
webMethods API Gateway User's Guide

Version 10.15

October 2022

This document applies to webMethods API Gateway 10.15 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2016-2024 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: YAI-UG-1015-20240403

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Documentation...5
Document Conventions...6
Online Information and Support...6
Data Protection...7

1 Define and Manage APIs...9
Defining and Managing APIs...10
Creating an API by Importing an API from a File...13
Creating an API by Importing an API from a URL...14
Creating an API from Scratch...15
Viewing API List and API Details..33
Searching Data in API Gateway...44
Filtering APIs..47
Configuring the Number of APIs listed on a Page..47
Modifying API Details...48
Updating APIs..48
Exporting Specifications..52
Attaching Documents to an API...53
API Grouping..55
API Tagging...55
Versioning APIs..58
Deleting APIs..59
Example: Managing an API..61
CentraSite Provided APIs..70

2 Implement APIs...73
API Implementation...74
API Mocking...74
Consumer Applications...79
Policies..93
Aliases..454
Global Policies...471
Scope-level Policies...489
Example: Usage Scenarios of API Scopes...498
Policy Templates...502
Change Ownership of Assets..512
Debugging API...519
API Mashups...538
SOAP to REST Transformation...548
API First Implementation..556
Troubleshooting Tips: Implement APIs..563

3 Publish APIs...565

webMethods API Gateway User's Guide 10.15 iii

Why Publish APIs?...566
Activating an API...566
Deactivating an API...570
Exposing a REST API to Applications...570
Exposing a SOAP API and GraphQL API to Applications..571
Gateway Endpoints..572
Publishing APIs to API Portal..578
Publishing APIs to Service Registries..583
Publishing APIs to Integration Server...588

4 Monetize APIs...593
API Monetization...594
Packages and Plans..595
Creating a Package...596
Creating a Plan..598
Activating a Package..604
Publishing a Package...605
Viewing List of Packages and Package Details..606
Viewing List of Plans and Plan Details...606
Viewing a List of Subscriptions..607
Modifying a Package..607
Modifying a Plan..608
Deleting a Package...609
Deleting a Plan..610

5 Monitor APIs..611
Analytics..612
API-specific Dashboard...612

6 Microservices...615
Manage Microservices...616
Microgateways..616
AppMesh Support..620

7 Accessibility Profile..633
Web Content Accessibility Guidelines..634

iv webMethods API Gateway User's Guide 10.15

Table of Contents

About this Documentation

■ Document Conventions .. 6

■ Online Information and Support ... 6

■ Data Protection ... 7

webMethods API Gateway User's Guide 10.15 5

This documentation describes howyou can useAPIGateway and other APIGateway components
to effectively manage APIs for services that you want to expose to applications, whether inside
your organization or outside to partners and third parties.

To use this content effectively, you should have an understanding of the APIs that you want to
expose to the developer community and the access privileges you want to impose on those APIs.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

6 webMethods API Gateway User's Guide 10.15

https://documentation.softwareag.com/
https://documentation.softwareag.com/

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
learn.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
containers.softwareag.com/products and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

webMethods API Gateway User's Guide 10.15 7

https://www.softwareag.cloud/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://containers.softwareag.com/products
https://containers.softwareag.com/products
https://empower.softwareag.com/
https://empower.softwareag.com/register/

8 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

■ Defining and Managing APIs .. 10

■ Creating an API by Importing an API from a File ... 13

■ Creating an API by Importing an API from a URL .. 14

■ Creating an API from Scratch ... 15

■ Viewing API List and API Details .. 33

■ Searching Data in API Gateway ... 44

■ Filtering APIs .. 47

■ Configuring the Number of APIs listed on a Page .. 47

■ Modifying API Details ... 48

■ Updating APIs .. 48

■ Exporting Specifications ... 52

■ Attaching Documents to an API ... 53

■ API Grouping .. 55

■ API Tagging .. 55

■ Versioning APIs .. 58

■ Deleting APIs .. 59

■ Example: Managing an API .. 61

■ CentraSite Provided APIs ... 70

webMethods API Gateway User's Guide 10.15 9

Defining and Managing APIs

APIs are designed to expose application functionality and data for use by consumers and
developers, as necessary. A basicAPI definition influences how efficiently consumers or developers
are able to consume and use anAPI. CoreAPI design considerations are fueled by business drivers,
developer and consumer audiences, as well as the available resources. Therefore, a careful
consideration of all influencing factors affects the planning and architectural decisions you make
while designing and defining your API.

The following figure depicts the various factors that drive the designing and defining of an API.

APIGateway enables organizations to define andmanage their APIs. Developer and partner users
can use API Gateway's design and customization capabilities to build, develop, and then publish
APIs to a portal for consumption by internal and external API consumers.

The following sections describe the types of APIs that API Gateway supports, the different ways
in which you can create APIs, update APIs, create and maintain different versions of an API, and
group and tag APIs.

API administrators and users with the appropriate functional privileges can use API Gateway's
capabilities to create and manage APIs, and publish the APIs to Developer Portal or service
registries from where they can be consumed.

API Gateway supports the following API types:

Representational State Transfer (REST)

Defines a set of architectural principles that allow accessing and manipulating resources by
using capabilities already built into HTTP, including uniform and predefined set of stateless
operations and resources. These operations and resources are accessible using URIs and are
represented by media types. The RESTful framework provides REST APIs based on the REST

10 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

architecture. There are multiple specification formats for REST APIs. In API Gateway, you can
create a REST API using RESTful API Modeling Language (RAML), Swagger 2.0, or OpenAPI
3.0 specifications.

Simple Object Access Protocol (SOAP)

Defines a communication method for XML-based message exchange over different transport
protocols, such as Hypertext Transfer Protocol (HTTP) and Simple Mail Transfer Protocol
(SMTP). The SOAP framework provides SOAP APIs based on Web Services Description
Language (WSDL).

Open Data Protocol (OData)

Defines a set of best practices for the creation and consumption of RESTful APIs. It provides
a uniform way to describe both data and the data model. The OData framework provides
interoperable OData APIs with a RESTful interface based on OData standards.

WebSocket

Defines two-way (full duplex) communication between the client and the server, over a single
Transmission Control Protocol (TCP) socket. TheWebSocket protocol facilitates real-time data
transfer from and to the server. The WebSocket framework provides WebSocket APIs with a
RESTful interface based on W3C standards.

GraphQL

Defines a query language designed to build client applications by providing a flexible syntax
and a comprehensive description of data within an API. API Gateway supports proxying an
existing GraphQL endpoint and provides API management capabilities to clients like
authentication, analytics, and so on. API Gateway supports GraphQL version 16.2.

Asynchronous APIs

API Gateway provides an asynchronous form of API support for REST APIs. The synchronous
and asynchronous nature of an API depends on the way how a request sent by an application is
processed, and the mode and the time frame in which the data is returned to the client.

The following are the differences between the synchronous and asynchronous APIs.

Asynchronous APISynchronous API

Asynchronous API is used where data or
service availability, resources and connectivity
are low or over-saturated with demand

Synchronous API is used where data or
service availability, resources and
connectivity are high and requires low
latency

The client application requests data and
continues with other processes withoutThe client application requests data and

waits until it receives a response to waiting for a response. There is no expectation
of an immediate response.proceed with other processes. The

expectation is an immediate response.

Consider this example of synchronous and asynchronous APIs performing a log purge operation.
In this scenario, because there is a wait period for the return of data, synchronous API invocations

webMethods API Gateway User's Guide 10.15 11

1 Define and Manage APIs

might time outwhen theAPI processes take a significant period of time to complete. The following
figure depicts the differences between how a synchronous and an asynchronous API perform the
log purge operation

While creating aRESTAPI,APIGatewayprovides the capability of defining the callback component
with the supported method parameters. For details about creating an API with the callback
definition, see “Creating a REST API from Scratch” on page 20.

Creating APIs

You can create and manage APIs from the Manage APIs page in API Gateway UI. The page lists
all your APIs, their description, and version number. On this page, you can create an API, delete
an API, view API details, activate or deactivate an API, publish or unpublish an API, view API
analytics, group APIs, and add tags to an API.

You can create an API in one of the following ways:

Create anAPI by importing a definition for an existingAPI (for example, in Swagger or RAML
format) using an API importer.

AnAPI importer generates anAPI from aURL or an input file in one of the supported formats.
For example, the RAML importer installedwithAPIGateway reads aRAMLfile and generates
a REST API that the RAML definition describes. The importer also uploads the RAML file to
the API Gateway repository and links the file to the REST API.

Create an API from scratch and set its attributes manually.

The following sections explain in detail about different ways of creating APIs.

Note:
Do not provide values starting with a dot (.), in any of the fields in API Gateway UI as
Elasticsearch does not support saving those values.

12 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

Creating an API by Importing an API from a File

You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

To create an API by importing an API from a file

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Click Create API.

3. Select Import API from file.

4. Click Browse to select a file.

5. Select the required file and click Open.

The Swagger parser is a self-contained file with no external references and can be uploaded
as is. If the RESTful API Modeling Language (RAML) file to be imported contains external
references, the entire set of files must be uploaded as a ZIP file with a structure as referenced
by the RAML file.

Note:
Importing an API fails for an invalid WSDL file.

6. Type a name for the API name in the Name field.

If you provide an API name, this overwrites the API name mentioned in the uploaded file
and the API is displayed with the name provided.

If you do not provide an API name, the API namementioned in the uploaded file is picked
up and the API is displayed with that name.

If you do not provide an API name and the uploaded file does not have an API name
mentioned, then the API is displayed as Untitled.

7. Select the required type.

The available types are OpenAPI, RAML, Swagger, WSDL, and GraphQL SDL.

8. Provide a version for the API in the Version field.

9. Select the team to which the API must be assigned in the Team field.

This field appears only when the Team feature is enabled. It displays only the teams that you
are a part of. If you have the User management functional privilege, all teams are displayed.

webMethods API Gateway User's Guide 10.15 13

1 Define and Manage APIs

You can select more than one team. To remove a team, click the icon next to the team to
be removed.

10. Click Create.

An API is created with default policies.

Note:

To avoid encountering errors while parsing large responses from the native service, you
have to change the enablesoapValidation property by commenting out the <parameter
name="enableSoapValidation">true</parameter> in SAG_Install_Directory\
IntegrationServer\instances\default\config\wss\axis2.xml and restart the server for
the change to take effect.
Since the GraphQL API schema does not contain a native endpoint, you must manually
update the Native endpoint URL in the API details section and the Endpoint URI in the
routing policy after you create a GraphQL API.

Creating an API by Importing an API from a URL

You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

To create an API by importing an API from a URL

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Click Create API.

3. Select Importing API from URL.

4. Type the URL from where the API is to be imported.

5. Select Protected to make the API a protected API and provide the required credentials.

6. Type a name for the API name in the Name field.

If you provide an API name, this overwrites the API name mentioned in the uploaded file
and the API is displayed with the name provided.

If you do not provide an API name, the API namementioned in the uploaded file is picked
up and the API is displayed with that name.

If you do not provide an API name and the uploaded file does not have an API name
mentioned, then the API is displayed as Untitled.

7. Provide a description for the API in the Description field.

14 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

8. Select the required type.

The available types are OData, OpenAPI, RAML, Swagger, WSDL, and GraphQL SDL.

9. Provide a version for the API in the Version field.

10. Select the team to which the API must be assigned in the Team field.

This field appears only when the Team feature is enabled. It displays only the teams that you
are a part of. If you have the User management functional privilege, all teams are displayed.

You can select more than one team. To remove a team, click the icon next to the team to
be removed.

11. Click Create.

An API is created with default policies.

Note:

Importing an API fails for an invalid WSDL file.
Creating an API by importing swagger files from an HTTPS URL that is using self-signed
certificates might fail. To workaround this, you can set the system environment variable
as: export TRUST_ALL=true, so that the invalid certificates are ignored. Be aware that setting
this variablemakes the swagger-parser ignore all invalid certificates too. So thisworkaround
has to be used with caution.
To avoid encountering errors while parsing large responses from the native API, you have
to change the enablesoapValidation property by commenting out the <parameter
name="enableSoapValidation">true</parameter> in SAG_Install_Directory\
IntegrationServer\instances\default\config\wss\axis2.xml and restart the server for
the change to take effect.
Since the GraphQL API schema does not contain a native endpoint, you must manually
update the Native endpoint URL in the API details section and the Endpoint URI in the
routing policy after you create a GraphQL API.

Creating an API from Scratch

You can create the following APIs from scratch, meaning that you create the asset and set its
attributes manually:

REST

WebSocket

The Create REST API wizard breaks down the task of creating a REST API from scratch into
logical steps. The following figure illustrates the different pages of the wizard.

webMethods API Gateway User's Guide 10.15 15

1 Define and Manage APIs

Basic Information

The Basic Information page includes fields that allow you to identify, categorize, and group an
API.

Technical Information

The Technical Information page includes fields that allow you to define one or more server URLs
for the API. You can also define and include variables in the URLs.

You can also specify parameters for data that must be included in every request to the API. For
example, if you want a specific query parameter to be included in every request, you can add a
parameter of the type Query and specify the value that it must include.

16 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

Resources and methods

The Resources and methods page includes fields that allow you to define the API resources and
methods, including callbackmethods. In this page, you can add all the resources and theirmethods
that are exposed by the API.

At the resource level, you add a resource by defining the following properties: name, path, and
supported methods. You can additionally add parameters for data that must be included in every
request to that resource. For example, if the methods in a resource are invoked using URLs that
have a query string; you can add a query string parameter that captures the queries sent by the
clients.

At the method level, you identify a method by adding an operation id. In addition, you can add
tags that help you to categorize and search for similar methods. You can also add parameters at
the method level. Similar to the parameters at the API and resource levels, method parameters
enable you to capture and process the data that is sent in a particular request. In the case ofmethod
parameters, the data in the request for that method is captured and processed.

Method Requests

In the request section of a method, you can define the schema for requests that contain a JSON or
XML payload. As a method can support multiple content types, you need to add a content type
and then define the schema supported by that content type.

You can enter a schema or select an existing schema or global schema that you have previously
added on the Components page, Schemas section. You can also add a sample for the schema that
you have added or selected. These samples can be used for API mocking. They can also be used
by end users to get a better understanding of the API.

Method Responses

You can define responses for different HTTP status codes. API Gateway gives you the flexibility
to define responses for a status codes series (such as the 2XX series or the 4XX series) or for specific
response codes, such as 201 or 400.

Note:
If you have defined the response for a series and specific numbers in that series, themore specific
one is used. Example: If you have added an entry for 2XX and 201, a response with the HTTP
status code 200 will be the same as 2XX. However, a response with the HTTP status code 201
will pick the one that is defined for 201.

For each status code in a method response, you define the following:

Response body: you define the response body using the following fields:

Content Type: You can select from any of the content types.

Schema: You can define a schema if the response contains JSON or XML data.

Sample: The samples are used for API mocking. They can also be used by end users to get
a better understanding of the API.

webMethods API Gateway User's Guide 10.15 17

1 Define and Manage APIs

Header parameter: You can add a parameter to capture and process a header in the response
sent by the native API.

Links: Links allow the developer of the native API to define the relationship and traversal
mechanism between a response and other operations. You can include links to other methods
that are related to the response. This enables anAPI client to dynamically navigate themethods
that are exposed by theAPI. For example, amethod that returns the temperature in Fahrenheit
for a given placemay also include links tomethods that return: a) the temperature inCentigrade;
and b) the temperature of the place on a given day of the year.

Note:
You can define the complete response, or any part of it (response body schema, header parameter,
or link), in the Components page; and reuse it wherever required by giving a reference.

Method Callbacks

A callback is an asynchronous API request that originates from the API server and is sent to the
client in response to an earlier request sent by that client. APIs can use callbacks to signal an event
of interest and share data related to that event. API clients that are interested in an event or data
related to that event, include a callback URL in the request they send to the API. For more
information about Asynchronous APIs, see “ Defining and Managing APIs” on page 10.

To enable API Gateway to process callback messages, you must configure the Callback processor
settings, as explained in webMethods API Gateway Administration.

If yourAPI supports callbacks, you can useAPIGateway to process the initial requests, the callback
URLs sent by clients, and the response sent by the API—including the callback messages. Clients
can provide the callback URL to API Gateway in any of the following ways:

Request header

Query parameter

Request body (if the response body has JSON or XML content)

You must define the relevant parameter to capture the callback URL to process it. API Gateway
can wrap the client callback URLs with its own URL to process these requests if the callback URL
path defined in the following formats. Otherwise, API Gateway sends the requests received from
client as it receives it.

DescriptionFormat

Where param-name is the name of the query
parameter that contains the callback URL.

{$request.query.param-name}

Where header-name is the name of the header
that contains the callback URL.

{$request.header.header-name}

Where field-name is a field in the request body.
If the field is an array, use the syntax

{$request.body#/field-name}

{$request.body#/field-name/arrayIndex}, where

18 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionFormat

arrayIndex is the index of the callback URL in
the array.

Where header-name is any of the valid header.${response.header.header-name} and
${response.headers.header-name}

Where param-name is the name of the query
parameter that contains the callback URL.

${request.query.param-name}

Where queryValue is a valid JSON path
expression.

${response.payload.jsonPath[queryValue]}

Where queryValue is a valid XPath path
expression.

${response.payload.xpath[queryValue]}

If you have enabled API Gateway to process callback messages, API Gateway wraps the callback
URL provided by the client and sends an API Gateway URL to the native API. When the native
API invokes the same callback URL, API Gateway processes the response and applies the policies
that you have defined.

API Gateway can apply the following policies on the callback messages:

Invoke webMethods IS

Response Transformation

Validate API Specification

Data Masking

Log Invocation

Note:
These policies are applied to the immediate responses of an API request and to all its callback
requests. These policies are enforced against callback request payloads.

API mocking

API mocking allows you to simulate a native API that is not available. The mock response that
you define is returned to the client that invokes the API, if the native API is not available. API
mocking is not available while you are creating an API. To use API mocking, you must edit the
API after creating it and enable API mocking. For more information about API mocking, see “API
Mocking” on page 74.

Components

The Components page allows you to add reusable elements that you can use in other pages of the
wizard. You can reference these global elements using the $ref variable. You can add the following
global elements:

webMethods API Gateway User's Guide 10.15 19

1 Define and Manage APIs

Schemas: The schema specified here can be reused in the resource andmethod specifications
across multiple methods and resources.

Parameters: You can define parameters that can be used as API, resource, and method
parameters.

Headers: You can define parameters that can be reused as header parameters at the API,
method, and response levels.

Examples: You can add examples that can be reused as samples across operations in the API.

Links: You can define links that can be reused in responses. For more information about links,
see LinkswithinMethod Responses section.

Callbacks: You can define callback methods in this page and include them in the callback
section of the methods that use it.

Request Bodies: You can define request bodies in this page and reuse them in methods. A
request body includes the content type, a schema, and a sample.

Responses: You can define responses in this page and reuse them in methods. A response
includes the content type, a schema, and a sample. It can also include header parameters and
links.

Documentation

In the view mode, the Documentation page provides the following links:

Links to the Swagger, RAML, and OpenAPI versions of the API on the Integration Server.

Note:
If Cross-Site Request Forgery (CSRF) token is enabled on the Integration Server, the links
to three types of APIs will not work. You must configure Integration Server to allow these
links to work.

Links to download the API in the three different formats: Swagger, RAML, and OpenAPI.

In the editmode, theDocumentationpage allows you to add a file that contains any documentation
that you want to include with the API. This file is accessible only from API Gateway.

Creating a REST API from Scratch
You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

You can create a RESTAPI from scratch by providing the basic information, technical information,
and defining the resources and methods as required.

To create a REST API from scratch

1. Click APIs in the title navigation bar.

20 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

A list of all existing APIs appears.

2. Click Create API.

3. Select Create from scratch.

4. Select REST.

5. Click Create.

The Basic information page of the Create REST API wizard appears.

6. Provide the following information in the Basic information section:

DescriptionField

Name of the API.Name

Version of the API being created.Version

Team to which the API must be assigned.Team

This option is visible only if you have enabled the Teams feature.

You can select more than one team. To remove a team, click the

icon next to the team to be removed.

Maturity state of the API.Maturity state

Available values are: Beta, Deprecated, Experimental,
Production, Test.

The available values depend on the Maturity states configured in
the apiMaturityStatePossibleValues property under
Administration > Extended settings section.

Group under which the API would be categorized.API grouping

Available values are: Finance Banking and Insurance, Sales
and Ordering, Search, and Transportation and Warehousing.

The available values depend on the groups configured in the
apiGroupingPossibleValues property under Administration >
Extended settings section.

Keywords for categorizing, identifying, and organizing APIs. You
select from the list of existing tags or create new tags.

Tags

Description of the API.Description

7. Click Continue to provide technical information for this API >.

webMethods API Gateway User's Guide 10.15 21

1 Define and Manage APIs

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

8. Provide the details of the servers that serve the API in the Add server details section.

a. Click Add server and provide a Server URL and Description.

You can include variables in the server URL by enclosing them in curly braces. These
variables are added to the list of variables. However, you have to edit these variables to
add a default value, and optionally one or more values and a description.

b. Click Add variables and provide the following values:

Name

Description

Default

Value

Note:
Click + to add the value that you have entered.

c. Click Add to add the variable.

9. ClickAdd Parameter and provide the following information to add the API-level parameters.

DescriptionField

Name of the parameter.Name

If youwant to reuse a parameter defined on theComponents page,
select the parameter from the drop-down list.

Reference

Description of the parameter.Description

Specifies the parameter type.Type

Available values: Query-string, Header, Cookie.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, File.

Specifies the parameter is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values.Value

22 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

Note:
You need to define parameters only for data that you want API Gateway to process.

10. Type a Service registry display name.

By default, the API is displayed in service registries with the name: APIName_Version. If you
want the API to be displayed in the service registries with a different name, you can type the
name here.

11. Click Continue to provide Resource and methods for this API>.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

12. Add resources to the API using the Resources and methods page:

a. Click Add Resources and provide the following information:

DescriptionField

Name of the resource.Resource name

This is the display name of the resource and resource path is
used for execution.

Specifies the path of the resource.Resource path

The resource path should contain a "/".

Description of the resource.Description

Select themethods that are supported by theAPI: GET,HEAD,
POST, PUT, DELETE, PATCH.

Supported methods

b. Click Add.

The resource is added. You can multiple resources, if required.

c. Add Tags.

d. Click Add Resource Parameter and provide the following information:

DescriptionField

Name of the parameter.Name

If youwant to reuse a parameter defined on theComponents page,
select the parameter from the drop-down list.

Reference

webMethods API Gateway User's Guide 10.15 23

1 Define and Manage APIs

DescriptionField

Brief description of the parameter.Description

Specifies the parameter type.Type

Available values: Path, Header, Query-string, Cookie.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, File.

Specifies the parameter is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the parameter.Value

e. Click + Add to add the resource parameter.

13. For each supported method that you have added for a resource, provide the following
information:

a. Common information:

DescriptionField

Type a description for the operation.Description

Type an operation Id.OperationId

Type or select the keywords that you want to add to the operation.Tags

b. Method parameters

DescriptionField

Name of the parameter.Name

If youwant to reuse a global parameter defined on theComponents
page, select the parameter from the drop-down list.

Reference

Brief description of the parameter.Description

Specifies the parameter type.Type

Available values: Query-string, Header, Cookie.

Specifies the data type.Data type

24 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionField

Available values: String, Date, Date time, Integer, Double,
Boolean, File.

Specifies the parameter is required, if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the parameter.Value

c. Requests.

You can select an existing global request defined on the Components page or specify a
new request. To create a new request, select New request.

To add a new request that has to be processed, click Add Request + and provide the
following information:

Content type. Select one and click Add.

Schema. Type a schema in the text box or select an existing schema from the Select
a Schema list. You can also click Add global schema and create a new global schema
on the Components page. After creating the global schema you can select it from the
Select a Schema list.

Sample. Type a sample for selected schema. This sample can be used for APImocking,
if required.

To use an existing global request to process a request, select Global request and provide
the following information:

Name.

Reference. Select one and click Add.

d. Responses.

First, add a status code using the Status Code drop-down list. Next, click on the status
code to select it. For the selected status code, you can select an existing global response
defined on the Components page or type a new response. To enter a new response, select
New response and define the response by adding a schema and a sample for the response
body, header parameters, and links.

Note:
You can also define the response for an HTTP status code series, such as 2** or 4**.

To define a new response for the selected status code, click Add response + and provide
the following information:

Content type. Select one and click Add.

webMethods API Gateway User's Guide 10.15 25

1 Define and Manage APIs

Schema. Type a schema in the text box or select an existing schema from the Select
a Schema list. You can also click Add global schema and create a new global schema
on the Components page. After creating the global schema you can select it from the
Select a Schema list.

Sample. Type a sample for selected schema. This sample can be used for APImocking,
if required.

To use an existing global response, select Global response and provide the following
information:

Name. Name of the response.

Reference. Select one and click Add.

To add a header parameter, click + Add method parameter and provide the following
information to add a method parameter:

DescriptionField

Name of the parameter.Name

If you want to reuse a global parameter defined on the
Components page, select the parameter from the drop-down list.

Reference

Brief description of the parameter.Description

Specifies the parameter type.Type

Available values: Header.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, File.

Specifies the parameter is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the parameter.Value

Click + in the Value text box to add a value to the list, and click Add to add the header.

To add a link, click + Add links and enter the following information to add a link:

Name. Name of the link.

Description. Description for the link.

Link. You can add a new link or select an existing global link that is defined on the
Components page.

To add a new link, select New link and provide the following information:

26 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

Type. Select OperationId for local operations only. OperationRef can be used for
both local and external operations.

Value. If Type is OperationRef, provide a reference to the target operation using
the JSON Reference syntax (using by the $ref keyword); and if the Type is
OperationId provide the OperationId of the target operation.

Parameters. Specify the parameters of the target operation that are required to
follow the link. Enter a Name and Value, and click Add.

Request body. Type a request body only if the target operation has a body. Define
the contents of the body of the target operation.

To include an existing global link, select Global link and then select an existing global
link from the Reference drop-down list.

e. Callbacks. You can add the callbacks that are supported by the method. You can add new
callbacks and select existing global callbacks.

Note:
For more information about using callbacks to develop asynchronous APIs, see
Asynchronous APIs in “ Defining andManaging APIs” on page 10. Formore information
on defining and using callbacks in API Gateway, see “Creating an API from Scratch” on
page 15.

To specify a new callback, click + Add callbacks and define the callback:

Name. A name for the callback resource.

Click + Add resources and provide details of the API that serves as the callback API.

Note:
The user interface and procedure for defining a callback is similar to defining a
resource and methods within the resource.

To include a global callback defined on the Components page, provide the following
information:

Name. Name of the callback resource.

Reference. If you want to reuse a global callback defined on the Components page,
select the callback from the drop-down list and click Add.

14. Click Continue to provide Mocking information for this API>.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

The API mocking page appears. API mocking is not enabled for a new API. You must edit the
API and enable API mocking after creating the API.

15. Click Continue to define API components for this API>.

webMethods API Gateway User's Guide 10.15 27

1 Define and Manage APIs

Alternatively, you can click Components.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

16. Define the reusable elements that you want to reuse in other pages of the Create REST API
wizard.

An API may have several elements that are common across resources and methods, such as
schemas for response bodies. You can place such common elements in theComponents section
and reference them using the $ref alias.

a. In the Schemas section, click + Add schema and provide the following information:

DescriptionField

Name of the schema.Name

Specifies the schema type.Value

Available types:

Inline schema. Type the request and response values for the
schema in the text box.

Upload schema. ClickBrowse and upload a schema file that
you have from a saved location.

Click to add the schema.
Action

Click + Add to add the schema component.

b. In the Parameters section, click + Add parameter and provide the following information:

DescriptionField

Name of the parameter.Name

Description of the parameter.Description

Specifies the parameter type.Type

Available values: Path, Query-string, Header, and Cookie.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, and File.

Specifies the parameter is required if selected.Required

28 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionField

Select if the input parameter is of type array.Repeat

Specifies the possible values for the parameter.Value

Click + Add to add the parameter component.

c. In the Headers section, click + Add header and provide the following information:

DescriptionField

Name of the header.Name

Description of the header.Description

Specifies the header type. This is fixed as Header for headers.Type

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, and File.

Specifies the header is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the header.Value

Click + Add to add the header component.

d. In the Examples section, click + Add examples and provide the following information:

DescriptionField

Name of the example.Name

Description of the example.Summary

The content of the example.Value

Click + Add to add the example component.

e. In the Links section, click + Add links and provide the following information:

DescriptionField

Name of the link.Name

Description of the link.Description

webMethods API Gateway User's Guide 10.15 29

1 Define and Manage APIs

DescriptionField

Specifies the link type: OperationId or OperationRef.Type

Path to the target operation or a reference to the target operation.Value

Name of the parameter to pass as a parameter to the target
operation.

Parameter name

Value for the parameter. Click + Add to add the parameter. You
can additional parameters if required.

Parameter value

Payload of the request sent to the target operation.Request body

Click Add to add the link component.

f. In the Callbacks section, click + Add callback and provide the following information:

a. Type a name for the callback.

b. Click + Add resources.

c. Type the Callback path.

d. Select the supported methods.

e. Click Add.

f. For each method that you have just added, complete the next two steps.

g. Click + Add Resource Parameter and add the required resource parameters. The
procedure for adding resource parameters is given in Step 11d.

h. Define the selected methods. The procedure for defining methods is given in Step 12.

g. In theRequest Bodies section, click+ Add request andprovide the following information:

DescriptionField

Name of the request.Name

Select a content type from the list.Content type

Select an existing schema from the list.Schema

Type a sample of the schema.Sample

Click Add to add the request component.

h. In the Responses section, click + Add Response and provide the following information:

30 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionField

Name of the response.Name

Click Add.Content type

Select an existing schema from the list.Schema

Type a sample of the schema.Sample

Click + Add Header Parameter and provide the required
information. Then, click + Add to add the header parameter.

Header Parameter

Click + Add Links and provide the required information. Then,
click Add to add the link.

Links

Click Add to add the response component.

17. Click Continue to provide API documents for this API>.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

The Documentation page appears.

18. Type a display name and click Browse to select a file.

19. Click + Add to upload the file and add a new row.

20. Click Save to save your changes and create the API.

Creating a WebSocket API from Scratch
You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

You need the WebSocket port to access the WebSocket API. Assigning global and API-specific
policies is similar to assigning policies to REST or SOAP APIs.

Note:
You can not apply global policies and policy templates to a WebSocket API.

To create a WebSocket API from scratch

1. Click APIs in the title navigation bar.

2. Click Create API.

webMethods API Gateway User's Guide 10.15 31

1 Define and Manage APIs

3. Select Create from scratch.

4. Select WebSocket.

5. Click Create.

6. Provide the following information in the Basic information section:

DescriptionField

Name of the API.Name

Version of the API.Version

Team to which the API must be assigned.Team

This option is visible only if you have enabled the Teams
feature.

