suite recommendation by
IANA organization (https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml)
or the https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_
Integration_Server_Administrators_Guide.pdf

94 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

https://documentation.softwareag.com/webmethods/wmsuites/wmsuite10-5/Cross_Product/10-5_Software_AG_Infrastructure_Administrators_Guide.pdf
https://documentation.softwareag.com/webmethods/wmsuites/wmsuite10-5/Cross_Product/10-5_Software_AG_Infrastructure_Administrators_Guide.pdf
https://tomcat.apache.org/tomcat-7.0-doc/config/http.html
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_Integration_Server_Administrators_Guide.pdf
https://documentation.softwareag.com/webmethods/integration_server/pie10-5/10-5_Integration_Server_Administrators_Guide.pdf

3. Set the size of Ephemeral Diffie-Hellman Keys to 2048 depending on the configured cipher
suites. You can do this by adding the following line to the custom_wrapper.conf file located
in the directory SAG_root /profiles/IS_default/configuration:
wrapper.java.additional.401=-Djdk.tls.ephemeralDHKeySize=2048

You can verify the resulting TLS configuration using tools such as testTLS.sh that checks for
vulnerable TLS configurations.

How do I Configure a Secure Communication Channel between
API Gateway and API Portal?

This section explains the steps required for APIGateway to securely communicatewithAPI Portal
for sending the runtime events and metrics and API Portal to communicate with API Gateway
securely for key requests.

The described SSL configuration procedure applies only to API Portal version10.2 or later. Also
ensure that the required certificates for API Gateway and API Portal are available.

To configure a secure communication channel between API Gateway and API Portal

1. Configure API Portal HTTPS port.

a. Navigate to Administration > Destinations in the API Gateway user interface.

b. Click API Portal > Configuration.

c. Provide the following information:

In the Portal configuration section, provide the following details:

API Gateway Configuration Guide 10.5 95

4 Securing API Gateway and its Components

Base URL. The API Portal base URL which API Gateway uses to communicate to
API Portal using the HTTPS port. By default, API Portal uses port 18102 for HTTPS
communication.

Username and Password credentials to access API Portal.

In the Gateway configuration section, provide the following details:

Base URL. The API Gateway server URL, which API Portal uses to communicate
to API Gateway using the HTTPS port. Specify the port 8886 that is configured for
HTTPS communication.

Username and Password credentials to access API Gateway.

d. Click Publish.

This configures API Portal as a destination and creates a communication channel between
API Gateway and API Portal over the HTTPS port.

2. Ensure that outbound truststore is configured correctly to trust the certificate exposed by API
Portal.

You can achieve this by configuring keystore and truststore settings for outbound connections
in API Gateway. In the Configure keystore and truststore settings for outbound connections
section, provide the keystore and truststore aliases for securing outgoing SSL connections. The
keystore and key alias is required for outgoing two-way SSL connections.

3. You have to configure the API Portal truststore to trust the API Gateway outbound certificate.
For details about how to configure API Portal truststore, see API Portal documentation.

You now have a secure communication channel between API Gateway and API Portal. You can
now publish an API, which is enforced with Enable HTTPS/HTTPS policy with the HTTPS option
configured, fromAPI Gateway to API Portal and invoke the API fromAPI Portal using theHTTPS
endpoint that has been used to publish it to API Portal.

How do I Secure API Gateway Data Store Communication?

You can secure API Gateway Data Store (a simple Elasticsearch instance), one of the components
in an API Management setup, to communicate securely over HTTPS. This section explains how
to secure Elasticsearch using Search Guard, an Elasticsearch plugin, that offers encryption,
authentication, and authorization to protect data from attackers and other misuses. Search Guard
secures Elasticsearch by exposing it over HTTPS, and enables basic authentication by configuring
users.

96 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

To secure API Gateway Data Store communication using HTTPS

1. Install and initialize Search Guard plugin.

a. Shutdown API Gateway.

b. Navigate to Installation_Dir\InternalDataStore\bin and open the file enable_ssl.bat.
Comment out the last line as shown.

c. Click Save.

d. Copy the folder sagconfig from Installation_Dir\IntegrationServer/
instances\Instance_name\packages\WmAPIGateway\config\resources\elasticsearch to
Installation_Dir\InternalDataStore.

e. Copy the certificates node-0-keystore.jks and truststore.jks from Installation_Dir\
InternalDataStore\sagconfig to Installation_Dir\InternalDataStore\config.

f. Navigate to Installation_Dir\InternalDataStore\config\ and open the file
elasticsearch.yml.

g. Delete all the properties that start with searchguard, if present, and add the Search Guard
properties as follows:
searchguard.ssl.transport.keystore_type: JKS
searchguard.ssl.transport.keystore_filepath: node-0-keystore.jks
searchguard.ssl.transport.keystore_alias: cn=node-0
searchguard.ssl.transport.keystore_password: a362fbcce236eb098973
searchguard.ssl.transport.truststore_type: JKS
searchguard.ssl.transport.truststore_filepath: truststore.jks
searchguard.ssl.transport.truststore_alias: root-ca-chain
searchguard.ssl.transport.truststore_password: 2c0820e69e7dd5356576
searchguard.ssl.transport.enforce_hostname_verification: false
searchguard.ssl.transport.resolve_hostname: false
searchguard.ssl.transport.enable_openssl_if_available: true

searchguard.ssl.http.enabled: true
searchguard.ssl.http.keystore_type: JKS
searchguard.ssl.http.keystore_filepath: node-0-keystore.jks
searchguard.ssl.http.keystore_alias: cn=node-0
searchguard.ssl.http.keystore_password: a362fbcce236eb098973
searchguard.ssl.http.truststore_type: JKS
searchguard.ssl.http.truststore_filepath: truststore.jks
searchguard.ssl.http.truststore_alias: root-ca-chain
searchguard.ssl.http.truststore_password: 2c0820e69e7dd5356576
searchguard.ssl.http.clientauth_mode: OPTIONAL
searchguard.authcz.admin_dn:

API Gateway Configuration Guide 10.5 97

4 Securing API Gateway and its Components

- "CN=sgadmin"

For details about all the SearchGuardproperties, see “SearchGuardProperties” onpage 106.

h. Save and close the file.

i. Run Installation_Dir\InternalInternalDataStore\bin\enable_ssl.bat,

This installs the Search Guard plugin and starts the API Gateway Data Store.

j. Shutdown and restart the API Gateway Data Store.

k. Navigate to Installation_Dir\InternalDataStore\plugins\search-guard-5\tools and
run the following command to initialize the API Gateway Data Store.
sgadmin.bat -cd ..\..\..\sagconfig\
-ks ..\..\..\sagconfig\sgadmin-keystore.jks
-kspass 49fc2492ebbcfa7cfc5e -ts ..\..\..\sagconfig\truststore.jks
-tspass 2c0820e69e7dd5356576 -nhnv -p 9340 -cn SAG_EventDataStore

2. Add users for basic authentication.

a. Navigate to Installation_Dir\InternalDataStore\sagconfig and open the
sg_roles_mapping.yml file.

98 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

b. Add the username (for example, TestUser) in the users list as follows:
sg_all_access:

users:
- Administrator
- 'CN=demouser'
- TestUser

c. Generate the hash code for your password.

a. Run Installation_Dir\InternalDataStore\plugins\search-guard-5\tools\hash.sh.

b. Type the password.

c. Press Enter.

This generates the hash code.

d. Navigate to Installation_Dir \InternalDataStore\sagconfig and open the file
sg_internal_users.yml.

e. Add the username and password as follows:
#keys cannot contain dots
#if you have a username with dots then specify it with username: xxx
Administrator:

hash: $2a$12$sm2AEpQx6QNq6YRSYHGCnetiRWKMWrQY/udSSI0dDFZ1r3qo51bzK
CN=demouser:

hash: $2a$12$.sbt5vK0AiBOmQ9hVyFK.sR55dx.7NJGSdP1YEqPUXHZKHZBRuoO
TestUser:

hash: $2a$12$Ua1gUiWaW5/b8ohgDqTfg.ruEDNOCsuV9RexlTigNf65TvSn6/Loy

f. Run the command sgadmin.bat to initialize the Search Guard plugin.

g. Shutdown and restart the API Gateway Data Store once the Search Guard plugin is
initialized.

API Gateway Data Store now runs on a secure channel on the HTTPS port and requests
the basic authentication details.

API Gateway Configuration Guide 10.5 99

4 Securing API Gateway and its Components

3. Change the Kibana configuration to connect to Elasticsearch.

a. Navigate to Installation_Dir\profiles\IS_default\apigateway\dashboard\config\ and
open the file, kibana.yml.

b. Uncomment the following properties and update them as follows:

elasticsearch.username: TestUser

elasticsearch.password: TestUser@123

elasticsearch.ssl.verificationMode: certificate

elasticsearch.ssl.certificateAuthorities: file path of your root-ca.pem certificate

elasticsearch.url: https://hostname: 9240

Sample kibana.yml file

100 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

4. Change the API Gateway configuration to connect to Elasticsearch.

a. Navigate to Installation_Dir\IntegrationServer\instances\default\packages\
WmAPIGateway\config\resources\elasticsearch and open config.properties file.

b. Uncomment the following properties and update them as follows:
pg.gateway.elasticsearch.http.username=TestUser
pg.gateway.elasticsearch.http.password=TestUser@123
pg.gateway.elasticsearch.https.truststore.filepath=Installation_Dir/InternalDataStore
/sagconfig/truststore.jks
pg.gateway.elasticsearch.https.truststore.password=2c0820e69e7dd5356576
pg.gateway.elasticsearch.https.enabled=true

c. Start the API Gateway Data Store manually.

d. When API Gateway Data Store is up and running, start the Kibana server manually by
running the kibana.bat file located at Installation_Dir\profiles\IS_default\apigateway\
dashboard\bin.

API Gateway Configuration Guide 10.5 101

4 Securing API Gateway and its Components

e. Start API Gateway.

You can now log on, create APIs, and access the Analytics page with the user credentials.

Configuring Search Guard with self-generated certificates

As anAPI Provider, if youwant to generate your own certificates to usewith SearchGuard instead
of the default certificates that are shipped with API Gateway, you can configure Search Guard
with user generated certificates as Step 5. Search Guard provides an offline TLS tool. Use the tool
to generate the required certificates for running Search Guard in a production environment.

1. Configure Search Guard with user generated certificates.

a. Download the tool zip file from https://search.maven.org/search?q=a:search-guard-tlstool

b. Create a YAML file at Tool Installation Directory\config

When you run the TLS tool command, it reads the node and certificate configuration
settings from this YAML file, and places the generated files in a configured directory.

Sample YAML file

102 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

https://search.maven.org/search?q=a:search-guard-tlstool

c. Run the following command to generate the required certificates.
Tool Installation Directory/tools/sgtlstool.bat
-c ../config/Demo.yml -ca -crt

The generated certificates are placed in the Tool Installation Directory/tools/out folder.

API Gateway Configuration Guide 10.5 103

4 Securing API Gateway and its Components

d. Copy the certificates listed below from the folder Tool Installation Directory/tools/out
to the Installation_Dir/EventDataStore/config folder.

test-node-1.key

test-node-1.pem

test-node-1_http.pem

test-node-1_http.key

test-client.pem

test-client.key

root-ca.pem

root-ca.key

e. Configure the generated certificates in the API Gateway Data Store elasticsearch.yml file.

104 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

f. Start API Gateway Data Store manually.

A logmessage warns that the Search Guard is not initialized after API Gateway Data Store
is up because the Search Guard is not initialized with the latest certificates.

g. Open a command prompt and change the directory to Installation_Dir\EventDataStore
\plugins\search-guard-5\tools

h. Run the command
sgadmin.bat -cd ..\sagconfig -nhnv -icl -cacert
..\..\..\config\root-ca.pem -cert ..\..\..\config\test-client.pem
-key ..\..\..\config\test-client.key
-keypass your certificate password -p 9340

Done with success log message appears.

i. Shut down and restart API Gateway Data Store.

API Gateway Data Store now uses the generated certificates for SSL communication.

API Gateway Configuration Guide 10.5 105

4 Securing API Gateway and its Components

Search Guard Properties

Property and description

TRANSPORT (2-way authentication is enabled by default)

searchguard.ssl.transport.keystore_type

Type of keystore.

Possible values: JKS, PKCS12

Default value: JKS

searchguard.ssl.transport.keystore_filepath

Location of the keystore.

searchguard.ssl.transport.keystore_alias

Keystore entry name if there are more than one entries.

searchguard.ssl.transport.keystore_password

Password to access keystore.

searchguard.ssl.transport.truststore_type

Type of truststore.

Possible values: JKS, PKCS12

Default value: JKS

searchguard.ssl.transport.truststore_filepath

Location of the truststore.

searchguard.ssl.transport.truststore_alias

Truststore entry name if there are more than one entries.

searchguard.ssl.transport.truststore_password

Password to access truststore.

searchguard.ssl.transport.enforce_hostname_verification

If true, the hostname mentioned in certificate is validated. Set this as false if you are using the
general purpose self signed certificates.

Possible values: true, false

Default value: true

106 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

Property and description

searchguard.ssl.transport.resolve_hostname

If true, the hostname is resolved against the DNS server. Set this as false if you are using general
purpose self signed certificates.

Note:
This is applicable only if the property searchguard.ssl.transport.enforce_hostname_verification
is true.

Possible values: true, false

Default value: true

searchguard.ssl.transport.enable_openssl_if_available

Use if OpenSSL is available instead of JDK SSL.

Possible values: true, false

Default value: true

HTTP

searchguard.ssl.http.enabled

Set this to true to enable SSL for a REST interface (HTTP).

Possible values: true, false

Default value: true

searchguard.ssl.http.keystore_type

Type of keystore.

Possible values: JKS, PKCS12

Default value: JKS

searchguard.ssl.http.keystore_filepath

Location of the keystore.

searchguard.ssl.http.keystore_alias

Keystore entry name if there are more than one entries.

searchguard.ssl.http.keystore_password

Password to access keystore.

searchguard.ssl.http.truststore_type

Type of truststore.

API Gateway Configuration Guide 10.5 107

4 Securing API Gateway and its Components

Property and description

Possible values: JKS, PKCS12

Default value: JKS

searchguard.ssl.http.truststore_filepath

Location of the truststore.

searchguard.ssl.http.truststore_alias

Truststore entry name if there are more than one entries.

searchguard.ssl.http.truststore_password

Password to access truststore.

searchguard.ssl.http.clientauth_mode

Option to enable two-way authentication.

Possible values:

REQUIRE : Requests for the client certificate.

OPTIONAL : Used if client certificate is available.

NONE : Ignores client certificate even if it is available.

Default value: OPTIONAL

Search Guard Admin

searchguard.authcz.admin_dn

Search Guard maintains all the data in the index searchguard. This is accessible to only users (
client certificate passed in sdadmin command) configured here.

searchguard.cert.oid

All certificates used by the nodes at the transport level need to have the oid field set to a specific
value. Search Guard checks this oid value to identify if an incoming request comes from a trusted
node in the cluster or not. In the former case, all actions are allowed. In the latter case, privilege
checks apply. Additionally, the oid is also checked whenever a node wants to join the cluster.

Default value: '1.2.3.4.5.5'

searchguard.config_index_name

Index where all the security configuration is stored. Currently, non-configurable.

Default value: searchguard

108 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

Creating a Custom Keystore with Self-Signed Certificates

You have to perform this procedure if your organization does not have policies and procedures
in place regarding the generation and use of digital certificates and certificate chains, including
the use of certificates signed by a CA but want to generate a self-signed certificate and import
them into the keystore and truststore.

1. Create a new keystore with a self-signed certificate.

a. Run the following command, and provide the keystore password (for example, manage)
and the other required details to generate a new key and store it in the specified keystore
https_keystore.jks.

keytool -genkey -v -keystore https_keystore.jks
-alias HTTPS_KEYSTORE -keyalg RSA -keysize 2048 -validity 10000

Example:

b. Run the following command and provide the keystore password (for example, manage) to
export the certificate from the keystore https_keystore, and place it in a specified location.

keytool -exportcert -v -alias HTTPS_KEYSTORE -file
Installation_Dir\common\conf\https_gateway.cer -keystore
Installation_Dir\common\conf\https_keystore.jks

Example:

API Gateway Configuration Guide 10.5 109

4 Securing API Gateway and its Components

The certificate https_gateway.cer is exported from the keystore https_keystore and placed
in the location Installation_Dir\common\conf\.

2. Create a truststore and import the generated certificate.

a. Run the following command to create a truststore file and import the generated certificate
into the truststore file.

keytool -importcert -alias HTTPS_TRUSTSTORE -file
Installation_Dir\common\conf\https_gateway.cer -keystore
Installation_Dir\common\conf\https_truststore.jks

Example:

A truststore file https_truststore.jks is created with the imported certificate.

You can nowview the keystore and truststore files created and located at Installation_Dir\
common\conf\.

110 API Gateway Configuration Guide 10.5

4 Securing API Gateway and its Components

5 API Gateway Configuration with Command Central

■ Overview .. 112

■ Installing API Gateway using Command Central .. 113

■ Manage API Gateway Data Store Configurations in Command Central 133

■ Manage API Gateway Product Configurations in Command Central 133

■ Manage Inter-component and Cluster configurations .. 142

API Gateway Configuration Guide 10.5 111

Overview

Command Central allows users who have administration privileges to administer API Gateway
and API Gateway Data Store.

Command Central is a centralized application using which administrators can configure multiple
Software AG products at a time. When you install API Gateway using Command Central, API
Gateway and API Gateway Data Store are installed. API Gateway communicates with this API
Gateway Data store by default. This feature helps administrators to make API Gateway to use an
external data store (Elasticsearch) to store its core data and analytics, configure external Kibana,
in addition tomanaging the product configurations such as Ports, Keystores, Truststores, Loggers,
License Keys, General Properties, and Clustering.

You can perform the following common functions available in CommandCentral for APIGateway:

Install API Gateway using Command Central

Update fixes using Command Central

Manage configurations and life cycle of API Gateway Data Store

Product configurations of API Gateway

General Properties

License Keys

Loggers

Ports

Keystores

Truststores

Inter-component and Cluster configurations

Elasticsearch Connection Settings

Kibana Connection Settings

API Gateway Clustering

Since Command Central supports configuring through its UI and using templates, users can pick
their choice for configuring the above seen components. In a typical scenario, administrators prefer
configuring through the UI when it is a first time setup and for subsequent configurations, they
use templates.

This section describes the operations that are specific to API Gateway. For all common operations,
see the Software AG Command Central Help.

112 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

Installing API Gateway using Command Central

When you install API Gateway using Command Central, API Gateway, and API Gateway Data
Store are installed. API Gateway communicates with this API Gateway Data Store by default.

You can install API Gateway from Command Central in either of the following ways:

Using Command Central UI. See the Software AG Command Central Help.

Using Command Central templates.

Before you begin, ensure that:

You are familiar with Command Central as a product.

You are familiar with Command Central templates.

You have a basic understanding of API Gateway as a product.

You have a basic understanding of API Gateway administrator configurations.

Installing API Gateway Using Command Central User Interface
Before you begin, it is important to understand the following terms.

Host Node: The primary node on which Command Central is installed. You can install API
Gateway on other nodes by using the Command Central instance present in the host node,

Remote Nodes: The nodes on which API Gateway must be installed from the Command
Central instance, present on the host node. You can install API Gateway either on a single
remote node or multiple remote nodes. You can also install API Gateway on the host node.

Prerequisites

Command Central must be installed on the host node.

Host node and remote nodes must be associated to the same domain network.

To install API Gateway using Command Central user interface, perform the following tasks.

1. “Connect to Repository” on page 113.

2. “ Configure Platform Manager on remote nodes” on page 114.

3. “Install API Gateway” on page 122.

4. “Create API Gateway Instance” on page 125.

Connecting to Repository

The Software AG Download Center has repositories, which contain Software AG products. You
must connect your Command Central instance with a Software AG repository.

API Gateway Configuration Guide 10.5 113

5 API Gateway Configuration with Command Central

To connect to a Repository

1. Log on to Command Central.

2. Click Repositories.

3. Click + and select a method to connect to a repository.

To learn more about the fields present in each method of connecting to Repository, see Create,
Refresh, or Change Source for Mirror Repository article from Command Central help.

Once you connect to a repository, you can see it in the list of Repositories page.

Configuring Platform Manager on Remote Nodes

114 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

A Platform manager is a Software AG tool that assists you in installation and upgradation of
Software AG products. To perform API Gateway installation using Command Central, you must
install Platform manager on remote nodes. If Platform Manager is not installed on any remote
node, you must install it as well through Command Central.

To configure PlatformManager

1. Click the Installations menu.

2. Click the Installations tab.

3. Click +. The Add Installation window is displayed.

4. Type the host name or IP address of the remote node in the Host name field.

5. Click Next.

API Gateway Configuration Guide 10.5 115

5 API Gateway Configuration with Command Central

6. Select one of the following options on the Bootstrap window.

Platform Manager is already installed: Select this option if platform manager is already
installed on the remote node.

Install Platform Manager remotely: Select this option if PlatformManager is not installed
on the remote node

7. This step is applicable only if you have selected option b in step 6. Configure the following fields.

a. Operating System. Select the operating system of the remote node.

b. Installation directory. Select the directory in which Platform Manager must be installed.
If you are installing API Gateway on the host node, do not select the same directory in
which Command Central is installed.

116 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

c. Repository. Select a repository to install PlatformManager, if you have configuredmultiple
repositories. If a single repository is connected, it is selected by default.

d. Distribution. Select one of the following options.

Default. Select this option if you do not want to configure plugins.

Complete. Select this option to configure plugins.

e. HTTP port. Type the HTTP port number of Platformmanager. By default, this value is set
to 8092.

f. HTTPs port. Type the HTTPS port number of Platform manager. By default, this value is
set to 8093.

API Gateway Configuration Guide 10.5 117

5 API Gateway Configuration with Command Central

8. This step is applicable only if you selected option b in step 6. Configure SSH connection by executing
the following steps.

Important:
Before configuring SSH from host node, you must set up SSH on the remote node using the
Cygwin tool. To learn more about how to perform this, see the Using Cygwin to Configure
Open SSH tech community article.

a. Click SSH connection. The SSH Connection Details window displays.

b. Configure the following fields.

Protocol. Select Secure Shell (SSH).

Remote port. Type the port number of the remote node, on which SSH is running.

Authentication method: Select one of the following options.

Password. The credentials are sent for verification through the SSH tunnel by the
client.

Interactive. The server initiates a password request session.

Certificate. The client sends a signature based file created from the user’s private key.

User name. Type the user name of the remote node used while configuring SSH.

Password. Type the password of the remote node used while configuring SSH.

c. Click OK.

118 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

https://tech.forums.softwareag.com/t/using-cygwin-to-configure-openssh-when-installing-platform-manager-on-a-remote-windows-machine/237282
https://tech.forums.softwareag.com/t/using-cygwin-to-configure-openssh-when-installing-platform-manager-on-a-remote-windows-machine/237282

9. Click Next.

10. Configure the following fields on the Platform Manager window.

a. Port number. Select the port (HTTP or HTTPS) through which Platform manager must
be accessed.

b. User name. Type the user name of the Platform manager instance, installed or to be
installed on the remote node.

c. Password. Type the password of the Platformmanager instance, installed or to be installed
on the remote node.

d. Click Next.

API Gateway Configuration Guide 10.5 119

5 API Gateway Configuration with Command Central

11. Configure the following fields on Details window.

a. Display name. Modify the display name of the remote host, if required. By default, the
name typed in the Machine window is used

b. Alias. Modify the alias name of the remote host, if required. By default, the name typed
in the Machine window is used.

c. Description. Type description of the remote node.

d. Installation type. Select if the remote node is part of Production, Development or Test
environment.

e. Click Next.

120 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

12. Verify the details on the Summary window and click Finish.

To add more remote nodes, repeat steps 1-12 of the “Configuring Platform Manager” on
page 114 section.

If Command Central is able to access Platform Manager, installed on the remote node, the
Status column displays the Online symbol (right arrow). If not, the Status column shows the
Offline symbol (cross mark).

API Gateway Configuration Guide 10.5 121

5 API Gateway Configuration with Command Central

If Command Central is unable to connect to Platform Manager on the remote node, ensure
that PlatformManager is started on the remote node. Also, ensure that there is no firewall that
may be blocking the host node.

Installing API Gateway

After Command Central establishes a connection with Platform Manager (present on the remote
node), you can install API Gateway on the remote node.

To install API Gateway

1. From the Installations tab, select the required remote node (the remote node on which API
Gateway must be installed).

2. Click the Products tab.

3. Click +. The Install Products window displays.

122 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

4. Select a repository to install API Gateway, if you are connected to multiple repositories. If a
single repository is connected, it is selected by default.

5. Click Next.

6. Select the API Gateway check box. This selects API Gateway for installation.

7. Click Next.

API Gateway Configuration Guide 10.5 123

5 API Gateway Configuration with Command Central

8. Select any additional languages of installation.

9. Click Next.

10. Verify the details and click Finish.

This starts the installation process of API Gateway on the remote node. A job is created in the
Jobs menu. You can check the status of installation from the Jobs menu. To install API
Gateway onmultiple nodes, repeat the steps in InstallingAPIGateway section for each remote
node.

After API Gateway is installed on a remote node, the job status is updated as successful. You
can view the list of products that were installed on the remote node by execute the following
steps.

11. Navigate to the Installations tab.

124 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

12. Click the required remote node (the remote node whose installation needs to be checked).

13. Click the Products tab. You can view the list of installed products.

Creating API Gateway Instance

After you install API Gateway, the installed API Gateway is plain and not usable. To make the
API Gateway usable, youmust create an instance of it in Command Central. To create an instance,
you must add license file, port information, and so on. You cannot use API Gateway without
creating an instance.

To create an instance

1. Perform the following steps to add an API Gateway license file.

a. Click Licensing.

b. Click the Keys tab.

c. Click +.

d. Select Add License Key. The Add License Key pop-up window displays.

API Gateway Configuration Guide 10.5 125

5 API Gateway Configuration with Command Central

e. Click Choose File.

f. Navigate to the location where your API Gateway license file is located and select it. The
Alias field value is auto populated after you select the API Gateway license file.

g. Click Add.

2. Perform the following steps to create an API Gateway instance.

a. Click the Installations menu.

b. Click the Installations tab.

c. Click the required node name (the node for which an instance needs to be added).

126 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

d. Click the Instances tab.

e. Click +.

f. Select Integration Server.

g. Type a name for the instance in the Instance name field.

h. Select the API Gateway license key file from the License key file drop-down menu.

i. Configure the Database, Ports, and Packages for API Gateway.

j. Click Next.

API Gateway Configuration Guide 10.5 127

5 API Gateway Configuration with Command Central

k. Verify the details and click Finish. The Install Fixes pop-up window is displayed.

l. Select a repository to install API Gateway fixes.

m. Click OK.

128 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

A job is created to create an API Gateway instance. The Operation triggered pop-up
window displays. Click View Job to view the details of the job in the Jobs menu. If you
do not want to view the job details, click Finish.

After the job is completed, you can view the API Gateway instance. If the Status column
of your instance shows Stopped status, click the Stop icon and select Start.

Installing API Gateway using Command Central Templates
This section lists the steps that you need to execute to install API Gateway using CommandCentral
templates. A Command Central template is a YAML file (.yaml extension file) which contains all
the installation information.

API Gateway Configuration Guide 10.5 129

5 API Gateway Configuration with Command Central

To install APIGateway onmultiple nodes, all the information about host node, remote nodesmust
be provided in theCommandCentral template. Also, other important information like environment
details (in the form of key-value pairs), API Gateway Data Store details, product details (instance
details), API Gateway ports information, must be provided in the template. For more details on
how to use Command Central templates, see the Software AG Command Central Help. You can
download a sample API Gateway template from this Github location. After you download the
template, you can customize it as per your requirements.

Prerequisites

Ensure that your Command Central template is configured as per your requirements.

API Gateway installation using Command Central templates is done by executing commands.
You must execute the commands from the host node. If the host node is a windows machine, you
can execute the commands from either Command Prompt or Windows Powershell. If the host
node is on a Linux machine, you can execute commands from the Linux Terminal.

When you install CommandCentral, the installation directory has a batch file and a code file. Both
of their names are sagcc. All Command Central commands start with sagcc. To execute the
commands, your command prompt or terminal must point to the directory in which sagcc files
are located. The sagcc files are located in the <installation directory>/CommandCentral/client/
bin folder. On a Windows machine, the image looks as follows.

To install API Gateway using templates

1. Navigate your Command Prompt/Powershell/Terminal to point to the folder in which sagcc
files are located.

2. Run the following command to add the credentials to connect to the Software AG server. The
credentials are maintained in an XML file, credentials_installer.xml.

sagcc create configuration data local OSGI-CCE-ENGINE COMMON-CREDENTIALS -i
credentials_installer.xml

3. Run the following command to add the repository where the products are available.

130 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

https://github.com/SoftwareAG/sagdevops-templates/blob/master/templates/sag-apigateway-server/template.yaml

sagcc add repository products master name=webMethods-10.5 location=<repository url>
credentials=SAGCONNECT

description="10.5 repository"

credentials=SAGCONNECT. This is the alias for the credentials created in Step 1. The alias is saved
in the credentials_installer.xml file.

4. Run the following command to add the required license key to install API Gateway.

sagcc add license-tools keys apigateway_license -i license_apigateway.xml

apigateway_license is the license name that CommandCentral refers to license_apigateway.xml
file.

5. Run the following command to import the API Gateway installation template. This command
imports the Command Central template from the location given in the command and places
it in the <installation directory>\profiles\CCE\data\templates\composite folder. The
sample installation template, template.yaml is used in the following command.
sag/apigateway/server/trunk is the location of this file.

sagcc exec templates composite import -i <template path>/template.yaml

This imports the template required for installing API Gateway.

6. Execute one of the following command to run the template.

If you have not configured any parameters in your template, execute the following
command. All the parameters are configured in this command.
sagcc exec templates composite apply template_alias
nodes=local is.instance.type=integrationServer agw.memory.max=512
repo.product=webMethods-10.5 os.platform=W64
agw.key.license=apigateway_license

If you have configured all the parameters in your template, execute the following command.
sagcc exec templates composite apply template_alias

If you have configured the parameters in the environment.properties file, execute the
following command.
sagcc exec templates composite apply template_alias -i <path to the
environmt.properties file>

This installs API Gateway on the specified node. In this case, it's the local machine. You can
specify the required node name in the above command to install in the corresponding node.

7. Run the commands in the given order for applying the fixes:

a. Add SUM related credentials.

sagcc create configuration data local OSGI-CCE-ENGINE COMMON-CREDENTIALS -i
credentials_fixes.xml.

API Gateway Configuration Guide 10.5 131

5 API Gateway Configuration with Command Central

b. Add the fix repository.

sagcc add repository fixes master name=GA_Fix_Repo location=<Fix repo location>
credentials=EMPOWER

description="105 GA fix repo"

c. Add the fix template similar to installation template.

sagcc exec templates composite import -i
sag-apigateway-server-qa-fix/template.yaml.

d. Apply the template.

sagcc exec templates composite apply sag-apigateway-server-fix nodes=local
is.instance.type=integrationServer agw.memory.max=512
repo.product=webMethods-10.5 os.platform=W64
agw.key.license=apigateway_license
is.instance.type=integrationServer repo.fix=GA_Fix_Repo

This procedure completesAPIGateway installation and you can seeAPIGateway andAPIGateway
Data Store in Jobs menu of the Command Central UI.

In Command Central,

API Gateway > API Gateway Data Store contains details about default Elasticsearch shipped
with API Gateway.

IS_<profile> contains details about API Gateway, Digital Event Services, Event Routing, and
Integration Server.

132 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

Manage API Gateway Data Store Configurations in Command
Central

Command Central lists API Gateway and API Gateway Data Store shipped with API Gateway.
API Gateway stores all its core and analytics data in this Data Store by default. You can start, stop,
and restart API Gateway Data Store from Command Central. You can also manage Clustering
details, Keystores, Ports, Properties, and Truststores.

This section describes the following administering tasks for API Gateway Data Store:

“Starting API Gateway Data Store in Command Central” on page 18

“Stopping API Gateway Data Store in Command Central” on page 19

“Changing the API Gateway Data Store HTTP Port” on page 20

“Changing the API Gateway Data Store TCP Port” on page 23

“Configuring an API Gateway Data Store Cluster” on page 24

“Configuring API Gateway Data Store Keystores” on page 30

“Configuring the API Gateway Data Store Truststore” on page 34

“Configuring Elasticsearch Properties” on page 27

Manage API Gateway Product Configurations in Command
Central

Starting API Gateway 10.5, you can use external Elasticsearch and configure API Gateway to
communicate with that Elasticsearch. Once API Gateway is installed using Command Central, it
lists installed Integration Server instances as shown in the image below.