You can select more than one team. To remove a team, click

the icon next to the team to be removed.

Description of the API.Description

7. Click Continue to provide technical information for this API>.

Alternatively, you can click Technical information to go to the Technical information section.

Click Save to save the API at this stage and provide the technical information for the API at
a later time.

8. Provide the following information in the Technical information section:

a. Type the WS URL in the WS Url field.

The format used is ws://hostname:port/path.

b. Click + Add parameter and provide the following information:

DescriptionField

Name of the parameter.Name

Description of the parameter.Description

Specifies the parameter type.Type

Available values are: Query-string, Header.

32 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionField

Specifies the data type.Data type

Available values are: String, Date, Date time, Integer,
Double, Boolean.

Select this to specify that the parameter is required.Required

Select this to specify that the array is required.Array

Type the required value and click + to add the value.Value

Click to include multiple values.

c. Click + Add message and provide the following information.

DescriptionField

Specifies the origin of the message.Origin

Available values are: Server, Client.

Specifies the message type.Type

Available types are: Text, Binary

Provide the sample message payload.Sample message payload

Provide the message description.Message description

Click to include multiple messages.

9. Click Save.

Viewing API List and API Details

You can view the list of registered APIs, activate, delete, or view analytics of a specific API in the
Manage APIs page. In addition, you can view API details, modify API details, activate and
deactivate an API in the API details page.

Note:
If you encounter any problem viewing the API details with a message that says API loading
has failed, this would be because the property watt.server.http.jsonFormat is set to a value
that is not parsed(the default value), which API Gateway does not support.

To view API list and API details

webMethods API Gateway User's Guide 10.15 33

1 Define and Manage APIs

1. Click APIs in the title navigation bar.

A list of all registered APIs appears. The APIs are sorted based on their names. When there is
more than one API with same name, they are sorted based on their system versions. The list
displays the following details:

DescriptionColumn

Displays API name with an icon representing the API type.Name

API type can be REST, SOAP, OData, and WebSocket.

Displays brief description of the API.Description

Indicates the active endpoints available for the API and shows
how an API can be called.

Active endpoints

These are the active endpoint indicators:

specifies that the API Gateway endpoint is active. This
implies that the API can be called on the API Gateway
endpoint.

specifies that the API Gateway endpoint is inactive. The
API is not exposed by API Gateway and API calls are rejected
by API Gateway with HTTP 404 responses.

specifies that the API is deployed to one or more
Microgateways and therefore has active Microgateway
endpoints. The API does not have any active API Gateway
endpoints. Any API calls against API Gateway are rejected by
API Gateway with HTTP 404 responses. The available
Microgateway endpoints can be looked up in the API details
screen. The list of active Microgateway endpoints is updated
whenever a newMicrogateway is registered or aMicrogateway
is de-registered. If the lastMicrogateway becomes unavailable,
the endpoint indicator no longer shows active Microgateway
endpoints

specifies that API Gateway and Microgateway
endpoints are active but there is no routing of API calls from
APIGateway toMicrogateway endpoints. This situation results
from deploying an API with an active API Gateway endpoint
to one ormoreMicrogateways. The policy enforcement is done
on the API Gateway and Microgateways independently.
Deactivating and activating theAPI inAPIGateway establishes
the routing to the Microgateway endpoints.

34 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionColumn

specifies that API Gateway and Microgateway
endpoints are active. API calls against the API Gateway
endpoint are routed to theMicrogateway endpoints. Ifmultiple
Microgateway endpoints are available, API Gateway applies
load balanced routing to the API calls. The load balancing
follows the round-robin algorithm. If aMicrogateway endpoint
becomes unavailable the next endpoint is contacted. If no
Microgateway endpoint replies, the API call in API Gateway
fails. The list of Microgateways covered by the routing is
updated dynamically.

The policy definitions in API Gateway are enforced by
Microgateways. To activate the routing in API Gateway to
Microgateways, theAPIs have to be deployed toMicrogateway
first before activating the API in API Gateway. If the last
Microgateway becomes unavailable the routing is not removed
implicitly. API calls against API Gateway fail as no
Microgateway endpoint is available.

specifies that an API has an active AppMesh
endpoint, but no active API Gateway endpoint. An AppMesh
endpoint is established by performing anAPIfy operation. The
policy definitions in API Gateway are enforced within the
AppMesh. The API is not exposed by API Gateway and API
calls are rejected by API Gateway with HTTP 404 responses.

specifies thatAPIGatewayandAppMeshendpoints
are active. API calls against the API Gateway endpoint are
routed to theAppMesh endpoint. The policy definitions inAPI
Gateway are enforced within the AppMesh.

Displays API version.Version

Displays the time when the API was last modified.Modified Time

You can perform the following operations in the Manage APIs page.

Filter APIs by Type, Activation status, Team, or Active endpoints. Select the required
API type, status, team or active endpoints to view the APIs based on the provided filters.

Note:
The Team filter is applicable only if you have enabled the Teams feature.

Activate an API by clicking that denotes an inactive state.

Once an API is activated, the Gateway endpoint is available which can be used by the
consumers of this API.

webMethods API Gateway User's Guide 10.15 35

1 Define and Manage APIs

Deactivate an API by clicking that denotes an active state.

Export an API by clicking

Delete an API by clicking in the respective row.

View API analytics by clicking in the respective row.

Publish or Unpublish an API by clicking and respectively.

2. Click any API to view API details.

The API details page displays the basic information, technical information, resources and
methods, and specification for the selected API. This page allows you to edit some of the API

details. Also, this page provides options to activate or deactivate an API. Click to export,
enable or disable mocking, update, and create new version operations.

Note:
The link provided in the Documentation section of the API details tab can be accessed
using API Gateway internal users credentials and cannot be accessed using SSO user
credentials.

REST API Details
TheREST framework enables you tomodelAPIs conforming to the ResourceOrientedArchitecture
(ROA) design. For example, you might model an API that serves to expose the web service data
and functionality as a collection of resources. Each resource is accessible with unique Uniform
Resource Identifiers (URIs). In yourAPI, you expose a set ofHTTP operations (methods) to perform
on a specific resource and capture the request and response messages and status codes that are
unique to the HTTP method and linked within the specific resource of the API.

The API details view for a REST API displays the details of the API such as basic and technical
information, resources and methods, API mocking details, and specifications. You can also view
the scopes associated, policies enforced, registered applications and the API-specific analytics.

The table lists the API details displayed for the API

DescriptionField

Displays the information about the API, such as Name, Version,
Owner of the API, the teams that the API is assigned to, status of

Basic information

the API whether its is Active or Inactive, the maturity state of the
API, the date onwhich theAPIwas created and a brief description
of the API.

Displays the following endpoints of the API:Technical information

Native endpoints.

36 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionField

Gateway endpoints. Displays these endpoints when the API
is deployed to a gateway.

Microgateway endpoints. Displays these endpoints when
the API is deployed to a Microgateway.

AppMesh endpoints. Displays these endpointswhen theAPI
is deployed through AppMesh.

Service Registry display name. Displays the name of the
service registry where the API is deployed.

Displays a list of resources ormethods available in the API sorted
by resource/pathname.

Resources and methods

The list of resources are displayed in sorted order of the path
names. Click each resource to view the corresponding HTTP
methods, along with a summary. Below each of these methods,
details such as parameters and response codes are displayed.

Details are visible only when API mocking is enabled.API mocking

Displays a list of mocked responses for the operations in the API,
custom IS service list and conditions along with its mocked
response.

Displays the schemas defined at the API level.Components

Displays the definition of the API in different formats.Documentation

Various tabs displayed in the API details page display the following details:

The Scopes tab lists the scopes available for the API.

The Policies tab displays the policies enforced for the API.

The Mashups tab displays the mashups defined in the API.

The Applications tab displays all the applications registered with the API.

The Analytics tab displays the API-specific analytics for the time interval selected.

You can perform the following operations from the API details page:

You can enable API mocking by clicking the Enable mocking button. If API mocking is
enabled, you can disable it by clicking the Disable mocking button. This option is available
when the API is in the deactivated state.

You can update an API by importing from file or from URL by clicking the Update button.
This option is available when the API is in the deactivated state.

You can create a new version of the API by clicking the Create new version button.

webMethods API Gateway User's Guide 10.15 37

1 Define and Manage APIs

You can modify details of an API by clicking the Edit button. This option is available when
the API is in the deactivated state.

You can activate an API by clicking the Activate button. If the API is already activated, you
can deactivate it by clicking the Deactivate button.

Microgateway endpoints

Microgateway endpoints are exposed in this section when one or more Microgateways start
connecting to API Gateway with a particular API. When you activate the API, the routing to the
connectedMicrogateway endpoints comes in effect. Thismeans thatwhen you call theAPIGateway
endpoint in the usual way, the request is directly routed to theMicrogateway. If there are multiple
Microgateways, the routing is done in a round-robin order to each of the participating
Microgateways. The called Microgateway processes the request with all the defined policies.

AppMesh endpoints

The AppMesh endpoint gets exposed only for APIs created by AppMesh's APIfy operation. In an
AppMesh context, Microgateway and the corresponding micro services are behind a Kubernetes
service or a loadbalancer. When you activate the API, the routing to this AppMesh endpoint
(depending on your Kubernetes service loadbalancer setting) comes in effect. This means that
when you call the API Gateway endpoint in the usual way the request is directly routed to that
endpoint.

SOAP API Details
The API details view for a SOAP API displays the details of the API such as Basic and Technical
information, Operations available, REST transformation details, API mocking details, and
specifications. You can also view the scopes associated, policies enforced, registered applications
and the API-specific analytics.

The table lists the API details displayed for the API

DescriptionField

Displays the information about the API, such as Name, Version, Owner
of the API, the teams that the API is assigned to, status of the APIwhether

Basic information

its is Active or Inactive, the maturity state of the API, the date on which
the API was created and a brief description of the API.

Displays the following endpoints of the API:Technical
information

Native endpoints.

Gateway endpoints. Displays these endpoints when the API is
deployed to a gateway.

Service Registry display name. Displays the name of the service
registry where the API is deployed.

38 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionField

Displays a list of operations available in the API and they are sorted
alphabetically.

Operations

Operations are displayed along with their type of binding (SOAP 11 ,
SOAP 12, and other HTTP methods). Click each method to view details
such as input, output, and fault messages.

Displays a list of operations exposed as REST resources and they are sorted
alphabetically.

REST transformation

Operations are displayed along with their type of binding. Click each
method to view details such as input, output, and fault messages.

Details are visible only when API mocking is enabled.API mocking

Displays a list of mocked responses for the operations in the API, custom
IS service list and conditions alongwith itsmocked response that contains
the status code and mock payload details.

Displays a list of specifications for the API.Documentation

Various tabs displayed in the API details page display the following details:

The Scopes tab lists the scopes available for the API.

The Policies tab displays the policies enforced for the API.

The Applications tab displays all the applications registered with the API.

The Analytics tab displays the API-specific analytics for the time interval selected.

You can perform the following operations from the API details page:

You can enable API mocking by clicking the Enable mocking button. If API mocking is
enabled, you can disable it by clicking the Disable mocking button. This option is available
when the API is in the deactivated state.

You can update an API by importing from file or from URL by clicking the Update button.
This option is available when the API is in the deactivated state.

You can create a new version of the API by clicking the Create new version button.

You can modify details of an API by clicking the Edit button. This option is available when
the API is in the deactivated state.

You can activate an API by clicking the Activate button. If the API is already activated, you
can deactivate it by clicking the Deactivate button.

Exposing a SOAP API to Applications

An active SOAP API exposes its WSDL with a couple of adaptions:

webMethods API Gateway User's Guide 10.15 39

1 Define and Manage APIs

The service name becomes the selected API Name.

Custom endpoints as well as URL aliases appear with separate port elements.

The HTTP and HTTPS endpoints are exposed if they meet the respective settings in the
Transport policy.

The SOAP and SOAP12 entries are exposed if theymeet the respective settings in the Transport
policy.

Only enabled operations are exposed.

The values from the InboundAuth -Message policy are integrated into theWSDL asws:Policy
entries. Note that the original ws:Policy entries from the importingWSDL are not considered.

OData API Details
Open Data Protocol (OData) enables the creation of REST-based APIs, which allow resources to
be exposed as endpoints and identified using the Uniform Resource Identifiers (URIs). In general,
OData is represented by an abstract data model called Entity DataModel (EDM). This Entity Data
Model allowsweb clients to publish and edit REST services and their resources using simpleHTTP
messages. OData leverages the principles of HTTP, REST andATOM, and combines the simplicity
of REST and SOAPmetadata definitions to describe service interfaces, datamodels, and semantics.

API Gateway supports OData V4 and V2 services.

The API details view for an OData API displays the details of the API such as basic and technical
information, OData entity sets, singletons, function imports, actions imports and specifications.
You can also view the policies enforced, registered applications and the API-specific analytics.

The API Gateway UI exposes only OData navigation properties to visualize the resource path
structure of OData APIs. Any other OData property is not displayed.

Note:
APIGateway does not support the querying ofDerived Entity Types. This includes the following
operations:

Requesting a Derived Entity
Requesting a Derived Entity Collection
Filter on Derived Type

Operations on Derived Types are rejected by API Gateway.

The table lists the API details displayed for the API.

DescriptionField

Displays the information about the API, such as Name, Version,
the teams that the API is assigned to, status of the API whether

Basic information

its is Active or Inactive, the date on which the API was created,
and a brief description of the API.

40 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionField

Displays base URL of the API and the OData version supportedTechnical information

Displays a list of OData entity sets. An entity set element
represents a single entity or a collection of entities of a specific
entity type in the data model

OData entity sets

The list of entity sets is sorted alphabetically. Click each entity set
to view the resource path, entity type, resource parameter details,
and the corresponding HTTP methods.

The entity types are structured records consisting of named and
typed properties and key properties whose values uniquely
identify one instance from another.

Displays a list of OData singletons. Singletons are single entities
which are accessed as children of the entity container.

OData singletons

The list of singletons is sorted alphabetically. Click each singleton
to view the resource path, entity type, the corresponding HTTP
methods, and the navigation properties that allow navigation
from an entity to related entities.

The OData navigation property has an impact on the resource
structure. This property is represented as anOData Resource and
denoted as OData Navigation properties inside the OData
Resources profile. There is no restriction to the number of levels
you can drill down.

Displays a list of OData function imports. The Function Import
element represents a function in an entity model.

OData function imports

The list of OData function imports is sorted alphabetically. Click
each function import to view the resource path, entity type, and
the corresponding HTTP methods.

Displays a list ofOData action imports. TheAction Import element
represents an action in an entity model.

OData action imports

The list of OData action imports is sorted alphabetically. Click
each action import to view the resource path, entity type, and the
corresponding HTTP methods.

Displays a list of specifications for the API.Documentation

The metadata document. The metadata document describes the
Entity Data Model that is, the structure and organization of the
OData service resources) exposed as HTTP endpoints by that
particular service. This document describes the entity types, entity
sets, functions, and actions.

webMethods API Gateway User's Guide 10.15 41

1 Define and Manage APIs

Various tabs displayed in the API details page display the following details:

The Policies tab displays the policies enforced for the API.

The Applications tab displays all the applications registered with the API.

The Analytics tab displays the API-specific analytics for the time interval selected.

You can perform the following operations from the API details page:

You can update an API by importing from URL by clicking the Update button. This option is
available when the API is in the deactivated state.

You can create a new version of the API by clicking the Create new version button.

You can modify details of an API by clicking the Edit button. This option is available when
the API is in the deactivated state. Only the following properties of an OData API can be
modified:

Name

Description

Version

API group

Maturity state

For updating the OData entity sets, singletons, function imports and action imports a new
import has to be performed.

You can activate an API by clicking the Activate button. If the API is already activated, you
can deactivate it by clicking the Deactivate button.

To create an OData API accessing a secure endpoint, you must configure
Administration>Security>Keystore/Truststore for Outbound connections.

GraphQL API Details
API Gateway supports proxying an existing GraphQL endpoint and provides API management
capabilities to clients like authentication, analytics, and so on. The GraphQLAPIs can be accessed
using the HTTP GET and POST methods. You can create and deploy a GraphQL API using the
API Gateway UI or REST endpoints.

The following table lists the features that API Gateway supports for GraphQL.

SupportedGraphQL Features

YesBasic GraphQL concepts:

Schema

42 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

SupportedGraphQL Features

Operations

Types

YesRoot operations for resources:

Query

Mutation

NoRoot operations for resources:
Subscription

YesInput and output data types:

Scalar type

Object type

Interface type

Union type

Enum type

The following table lists the API Gateway-specific features that are not supported for GraphQL
API.

SupportedAPI Gateway Features for
GraphQL

NoAPI tagging

NoAPI mocking

NoPolicy scopes

NoPackages and plan

NoAdding or updating GraphQL
schema types

NoPublishing GraphQL API to API
Portal

TheAPI details view for aGraphQLAPI displays the details of theAPI such as basic and technical
information, operations available, and specifications. You can also view the policies enforced,
registered applications, and the API-specific analytics.

The table lists the API details displayed for the API:

webMethods API Gateway User's Guide 10.15 43

1 Define and Manage APIs

DescriptionField

Displays the information about the API, such as Name, Version, Owner
of the API, the teams that the API is assigned to, Active or Inactive status

Basic information

of the API , the maturity state of the API, the date on which the API was
created, and a brief description of the API.

Displays the following endpoints of the API:Technical
information

Native endpoint(s).

Gateway endpoint(s). Displays these endpoints when the API is
deployed to a gateway.

Service Registry display name. Displays the name of the service
registry where the API is deployed.

Displays a list of operations available in the API sorted alphabetically.Operations

Operations are displayed along with their type (Query and Mutation).

Displays a list of specifications for the API.Documentation

Various tabs displayed in the API details page display the following details:

The Policies tab displays the policies enforced for the API.

The Applications tab displays all the registered applications with the API.

The Analytics tab displays the API-specific analytics for the time interval selected.

You can perform the following operations from the API details page:

You can export an API using the Export button.

You can update an API by importing from file or from URL by clicking the Update button.
This option is available when the API is in the deactivated state. For more information about
updating APIs, see “Updating APIs” on page 48.

You can create a new version of the API by clicking the Create new version button. For more
information about versioning APIs, see “Versioning APIs” on page 58.

You can modify details of an API by clicking the Edit button. This option is available when
the API is in the deactivated state. For more information about modifying API details, see
“Modifying API Details” on page 48.

You can activate an API by clicking the Activate button. If the API is already activated, you
can deactivate it by clicking the Deactivate button.

Searching Data in API Gateway

The search feature in API Gateway is a type-ahead search; a simple and easy to use search facility
where you can type the text of interest to search. You can search for all items that contain one or

44 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

more specified keywords (that is, text strings) in the item's properties. Some of the properties are
name, description, version, key, value, and so on in the API.

You can search for the following types of data as shown in the image.

To search for an item, type a string in the search box in the title navigation bar. A list of search
result is displayed directly below the Search box. The number of matches found are displayed in
sections depending on the type they fit in. For example, APIs, Application, Alias, Packages, and
so on. A minimum of five search results are displayed in each category. If there are no results as
per the search string typed, a message displays saying so.

If you find what you are searching for in the search result box, click on it to view the details. You
are navigated to the specific page that displaysmore information. For example, if you are searching
for an API and click the displayed result, you are navigated to the specified API details page. If
you are searching for an application and click the displayed result, you are navigated to the
specified Application details page.

If you want to see all the search results click Show all results in the search result box. The
Advanced search page is displayed. This is a dedicated page that displays extensive search results.
In the Advanced search information page, you can search or filter the results in the following
ways: by type, or by keyword.

By type: Select one ormore types in theSearch by type section to see search results pertaining
to the selected types. For example, if you select the typeAPIs, all theAPIs that have the specified
string is displayed. By default, all filters are selected. To remove a filter, you can clear the check
box next to a filter from the left pane or click next the filter you want to remove.

By keyword: Type a keyword in theSearch by keyword field, all the search results containing
the specified keyword are displayed in the list. For example, if you type the keyword petstore,
all search results containing the petstorewould be filtered and displayed.

Note:

webMethods API Gateway User's Guide 10.15 45

1 Define and Manage APIs

Search by keywordwill not show any search results, if the field names have any special
characters. The following special characters are not supported - ! ? & # $ * % : ; = ' " () / \ < >

The fields that does not support special characters are as follows:

Maturity state
Scope name
Scope description
API Operations info name
API Resource path
API Tags
Application identifiers named values
User Login ID
User First name
User Last name
OAuth scope name
OAuth Scope description

For example, if anAPI has a tag name Test-001, and you searchAPIswith the tag name Test-001,
you will not get any search results.

Note:
You cannot search for REST resources and methods in a REST API. The search function only
works for the name and description of the REST API. For example, you can search for a REST
API named LibraryAPI. But you cannot search for a REST resource named book or a REST
method POSTwithin the REST API. However, the search function works for name, description,
and operations of SOAP APIs.

You cannot search for resources and methods of an OData API.

There are a few configurable properties available for search. These properties can be configured
in the file, uiconfiguration.properties, located at
SAGInstallDir\profiles\IS_default\apigateway\config\. Edit the file as required. Aftermodifying
the properties file, you have to restart Integration Server for the changes to take effect.

You must type in a minimum number of characters in the global search box, to search for data.
This property can be configured.

The following property is used to configure the minimum number of characters to search. The
default value is 3.

apigw.search.minimum.num.chars=3

Note:
The value provided must be a number greater than 0. If you provide an invalid value, it takes
up the default value of 3.

The following property is used to configure the number of search results to load for each type in
the advanced search page. The default value is 10.

apigw.num.results.search=10

46 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

Note:
The value provided must be a number greater than 0. If you provide an invalid value, it takes
up the default value of 10.

Filtering APIs

You can filter APIs based on the API type, the activation status, team association or deployment
type of the API.

To filter APIs

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. You can filter APIs based on the following filter options. You can use a combination of these
options to filter the APIs.

Type. Select REST, SOAP, OData, WebSocket, GraphQL or all to filter APIs by type.

Activation status. Select Active or Inactive to filter APIs by their activation status.

Team. This filter is applicable only if you have enabled the Teams feature. Select the teams
listed to filter APIs by their association with the teams selected.

Active endpoints. SelectAPI Gateway,Microgateway, orAppMesh to filterAPIs by their
active endpoints available.

3. Click Apply filter.

The filtered list of APIs is displayed. You can click Reset to reset the values to the original
values.

Configuring the Number of APIs listed on a Page

The default number of APIs that are listed in theManage APIs andManage applications page can
be configured through the properties file located at
SAGInstallDir\profiles\IS_default\apigateway\config\uiconfiguration.properties.

Edit the configuration file as required. You can configure the number of results to load for
pagination. The default value is 20. The provided value should be a number greater than 0.

apigw.num.results.pagination=20

You have to restart Integration Server for the changes to take effect.

You can configure the number of APIs that get listed per page in the Manage APIs or the Manage
applications page. In each of these pages, you can use the pagination bar at the bottom of the page
to navigate from one page to another, the first page, or the last page when there are more than 20
APIs in the list. To change the number of APIs listed in a page, select the required number in the

webMethods API Gateway User's Guide 10.15 47

1 Define and Manage APIs

Show # results per page field in the pagination bar at the bottom of the page. The API list now
displays only thosemanyAPIs in one page as specified. For example, if you selectShow 10 results
per page, only 10 APIs are listed in one page.

This configuration that you change through the drop down ismaintained as long as you are logged
in to API Gateway. Once you log out, the value is reset to the default configured value in the
uiconfiguration.properties file.

The value is set in the drop down is applicable for bothAPIs and applications listing. For example,
if you change the show results to 10 in the Manage APIs drop down, then the number is retained
for Manage applications page as well.

Modifying API Details

You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

You can modify API details, as required, from the API details page.

To modify API details

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Click the required API.

The API details page appears.

3. Click Edit.

Note:
If the API is in the active state, you cannot modify the name and version of the API. The
API mocking section is unavailable for any changes.

4. Modify the information as required.

5. Click Save.

Note:

If the API is in the active state when you modify API details, the active API is replaced
with the modified API.
The modified APIs do not become effective for ongoing requests.

Updating APIs

You can update the definition of an existing API by uploading WSDL, Swagger, or RAML file or
URL. The uploaded file can also be in a ZIP format. When an API is updated, it retains the Expose

48 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

to consumers settings, the existing scope definitions, the configured policies, and the REST-enabled
path configurations for SOAP API. You can also edit an API using the Edit option for minor edits,
whereas the update feature helps you to overwrite the complete API definition using a file or a
URL at the same time.

You can update an active API. You cannot modify the name and version of an API while updating
an active API.

Note:
The active APIs are replaced with the updated API. The updated APIs do not become effective
for ongoing requests. Updates to an activated API are propagated across a cluster and trigger
a hot deploy on each cluster node separately.

You can update an existing API in the following ways:

By importing an API definition from a file

By importing an API definition from a URL

Updating an API by Importing an API from a File
You must have the API Gateway's manage APIs or Activate/deactivate APIs functional privilege
assigned to perform this task. You can not update an API by importing an API from a file if the
API is in the active state.

To modify API details

1. Click APIs in the title navigation bar.

2. Select the required API from the list of APIs.

The API details page for the selected API appears.

3. Click and select Update.

The Update API window appears.

4. Select Update API by importing from file.

5. Provide the following information:

DescriptionField

ClickBrowse to browse to the location of file to be imported
and select the required file or ZIP format file.

Select file

webMethods API Gateway User's Guide 10.15 49

1 Define and Manage APIs

DescriptionField

The REST API can be updated using only the Swagger or
RAML file type. The SOAP API can be updated using only
the WSDL file type.

If you have selected a file in ZIP format, type the relative
path of the main file within the ZIP file.

Root File Name

Name for the API. Edit or delete the name of the existing
API displayed.

Name

If you provide an API name, this overwrites the API
name mentioned in the uploaded file and the API is
updated with the name provided.

If you do not provide an API name, the API name
mentioned in the uploaded file is picked up and the API
is updated with that name.

Select the required type. The available types are OpenAPI,
RAML, Swagger, WSDL, and GraphQL SDL.

Type

For a REST API, the available options are RAML and
Swagger.

For a SOAP API, the available option is WSDL.

For a GraphQL API, the available option is GraphQL
SDL.

Version number of the API. The existing version number of
the API is automatically displayed. You can edit or delete

Version

the version number. If the version number is deleted and
the imported file does not have a version number, then the
system automatically assigns a version number during the
update.

This overwrites the version of the API.

Description of the API. The existing description of the API
is automatically displayed. You can edit or delete the

Description

description. If you delete the description then the description
from the imported file is used.

6. Click Update.

The API definition is updated with the latest changes from the file and is displayed in the API
details page.

50 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

Updating an API by Importing an API from a URL
You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

To modify API details

1. Click APIs in the title navigation bar.

2. Select the required API from the list of APIs.

The API details page for the selected API appears.

3. Click and select Update.

The Update API window appears.

4. Select Update API by importing from URL.

5. Provide the following information:

DescriptionField

Type the URL from which the API is being imported.URL

Note:
The REST API can be updated using only the Swagger or
RAML type information that the URL is pointing to. The
SOAPAPI can be updated using only theWSDL file type
information that the URL is pointing to. The entity sets,
singletons, function imports, and action imports of an
OData API can only be updated by a re-import of the
OData API definition through the URL.

Select this option if you want to import an API from a URL
that is password protected. The user name and password

Protected

fields are displayed usingwhich you can access the provided
URL.

Type the user name required to access the password
protected URL.

Username

If you have selected the Protected option, this field is
displayed.

Type the password associated with the username.Password

webMethods API Gateway User's Guide 10.15 51

1 Define and Manage APIs

DescriptionField

If you have selected the Protected option, this field is
displayed.

Name for the API. The existing name of the API is
automatically displayed.

Name

If you provide an API name, this overwrites the API
namementioned in the file referred byURL and the API
is updated with the name provided.

If you do not provide an API name, the API name
mentioned in the file referred to by URL is picked up
and the API is updated with that name.

Select the required type. The available types are OpenAPI,
RAML, Swagger, WSDL, OData, and GraphQL SDL.

Type

For a REST API, the available options are RAML and
Swagger.

For a SOAP API, the available option is WSDL.

For a OData API, the available option is OData.

For a GraphQL API, the available option is GraphQL SDL.

Version number of the API. The existing version number of
the API is automatically displayed. You can edit or delete

Version

the version number. If the version number is deleted and
the file referred to by URL does not have a version number,
then the system automatically assigns a version number
during the update.

This overwrites the version of the API.

Description of the API. The existing description of the API
is automatically displayed. You can edit or delete the

Description

description. If you delete the description then the description
from the file referred to by URL is used.

6. Click Update.

The API definition is updated with the latest changes from the URL and is displayed in the
API details page.

Exporting Specifications

For a RESTAPI, you can export specifications in Swagger andRAML formats to your local system.
Similarly, for a SOAP API, you can export a specification in WSDL format to your local system.

52 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

The exportedWSDL is in a ZIP format consisting of theWSDLfilewhereas for Swagger andRAML
the respective files are directly exported. API Gateway supports the following versions:

Swagger 2.0 for a Swagger file

RAML 0.8 for a RAML file

You can exportAPIs that have been created from scratch or by importing their respective definitions.
The Swagger or RAML definition provides the consumer view on a REST API deployed to the
API Gateway. Similarly, the WSDL definition provides the consumer view on a SOAP API.
Consumer view indicates that the Swagger, RAML, orWSDL definitions contain the API Gateway
endpoint and information about those resources and operations, which are exposed to customers.

Note:
In the downloaded Swagger document, the valid JSON schemas attached to a response or a
request does not always appear. Only the valid JSON schemas appear correctly. For any other
schema information just the generic JSON schema such as {"type":"object"} appears.

To export the specification

1. Click APIs in the title navigation bar.

2. Select the required API from the list of available APIs .

The API details page for the selected API appears.

3. Click Documentation.

4. Based on the type of specification that you have selected to export, select any of the following:

Swagger data link to export the Swagger specification.

RAML data link to export the RAML specification.

OpenAPI data link to export the OpenAPI specification.

Artifacts link to export the WSDL specification.

OData meta document link to a zip containing the OData API and metadata document.
If the OData API is active, a link to the service document and a link to the metadata
document are also displayed.

Schema link to download the GraphQL schema.

5. Select the appropriate option and click OK.

Attaching Documents to an API

Pre-requisites:

You must have the Manage APIs functional privilege assigned to perform this task.

webMethods API Gateway User's Guide 10.15 53

1 Define and Manage APIs

You can associate an input document that includes the RAML, Swagger, or WSDL specification,
and additional documents such as programming guides, sample code, script files, and project plan
with an API. For example, SOAP APIs can contain external documents such as Functional
Requirements, Error Messages, Release Notes, and so on.