The image shows the IS instance apigatewaywith the name IS_apigateway. Under IS_apigateway,
users can configure the following assets and components of API Gateway instances:

Clusters

Elasticsearch instances

General and extended properties

API Gateway Configuration Guide 10.5 133

5 API Gateway Configuration with Command Central

Keystores

Kibana instances

License keys

Loggers

Ports

Truststores

Configuring Properties
This section provides information about configuring Extended andWatt settings of API Gateway.

To configure the Properties

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Click General Properties. The General Properties page appears.

3. Click Extended Settings. The properties are listed as key value pairs.

4. Make the required changes.

5. Click Save.

6. Click Watt Settings. The properties are listed as key value pairs.

7. Make the required changes.

8. Save your changes.

Configuring Keystores
This section provides information about adding keystores for API Gateway from Command
Central.

134 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

To configure the Keystores

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Keystores from the drop-down menu.

The Keystores list appears.

3. Click to add a new keystore.

4. Provide an Alias for the keystore.

5. Provide Type,Provider, and Location of the keystore in theKeystore Configuration section.

6. Click Save .

The keystore is added to the list.

Configuring Keystores using Template
You can configure Keystores using the following Command Central template:
sagcc exec templates composite import -i keystore.yaml
sagcc exec templates composite apply keyStoreAlias nodes=local
keystore.path=youekeystorepath
keystore.password=keystorepassword key.alias=keyAlias
key.password=keyPassword

Sample keystore configuration template
alias: keyStoreAlias
description: API Gateway keystore creation
layers:
runtime:

templates: keyStore-Template
templates:
keyStore-Template:

products:
integrationServer:

apigateway:
configuration:

API Gateway Configuration Guide 10.5 135

5 API Gateway Configuration with Command Central

OSGI-IS_apigateway-WmAPIGateway:
COMMON-KEYSTORES:

COMMON-KEYSTORES_pgkey:
Keystore:
'@alias': pgkey
Description: pgkey
Type: JKS
Provider: SUN
Location: ${keystore.path}
Password:

'{AES/CBC/PKCS5Padding}{7BhetRrOVU+AVsox8WKkwQwMVemomS3dpCgNJj5ByYA=}
{JSQ88/tEzqkDGq8D+GWlrw==}uSFvFjWALKWdMOAjuwGpVA=='
Key:
- '@alias': partner1

Password:
'{AES/CBC/PKCS5Padding}{VPQ5ojZEZgzUR7x0WfO317ROK+bxvMyjSCSigoBiAEo=}

{+96qyCFXAiXg2gX3CzdIWA==}7kAeXaZcieuJuRefScC0Ig=='
- '@alias': partner2

Password:
'{AES/CBC/PKCS5Padding}{4cu7D8zZ+Bng2CvoeX71tlb1TSv5yKwqNAXjDN1yLKI=}

{wOE8hwyO2s5BlSZV1tKtNA==}mIVtB9dVL8TCVb35zQGJaA=='
- '@alias': policygateway

Password:
'{AES/CBC/PKCS5Padding}{PWBrBO5D5w6KSdloz8q8yTcrVThiZEbyPhre1u7gXb4=}

{FuESDHiSW1rXqmBIfL7P7g==}/hMP4Bzp0hmCF2Jlrsy00w=='
ExtendedProperties:
Property:
- '@name': fileContent

$:

Configuring Licenses
This section provides information about adding API Gateway licenses using Command Central.

To configure Licenses

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select License Keys from the drop-down menu.

The License Keys list appears.

136 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

3. Click to add a new license and provide the required license.

Configuring Loggers

To configure Loggers

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Loggers from the drop-down menu.

This section displays components and their corresponding log levels.

3. Follow these steps to change the log level of a component:

a. Click the required log file type from the list.

b. Select the required Log Level from the drop-down list.

c. Click Save.

Configuring HTTP Port
This section provides information about configuring HTTP ports available in API Gateway.

To configure the HTTP port

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Ports from the drop-down menu.

3. Click HTTP Port Configuration.

API Gateway Configuration Guide 10.5 137

5 API Gateway Configuration with Command Central

4. Select Yes in the Enable field in the Basic configuration section.

5. Provide valid port numbers in the Port and Alias field of the HTTP listener configuration
section.

6. Optionally, click Test to verify your configuration.

7. Save your changes.

8. Restart the API Gateway instance.

The port is created and enabled.

Configuring HTTPS Port
This section provides information about configuring HTTPS ports available in API Gateway.

To configure the HTTPS port

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Ports from the drop-down menu.

3. Click HTTPS Port Configuration.

4. Select Yes in the Enable field in the Basic configuration section.

5. Provide valid port numbers in the Port and Alias field of the HTTPS listener configuration
section.

138 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

6. Select the required Keystore and Truststore from the available list of options.

7. Optionally, click Test to verify your configuration.

8. Save your changes.

9. Restart the API Gateway instance.

The port is created and enabled.

Configuring HTTPS Port using Template

You can configure port by using the following Command Central template:
sagcc exec templates composite import -i httpPort.yaml
sagcc exec templates composite apply httpPortAlias

Sample ports configuration template
alias: httpsPortAlias
description: API Gateway https port creation
layers:
runtime:

templates: httpsPort-Template
templates:
httpsPort-Template:

products:
integrationServer:

apigateway:
configuration:

OSGI-IS_apigateway-WmAPIGateway:
COMMON-PORTS:

COMMON_PORTS_HTTPS:
Port:

API Gateway Configuration Guide 10.5 139

5 API Gateway Configuration with Command Central

'@primary': 'false'
'@alias': HTTPS
Enabled: 'true'
CustomType: HTTPSListener@5558
Number: '5558'
Protocol: HTTPS
Backlog: '200'
KeepAliveTimeout: '20000'
ThreadPool:
SSL:

KeystoreAlias: pgkey
KeyAlias: partner2
TruststoreAlias: trust

ExtendedProperties:
Property:
- '@name': DIS_PORT

$: '5558'
- '@name': DIS_PORT_ALIAS

$: HTTPS
- '@name': DIS_PROTOCOL

$: HTTPS
- '@name': DIS_ENABLE

$: 'true'
- '@name': DIS_PRIMARY

$: 'false'
- '@name': listenerType

$: Regular
- '@name': Type

$: Regular
- '@name': DIS_TYPE

$: Regular
- '@name': PortType

$: HTTPS
- '@name': PortDescription

$: https ports
- '@name': ClientAuth

$: require
- '@name': IdleTimeout
- '@name': MaxConnections
- '@name': ProxyHost
- '@name': Username
- '@name': Password

provision:
default:

runtime: ${nodes}

Configuring Truststores
This section provides information about adding truststores for API Gateway from Command
Central.

To configure the Truststores

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

140 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

2. Select Truststores from the drop-down menu.

The Truststores list appears.

3. Click to add a new Truststore.

4. Provide an Alias for the Truststore.

5. Provide Type, Provider, and Location of the truststore in the Truststore Configuration
section.

6. Click Save .

The Truststore is added to list.

Configuring Truststores using Template
You can configure Truststores using the following Command Central template:
sagcc exec templates composite import -i truststore.yaml
sagcc exec templates composite apply trustStoreAlias nodes=local
truststore.location=trustStoreLocation
truststore.password=trustStorePassword

Sample truststores configuration template
alias: trustStoreAlias
description: API Gateway trust store creation
layers:
runtime:

templates: trustStore-Template
templates:
trustStore-Template:

products:
integrationServer:

default:
configuration:

OSGI-IS_apigateway-WmAPIGateway:
COMMON-TRUSTSTORES:

COMMON-TRUSTSTORES_testTrustStore:
Truststore:
'@alias': testTrustStore
Description: Test truststore for command central
Type: JKS
Provider: SUN
Location: ${truststore.location}
Password: ${truststore.password}

ExtendedProperties:
Property:

- '@name': certficateAliases
$:

addtrustclass1ca,addtrustexternalca,addtrustqualifiedca,baltimorecodesigningca,baltimorecybertrustca,
comodoaaaca,entrust2048ca,entrustclientca,entrustglobalclientca,entrustgsslca,entrustsslca,equifaxsecureca,equifaxsecureebusinessca1,
equifaxsecureebusinessca2,equifaxsecureglobalebusinessca1,geotrustglobalca,godaddyclass2ca,gtecybertrust5ca,gtecybertrustca,

API Gateway Configuration Guide 10.5 141

5 API Gateway Configuration with Command Central

gtecybertrustglobalca,lhca,partner1,partner2,policygateway,soneraclass1ca,soneraclass2ca,starfieldclass2ca,synapse,
thawtepersonalbasicca,thawtepersonalfreemailca,thawtepersonalpremiumca,thawtepremiumserverca,thawteserverca,
utndatacorpsgcca,utnuserfirstclientauthemailca,utnuserfirsthardwareca,utnuserfirstobjectca,valicertclass2ca,
verisignclass1ca,verisignclass1g2ca,verisignclass1g3ca,verisignclass2ca,verisignclass2g2ca,verisignclass2g3ca,
verisignclass3ca,verisignclass3g2ca,verisignclass3g3ca,verisignserverca,webm test ca

- '@name': isLoaded
$: 'true'

- '@name': fileContent
$:

/u3+7QAAAAIAAAAxAAAAAgAMd2VibSB0ZXN0IGNhAAABSLIi/poABVguNTA5AAADazCCA2cwggJPo
AMCAQICBFQih6gwDQYJKoZIhvcNAQELBQAwazELMAkGA1UEBhM

JoAMCAQICBDdwz7UwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCVVMxFzAVBgNVBAoTDkVxdWlmYXggU2VjdXJlMSYwJAYD
- '@name': fileName

$: cacerts
provision:
default:

runtime: ${nodes}

Manage Inter-component and Cluster configurations

This section describes the administering tasks for the following API Gateway components:

Elasticsearch Connection Settings

Kibana Connection Settings

API Gateway Clustering

Configuring Elasticsearch Connection Settings
This section provides information about configuring internal or external Elasticsearch for API
Gateway.

To configure Elasticsearch

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Click Elasticsearch from the drop-down menu. The Elasticsearch section appears.

3. Provide Tenant name.

4. Select one of the following values in the Auto start field:

Yes - if you are using internal Elasticsearch.

No - if you are using external Elasticsearch.

5. Provide theHost andPort of the serverwhere the Elasticsearch (external or internal) is running,
in the Transport section.

142 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

6. If the Elasticsearch is protectedwith basic authorization, provide the user name and password
in the Authentication section.

7. If the Elasticsearch is protected with HTTPS, perform the following in the SSL section:

a. Select the Enable check box.

b. Provide valid Keystore and Truststore details.

8. Provide additional configurations that defines theAPIGateway's connectivity to Elasticsearch
in the Additional Information section.

9. Save your changes.

The Pending restart value is changed to true and Status is Enabled.

10. Restart the API Gateway instance.

The Elasticsearch details are updated in API Gateway.

Configuring External Elasticsearch using Template
You can configure external Elasticsearch using the following Command Central template:
sagcc exec templates composite import -i cc-minimal-es.yaml
sagcc exec templates composite apply cc-minimal-es nodes=local ssl_username=username
ssl_password=password

API Gateway Configuration Guide 10.5 143

5 API Gateway Configuration with Command Central

eshost=eshost esport=esport keystore_location=your_keystore_location
keystore_alias=alias_of_keystore
truststore_location=your_truststore_location truststorealias=your_truststore_alias
truststore_password=truststorepassword

Sample external Elasticsearch configuration template
alias: elasticsearch-alias
description: Elastic search configuration
layers:
runtime:

templates:
- cc-minimal-es

templates:
cc-minimal-es:

products:
integrationServer:
default:

configuration:
OSGI-IS_apigateway-WmAPIGateway:

APIGATEWAY-ELASTICSEARCH:
APIGATEWAY-ELASTICSEARCH:

'@alias': Elasticsearch
autostart: 'false'
tenantId: apigateway
Auth:
'@type': SSL
User: ${ssl_username}
Password: ${ssl_password}

Transport:
Host: ${eshost}
Port: ${esport}

SSL:
Enable: 'true'
HostnameVerification: 'false'
KeystoreLocation: ${keystore_location}
KeystoreAlias: ${keystore_alias}
TruststoreLocation: ${truststore_location}
TruststoreAlias: ${truststore_alias}
TruststorePassword: ${truststore_password}

ExtendedProperties:
Property:

- '@name': clientHttpResponseSize
$: '1024'

- '@name': connectionTimeout
$: '10000'

- '@name': keepalive
$: '10'

- '@name': keepAliveConnectionsPerRoute
$: '1000'

- '@name': maxRetry
$: '10000'

- '@name': socketTimeout
$: '10000'

- '@name': sniffEnabled
$: 'true'

- '@name': sniffTimeInterval
$: '5000'

provision:
default:

144 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

runtime: ${nodes}

Configuring Kibana Connection Settings
This section provides information about configuring internal or external Kibana for API Gateway
from Command Central.

To configure Kibana

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Kibana from the drop-down menu.

The Kibana instances list appears.

3. Click the instance that you want to configure.

4. Select one of the following values in the Auto start field:

Yes - if you are using internal Kibana.

No - if you are using external Kibana.

5. If you are using external Kibana, provide the Host and Port of the server where the Kibana is
running in the Transport section. Else, do not enter any values in those fields.

6. Save your changes.

The Pending restart value is changed to true and Status is Enabled.

7. Restart the API Gateway instance.

The Kibana details are updated in API Gateway.

Configuring Kibana using Template

You can configure Kibana using the following Command Central template:

API Gateway Configuration Guide 10.5 145

5 API Gateway Configuration with Command Central

sagcc exec templates composite import -i cc-kibana.yaml
sagcc exec templates composite apply cc-kibana nodes=local host=hostname port=portnumber

Sample Kibana configuration template
alias: cc-kibana-alias
description: HTTPS elastic search template
layers:
runtime:

templates:
- cc-kibana

templates:
cc-kibana:

products:
integrationServer:
default:

configuration:
OSGI-IS_apigateway-WmAPIGateway:

APIGATEWAY-KIBANA:
APIGATEWAY-KIBANA:

'@alias': Kibana
autostart: 'false'
Transport:
Host: ${host}
Port: ${port}

provision:
default:

runtime: ${nodes}

Configuring API Gateway Cluster
This section provides information about configuring cluster details for API Gateway in the API
Gateway section.

Note:
Ensure that the Terracotta server is running when configuring cluster.

To configure API Gateway Clustering

1. In Command Central, navigate to Environments > Instances > All > API Gateway >
Configuration.

2. Select Clustering from the drop-down menu.

The initial clustering status appears as Disabled.

3. Click Disabled. The General Information section appears.

4. Click Edit to provide the cluster details.

146 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

5. Select Yes in the Enable field.

6. Provide Cluster name.

7. Provide the host name and port of the server where Terracotta is running, in the Terracotta
server array URLs field.

8. Optionally, click Test to verify your configuration.

9. Save your changes.

The Pending restart value is changed to true and Status is Enabled.

10. Restart the API Gateway instance.

The clustering details are updated in API Gateway.

Configuring Cluster using Template

You can configure Cluster using the following Command Central template:
sagcc exec templates composite import -i cc-clustering.yaml
sagcc exec templates composite apply commandcentral-clustering-alias nodes=local
tchost=terracotta_host tcport=terracotta_port

Sample clustering configuration template
alias: cc-clustering-alias
description: cluster config
layers:
runtime:

templates:
- cc-clustering

templates:
cc-clustering:

products:
integrationServer:

default:
configuration:

OSGI-IS_apigateway-WmAPIGateway:

API Gateway Configuration Guide 10.5 147

5 API Gateway Configuration with Command Central

COMMON-CLUSTER:
COMMON-CLUSTER:

Enabled: 'true'
Name: APIGatewayTSAcluster
Servers:
Server:

URL: daeirnd33974:9510
ExtendedProperties:
Property:
- '@name': SessionTimeout

$: '60'
- '@name': ActionOnStartupError

$: standalone
provision:
default:

runtime: ${nodes}

148 API Gateway Configuration Guide 10.5

5 API Gateway Configuration with Command Central

6 Docker Configuration

■ Overview .. 150

■ Building the Docker Image for an API Gateway Instance ... 151

■ Retrieving Port Information of the API Gateway Image .. 155

■ Running the API Gateway Container .. 155

■ Load Balancer Configuration with the Docker Host .. 156

■ Stopping the API Gateway Container ... 156

■ Managing API Gateway Images ... 156

■ API Gateway Docker Container with Externalized Elasticsearch and Kibana 157

■ API Gateway Container Cluster Configuration ... 160

■ Running API Gateway Docker Containers with Docker Compose 163

API Gateway Configuration Guide 10.5 149

Overview

Docker is an open-source technology that allows users to deploy applications to software containers.
A Docker container is an instance of a Docker image, where the Docker image is the application,
including the file system and runtime parameters.

You can create a Docker image from an installed and configured API Gateway instance and then
run the Docker image as a Docker container. To facilitate running API Gateway in a Docker
container, API Gateway provides a script to use to build a Docker image and then load or push
the resulting Docker image to a Docker registry.

Support for API Gateway with Docker 18 and later is available on Linux and UNIX systems for
which Docker provides native support.

For details on Docker and container technology, see Docker documentation.

Docker security

Docker, by default, has introduced a number of security updates and features, which have made
Docker easier to use in an enterprise. There are certain guidelines or best practices that apply to
the following layers of the Docker technology stack, that an organization can look at:

Docker image and registry configuration

Docker container runtime configuration

Host configuration

For detailed guidelines on security best practices, see the official Docker Security documentation
at https://docs.docker.com/engine/security/security/.

Docker has also developed Docker Bench, a script that can test containers and their hosts' security
configurations against a set of best practices provided by the Center for Internet Security. For
details, see https://github.com/docker/docker-bench-security.

For details on how to establish a secure configuration baseline for the Docker Engine, see Center
for Information Security (CIS) Docker Benchmark (Docker CE 17.06).

For information on the potential security concerns associated with the use of containers and
recommendations for addressing these concerns, seeNISTSP 800publication (ApplicationContainer
Security Guide)

Prerequisites for Building a Docker Image

Prior to building a Docker image for API Gateway, you must complete the following:

Install Docker client on the machine on which you are going to install API Gateway and start
Docker as a daemon. The Docker client should have connectivity to Docker server to create
images.

Install API Gateway, packages, and fixes on a Linux or UNIX system using the instructions in
Installing Software AG Products, and then configure API Gateway and the hosted products.

150 API Gateway Configuration Guide 10.5

6 Docker Configuration

https://docs.docker.com/
https://docs.docker.com/engine/security/security/
https://github.com/docker/docker-bench-security
https://www.cisecurity.org/benchmark/docker/
https://www.cisecurity.org/benchmark/docker/
https://csrc.nist.gov/publications/sp800

Building the Docker Image for an API Gateway Instance

TheAPI GatewayDocker image provides an API Gateway installation. Depending on the existing
installation the image provides a standard API Gateway or an advanced API Gateway. When
running the image the API Gateway is started. The API Gateway image is created on top of an
Integration Server image.

To build a Docker image for an API Gateway instance

1. Create a docker file for the Integration Server (IS) instance by running the following command:

./is_container.sh createDockerfile [optional arguments]

DescriptionArgument

Optional. Name of base image upon which the new image is
built.

-Dimage.name

Default: centos:7

Optional. IS instance name to include in the image.-Dinstance.name

Default: default

Optional. Comma-separated list of the ports on the instance
to expose in the image.

-Dport.list

Default: 5555,9999

Optional. Comma-separated list of Wm packages on the
instance to include in the image.

-Dpackage.list

Default: all (this includes all of the Wm packages and the
Default package)

Optional. Whether to include the Integration Server JDK
(true) or JRE (false) in the image.

-Dinclude.jdk

Default: true

Optional. File name for the generated docker file.-Dfile.name

Default: Dockerfile_IS

2. Build the IS Docker image using the Docker file Dockerfile_IS by running the following
command:

./is_container.sh build [optional arguments]

API Gateway Configuration Guide 10.5 151

6 Docker Configuration

DescriptionArgument

Optional. File name of the Docker file to use to build the
Docker image.

-Dfile.name

Default: Dockerfile_IS

Optional. Name for the generated Docker image.-Dimage.name

Default: is:micro

3. Create a Docker file for the API Gateway instance from the IS image is:micro by running the
following command:

./apigw_container.sh createDockerfile [optional arguments]

DescriptionArgument

Optional. API Gateway instance to include in the image.instance.name

Default: default

Comma-separated list of the ports on the instance to expose
in the image.

port.list

Default: 9072

Name of the base Integration Server image upon which this
image should be built..

base.image

Default: is:micro

Optional. File name for the generated Docker file.file.name

Default: Dockerfile_IS_APIGW

Optional. Target configuration forwhichDockerfile is created.--target.configuration

Not specifying any value builds a Dockerfile for the Docker
and Kubernetes environments.

Specifying the value OpenShift builds a Dockerfile for an
OpenShift environment.

Note:
If you specify the --target.configuration option, the
Integration Server image specified by the --base.image
option should be available before you create the API
GatewayDockerfile. The Integration ServerDocker image
is analyzed with docker inspect in order to extract some
information necessary for the API Gateway Dockerfile.

152 API Gateway Configuration Guide 10.5

6 Docker Configuration

DescriptionArgument

Optional. Name of the base operating system image upon
which this image is built if the --target.configuration is
set to OpenShift.

--os.image

Default: centos:7

Note:
The value of this parameter has to be alignedwith the one
specified for -Dimage.name in Step 1.

The Docker file is created under the packages directory of the specified Integration Server
instance. In a default installation, the Docker file is created in the folder SAG_Root/
IntegrationServer/instances/default/packages/Dockerfile_IS_APIGW.

4. Build the API Gateway Docker image using the core Docker file Dockerfile_IS_APIGW by
running the following command:

./apigw_container.sh build [optional arguments]

DescriptionArgument

Optional. API Gateway instance to include in the image.instance.name

Default: default

File name of theDocker file to use to build theDocker image.file.name

Default: Dockerfile_IS_APIGW

Optional.Name for the generatedDocker image that contains
the custom packages.

image.name

Default: is:apigw

The image is stored on the Docker host. To check the image run the command $ docker images

Example

A sample shell script for creating and an API Gateway looks as follows:
echo "is createDockerfile ==="
./is_container.sh createDockerfile
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

API Gateway Configuration Guide 10.5 153

6 Docker Configuration

echo "is build =="
./is_container.sh build
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

echo "apigw createDockerfile =="
./apigw_container.sh createDockerfile
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

echo "apigw build ==="
./apigw_container.sh build
status=$?

if [$status -ne 0]
then

echo "Failed! status: $status"
exit $status

fi

After running the steps the created images can be listed using theDocker images command: docker
images

REPOSITORY TAG IMAGEID CREATED SIZE
is apigw af29373fc98a 15 hours ago 1.3GB
is micro 06e7c0de4807 15 hours ago 1.1GB
centos 7 36540f359ca3 12 days ago 193MB

Note:
The is:micro and therefore also the is:apigw images are based on the centos:7 image, which is
available from the official CentOS repository

The Docker images resulting from Docker files created using the createDockerFile command
feature the following:

Docker logging.

API GatewayDocker containers log to stdout and stderr. The API Gateway logs can be fetched
with Docker logs.

Docker health check.

API Gateway Docker containers perform health checks. You can use wget request against the
API Gateway REST API to check the health status of API Gateway.

154 API Gateway Configuration Guide 10.5

6 Docker Configuration

The following wget request shows a curl invocation sending a request against the HTTP port.
If API Gateway exposes an HTTPS port only the wget is created accordingly. The option
--no-check-certificate is used to avoid any failure due to certificate problems.
HEALTHCHECK CMD curl --no-check-certificate
http://localhost:5555/rest/apigateway/health

The wget checks the API Gateway availability by sending requests to the API Gateway REST
health resource. If the wget is successful API Gateway is considered healthy.

Graceful shutdown.

Docker stop issues a SIGTERM to the running API Gateway.

Retrieving Port Information of the API Gateway Image

To retrieve the port information of the API Gateway image (is:apigw), run the following
command :
docker inspect --format='{{range $p,
$conf := .Config.ExposedPorts}}
{{$p}} {{end}}' is:apigw

A sample output looks as follows:
5555/tcp 9072/tcp 9999/tcp

Running the API Gateway Container

Before starting API Gateway, ensure that the main memory and the kernel settings of your docker
host are correctly configured. The docker host should provide at least 4 GB ofmainmemory. Since
API Gateway comes with an Elasticsearch, the vm.max_map_count kernel setting needs to be set to
at least 262144. You can change the setting on your docker host by running the following command:
sysctl -w vm.max_map_count=262144

For further details about the important system settings to be considered, see the Elasticsearch
documentation.

Start the API Gateway image using the docker run command:
docker run -d -p 5555:5555 -p 9072:9072 -name apigw is:apigw

The docker run is parameterized with the IS and the webApp port exposed by the Docker
container. If the customer has configured different ports for IS andUI, the call has to be adapted
accordingly. The name of the container is set to apigw.

The status of the Docker container can be determined by running the docker ps command:
docker ps

A sample output looks as follows:
CONTAINER ID IMAGE COMMAND CREATED STATUS ->

API Gateway Configuration Guide 10.5 155

6 Docker Configuration

5b95c9badd59 is:apigw "/bin/sh -c 'cd /s..." 15 hours ago Up 15 hours

->
PORTS NAMES
0.0.0.0:5555->5555/tcp, 0.0.0.0:9072->9072/tcp, 9999/tcp apigw

Load Balancer Configuration with the Docker Host

A port mapping is specified when you run the Docker container. For example, to map the IS port
to the port 5858 on the Docker host run the Docker image with the following command:
docker run -d -p 5858:5555 -p 9073:9072 --name apigw is:apigw

The host and the port within the Docker container are different from the host running the Docker
container and the port exposed on the host. As a result, the gateway endpoints exposed by API
Gateway are set incorrectly. To set this right you have to set up a load balancer configuration with
the Docker host and the mapped ports.

For the above example the following load balancer URLs are required:

Load balancer URL (HTTP): http://dockerhost:5858

Load balancer URL (WS): ws://dockerhost:5858

Web application load balancer URL: http://dockerhost:9073

Note:
If the API Gateway UI port is mapped to a different port on the Docker host, the API Gateway
solution link in the IS Administration UI does not work.

Stopping the API Gateway Container

Stop the API Gateway container using the docker stop command:
docker stop -t90 apigw

The docker stop is parameterizedwith the number of seconds required for a graceful shutdown
of the API Gateway and the API Gateway Docker container name.

Note:
The docker stop does not destroy the state of the API Gateway. On restarting the Docker
container all assets that have been created or configured are available again.

Managing API Gateway Images

You can manage the API Gateway images using the is_container.sh script

saveImage: To save an API Gateway image to a file (creating a tar ball from an image)

loadImage: To load an image to a Docker registry (loading an image into a Docker registry
from tar ball)

156 API Gateway Configuration Guide 10.5

6 Docker Configuration

API Gateway Docker Container with Externalized Elasticsearch
and Kibana

The best practices for Docker container specify having a single process per container. This allows
to control the components of anAPI Gateway container and enables horizontal scaling. A full split
results into three separate containers, one each for API Gateway, Elasticsearch and Kibana. Since
Kibana is not scaled independently it can be included into the API Gateway container.

API Gateway Container with an Externalized Elasticsearch

The following figure depicts an API Gateway container with an externalized Elasticsearch where
Kibana is included in the API Gateway container.

Do the following to set up API Gateway container with an external Elasticsearch:

1. Run the external Elasticsearch.

You can start Elasticsearch container by using the Elasticsearch Docker image available on
docker hub. The Elasticsearch version should be the same as used in API Gateway.
docker run -p 9200:9240 -p 9300:9340 -e "xpack.security.enabled=false"
-v es-data:/usr/share/elasticsearch/data
docker.elastic.co/elasticsearch/elasticsearch:5.6.4

Use the option -e xpack.security.enabled=false to disable basic authentication for
Elasticsearch. This is the default option available in API Gateway.

API Gateway Configuration Guide 10.5 157

6 Docker Configuration

Use the volume mapping -v es-data:/usr/share/elasticsearch/data to persist the
Elasticsearch data outside the Docker container.

2. Run API Gateway Docker container.

To create a Docker file or image for an API Gateway that does not contain Elasticsearch the
./apigw_container.sh createDockerFile and build command offer the following option:
--extern.ES

Setting the flag ensures that the InternalDataStore is not added to the Docker image created
by the generated Docker file.

Elasticsearch configuration can be injected into an existing API Gateway image. Assuming an
existing API Gateway image sag:apigw:
docker run -d -p 5555:5555 -p 9072:9072 --env-file apigw-env.list
--hostname apigw --name apigw sag:apigw

The apigw-env.list contains the environment variables required for configuring an external
Elasticsearch and External Kibana:
apigw_elasticsearch_hosts=host:port
apigw_elasticsearch_https_enabled=("true" or "false")
apigw_elasticsearch_http_username=user
apigw_elasticsearch_http_password=password

An example looks as follows:
apigw_elasticsearch_hosts=testhost1:9200
apigw_elasticsearch_https_enabled=false
apigw_elasticsearch_http_username=
apigw_elasticsearch_http_password=

You can specify the Elasticsearch properties to modify the property files on the container
startup.

Instead of using the env file to change the environment variables, you can set them using -e
options in the Docker run. For setting the Elasticsearch host the Docker run command looks
as follows:
docker run -d -p 5555:5555 -p 9072:9072 \
-e apigw_elasticsearch_hosts=testhost1:9200 \
--hostname apigw \
--name apigw sag:apigw

API Gateway Container with an External Elasticsearch and External Kibana

The following figure depicts an API Gateway container with external Elasticsearch and external
Kibana containers.

158 API Gateway Configuration Guide 10.5

6 Docker Configuration

Do the following to set up API Gateway container with an external Elasticsearch and external
Kibana:

1. Run the external Elasticsearch.

You can start Elasticsearch by using the default ElasticsearchDocker image available on docker
hub. The Elasticsearch version should be the same as used in API Gateway.
docker run -p 9200:9240 -p 9300:9340 -e "xpack.security.enabled=false"
-v es-data:/usr/share/elasticsearch/data
docker.elastic.co/elasticsearch/elasticsearch:5.6.4

Use the option -e xpack.security.enabled=false to disable basic authentication for
Elasticsearch. This is the default option available in API Gateway.

Use the volume mapping -v es-data:/usr/share/elasticsearch/data to persist the
Elasticsearch data outside the Docker container.

2. Run the external Kibana

If you have modified the original Kibana, for example by adding a style sheet file, or modified
the kibana.yml file, as per your requirements, then this customization of Kibana is bundled
with API Gateway. This customized Kibana is provided under the directory: profiles/IS_
default/apigateway/dashboard. To achieve this, create and run a Docker image based on the
customization. This can be achieved by a Docker file as follows:
FROM centos:7
COPY /opt/softwareag/profiles/IS_default/apigateway/dashboard /opt/softwareag/kibana
EXPOSE 9405
RUN chmod 777 /opt/softwareag/kibana/bin/kibana
CMD /opt/softwareag/kibana/bin/kibana

API Gateway Configuration Guide 10.5 159

6 Docker Configuration

Build and run the Docker file as follows:
docker build -t sagkibana .
docker run -p 9405:9405 sagkibana

3. Run API Gateway Docker container

To run a Docker image for an API Gateway running against an external Kibana the Docker
run can be called with the following environment variable:
apigw_kibana_dashboardInstance=instance

The environment variable can be added to an env file. The env file for running a Docker
container with external Elasticsearch and external Kibana looks as follows:
apigw_elasticsearch_hosts=testhost1:9200
apigw_elasticsearch_http_username=
apigw_elasticsearch_http_password=
apigw_kibana_dashboardInstance=http://testhost1:9405

API Gateway Container Cluster Configuration

You can combine API Gateway Docker containers to form a cluster.

To configure an API Gateway Docker container cluster:

1. Configure loadbalancer on the Docker host.

The custom loadbalancer is installed on the Docker host. For more details on setting up the
load balancer, see “Configuring an API Gateway Cluster” on page 45.

2. Configure Terracotta Server Array.

API Gateway requires a Terracotta Server Array installation. For details, see webMethods
Integration Server Clustering Guide and Terracotta documentation (https://www.terracotta.org/).
The Terracotta Server Array on its own can be deployed as a Docker container.

3. Create the basic API Gateway Docker image.

For details on creating the API Gateway Docker image, see “Building the Docker Image for
an API Gateway Instance ” on page 151.