When attaching a document to an API, keep the following points in mind:

You cannot attach ormodify a document to theAPI if it is in active state. You have to deactivate
the API before attaching or modifying it.

API Gateway relies on file extensions to determine a file's type. When you upload a file from
your local machine to the API, be sure the name of the file on your local machine includes a
file extension so that API Gateway can determine the file's type and attach it correctly to the
API.

You cannot upload types of files that are restricted for attaching as the input document to the
API.

API Gateway provides the ability to restrict certain kinds of files from being uploaded to the
API, based on the file extension. The list of restricted files may vary depending on the file
extensions configured in the apiDocumentsRestrictedExtensionproperty underAdministration
> Extended settings section.

When you try to upload a file type that is restricted, API Gateway prompts you with an error
message.

By default, several standard file extensions are blocked in API Gateway, including any file
extensions that are treated as executable files byWindows Explorer. The file extensions blocked
by default are - .bat, .bin, .dll, and .exe.

You cannot upload files that exceed the maximum allowed size for the API.

API Gateway provides the ability to limit the maximum file upload size to the API. The
maximum file upload size is configured in the apiDocumentsUploadSizeLimitInMB property
under Administration > Extended settings section.

When you try to upload a file that exceeds themaximumfile upload size, APIGateway prompts
you with an error message.

You can rename an uploaded document. When you rename a document, you can only modify
the display name of the document and not the document itself. If you want to modify the
document as well, you must delete the file attachment, and attach the latest file.

To attach a document

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

The API details page appears.

54 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

3. Click Edit.

4. Click Documentation.

5. Click Browse to select a file and upload it.

6. Rename the document in the Display name field as required.

This is the display name of the document in the API details page.

7. Click Add.

The attached document is listed in a table. You can edit and delete the document by clicking

the and icons.

8. Repeat steps 5 to 7 for each document that you want to attach to the API.

9. Click Save.

API Grouping

You can group APIs based on various categories. Categories help consumers locate APIs easily.
For example, if you are offering APIs to help your consumers manage their sales and ordering
better, classifying the APIs under Sales and Ordering helps them locate these APIs easily.

The default groups available under which you can group the APIs are Finance Banking and
Insurance, Sales and Ordering, Search, and Transportation and Warehousing. If you want
to include more groups you can update the property apiGroupingPossibleValues under
Administration > Extended settings that enables API grouping. You canmodify the existing list
of groups by deleting or adding new group names as comma separated values in this field. Ensure
that the group name does not contain a comma as part of the name.

API grouping can be applied in one of these ways:

While creating an API from scratch

While editing an API

You can select one or more groups in the API grouping field. When an API is published to API
Portal, the published APIs in API Portal are grouped as per the group assigned.

API Tagging

Tags arewords or phrases that act as keywords for categorizing, identifying, and organizingAPIs.

In API Gateway, you can assign tags to APIs, and their resources, methods, or operations. Tags
help to logically categorize APIs in different ways, for example, by usage, owner, consuming
application, or other criteria. Tags are especially useful when there are multiple APIs of the same

webMethods API Gateway User's Guide 10.15 55

1 Define and Manage APIs

type - it enables to quickly identify a specific API based on the tag assigned to it. For example, you
can assign the tag GET-Methods to specificGETmethods in different RESTAPIs, and use it to search
for the list of REST APIs with the GET-Methods tag in API Gateway.

You can use tagging, for example, to do the following:

Tag and untag REST APIs in API Gateway.

Use tags to search for multiple resources andmethods across the REST APIs that are available
in API Gateway.

Use tags to search for multiple operations across the SOAP APIs that are available in API
Gateway.

You can assign one or more tags, remove a tag, and view the tags on the API details page. When
a tagged API is published to API Portal, the published API in API Portal is tagged with the same
tag defined in API Gateway.

Adding Tags to an API
You must have the Manage APIs functional privilege assigned to perform this task.

Tags are not automatically assigned to APIs, resources, methods, or operations. You can add one
or more tags, and you can remove tags from an API, resource, method, or operation at any time.

You can define a set of consistent tags that meets your needs for each API, resource, method, or
operation. Using a consistent set of tags makes it easier to manage the APIs, resources, methods,
or operations. You can search the APIs, resources, methods, or operations based on the tags you
add. To add an existing tag, you can use the typeahead search support that lists the existing tags,
which match the character you type. You can restrict the number of existing tags that display,
which match the typeahead character you provide, by configuring the extended setting
tagsTypeAheadSearchResultSize in the Administration > General > Extended settings section.
For details about configuring extended settings, see webMethods API Gateway Administration.

When tagging an API, keep the following points in mind:

You can assign tags to the following API types and their components:

SOAP API. You can assign tags to the SOAP API and to its operations.

REST API. You can assign tags to the REST API, and to its resources and methods.

REST-enabled SOAP API. You can assign tags to the REST-enabled SOAP API. Also, you
can assign tags to the REST resources and methods which correspond to the transformed
SOAP operations.

OData API. You can assign tags to the OData API only.

WebSocket API. You can assign tags to the WebSocket API only.

When you delete an API, resource, method, or operation in API Gateway, any tags that were
assigned to that API, resource, method, or operation are not deleted.

56 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

To tag an API

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

The API details page appears.

3. Click Edit.

4. To add tags to an API, in the Basic information section, do one of the following:

To add an existing tag, select an existing tag from the drop-down list and click .

Alternatively, you can search an existing tag by typing characters in the Tags field that
displays a list of existing tags that contain the character, select the required tag, and click

.

To add a new tag, type the new tag and click .

The tag is listed below the Tags field. To delete a tag, click the x icon.

5. To add tags to resources or methods of a REST API, in the Resources and methods section,
locate the required resource or method and do one of the following:

To add an existing tag, select an existing tag from the drop-down list and click .

Alternatively, you can search an existing tag by typing characters in the Tags field that
displays a list of existing tags that contain the character, select the required tag, and click

.

To add a new tag, type the new tag and click .

The tag is listed below the Tags field. To delete a tag, click the x icon.

6. To add tags to an operation of a SOAP API, in the Operations section, locate the required
operation and do one of the following:

To add an existing tag, select an existing tag from the drop-down list and click .

webMethods API Gateway User's Guide 10.15 57

1 Define and Manage APIs

Alternatively, you can search an existing tag by typing characters in the Tags field that
displays a list of existing tags that contain the character, select the required tag, and click

.

To add a new tag, type the new tag and click .

The tag is listed below the Tags field. To delete a tag, click the x icon.

7. Click Save.

Versioning APIs

API Gateway supports the creation of new API versions from the existing versions. The new API
has the same metadata but with an updated version. The version can either be a number or a
string.

The API details page has a drop-down list that displays all the existing API versions. You can
create a new version of an API and retain applications that are associated with older versions of
the API. When an API is updated, it retains the Expose to consumers settings, the existing scope
definitions, the configured policies, and the REST-enabled path configurations for SOAP API.

When you create a new version, the newer version is assigned to the teams of the older version
by default. You can later change the teams, if required.

Creating New API Version
Youmust have the API Gateway'smanageAPIs functional privilege assigned to perform this task.

You can create a new version of an API from the latest version available for the API. For example,
if the existing version is 1.1 for an API, you can create a version 1.2. If you want to create a version
1.3, you can only create it from the latest version 1.2 and not from 1.1. However, you can delete
the intermediate versions. Additionally, even though the owner of the older API version is a
different provider, when you create a new version of the API, you are the owner of the newly
created version of the API. The new API version is in inactive state, irrespective of the state of the
API from which it was versioned.

To create a new version

1. Click APIs in the title navigation bar.

2. Select the required API from the list of APIs.

The API details page for the selected API appears.

3. Click and select Create new version.

58 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

4. In the Version field, type the new version for the API.

5. Clear the Retain applications checkbox if you do not want to retain applications that are
associated with older versions of the API.

6. Click Create.

The Version drop-down lists the newly created API version in latest to older order in the API
details page. The corresponding API details page is displayed when you select any particular
version.

Note:
The version is appended to the Gateway endpoint(s) URL once the API is activated and this
can be seen in the Technical information section of the API details page. When a client
application invokes theAPIwithout the version in the endpoint, APIGateway invokes the latest
version.

Deleting APIs

Deleting an API permanently removes the API from API Gateway.

When deleting an API, keep the following points in mind:

You cannot delete an API if it is in active state. You have to deactivate the API before deleting
it.

You must have the Manage APIs functional privilege.

Deleting a Single API
You must have the Manage APIs functional privilege assigned to perform this task.

You delete an API to remove it from API Gateway permanently.

To delete an API

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Click the Delete icon for the API that you want to delete.

3. Select the Force delete option to delete an API forcefully.

API Gateway ignores any failures even if the API is used by other applications, and clears all
data from the API Gateway database.

4. Click Yes in the confirmation dialog.

webMethods API Gateway User's Guide 10.15 59

1 Define and Manage APIs

The API is deleted forcefully.

Deleting Multiple APIs in a Single Operation
You must have the Manage APIs functional privilege assigned to perform this task.

You can bulk delete APIs in API Gateway.

To delete multiple APIs in a single operation

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to delete.

3. In the Menu icon, click Delete.

4. Select the Force delete option to delete APIs forcefully.

API Gateway ignores any failures even if the selected APIs are used by other applications, and
clears all data from the API Gateway database.

5. Click Yes in the confirmation dialog.

The APIs are deleted forcefully from API Gateway.

6. Examine the Delete APIs report window and check for any errors that occurred during the
deletion process.

The Delete APIs report window displays the following information:

DescriptionParameter

The name of the deleted API.Name

The status of the deletion process. The available
values are:

Status

Success

Failure

A descriptive information if the deletion fails or if a
warning occurs.

Description

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

7. Click Download the detailed report here to download the detailed report as an HTML file.

60 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

Example: Managing an API

This section explains everything you would want to know about an API and how to manage it
with an example API phonestore. You can model an API that serves to expose API data and
functionality as a collection of resources. Each resource is accessiblewith uniqueUniformResource
Identifiers (URIs). In your API, you expose a set of HTTP operations (methods) to perform on a
specific resource and capture the request and response messages and status codes that are unique
to the HTTP method and linked within the specific resource of the API.

The basic elements of an API are:

The API itself (for example, phonestore)

Its resource (phones), available on the unique base URL (/phones)

The defined HTTP method (GET) for accessing the resource (phones)

Parameters for request representations (412456)

A request generated for this method (Request 123)

A response with the status code received for this request (Response ABCD)

The exampleAPI phonestore considered here is defined to support an online phone store application.
Assume, this sample phonestore API currently has a database that defines the various brands of
phones, features in the individual phones, and the inventory of each phone. This API is used as
a sample to illustrate how to model URL patterns for resources, resource methods, HTTP headers
and response codes, content types, and parameters for request representations to resources.

Base URL

The base URL of an API is constructed by the domain, port, and context mappings of the API. For
example, if the server name is www.phonestore.com, port is 8080, and the API context is api. The
full Base URL is:
http://www.phonestore.com:8080/api

API Parameters

Parameters defined at the higher API level are inherited by all resources and methods included
in the individual resources.

API Resources

Resources are the basic components of an API. Examples of resources from an online phonestore
API include a phone, an order from a store, and a collection of customers. After you identify a
service to expose as an API, you define the resources for the API.

For example, for the online phonestoreAPI, there are a number of ways to represent the data in the
phone store database as an API. The verbs in the HTTP request maps to the operations that the
database supports, such as select, create, update, delete.

Each resource has to be addressed by a unique URI. Along with the URI you're going to expose
for each resource, you also need to decide what can be done to each resource. The HTTPmethods

webMethods API Gateway User's Guide 10.15 61

1 Define and Manage APIs

passed as part of anHTTP request header directs theAPI onwhat has to be donewith the addressed
resource.

Resource URLs

An URL identifies the location of a specific resource.

For example, for the online phonestore API, the resources have the following URLs:

DescriptionURL

Specifies the collection of phones
contained in the online store.

http://www.phonestore.com/api/phones

Accesses a phone referenced by the
product code 412456.

http://www.phonestore.com/api/phones/412456

Specifies a set of reviews posted for a
phone of code 412456.

http://www.phonestore.com/api/phones/412456/reviews

Accesses a specific review referenced by
the unique ID 78 contained in the reviews
of the phone of code 412456.

http://www.phonestore.com/api/phones/412456/reviews/78

API Gateway supports the following patterns of resource URL: a collection of resources or a
particular resource.

For example, in the online phonestore API, the patterns are as follows:

Collection URL: http://phonestore.com/api/phones

UniqueURL: http://phonestore.com/api/phones/412456/features to retrieve a collection resource
describing the key features of phone whose product code is 412456.

Resource Parameters

Parameters defined at the higher resource level are inherited by all methods in the particular
resource; it does not affect the API.

Resource Methods

Individual resources can define their capabilities using supported HTTP methods. To invoke an
API, the client would call an HTTP operation on the URL associated with the API's resource. For
example, to retrieve the key feature information for phonewhose product code is 412456, the client
would make a service call HTTP GET on the following URL:
http://www.phonestore.com/phones/412456/features

Supported HTTP Methods

APIGateway supports the standardHTTPmethods formodelingAPIs: GET, POST, PUT, DELETE,
and PATCH.

The following table describes the semantics of HTTP methods for the sample Phone Store API:

62 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionHTTP
Method

Resource URI

Asks for a representation of all
of the orders.

GET/phones/orders

Attempts to create a new order,
returning the location (in the

POST/phones/orders

Location HTTP Header) of the
newly created resource.

Asks for a representation of a
specific Order resource.

GET/phones/orders/{order-id}

Requests the deletion of a
specified Order resource.

DELETE/phones/orders/{order-id}

Asks for a representation of a
specific Order's current status.

GET/phones/orders/{order-id}/status

Asks for a representation of a
specificOrder's payment details.

GET/phones/orders/{order-id}/paymentdetails

Updates a specific Order's
payment details

PUT/phones/orders/{order-id}/paymentdetails

Method Parameters

Parameters defined at the lower method level apply only to that particular method; it does not
affect either the API or the resource.

API Parameters

Parameters specify additional information to a request. You use parameters as part of the URL or
in the headers or as components of a message body.

Parameter Levels

A parameter can be set at different levels of an API. When you document a REST API in API
Gateway, you define parameters at the API level, resource level, or method level to address the
following scenarios:

If you have the parameter applicable to all resources in theAPI, then you define this parameter
at the API level. This indirectly implies that the parameter is propagated to all resources and
methods under the particular API.

If you have the parameter applicable to all methods in the API, then you define this parameter
at the resource level. This indirectly implies that the parameter is propagated to all methods
under the particular resource.

If you have the parameter applicable only to amethod in theAPI, then youdefine this parameter
at the method level.

webMethods API Gateway User's Guide 10.15 63

1 Define and Manage APIs

API-level Parameters

Setting parameters at the API level enables the automatic assignment of the parameters to all
resources and methods included in the API. Any parameter value you specify at the higher API
level overrides the parameter value you set at the lower resource level or the lower method level
if the parameter names are the same.

For example, if you have a header parameter called API Key that is used for consuming an API.
x-Gateway-APIKey:a4b5d569-2450-11e3-b3fc-b5a70ab4288a

This parameter is specific to the entire API and to the individual components, that is resources
and methods, directly below the API. Such a parameter can be defined as a parameter at the API
level.

At an API level, API Gateway allows you to define the following types of parameters:

Query-String parameter

Header parameter

Resource-level Parameters

Setting parameters at the resource level enables the automatic assignment of the parameters to all
methodswithin the resource.Anyparameter value you specify at the higher resource level overrides
the parameter value you set at the lower method level if the parameter names are the same. In
contrast, the lower resource level parameters do not affect the higher API level parameters.

Consider the sample phonestoreAPI maintains a database of reviews about different phones. Here
is a request to display information about a particular user review, 78 of the phone whose product
code is 412456.
GET /phones/412456/user_reviews/78

In the example, /user_reviews/78 parameter narrows the focus of a GET request to review /78
within a particular resource /412456.

This parameter is specific to the particular resource phone whose product code is 412456 and to
any individual methods that are directly below the particular resource. Such a parameter can be
defined as a parameter at the resource level.

At a resource level, API Gateway allows you to define the following types of parameters:

Query-String parameter

Header parameter

Path parameter

Method-level Parameters

If you do not set parameters at the API level or resource level, you can set them at a method level.
Parameters you set at the method level are used for the HTTP method execution. They are useful
to restrict the response data returned for a HTTP request. Any parameter value you specify at the
lower method level is overridden by the value set at higher API-level parameter or the higher

64 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

resource-level parameter if the names are the same. In contrast, the lowermethod-level parameters
do not affect the higher API-level or resource-level parameters.

For example, the phonestoreAPI describedmight have a request to display information contributed
by user Allen in 2013 about a phone whose product code is 412456.
GET /phones/412456/user_reviews/78?year=2013&name=Allen

In this example, year=2013 and name=Allen narrow the focus of the GET request to entries that
user Allen added to user review 78 in 2013.

At a method level, API Gateway allows you to define the following types of parameters:

Query-String parameter

Header parameter

Parameter Types

API Gateway supports three types of parameters in REST API: Query-String, Header, and Path.

The following example explains how you can use different parameter types for parameterizing
the resources.

Query-String Parameters

Query-String parameters are appended to theURI after a ?with name-value pairs. The name-value
pairs sequence is separated either by a semicolon or an ampersand.

For instance, if the URL is http://phonestore.com/api/phones?itemID=itemIDValue, the query
parameter name is itemID and value is the itemIDValue. Query parameters are often used when
filtering or paging through HTTP GET requests.

Now, consider the online phonestore API. A customer, when trying to fetch a collection of phones,
might wish to add options, such as, android v4.3 OS and 8MP camera. The URI for this resource
would look like:
/phones?features=androidosv4.3&cameraresolution=8MP

You can also use query string to invoke the required resource of an API by appending API Key
to ? like the example seen below:
http://pie-3HKYMH2:5555/gateway/PetstoreAPI/1.0.3/store/inventory?APIKey=faab7ac6-97a4-4228-908d-f1930faba470

Header Parameters

Header parameters are HTTP headers. Headers often contain metadata information for the client,
or server.
x-Gateway-APIKey:a4b5d569-2450-11e3-b3fc-b5a70ab4288a

You can create custom headers, as required. As a best practice, Software AG recommends that
you prefix the header name with x-.

HTTP/1.1 defines the headers that can appear in a HTTP response in three sections of RFC 2616:
4.5, 6.2, and 7.1. Examine these codes to determine which are appropriate for the API.

webMethods API Gateway User's Guide 10.15 65

1 Define and Manage APIs

Path Parameters

Path parameters are defined as part of the resource URI. For example, the URI can include
phones/item, where /item is a path parameter that identifies the item in the collection of resource
/phones. Because path parameters are part of the URI, they are essential in identifying the request.

Now, consider the online phonestore API. A customer wishes to fetch details about a phone
{phone-id}whose product code is 412456. TheURI for this resourcewould look like: /phones/412456

Important:
As a best practice, Software AG recommends that you adopt the following conventions when
specifying a path parameter in the resource URI:

Append a path parameter variable within curly {} brackets.
Specify a path parameter variable such that it exactly matches the path parameter defined
at the resource level.

Parameter Data Types

When you add a parameter to the API, you specify the parameter's data type. The data type
determines what kind of information the parameter can hold.

API Gateway supports the following data types for parameters:

DescriptionData Type

Specifies a string of text.String

Specifies a date stamp that represents a specific date.Date

The date input parameters allow year, month, and day input.

This data type only accepts date values in the format yyyy-mm-dd

Specifies a timestamp that represents a specific time.Time

The time input parameters allow hour and minute.

This data type only accepts date values in the format hh:mm:ss

Specifies a timestamp that represents a specific date and/or time.Date/Time

The date/time input parameters allow year, month, and day input as well as
hour and minute. Hour and minute default to 0.

This data type only accepts date values in the format yyyy-mm-dd; and time
values in the format hh:mm:ss

Specifies an integer value for the data type.Integer

This is generally used as the default data type for integral values.

Specifies the double data type value.Double

66 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

DescriptionData Type

This is a double-precision 64-bit IEEE 754 floating point and is generally used
as the default data type for decimal values.

Specifies a true or false value.Boolean

Supported HTTP Status Codes

An API response returns a HTTP status code that indicates success or failure of the requested
operation.

API Gateway allows you to specify HTTP codes for each method to help clients understand the
response. While responses can contain an error code in XML or other format, clients can quickly
andmore easily understand anHTTP response status code. TheHTTP specification defines several
status codes that are typically understood by clients.

APIGateway includes a set of predefined content types that are classified in the following taxonomy
categories:

DescriptionCategory

Informational.1xx

Success.2xx

Redirection. Need further action.3xx

Client error. Correct the request data and retry.4xx

Server error.5xx

HTTP/1.1 defines all the legal status codes. Examine these codes to determinewhich are appropriate
for your API.

Now, consider the online phonestoreAPI. The following table describes the HTTP status codes that
each of the URIs and HTTP methods combinations will respond:

Supported HTTP Status CodesSupported
HTTP
Methods

Resource URI

200 (OK, Success)GET/phones/orders

201 (Created) if the Order resource is
successfully created, in addition to a

POST/phones/orders

Location header that contains the link to the
newly created Order resource; 406 (Not
Acceptable) if the format of the incoming
data for the new resource is not valid

webMethods API Gateway User's Guide 10.15 67

1 Define and Manage APIs

Supported HTTP Status CodesSupported
HTTP
Methods

Resource URI

200 (OK); 404 (Not Found) if Order Resource
not found

GET/phones/orders/{order-id}

200 (OK); 404 (Not Found) if Order Resource
not found

DELETE/phones/orders/{order-id}

200 (OK); 404 (Not Found) if Order Resource
not found

GET/phones/orders/{order-id}/status

200 (OK); 404 (Not Found) if Order Resource
not found

GET/phones/orders/{order-id}/paymentdetails

201 (Created); 406 (Not Acceptable) if there
is a problemwith the format of the incoming

PUT/phones/orders/{order-id}/paymentdetails

data on the new payment details; 404 (Not
Found) if Order Resource not found

Sample Requests and Responses

To illustrate the usage of an API, you provide a sample request and response messages. Consider
the sample phonestore API that maintains a database of phones in different brands. The phonestore
API might provide the following examples to illustrate its usage:

Sample 1 - Retrieve a list of phones

Client Request
GET /phones HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.api.phonestore.com
Accept-Language: en-us
Accept-Encoding: text/xml
Connection: Keep-Alive

Server Response
HTTP/1.1 200 OK
Date: Mon, 29 August 11:53:27 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Mon, 18 July 2016 09:18:16 GMT
Content-Length: 356
Content-Type: text/xml
<phones>

<phone>
<name>Asha</name>
<brand>Nokia</brand>
<price currency="irs">11499</price>
<features>

<camera>
<back>3</back>

</camera>

68 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

<memory>
<storage scale="gb">8</storage>
<ram scale="gb">1</ram>

</memory>
<network>

<gsm>850/900/1800/1900 MHz</gsm>
</network>

</features>
</phone>
<phone>

<name>Nexus7</name>
<brand>Google</brand>
<price currency="irs">16499</price>
<features>

<camera>
<front>1.3</front>
<back>5</back>

</camera>
<memory>

<storage scale="gb">16</storage>
<ram scale="gb">2</ram>

</memory>
<network>

<gsm>850/900/1800/1900 MHz</gsm>
<HSPA>850/900/1900 MHz</HSPA>

</network>
</features>

</phone>
</phones>

Client Request
GET /phones/phone-4156 HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.api.phonestore.com
Accept-Language: en-us
Accept-Encoding: text/xml
Connection: Keep-Alive

Server Response
POST /phones/phone HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.api.phonestore.com
Accept-Language: en-us
Accept-Encoding: text/xml
Content-Length: 156
Connection: Keep-Alive
<phones>

<phone>
<name>iPhone5</name>
<brand>Apple</brand>
<price currency="irs">24500</price>
<features>

<camera>
<front>1.2</front>
<back>8</back>

</camera>
<memory>

<storage scale="gb">32</storage>

webMethods API Gateway User's Guide 10.15 69

1 Define and Manage APIs

<ram scale="gb">2</ram>
</memory>
<network>

<gsm>850/900/1800/1900 MHz</gsm>
<HSPA>850/900/1900 MHz</HSPA>

</network>
</features>

<phone>
</phones>

Sample 3 - Create a phone
POST /phones/phone HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.api.phonestore.com
Accept-Language: en-us
Accept-Encoding: text/xml
Content-Length: 156
Connection: Keep-Alive
<phones>

<phone>
<name>iPhone5</name>
<brand>Apple</brand>
<price currency="irs">24500</price>
<features>

<camera>
<front>1.2</front>
<back>8</back>

</camera>
<memory>

<storage scale="gb">32</storage>
<ram scale="gb">2</ram>

</memory>
<network>

<gsm>850/900/1800/1900 MHz</gsm>
<HSPA>850/900/1900 MHz</HSPA>

</network>
</features>

<phone>
</phones>

Server Response
HTTP/1.1 200 OK
Date: Mon, 29 August 11:53:27 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Wed, 18 June 2014 09:18:16 GMT
Content-Type: text/xml
Content-Length: 15
<id>2122</id>

CentraSite Provided APIs

When you want to perform governed API development with CentraSite and API Gateway, you
can create an API in CentraSite defining the design-time aspects. The API can be deployed to the
API Gateway. In such cases, you can also see that particular CentraSite destination is being
configured in the API Gateway. The API details for the CentraSite provided APIs are set as
read-only. However, you can edit the run-time aspects such as scope and policies.

70 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

Note:
When you remove the CentraSite destination from the API Gateway, this implies that the API
is provided by the API Gateway and therefore the details of API are not read-only. You can edit
them as required.

When you deploy

A REST API from CentraSite, then you cannot modify the Basic information, Technical
information, Resource and methods, and Components sections. The above mentioned
sections are marked as read-only. However, you can modify the fields in the API Mocking
and Documentation sections.

A SOAP API from CentraSite, then you cannot modify the Basic information, Technical
information, Resource and methods, and Components sections. The above mentioned
sections are marked as read-only. However, you can modify the fields in the REST
transformation,API Mocking, and Documentation sections.

AnODataAPI fromCentraSite, then you cannotmodify theBasic informationand Technical
information sections. The above mentioned sections are marked as read-only. However, you
can modify the fields in the Documentation section.

For more information about Modifying API, see “Modifying API Details” on page 48.

webMethods API Gateway User's Guide 10.15 71

1 Define and Manage APIs

72 webMethods API Gateway User's Guide 10.15

1 Define and Manage APIs

2 Implement APIs

■ API Implementation .. 74

■ API Mocking ... 74

■ Consumer Applications .. 79

■ Policies ... 93

■ Aliases .. 454

■ Global Policies .. 471

■ Scope-level Policies .. 489

■ Example: Usage Scenarios of API Scopes .. 498

■ Policy Templates ... 502

■ Change Ownership of Assets ... 512

■ Debugging API ... 519

■ API Mashups .. 538

■ SOAP to REST Transformation .. 548

■ API First Implementation .. 556

■ Troubleshooting Tips: Implement APIs ... 563

webMethods API Gateway User's Guide 10.15 73

API Implementation

After you create an API, it's time to start defining the behavior of the API.

Some of the important considerations that you take into account when you define your API's
behavior are:

Enable API mocking

Enforce policies

Ensure proper caching, filtering and error handling mechanisms

Enforce policies

Apply rate limiting

Enable API testing and debugging

Define monitoring and debugging mechanisms

API Gateway UI provides a visual guided experience for designing, developing, and testing APIs.
The API caching, filtering, and sorting capability helps in retrieving your APIs faster. You can use
the pagination function to determine how much data must be displayed and at what frequency.
These features ensure minimum processing and good response time.

API Gateway provides various policies that are designed to let you addmanagement capabilities,
to an API or to all APIs at a global level, easily. You can enforce these policies on an API to secure,
limit, and route requests sent to APIs.

The API testing capability allows you to test your APIs before you publish them onto a portal for
consumption. API Gateway also provides theAPImocking capability that enables you to simulate
the behavior of a real API for testing the API.

API Gateway provides logging and monitoring capabilities that help debug your APIs so that
locating the root cause of the issue based onwhat is observed is easy. In addition, you canmonitor
API usage to understand API trends.

The following sections describe the various ways in which you can implement your APIs such as,
APImocking, enforcing different types of policies as required, creating andmanaging applications
and aliases, creating API mashup, and so on.

API Mocking

Using API Gateway, you can mock an API by simulating the native API. For example, if you have
anAPIwithout a native implementation, you canmock thatAPI. Themocked response is returned
to the consumer when the API is invoked.

In API Gateway, when you enable mocking for an API, a default mock response is configured for
each combination of resource, operation, status code, and content-type based on the example and
schema specified in that API. You can add a condition to the operation in the resource.

74 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Note:

You cannot enable or disable mocking for an active API.
API Gateway does not support API Mocking for GraphQL API.

As anAPI Provider, you can create ormodify the defaultmock response. You can specify conditions
and associate an IS service with the mocked API. When an IS service is associated with a mocked
API, the associated IS service must adhere to the apigateway.specifications:mockService specification.

At runtime, when the mocked API is invoked, instead of calling the native API, API Gateway
returns the mocked response to the consumer based on the following priorities:

1. If any of the conditions for the invoked operation satisfies, API Gateway returns the associated
mocked response.

2. If any of the conditions for the invoked operation is not satisfied, and if an IS service is
configured for the API, then API Gateway invokes the IS service and returns the IS service
response.

3. If any of the conditions for the invoked operation is not satisfied, and if an IS service is not
configured for the API, then API Gateway returns the default mocked response.

API mocking is supported only for SOAP and REST APIs.

Note:
Youmust have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform API mocking.

Enabling API Mocking
You can enable or disable API mocking through the API details page.

Note:
You cannot enable or disable API mocking for active APIs.

To enable API mocking

1. Click APIs in the title navigation bar.

2. Select the required API from the list of available APIs.

The API details page for the selected API appears.

3. Click and select Enable mocking.

This generates the default mock responses.

webMethods API Gateway User's Guide 10.15 75

2 Implement APIs

Modifying API Mocking Details

You must select Enable mocking from the API details page.

You can modify API mocking details, as required, from the API details page.

To modify API mocking details

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Click the required API.

The API details page appears.

3. Click Edit.

4. Click API mocking.

5. Specify the following information in the ESB service section:

DescriptionField

Specifies the webMethods Integration Server service to be
invoked.

Invoke service

Note:
The webMethods Integration Server service must be
running on the same Integration Server as API Gateway.

Type the user name you want API Gateway to use to invoke
the IS service.

Run as user

6. Select the operation that you want to modify from the Mocked responses section.

7. Click Add Response if you want to add a response and select the status code from the
drop-down.

8. Click .

This adds the status code created to the existing status code list.