4. Create cluster API Gateway Docker image and enhance it with the cluster configuration in
one of the following ways:

Clustered all-in-one containers that consist of API Gateway, Elasticsearch, and Kibana.

Clustered API Gateway containers with externalized Elasticsearch and Kibana containers.

Clustered all-in-one Containers that consist of API Gateway, Kibana and
Elasticsearch

Although API Gateway clusters with externalized Elasticsearch is the preferred approach API
Gateway all-in-one containers can also be clustered.

160 API Gateway Configuration Guide 10.5

6 Docker Configuration

https://www.terracotta.org/

Note:
Having external Kibana is an optional variation.

The following diagram depicts clustering based on all-in-one containers.

The all-in-one containers hold API Gateway, Kibana and Elasticsearch. The clustering is done
through a Terracotta Server Array and the cluster capabilities of the embedded Elasticsearch
instances.

The required settings for the cluster configuration can be injected during Docker run through an
environment file. A sample environment file looks as follows.
apigw_cluster_tsaUrls=tc:9510
apigw_terracotta_license_filename=terracotta-license.key
apigw_cluster_discoverySeedHosts=apigw1:9340,apigw2:9340,apigw3:9340
apigw_cluster_initialMasterNodes=apigw1_master

Clustered API Gateway Containers with externalized Elasticsearch and Kibana
containers

The API Gateway containers are clustered. They are talking to a clustered Terracotta Server Array
container and to a cluster of Elasticsearch container through a loadbalancer. The Elasticsearch
loadbalancer is also providing the Elasticsearch endpoint for the Kibana containers.

API Gateway Configuration Guide 10.5 161

6 Docker Configuration

Note:
The externalizedKibana is optional. You can still run Kibanawithin theAPI Gateway container.

To cluster the API Gateway with external containers for Elasticsearch, Kibana, and Terracotta
Server Array, the settings can be injected into an API Gateway Docker image when starting by
proving an environment file. The environment file needs to define the following environment
variables.
apigw_cluster_tsaUrls=host:port
apigw_terracotta_license_filename=license-key-filename

apigw_elasticsearch_hosts=host:port
apigw_elasticsearch_http_username=user
apigw_elasticsearch_http_password=password

162 API Gateway Configuration Guide 10.5

6 Docker Configuration

apigw_kibana_dashboardInstance=instance

A sample assignment of the environment variables looks as follows.
apigw_cluster_tsaUrls=tc:9510
apigw_terracotta_license_filename=terracotta-license.key

apigw_elasticsearch_hosts=testhost1:9200
apigw_elasticsearch_http_username=
apigw_elasticsearch_http_password=

apigw_kibana_dashboardInstance=htt://testhost1:9405

Running API Gateway Docker Containers with Docker Compose

You can run API Gateway Docker containers and use Docker Compose's ability to allow you to
define and run multi-container Docker applications in your deployment environment.

The API Gateway installation provides sample Docker Compose files in the folder located at
SAG_Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/docker-compose.
The API Gateway installation provides the following three sample Docker Compose files:

apigw-elasticsearch-no-cluster.yml : AnAPIGateway instancewith an Elasticsearch containter.

apigw-elasticsearch-cluster.yml : AnAPIGateway clusterwith threeAPIGateway containers,
three clustered Elasticsearch containers and a Terracotta container.

apigw-elasticsearch-cluster-kibana.yml : Containers of an API Gateway cluster and a Kibana
container.

The Docker Compose files can be parameterized through environment variables.

Running a Single API Gateway and an Elasticsearch Container
You can run a single API Gateway and an Elasticsearch container using Docker Compose. In this
deployment scenario you can use the sample Docker Compose file
apigw-elasticsearch-no-cluster.yml.

The following figure depicts an API Gateway container with an externalized Elasticsearch where
Kibana is included in the API Gateway container.

API Gateway Configuration Guide 10.5 163

6 Docker Configuration

To deploy a single API Gateway and an Elasticsearch container

1. Set the environment variables to define the image for the API Gateway container as follows:

export APIGW_DOCKER_IMAGE_NAME=image name or filepath location of an existing image

The composite file requires an API Gateway Docker image. You can create the referenced
image through API Gateway scripting. For details on creating a Docker image, see “Building
the Docker Image for an API Gateway Instance ” on page 151. The Docker Compose file
references the standard Elasticsearch 7.2image: docker.elastic.co/elasticsearch/elasticsearch:7.2.0

Specify the API Gateway image by changing the .env file. API Gateway uses the .env file when
the working directory is .../samples/docker-compose, else you must specify the environment
variables.

2. Run the following command to start the API Gateway Docker container and the Elasticsearch
container using the Docker Compose sample file:

cd SAG-Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/
samples/docker-compose
docker-compose -f apigw-elasticsearch-no-cluster.yml up

In the Docker Compose sample file apigw-elasticsearch-no-cluster.yml ensure that you have
specified the required information such as image name, name and port of the Elasticsearch
host, server port, and UI port. This creates and starts the containers. Run the docker ps
command to view the details of the containers created.

To run it in the detached mode, append -d in the docker-compose command.

Note:
You can stop the API Gateway Docker container and the Elasticsearch container using the
Docker Compose sample file with the following command:

164 API Gateway Configuration Guide 10.5

6 Docker Configuration

docker-compose -f apigw-elasticsearch-no-cluster.yml down

Running Clustered API Gateway Containers and Elasticsearch
Containers
In this deployment scenario you can use the sample Docker Compose file
apigw-elasticsearch-cluster.yml.

The followingdiagramdepicts a set-up that has clusteredAPIGateway containers andElasticsearch
containers.

To run clustered API Gateway containers and Elasticsearch containers

1. Set the environment variables to define image for the API Gateway Docker container and
Terracotta as follows:

export APIGW_DOCKER_IMAGE_NAME=image name or filepath location of an existing image
export TERRACOTTA_DOCKER_IMAGE_NAME=terracotta image name

The composite file requires Terracotta and the API Gateway Docker image. You can create the
API Gateway image through API Gateway scripting. For details on creating a Docker image,
see “Building the Docker Image for an API Gateway Instance ” on page 151.

You can create the Terracotta image as follows:

API Gateway Configuration Guide 10.5 165

6 Docker Configuration

cd /opt/softwareag
docker build --file Terracotta/docker/images/server/Dockerfile –tag is:tc

Specify the API Gateway image by changing the .env file. API Gateway uses the .env file when
the working directory is .../samples/docker-compose, else you must specify the environment
variables.

2. Run the following command to start Terracotta, clustered API Gateway, and Elasticsearch
containers using the Docker Compose sample file:

cd SAG-Root/IntegrationServer/instances/default/packages/WmAPIGateway
/resources/samples/docker-compose
docker-compose -f apigw-elasticsearch-cluster.yml up

In the Docker Compose sample file apigw-elasticsearch-cluster.yml ensure that you have
specified the required information such as image name, name and port of the Elasticsearch
host, server port, and UI port. This creates and starts the containers. Run the docker ps
command to view the details of the containers created.

To run it in the detached mode, append -d in the docker-compose command.

Note:
You can stop the API Gateway Docker container and the Elasticsearch container using the
Docker Compose sample file with the following command:

docker-compose -f apigw-elasticsearch-cluster.yml down

Running Clustered API Gateway and Elasticsearch Containers
and a Kibana Container
In this deployment scenario you can use the sample Docker Compose file
apigw-elasticsearch-cluster-kibana.yml.

The figure depicts clustered API Gateway containers. They are talking to a clustered Terracotta
Server Array container, a cluster of Elasticsearch container and an external Kibana.

166 API Gateway Configuration Guide 10.5

6 Docker Configuration

To run clustered API Gateway and Elasticsearch containers, and a Kibana container

1. Set the environment variables to define the API Gateway, Terracotta, and the Kibana image
as follows:

export APIGW_DOCKER_IMAGE_NAME=image name or filepath location of an existing image
export TERRACOTTA_DOCKER_IMAGE_NAME=terracotta image name
export KIBANA_DOCKER_IMAGE_NAME=kibana image name

You can create the required API Gateway Docker image through API Gateway scripting. For
details on creating a Docker image, see “Building the Docker Image for an API Gateway
Instance ” on page 151.

Create the Terracotta image as follows:
cd /opt/softwareag
docker build --file Terracotta/docker/images/server/Dockerfile –tag is:tc

Specify the API Gateway image by changing the .env file. API Gateway uses the .env file when
the working directory is .../samples/docker-compose, else you must specify the environment
variables. .

API Gateway requires a customized Kibana image. The Docker file for creating the Kibana
image is as follows:
FROM centos:7
COPY /opt/softwareag/profiles/IS_default/apigateway/dashboard /opt/softwareag/kibana

API Gateway Configuration Guide 10.5 167

6 Docker Configuration

EXPOSE 9405
RUN chmod 777 /opt/softwareag/kibana/bin/kibana
CMD /opt/softwareag/kibana/bin/kibana

2. Run the following command to start the API Gateway Docker container and the Elasticsearch
container using the Docker Compose sample file:

cd SAG-Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/
samples/docker-compose
docker-compose -f apigw-elasticsearch-cluster-kibana.yml up

In the Docker Compose sample file apigw-elasticsearch-cluster-kibana.yml ensure that you
have specified the required information such as image name, name and port of the Elasticsearch
host, server port, UI port, and Kibana dashboard instance details. This creates and starts the
containers. Run the docker ps command to view the details of the containers created.

To run it in the detached mode, append -d in the docker-compose command.

Note:
You can stop the API Gateway Docker container and the Elasticsearch container using the
docker-compose sample file with the following command:

docker-compose -f apigw-elasticsearch-cluster-kibana.yml down

168 API Gateway Configuration Guide 10.5

6 Docker Configuration

7 Kubernetes Support

■ Overview .. 170

■ Deploying API Gateway Pod with API Gateway and Elasticsearch Containers 171

■ Deploying API Gateway Pod with API Gateway Container connected to an Elasticsearch
Kubernetes Service .. 172

■ Kubernetes Sample Files ... 174

■ Helm Chart ... 174

■ Using Helm to Start the API Gateway Service ... 175

■ OpenShift Support .. 175

API Gateway Configuration Guide 10.5 169

Overview

API Gateway can be run within a Kubernetes (k8s) environment. Kubernetes provides a platform
for automating deployment, scaling and operations of services. The basic scheduling unit in
Kubernetes is a pod. It adds a higher level of abstraction by grouping containerized components.
A pod consists of one or more containers that are co-located on the host machine and can share
resources. A Kubernetes service is a set of pods that work together, such as one tier of a multi-tier
application.

The API Gateway Kubernetes support provides the following:

Liveliness check to support Kubernetes pod lifecycle.

This helps in verifying that the API Gateway container is up and responding.

Readiness check to support Kubernetes pod lifecycle.

This helps in verifying that the API Gateway container is ready to serve requests. For details
on pod lifecycle, see Kubernetes documentation.

Prometheus metrics to support the monitoring of API Gateway pods.

API Gateway support is based on the Microservices Runtime Prometheus support. You use
the IS metrics endpoint /metrics to gather the required metrics. When the metrics endpoint is
called, Microservices Runtime gathers metrics and returns the data in a Prometheus format.
Prometheus is an open source monitoring and alerting toolkit, which is frequently used for
monitoring containers. For details on the prometheus metrics, see Developing Microservices
with webMethods Microservices Runtime.

The following sections describe in detail different deployment models for API Gateway as a
Kubernetes service. Each of the deployment models described require an existing Kubernetes
environment. For details on setting up of aKubernetes environment, seeKubernetes documentation.

With the API Gateway Kubernetes support, you can deploy API Gateway in one of the following
ways:

A pod with API Gateway container and an Elasticsearch container

A pod with API Gateway container connected to an Elasticsearch Kubernetes service

APIGateway also supports RedHatOpenShift containerized platform that you can use for building
and scaling containerized applications. For details and special considerations, see the following
sections:

“Building the Docker Image for an API Gateway Instance ” on page 151, in particular the
--target.configuration and --os.image parameters

“OpenShift Support” on page 175

For details about OpenShift in general, see OpenShift documentation.

170 API Gateway Configuration Guide 10.5

7 Kubernetes Support

Deploying API Gateway Pod with API Gateway and
Elasticsearch Containers

You would select this deployment model if you want API Gateway as a Kubernetes service
protecting the native services deployed toKubernetes. Here, APIGateway runs in dedicated pods,
and each pod has Elasticsearch and Kibana containers. API Gateway routes the incoming API
requests to the native services. The invocation of the native services by the consumers happens
through APIs provisioned by API Gateway.

The figure depicts the API Gateway Kubernetes service deployment model where you have a
single API Gateway pod that contains API Gateway and Elasticsearch containers. The Kibana can
either be embedded in the API Gateway container or can reside as a separate container within the
pod.

To deploy API Gateway Kubernetes pod that contains an Elasticsearch container

1. Ensure that vm.max_map_count is set to a value of at least 262144 to run an Elasticsearch
container within a pod. This is done in an init container as follows:

initContainers:
- command:
- sysctl
- -w

API Gateway Configuration Guide 10.5 171

7 Kubernetes Support

- vm.max_map_count=262144
image: busybox
imagePullPolicy: IfNotPresent
name: init-sysctl
resources: {}
securityContext:

privileged: true

2. Ensure that you have an API Gateway Docker image and an Elasticsearch image for this
deployment. For the API Gateway container, you have to set the following environment:

apigw_elasticsearch_hosts=localhost:9200

This assumes that Elasticsearch runs on the standard port 9200 and the xpack.security is
disabled. You can disable the xpack.security by setting the environment variable
xpack.security.enabled to false.

The followingYAMLsnippet displays how the environment variable apigw_elasticsearch_hosts
is set.
spec:
containers:
- env:

- name: apigw_elasticsearch_hosts
value: localhost:9200

You can disable the xpack.security by setting the environment variable xpack.security.enabled
to false for the Elasticsearch container.

3. Run the following command to deploy API Gateway in the Kubernetes setup:

kubectl create -f api-gateway-deployment-embedded-elasticsearch.yaml

Ensure that you have specified the required information such as image name, default ports in
the Kubernetes sample file api-gateway-deployment-embedded-elasticsearch.yaml located at
SAG_Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/K8s.
For details on Kubernetes YAML files, see Kubernetes documentation.

This now pulls the image specified and creates the API Gateway pod with API Gateway and
Elasticsearch containers.

Run the command kubectl get pods to view the pods created.

Deploying API Gateway Pod with API Gateway Container
connected to an Elasticsearch Kubernetes Service

Youwould select this deployment model if youwant to have a separate Elasticsearch service. This
deployment allows you to scale Elasticsearch independently or to use an already existing
Elasticsearch service. Ensure you have an Elasticsearch Kubernetes service for Elasticsearch 7.2.0.

The diagram depicts the API Gateway Kubernetes service deployment model where you have a
separateAPIGateway pod that constitutes anAPIGateway container connected to an Elasticsearch

172 API Gateway Configuration Guide 10.5

7 Kubernetes Support

service. Kibana can run as a separate container within the API Gateway pod or can be embedded
in the API Gateway container.

To deploy an API Gateway Kubernetes pod that communicates with an Elasticsearch
Kubernetes service

1. Ensure you have an Elasticsearch Kubernetes service for Elasticsearch 7.2.0.

For more details on deploying Elasticsearch on Kubernetes, see Elasticsearch and Kubernetes
documentation.

2. Ensure you have an API Gateway Docker image for this deployment. For the API Gateway
container, you have to set the following environment variable:

apigw_elasticsearch_hosts=elasticsearch-host:elasticsearch-port

3. Run the following command to deploy API Gateway in the Kubernetes setup:

kubectl create -f api-gateway-deployment-external-elasticsearch.yaml

Ensure that you have specified the required information such as image name, default ports,
details of the external elastic search and how to access it in the Kubernetes sample file
api-gateway-deployment-external-elasticsearch.yaml located at
SAG_Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/K8s.
For details on Kubernetes YAML files, see Kubernetes documentation.

API Gateway Configuration Guide 10.5 173

7 Kubernetes Support

This now pulls the image specified and creates the API Gateway pod with API Gateway
container connected to an Elasticsearch Kubernetes service.

Run the command kubectl get pods to view the pods created.

Kubernetes Sample Files

The API Gateway installation provides Kubernetes deployment samples located at
SAG_Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/K8s.

To use the samples to deploy API Gateway in the Kubernetes setup, you must adapt the samples
to configure the required specifications. Depending upon the Kubernetes deployment model, use
the respective Kubernetes sample deployment files. API Gateway provides the following three
sample deployment files:

api-gateway-deployment-embedded-elasticsearch.yaml

This file shows how to deploy anAPIGatewaywith an embeddedElasticsearch to aKubernetes
cluster. Required information you have to specify before you use this file are: container name,
the path to your API Gateway image stored in a docker registry and container port.

api-gateway-deployment-external-elasticsearch.yaml

This file shows how to deploy an API Gateway an API Gateway without elasticsearch to a
kubernetes cluster. You must have an external Elasticsearch to be up and running. Required
information you have to specify before you use this file are: container name, the path to your
API Gateway image stored in a docker registry, container port, and information to access your
external Elasticsearch.

api-gateway-deployment-sidecar-elasticsearch.yaml

This file shows how to deploy an API Gateway with an Elasticsearch as a sidecar container
(side car means the Elasticsearch container is deployed within the pod of the API Gateway)
to a Kubernetes cluster. Required information you have to specify before you use this file are:
API Gateway container name, the path to your API Gateway image stored in a docker registry,
Elasticsearch container name, and the path to the Elasticsearch image.

The sample file also deploys an application service for the selected deployment. You can specify
the configuration details for the service to be deployed. You can create and start all the services
from your configuration with a single command.

Helm Chart

TheAPIGateway installation provides a sample helm chart. API Gateway usesHelm to streamline
the Kubernetes installation andmanagement. Helm allows you to easily templatize the Kubernetes
deployments and provides a set of configuration parameters that you can use to customize the
deployment. Helm chart combines the Kubernetes deployments and provides a service tomanage
them.

The Helm chart covers the following Kubernetes deployments:

A pod with containers for API Gateway, Elasticsearch, and Kibana

174 API Gateway Configuration Guide 10.5

7 Kubernetes Support

A pod with containers for API Gateway and Kibana

A pod with containers for API Gateway and Kibana that supports clustering

The Helm chart supports a values.yaml file for the following Elasticsearch configurations:

Embedded Elasticsearch

External Elasticsearch

Elasticsearch in a sidecar deployment

The values.yml file passes the configuration parameters into theHelm chart. A sample values.yaml
file is available at
SAG_Root/IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/helm/sag-apigateway.
Provide the required parameters in this file to customize the deployment.

Using Helm to Start the API Gateway Service

To use Helm chart to start the API Gateway service

1. Install and initialize Helm and then create a Helm chart.

For details, see https://github.com/helm/helm/blob/master/docs/quickstart.md#install-helm?.

This creates a standard layout with some basic templates and examples. Use the templates to
easily templatize your Kubernetes manifests. Use the set of configuration parameters that the
templates provide to customize your deployment.

2. Update the values.yaml file with the required information, such as the URL pointing to your
repository, the port and service details, and the deployment type for which you want to create
a service. The values.yml file passes the configuration parameters into the helm chart.

3. Navigate to the working folder where the charts are stored, and run the following command.

helm install sag-api-gateway-10.5

Where, sag-api-gateway-10.5 is the Helm chart name.

The Kubernetes cluster starts API Gateway and the service.

OpenShift Support

RedHat OpenShift is a container platform built upon and extends the Kubernetes functionality.
In addition to Kubenetes' ability of orchestrating containerized applications, OpenShift provides
support for the complete CI/CD life cycle of applications, called Source-To-Image.

The API Gateway OpenShift support provides the following, in the same way as the Kubernetes
support does:

Liveliness check. This helps in verifying that the API Gateway container is up and running.

API Gateway Configuration Guide 10.5 175

7 Kubernetes Support

https://github.com/helm/helm/blob/master/docs/quickstart.md#install-helm?

Readiness check. This helps in verifying that the API Gateway container is ready to server
requests.

Prometheus metrics to support the monitoring of API Gateway pods.

Kubernetes-specific logging.

Architectural patterns for running Elasticsearch as embedded, sidecar, or external.

Auto scaling.

OpenShift extends Kubernetes and introduces new objects. For example, Kubernetes deployment
is called DeploymentConfig and has the version id apps.openshift.io/v1 . In order tomake services
accessible from outside the cluster, OpenShift provides Route objects. The images required to start
containers are not necessarily referenced directly inside the container specification, rather they
can be managed by ImageStream objects.

OpenShift has a specificway for running ElasticSearch containers. ElasticSearch needs an increased
virtual memory mmap count: vm.max_map_count >= 262144. In a plain Kubernetes environment
you can solve this by adding an initContainer that has to run in the privileged mode. OpenShift
offers amuch simpler solution. If a pod carries a specific label thenOpenShift applies the necessary
system changes behind the scenes when starting the pod's containers.

For details on how these OpenShift specific topics are reflected in YAML configuration files for
API Gateway, see “OpenShift Sample Files” on page 178.

When starting a new container, by default, OpenShift ignores the built-in user of theDocker image
and injects a new user. This user is a member of the root group, and hence the files, scripts, and
programs inside the container have to be readable, writable, and executable by the root group. To
understand how to work with this OpenShift behavior, see the following sections:

“Building aDocker Image for anAPIGateway Instance inOpenShift Environment” on page 176

“Running the API Gateway Docker Image with the sagadmin User” on page 177

Building a Docker Image for an API Gateway Instance in
OpenShift Environment
When starting theAPIGateway container, OpenShift ignores the built-in user of theDocker image
and injects a new user. This user is a member of the root group, and hence the files, scripts, and
programs inside the API Gateway container have to be readable, writable, and executable by the
root group. To build a Docker image that fulfills these requirements, perform the procedure
outlined.

To build a docker image for an API Gateway instance in an OpenShift environment

1. Follow the steps outlined in “Building the Docker Image for an API Gateway Instance ” on
page 151.

Ensure that you have set the parameters --target.configuration and --os.image specific to
the OpenShift environment.

176 API Gateway Configuration Guide 10.5

7 Kubernetes Support

The resultingDocker file uses chgrp and chmod commands to assign proper permissions to the root
group. Running these commands almost doubles the Docker image size, hence the Docker file is
organized as a multi-stage build where the first stage prepares the file system with root group
permissions, and the second stage copies this into the final image. For the second stage, it is
necessary to specify the base operating system image using the --os.image parameter, unless the
default value, centos:7, is sufficient. As the API Gateway Docker image builds upon a previously
created Integration Server Docker image, the value of the --os.image parameter is same as the
value of the -Dimage.name parameter that is used in the creation of the Integration Server image.

The resulting API Gateway image has the built-in sagadmin user, but due to the adapted root
group permissions, the image can be deployed to an OpenShift cluster.

Note:
The resultingAPI Gateway image can also be deployed to Docker or Kubernetes systemswhere
it is deployed under the control of the sagadmin user.

Running the API Gateway Docker Image with the sagadmin
User
If you do not want to use the default OpenShift behavior of starting the API Gateway container
with an arbitrary root group user, you have to create a special service account with corresponding
permissions using the oc command line tool of OpenShift.

To run the API Gateway Docker image with the built-in sagadmin user

1. Switch to the API Gateway project where you intend to deploy API Gateway.

oc project API Gateway project name

2. Create a service account runassagadmin.

oc create serviceaccount runassagadmin

3. Assign the permission to the service account runassagadmin to use the built-in user of the
Docker image.

oc adm policy add-scc-to-user anyuid -z runassagadmin

Note:
You must have OpenShift administrator privileges to perform this step.

4. In the DeploymentConfig.yaml file for API Gateway, set the field
spec.template.spec.serviceAccountName to the name of the newly created service account.

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
name: api-gateway-deployment

spec:

API Gateway Configuration Guide 10.5 177

7 Kubernetes Support

template:
spec:

serviceAccountName: runassagadmin

In the API Gateway sample YAML file, described in “OpenShift Sample Files” on page 178
section, the serviceAccountName field is pre-populatedwith the default service account default
for OpenShift.

5. Apply the modified DeploymentConfig YAML file.

oc apply -f modified deploymentconfig for API Gateway

Note:
The API Gateway Docker image referenced in the DeploymentConfig YAML file can be any
APIGatewayDocker image. It is not necessary to build it using the --target.configuration
parameter as described in “Building a Docker Image for an API Gateway Instance in
OpenShift Environment” on page 176.

OpenShift Sample Files
API Gateway installation provides OpenShift deployment samples located at SAG_Root/
IntegrationServer/instances/default/packages/WmAPIGateway/resources/samples/OpenShift.
To use the samples to deploy API Gateway to an OpenShift cluster, you must adapt the samples
to configure the required specifications.

TheOpenShift samples are conceptually identical to the ones described in the “Kubernetes Sample
Files” on page 174 section and support the same architectural patterns for ElasticSearch. This section
highlights the parts that are specific to OpenShift environment.

OpenShift uses a DeploymentConfig object with API version apps.openshift.io/v1 to describe a
deployment. The section in the sample file is as follows:
apiVersion: apps.openshift.io/v1
kind: DeploymentConfig

If you have a pod labeled as tuned.openshift.io/elasticsearch, then OpenShift automatically
changes the required system settings on themachinewhere the podwith the ElasticSearch container
is started. The section in the sample file is as follows:
template:
metadata:

labels:
deploymentconfig: api-gateway-deployment
tuned.openshift.io/elasticsearch: ""

In OpenShift, use the ImageStream and ImageStreamTag objects to reference the image to be used
for a container instead of specifying the image namedirectly in the spec.template.spec.containers
section. The section in the sample file is as follows:
triggers:
- type: ConfigChange
- type: ImageChange

imageChangeParams:

178 API Gateway Configuration Guide 10.5

7 Kubernetes Support

automatic: true
containerNames:
- api-gateway-deployment
from:

kind: ImageStreamTag
name: api-gateway-deployment:10.7

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
name: api-gateway-deployment

spec:
lookupPolicy:

local: false
tags:
- from:

kind: DockerImage
Please fill in the path to your api gateway image stored in a docker registry.
name: <yourDockerRegistry>:<RegistryPort>/<PathToApiGateway>:10.7

importPolicy: {}
name: "10.7"
referencePolicy:

type: Source

Use the Route objects that OpenShift provides to make a service visible outside the cluster. Note
that the URL specified in the spec.host parameter is unique across the whole OpenShift cluster.
The section in the sample file is as follows:
apiVersion: route.openshift.io/v1
kind: Route
metadata:
name: api-gateway-ui

spec:
Provide a URL that will be visible outside of the OpenShift cluster
host: api-gateway-ui.apps.<yourClusterBaseUrl>
port:

targetPort: 9072-tcp
subdomain: ""
to:

kind: Service
name: api-gateway-service
weight: 100

wildcardPolicy: None

API Gateway Configuration Guide 10.5 179

7 Kubernetes Support

180 API Gateway Configuration Guide 10.5

7 Kubernetes Support

8 Configuration Properties

■ Configuration Types and Properties ... 182

API Gateway Configuration Guide 10.5 181

Configuration Types and Properties

This section describes the configuration types and parameters that you must configure for API
Gateway.

The configuration types are broadly classified as web-app, API Gateway package-level, and
Elasticsearch configurations.

webApp Configuration Properties
These properties are not cluster-aware and, hence, youmust manually copy them to all the nodes.

General properties

Location: SAG_root/profiles/IS_instance_name/apigateway/config/uiconfiguration.properties.

apigw.auth.priority

API Gateway supports both Form-based and SAML-based authentication. If both are enabled,
this property decides the login page to be displayed, by default, when a user visits the login page
http://host:port/apigatewayui. A user can go to a specific login page using:

Form: http://host:port/apigatewayui/login

SAML: http://host:port/apigatewayui/saml/sso/login

Possible values: Form, SAML.

Default value is Form.

apigw.auth.form.enabled

This property enables or disables Form-based authentication. If both SAML and Form are disabled,
the value Form is retained by default.

Possible values: true, false.

Default value is true.

apigw.auth.form.redirect

If a protected resource is accessed and the Form-based authentication is enabled, user is redirected
to this page.

Default value is /login.

apigw.is.base.url

Host where the IS package is hosted. localhost is replaced by the hostname that is resolved through
localhost.

Note:

182 API Gateway Configuration Guide 10.5

8 Configuration Properties

The port changes to the default port of the Integration Server instance irrespective of HTTP or
HTTPS.

Default value is http://localhost:port. Here, port denotes the port that is configured at the time
of installation.

apigw.user.lang.default

This property denotes the language to be used in the API Gateway UI.

Default value is en (English).

apigw.is.timeout

This property denotes the user session timeout value in minutes.

Default value is 90.

Kibana

Location : SAG_root/profiles/IS_instance_name/apigateway/config/uiconfiguration.properties

apigw.kibana.autostart

Specifies whether Kibana should be started as part of web-app.

Possible values: true, false.

Default value is true.

apigw.kibana.url

Denotes the URL where Kibana is running. localhost is replaced by the hostname that is resolved
through localhost. The port and other configurations of the Kibana can be changed from
SAG_root/profiles/IS_instance_name/apigateway/kibana-4.5.1/config/kibana.yml

Default value is http://localhost:9405

apigw.es.url

Denotes the URL where API Gateway Data Store (HTTP) is running. localhost is replaced by the
hostname that is resolved through localhost.

Default value is http://localhost:port

port denotes the API Gateway Data Store HTTP port configured during installation.

Note:
If the configured host resolves to the host name of the localhost, the port changes to the HTTP
port configured in the SAG_root/InternalDataStore/config/elasticsearch.yml file.

kibana.process.stop.signal.number

Specifies the signal number to be used when stopping the Kibana process.

API Gateway Configuration Guide 10.5 183

8 Configuration Properties

The default signal number is SIGINT(2).

SIGINT(2) stops the Kibana process without producing a core dump. This property is applicable
only for Linux Operating System. For information about the signals, see https://www.linux.org/
threads/kill-commands-and-signals.8881/.

API Gateway Package Configuration Properties
API Gateway uses API Gateway Data Store (Elasticsearch) as its data repository. API Gateway
starts the API GatewayData Store instance, if configured, using the default configuration shipped
and located at SAG_root/InternalDataStore/config/elasticsearch.yml

Note:
To runAPIGatewayData Store instances in a cluster, the elasticsearch.ymlfilemust be updated
on each instance. For additional details, see https://www.elastic.co/guide/en/elasticsearch/
guide/current/important-configuration-changes.html#important-configuration-changes.

Location : SAG_root/IntegrationServer/instances/IS_Instance_Name/packages/WmAPIGateway/
config/resources/elasticsearch/config.properties

pg.gateway.elasticsearch.autostart

Denotes the flag to manage (start or stop) API Gateway Data Store as part of API Gateway. Set it
to false if the start or stop of API Gateway Data Store is managed from outside the API Gateway.

Possible values: true, false.

Default value is true.

pg.gateway.elasticsearch.http.connectionTimeout

Denotes maximum time in milliseconds API Gateway waits for API Gateway Data Store to start
and stop if autostart is set to true.

Default value is 10000.

pg.gateway.elasticsearch.config.location

Denotes the location of the config file. If you have to use a different config file, mention the location
of the config file here.

Default value is SAG_root/InternalDataStore/config/elasticsearch.yml

Note:

If theAPIGatewayData Store hostname is same as localhost, then the system automatically
modifies the value of <prop key=cluster.name> in
SAG_root/IntegrationServer/instances/IS_Instance_Name/packages/WmAPIGateway/
config/resources/beans/gateway-datastore.xml to cluster.name property in the
elasticsearch.yml file.
If theAPIGatewayData Store hostname is same as localhost, then the system automatically
modifies the port value of localhost:9340 in
SAG_root/IntegrationServer/instances/IS_Instance_Name/packages/WmAPIGateway/

184 API Gateway Configuration Guide 10.5

8 Configuration Properties

https://www.linux.org/threads/kill-commands-and-signals.8881/
https://www.linux.org/threads/kill-commands-and-signals.8881/

config/resources/beans/gateway-datastore.xml to transport.tcp.port property in the
elasticsearch.yml file.
Ensure that the cluster.name and transport.tcp.port properties are in synchronization if
you encounter any errors.

Configuration Properties to Secure Elasticsearch
The section lists the configuration properties to secure Elasticsearch. For additional details about
the configuration properties, see https://docs.search-guard.com/.