9. Select the status code you want to modify.

76 webMethods API Gateway User's Guide 10.15

2 Implement APIs

10. Click + Add Response Header and provide the following information to add the required
response headers:

DescriptionField

Specify the HTTP header key that would be contained in the
header of HTTP response.

Header key

Specify the HTTP header value that would be contained in
the header of HTTP response.

Header value

You can add more response headers by clicking .

11. Click + Add Content-type to add a content-type to the status code selected and provide the
following information:

DescriptionField

Select the content-type to be added to the selected status code
from the drop-down list.

Content type

Specify a mock response payload for the content-type
selected.

Mock payloads

You can add more content-types by clicking Add .

12. Click + Add Conditions to add a condition to the operation in the resource:

DescriptionField

Specify the name for the condition.Condition name

Select the type to which the condition is to be applied. The
available options are:

Condition parameter

Body

Header

Query parameter (Applicable only for REST APIs)

The key can be a string for the header and query parameter
and for body it can be a JSON path or an XML path.

Key

Note:
The XML path must not contain namespace prefixes.

The value of the condition. Additionally, you can type an *
(asterisk) to ignore the value specified in this parameter and

Value

webMethods API Gateway User's Guide 10.15 77

2 Implement APIs

DescriptionField

the condition is satisfied based on the value specified in the
Key parameter.

Select the status code from the drop-down list.Status code

Note:

You must enable the property Send native provider
fault in the Administration > General > API fault
section in order to have correct mock response for
status code 506.
This field is not applicable for APIs when they
participate in API mashups.
While invoking an API remember to use the query
parameter expectedStatusCode in order to have correct
mock responses for status codes 100 and 202.

Add a response header to the resource selected by providing
the following information:

+ Add Response Header

Header key. Specify the HTTP header key that would
be contained in the header of HTTP response

Header value. Specify theHTTPheader value thatwould
be contained in the header of HTTP response.

Add a content-type to the status code selected by providing
the following information:

+ Add Content-type

Content type. Select the content-type to be added to the
selected status code from the drop-down list.

Mock payload. Specify a mock response payload for the
content-type selected.

You can add more conditions by clicking Add .

13. Click Save.

Custom Replacer
API Gateway allows you to send a dynamic custom response instead of a static mocked response
to the consumerwhen themockedAPI is invoked. In themocked response, you can specifymultiple
custom replacers. Custom replacer is used to replace the custom variables with the values defined
in the request headers, query parameters, and request body. The custom replacer is available in
the ${request.ConditionParameter.Key|JsonPath|XPath} format. The custom replacers are:

${request.header.headerKey}: To replace the value of the headerKey from the request headers.

78 webMethods API Gateway User's Guide 10.15

2 Implement APIs

${request.query.queryKey}: To replace the value of the queryKey from the query parameters
in the request URL.

${request.body.JsonPath|XPath}: To replace the value of the JsonPath|XPath from the request
body.

Consumer Applications

A consumer application defines the precise identifiers by which messages from a particular
application is recognized at run time. The identifiers can be, for example, user name in HTTP
headers, a range of IP addresses, such thatAPIGateway can identify or authenticate the applications
that are requesting an API.

The ability of API Gateway to relate a message to a specific application enables it to:

Control access to an API at run time (that is, allow only authorized applications to invoke an
API).

Monitor an API for violations of a Service-Level Agreement (SLA) for a specified application.

Indicate the application to which a logged transaction event belongs.

An application has the following attributes for specifying the identifiers:

IP address, which specifies one or more IP addresses that identify requests from a particular
application. Example: 192.168.0.10

This attribute is queried when the Identify & Authorize policy is configured to identify
applications using IP address.

Claims set, which specifies one or more claims that identify requests from a particular
application. The claims are a set of name-value pairs that provide sufficient information about
the application. Example: sub = Administrator.

This attribute is queried when the Identify & Authorize policy is configured to identify
applications using a JWT token or an OpenID token.

Client certificate, which specifies the X.509 certificates that identify requests from a particular
application.

This attribute is queried when the Identify & Authorize policy is configured to identify the
applications by a client certificate.

Identification token, which specifies the host names, user names or other distinguishing strings
that identify requests from a particular application.

This attribute is queried when the Identify & Authorize policy action is configured to identify
applications by host name, token, HTTP user name, and WSS user name.

You can configure various authentication strategies to authenticate an incoming request to the
application. You can create multiple strategies authorized by an API for an application. These
strategies provide multiple authentication mechanisms or multiple authorization servers for a
single authentication scheme. For example, in case of OAuth authentication scheme, youwant the

webMethods API Gateway User's Guide 10.15 79

2 Implement APIs

application to support both OKTA and PINGFederate or OKTA with multiple tenants. This can
be configured as OAuth strategy for the application.

If you have the Manage Application functional privilege assigned, you can create and manage
applications, and register applications with the APIs.

These are the high level stages of managing and using an application:

1. API developer requests the API Gateway administrator to create an application for access as
per the required identification criteria.

2. API Gateway provider or administrator validates the request and creates a new application,
there by provisioning the application specific access tokens (API access key and OAuth
credentials).

3. API developer, upon finding a suitable API, sends a request to API Gateway for consumption
by providing the application details.

4. After validating the request, APIGateway provider or administrator associates the application
with the API. Keys are generated for applications and not for every API that the application
consumes.

Note:
The approval process, if any, is handled by the requesting application and not handled by
API Gateway.

5. The API developer can then use the application with the proper identifier (such as the access
key or identifier) to access the API.

API key expiration date

An API Gateway application has an optional expiration date for its API key. When the API access
key expires, the application cannot be identified. The API Gateway Administrator can configure
the apiKeyExpirationPeriod parameter from the General > Extended settings page. If the
expiration date is not specified, then the API key never expires.

Suspended Applications

You can suspend applications so as to disable the identification of requests temporarily. If a
suspended application is identified while processing a request the request is rejected with HTTP
403 (Forbidden) error. The response body has the following content:
Application has been identified but it is currently suspended. Please contact
the API Gateway administrator for further details.

You can resume the suspended applications to enable the identification again.

Creating an Application
You must have the API Gateway's manage applications functional privilege assigned to perform
this task.

You can create an application from the Applications page.

80 webMethods API Gateway User's Guide 10.15

2 Implement APIs

To create an application

1. Click Applications in the title navigation bar.

2. Click Create application.

3. Provide the following information in the Basic information section:

DescriptionField

Type a name for the application.Name

Version of the application. By default, it is 1.0 but can be
modified to a required value.

Version

Name of the team who owns the application.Owner

The application owner can view all details of the application
including the API access key. If you specify a team as
application owner, then all members of the team can view the
API access key.

Note:
You cannot modify ownership details of the applications
you create through Developer Portal.

Type a description of the application.Description

Specify your comments, if any.Requestor comment

This field is visible only when the approval configuration for
Create application is enabled in theAdministration >General
> Approval Configuration > Create application section.

The pending requests for an application can be approved by one of the following:

List of users and user groups of the teams that the application is associatedwith. Youmust
specify the required users and user groups in the Approvers section of the Basic
information tab when creating or editing the corresponding team.

List of users and user groups of the teams that the application is associatedwith. Youmust
specify the required users and user groups in the Team Administrators section of the
Basic information tabwhen creating or editing the corresponding. This is applicable only
if the Include team administrators as approvers option is selected.

4. Click Continue to Identifiers >.

Alternatively, you can click Identifiers in the left navigation panel.

webMethods API Gateway User's Guide 10.15 81

2 Implement APIs

You can save the application by clicking Save at this stage and add the Identifiers and APIs
at a later time.

5. Provide the following information in the Identifiers section:

DescriptionField

Provide the IP address range or range of trusted IPv4 or IPv6
addresses that identify requests from a particular application.

IP address range

You can add more range options by clicking +Add and adding
the required information.

Specifies the third-party partner's identity.Partner identifier

The specified partner can access the APIs if business-to-business
communication between trading partners is enabled and where
partners can invoke the exposed APIs to exchange information.

For example, if you have enabled business-to-business
communication between trading partners using APIs, partners
can invoke the exposed APIs to exchange information. These
APIs are available by associating Trading Networks with API
Gateway. A partner can access theAPIs that appear in the Partner
Profiles and associated Partner Groups page. Once APIs are
added as part of Partner, respective application is created in API
Gatewaywith namepartnerName Application and appropriate
Partner ID.

Formore details on information on enabling business-to-business
communication between trading partners and required
configuration, see webMethods Trading Networks Administrator’s
Guide

Note:
No identification or enforcement of application happens in
API Gateway using this identifier.

Click Browse and select the client certificate or certificate chain
to be uploaded. The client certificate specifies the X.509
certificates that requests from a particular application.

Client certificates

Note:
APIGateway supports .cer and .pem certificates for identifying
consumer applications.

You can add multiple certificates by clicking +Add.

Provide a set of claims for the JWT and OpenID clients.Claims

82 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField

Aclaim is a unique identifying information that identify requests
fromaparticular consumer application. The claim set is identified
by a unique Name and is defined as a name-value pair that
consists of a Claim name and a Claim value.

You can add more claims and claims sets by clicking +Add and
adding the required information.

Specify the HTTP header key to identify the requests from an
application.

Header key

Specify the HTTP header value to identify the requests from an
application.

Header value

You can add multiple header key and value by clicking +Add

Select one of the options to identify requests from a particular
application and provide the required value:

Other identifiers

Hostname. The host name to identify requests from an
application.

Payload identifier.The payload identifier to identify requests
from an application.

Team. The team to identify requests from an application. A
team can contain one or more groups or LDAP groups the
application can be identified against a user belonging to any
of these groups by the specified team.

Token. The token to identify requests from an application.

Username. The username credential to identify requests
from an application.

WS-Security username. The WSS username to identify
requests from an application.

6. Click Continue to APIs >

Alternatively you can click APIs in the left navigation panel.

You can save the application by clicking Save at this stage and add the APIs at a later time.

7. Type a keyword to find the required API and click + to add the API.

Adding an API to the application enables the application to access the API. An API developer
while invoking the API at runtime, has to provide the access token or identification token for
API Gateway to identify the application.

webMethods API Gateway User's Guide 10.15 83

2 Implement APIs

8. Type the required Requestor comment.

9. Click Continue to Advanced >

Alternatively you can click Advanced in the left navigation panel.

You can save the application by clicking Save at this stage and add the APIs at a later time.

10. Specify the origin fromwhich the responses originating are allowedduring response processing
for the application.

Note:
You cannot provide Regular expressions for allowed origins.

11. Click +Add to add the origin.

You can add multiple origins using .

12. Click Continue to Authentication >

Alternatively you can click Authentication in the left navigation panel.

You can save the application by clickingSave at this stage and add theAuthentication strategy
at a later time.

13. Click Create strategy.

A strategy is a way to authenticate the incoming request and providesmultiple authentication
mechanisms or multiple authorization servers for a single authentication scheme. You can
create multiple strategies authorized by an API for an application.

14. Select one of the Authentication schemes:

OAUTH2. Provide the following information:

DescriptionField

Provide the name for the strategy.Name

Provide a description to describe the strategy.Description

Specify the authentication server.Authentication server

The available values are local, which is the default server or
any other configured external authorization server.

Provide a value or URI, the intended recipient of the
authorization server scope.

Audience

84 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField

The application that receives the token verifies that the
audience value is correct and rejects any tokens intended for
a different audience.

Enable the toggle button to generate the client dynamically in
the authorization server andprovide the following information:

Generate Credentials

Type. Select one of the client types:

Confidential. A confidential client is an application
that is capable of keeping a client password confidential
to the world. This client password is assigned to the
client app by the authorization server. This password
is used to identify the client to the authorization server,
to avoid fraud. An example of a confidential client
could be aweb app,where no one but the administrator
can get access to the server, and see the client password.

Public. A public client is an application that is not
capable of keeping a client password confidential. For
instance, a mobile phone application or a desktop
application that has the client password embedded
inside it. Such an application could get cracked, and
this could reveal the password. The same is true for a
JavaScript application running in the users browser.
The user could use a JavaScript debugger to look into
the application, and see the client password.

Application type. Specify the application type.

WEB. A web application is an application running on
a web server. In reality, a web application typically
consists of both a browser part and a server part. The
client password could be stored on the server. The
password would thus be confidential.

USER_AGENT. A user agent application is for instance
a JavaScript application running in a browser. The
browser is the user agent. A user agent applicationmay
be stored on a web server, but the application is only
running in the user agent once downloaded.

NATIVE. A native application is for instance a desktop
application or a mobile phone application. Native
applications are typically installed on the users
computer or device (phone, tablet and so on). Thus,
the client password will be stored on the users
computer or device too.

webMethods API Gateway User's Guide 10.15 85

2 Implement APIs

DescriptionField

Token lifetime. Specify the token lifetime in seconds for
which the token is active

Token refresh limit. Specify the number of times you can
use the refresh token to get a new access token.

Redirect URIs. Specify the URIs that the authorization
server can use to redirect the resource owner's browser
during the grant process. You can add multiple URIs by
clicking +Add.

Grant type. Specify the grant type to be used to generate
the credentials. Available options can be
authorization_code, password, client_credentials,
refresh_token, and implicit, which are dynamically
populated from the authorization server. For example, if
the authorization server does not support client credentials,
the option is not available in the options list.

Scopes. Select the scopes that are to mapped for the
authentication strategy.

Note:
in API Gateway 10.2, the scopes are automatically
created when you associate an API to an application.
From API Gateway 10.3 onwards you have to select
scopes from the authorization server that have to be
associated with the strategy.

Specify the Client identifier for a client application available
in the authorization server that identifies the client application

Client id

in the authorization server to map the client to the API
Gateway application.

This is required if you have a client application available in the
authorization server and do not want to dynamically create a client.

JWT. Provide the following information:

DescriptionField

Provide the name for the strategy.Name

Provide a description to describe the strategy.Description

Specify the authentication server.Authentication server

The possible values are local, which is the default server or
any other configured external authorization server.

86 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField

Provide a value or URI, the intended recipient of the
authorization server scope.

Audience

The application that receives the token verifies that the
audience value is correct and rejects any tokens intended for
a different audience.

Select if the authorization server is returning a JWT with
HMAC algorithm and provide the shared secret value to
validate the JWT.

HMAC algorithm

OPENID. Provide the following information:

DescriptionField

Provide the name for the strategy.Name

Provide a description to describe the strategy.Description

Specify the authentication server.Authentication server

The available values are local, which is the default server or
any other configured external authorization server.

Provide a value or URI, the intended recipient of the
authorization server scope.

Audience

The application that receives the token verifies that the
audience value is correct and rejects any tokens intended for
a different audience.

Enable the toggle button to generate the credentials required
to identify the client application and provide the following
information:

Generate Credentials

Type. Select the client type, Public or Confidential

Confidential. A confidential client is an application
that is capable of keeping a client password confidential
to the world. This client password is assigned to the
client app by the authorization server. This password
is used to identify the client to the authorization server,
to avoid fraud. An example of a confidential client
could be aweb app,where no one but the administrator
can get access to the server, and see the client password.

Public. A public client is an application that is not
capable of keeping a client password confidential. For
instance, a mobile phone application or a desktop

webMethods API Gateway User's Guide 10.15 87

2 Implement APIs

DescriptionField

application that has the client password embedded
inside it. Such an application could get cracked, and
this could reveal the password. The same is true for a
JavaScript application running in the users browser.
The user could use a JavaScript debugger to look into
the application, and see the client password.

Application type. Specify the application type.

WEB. A web application is an application running on
a web server. In reality, a web application typically
consists of both a browser part and a server part. The
client password could be stored on the server. The
password would thus be confidential.

USER_AGENT. A user agent application is for instance
a JavaScript application running in a browser. The
browser is the user agent. A user agent applicationmay
be stored on a web server, but the application is only
running in the user agent once downloaded.

NATIVE. A native application is for instance a desktop
application or a mobile phone application. Native
applications are typically installed on the users
computer or device (phone, tablet etc.). Thus, the client
password will be stored on the users computer or
device too.

Token lifetime. Specify the token lifetime in seconds for
which the token is active

Token refresh limit. Specify the time in seconds forwhich
the token refresh is applicable

Redirect URIs. Specify the URIs that the authorization
server can use to redirect the resource owner's browser
during the grant process. You can add multiple URIs by
clicking +Add.

Grant type. Specify the grant type to be used to generate
the credentials. Available options areAuthorization code,
Implicit, Resource owner, Client credentials.

Scopes. Select the scopes that are to be associated to the
generated client.

Note:
In API Gateway 10.2, the scopes are automatically
created when you associate an API to an application.

88 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField

From API Gateway 10.3 onwards you have to select
scopes from the authorization server that have to be
associated with the strategy.

Specify the Client identifier that identifies the client application
in the authorization server to map the client to the API
Gateway application.

Client id

This is required if you do not choose to generate credentials to identify
the client application.

15. Click Add.

The strategy is configured and listed in the Strategies table.

Note:
API Gateway allows you to generate a new Client ID and Client Secret for an existing
strategy. However, once the credentials are generated for a strategy, it can no longer be
removed. The Generate credentials toggle is disabled in the UI when you update a strategy.

16. Click Save.

The application creation request is sent for approval. If you are one of the approvers, then the
application creation request is automatically approved, the application is created, and listed
in the Manage applications page.

Viewing List of Applications and Subscriptions
You can view the list of applications and subscriptions in the Manage applications page from
where you can create, delete, and select an application to view its details.

To view the application list and application and subscription details

1. Click Applications in the title navigation bar.

A list of all registered applications and subscriptions appear.

denotes application.

denotes subscription.

2. Select an application.

The application details page displays the following information: basic information that contains
details such as name, description, owner, and creation time, identifiers, access tokens, APIs

webMethods API Gateway User's Guide 10.15 89

2 Implement APIs

registered for the application, advanced configurations, and authentication strategies configured
for the application.

Application credentials, such as, API Keys or OAuth client secrets are visible only to the
application owner. All other users can only see an encrypted value. Since API Portal and API
Gateway do not support a central user management, API Gateway users cannot see the
application credentials of the application requested through API Portal.

3. Select a subscription.

You can view the applications and the associated package, plan, used quota, start time, end
time, and the remaining period of the subscription.

Note:
You cannot create a subscription from this page. To create a subscription, use the subscription
API. For details about creating subscriptions using a REST API, see

. You can also create a subscription from the API Portal.

Regenerating API Access Key
You must have the API Gateway's manage applications functional privilege assigned to perform
this task.

You can regenerate an API access key in the Application details page from where you can view
application details.

Only the API owner can view the API access key field. This field is masked in the identification
profile for all other users. An administrator can renew or revoke the API access key but cannot
view it.

To regenerate an API key

1. Click Applications in the title navigation bar.

A list of all registered applications is displayed.

2. Select an application.

The application details page displays the basic information, identifiers, access tokens, API key,
APIs registered and strategies configured for that application.

3. Click .

The API access key is regenerated and the new API access key appears in the API access key
field.

90 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Modifying Application Details
You can modify the details of an application as required from the application details page.

To modify application details

1. Click Applications in the title navigation bar.

A list of registered applications is displayed.

2. Select an application.

3. Click Edit in the application details page.

4. Modify the required fields in the Basic information section.

Note:
You cannot modify ownership details of the applications you create through Developer
Portal.

5. Click Identifiers.

6. Modify the required fields in the Identifiers section.

7. Click APIs.

8. Add or delete the APIs that are registered.

9. Modify the strategies or create a new strategy.

10. Modify the required values.

11. Click Save.

Registering an API with Consumer Applications from API Details
Page
Consumer applications created in API Gateway can be associated with APIs from the API details
page.

To register APIs with consumer applications

1. Click APIs in the title navigation bar.

A list of APIs is displayed.

webMethods API Gateway User's Guide 10.15 91

2 Implement APIs

2. Select an API.

3. Click Edit in the API details page.

4. Click Application tab in the API details page.

5. Type characters in the search field and click the Search icon.

This field displays the only list of applications that are assigned to the teams that you are a
part of.

6. Select the required applications and click +.

You can add more applications in a similar way.

7. Click Save.

Suspending an Application
Youmust have the API Gateway's manage applications functional privilege assigned or youmust
be the owner of the application to perform this task.

You can suspend an application from the Applications details page.

To suspend an application

1. Click Applications in the title navigation bar.

A list of all the available applications are displayed.

2. Click the toggle button (Active state), in the action column for the respective application,
to suspend the application.

Alternatively, you can click Suspend in the application details page.

3. Click Yes in the confirmation dialog box.

The application is suspended. The toggle button in the Applications page changes to
(suspended state) and the option in the application details page changes to Suspend.

Activating a Suspended Application
Youmust have the API Gateway's manage applications functional privilege assigned or youmust
be the owner of the application to perform this task.

You can activate a suspended application, from the Applications details page, which enables the
identification again.

92 webMethods API Gateway User's Guide 10.15

2 Implement APIs

To activate a suspended application

1. Click Applications in the title navigation bar.

A list of all the available applications are displayed.

2. Click the toggle button (suspended state), in the action column for the respective
application, to activate the application.

Alternatively, you can click Activate in the application details page.

3. Click Yes in the confirmation dialog box.

The application resumes. The toggle button in the Applications page changes to (active
state) and the option in the application details page changes to Suspend.

Policies

API Gateway provides a policy framework that enables you to program API behavior and
implements specific limited management functions without writing any code. You can enforce a
policy on an API to perform specific tasks, such as transport, security, logging, routing of requests
to target services, and transformation of data from one format to another. You can also define a
policy to evaluate and process the various API invocations at runtime. For example, a policy could
instruct API Gateway to perform any of the following tasks and prevent malicious attacks:

Verify that the requests submitted to an API come from applications that are authenticated
and authorized using the specified set of identifiers in the HTTP header to access and use the
particular API.

Validate digital signatures in the security header of request and response messages.

Monitor a user-specified set of run-time performance conditions and limit the number of
invocations during a specified time interval for a particular API and for applications, and send
alerts to a specified destination when these performance conditions are violated.

Log the request and responsemessages, and the run-time performancemeasurements for APIs
and applications.

You can enforce policies on an API at the following levels:

Global policy enforcement: This enforcement applies globally to all APIs defined in API
Gateway. For example, the threat protection policies can be enforced for all APIs to protect
againstmalicious attacks. Formore information about threat protection policies, seewebMethods
API Gateway Administration.

API-level policy enforcement. This enforcement applies to all resources and its nestedmethods
of a REST API, or all operations of a SOAP API. These policies are further categorized into
stages such as Transport, Identify and Access, Request and Response Processing, Routing,
Error Handling, depending on their usage. For example, the Identify and access category of

webMethods API Gateway User's Guide 10.15 93

2 Implement APIs

policies can be enforced on an API to specify the kind of identifiers that are used to identify
the application and authorize it against all applications registered in API Gateway.

Scope-level policy enforcement

Resource-level policy enforcement. Applicable only for REST APIs. This enforcement
applies to one or more resources and its nested methods in the REST API.

Method-level policy enforcement. Applicable only for REST APIs. This enforcement
applies to one or more methods nested within a resource in the REST API.

-OR-

Operation-level policy enforcement. Applicable only for SOAP APIs. This enforcement
applies to one or more operations in the SOAP API.

How does the policy enforcement precedence work?

When you apply the policies both globally (through global policies) and directly (throughAPI-level
policies and scope-level policies) to an API, API Gateway determines the effective set of policies
for that API by taking into account the precedence of policy enforcement at the API-level, the
policy stages, the priority of policies, run-time constraints, and the status (activated or deactivated)
of any applied global policy.

For example, consider anAPI is enforcedwith the identify and access policy at the following policy
enforcement levels: global, API-level, and scope-level. The precedence of the policy enforcement
that is effective for the API at runtime is as follows:

1. Global policy enforcement

2. Method-level policy enforcement or operation-level policy enforcement

3. Resource-level policy enforcement

4. API-level policy enforcement

If theAPI has the identify and access policy applied both globally and at theAPI level, APIGateway
does not show conflict. The identify and access policy applied through the global policy takes
precedence and is processed at runtime.

Similarly for a REST API, identify and access policy is applied through a scope-level policy at the
resource level and at the API level, the identify and access policy applied through the scope-level
policy takes precedence and is processed at run-time.

When you apply a transport policy at the global level, the transport policy applied at the API level
is in the disabled state. When you try deleting the API-level transport policy that is in the disabled
state, an error displays and you are not allowed to delete this policy as the API-level transport
policy is required and gets enforced when you deactivate the global policy.

Variable framework

All types of variables such as request, response, custom, custom-context, and system context
variables are handled through the common framework called variable framework. The variable
framework in API Gateway provides an option to extract variable values that can be used across

94 webMethods API Gateway User's Guide 10.15

2 Implement APIs

stages. For example, you can use the extracted variable to transform request and response contents
such as headers, query parameters, path parameters payload, and so on as per your requirement.
With the variable framework, you can normalize the syntax and create a common template for
accessing the various variable types. For details about the variable syntaxes to use, see “Variable
Framework” on page 373.

Aliases

APIGateway provides the capability of using aliases. An alias holds stage-specific property values
that can be be shared bymultiple policy configurations. Aliases referenced by policy configurations
are substituted during runtime. Changing an alias value affects all referencing policies. Aliases
are referenced through a name therefore alias names have to be unique within an API Gateway.
The corresponding alias value is substituted in place of an alias name during run-time. Thus the
same alias can be referred to in multiple policies and the change in a particular alias would affect
all the policy properties. For more details about aliases and how to use them, see “ Aliases” on
page 454.

Policy templates

API Gateway provides policy templates, which are a set of policies that can be associated directly
with an individual API. Policy templates provide the flexibility to alter the policy's configurations
to suit the individual API requirements. These policy templates apply at the API level, and can
be customized to suit the needs of a particular API. For more details about policy templates and
how to use them, see “Policy Templates” on page 502.

Policy validation and dependencies

When you enforce a policy to govern an API at run-time, API Gateway validates the policies to
ensure that:

Any policy (for example, Log Invocation) that can appear in an API multiple times is allowed
to appear multiple times.

For policies (for example, Enable HTTP / HTTPS) that can appear only once in an API, API
Gateway issues an error message.

For policies (for example, Monitor SLA) that are dependent and use another policy in
conjunction (for example, Identify & Authorize) in an API, API Gateway prompts you with a
warning message to include the dependent policy.

When you save an API, API Gateway combines the policies from all the global and direct policies
that apply to the API and generates what is called the effective policy for the API. For example, if
your REST API is within the scope of two policies: one policy that performs a logging task and
another policy that performs a security task and when you save the REST API, API Gateway
automatically combines the two policies into one effective policy. The effective policy, which
contains both the logging task and the security task, is the policy that API Gateway actually uses
to publish the REST API.

When API Gateway generates the effective policy, it validates the resulting policy to ensure that
it contains no conflicting or incompatible policies.

webMethods API Gateway User's Guide 10.15 95

2 Implement APIs

If the policy contains conflicts or inconsistencies, API Gateway computes the effective API policy
according to policy resolution rules. For example, an effective API policy can include only one
Identify & Authorize policy. If the resulting policy list contains multiple Identify & Authorize
policies, API Gateway shows the conflict by including a Conflict () icon next to the name of the
conflicting policies in the effective policy. For details about policy validation and dependencies,
see “Policy Validation and Dependencies” on page 368.

Transport
The policies in this stage specify the protocol to be used for an incoming request and the content
type for a REST request during communication between API Gateway and an application. The
policies included in this stage are:

Enable bulkhead

Enable HTTP/HTTPS

Enable JMS/AMQP

Set Media Type

Enable Bulkhead

Bulkhead configuration allows you to specify the maximum number of concurrent requests
processed by an API. You can configure this setting individually for an API or globally for all
APIs.

When the number of concurrent requests to an API exceeds the specified limit, the excess requests
are rejected. In such scenarios, the policy violation events are generated to report the violations
occurred for an API. If there are 100 violations, then 100 policy violation events are generated.

As per the order of policies, the Bulkhead limit policy is applied first. That is, if you have applied
multiple policies including the Bulkhead limit policy, then the Bulkhead limit policy is applied
first.

Why do we configure bulkhead limit for APIs?

96 webMethods API Gateway User's Guide 10.15

2 Implement APIs

In an environmentwheremultipleAPIs are running, there are chances of oneAPImakingmaximum
use of the system resources due to the number of invocations. This in turn suppresses the
performance of other APIs. Consider the following example. The maximum thread pool size of
your system is 100, and it is shared among five APIs. When there are 100 invocations to one API,
then that API uses up all the available threads to process its requests. The others APIs must wait
till there are available threads.

webMethods API Gateway User's Guide 10.15 97

2 Implement APIs

To prevent this, you can specify the maximum number of concurrent requests that an API can
process. This number depends on the maximum thread pool size of your system. Consider the
same scenario after specifying the bulkhead limit for the APIs. In our example, the thread pool
size is 100 and if you configure 20 as the maximum concurrent limit for each API, then each of the
APIs can process a maximum of 20 requests, exceeding which the requests are rejected.

98 webMethods API Gateway User's Guide 10.15

2 Implement APIs

This ensures optimal usage of the system resources.

As part of bulkhead configuration, you can specify

Bulkhead limit for an API at the API level. Specifies the maximum concurrent request limit
for an API, exceeding which the requests are rejected. This number does not include the
callbacks that anAPI receives. So, you can separately specify themaximumconcurrent callbacks
that an API can handle. The 503 Service unavailable error code is sent to the client service
when the requests are rejected. You can configure the required error code and status phrase
using the extended settings. You can customize the required status code and message using
the extended settings pg.bulkhead.statusCode and pg.bulkhead.statusMessage
respectively.

Bulkhead limit for all APIs (Global policy). Specifies the maximum concurrent request limit
for all APIs. Similar to the API level configuration, you can provide the maximum concurrent
callbacks and your choice to retry the rejected requests.

When you have configured global-level bulkhead limit forAPIs, and if you configure a different
bulkhead limit at an API-level, then the limit configured at the global level takes precedence.
To override this, you must exclude the required APIs from the global-policy using filters. You
can apply the required API filters when creating or editing the bulkhead global policy. For
information about creating global policies and applying API filters, see “ Creating a Global
Policy” on page 473.

Add Retry-After response header. Specifieswhether theRetry-Afterheadermust be included
in the response sent to the client when requests are rejected. If you select to add, youmust also
specify the duration (in seconds) that the system must wait before sending the consecutive
requests. You can configure this setting to keep the client informed on the waiting duration
before processing the consecutive requests.

Enabling bulkhead for APIs at the API level

This use case explains how to configure the bulkhead limit for an API.

This use case starts when you have an API for which you have to enforce a bulkhead limit and
ends when you have successfully applied the bulkhead limit to the API.

To enforce bulkhead limit to an API

1. Click APIs in the title navigation bar.

2. Select the required API.

3. Click the Policies tab.

4. From the Policy catalog section, expand Transport, and select Enable bulkhead.

5. Provide the following values in the Policy properties section:

webMethods API Gateway User's Guide 10.15 99

2 Implement APIs

DescriptionField

Specify the maximum number of concurrent requests that the
API can process, exceeding which the requests are rejected.