Server :SAG_root/InternalDataStore/config/elasticsearch.yml

DescriptionItem

TRANSPORT (2-Way authentication is enabled by default)

Type of keystoresearchguard.ssl.transport.keystore_type

Possible values: JKS, PKCS12

Default value: JKS

Location where the keystore is stored.searchguard.ssl.transport.keystore_filepath

Keystore entry name if there are more
than one entries.

searchguard.ssl.transport.keystore_alias

Password to access keystore.searchguard.ssl.transport.keystore_password

Type of truststoresearchguard.ssl.transport.truststore_type

Possible values: JKS, PKCS12

Default value: JKS

Location where the truststore is stored.searchguard.ssl.transport.truststore_filepath

Truststore entry name if there are more
than one entries.

searchguard.ssl.transport.truststore_alias

Password to access truststore.searchguard.ssl.transport.truststore_password

Specifies whether to verify host names
specified in the certificate

searchguard.ssl.transport.enforce_hostname_verification

Possible values: true, false

false. The hostname specified in the
certificate is not validated. This is the
default setting and is used for any
general purpose self-signed
certificate.

API Gateway Configuration Guide 10.5 185

8 Configuration Properties

https://docs.search-guard.com/

DescriptionItem

true. The hostname specified in the
certificate is validated.

Default value: false

Applicable only if above property is true.
If true, the hostname is resolved against

searchguard.ssl.transport.resolve_hostname

the DNS server. Set this to false if it is
general purpose self-signed certificate

Possible values: true, false

Default value: true

Use if OpenSSL is available instead of
JDK SSL

searchguard.ssl.transport.enable_openssl_if_available

Possible values: true, false

Default value: true

HTTP

Set this to true to enable the SSL for REST
interface (HTTP)

searchguard.ssl.http.enabled

Possible values: true, false

Default value: true

Type of keystoresearchguard.ssl.http.keystore_type

Possible values: JKS, PKCS12

Default value: JKS

Location where the keystore is stored.searchguard.ssl.http.keystore_filepath

Keystore entry name if there are more
than one entries.

searchguard.ssl.http.keystore_alias

Password to access keystore.searchguard.ssl.http.keystore_password

Type of truststoresearchguard.ssl.http.truststore_type

Possible values: JKS, PKCS12

Default value: JKS

Location where the truststore is stored.searchguard.ssl.http.truststore_filepath

Truststore entry name if there are more
than one entries.

searchguard.ssl.http.truststore_alias

186 API Gateway Configuration Guide 10.5

8 Configuration Properties

DescriptionItem

Password to access truststore.searchguard.ssl.http.truststore_password

Option to enable 2-way authentication.searchguard.ssl.http.clientauth_mode

REQUIRE: Client requires the client
certificate.

OPTIONAL: Client may require the
client certificate.

NONE: Ignores client certificate even if
it is available.

Possible values: REQUIRE, OPTIONAL, NONE.

Default value: OPTIONAL.

Search Guard Admin

Search Guard maintains all the data in
an index called searchguard. This is

searchguard.authcz.admin_dn

accessible only to users (client certificate
is passed in sdadmin command)
configured here.

Miscellaneous

All certificates used by the nodes on
transport level should have the oid field

searchguard.cert.oid

set to a specific value. This oid value is
checked by Search Guard to identify if
an incoming request comes from a
trusted node in the cluster. If yes, all
actions are allowed. If no, privilege
checks apply. Also, the oid is checked
whenever a node wants to join the
cluster.

'1.2.3.4.5.5'

Server :SAG_root/InternalDataStore/sagconfig Folder

This folder contains all the self-signed certificates and default SearchGuard security configurations.
The default configuration allowsdemouser client certificate as valid user for TCP communication,
and enforces basic authentication for the credentials Administrator and manage.

hash.sh (SAG_root/InternalDataStore/plugins/search-guard-7/tools) tool shipped with Search
Guard is used to hash the user passwords.

API Gateway Configuration Guide 10.5 187

8 Configuration Properties

Client :SAG_root/IntegrationServer/instances/Instance_Name/packages/WmAPIGateway/config/
resources/beans/gateway-datastore.xml.

DescriptionItem

Indicates whether the client should use secure
transport

searchguard.ssl.transport.enabled

Possible values: true, false

Default value: true

All TRANSPORT properties, which are mentioned above, are applicable for the client as well.

Client :SAG_root/profiles/IS_Instance_Name/apigateway/dashboard/config/kibana.yml.

DescriptionItem

Username to be used if basic authentication is enabled.elasticsearch.username

Disable all SSL checks including the hostname and
certificate validation. Set this to true if it is general
purpose self signed certificates

elasticsearch.ssl.verify

Possible values: true, false

Default value: true

Path of client certificate to be sent to Elastisearch. This
is required if 2-way authentication is enabled.

elasticsearch.ssl.cert

If verify is true, this denotes the path to the CA
certificate which is used to sign other certificates.

elasticsearch.ssl.ca

Password to be used if basic authentication is enabled.elasticsearch.password

188 API Gateway Configuration Guide 10.5

8 Configuration Properties

9 API Gateway Data Management

■ Data Backup and Restore .. 190

■ API Gateway Backup and Restore Commands .. 193

■ Backing up API Gateway Configuration Data ... 194

■ Restoring API Gateway Configuration Data ... 198

API Gateway Configuration Guide 10.5 189

Data Backup and Restore

You can take regular backups of the internal databasewhere API Gateway data is stored to protect
against accidental data loss. You can take a backup of complete API Gateway data that includes
analytics data and assets data or you can take a partial backup that includes the backup of assets
data or backup of analytics data. When you take a backup, you copy the contents of the repository
to a file or to a cloud storage. At a later stage, you can retrieve the contents of the backup and
restore them to API Gateway.

Note:

API Gateway supports incremental backup. For example, if you have taken a backup of 50
GB and there is an increase in backup to 52 GB, API Gateway takes a backup of the new 2
GB data added.
While performing a backup, the database experiences additional load, therefore, SoftwareAG
recommends taking a backupwhen the usage is low so as to avoid performance degradation.
While restoring the backup from the repository, API Gateway replaces the existing data in
API Gateway.
API Gateway is not accessible when database restore is in progress.

To take a complete or partial backup of the API Gateway data and restore it to API Gateway, you
can use the API Gateway command line utility. To back up and restore the database in command
line, use the apigatewayUtil.bat and the apigatewayUtil.sh files available in the Integration
Server_directory/instances/instance_id/packages/WmAPIGateway/cli/bin folder for Windows
and UNIX systems respectively.

Note:
If you have installed the 10.5 Fix 4 version, you cannot restore the data backed up from a lower
version. You can restore data only from version 10.5 Fix 4 or above. That is, you cannot restore
data backed up from 10.5 Fix 3; however, you can restore data backed up from Fix 4 or above.

API Gateway supports the following storage platforms:

Network File System (NFS)

Amazon Simple Storage Service (S3)

Note:
You must install the Amazon Web Services (AWS) cloud plugin if you want to use the
Amazon S3 storage platform. To install the AWS cloud plugin, run the following command
and restart Integration Server: Integration Server_directory InternalDataStore/bin/
elasticsearch-plugin install repository-s3

Using NFS Storage Platform

API Gateway uses NFS as the default repository in which the backup is stored. You can configure
the repositories in which the backup is stored either in NFS or Amazon S3 cloud. However, you
can create a single repository and place all the backup files in that repository.

Taking a backup:

190 API Gateway Configuration Guide 10.5

9 API Gateway Data Management

By default, API Gateway stores the backup in the Integration Server_directory/
InternalDataStore/archives/ directory. For example, if you run the command,
apigatewayUtil.sh create backup -name backup_file_name, to take a backup, the backup is
saved in the Integration Server_directory/InternalDataStore/archives/default directory.

Restoring a backup:

To restore the data taken as backup to API Gateway, run the following command:
apigatewayUtil.sh restore backup -name backup_file_name

Note:
Once the backup is restored, you must restart the API Gateway instance.

Restoring backup to a new instance:

1. Copy the data from Integration Server_directory/InternalDataStore/archives/directory
where the backup data is available.

2. Go to the Integration Server_directory/InternalDataStore/archives/ directory where
the backup data is to be restored and ensure that you delete any existing data in this
directory.

3. Paste thedata in the Integration Server_directory/InternalDataStore/archives/directory.

4. Run the following command to restore the data: apigatewayUtil.sh restore backup -name
backup_file_name

Note:
Once the backup is restored, you must restart the API Gateway instance.

Specifying NFS Directory path:

For API Gateways in a clustered environment, you must specify a NFS directory path. This
directory path is a shared file location, which must be accessible to all the API Gateway nodes
in the cluster to take a backup and restore the backup files.

1. Configure the NFS directory path before creating the NFS repository in Elasticsearch by
running the following command: apigatewayUtil.sh configure fs_path -path
c://sample//APIGATEWAY

2. Restart Integration Server tomake the newNFSdirectory path available to store the backup,
else the backup is stored in the default location.

Using Amazon S3 Storage Platform

You can save your backups to Amazon S3 cloud.

Creating a repository:

1. From the command prompt, go to Integration Server_directory /InternalDataStore/bin/.

2. Run the following command to create the Elasticsearch keystore file:
elasticsearch-keystore.bat create

API Gateway Configuration Guide 10.5 191

9 API Gateway Data Management

3. Run the following command to add the Amazon S3 repository access key to your
Elasticsearch keystore:
elasticsearch-keystore.bat add s3.client.default.access_key

4. When prompted to enter the Amazon S3 repository access key, type the access key value
and press Enter.

Example:
Enter value for s3.client.default.access_key: 123-test-123d-123

5. Run the following command to add the Amazon S3 repository secret key:
elasticsearch-keystore.bat add s3.client.default.secret_key

6. When prompted to enter the Amazon S3 repository secret key, type the secret key value
and press Enter.

Example:
Enter value for s3.client.default.secret_key: tests1232sk12312t

7. Run the following command:

apigatewayUtil.sh configure manageRepo -file file_path

where file_path is the path where the Amazon S3 cloud details are specified.

For example, apigatewayUtil.sh configure manageRepo -file Integration
Server_directory/instances/instance_id/packages/WmAPIGateway/cli/bin/conf/gateway-s3-repo.cnf.

8. Go to Integration Server_directory/instances/instance_id/packages/WmAPIGateway/
cli/bin/conf.

9. Open the gateway-s3-repo.cnf file.

10. Configure the Amazon S3 details in the gateway-s3-repo.cnf file.

After modifying the gateway-s3-repo.cnf file, run the following command:
apigatewayUtil.sh configure manageRepo -file <file_path>

For example, apigatewayUtil.sh configure manageRepo -file Integration
Server_directory/instances/instance_id/packages/WmAPIGateway/cli/bin/conf/gateway-s3-repo.cnf

11. To enable encryption of the backup data, set the server_side_encryption property to true.
The backup files saved in the backup files in the S3 repository are encrypted using the
AES256 algorithm.

12. To complete the repository creation process, restart your Elasticsearch and Integration
Service instances.

Taking a backup:

To take a backup of the data, run the following command: apigatewayUtil.sh create backup
-name backup_file_name

192 API Gateway Configuration Guide 10.5

9 API Gateway Data Management

Note:
The backup_file_namemust be specified in lowercase.

Restoring a backup:

To restore the data taken as backup to API Gateway, run the following command:
apigatewayUtil.sh restore backup -name backup_file_name

Note:
Once the backup is restored, you must restart the API Gateway instance.

Restoring backup to a new instance:

1. Create a repository using Amazon S3 if not already created.

Note:
The Amazon S3 details which you provide in the gateway-s3-repo.cnf should point to
the location where you have the backup files which were taken earlier.

2. In case of multiple backups, run the following command to retrieve a list of backups:
apigatewayUtil.sh list backup

3. Run the following command to restore the data using the required backup file:
apigatewayUtil.sh restore backup -name backup_file_name

Note:
Once the backup is restored, you must restart the API Gateway instance.

API Gateway Backup and Restore Commands

You can use a command-line interface (CLI) script to back up data that is stored on API Gateway
Data Store. You can use the CLI script to restore database after a data failure or hardware failure
on the API Gateway instance.

In a command line, go to <Integration Server_directory>\instances\default\packages\
WmAPIGateway\cli\bin and run the following commands to take a database backup or restore the
database from a backup:

CommandIf you want to...

apigatewayUtil.sh create backup -name <backupFilename>Backup data

apigatewayUtil.sh create backup -name <backupFile_name> -include
<reference name> Possible values for the parameter reference name:

Backup custom data

analytics - to back up analytical data.

assets - to back up asset data.

apigatewayUtil.sh delete backup -name <backupFile_name>Delete the backed up
data

API Gateway Configuration Guide 10.5 193

9 API Gateway Data Management

CommandIf you want to...

apigatewayUtil.sh restore backup -name <backupFile_name>Restore the backed up
data

apigatewayUtil.sh list backupTo retrieve all available
backup files in the
repository

apigatewayUtil.sh delete manageRepoDelete a repository from
API Gateway

apigatewayUtil.sh list manageRepoTo retrieve all available
repositories

apigatewayUtil.sh configure manageRepo -file <file_path>To configure a
repository in S3

apigw-backup-tenant.sh -backupDestinationDirectory
<directory_path_to_store_backup_file> -backupFileName

Backup configurations
and data

<backup_file_name_without_spaces> -backupTemplate
<file_path_to_backup_template> -packagesTemplate
<file_path_to_packages_template> -help

apigw-restore-tenant.sh -backupFileName
<backup_file_name_without_spaces> -backupDestinationDirectory

Restore the backed up
configurations and data

<directory_path_to_store_backup_file> -filesToSkip
<file_path_to_files_to_skip> -skipDataRestore -help

Pre-requisites for Backing up and Restoring Data

The following points are to be considered in the API Gateway instances used for backup and
restore:

The Software AG root installation directory must be the same.

The Integration Server instance name must be the same.

The ports defined for the API Gateway webApp, Integration Server, and the API Gateway
Data Store must be the same.

Backing up API Gateway Configuration Data

You can back up the API Gateway configuration information and data. At a later stage, you can
restore the API Gateway Data Store from the backup archive.

The configuration backups are performed using the following commands:

apigw-backup-tenant.bat - Windows.

apigw-backup-tenant.sh - Linux.

194 API Gateway Configuration Guide 10.5

9 API Gateway Data Management

This command creates a backup archive of the API Gateway configuration information and data.
It is typically used in the disaster recovery scenarios to backup the data periodically and restore
the data in event of any disaster.

Thedefault location of the backedupdata is the Integration Server_directory/InternalDataStore/
archives directory. You can write the backed up data to the InternalDataStore/archives folder
mount from an external NFS or S3 service. API Gateway uses NFS as the default repository in
which the backup is stored.

Pre-requisites for Backing up in a Distributed Environment

The following points are to be considered if APIGateway is installed in a clustered high availability
setup:

Configure a path to backup the API Gateway Data Store.

Restart the API Gateway Data Store.

To backup configurations and data

Run one of the following commands depending on your operating system:

Windows -
C:/SoftwareAG/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin>
apigw-backup-tenant.bat -backupDestinationDirectory
directory_path_to_store_backup_file
-backupFileName backup_file_name_without_spaces
-backupTemplate file_path_to_backup_template
-packagesTemplate file_path_to_packages_template
-help

Linux -
C:/SoftwareAG/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin>
apigw-backup-tenant.sh -backupDestinationDirectory
directory_path_to_store_backup_file
-backupFileName backup_file_name_without_spaces
-backupTemplate file_path_to_backup_template
-packagesTemplate file_path_to_packages_template
-help

API Gateway Configuration Guide 10.5 195

9 API Gateway Data Management

In the example, the backup command is run with the -backupDestinationDirectory and
-backupFileName parameters.

The input parameters are:

DescriptionParameter

Mandatory. Path to the destination folder where you want
to create the backup.

-backupDestinationDirectory

Example:

C:/SoftwareAG/AnotherBackupLocation

Specify this option only if you want to create the backup in
a local directory or NFS itself.

196 API Gateway Configuration Guide 10.5

9 API Gateway Data Management

DescriptionParameter

Optional.Name of the file for the data backup.-backupFileName

Note:
The file name must not contain any spaces.

Default value is apigw_disaster_recovery_backup

If a file name is not specified, the default value is
automatically set for this parameter.

Optional.Name of the backup template along with its
location.

-backupTemplate

Example:

C:/SoftwareAG/tenant-backup-template.txt

Note:
The paths specified in the backup file should be relative
to the Software AG root installation folder
<SAGInstallDir>

Default value is
C:/SoftwareAG/IntegrationServer/instances/instance_name
/packages/WmAPIGateway/cli/bin/conf/tenant-backup-template.txt.

The backup file (tenant-backup-template.txt) contains a
list of configuration files and folders that need to be backed
up, with one file or folder name in each line. The backup file
can also include custom configuration files, that are defined
specifically for a particular API Gateway instance.