Maximum concurrent calls

Select this option to specify themaximumnumber of concurrent
callbacks for theAPI. If you select this theMaximum concurrent
callbacks field appears.

Enable bulkhead for callbacks

Note:
This setting is applicable only for RESTAPIs. Hence, this field
is not displayed when you perform the bulkhead limit
configuration for any other APIs.

Specify the maximum number of concurrent callbacks that the
API can process, exceeding which the callbacks are rejected.

Maximum concurrent callbacks

This field appears only when you have selected the Enable
bulkhead for callbacks check box.

Select this option to include the Retry-after header in the
response sent to the client when requests are rejected. This is to

Add Retry-After response
header

keep the client informed about the waiting duration before
sending any consecutive requests.

Note:
This option is to provide an approximate waiting duration
before sending any consecutive requests; and it does not
guarantee that the requests sent after the specified time are
processed. Themaximumnumber of concurrent requests that
are processed is purely dependant on the configuredbulkhead
limit.

Specify the duration that the client must wait, after requests are
rejected by API Gateway, to send consecutive requests. This

Retry after (value, in seconds)

field appears only when you have selected the Retry after
(value, in seconds) check box.

6. Click Save.

The bulkhead limit is applied to the API.

Bulkhead feature considerations

This section lists the impact of the bulkhead policy on other features that you must remember
when using the policy:

Applicable API types

Bulkhead policy is applicable for REST, SOAP, OData, and GraphQL APIs.

100 webMethods API Gateway User's Guide 10.15

2 Implement APIs

However, you can specify the number of maximum concurrent callbacks only for the REST APIs.

Bulkhead limit configuration for APIs in a mashup

API-level bulkhead limit is not applied to the participating APIs. Instead, the bulkhead limit
configured at the mashup API-level takes effect.

Bulkhead limit configured for APIs in cluster

In cluster environments, you can specify the bulkhead limit in each node. API Gateway checks
the number of concurrent requests per instance and allows or rejects the requests based on the
bulkhead limit configured for an API in the corresponding node.

Overall thread pool violation

When you enable the Bulkhead policy and if the overall thread pool is violated, then the requests
exceeding the thread pool count are all rejected, and theConnection timeoutmessage is displayed.

Conditional Routing policy

When the Bulkhead policy is enabled with the Conditional Routing policy, then bulkhead limit
configured at API-level for the participating APIs is applicable.

Enable HTTP/HTTPS

This policy specifies the protocol to use for an incoming request to the API on API Gateway. If
you have a native API that requires clients to communicate with the server using the HTTP and
HTTPS protocols, you can use the Enable HTTP or HTTPS policy. This policy allows you to bridge
the transport protocols between the client and API Gateway.

For example, you have a native API that is exposed over HTTPS and an API that receives requests
over HTTP. If you want to expose the API to the consumers of API Gateway through HTTP, then
you configure the incoming protocol as HTTP.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the protocol (HTTPorHTTPS), SOAP format (for a SOAP-based
API) to be used to accept and process the requests.

Protocol

Select one of the following:

HTTP. API Gateway accepts requests that are sent using the HTTP
protocol. This is selected by default.

HTTPS. APIGateway accepts requests that are sent using theHTTPS
protocol.

webMethods API Gateway User's Guide 10.15 101

2 Implement APIs

DescriptionProperty

For SOAP-based APIs.SOAP Version

Specifies the SOAP version of the requests which the API Gateway
accepts from the client.

Select one of the following:

SOAP 1.1. This is selected by default. API Gateway accepts requests
that are in the SOAP 1.1 format.

SOAP 1.2. API Gateway accepts requests that are in the SOAP 1.2
format.

Set Media Type

This policy specifies the content type for a REST request. If the content type header is missing in
a client request sent to an API, API Gateway adds the content type specified here before sending
the request to the native API.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the default content type for REST request received from a client
.

Default Content-Type

Specifies the default accept header for REST request received from a
client.

Default Accept Header

As both these properties support variable framework, you can use the available variables to specify
the content type and accept header. For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Enable JMS/AMQP

Java Message Service (JMS) is a standard Java API for communicating with message oriented
middleware and enables loosely coupled communication between two or more homogenous
systems. It provides reliable and asynchronous form of communication.

Advanced Message Queuing Protocol(AMQP) is an open standard application layer protocol for
delivering messages. AMQP can queue and route messages in a reliable and secured way. AMQP
provides a standardmessaging protocol that stands across all platforms and a description on how
a message should be constructed. It doesn't provide an API on how the message should be sent.
AMQP being language agnostic is useful in the message oriented middleware to achieve
interoperability in asynchronous way among heterogenous systems.

102 webMethods API Gateway User's Guide 10.15

2 Implement APIs

When you want to expose a REST or SOAP API over JMS with broker native protocol or JMS with
AMQPprotocol add and configure theEnable JMS/AMQPpolicy inAPIGateway, thereby allowing
them to communicate through the messaging Queue or Topic.

For example, you can use this policy to expose your API over JMS/AMQP and hence enable your
client to communicate through the messaging queue or topic.

JMS with Message broker native protocol support

For example, if your Message broker is using ActiveMQ and if you are relying on the default
Active MQ TCP protocol, then essentially it is JMS on open wire protocol because open wire
is the native protocol of ActiveMQMessage broker.

JMS with AMQP protocol support

For example, if you want to use JMS with AMQP with any message broker which supports
AMQP 1.0 to achieve interoperability in asynchronousway among heterogenous systems. API
Gateway supports AMQP 1.0 using Apache qpid JMS client.

Note:
The following are not supported if the Enable JMS/AMQP policy is added:

Threat protection policies
API Gateway SOAP to REST transformation feature

Use case 1: Expose a SOAP API over JMS with a message broker native protocol

This describes the high level workflow for the scenario where you want to expose a SOAP API
over JMS with a message broker native protocol.

1. Create an alias to a JNDI Provider. For a detailed procedure, see webMethods API Gateway
Administration.

2. ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

3. Create a WS (Web Service) JMS Provider endpoint alias and configure the Alias, Description,
Type (Provider), Transport Type (JMS) fields and JMS Transport Properties. For a detailed
procedure, see webMethods API Gateway Administration.

4. A WS (Web Service) endpoint trigger is created when you configure WS (Web Service) JMS
Provider endpoint alias. This trigger consists of the input source details like Queue name or
Topic name. You can update the WS (Web Service) endpoint trigger, as required. For detailed
procedures, see webMethods API Gateway Administration.

5. Select the required API.

6. Click Edit.

7. In the API Details section click Policies.

8. Enforce the Enable JMS/AMQP policy with the following properties configured.

webMethods API Gateway User's Guide 10.15 103

2 Implement APIs

a. Specify the name of the JMS provider endpoint alias that specifies the trigger which listens
to the source queue or topic for the input message.

b. Specify the SOAP version of the requests which the API Gateway accepts from the client.

For details on the Enable JMS/AMQP policy, see “Using Enable JMS/AMQP for a SOAP
API” on page 108.

9. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows any java
client to communicate with the API asynchronously.

Use case 2: Expose a SOAP API over JMS with AMQP protocol

This describes the high level workflow for the scenario where you want to expose a SOAP API
over JMS with AMQP protocol.

1. Configure API Gateway to use JMS with AMQP protocol.

Configure JNDI settings and JMS settings as per the client you are using to achieve JMS over
AMQP protocol support.

Note:
For a sample procedure on configuringAPI Gateway to use JMSwithAMQPprotocol using
Apache qpid libraries, see “Configuring API Gateway for JMS with AMQP Protocol” on
page 106.

2. Select the required API.

3. Click Edit.

4. In the API Details section click Policies.

5. Enforce the Enable JMS/AMQP policy with the following properties configured.

a. Specify the name of the JMS provider endpoint connection alias that specifies the trigger
which listens to the source queue or topic for the input message.

b. Specify the SOAP version of the requests which the API Gateway accepts from the client.

For details on the Enable JMS/AMQP policy, see “Using Enable JMS/AMQP for a SOAP
API” on page 108.

6. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows all the
clients such as Python, Ruby, Java, and Dotnet to communicate with the API asynchronously.

Use case 3: Expose a REST API over JMS with a message broker native protocol

This describes the high level workflow for the scenario where you want to expose a REST API
over JMS with a message broker native protocol.

104 webMethods API Gateway User's Guide 10.15

2 Implement APIs

1. Create an alias to a JNDI Provider. For a detailed procedure, see webMethods API Gateway
Administration.

2. ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

3. Select the required API.

4. Click Edit.

5. In the API Details section click Policies.

6. Enforce the Enable JMS/AMQP policy with the following properties configured.

a. Specify the name of the JMS provider endpoint alias that contains the configuration
information needed to establish a connection to a specific JMS provider.

b. Specify the input source name which API Gateway starts listening to when the API is
activated.

c. Specify the type of source type Queue or Topic, which the API Gateway listens for the
request message.

d. Specify the selector, a criteria for the API Gateway tp listen to a message containing the
specified criteria

For details on theEnable JMS/AMQPpolicy, see “Using Enable JMS/AMQP for a RESTAPI” on
page 109.

7. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows any java
client to communicate with the API asynchronously.

Use case 4: Expose a REST API over JMS with AMQP protocol

This describes the high level workflow for the scenario where you want to expose a REST API
over JMS with AMQP protocol.

1. Configure API Gateway to use JMS with AMQP protocol.

Configure JNDI settings and JMS settings as per the client you are using to achieve JMS over
AMQP protocol support.

Note:
For a sample procedure on configuringAPI Gateway to use JMSwithAMQPprotocol using
Apache qpid libraries, see “Configuring API Gateway for JMS with AMQP Protocol” on
page 106.

2. Select the required API.

3. Click Edit.

webMethods API Gateway User's Guide 10.15 105

2 Implement APIs

4. In the API Details section click Policies.

5. Enforce the Enable JMS/AMQP policy with the following properties configured.

a. Specify the name of the JMS provider endpoint alias that contains the configuration
information needed to establish a connection to a specific JMS provider.

b. Specify the input source name which API Gateway starts listening to when the API is
activated.

c. Specify the type of source type Queue or Topic, which the API Gateway listens for the
request message.

d. Specify the selector, a criteria for the API Gateway tp listen to a message containing the
specified criteria.

For details on theEnable JMS/AMQPpolicy, see “Using Enable JMS/AMQP for a RESTAPI” on
page 109.

6. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows all the
clients such as Python, Ruby, Java, and Dotnet to communicate with the API asynchronously.

Configuring API Gateway for JMS with AMQP Protocol

Before configuring AMQP in API Gateway, ensure your message broker supports AMQP 1.0

For using JMSwithAMQPprotocol inAPIGateway you have to configure the appropriate settings
for the provider URL and the connection factory lookup name required for API Gateway to
communicate using JMS with AMQP protocol.

To configure API Gateway to use JMS with AMQP protocol

1. Create a properties file that contains the information for the JNDI lookup name and
connectionfactory details.

2. Configure JNDI settings as per the client you are using to achieve JMS over AMQP protocol
support.

For a detailed procedure, see webMethods API Gateway Administration.

3. Configure JMS settings as per the client you are using to achieve JMS over AMQP protocol
support.

For a detailed procedure, see webMethods API Gateway Administration.

To configure API Gateway for JMS with AMQP protocol using Apache qpid libraries

1. Create a properties file that contains the information for the JNDI lookup name and
connectionfactory details.

A sample properties file, for example amqp.properties, would look like

106 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Set the InitialContextFactory class to use
java.naming.factory.initial = org.apache.qpid.jms.jndi.JmsInitialContextFactory
Define the required ConnectionFactory instances
connectionfactory.<JNDI-lookup-name> = <URI>
connectionfactory.qpidConnectionFactory = amqp://<hostname>:<port#>

2. Navigate to > Administration.

3. Select General > Messaging.

4. Configure the JNDI provider alias as follows:

a. Click Add JNDI provider alias in the JNDI provider alias definitions section.

b. Provide the following information:

JNDI Alias Name. Provide a name that you want to assign to this JNDI provider.

Description. Provide a brief description for this JNDI alias.

Predefined JNDI Templates. Select the predefined JNDI template depending on the
provider you may want to use.

For example, if youwant to use the JMSwithAMQPprotocol, selectQpid AMQP (0-x).

Initial Context Factory. The JNDI provider uses the initial context as the starting point
for resolving names for naming and directory operations. This value gets pre-populated
depending on the predefined JNDI template selected. For example, if you have selected
Qpid AMQP (0-x) as the predefined JNDI template the Initial context factory field
would display org.apache.qpid.jms.jndi.JmsInitialContextFactory.

Provider URL. Provide the file path location of the properties file that contains the
context factory details. For example, C:\amqp.properties.

c. Click Add.

The JNDI provider alias is created and listed in the JNDI Provider alias definitions table.

5. Configure the JMS settings as follows:

a. Click Add JMS connection alias in the JMS connection alias definitions section.

b. Provide the following information in the General Settings section:

Connection Alias Name. Provide a name for the connection alias. Each connection
alias represents a connection factory to a specific JMS provider.

Description. Provide a brief description for the connection alias.

c. Provide the following information in the Connection Protocol Settings section:

webMethods API Gateway User's Guide 10.15 107

2 Implement APIs

JNDI Provider Alias Name. The alias to the JNDI provider that you want this JMS
connection alias to use to look up administered objects. Select the JNDI Provider alias
name created in the earlier step.

Connection Factory Lookup Name. The lookup name for the connection factory that
you want to use to create a connection to the JMS provider specified in this JMS
connection alias. Provide the value qpidConnectionFactory.

d. Click Add.

The JMS Connection alias is created and listed in the JMS Connection Alias Definitions
table.

e. Enable the JMS connection alias by clicking toggle button to enable it.

The JNDI provider alias and the JMS connection alias are now set up andAPIGateway is configured
to use JMS with AMQP protocol.

Using Enable JMS/AMQP for a SOAP API

This policy is used to expose a SOAP API over JMS/AMQP. A SOAP API can be exposed as
HTTP/HTTPS or JMS/AMQP as the policies Enable HTTP/HTTPS and Enable JMS/AMQP are
mutually exclusive.

If you are using JMS with Message Broker native protocol support ensure that following actions
are performed before using the Enable JMS/AMQP policy:

Create an alias to a JNDI Provider. For a detailed procedure, see webMethods API Gateway
Administration.

ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

Create a WS (Web Service) JMS Provider endpoint alias and configure the Alias, Description,
Type (Provider), Transport Type (JMS) fields and JMS Transport Properties. For a detailed
procedure, see webMethods API Gateway Administration.

Configure a WS (Web Service) endpoint trigger. For detailed procedures, see webMethods API
Gateway Administration.

If you are using JMS with AMQP protocol support, ensure the following before using the Enable
JMS/AMQP policy:

You have configured API Gateway for JMS with AMQP. For details, see “Configuring API
Gateway for JMS with AMQP Protocol” on page 106.

The table lists the properties that you can specify for this policy:

108 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Specifies the name of the JMS provider endpoint alias.JMS Provider Endpoint
Alias

The provider endpoint alias specifies the trigger which listens to the
source queue or topic for the input message.

Specifies the SOAP version of the requests which the API Gateway
accepts from the client.

SOAP Version

Select one of the following:

SOAP 1.1. This is selected by default. APIGateway accepts requests
that are in the SOAP 1.1 format.

SOAP 1.2. API Gateway accepts requests that are in the SOAP 1.2
format.

Using Enable JMS/AMQP for a REST API

This policy is used to expose a REST API over JMS/AMQP. A REST API can be exposed as both
HTTP/HTTPS and JMS/AMQP at the same time.

If you are using JMS with Message broker native protocol support ensure that following actions
are performed before using the Enable JMS/AMQP policy:

Create an alias to a JNDI Provider. For a detailed procedure, see webMethods API Gateway
Administration.

ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

If you are using JMS with AMQP protocol support, ensure the following before using the Enable
JMS/AMQP policy:

You have configured API Gateway for JMS with AMQP. For details, see “Configuring API
Gateway for JMS with AMQP Protocol” on page 106.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the name of the connection alias.Connection Alias Name

Each connection alias contains the configuration information needed to
establish a connection to a specific JMS provider.

Add JMS/AMQP source details. Click to add the JMS/AMQP source details and provide the
required information.

webMethods API Gateway User's Guide 10.15 109

2 Implement APIs

DescriptionProperty

Specifies the input source name which API Gateway starts listening to
when the API is activated.

Input Source Name

Specifies the type of source to which the API Gateway listens for the
request message.

Input Source Type

Select one of the following source type:

QUEUE. Indicates that API Gateway listens to the specified queue
for the request message.

TOPIC. Indicates that the API Gateway listens to the specified topic
for the request message.

Note:
Provides support only for non-durable topic.

Specifies the criteria for the API Gateway to listen to a message
containing the specified criteria.

Selector

For example, operation = GET

If you have multiple selectors it follows the OR condition.

If there are no selectors the message that comes in is listened to without
any condition.

Note:
Message selectors are only applicable for headers, properties and not
for payload.

Specifies the resource of the API.Resource

Specifies the routing method used.HTTP Method

Available routing methods: GET, POST, PUT, and DELETE.

Optional. Specifies the content type of the JMS/AMQP message body.Content Type

Examples for content types: application/json, application/xml

Note:
Alternatively, you can use the SetMedia Type policy to set the default
content type instead of setting it here.

Identify and Access
The policies in this stage provide different ways of identifying and authorizing the application,
and provide the required access rights for the application. The policies included in this stage are:

110 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Inbound Auth - Message

Authorize User

Identify & Authorize

Custom Extension

The Inbound authentication policies are used to authenticate the application by specifying
user-based SPN or host-based SPN for a Kerberos token, using the basic credentials for the HTTP
basic authentication or through various token assertions or through the XML security actions.

The Authorize User policy authorizes the application against a list of users and a list of groups
registered in API Gateway.

The Identify &Authorize policy is used to identify the application, authenticate the request based
on policy configured and authorizes it against all applications registered in API Gateway.

Custom Extension policies allow you to handle requirements that might not be provided by the
out-of-the-box policies. You can add these custom extensions into API Gateway policy stages. To
learn more about Custom Extension, see webMethods API Gateway User's Guide.

Note:
FromAPI Gateway 10.3, the Identification andAuthentication policies aremerged into one and
you would not be able to do identification alone for Basic Authentication. You must provide
the right credentials for a successful invoke.

Identify & Authorize

This policy identifies and validates the authorization of the applications to access the APIs. The
application are identified using a set of identification types such as API key, hostname address,
and HTTP basic authentication and so on based on the configuration. API Gateway can identify
and authorize the application based on the following Application Lookup condition:

Registered applications. Identifies the application and validates the identified application
against the registered applications. On successful validation, API Gateway allows access to
the API. The application that are associated with the API are called as registered application.

Global applications. Identifies the application and validates the identified application against
the global applications. On successful validation, API Gateway allows access to the API. All
the active applications that are available in API Gateway are called as global application.

Global applications and DefaultApplication. Verifies the identity of the application against
the global applications and on identification failure the API Gateway allows access to the API
as default application.

Note:
If Allow anonymous is selected and even if the Application Lookup condition does not meet,
API Gateway allows access to the API.

The table lists the properties that you can specify for this policy:

webMethods API Gateway User's Guide 10.15 111

2 Implement APIs

DescriptionProperty

Specifies the condition operator for the identification and
authentication types.

Condition

Select any of the following condition operators:

AND. Applies all the identification and authentication types.

OR. Applies one of the selected identification and authentication
types.

Note:
Even though this policy provides the option of choosing an AND
or OR operation between the different identification and
authentication types, the operation across the different policies
in the IAM stage is always AND.

Specifies whether to allow all users to access the API without
restriction.

Allow anonymous

When you add a security policy and configure Allow anonymous,
all requests are allowed to pass through to the native API, but the
successfully identified requests are grouped under the respective
identified application, and all unidentified requests are grouped
under a common application named asDefaultApplication
(sys:defaultApplication). While you allow all requests to pass through
you can perform all application-specific actions, such as, viewing
the runtime events for a particular application, monitor the service
level agreement for a few applications and send an alert email based
on some criteria like request count or availability, and throttle the
requests from a particular application and not allow the request
from that application if the number of requests reach the configured
hard limit within configured period of time.

Identification Type. Specifies the identification type. You can select any of the following.

You can set the "trigger policy violation event" to true or false if authorization header is not
provided for the following identification types:

1) HTTP Basic authentication

2) OAuth2 token

3) TokenId connect

For other identification types, the default value is true. That is, policy violation events are triggered
for the requests without authorization headers.

Note:

112 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

When you add an API to a package for monetization, the API key authentication mechanism
is automatically added to the IAM policy at API level. If the API already contains an IAM
policy that has two authentication mechanisms with the AND condition, then the condition
will be switched to OR. This ensures the monetization is supported when certain consumers
access the API by just using the API key.

Specifies using the API key to identify and validate the client's API
key to verify the client's identity in the registered list of applications
for the specified API.

API Key

Select one of the Application Lookup condition:

Registered applications. Identifies the client's API key against
the API key of all the applications registered to the API. On
successful identification, API Gateway allows access to the API.

Global applications. Identifies the client's API key against the
API key of all the applications available in API Gateway. On
successful identification, API Gateway allows access to the API.

Global applications and DefaultApplication. Identifies the
client's API key against all the applications available in API
Gateway. Even though, if no global application is identified, API
Gateway allows access to the API as default application.

When this option is selected, you can use the API key as:

Header parameter to consume an API. For example,
x-Gateway-APIKey:a4b5d569-2450-11e3-b3fc-b5a70ab4288a

Query parameter to invoke an API resource. For example,
http://pie-3HKYMH2:5555/gateway/PetstoreAPI/1.0.3/store/
inventory?APIKey=faab7ac6-97a4-4228-908d-f1930faba470

Specifies using host name address to identify the client, extract the
client's hostname from the HTTP request header and verify the
client's identity in the specified list of applications in API Gateway.

Hostname Address

Select one of the Application Lookup condition:

Registered applications. Identifies the client's hostname against
the hostname identifier of all the applications registered to the
API. On successful identification, API Gateway allows access to
the API.

Global applications. Identifies the client's hostname against the
hostname identifier of all the applications available in API

webMethods API Gateway User's Guide 10.15 113

2 Implement APIs

DescriptionProperty

Gateway. On successful identification, API Gateway allows
access to the API.

Global applications and DefaultApplication. Identifies the
client's hostname against the hostname identifier of all the
applications available in API Gateway. If no global application
is identified, then API Gateway allows access to the API as
default application.

Note:
If the client request has X-Forwarded-For header, then API
Gateway resolves the hostname from the IP address present in
the X-Forwarded-For header. Else, API Gateway resolves the
hostname from the client's IP address.

Specifies using Authorization Header in the request to identify and
authorize the client application against the list of applications with
the identifier username in API Gateway.

HTTP Basic Authentication

Provide the following information:

Select one of the Application Lookup condition:

Registered applications. Authenticates the user and
identifies the user against username identifier of all the
applications registered to the API. On successful
authentication and identification, APIGateway allows access
to the API.

Global applications. Authenticates the user and identifies
the user against username identifier of all the applications
available in the API Gateway. On successful authentication
and identification, API Gateway allows access to the API.

Global applications and DefaultApplication.

1. Authenticates the user and identifies the user against
username identifier of all the applications available in the
API Gateway.

2. On successful authentication and if no global application
is identified, then API Gateway allows access to the API
as default application.

3. In case if the authentication fails, thenAPI Gateway does
not allow access to the API.

If Global applications and DefaultApplication and Allow
anonymous are selected:

114 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

1. Authenticates the user and identifies the user against
username identifier of all the applications available in theAPI
Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway still
allows access to the API.

Trigger policy violation event on missing authorization
header. Creates a policy violation event for basic authentication
if Authorization Headers are missing.

Possible values:

true. Requests without authorization headers are logged as a
policy violation event.

false. Requests without authorization headers are not logged
as a policy violation event.

Specifies using the IP address range to identify the client, extract the
client's IP address from the HTTP request header, and verify the

IP Address Range

client's identity against the specified list of applications in API
Gateway.

Select one of the Application Lookup condition:

Registered applications. Identifies the client's IP address against
the IP address range identifier of all the applications registered
to the API. On successful identification, API Gateway allows
access to the API.

Global applications. Identifies the client's IP address against
the IP address range identifier of all the applications available in
API Gateway. On successful identification, API Gateway allows
access to the API.

Global applications and DefaultApplication. Identifies the
client's IP address against the IP address range identifier of all
the applications available in API Gateway. If no global
application is identified, then API Gateway allows access to the
API as default application.

Note:
If the client request has X-Forwarded-For header, then API
Gateway uses the IP address present in the X-Forwarded-For

webMethods API Gateway User's Guide 10.15 115

2 Implement APIs

DescriptionProperty

header. Else, API Gateway uses the client's IP address for
identification.

Specifies using the JSONWeb Token (JWT) to identify the client,
extract the claims from the JWT and validate the client's claims, and

JWT

verify the client's identity against the specified list of applications
in API Gateway.

Select one of the Application Lookup condition:

Registered applications. Identifies the JWT against the claims
identifier of all the applications registered to the API. On
successful identification, API Gateway allows access to the API.

Global applications. Identifies the JWT against the claims
identifier of all the applications available in API Gateway. On
successful identification, API Gateway allows access to the API.

Global applications and DefaultApplication. Identifies the
JWT against the claims identifier of all the applications available
in API Gateway. If no global application is identified, then API
Gateway allows access to the API as default application.

Note:
You can use the claims in the JWT for further processing using
request transformation policy.

Specifies using the Kerberos token to identify the client, extract the
client's credentials from the Kerberos token, and verify the client's
identity against the specified list of applications in API Gateway.

Kerberos Token

Note:
You have to enforce the Inbound Auth - Message policy with the
property, Kerberos Token Authentication, configured, so when
Identify & Authorize policy is executed, the user details fetched
are used to match with application's data to identify the
application.

Select one of the Application Lookup condition:

Registered applications. Authenticates the incomingKerberos
token and identifies the user against the username identifier of
all the applications registered to the API. On successful
authentication and identification, API Gateway allows access to
the API.

Global applications. Authenticates the incomingKerberos token
and identifies the user against the username identifier of all the
applications available in API Gateway. On successful

116 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

authentication and identification, API Gateway allows access to
the API.

Global applications and DefaultApplication.

1. Authenticates the incoming Kerberos token and identifies
the user against username identifier of all the applications
available in the API Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway does
not allow access to the API.

If Global applications and DefaultApplication and Allow
anonymous are selected:

1. Authenticates the incoming Kerberos token and identifies
the user against username identifier of all the applications
available in the API Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway still
allows access to the API.

Note:
You can use the username for further processing using the request
transformation policy.

Specifies using the OAuth2 token to identify the client, extract the
access token from the HTTP request header, and verify the client's
identity against the specified list of applications in API Gateway.

OAuth2 Token

By default, OAuth2 token is identified against the registered
applications.

Note:
You can use the client id and other parameters for further
processing using the request transformation policy.

Specifies using the OpenID (ID) token to identify the client, extract
the client's credentials from the ID token, and verify the client's
identity against the specified list of applications in API Gateway.

OpenID Connect

Select one of the Application Lookup condition:

webMethods API Gateway User's Guide 10.15 117

2 Implement APIs

DescriptionProperty

Registered applications. Identifies the client's identity resolved
as part of OpenID validation against all the applications
registered to theAPI. On successful identification, API Gateway
allows access to the API.

Global applications. Identifies the client's identity resolved as
part of OpenID validation against all the applications available
in API Gateway. On successful identification, API Gateway
allows access to the API.

Global applications and DefaultApplication. Identifies the
client's identity resolved as part of OpenID validation against
all the applications available in API Gateway. If no global
application is identified, then API Gateway allows access to the
API as default application.

Note:
You can use the client id and other parameters for further
processing using the request transformation policy.

Specifies using the SSL certificate to identify the client, extract the
client's identity certificate, and verify the client's identity

SSL Certificate

(certificate-based authentication) against the specified list of
applications in API Gateway. The client certificate that is used to
identify the client is supplied by the client to API Gateway during
the SSL handshake over the transport layer or is added in the header
of the request.

The certificate included in the customheader can be in the following
formats:

Base64 encodedPEMcertificatewith BEGINCERTIFICATE and
END CERTIFICATE delimiters

Non-Base64 encodedPEMcertificatewith BEGINCERTIFICATE
and END CERTIFICATE delimiters.

PEM certificate can be without BEGIN CERTIFICATE and END
CERTIFICATE delimiters if a single certificate is added.

URL encoded PEM certificate with BEGIN CERTIFICATE and
END CERTIFICATE delimiters.

URL encoded PEM certificate can be without the BEGIN
CERTIFICATE and END CERTIFICATE delimiters if a single
certificate is added.

If the transport protocol is HTTP then API Gateway checks for the
existence of a header and fetches the certificate from the certificate

118 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

header. If the certificate is coming from the customheader, thenAPI
Gateway does not check the validity of the certificate. API Gateway
identifies the application using the certificate. The certificate should
be validated by some external entity before sending it to API
Gateway in a custom header.

If the transport protocol is HTTPS then API Gateway first tries to
identify the application based on the certificate exposed by the client
during the SSL handshake. If there is no client certificate or the
identification based on the client certificate fails API Gateway tries
to identify based on the certificate provided in the header.

The header name is customizable and can be customized in the
extended settings property, customCertificateHeader, the default
value being X-Client-Cert.

Select one of the Application Lookup condition:

Registered applications. Identifies the client's certificate against
the client certificate identifier of all the applications registered to
theAPI. On successful identification, APIGateway allows access
to the API.

Global applications. Identifies the client's certificate against the
client certificate identifier of all the applications available in API
Gateway. On successful identification, API Gateway allows
access to the API.

Global applications and DefaultApplication. Identifies the
client's certificate against the client certificate identifier of all the
applications available in API Gateway. If no global application
is identified, then API Gateway allows access to the API as
default application.

This is applicable only for SOAP APIs.WS Security Username
Token

Specifies using the WS security username token to identify the
application, extract the client's credentials (username token and
password) from the WSSecurity SOAP message header, and verify
the client's identity against the specified list of applications in API
Gateway.

Note:
You have to enforce the Inbound Auth - Message policy with the
property, Require WSS Username token, configured, so when
Identify & Authorize policy is executed, the user details fetched
are used to match with application's data to identify the
application.

webMethods API Gateway User's Guide 10.15 119

2 Implement APIs

DescriptionProperty

Select one of the Application Lookup condition:

Registered applications. Authenticates the client's WSS
username token and identifies the user against the username
identifier of all the applications registered to the API. On
successful authentication and identification,APIGateway allows
access to the API.

Global applications. Authenticates the client's WSS username
token and identifies the user against the username identifier of
all the applications available in API Gateway. On successful
authentication and identification, API Gateway allows access to
the API.

Global applications and DefaultApplication.

1. Authenticates the client'sWSS username token and identifies
the user against the username identifier of all the applications
available in the API Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway does
not allow access to the API.

If Global applications and DefaultApplication and Allow
anonymous are selected:

1. Authenticates the client'sWSS username token and identifies
the user against the username identifier of all the applications
available in the API Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway still
allows access to the API.

Note:
You can use the username for further processing using the request
transformation policy.

This is applicable only for SOAP APIs.WS Security X.509
Certificate

Specifies using theWS security X.509 certificate to identify the client,
extract the client identity certificate from the WS-Security SOAP

120 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

message header, and verify the client's identity against the specified
list of applications inAPI Gateway.

Note:
You have to enforce the Inbound Auth - Message policy with the
property, Require X.509 Certificate, configured, so when Identify
& Authorize policy is executed, the user details fetched are used
to match with application's data to identify the application.

Select one of the Application Lookup condition:

Registered applications. Identifies the client's X.509 certificate
against the client certificate identifier of all the applications
registered to theAPI. On successful identification, API Gateway
allows access to the API.

Global applications. Identifies the client's X.509 certificate
against the client certificate identifier of all the applications
available in API Gateway. On successful identification, API
Gateway allows access to the API.

Global applications and DefaultApplication. Identifies the
client's X.509 certificate against the client certificate identifier of
all the applications available in API Gateway. If no global
application is identified, then API Gateway allows access to the
API as default application.

Specifies using the payload identifier to identify the client, extract
the custom authentication credentials supplied in the request

Payload Element

represented using the payload identifier, and verify the client's
identity against the specified list of applications in API Gateway.

Select one of the Application Lookup condition:

Registered applications. Identifies the client's payload
against the Payload Identifier of all the applications registered
to theAPI. On successful identification, APIGateway allows
access to the API.

Global applications. Identifies the client's payload against
the Payload Identifier of all the applications available in API
Gateway. On successful identification, API Gateway allows
access to the API.

Global applications and DefaultApplication. Identifies the
client's payload against the Payload Identifier of all the
applications available in API Gateway. If no global
application is identified, then API Gateway allows access to
the API as default application.

webMethods API Gateway User's Guide 10.15 121

2 Implement APIs

DescriptionProperty

In the Payload identifier section, click Add payload identifier,
provide the following information, and click Add.

Expression type: Specifies the type of expression,which is used
for identification. You can select one the following expression
type:

XPath. This is not applicable to a GraphQL API. Provide the
following information:

Payload Expression. Specifies the payload expression
that the specified expression type in the request has to
be converted to. For example: /name/id

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload
expression to be validated.

Note:
You can add multiple namespace prefix and URI by
clicking .

JSONPath. Provide the JSONPath for the payload
identification. For example, $.name.id

Text. Provide the regular expression for the payload
identification. For example, any valid regular expression.

You can add multiple payload identifiers as required.

Note:
Only one payload identifier of each type is allowed. For example,
you can add a maximum of three payload identifiers, each being
of a different type.

Specifies using any header in the request to identify and authorize
the client application against the list of applications with the
identifier in API Gateway.

HTTP Headers

Provide the following information:

Select one of the Application Lookup condition:

Registered applications. Identifies the client's header
against the Header Key - Value pair identifier of all the
applications registered to the API. On successful
identification, API Gateway allows access to the API.

122 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Global applications. Identifies the client's header against
the Header Key - Value pair identifier of all the applications
available in API Gateway. On successful identification, API
Gateway allows access to the API.

Global applications and DefaultApplication. Identifies the
client's header against the Header Key - Value pair identifier
of all the applications available in API Gateway. If no global
application is identified, then API Gateway allows access to
the API as default application.

OAuth Authentication in API Gateway

The Open Authorization is a flexible authorization framework for securing application access to
protected resources of APIs.API Gateway can connect to the OAuth server of your choice to
authorize client applications. API Gateway also includes an in-built authorization server that
supports OAuth 2.0 for securing your APIs. This article explains how to use the OAuth 2.0
functionality in API Gateway.

The OAuth 2.0 authorization framework enables a third-party application to obtain limited access
to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction
between the resource owner and the HTTP service, or by allowing the third-party application to
obtain access on its own behalf. For details, see https://tools.ietf.org/html/rfc6749.

OAuth adds a new layer called Authorization Layer for enabling access for protected information
for the clients. Unlike the OAuth 1.0 protocol, OAuth 2.0 provides a rich authorization framework
(not a protocol) with well-defined security properties. However, as a rich and highly extensible
framework with many optional components, on its own, this specification is likely to produce a
wide range of non-interoperable implementations. In addition, this specification leaves a few
required components partially or fully undefined (for example, client registration, authorization
server capabilities, endpoint discovery).Without these components, clientsmust bemanually and
specifically configured against a specific authorization server and resource server in order to
interoperate.

The following diagram depicts the abstract flow of OAuth 2.0 Authorization framework. OAuth
defines four roles: Resource Owner, Resource Server, Client, and Authorization Server.

webMethods API Gateway User's Guide 10.15 123

2 Implement APIs

https://tools.ietf.org/html/rfc6749

Roles

Resource Owner (or the end user). This is the holder of the protected resources that the client
application accesses. The resource owner is typically a person (usually the end user), but could
also be an application.

Resource Server (or API Gateway). This is the server that stores the protected resources the
application is trying to access and is capable of accepting and responding to protected resource
requests using access tokens. API Gateway acts as a resource server.

Client Application (or the Client). This is the application that is requesting access to protected
resources on behalf of the resource owner and with its authorization.

Authorization Server. This is the server that acts as an interface between the client application
and end user, authenticates the end user, and issues access tokens to the clients after proper
authorization. API Gateway can be configured to act as an OAuth 2.0 authorization server.
You can configure API Gateway for use with a third-party OAuth 2.0 authorization server,
such as OKTA and PingFederate.

Resource Server and Authorization Server interact with each other to verify the access tokens.
There can be various levels of these interactions (3-legged OAuth, 4-legged OAuth, and so on).
API Gateway can be used as an authorization server and as a resource server.

Clients can be of following types:

Confidential. A confidential client is an application that is capable of keeping a client password
confidential to theworld. This client password is assigned to the client app by the authorization
server. This password is used to identify the client to the authorization server, to avoid fraud.
An example of a confidential client is a web app, where no one but the administrator can get
access to the server, and see the client password.

Public. A public client is an application that is not capable of keeping a client password
confidential. For instance, a mobile phone application or a desktop application that has the
client password embedded inside it. Such an application could get cracked, and this could
reveal the password. The same is true for a JavaScript application running in the users browser.
The user could use a JavaScript debugger to look into the application, and see the client
password.

124 webMethods API Gateway User's Guide 10.15

2 Implement APIs

API Gateway as a Resource Server

WhenAPIGateway acts as a resource server, it hosts the protected resources, accepts, and responds
to the client applications' requests that include an access token. The client application sends the
access token in the Authorization request header field using the Bearer authentication scheme.
The resource server validates the access token locally or remotely if it cannot validate locally.

If the token is valid and the client application has privileges to access the protected resources, the
resource server executes the request. If the access token is invalid, it rejects the request.

API Gateway as an Authorization Server

When API Gateway acts as an authorization server, it receives authorization requests from client
applications. The authorization server handles the interactions between the client application,
resource server, and resource owner for approval of the request.

As an authorization serverAPIGateway issues tokens to client applications on behalf of a resource
owner for use in authenticating subsequent API calls to the resource server. The resource server
hosts the protected resources, and can accept or respond to the protected resource requests using
access tokens. If the client application is authorized to access the protected resources, the resource
server executes the request. The authorization server retains the information about the access
tokens it issues, including the user information. When a client presents an access token to the
resource server, the resource server sends the token to the authorization server to ensure that the
token is valid and that the requested service is within the scope for which the access token was
issued. A scope is the definition of the resources that the client application can access on behalf
of a resource owner. If the client application does not have privileges to access the resources, the
resource server rejects the request.

Using API Gateway with an External Authorization Server

When API Gateway is the resource server, you must specify an authorization server. As an
alternative to using API Gateway as the authorization server, you can use a third-party server as
the authorization server. This allows API Gateway to validate access tokens issued by third-party
servers and also allow to dynamically create clients in the third-party server.

Note:

Before you configure API Gateway to use a third-party authorization server, make sure
that the authorization server is compliantwith the RFC 7662, OAuth 2.0 token introspection.
From API Gateway release 10.3 onwards API Gateway supports multiple authorization
servers.

To use an external authorization server, youmust configure your third-party authorization server.
This includes, but is not limited to, the following:

To introspect the token, you should have a JWKS URI or you should create a client account
that API Gateway uses to call the authorization server's introspection endpoint.

Make a note of the client_id and client_secret values. You provide this information as part of
defining the external authorization server alias for the API Gateway resource server.

webMethods API Gateway User's Guide 10.15 125

2 Implement APIs

Validation of JWT token of the external authorization server happens in the following ways:

Remote IntrospectionLocal Introspection

Validation of the JWT token happens with the
authorization server. Therefore, token caching
is not possible in remote introspection.

Validation of the JWT token happens within the
gateway in the following methods:

Using JWKS URI.
It has an introspection endpoint, which is used
to validate the token. In addition, the client idThe external authorization server's signature

is verified by using the public certificate in
the JWKS URI.

and client secret are used to protect the endpoint,
so that anonymous users cannot access the

API Gateway's cache has a key as kid claim
and its value is the certificate corresponding

resource. To invoke an endpoint, you require a
user; Gateway user is the one you can use to
invoke the endpoint.to the kid claim. The cache is populated on

every restart of API Gateway by invoking
the JWKS URI.

In the runtime, while validating the token
using the local introspection, the kid value
from the incoming JWT is fetched and the
corresponding certificate is retrieved from
the cache and the signature validation
happens.

Using RSA.

The external authorization server's signature
in the JWT is verified by the truststore
defined in the local introspection
configuration.

Using HMAC.

If the authorization server uses HMAC
algorithm, that means the signature
validation of the JWT is performed using a
shared key between the authorization server
and API Gateway. You must specify the
HMAC shared secret when creating the
strategy of the application. The HMAC
shared secret in the application is used to
validate the authorization server's signature
present in JWT.

Make a note of the URL for the introspection endpoint. You provide this information as part
of defining the external authorization server alias in the API Gateway resource server.

Create the required scopes.

Configure an alias to the authorization server.

126 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Currently, API Gateway, by default, can be used with the following third-party authorization
servers, but are not limited to, that are RFC 7662, OAuth 2.0 token introspection compliant:

Okta

PingFederate

You can also use other third-party authorization servers like Google, keycloak, and so on.

Authorizations for applications created from API Portal

When you create applications through API Portal, you must specify the required authorization
server using the watt.server.oauth.authServer.alias settings in the Administration section of
API Gateway.

If API Gateway is the authorization server, then provide local as the value of the
watt.server.oauth.authServer.alias setting. Else, provide the name of the corresponding
authorization server. For information on extended settings, see webMethods API Gateway
Administration.

OAuth Authorization Workflow

The flow of authorization requests and responses between the end user, client application,
authorization server, and resource server is as depicted in the following figure.

The OAuth authorization workflow is as follows:

1. The client sends user authentication request to the authorization server (local or external) to
obtain an access token.

2. The authorization server validates the request, wuthenticates the client and generates an access
token for the client.

3. The client uses this access token to send HTTP requests to API Gateway.

API Gateway then performs the following:

webMethods API Gateway User's Guide 10.15 127

2 Implement APIs

a. Identifies the application using the clientId.

b. Validates the token locally or remotely if it is not possible locally.

c. Checks if the requested resource is part of the scopes in the token.

d. Checks the audience.

4. After validating the client, the request is directed to the Internal Server.

If the access token is expired, authorization server returns a specific error response. The client
application can then use Refresh Token to request a new access token. The Authorization
Server returns a new access token that can be used to access the protected resource.

Note:
When a Policy violation event is logged in case of expired Oauth2 tokens, the application
that is associated turn in to Unknown.

5. The Internal Server sends the response with requested resource to API Gateway.

6. API Gateway then sends the protected request resource to the Client.

Authorization Grant Types Supported

OAuth 2.0 provides several grant types, based on the work flow required by your application.
The following grant types are supported by the API Gateway local Authorization Server. APIs
can be enabled for more than one grant types. This table lists the grant types and the applications
they are sutable for

Suitable forGrant type

Regular web applications executing on a server.Authorization Code

Single page applications.Implicit

Aplications that can be fully trusted with user
credentials.

Resource Owner Password Credentials

To further secure applications that require the
Authorization Code or Implicit grant types.

Refresh Token

Applications that involve only machine to
machine interactions.

Client Credentials

Authorization Code

The Authorization Code grant type enables API providers to open their APIs to unknown (but
registered) third-party application developers. This grant enables a flow inwhich user credentials
are never shared with the client application. Users are redirected to the authorization server to
authenticate themselves. Only when users authenticate themselves and grant the required
permissions to the client application can the client application access their resources.

When should you use the authorization code grant type?

128 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Use the authorization code grant type in scenarios where the API is being opened to unknown
third-party application developers and exposing the user credentials is risky.

The user agent (web browser) is required component of this flow as many of the steps, such as
user authentication, granting access permissions, passing an authorization code to the application
and verifying the authenticity of the client application are performed by redirecting the web
browser to different URLs. Therefore, it can be implemented in applications that either run in a
web browser or can access a web browser.

It is suitable for:

Web applications that execute on a server

Mobile applications that can access a web browser

This diagram illustrates the flow for the Authorization Code grant type

For public clients, the Authorization Code grant type can be further secured by PKCE mechanism.
For more details, see “ Securing Access Token Calls with PKCE ” on page 219.

Note:
API Gateway supports the confidential client authentication using Authorization headers. The
confidential clients have to authenticate using their credentials, the client id and client secret
combination. Few points to consider using the Authorization Code grant type:

If the property watt.server.oauth.token.endpoint.auth=session (the default value) and
the confidential client already has a sessionwhen it comes to the token endpoint, the access
to the endpoint is granted even if there are no credentials in the header.
If the property watt.server.oauth.token.endpoint.auth=credentials or if the client does
not already have a session, the confidential client must provide the client_secret in the
Authorization header.
API Gateway does not support the client secret in the body of the request for the
Authorization code grant.

webMethods API Gateway User's Guide 10.15 129

2 Implement APIs

For details about the properties mentioned, see webMethods Integration Server Administrator’s
Guide.

Implicit

The implicit grant type is similar to the authentication code flow, but the access token is given to
the user-agent to forward to the application. This exposes the token to the user and other
applications on the user's device. Also, this grant type does not authenticate the identity of the
application and relies on the redirect URI (that was registered with the service) to serve this
purpose.

In addition, the implicit grant type does not support refresh tokens. This diagram illustrates the
flow for the implicit grant type

The flow for the implicit grant type is similar to the flow for the authorization code grant type,
except that the authorization server sends an access token to the user-agent instead of an
authorization code. The user-agent then passes the access token to the client application.

When should you use the implicit grant type? You should use the implicit grant type only with
applications developed and published by trusted parties.

It is suitable for single-page applications that execute in the web browser as they cannot execute
the flow required by the more secure and elaborate Authentication Code grant type

Resource Owner Password Credentials

In the flow for the resource owner password credentials grant type, users enter their username
and password for a resource directly in the client application. The client application then passes
the credentials to the authentication server to authenticate the user and obtain an access token.

This diagram illustrates the flow for the Resource Owner Password Credentials grant type.

130 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Client application asks the user for her credentials and passes them to the Authorization Server.
In response, the Authorization Server sends the access token directly to the client application.

When should you use the resource owner password credentials grant type? The resource owner
password credentials grant type can be used only when users trust the client application with
their credentials for a resource. This is usually the case when the client application is from the
same party that hosts the resource or service that the client application is trying to access.

This grant type should only be used only if other grant types are not viable.

Client Credentials

This is the grant type used to obtain access tokens for client-only authentication.

The client credentials grant type is similar to the resource owner password credential grant type.
The difference is that instead of user credentials, the client application provides its own client and
secret. This grant type is intended for flows in which users are not involved.

This diagram illustrates the flow for the Client Credentials grant type.

The steps are similar to the resource owner password credential flow. Clients use their client IDs
and secrets to identify themselves. On success, the Authorization Server returns access tokens.
Avoid using refresh tokens in this flow as it increases the risk of exposing the client credentials.

webMethods API Gateway User's Guide 10.15 131

2 Implement APIs

When should you use the client credentials grant type? In this grant type, users do not need to
authenticate themselves or authorize access to a particular resource or service. This grant type is
suitable for scenarios such as client applications accessing their own resources. For example: a
client application retrieving data from its own account

Securing APIs using OAuth 2.0 in API Gateway with Local Authorization Server

This use case explains, with a simple example, how to secure an API with OAuth2 authentication
with API Gateway configured as both Resource Server and Authorization Server. The diagram
illustrates the work flow for this use case.

Note:
Using the Authorization Code Grant type in this example. To understand the grant types
supported by API Gateway, see “Authorization Grant Types Supported” on page 128

Actors

Developerswith basic knowledge aboutwebMethodsAPIGateway, Integration Server, OAuth2
architecture

Customerswith basic knowledge aboutwebMethodsAPIGateway, Integration Server, OAuth2
architecture

Before you begin

Ensure that you have:

Installed Integration Server with API Gateway

Knowledge about any REST Client

API Gateway up and running

Basic Flow

The following diagram depicts the high level steps of the basic flow for this use case.

132 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Step 1: Configure API Gateway as local Authorization Server

In API Gateway, by default the internal authorization server for JWT, OAuth, or OpenID is set as
local. It means that API Gateway acts as an authorization server.

1. Expand the menu options in the title bar and select Administration.

2. Select Security > JWT/OAuth/OpenID. Click local. All configurable settings for the local
authorization server appear.

3. Expand local.

4. Expand OAuth Configuration, OAuth tokens, and OAuth scope sections.

5. In this use case, retain the default values ofAuthorization code expiration interval (seconds)
and Access token expiration interval (seconds) in the OAuth Configuration section. You
can modify these values as required.

6. Create OAuth Scopes,

OAuth scopes allow you to limit the access level that is granted to an access token. In this use
case, we define one OAuth Scope (OAuth2Scopes) to limit the resource usage.

a. Expand OAuth scopes to add scope.

b. Provide values in the following fields

Provide Scope: OAuth2Scopes

Scope description: OAuth2Scopes

c. Click Add.

webMethods API Gateway User's Guide 10.15 133

2 Implement APIs

d. Click Update. The OAuth scope is created.

Step 2: Configure HTTPS port in API Gateway

In this example, authorization is throughHTTPS. To enableAPIGateway to accept request through
https, define a new HTTPS port in API Gateway or use the default HTTPS port provided by API
Gateway. The default HTTPS port is 5543 and it must be enabled from the Ports section of API
Gateway.

1. Expand the menu options in the title bar and select Administration.

2. Select Security > Ports.

3. You can do one of the following:

Use the default HTTPS port

Click the Enable field next to the 5543 port and enable it. The port is enabled.

Add a new HTTPS port

1. Click Add ports on the Ports page.

2. Select HTTPS from the drop-down, and click Add.

134 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3. Provide 4646 in the Ports field.

4. Provide HTTP_Port in the Alias field

5. Optional. Expand Listener specific credentials.

6. Select DEFAULT_IS_KEYSTORE from the Keystore drop-down list. The Key alias value
appears automatically.

7. Select DEFAULT_IS_TRUSTSTORE from the Truststore drop-down list.

8. Click Add. The port appears on the Ports screen.

9. Click the Enable field next to the 4646 port to set the port to default.

Step 3: Create an API with strategy

In this example you create an API by importing from the URL https://petstore.swagger.io/v2/
swagger.json.

1. In the APIs tab click Create API.

2. Select Import API from URL.

3. Provide the following details.

Name: RestOps

Type: Swagger

Version: 1.0

4. Click Create. The API is created and the API details page for the API appears.

webMethods API Gateway User's Guide 10.15 135

2 Implement APIs

https://petstore.swagger.io/v2/swagger.json
https://petstore.swagger.io/v2/swagger.json

5. Enforce OAUTH2 policy on the API.

You enforce OAuth2 policy on the RestOps API. This policy ascertains that an OAuth token is
required to access this API.

a. Click API in the title navigation panel.

b. Click RestOps.

c. Click the Policies tab.

d. Click Edit.

e. Click Identify & Access in the Policy catalog section.

f. Select the OAuth2 Token check box in the Identification Type field of the Application
Identification section and save the changes.

g. Click Activate to activate the API on the API details page of the API.

6. Create an application with strategy and register it to an API.

136 webMethods API Gateway User's Guide 10.15

2 Implement APIs

a. Click Applications in the title navigation bar.

b. Click Create application.

c. Provide the Name: APIApplication

d. Click Continue to Identifiers.

e. Click Continue to APIs.

f. Search the API RestOps, by typing RestOps in the Find APIs text box.

The RestOps API appears in the Selected APIs section.

g. Select the RestOpsAPI.

h. Click Continue to Advanced

i. Click Continue to Authentication.

j. Click Create strategy.

A strategy is a way to authenticate the incoming request and provides multiple
authentication mechanisms or multiple authorization servers for a single authentication
scheme. You can create multiple strategies authorized by an API for an application.

k. Provide the Name as AppStrategy.

l. Enable the toggle button Generate credentials to generate the credentials dynamically
in the authorization server. The client-id and client-secret get created automatically.

webMethods API Gateway User's Guide 10.15 137

2 Implement APIs

m. Select Confidential from the Application type drop-down list.

n. Specify the redirect URIs that the authorization server can use to redirect the resource
owner's browser during the grant process. In this example, provide www.example.com, which
is not a valid URL.

o. Select the required Grant types. In this example, the selected grant types are
authorization_code and client_credentials.

p. Provide OAuth2Scopes in the Scope text box and click the search icon. The matching
OAuth2Scopes appear.

q. Click the + icon next to the required scope to add the scope to the strategy.

r. Click Add to add the strategy.

s. Click Save. The application is registered.

Step 4: Map OAuth scopes

After registering an application, youmustmap the scope defined in the Authorization server with
the APIs in API Gateway to authorize the access tokens used to access the protected resources.
You can map either a complete API or parts (resources or methods) of an API to the scope or can
add the scope details and modify the scope details as required from the OAuth/OpenID scopes
page. In this example you select the OAuth2Scopes scope.

1. Expand the menu options in the title bar and select OAuth/OpenID scopes.

2. Click Map scope.

3. Type OAuth2Scopes in Select authorization server scope and select the Authorization server
scope from the search list.

138 webMethods API Gateway User's Guide 10.15

2 Implement APIs

4. Select API scopes in the left pane.

5. Type RestOps orAPI Scope,which is to be linked to the authorization server, in theAPI scopes
text box.

6. Click Save.

The authorization server scope is mapped to the selected API scopes and the authorization
scope appears in the in the scopes list.

Step 5: Get authorization code

1. In the title bar click Application.

2. Click the application APIApplication.

3. Click AppStrategy. Note the Client id and Client secret values. You require these to get
access token.

4. Access the Authorization code using the URL
https://<machinename>:5555/invoke/pub.oauth/authorize?client_id=eedab424fde14e258b0ab5d572de152d&redirect_uri=http://example.com/redirect&response_type=code&state=121.

webMethods API Gateway User's Guide 10.15 139

2 Implement APIs

Approve the approval page and provide Integration server credentials if it prompts with a
login page.

5. Receive the Authorization code through URL.

You might get an error, but the authorization code is present in the URL as you are providing
dummy redirect URI.

The output is as follows:

…www.example.com/redirect?code=25991916ad4343c5887cb03abcb04f1&grant_type=authorization_code&redirect_uri=http%253A%252F%252Fexample.com%252Fredirect&state=121&scope=View

Step 6: Get access token

1. Open Postman or any other REST Client

2. Copy the authorization code received.

3. Make a POST call to the following URL, with the hostname of the systemwhere API Gateway
is installed in place of localhost and use external port instead of default port
https://<machinename>:4646 /invoke/pub.apigateway.oauth2/getAccessToken

4. In the Body provide the following request payload
{
"code":"25991916ad4343c5887cb03abcb04f1",
"redirect_uri":"http://example.com/redirect",
"grant_type":"authorization_code",
"scope":"OAuth2Scopes"
}

5. Provide the client id and client secret in Basic Auth.

140 webMethods API Gateway User's Guide 10.15

2 Implement APIs

6. In Headers select Content-Type as application/json and Accept as application/json

7. The output gives the access token

Step 7: Invoke API

Invoke the API with the access token

Alternative Steps

You can perform the same use case with Client Credentials as well. Acquire the access token
through client credentials by providing the client_id and client_secret.

1. Open Postman or any other Rest Client.

2. Make a POST call to the following URL, with the hostname of the systemwhere API Gateway
is installed in place of localhost and use external port instead of default port.
https://<machinename>:4646 /invoke/pub.apigateway.oauth2/getAccessToken

3. In Headers provide Content-Type as application/json (if not specified)

4. In the Body provide the following Request payload
{

“client_id”:”xxxxx”,
“client_secret”:”xxxxx”,
“ grant_type”:”client_credentials”

}

webMethods API Gateway User's Guide 10.15 141

2 Implement APIs

Securing APIs using OAuth 2.0 with API Gateway as Resource Server and Remote Integration
Server as Authorization Server

This use case explains, with a simple example, how to secure an API with OAuth2 authentication
with API Gateway configured as Resource Server and remote Integration Server configured as
the Authorization Server. The diagram illustrates the work flow for this use case.

Actors

Developers with basic knowledge on webMethods API Gateway , Integration Server, OAuth2
architecture

Customerswith basic knowledge aboutwebMethodsAPIGateway, Integration Server, OAuth2
architecture

Before you begin

Ensure that you have:

Installed Integration Server with API Gateway

Knowledge on any Rest Client

API Gateway up and running

Basic Flow

The following diagram depicts the high level steps of the basic flow for this use case.

142 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Step 1: Configure remote Integration Server as authorization server

1. Disable HTTPS in OAuth in Integration Server.

In this example you disable HTTPS in the remote Integration Server OAuth as authorization
is through HTTP.

a. Login to Integration Server with the URL. https://mahinename:5555

b. Navigate to Security > OAuth.

c. Click Edit OAuth Global Settings.

d. Uncheck Require HTTPS.

e. Click Save Changes.

2. Configure the following extended settings.

a. Navigate to Settings > Extended.

b. Click Show and Hide Keys.

c. Select watt.server.oauth.requireHTTPs and watt.server.oauth.requirePost .

d. Set both the value as false.

webMethods API Gateway User's Guide 10.15 143

2 Implement APIs

3. Create Client.

a. Navigate to Security > OAuth.

b. Click Client Registration.

c. Click Register Client.

d. Provide the following information:

Name: OAuth Client

Version: 1.0

Type: Confidential

Redirect URIs: https://example.com/redirect

Allowed Grants: Authorization Code Grant, Client Credentials Grant

Expiration Interval: Never Expires

Refresh Count: Unlimited

e. Click Save .

144 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Onsuccessfully saving the followingmessage displays: Successfully registered clientOAuth
Client, version 1.0. To use the client credentials grant, this client must be given ACL
permissions to access the resources in the client's scopes.

f. Click OAuth Client (1.0). Note down the ID and Secret that are generated.

4. ACL Permission to Client

webMethods API Gateway User's Guide 10.15 145

2 Implement APIs

Provide Permission to client application by adding it to the Administrators group.

a. Navigate to Security > User Management

b. Under Groups, select the group Administrator (by default Administrators is selected)

c. The client id is present in the Remaining Users section,

d. Move the client ID under Users in this Group.

e. Click Save Changes.

5. Create Scope and associate with client

146 webMethods API Gateway User's Guide 10.15

2 Implement APIs

a. Navigate to Security >OAuth.

b. Click Scope Management.

c. Click Add Scope.

d. Provide the following information:

Name: View

Description: Read only access scope

Folders and services: example.com

Click Associate Scopes to Client.

Select OAuth Client(1.0) in the Remaining Clients section andmove it to the Clients
associated with Scope section.

Click Save Changes.

webMethods API Gateway User's Guide 10.15 147

2 Implement APIs

Step2: Configure remote Integration Server authorization server in API Gateway

Configure the remote Integration Server as an external authorization server in API Gateway.

1. Navigate to Menu >Administration

2. Click Security > JWT/OAuth/OpenID

3. Click External authorization servers > Add authorization server.

4. Provide the following:

Name: IS_OAuthServer

Description (optional): Integration Server acting as Authorization server

5. Click Introspection.

You use Introspection to authenticate the token. It happens ollows

Local introspection. Validating the tokenwithin the gateway. This is done using the JWKS
URI or the public certificate of the issuer. In this case the token should necessarily be JWT.

Remote introspection. Validating the token with the authorization server. It has
introspection endpoint, which is used to validate the token. In addition, the client id and
client secret are used to protect the endpoint, so that anonymous users cannot access to
the resource. To invoke an endpoint you require a user; Gateway user is the one you cam
use to invoke the endpoint. There is no support for token caching in remote introspection.

6. Provide the following in the Remote introspection section

Introspection endpoint:
http://{7BIntegrationserver_machinename}:5555/invoke/pub.oauth/introspectToken

Gateway user: Administrator

Client ID and Secret: Use ID and secret noted down earlier.

148 webMethods API Gateway User's Guide 10.15

2 Implement APIs

7. Create Scopes in External Authorization servers page

Click Scopes under Add authorization server Create Scope similar to the one in
Integration Server.

Provide the Scope: View

Provide Description: Scope created similar to IS Scope

Click Add

Integration Server should be listed in External authorization servers

Step 3: Create an API with strategy

In this example you create an API by importing from the URL
https://petstore.swagger.io/v2/swagger.json, enforce it with OAuth2 policy, and create an
applicatin with strategy and associate it with the API. .

1. In the APIs tab click Create API.

webMethods API Gateway User's Guide 10.15 149

2 Implement APIs

2. Select Import API from URL.

3. Provide the following information.

URL: https://petstore.swagger.io/v2/swagger.json

Name: RestOps

Type: Swagger

Version: 1.0

4. Click Create. The API is created and the API details page for the API appears.

5. Create an Application with Strategy

For creating an Application, follow the below steps.

a. Click Applications in the title navigation bar.

b. Click Create application provide the Name: API Application

c. Click Continue to Identifiers.

In this use case, no details are provided for the Identifier page.

150 webMethods API Gateway User's Guide 10.15

2 Implement APIs

d. Search the API RestOps, by typing RestOps in the Find APIs text box.