Optional.Name of the backup packages template alongwith
its location. This file contains a list of custom packages to be
backed up and includes one package name in each line.

-packagesTemplate

Default value is conf/tenant-backup-packages.txt

Optional. Prints the help text summarizing the input
parameters of this command.

-help

The apigw-backup-tenant command creates the following entries in
-backupDestinationDirectory:

A ZIP filewith the name specified for the parameter -backupFileName. This ZIP file contains
the backup of API Gateway configurations.

If a file name is not specified in this parameter, then the command creates a ZIP file named
apigw_disaster_recovery_backup.zip.

API Gateway Configuration Guide 10.5 197

9 API Gateway Data Management

A folder named, default, within the zip file. This folder contains the backup ofAPIGateway
configuration data.

The backup command also creates a backup log file named backup-tenant.log in the
SAGInstallDir/IntegrationServer/instances/instance_name/packages/WmAPIGateway/cli/bin
directory.

Restoring API Gateway Configuration Data

You use the command tool apigw-restore-tenant.[bat|sh] to restore previously archived
configuration files and data on an API Gateway instance.

Note:
Restoring overwrites the existing content in your API Gateway instance.

Pre-requisites for Restoring in a Distributed Environment

The following points are to be considered if APIGateway is installed in a clustered high availability
setup:

The API Gateway Data Store must be active in only a single node in the cluster.

The API Gateway instance should be up and running.

To restore configurations and data

Run the command apigw-restore-tenant.sh

The syntax is of the format:
C:/SoftwareAG/IntegrationServer/instances/default/packages/WmAPIGateway/cli/bin>apigw-restore-tenant./sh
-backupFileName <backup_file_name_without_spaces> -backupDestinationDirectory
<directory_path_to_store_backup_file> -filesToSkip <file_path_to_files_to_skip>
-skipDataRestore -help

The input parameters are:

DescriptionParameter

Mandatory. Path to the destination folder where
the backup is available.

-backupDestinationDirectory

Example:

C:\SoftwareAG\AnotherBackupLocation

Specify this option only if you want the backup is
available in a local directory or NFS itself.

Mandatory. Name of the file for the data backup.-backupFileName

Note:

198 API Gateway Configuration Guide 10.5

9 API Gateway Data Management

DescriptionParameter

The file name must not contain any spaces.

Optional. Path to the data restore file.-filesToSkip

Example:

C:\SoftwareAG\skip-files.txt

Note:
The paths specified in the restore file should be
relative to the Software AG root installation
folder <SAGInstallDir>

Default value is
C:\SoftwareAG\IntegrationServer\instances\instance_name
\packages\WmAPIGateway\cli\bin\conf\skip-files.txt

The restore file (skip-files.txt) contains a list of
configuration files and folders that need to be
restored in theAPIGateway instance,with one file
or folder name in each line. If you do not want to
restore a specific configuration file, you can remove
it from this restore file.

Optional. Skips restoring of the API Gateway Data
Store (Elasticsearch) data.

-skipDataRestore

Optional.Prints the help text summarizing the input
parameters of this command.

-help

The apigw-restore-tenant command creates a restore log file named restore-tenant.log in
the
<SAGInstallDir>\IntegrationServer\instances\{instance_name}\packages\WmAPIGateway\cli\bin
directory.

Note:
The apigw-restore-tenant command automatically restarts the API Gateway instance.

Post-requisites in a Distributed Environment

If the API Gateway Data Store in active node does not start automatically, manually restart
the API Gateway Data Store.

Start the API Gateway Data Store in all other nodes in the cluster. This is important to
synchronize the data on a restored API Gateway instance with all other nodes in the cluster.

The API Gateway configuration files should be restored separately for each individual API
Gateway instance in the clustered environment.

API Gateway Configuration Guide 10.5 199

9 API Gateway Data Management

Run the command apigw-restore-tenantwith the parameter -skipDataRestore. This restores
the API Gateway configuration files without restoring the API Gateway Data Store data in all
other nodes in the cluster.

200 API Gateway Configuration Guide 10.5

9 API Gateway Data Management

10 API Gateway Staging and Promotion

■ Staging and Promotion ... 202

■ Asset Promotion in API Gateway ... 202

■ Promoting Assets Using webMethods Deployer .. 203

■ Promoting Assets Using Promotion Management API ... 206

API Gateway Configuration Guide 10.5 201

Staging and Promotion

API Gateway supports staging and promotion of assets. In a typical enterprise-level, solutions are
separated according to the different stages of Software Development Lifecycle (SDLC) such as
development, quality assurance (QA), and production stages. As each organization builds APIs
for easy consumption andmonetization, continuous integration (CI) and continuous delivery (CD)
is an integral part of the solution. Where, CI is a development practice that requires developers
to integrate code into a shared repository several times a day and CD is a software engineering
approach in which teams produce software in short cycles, ensuring that the software can be
reliably released at any time. Development of assets starts at the development stage and once the
assets are developed, they are promoted to the QA stage for testing, after testing of the assets is
complete, the assets are promoted to the deployment stage.

API Gateway provides tools and features to automate your CI and CD practices. Modifications
made to theAPIs, policies, and other assets can be efficiently delivered to the application developers
with speed and agility. For example, When you publish new applications, the API definitions
change. These changes are to be propagated to application developers. The API provider has to
update the associated documentation for the API or application. In most cases this process is a
tedious manual exercise. You can use API Gateway staging and promotion to address such cases
to automate API and policy management that makes deployment faster, introduces continuous
innovationwith speed and agility. This ensures that newupdates and capabilities are automatically,
efficiently, and securely delivered to their developers and partners, in a timely fashion andwithout
manual intervention.

Note:
Software AG recommends you to have API Gateway instances across stages to be completely
independent. For example, the API Gateway instances from the development stage and the API
Gateway instances from theQA stagemust not share any resources in common such as databases.

Asset Promotion in API Gateway

Promotion refers to moving API Gateway assets from one stage to another.

API Gateway staging and promotion allows you to:

promote all the run time assets such as API Gateway APIs, aliases, applications, policies, or
admin configurations across different stages.

select and promote a subset of assets from one stage to another stage. For example, you can
promote a single API and its policy dependencies from one stage to another.

select dependencies involvedwhile promoting an asset. For example, while selecting a service
for promotion, you must also select the dependent policies, applications, and so on.

202 API Gateway Configuration Guide 10.5

10 API Gateway Staging and Promotion

modify values of attributes of selected aliases during promotion.

roll back assets in case of failures.

Note:
During the promotion process ensure that both the source and the target system have the same
master password. For more information on promoting assets using the webMethods API
Gateway, see webMethods API Gateway User's Guide.

Promoting Assets Using webMethods Deployer

You can promote API Gateway assets from one stage to the other using webMethods Deployer.
webMethods Deployer is a tool you use to deploy user-created assets that reside on source
webMethods runtimes or repositories to target webMethods runtime components (runtimes). For
example, you might want to deploy assets you have developed on servers in a development
environment (the source) to servers in a test or production environment (the target).

The high level steps involved are as follows:

API Gateway Configuration Guide 10.5 203

10 API Gateway Staging and Promotion

Formore information on promoting assets usingwebMethods Deployer , seewebMethods Deployer
User’s Guide.

For details about the automation scripts provided byABE andDeployer and their usage to promote
assets from one stage to another, see http://techcommunity.softwareag.com/pwiki/-/wiki/Main/
Staging%2C%20Promotion%20and%20DevOps%20of%20API%20Gateway%20assets

DevOps Use Case using Asset Build Environment and webMethods Deployer

The API Gateway specific scripts that are provided as part of the Asset Build Environment and
webMethods Deployer can be used by continuous integration tools like Jenkins. The sample flow
is as follows:

204 API Gateway Configuration Guide 10.5

10 API Gateway Staging and Promotion

http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Staging%2C%20Promotion%20and%20DevOps%20of%20API%20Gateway%20assets
http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Staging%2C%20Promotion%20and%20DevOps%20of%20API%20Gateway%20assets

1. The developer makes changes to a development API Gateway instance.

2. A Jenkins job then uses the build script to pull data from this development instance and push
it to a version control system such as GIT.

3. Another job is used to pull it from a version control system and then use the webMethods
Deployer scripts to directly push it to the test instance. In this way, the test instance always
have the APIs.

Sample: Staging workflow

Sample: Staging call flow

API Gateway Configuration Guide 10.5 205

10 API Gateway Staging and Promotion

For detailed information about promoting assets using webMethods Deployer , see webMethods
Deployer User’s Guide.

Promoting Assets Using Promotion Management API

The promotion management capabilities allows for moving assets from lower to higher
environments. For details, see “Staging and Promotion” on page 202.

API Gateway enables continuous integration (CI) and continuous delivery (CD) practices to be
used for development, deployment, and promotion of the APIs, applications, other related assets,
and for supporting the use of DevOps tooling. There are different ways in which API Gateway
enables continuous integration (CI) and continuous delivery (CD).

The promotion management REST APIs allow for automation for CI/CD. For details about the
promotion management API, see the REST APIs section in the webMethods API Gateway User's
Guide.

DevOps Use Case using Promotion Management APIs

This example explains a sample DevOps use case using the promotion management APIs. You
can promote API Gateway assets from one stage to the other using API Gateway specific scripts
provided inGitHub. You can use the continuous integration tools like Jenkins andAzure to deploy
user-created assets that reside on source API Gateway instance or repositories to a target API
Gateway instance. For example, you might want to deploy assets you have developed on an API
Gateway instance in a development environment (the source) to an API Gateway instance in a
test or production environment (the target).

The high level steps to achieve this are as follows and are depicted in the illustration:

1. Create a stage-specific API Gateway environment.

2. Develop APIs.

3. Test the APIs.

206 API Gateway Configuration Guide 10.5

10 API Gateway Staging and Promotion

For details about various API Gateway-specific scripts and their usage, see https://github.com/
SoftwareAG/webmethods-api-gateway-devops.

API Gateway Configuration Guide 10.5 207

10 API Gateway Staging and Promotion

https://github.com/SoftwareAG/webmethods-api-gateway-devops
https://github.com/SoftwareAG/webmethods-api-gateway-devops

208 API Gateway Configuration Guide 10.5

10 API Gateway Staging and Promotion

11 Mediator Migration to API Gateway

■ Migrating Mediator to API Gateway .. 210

API Gateway Configuration Guide 10.5 209

Migrating Mediator to API Gateway

API Gateway supports the migration of Mediator 9.7 and later; the earlier versions of Mediator
should be migrated first.

Migrating Mediator Deployments to API Gateway

ExistingMediator deployments can bemigrated toAPIGateway by publishing the virtual service,
applications, and runtime aliases to API Gateway. This lets you build an API Gateway runtime
enforcement landscape in parallel to the existing Mediator landscape.

To migrate the existing Mediator deployments, perform the following procedure:

For all installed Mediators:

1. Stop Mediator.

2. Install corresponding API Gateway.

3. Migrate Mediator configuration to API Gateway.

For all Mediator targets configured in CentraSite:

1. Configure a corresponding API Gateway in CentraSite.

2. Deploy all virtual services from the Mediator target to the corresponding API Gateway.

3. (Optional) Undeploy all virtual services from the Mediator target.

Note:
The procedure assumes that the Mediators and the corresponding API Gateway provide the
same endpoints. Therefore either the Mediator or its corresponding API Gateway can be up
and running. If the endpoint compatibility is not required, it is not necessary to stop the
Mediators. Also, undeploying theMediator deployments is optional. This means thatMediator
and API Gateway instances can be driven by CentraSite in parallel.

Migrating Mediator Configurations to API Gateway

As the publishing of virtual services, applications, and runtime aliases to API Gateway is done
through CentraSite, CentraSite is required for migrating Mediator to API Gateway.

To migrate existing Mediator configurations to API Gateway

1. Run IS migration using the IS migration tool.

For details of the IS migration tool, see Upgrading Software AG Products.

2. Run Mediator migration using the API Gateway migration tool.

The API Gateway migration tool is available within the IS instance running the API Gateway.
If API Gateway is running in the default IS instance the tool is available in the folder:
Install_Dir/IntegrationServer/instances/default/packages/WmAPIGateway/bin/migrate.

210 API Gateway Configuration Guide 10.5

11 Mediator Migration to API Gateway

The script migrateFromMediator.sh has two parameters:

Full path to Integration service installation running the Mediator to be migrated. (for
example, E:/SoftwareAG/IntegrationServer)

Name of the instance that is running the Mediator (for example, default)

On Unix the script can be invoked as follows:
./migrateFromMediator.sh /opt/softwareag/IntegrationServer default

OnWindows the script can be invoked as follows:
migrateFromMediator.bat C:\SoftwareAG\IntegrationServer default

3. Start API Gateway.

The Mediator configuration migration covers the following configuration items:

Elasticsearch

SNMP

Email

HTTP Configuration

Keystore Configuration

Ports Configuration

Service Fault

Extended Settings

The following configuration items are not automaticallymigrated. The configuration of these items
have to be done manually in API Gateway.

Security Token Service (STS) Configuration

apig_rest_service_redirect parameter: When you set this to true, the
apig_rest_service_redirect in the extended Administration setting in API Gateway REST
requests against the /mediator directivewill be redirected to the /gateway directive. Thismeans
that REST requests can be sent to /mediator and to /gateway.

Note that:

TheMediator configurationmigration can only be applied to a fresh API Gateway installation
once.

Onmigrating fromMediator toAPIGateway,APIGatewaydoes notmodify or change anything
that is part of the incoming request. The incoming request along with the query parameters
or headers is forwarded to the native service as it is without any modification. If you require
API Gateway to remove any invalid query parameters, in API Gateway UI, add webMethods
IS service under Request transformation policy > Advanced Transformation, configure
any flow service and select Comply to IS spec.

API Gateway Configuration Guide 10.5 211

11 Mediator Migration to API Gateway

212 API Gateway Configuration Guide 10.5

11 Mediator Migration to API Gateway

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	1 API Gateway Architecture
	API Gateway Deployment
	API Gateway Deployment Scenarios

	2 API Gateway Data Store
	Overview of API Gateway Data Store
	Administering API Gateway Data Store
	Securing Communication with API Gateway Data Store
	Command Line to Manage API Gateway Data Store

	3 API Gateway Configuration
	API Gateway Cluster Configuration
	Externalizing Configurations
	Connecting to an External Elasticsearch
	Connecting to an External Kibana
	Configuring Multiple Instances of API Gateway in a Single Installation
	Changing the JVM Heap Size to Tune API Gateway Performance
	Accessing the API Gateway User Interface
	Restarting API Gateway Using Scripts
	Restarting API Gateway Using User Interface

	4 Securing API Gateway and its Components
	Overview
	How Do I Secure API Gateway Server Communication with API Clients?
	How Do I Secure API Gateway Server Communication with Backend Services?
	How do I Secure API Gateway User Interface Communication?
	How do I Configure a Secure Communication Channel between API Gateway and API Portal?
	How do I Secure API Gateway Data Store Communication?
	Creating a Custom Keystore with Self-Signed Certificates

	5 API Gateway Configuration with Command Central
	Overview
	Installing API Gateway using Command Central
	Manage API Gateway Data Store Configurations in Command Central
	Manage API Gateway Product Configurations in Command Central
	Manage Inter-component and Cluster configurations

	6 Docker Configuration
	Overview
	Building the Docker Image for an API Gateway Instance
	Retrieving Port Information of the API Gateway Image
	Running the API Gateway Container
	Load Balancer Configuration with the Docker Host
	Stopping the API Gateway Container
	Managing API Gateway Images
	API Gateway Docker Container with Externalized Elasticsearch and Kibana
	API Gateway Container Cluster Configuration
	Running API Gateway Docker Containers with Docker Compose

	7 Kubernetes Support
	Overview
	Deploying API Gateway Pod with API Gateway and Elasticsearch Containers
	Deploying API Gateway Pod with API Gateway Container connected to an Elasticsearch Kubernetes Service
	Kubernetes Sample Files
	Helm Chart
	Using Helm to Start the API Gateway Service
	OpenShift Support

	8 Configuration Properties
	Configuration Types and Properties

	9 API Gateway Data Management
	Data Backup and Restore
	API Gateway Backup and Restore Commands
	Backing up API Gateway Configuration Data
	Restoring API Gateway Configuration Data

	10 API Gateway Staging and Promotion
	Staging and Promotion
	Asset Promotion in API Gateway
	Promoting Assets Using webMethods Deployer
	Promoting Assets Using Promotion Management API

	11 Mediator Migration to API Gateway
	Migrating Mediator to API Gateway