The RestOps API appears in the Selected APIs section.

e. Select the RestOpsAPI.

f. Click Continue to Advanced.

g. Click Continue to Authentication .

h. Click Create Strategy . A strategy is a way to authenticate the incoming request and
providesmultiple authenticationmechanisms ormultiple authorization servers for a single
authentication scheme. One can create multiple strategies authorized by an API for an
application.

i. Provide the Name: AppStrategy.

j. ClickAdd

k. Click Save

6. Enforcing OAUTH2 policy on the API

webMethods API Gateway User's Guide 10.15 151

2 Implement APIs

Enforce OAuth2 policy to the created API . This policy ascertains that an OAuth token is
required to access this API..

a. Click API in the title Navigation Panel.

b. Click RestOps.

c. Click Policies tab.

d. Click Edit

e. ClickIdentify & Access from the Policy catalog.

f. Select the identification type as OAuth2 Token and Save.

g. The API can be Activated, or can navigate to the APIs in the title navigation bar and
Activate.

Step 4: Mapping OAuth scopes

Now map the scope that was defined in the Authorization server with the APIs in API Gateway
to authorize the access tokens to be used to access the protected resources. One can map either a
complete API or parts (resources or methods) of an API to the scope or can add the scope details
and modify the scope details as required from the OAuth/OpenID scopes page.

1. Expand the menu options in the title bar and Select OAuth/OpenID scopes.

2. Click Map scope.

3. TypeIS_OAuthServer in Select authorization server scope and select the listed Authorization
server scope from the search list populated.

152 webMethods API Gateway User's Guide 10.15

2 Implement APIs

4. Click API scopes.

5. Type RestOps API Scope, which is to be linked to the authorization server, in API scopes search
text box.

6. Save the changes. This maps the authorization server scope to the selected API scopes and
lists the authorization scope in the scopes list.

Step 5: Get authorization code

1. To get the Authorization code copy the client ID from the Integration server as seen in above
step 1.

2. Access the Authorization code using below URL.
https://<machinename_remoteintegrationserver>:5555/invoke/pub.oauth/authorize?client_id=
f2c86e721b0344b0a076834449ae70a9&redirect_uri=http://example.com/redirect&response_type=code&state=121

3. Click Approve

4. Copy the authorization code from the URL.
http://example.com/redirect?code=4a609ffc126343ae841237c0428bf0f9&grant_type=authorization_code&redirect_uri=http%253A%252F%252Fexample.com%252Fredirect&state=121&scope=ViewCopy
the authorization code from the URL.

You might get an error, but the authorization code is present in the URL as you are providing
dummy redirect URI.

Step 6: Getting the access token

To get the access token, follow the below steps.

webMethods API Gateway User's Guide 10.15 153

2 Implement APIs

1. Open Postman or any other Rest Client

2. Copy the code from the above step

3. Make a POST call to the following URL, with the hostname of the system, where API Gateway
is installed in place of localhost and use external port instead of default port like below.
https://<machinename_integrationserver>:5555 /invoke/pub.oauth/getToken

4. In the Body provide the following Request payload:
{
"code":"4a609ffc126343ae841237c0428bf0f9",
"redirect_uri":"http://example.com/redirect",
"grant_type":"authorization_code",
"scope":"View"
}

5. In the Authorization select Basic Auth and provide the client_id in the Username and
client_secret in the password.

6. The output is the access_token, refresh_token and token_type

Step 7: Invoke API

The access_token can be used to invoke the API

1. Navigate to APIs in the title menu

2. Click RestOps

154 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3. Under Technical information copy the Gateway endpoints

4. Have a look into the Resources and methods. You can use invoke any of these.

5. In PostMan invoke theAPI using theGateway endpointswith the required resource ormethod.

6. In Authorization provide select Bearer token and provide the access_token

Alternative/Exception Flows

The same use case can be done with Client Credentials as well.

You can get the access token using client credentials. You require the client_id and client_secret.

1. Open Postman or any other Rest Client

2. Make a POST call to the following URL, with the hostname of the systemwhere API Gateway
is installed in place of localhost and use external port instead of default port as follows:
https://<machinename_remoteintegrationserver>:5555 /invoke/pub.oauth/getToken

3. In the Headers provide Content-Type asapplication/json (if not specified).

4. In the Body provide the following Request payload:
{

“client_id”:”xxxxx”,
“client_secret”:”xxxxx”,
“ grant_type”:”client_credentials”

}

5. The output gives you the access token.

6. Use the access token to invoke the API.

Securing APIs using OAuth 2.0 in API Gateway using Third Party Authorization Server

This use case explainswith a simple example on how to secure anAPI usingOAuth2 authorization
with a third-partyOAuth2 identity provider and authorization server (OKTA).Here, the third-party
OAuth2 provider acts as the Authorization server and API Gateway acts as a Resource Server

webMethods API Gateway User's Guide 10.15 155

2 Implement APIs

Actors

Developerswith basic knowledge about APIGateway, Integration Server, OAuth2 architecture

Customerswith basic knowledge about APIGateway, Integration Server, OAuth2 architecture

Before you begin

Ensure that you have:

Created a tenant account in OKTA identity provider management portal

Installed Integration Server with API Gateway

Knowledge about any REST Client

API Gateway up and running

Basic Flow

The following diagram depicts the high level steps of the basic flow for this use case.

Step 1: Configure OKTA as OAuth2 provider

1. Create Authorization server in OKTA as follows:

a. Ensure you have a tenant account created in OKTA

b. Navigate to API > Authorization Servers

156 webMethods API Gateway User's Guide 10.15

2 Implement APIs

c. Click Add Authorization Server.

d. Provide the following details:

Name: okta-oauth-server

Audience: Administrator

Description: Used for developers tutorial

e. Click Save.

2. Get the Metadata URI.

After you configure OKTA as OAuth2 provider the metadata URL informaton is available as
shown.

Copy the Metadata URI (also known as discovery URL) used to configure External
Authorization server in API Gateway.

Note:

webMethods API Gateway User's Guide 10.15 157

2 Implement APIs

The same information is available if you click the Edit button for okta-oauth-server.

3. Get the endpoints.

Invoke the Metadata URI from the browser and retrieve the endpoints as shown.

4. Create Scopes.

a. Navigate to API > Authorization Servers

b. Click Edit for okta-oauth-server.

c. Click Add Scope.

d. Provide the following information

Name: getscope

Description: Used for developers tutorial

Default Scope: Select Set as a default scope

Metadata: Select Include in public metadata

e. Click Create.

158 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The scope is now listed under Scopes.

5. Create Access policies

Create access policies and rule in OKTA to avoid accessibility issues while using access token
during API invocation.

a. Navigate to Access Policies.

b. Click Add Policy.

c. Provide the following information:

Name: okta-oauth-policy

webMethods API Gateway User's Guide 10.15 159

2 Implement APIs

Description: Used for developers tutorials

Assgn to: Select All clients

d. Click Add Rule.

e. Provide the following information:

Rule Name: okta-oauth-policy

Do not change any default settings.

160 webMethods API Gateway User's Guide 10.15

2 Implement APIs

f. Click Create Rule.

6. Create Token.

a. Navigate to API > Tokens.

webMethods API Gateway User's Guide 10.15 161

2 Implement APIs

b. Click Create Token.

c. Provide the following information.

What do you want your token to be named? : okta-oauth-token

d. Copy the Token Value.

Note:
This token value is displayed only once.

e. Click OK, got it.

162 webMethods API Gateway User's Guide 10.15

2 Implement APIs

7. Add the postman callback url to Trusted Origins.

a. Navigate to API > Trusted Origins

b. Click Add Origin.

c. Provide the following information.

Name: postman-callback

Origin URL: https://oauth.pstmn.io

Type : Select CORS and Redirect

Click Save.

webMethods API Gateway User's Guide 10.15 163

2 Implement APIs

Step 2: Configure API Gateway for third-party authorization

This example uses the existing OKTA provider configured in API Gateway. API Gateway has
providers OKTA and PingFederate predefined and configured as the third-party OAuth2
configuration servers.

Note:
You can also create your own identity providers by navigating to Administration > Security
> JWT/OAuth/OpenID > Providers. You can then click Add provider and provide the required
details. This provider configuration is used in the Dynamic client registration.

1. Click Menu > Administrator.

2. Click Security.

3. Click OKTA.

164 webMethods API Gateway User's Guide 10.15

2 Implement APIs

4. Click JWT/OAuth/OpenID.

5. Click Add authorization server.

6. Provide the following information:

Name: okta-oauth-server

Discovery URL:
https://dev-577328.okta.com/oauth2/ausm4htp1K1OKu0un4x6/.well-known/oauth-authorization-server

7. Click Introspection.

You use Introspection to authenticate the token. It happens as follows

Local introspection. Validating the tokenwithin the gateway. This is done using the JWKS
URI or the public certificate of the issuer. In this case the token should necessarily be JWT.

webMethods API Gateway User's Guide 10.15 165

2 Implement APIs

Remote introspection. Validating the token with the authorization server. It has
introspection endpoint, which is used to validate the token. In addition, the client id and
client secret are used to protect the endpoint, so that anonymous users cannot access to
the resource. To invoke an endpoint you require a user; Gateway user is the one you can
use to invoke the endpoint. There is no support for token caching in remote introspection.

8. Remove the Introspection endpoint from Remote Introspection.

9. In Dynamic client registration, click Enable toggle button.

UseDynamic client registrationwhen youwant to create the client automatically in theOAuth2
authorization server when an application is created in API Gateway.

10. Provide the following information:

Authentication type: Token

Token type: SSWS

Token: Copy the saved token value.

11. Click Metadata. Verify that the Metadata is auto populated with the right values.

12. Click Scopes. Verify getscope is present in the list. Delete the other scopes as as they are not
required.

166 webMethods API Gateway User's Guide 10.15

2 Implement APIs

13. Click Add.

14. Click the added external authorization server to test it.

Step 3: Create an API with strategy

In this example we will create an API by importing from the URL
https://petstore.swagger.io/v2/swagger.json, enforce it with OAuth2 policy, and create an
applicatin with strategy and associate it with the API.

1. In the APIs tab click Create API.

2. Select Import API from URL.

3. Provide the following information.

URL: https://petstore.swagger.io/v2/swagger.json

Name: RestOps

Type: Swagger

Version: 1.0

4. Click Create. The API is created and the API details page for the API appears.

webMethods API Gateway User's Guide 10.15 167

2 Implement APIs

5. Enforce OAUTH2 policy on the API.

You enforce OAuth2 policy on the RestOps API. This policy ascertains that an OAuth token is
required to access this API.

a. Click APIs in the title navigation panel.

b. Click RestOps.

c. Click the Policies tab.

d. Click Edit.

e. Click Identify & Access from the policy catalog section.

f. Select the Application Identification Type as OAuth2 Token and save the API.

g. Click Activate on the API details page of the API to activate the API.

6. Create an application in API Gateway with a strategy and register it to an API.

a. Click Applications in the title navigation bar.

168 webMethods API Gateway User's Guide 10.15

2 Implement APIs

b. Click Create application.

c. Provide the Name as okta-application.

d. Click Continue to Identifiers.

e. Click Continue to APIs.

f. Type RestOps in the Find APIs text box. The RestOps API appears in the Selected APIs
section.

g. Select the RestOps API.

h. Click Continue to Advanced.

i. Click Continue to Authentication.

j. Click Create Strategy.

A strategy authenticates the incoming request and provides multiple authentication
mechanisms or multiple authorization servers for a single authentication scheme. You can
create multiple strategies authorized by an API for an application.

k. Provide the following information:

Name: okta-strategy

Authentication Server : Select okta-oauth-server

Audience : Administrator

webMethods API Gateway User's Guide 10.15 169

2 Implement APIs

Enable Generate Credentials.

Redirect URIs: https://oauth.pstmn.io/vl/callback

Click Add to add the Redirect URI.

Grant type: Select authorization_code and implicit.

Scopes: Search for getscope, click the + sign to add the scope.

l. Click Add to add the strategy.

m. Click Save.

The strategy is created in OKTA as well.

n. Make a note of client_id and client_secret displayed in Applications > okta-application
> Authentication > okta-strategy section.

170 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Step 4: Configure the Strategy in OKTA

1. Login to OKTA.

2. Navigate to Application. The strategy okta-strategy should be present.

3. Click the strategy okta-strategy.

4. Click General and verify that the details are same as in API Gateway.

5. Click SignOn.

6. Perform the following steps in the SignOn page:

a. Click Edit in Token Credentials.

b. Signing credential rotation: Select Automatic.

c. Click Save.

d. Under Sign On Policy click Add Rule.

e. Provide Rule Name as okta-app-rule.

f. In Access select Prompt for reauthentication.

g. Click Save.

webMethods API Gateway User's Guide 10.15 171

2 Implement APIs

h. ClickAssignments to assignUsers and groups to the applicaton to avoidACLpermission
issues.

i. Click Assign and then Assign to People.

j. The login user should be listed else search the user in the search box.

k. Click Assign.

172 webMethods API Gateway User's Guide 10.15

2 Implement APIs

l. Click Save and Go Back.

m. Click Done.

n. Click Assign and then Assign to Groups.

o. The group Everyone should be listed, else search the group in the search box.

p. Click Assign.

q. Click Save and Go Back.

r. Click Done.

Step 5: Map OAuth scopes

You must map the scope defined in OKTA Authorization server with the APIs in API Gateway
to authorize the access tokens to be used to access the protected resources. One can map either a
complete API or parts (resources or methods) of an API to the scope or can add the scope details
and modify the scope details as required from the OAuth/OpenID scopes page.

1. Expand the menu options in the title bar and select OAuth/OpenID scopes.

2. Click Map scope.

3. Type getscope inSelect authorization server scope and select the listedAuthorization server
scope from the search list populated.

4. Provide Audienceas Administrator.

webMethods API Gateway User's Guide 10.15 173

2 Implement APIs

5. Click API scopes

6. Type RestOps or API Scope, which is to be linked to the authorization server, in API scopes
search text box.

7. Save the changes. This maps the authorization server scope to the selected API scopes and
lists the authorization scope in the scopes list.

Step 6: Get the access token

1. Open Postman, click Authorization and select OAuth2.

2. Click Get New Access Token.

3. Provide the following information:

Token Name: oktaToken

Grant Type: Authorization Code

Callback URL: https://oauth.pstmn.io/v1/callback

Select Authorize using browser

Auth URL: http://dev-577328.okta.com/oauth2/ausm4htp1K1OKu0un4x6/v1/authorize

Access Token URL: https://dev-577328.okta.com/oauth2/ausm4htp1K1OKu0un4x6/v1/token

Note:
Get the Auth URL and Access token URL from Administration > Security >
JWT/OAuth/OpenID >External authorization server >okta-oauth-server >Meta data
section.

174 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Client ID: 0oam51fdfAJcDyDkT4x6

Client Secret: _MOgtr2gUHB8lkhZzM4uPL3wL53may1FgqHjHN2o

Note:
TheClient_ID andClient_Secret can be obtained from theApplication > okta-application
> okta-strategy.

Scope: getScope

State: 121

Client Authentication : Send Client credentials in body

4. Click Request Token.

You are redirected to OKTA login page.

5. Login into OKTA Page. A Authentication completedmessage displays and you are redirected
to call back URL.

6. In Postman you will get the Access token from Postman.

Click Use Token or copy the token which you can use to invoke the API.

Step 7: Invoke API

Ensure you have the following to invoke the API

Gateway endpoints. You will find the gateway endpoints in API Gateway UI in the APIs >
RestOps > Technical information section. In this example the endpoint is
http://vmsiqacross02.eur.ad.sag:4444/gateway/RestOps/1.0/store/inventory.

The method or resource that must be invoked. The list operations are present in the APIs >
RestOps > Technical information section under Resources and methods. Select anyone. In
this example select /store/inventorywhich is a GET method.

Access token.

webMethods API Gateway User's Guide 10.15 175

2 Implement APIs

1. Open Postman.

2. SelectGet and http://vmsiqacross02.eur.ad.sag:4444/gateway/RestOps/1.0/store/inventory.

3. In Headers add Authorization as Key and provide value as Bearer access token

4. In Headers add Accept as Key and provide value as application/json.

5. Click Send.

The API is invoked and you see the expected response with a 200 OK status.

Securing APIs Using OAUTH 2.0 In API Gateway Using External Ports

This use case defines OAuth2.0 authentication protocol that identifies and authorizes a client
application using external ports. In API GatewayOAuth2.0, you can configure services using both
primary and external ports. When you do not want to expose the primary port to the outside
world, you can configure an external port. This external port is exposed to the outside world for
allowing users to consume the APIs.

This use case explains, with a simple example, how to secure an API with OAuth2 authentication
using external ports. This example uses Client Credentials as the grant type and a single instance
of API Gateway server. The diagram illustrates the work flow for this use case.

176 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Actors

Developers with basic knowledge on webMethodsAPI Gateway, Integration Server, OAuth2
architecture.

Customers with basic knowledge on webMethods API Gateway, Integration Server, OAuth2
architecture.

Before you begin

Ensure that you have:

Installed Integration Server with API Gateway.

Knowledge about any Rest Client.

API Gateway up and running.

Basic Flow

The following diagram depicts the high level steps of the basic flow for this use case.

Step 1: Configure external port

1. Enable OAuth 2 authorization through HTTP in API Gateway.

To enable API Gateway to accept request through HTTP, you must set the value of
pg_oauth2_isHTTPS to false as follows.

a. Expand the menu options in the title bar and select Administration.

b. Select General > Extended settings.

c. Click Show and hide keys.

This displays all the configurable parameters.

d. Set the value of pg_oauth2_isHTTPS to false.

e. Click Save.

webMethods API Gateway User's Guide 10.15 177

2 Implement APIs

2. Enable OAuth 2 service using the external port.

For the OAuth service to be available through external ports, set the value of
watt.server.revInvoke.proxyMapUserCerts property to true as follows. The default value
of this property is false.

a. Expand the menu options in the title bar and select Administration.

b. Select General > Extended Settings.

c. Click Show and hide keys.

This displays all the configurable parameters.

d. Set the value of watt.server.revInvoke.proxyMapUserCerts property to true.

e. Click Save.

178 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3. Create external and registration ports in API Gateway.

The external client requests come to an external port, which delegates the request to its paired
port, that is the registration port.

a. Expand the menu options in the title bar and select Administration.

b. Select Security > Ports and click on Add Ports.

c. Select the type of port as API Gateway external and click Add.

webMethods API Gateway User's Guide 10.15 179

2 Implement APIs

d. Provide the following information:

External port: 1234

Alias: ExtPort

e. UnderAPI Gateway registration listener configuration, provide the following information:

Registration port: 4567

Alias: RegPort

f. Click Add.

180 webMethods API Gateway User's Guide 10.15

2 Implement APIs

g. Click Add button at the end of the page to add the external port.

4. Create an internal port on API Gateway.

In this use case, a single API Gateway instance is used. In the case of creating an internal port
in the internal server, the same API Gateway server acts as an internal server, which listens
and pulls the requests queuing up in the registration port.

a. Expand the menu options in the title bar and select Administration.

b. Select Security > Ports.

c. Click on Add Ports and select API Gateway internal and click Add.

d. Provide the following value for Alias, IntPort.

webMethods API Gateway User's Guide 10.15 181

2 Implement APIs

e. Under API Gateway external server, provide the following information:

Host: 127.0.0.1

Port: 4567

f. Under Registration credential(optional), type the username as Administrator and password
as manage.

g. Click Add.

5. Enable the ports.

Enable the ports after all the ports are created. Click on the x under Enabled column for the
ports.

Step 2: Configure API Gateway as an internal authorization server

Here, you configureAPIGatewaywith the required information to act as an internal authorization
server for OAuth or JWT depending on what authentication protocol you want to use to identify

182 webMethods API Gateway User's Guide 10.15

2 Implement APIs

and authorize a client application. You can also define the required scopes that provide a way to
limit the amount of access that is granted to an access token. In this xample, use the default
configuration as it is and define one OAuth Scope (OAuth2Scopes) to limit the resource usage.

1. Expand the menu options in the title bar and select Administration.

2. Select Security -> JWT/OAuth/OpenID and click local.

This displays all the configurable settings for the Authorization Server.

3. Click OAuth scopes to add Scope.

4. Provide the following information and click Add:

Scope: OAuth2Scopes

Scope description: Validate OAuth 2.0 Scopes

5. Click Update.

Step 3: Create an API with strategy

In this example, you create an API by importing from the URL
https://petstore.swagger.io/v2/swagger.json.

1. In the APIs tab, click Create API.

2. Select Import API from URL.

3. Provide the following details.

Name: RestOps

Type: Swagger

webMethods API Gateway User's Guide 10.15 183

2 Implement APIs

Version: 1.0

4. Click Create.

The API is created and the API details page for the API appears.

5. Enforce OAuth 2 policy on the API.

You enforce OAuth2 policy on the RestOps API. This policy ascertains that an OAuth token is
required to access this API.

a. Click API in the title navigation panel.

b. Click RestOps.

c. Click the Policies tab.

d. Click on Edit to add the policy to API.

e. Click Identify & Access in the Policy catalog.

f. Select the OAuth2 Token check box in the Identification Type field of the Application
Identification section and save the changes.

g. Click Activate to activate the API on the API details page of the API.

184 webMethods API Gateway User's Guide 10.15

2 Implement APIs

6. Create an Application in API Gateway with strategy and register it to an API.

a. Click Applications in the title navigation bar.

b. Click Create application.

c. Provide the name as APIApplication.

d. Click Continue to Identifiers.

webMethods API Gateway User's Guide 10.15 185

2 Implement APIs

e. Click on Continue to APIs.

f. Search the API RestOps, by typing RestOps in the Find APIs text box.

The RestOps API appears in the Selected APIs section.

g. Select the RestOpsAPI.

h. Click Continue to Advanced.

i. Click Continue to Authentication.

j. Click Create strategy.

A strategy is away to authenticate the incoming request andprovidemultiple authentication
mechanisms or multiple authorization servers for a single authentication scheme. You can
create multiple strategies authorized by an API for an application.

k. Provide the name as AppStrategy.

l. Enable the toggle button Generate credentials to generate the credentials dynamically
in the authorization server.

The client-id and client-secret get created automatically.

m. Select Confidential from the Application type drop-down list.

n. Specify the redirect URIs that the authorization server can use to redirect the resource
owner's browser during the grant process. In this example, provide www.example.com, which
is not a valid URL.

o. Select the required Grant types. In this example, the selected grant types are
authorization_code and client_credentials.

p. Provide OAuth2Scopes in the Scope text box and click the search icon.

The matching OAuth2Scopes appear.

186 webMethods API Gateway User's Guide 10.15

2 Implement APIs

q. Click + sign to add the scope to the Strategy.

r. Click Add button at the bottom to add the Strategy.

s. Click Save.

Step 4: Map OAuth scopes

After registering an application, youmustmap the scope defined in the Authorization server with
theAPIs inAPIGateway to authorize the access tokens to be used to access the protected resources.
You can map either a complete API or parts (resources or methods) of an API to the scope or add
the scope details andmodify the scope details as required from theOAuth orOpenID scopes page.
In this example you select the OAuth2Scopes scope.

1. Expand the menu options in the title bar and select OAuth/OpenID scopes.

2. Click Map scope.

3. Type OAuth2Scopes in Select authorization server scope and select the listed Authorization
server scope from the search list populated.

webMethods API Gateway User's Guide 10.15 187

2 Implement APIs

4. Click API scopes.

5. Type RestOps or API Scope, which is to be linked to the authorization server, in API scopes
search text box.

6. Click Save.

The authorization server scope is mapped to the selected API scopes and the authorization
scope is listed in the scopes list.

Step 5: Get authorization code

As the grant type chosen is Client credentials, the Client Id and Client secret is required to get the
bearer token.

1. In the title bar, click on Application.

2. Click the Application APIApplication.

3. Click AppStrategy.

188 webMethods API Gateway User's Guide 10.15

2 Implement APIs

4. Note the Client id and Client secret.

Step 6: Get the bearer token

Get the OAuth bearer token using external ports.

1. Use any Rest client to retrieve the token.

In the following example, Postman client is used.

2. Make a POST call to the following URL, with the hostname of the systemwhere API Gateway
is installed in place of localhost and use external port instead of default port.

http://machinename:1234 /invoke/pub.apigateway.oauth2/getAccessToken

http://localhost:1234 /invoke/pub.apigateway.oauth2/getAccessToken

3. Provide the following payload, with the required client id and client secret and grant
type, in the body of the request section. In headers, provideContent-Type as application/json
(if not specified).

webMethods API Gateway User's Guide 10.15 189

2 Implement APIs

The access token that can be used to access the required application is displayed in the response
section.

Step 7: Invoke API

Invoke API using the bearer token. Add the OAuth2 access token as a Bearer token in the request
header and send to the API. A successful response, 200 OK is received from the API with the
desired response.

The response is as shown.

Defining Multpile OAuth 2.0 Scopes in API Gateway

Scope is a mechanism in OAuth 2.0 to limit an application's access to a user's account. Scope is
required to get an access token. A scope is the definition of the resources the client application can
access on behalf of a resource owner. In API Gateway, scope is defined for methods or resources
of an API. You can apply Scope to an API from the Identity and Access Policy page.

Types of Scopes

OAuth Scope: Defined in Authorization Server

190 webMethods API Gateway User's Guide 10.15

2 Implement APIs

API Scope: Scope defined in API

If you do not define scope for an API, a global scope is provided by default. This global scope is
applicable for all the methods or resources of the API .

Actors

Developers with basic knowledge on webMethods API Gateway, Integration Server, OAuth2
architecture

Customers with basic knowledge on webMethods API Gateway, Integration Server, OAuth2
architecture

Before you begin

Ensure that you have:

Installed Integration Server with API Gateway

Knowledge on any REST Client

API Gateway up and running

Basic Flow

This section explains the following three flows :

CreatingOAuth Scopes in the Local Authorization Server andmapping this scope to theGlobal
Scope for an API

CreatingOAuth Scopes in External Authorization Server andmapping this scope to theGlobal
Scope for an API

Creating multiple OAuth Scopes in Local Authorization Server andmapping this scope to the
Scope defined in the API

Creating OAuth scopes in local authorization server and mapping this scope to the
global Scope for an API

1. Create OAuth scope in local authorization server .

You can create the OAuth scope using the Authorization Server page.

a. Expand the menu options in the title bar and select Administration

b. Select Security > JWT/OAuth/OpenID. Click local. All configurable settings for the local
authorization server appears

c. Click local

d. Click OAuth Scope to add Scope

e. Provide the values in the following fields

webMethods API Gateway User's Guide 10.15 191

2 Implement APIs

Scope: OAuth2Scopes

Scope description: OAuth2Scopes

f. Click Add.

2. Map the OAuth scope to the global scope.

You must map the OAuth scope to the global scope or to a scope defined for the methods or
resources of the API. Here, as the scope for the methods or resources of the API is not created,
the methods or resources of the API is not restricted.The global scope is applicable to all the
methods or resources of the API.

In this example, consider the global scope API scopes. Map the OAuth scope to the API scopes
for an API RestOps.

a. Expand the menu options in the title bar and select OAuth/OpenID scopes.

b. ClickMaps scope. Type OAuth2Scopes in Select authorization server scope and select
the listed authorization server scope from list.

c. Click API scopes

192 webMethods API Gateway User's Guide 10.15

2 Implement APIs

d. Type either the the API RestOps or API Scope in API scopes. This is the Global scope,
which is to be linked to the authorization server.

e. Save the changes. This maps the authorization server scope to the selected API scopes and
lists the authorization scope in the scopes list.

For details on other configurations and how to invoke the API, see “ Securing APIs using
OAuth 2.0 in API Gateway with Local Authorization Server” on page 132

Creating OAuth scopes in External Authorization Server and mapping this scope
to the Global Scope for an API

1. Create OAuth scope in external authorization server.

In the authorization page the external authorization server is defined. Initially scope has to be
created in the external authorization server. The same scope needs to be created or gets
automatically listed with the discovery URL. Here the external authorization server is OKTA.

a. Create scope getscope in OKTA.

b. Expand the menu options in the title bar and selectAdministration

c. SelectSecurity > JWT/OAuth/OpenID.. Click local. This displays all the configurable
settings for the Authorization Server

d. Click on okta-oauth-server

e. Click Scopes

f. Click on Scopes. Verify getscope is present in the list.

webMethods API Gateway User's Guide 10.15 193

2 Implement APIs

2. Map the external OAuth scope to the global scope.

You must map the scope specified in the OKTA Authorization server with the APIs in API
Gateway to authorise the access tokens to access the protected resources.

a. Expand the menu options in the title bar and select OAuth/OpenID scopes.

b. Click Map scope.

c. Type getscope in select authorization server scope and select the listed authorization
server scope from the search list populated.

d. Provide Audience : Administrator

e. Click API scopes.

f. Type RestOps or API scope, which is to be linked to the authorization server, in API scopes
search text box.

g. Save the changes. This maps the authorization server scope to the selected API scopes and
lists the authorization scope in the scope list

For details on other configurations and how to invoke the API, see “ Securing APIs using
OAuth 2.0 in API Gateway using Third Party Authorization Server” on page 155.

194 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Creating multiple OAuth Scopes in Local Authorization Server and mapping this
scope to the scope defined in the API

1. Create multiple OAuth scopes in local authorization server.

a. Expand the menu options in the title bar and select Administration

b. Select Security > JWT/OAuth/OpenID. ClickLocal. This displays all the configurable
settings for the authorization server

c. Click on Local.

d. Click OAuth scopes to add scope. Add the following OAuth scopes read, write, modify,
and delete and click Add.

e. Click Update.

2. Create scopes for the API.

a. Navigate to APIs in the title navigation bar.

b. Click RestOps.

c. Click Scopes.

d. Click Edit.

e. Click Add Scope.

webMethods API Gateway User's Guide 10.15 195

2 Implement APIs

f. Provide the name: readScope

g. In Resources and methods select GET for /store/inventory method. You can select other
GET methods as well.

h. Click Save.

i. Click Edit.

j. Click Add Scope.

k. Provide name: writeScope and select POST in /user method.

l. Create scopes updateScope and select PUT in /user/{username}

m. Create scope deleteScope and select DELETE in /user/{username}

196 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3. Enforce OAuth2 policy on the API RestOps with the required scope.

This policy ascertains that a OAuth token is required to access this API.

a. Click API in the title navigation bar.

b. Click RestOps.

c. Click Policies.

d. Click Edit.

e. Click Identify & Access from the Policy catalog section .

f. Click Save.

4. Map the OAuth scope to the API-level scope.

Here, you map the OAuth scope that was defined in the local Authorization server with the
API-level scope defined in the RestOps API.

a. Expand the menu options in the title bar and select OAuth/OpenID scopes.

webMethods API Gateway User's Guide 10.15 197

2 Implement APIs

b. Click Map Scope, type read in select authorization server scope and select the listed
authorization server scope from the search list populated.

c. Click API scopes.

d. Type Restops or readScope, which is to be linked to the authorization server, in API scopes
search text box.

e. Save the changes. This maps the authorization server scope to the selected API scopes and
lists the authorization scope in the scopes list.

f. Similarly Map

write OAuth Scope to writeScope of API.

update OAuth Scope to updateScope of API.

delete OAuth Scope to delete Scope of API.

5. Configure application and strategy.

a. Click Applications in the title navigation bar.

b. Click Create application provide the Name: TestApplication.

c. Click Continue to Identifiers.

198 webMethods API Gateway User's Guide 10.15

2 Implement APIs

d. Click on Continue to APIs.

e. Type RestOps in the Find APIs text box. The API is listed in the drop down box.

f. Select the RestOps API.

g. Click Continue to Advanced. In the Advanced page, no input is required.

h. Click on Continue to Authentication.

i. Click Create Strategy. A strategy is a way to authenticate the incoming request and
providesmultiple authenticationmechanisms ormultiple authorization servers for a single
authentication scheme. You can create multiple strategies authorized by an API for an
application.

j. Provide the Name: TestStrategy

k. Enable the toggle button Generate credentials to dynamically generate the client in the
authorization server. By enabling the toggle button client-id and client-secret are created
automatically.

l. Select Confidential as application type.

m. Specify the redirect URIs that the authorization server can use to redirect the resource
owner's browser during the grant process. In this case, you are provided with
www.example.com which is not a valid URL.

n. Select the required Grant types, authorization_code and client_credentials.

o. Provide the following scopes in the scope text box and click the search icon.

a. read, click Add

b. write, click Add

c. update, click Add

d. delete, click Add

p. Click Add to add the trsategy.

webMethods API Gateway User's Guide 10.15 199

2 Implement APIs

q. Click Save.

6. Get the authorization code.

You require the client_id and client_secret to get the authorization code.

a. Navigate to Applications in the title Menu.

b. Click on TestApplication .

c. Under Authentication, click TestStrategy strategy.

d. Copy the client id.

e. Invoke the following url to get the authorization code

http://<machinename>:4444/invoke/pub.oauth/authorize?
client_id=01fc7b74-1f56-48d5-81fe-bcd6e895d40f&
redirect_uri=www.example.com&response_type=code&state=121

f. If you select read, you get the authorization code only for read scope

Example http://<machinename>:4444/invoke/wm.server.oauth/www.example.com?
code=4c4f499e6b894103972bd12c6e8e49d7&grant_type=authorization_code&
redirect_uri=www.example.com&state=121&scope=read

g. If you select only write, you get the authorization code only for write scope

200 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Example http://<machinename>:4444/invoke/wm.server.oauth/www.example.com?
code=e295940d2daa4ac3887575400c81b78b&grant_type=authorization_code&
redirect_uri=www.example.com&state=121&scope=write

h. If you select all, you will get the authorization code only for read+write+update+delete
scope

Example http://<machinename>:4444/invoke/wm.server.oauth/www.example.com?
code=3cbcfb3523624675a54925bd96b56bea&grant_type=authorization_code&
redirect_uri=www.example.com&state=121&scope=read+write+update+delete

Retrieving OAuth Token

You must retrieve an OAuth token to access an API that is OAuth protected.

To retrieve an OAuth token

1. Open your REST client.

2. Make a POST call to the following URL, with the hostname of the systemwhere API Gateway
is installed in place of localhost:

http://localhost:5555/invoke/pub.apigateway.oauth2/getAccessToken

For example
http://10.2.120.14:5555/invoke/pub.apigateway.oauth2/getAccessToken

3. Provide the following payload, with the required client id and client secret, in the Request
section:

{
"grant_type":"client_credentials",
"client_id":"client id",
"client_secret":"client secret"

}

You can find Client id and Client secret in the Authentication section of the Application
details page.

For example
{

"grant_type":"client_credentials",
"client_id":"0abcd80e-f009-4a38-b52e-e663b2e18e5b",
"client_secret":"3bd9c383-813e-40d4-b876-67c4da7c71cc"

}

The access token that can be used to access the required application is displayed in the
Response section.

Sample response

webMethods API Gateway User's Guide 10.15 201

2 Implement APIs

{
"access_token": "c9a39e14e6a84be0b228bc9bcb76ad99",
"token_type": "Bearer",
"expires_in": 3600

}

Secure API using OAuth2 with refresh token workflow

Whenusing the authorization code grant type to get the access token, you need to get the permission
from the resource owners at least for the first time. In the subsequent attempts to get the access
token, if you do not want to get the permission from the resource owners, then you can use the
refresh token.

This use case explains how to secure the API usingOAuth2 authentication strategy. It also explains
the refresh token workflow in detail.

Configuring OAuth2 Authentication with Refresh Token

This use case explains how to secure the API using OAuth2 authentication strategy with
authorization_code and refresh_token grant types.

The use case starts when you create an API and endswhen you create an application strategywith
OAuth2 authentication scheme.

To configure OAuth2 Authentication with Refresh Token

1. Create an API.

For details about creating an API, see “Creating a REST API from Scratch” on page 20.

2. Enable the OAuth2 token identification type in the Identify & Authorize policy.

202 webMethods API Gateway User's Guide 10.15

2 Implement APIs

For details about Identify & Authorize policy, see “Identify & Authorize” on page 111.

3. Create OAuth scope in the local authorization server.

4. Map the OAuth scope to the API scope.

For details about mapping OAuth scope, see webMethods API Gateway Administration.

webMethods API Gateway User's Guide 10.15 203

2 Implement APIs

5. Create an application with OAuth2 authentication strategy.

a. Create a new application.

For details about creating an application, see “Creating an Application” on page 80.

b. Associate the application with the API that you have created.

c. Click the Authentication tab to create strategy with OAuth2 authentication.

204 webMethods API Gateway User's Guide 10.15

2 Implement APIs

d. Select the Authentication schemes as OAUTH2.

e. Specify the Authentication server as local.

f. Enable the Generate credentials toggle button to generate the client dynamically in the
authorization server and provide the following information:

a. Select the Application Type as Confidential. A confidential client is an application that
can keep a client password confidential to the world. This client password is assigned
to the client app by the authorization server. This password is used to identify the client
to the authorization server, to avoid fraud. An example of a confidential client could
be a web app, where no one but the administrator can get access to the server, and see
the client password.

b. Select the application profile from the Application profile drop-down menu. For
example, web.

c. Specify the duration in seconds forwhich the access token is active in theToken lifetime
(seconds).

d. Specify the number of times you can use the refresh token in the Token refresh limit
to get a new acceswws token.

webMethods API Gateway User's Guide 10.15 205

2 Implement APIs

Note:
To use refresh token unlimitedly, specify the limit as -1.

e. Specify the URIs that the authorization server can use to redirect the resource owner's
browser during the grant process. You can add multiple URIs by clicking +Add.

f. Specify the grant type to be used to generate the credentials. For this specific use case,
we have selected authorization_code, client_credentials, and refresh_token, which are
dynamically populated from the authorization server.

Note:
Make sure you have selected refresh_token grant_type, if you want to get the refresh
tokens.

g. Select the scopes that are to be mapped for the authentication strategy.

h. Click Add to save the strategy.

i. Click Save to save the application.

Refresh Token Process Flow

This use case explains the following workflow:

1. How to get the access token with resource owner permission?

2. How to get the access token without resource owner permission using refresh token in the
subsequent attempts?

How to get the access token with resource owner permission?

This use case starts when you get the authorization code and ends when you access then API.

To get access token using authorization code grant type (With resource owner permission)

1. Get authorization code.

a. Click the
http(s)://hostname:port/invoke/pub.apigateway.oauth2/authorize?response_type=code&redirect_uri=<
redirectURI>&client_id=<Client ID>.

Note:
Make sure you have replaced the <redirectURI> and <ClientID> in the above mentioned
URL. You can get the redirect URI and client ID from the Authentication tab of the
Application screen.

206 webMethods API Gateway User's Guide 10.15

2 Implement APIs

b. Click the Approve button.

c. Provide the credentials of your API Gateway instance.

You are re-directed to the redirect URI as per to the configuration. The below screenshot
is just a sample, you will be redirected to a different URL based on your configuration and
so the screenshot varies accordingly. If the given redirect URI is not a valid web page, you
may get a Page not found error, which is fine, because you can get the authorization code
value from the browser URL.

d. Make a note of the authorization code that is displayed in the address bar of the browser.
As highlighted in the above image's URL, you can see the authorization code in the code=
field of the URL.

2. Get Access Token.

a. Invoke the access token endpoint.

Request: POST http(s):// hostname:port /invoke/pub.apigateway.oauth2/getAccessToken

In the Authorization tab, select the authorization type as Basic Auth. Provide the client ID
as username and client secret as password. You can get the client ID and client secret in
the Authentication tab of the Application screen.

Sample request body

webMethods API Gateway User's Guide 10.15 207

2 Implement APIs

{
"redirect_uri":"http://test.com",
"scope":"email",
"grant_type":"authorization_code",
"code":"4b4b16c68f1c4b6fa7f26e0cb00b5daa"

}

Note:
You must replace the redirect_URI, scope, and code with appropriate values. For the
code field value, make sure you use the authorization code that you have noted down
in the previous step.

Sample response body
{

"scope": "TestRefreshtoken",
"access_token":

"c92b6227a19c46f1a6545bf370bb6ee6e30ff87957ef4b1aaa9577f7e86e4bd7",
"refresh_token":

"f78dd4fc5b8d4d799cf066427e828e26ce7e3723e4334416a7b9cd8a274e6947",
"token_type": "Bearer",
"expires_in": 3600

}

3. Access API using the REST API client.

In the Authorization tab, select the authorization type as Bearer Token and provide the access
token that you get from the response payload of the previous step.

How to get the access token without resource owner permission using refresh token in the
subsequent attempts?

This use case starts when you get the authorization code and ends when you access the API.

To get access token using refresh token (Without resource owner permission)

When the access token expires and if you need to access the same API, you need to get another
access token. If you have refresh token, you can get a new access token without getting the
permission from the resource owner.

1. Invoke the refresh token endpoint.

Request: POST http(s)://hostname:port/invoke/pub.oauth/refreshAccessToken

In the Authorization tab, select the authorization type as Basic Auth. Provide the client ID as
username and client secret as password. You can get the client ID and client secret in the
Authentication tab of the Application screen.

Sample request body
{

"grant_type":"refresh_token",
"refresh_token":"f78dd4fc5b8d4d799cf066427e828e26ce7e3723e4334416a7b9cd8a274e6947"
}

208 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Note:
Make sure you have replaced the refresh token that you got from the Step 2 using “ How
to get the access token with resource owner permission?” on page 206 use case.

Sample response body
{

"grant_type": "refresh_token",
"refresh_token":

"f78dd4fc5b8d4d799cf066427e828e26ce7e3723e4334416a7b9cd8a274e6947",
"scope": "TestRefreshtoken ",
"access_token":

"c102bcaebecf451ca705bf54d26fae732ea9790a0ff64a87a010b3875b4b8da2",
"token_type": "Bearer",
"expires_in": 3600

}

2. Access API using the REST API client.

In the Authorization tab, select the authorization type as Bearer Token and provide the access
token that you get from the response payload of the previous step.

JWT Authentication Use case and Workflow

JSONWeb Token is a JSON-based open standard (RFC 7519) means of representing a set of
information to be securely transmitted between two parties. A set of information is the set of claims
(claim set) represented by the JWT. A claim set consists of zero or more claims represented by the
name-value pairs, where the names are strings and the values are arbitrary JSON values. The
claims in a JWT are encoded as a JSON object that is used as the payload of a JSONWeb Signature
(JWS) structure, enabling the claims to be digitally signed. JWTs can be signed using a shared
secret (with HMAC algorithm), or a public or private key pair using RSA.

API Gateway can generate a JWT token itself or validate the JWT token generated by a trusted
third-party server. API Gateway uses the RSA-based JWT to provide stronger integrity protection
to JWTs when API Gateway is the issuer of the token. The JSON-based access tokens contain one
or more claims. A claim is any piece of information that serves as an unique identifier, and that
the token issuer who generated the token has verified. API Gateway extracts the claims from the
JWT, identifies the application and then authorizes access to the protected resource.

Note:
JWT authentication is supported for both REST and SOAPAPIs. API Gateway does not support
Base 64 encoded JWT tokens.

Use case 1: JWT authentication with API Gateway as a JWT issuer

This describes the high level workflow for the scenariowhereAPI Gateway can generate the JSON
Web Token itself.

1. Configure API Gateway as an internal authorization server.

webMethods API Gateway User's Guide 10.15 209

2 Implement APIs

https://tools.ietf.org/html/rfc7519

For a complete procedure on configuring API Gateway as an internal authorization server,
see webMethods API Gateway Administration.

2. Enforce the Identify & Authorize policy on the API.

Ensure to select JWT. For more details, see “Identify & Authorize” on page 111.

3. Associate an application with the API.

You can create a new application or use an existing one. Ensure that you add the required
claims while creating the application, which you would use to validate the access token. For
a complete procedure on creating an application with a strategy, see “Creating an
Application” on page 80.

4. Activate the API.

User on invoking the API uses the JWT identificationmethod to access the protected resource.

5. You get the JWT in one of the following ways (with or without claims), which you can pass
as a bearer token to invoke the API.

Retrieve JWTToken - For a complete procedure on retrieving a JWT token, see “Retrieving
JWT Token” on page 213.

Retrieve JWT Token with Claims - For a complete procedure on retrieving a JWT token
with claims, see “Retrieving JWT Token with Claim” on page 214.

Use case 2: API Gateway with an external JWT issuer

This describes the high level workflow for the scenario where API Gateway accepts JSONWeb
Token generated by a trusted third-party server.

1. Configure an external authorization server.

For a complete procedure on configuring an external authorization server, seewebMethods API
Gateway Administration.

2. Enforce the Identify & Authorize policy on the API.

Ensure to select JWT. For more details, see “Identify & Authorize” on page 111.

3. Associate an application with the API.

You can create a new application or use an existing one. Ensure that you add the required
claims while creating the application, which you would use to validate the access token and
the external authorization server that would be the JWT issuer. For a complete procedure on
creating an application with a strategy, see “Creating an Application” on page 80. For
information about configuring authorization server for the applications created from API
Portal, see “OAuth Authentication in API Gateway” on page 123.

4. Activate the API.

User on invoking the API uses the JWT identificationmethod to access the protected resource.

5. Pass the JWT as a bearer token to invoke the API.

210 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Use case 3: JWT authentication with API Gateway for applications registered from
API Portal

This use case describes the high-level workflow for the scenario where API Gateway generates
the JSONWeb Tokens for the applications registered from API Portal. From API Portal, you can
create applications for APIs that require JWT access tokens to access them and test APIs fromAPI
Portal.

1. Configure an internal or external authorization server in API Gateway.

For a complete procedure on configuring API Gateway as an internal authorization server,
see webMethods API Gateway Administration.

For a complete procedure on configuring an external authorization server, seewebMethods API
Gateway Administration.

2. Create an API.

For a complete procedure on creating APIs, see “ Defining and Managing APIs” on page 10.

3. Enforce the Identify & Authorize policy on the API.

Ensure to select JWT. For more details, see “Identify & Authorize” on page 111.

4. Provide the name of the authorization server in the watt.server.oauth.authServer.alias
settings in the Administration section of API Gateway.

5. Publish the API to API Portal.

6. Log in to API Portal.

7. Open the API that you published from the API gallery page.

8. Click Get access token from the right pane of the API details page request an access token
to access and use the API.

9. In theRequest API access token dialog box, provide theApplication name andApplication
description. The application is created and listed in the Applications page.

10. Click Try API.

11. Select the required application from the Application drop-down list in the left pane.

12. Select the resource, that you want to try, from the left pane.

13. In the Authorization tab, select JWT from the Authorization type drop-down list.

14. Do one of the following:

Provide your Integration Sever credentials in the User name, Password field, and click
Get token. Select a token from the available list of tokens, and click Update.

Provide the JWT token or select one from the available list of tokens, and click Update.

The bearer token value appears in the Value field of the Header tab.

webMethods API Gateway User's Guide 10.15 211

2 Implement APIs

Note:
If you are using a REST client like Postman or SoapUI to create an consumer application
and invoke a REST API, then you must generate the application authentication using static
or dynamic payload, and provide the bearer token value to invoke the API. But, if you are
using API Portal to register a consumer application, this process is made simple using the
Get token feature in the Try API section of API Portal.

15. Click Send. The response for the selected method appears.

JWT Authorization Workflow

The flow of authorization requests and responses between the end user, client application, JWT
issuer, and resource server is as depicted in the following figure.

The JWT authorization workflow is as follows:

1. The end user logs in, the client application sends an authentication request to API Gateway
or to any third-party JWT issuer, to obtain a JWT token.

2. If API Gateway is the JWT issuer, then it validates the user or the application. If the user or
application credentials are valid, API Gateway generates the JSON token using a private key
that was specified in the JWT configuration, and sends the generated token to the client.

If the user credentials are invalid, API Gateway returns a specific error response.

3. Client sends the generated JSON token in the HTTP Authorization request header as a Bearer
token to access the protected API in API Gateway.

212 webMethods API Gateway User's Guide 10.15

2 Implement APIs

4. API Gateway first identifies the application based on claims from the JWT, then validates the
JWT using the public certificate of the issuer (the issuer can be API Gateway or a third-party
issuer) and provides access to the protected resources.

If the validation fails, API Gateway returns a specific error response.

Note:

If API Gateway has generated the JSON token, it validates the signature using a public
certificate that was specified in the JWT configuration. Else, if the HTTP request is sent
from a third-party JWT issuer, API Gateway validates the token using a public certificate
or the JWKS URI of the issuer.
When a Policy violation event is logged in case of expiredOauth2 tokens, the application
that is associated turn in to Unknown.

Retrieving JWT Token

You can retrieve JWT using one of the following ways:

Retrieve with static payload: This method is used to retrieve an access token for a general
access.

Retrieve using an Application Id: This method is used to retrieve an access token to be used
for a particular application.

To retrieve a JWT token

1. Open your internet browser.

2. Perform one of the following steps to retrieve access token:

To retrieve the access tokenwith static payload, provide the followingURL in the browser,
with the IP of API Gateway in place of local host:
http://localhost:5555/rest/pub/apigateway/jwt/getJsonWebToken

To retrieve the access token for a particular application, provide the following URL, with
the IP of API Gateway and required application Id:
http://localhost:5555/rest/pub/apigateway/jwt/getJsonWebToken?
app_id=applicationId

For example,
https://localhost:5556/rest/pub/apigateway/jwt/getJsonWebToken?
app_id=9502c862-9e67-4726-bc13-598df42c7fb6

The JWT token is displayed:

webMethods API Gateway User's Guide 10.15 213

2 Implement APIs

The subject claim of the token generated by making a GET call will be the username of user
who calls the JWT endpoint.

Note:
You must use HTTPS protocol when retrieving JWT token. If you want to use the HTTP
protocol, you must set the pg_JWT_isHTTPS setting in the Administration > Extended
Settings to false.

Retrieving JWT Token with Claim

When you retrieve a JWT token for a particular application, the application is authenticated using
the application identifiers provided in the request, such as, APIKey, Username, or Host name,
and then a token is generated with application id as a subject.

For example, consider multiple developers using an application to retrieve an access token. In
such a scenario, each user can have a claim that can be used to identify the user who made a
particular transaction.

To retrieve a JWT token with claim

1. Open your REST client.

2. Make a POST call to the following URL, with the IP address of the systemwhere API Gateway
is installed in place of localhost:

http://localhost:5555/gateway/security/getJsonWebToken

For example,
http://localhost:5555/rest/pub/apigateway/jwt/getJsonWebToken

3. Provide your claim identifiers in the Request section:

{ "claimsSet": { "identifier": "value"} }

For example,
{ "claimsSet": { "name": "username", "company": "organization" } }

Note:

214 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Before invoking this service, ensure that the authorization server is configured and the scope
mapping is done.

The access token is displayed in theResponse section. The subject claim of the token generated
by making a POST call will be the ID of the identified application.

OpenID Authentication Use case and Workflow

OpenID Connect is an open standard and decentralized authentication protocol that extends on
the OAuth 2.0 authorization framework. It combines the capability of Open ID in verifying the
client's identity and OAuth's capability of accessing the client's resources.

In case of OpenID support in API Gateway, you can use the OpenID authentication protocol to
identify and authorize a client application to access the protected resources in one of the following
ways (these are explained in detail in the Usecase section.):

Use just the access tokens (that is OAuth token) to invoke the protected resources.

Use the ID token (that gives information about the user) to invoke the protected resources in
one of the following ways:

Present the ID token to exchange it for an access token and use the access token to access
the protected resources.

Use the ID token directly to access the protected resources.

API Gateway does not act as a OpenID Connect server but can validate the tokens issued by other
OpenID Connect servers.

The following internal API is used for getting an access token for an ID token.

exchangeIDToken

Method: POST

URL: http://host:port/gateway/security/exchangeIDToken

Payload
{
"gatewayScopes": ["OktaTenant1:inventory"],Identify & Authorize in the

"idToken": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjQwYzZiMDliNDQ5NjczNDUzYzNkYTY"
"expiry": 3000

}

For details on scopes, see webMethods API Gateway Administration.

Note:
The getOpenIDtoken call is deprecated and is no more available from the API Gateway release
10.3 onwards.

webMethods API Gateway User's Guide 10.15 215

2 Implement APIs

Use case 1: OpenID authentication using OpenID Connect Provider

This describes the high level workflow for using the OpenID authentication protocol to identify
and authorize a client application to access the protected resources.

1. Configure a Provider if you are using the Dynamic client registration. Else you can proceed
to step 2.

For a complete procedure on configuring a provider, seewebMethodsAPIGatewayAdministration
.

2. Configure an external authorization server.

Ensure you configure the external authorization serverwith the introspectionURL andOAuth
scopes. For a complete procedure on configuring an external authorization server, see
webMethods API Gateway Administration.

3. Map the scopes.

For a complete procedure on mapping scopes, see webMethods API Gateway Administration.

4. Enforce the Identify & Authorize policy on the API.

Ensure to select OpenID Connect or JWT as options. For more details, see “Identify &
Authorize” on page 111.

5. Associate an application with the API.

You can create a new application or use an existing one. Ensure that the application associated
contains the strategy for OpenID authentication. While creating a strategy you can associate
it with the scopes that are available to be used while using dynamic client registration. For a
complete procedure on creating an applicationwith a strategy, see “Creating anApplication” on
page 80.

6. Activate the API.

User on invoking the API uses the access token or the ID token provided by the provider to
access the protected resource.

7. User can access the protected resources in one of the following ways:

The user presents the access token toAPIGateway and on validation accesses the protected
resource.

The user presents the ID token to API Gateway to exchange it for an access token (if the
user has configured the OpenID Connect option in step 4). The client then presents the
access token to API Gateway and on validation accesses the protected resource.

The following internal API is used for getting an access token for an ID token.

exchangeIDToken

Method: POST

216 webMethods API Gateway User's Guide 10.15

2 Implement APIs

URL: http://host:port/gateway/security/exchangeIDToken

Payload
{

"gatewayScopes": ["OktaTenant1:inventory"],
"idToken": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjQwYzZiMDliNDQ5NjczNDUzYzNkYTY"
"expiry": 3000

}

The user presents the ID token as a JWTdirectly toAPIGateway (if the user has configured
the JWT option in step 4), and on validation accesses the protected resource.

OpenID Authorization Worklow

The OpenID Connect support in API Gateway provides two different ways for a client to access
a protected resource depending on whether the provider has provided an access token or an ID
token. The workflow diagram depicts both these cases. The first 2 steps are same in both the cases,
the arrows in blue depict the flow where an access token is used to access the protected resource,
and the arrows in orange depict the flowwhere an ID token is used to access the protected resource.

OpenID authorization workflow using the OpenID Connect Provider

The flowof authorization requests and responses between the end user, client application, OpenID
Connect provider, and resource server is as depicted in the following figure. The client application
makes anOpenID call to theOpenIDConnect provider and receives an access token or an ID token
in the response. It uses these tokens to access the protected resources.

OpenID authorization workflow using the access token provided by the Open ID Connect
Provider

1. The client makes an OpenID call to the OpenID connect Provider.

webMethods API Gateway User's Guide 10.15 217

2 Implement APIs

2. The OpenID Connect Provider provides an access token to the client.

3. The client application presents the access token received from the OpenID Connect Provider
to send HTTP requests to API Gateway.

4. API Gateway then performs the following:

a. Identifies the application using the clientId.

b. Validates the token locally or remotely if it is not possible locally.

c. Checks if the requested resource is part of the scopes in the token.

d. Checks the audience.

API Gateway provides access to the protected resource if all the validations are done. If the
access token is valid, API Gateway provides access to the protected resource. If the access
token is expired, authorization server returns a specific error response. The client application
can then use Refresh Token to request a new access token. The Authorization Server returns
a new access token that can be used to access the protected resource.

OpenID authorizationworkflowusing the ID token provided by theOpen IDConnect Provider

1. The client makes an OpenID call to the OpenID Connect Provider.

2. The OpenID Connect Provider provides an ID token to the client.

3. The client application presents the ID token received from the OpenID Connect Provider to
API Gateway.

4. API Gateway validates the ID token and returns an access token to the client application.

The following internal API is used for getting an access token for an ID token.

exchangeIDToken

Method: POST

URL: http://host:port/gateway/security/exchangeIDToken

Payload
{
"gatewayScopes": ["OktaTenant1:inventory"],
"idToken": "eyJhbGciOiJSUzI1NiIsImtpZCI6IjQwYzZiMDliNDQ5NjczNDUzYzNkYTY"
"expiry": 3000

}

For details on mapping scopes, see webMethods API Gateway Administration.

5. The client then uses this access token to send HTTP requests to API Gateway.

6. API Gateway then performs the following:

a. Identifies the application using the clientId.

b. Validates the token locally or remotely if it is not possible locally.

218 webMethods API Gateway User's Guide 10.15

2 Implement APIs

c. Checks if the requested resource is part of the scopes in the token.

d. Checks the audience.

API Gateway provides access to the protected resource if all the validations are done. If the
access token is valid, API Gateway provides access to the protected resource. If the access
token is expired, authorization server returns a specific error response. The client application
can then use Refresh Token to request a new access token. The Authorization Server returns
a new access token that can be used to access the protected resource.

Note:
The user can present the ID token directly as a JWT to access the protected resources in case the
ID token is provided on configuring the JWTproperty in the Identify&Authorize policy enforced
on the API.

Securing Access Token Calls with PKCE

PKCE (Proof Key for Code Exchange) is a mechanism that prevents Authorization Code
Interception attacks andmakesOAuth 2.0 authorization code grantmore secure for public clients.
The client application should give proof to the authorization server that the authorization code
belongs to the client application. Only then the authorization server issues an access token for the
client application.

The PKCE flow works with these parameters:

Code Verifier. The code verifier should be a high-entropy cryptographic random string with
a minimum of 43 characters and a maximum of 128 characters.

Code Challenge. The code challenge is created by SHA256 hashing the code verifier and then
applying base64 URL encoding of the resulting hash. If the client cannot do the hashing and
encoding transformation, it can use the code challengemethod as plainwhere the code challenge
is same as code verifier

Code ChallengeMethod. This is an optional parameter. If the client uses SHA256 hashing the
code challenge method value must be S256. If no hashing is done, then the code challenge

webMethods API Gateway User's Guide 10.15 219

2 Implement APIs

method value must be plain. If the code challenge method value is not passed in the client
request then plain would be considered as default value.

The flow chart explains the Get Access Token workflow in API Gateway using authorization code
grant type with PKCE.

How do I enforce PKCE globally?

This use case explains how to enforce PKCE globally in the local authorization server. When you
enforce PKCE at global level, then it is applied for all the public OAuth2.0 clients of local
authorization server.

This use case starts when you want to enable the PKCE workflow and ends when you get the
access token on successful validation.

220 webMethods API Gateway User's Guide 10.15

2 Implement APIs

To enforce the PKCE at global level

1. Expand the menu icon, in the title bar, and select Administration.

2. Select Security > JWT/OAuth/OpenID.

TheAuthorization servers section displays a list of available internal and external authorization
servers.

3. In the Internal authorization servers section, click local.

4. Expand the OAuth configuration section, select the Enforce PKCE checkbox.

5. Click the Update button.

Once you enforce PKCE, you get access token only on successful validation of code verifier.

How do I secure the access token with Authorization Code (With PKCE) grant type using
postman?

This use case starts when you enforce the PKCE and ends when you get access the token securely
using postman.

webMethods API Gateway User's Guide 10.15 221

2 Implement APIs

To secure the access token

1. Create OAuth scope in the local authorization server.

2. Create an application with OAuth2 authentication strategy. For details about creating an
application, see “Creating an Application” on page 80.

a. Click the Authentication tab to create a strategy with OAuth2 authentication.

Make sure you have selected the following mandatory fields for this use case:

222 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Select the Authentication schemes as OAUTH2.

Specify the Authentication server as local.

Select the Application Type as Public.

Specify the grant type to be used to generate the credentials. For this specific use case,
you must select authorization_code, which is dynamically populated from the
authorization server.

Specify the postman https://oauth.pstmn.io/v1/callback URL as redirect URI.

Specify the OAuth scope that you have created for the local authorization server in
Step 1.

b. Click Add to save the strategy.

c. Click Save to save the application.

3. In the Postman, under the Authorization tab, select the authorization type as OAuth2.0 from
the TYPE drop-down menu.

a. In the Configure New Token section, select the grant type as Authorization Code (With
PKCE).

b. Type the redirect URL as https://oauth.pstmn.io/v1/callback in the Callback URL text
box.

webMethods API Gateway User's Guide 10.15 223

2 Implement APIs

c. Select the Authorize using browser check box.

d. Type the authorization URL as
http(s)://hostname:port/invoke/pub.apigateway.oauth2/authorize in theAuth URL text
box.

e. Type the http(s)://hostname:port/invoke/pub.apigateway.oauth2/getAccessToken in the
Access Token URL text box.

f. Type the client ID and client secret in theClient ID andClient Secret text boxes respectively.

Note:
You can get the client ID and client secret from theAuthentication tab of theApplication
screen.

g. Select the hashing method used to generate the code challenge from the Code Challenge
Method drop down menu.

h. Specify the OAuth scope that you have created for the local authorization server in Step 1
in the Scope text box.

i. Select the client authentication as Send client credentials in body.

j. Click the Get New Access Token button.

k. Click the Approve button.

The MANAGE ACCESS TOKENS pop-up window displays the access token.

224 webMethods API Gateway User's Guide 10.15

2 Implement APIs

How do I secure the access token by directly calling API Gateway's REST APIs?

This use case starts when you enforce the PKCE and ends when you get access the token securely
using REST APIs.

Before you begin

Ensure that you have:

generated Code Challenge and Code Verifier using the JAR file. For details about how to
generate code challenge and code verifier, see “ How do I generate code verifier and code
challenge using JAR files? ” on page 229.

enforced PKCE at global level.

To secure the access token

1. Create OAuth scope in the local authorization server.

webMethods API Gateway User's Guide 10.15 225

2 Implement APIs

2. Create an application with OAuth2 authentication strategy. For details about creating an
application, see “Creating an Application” on page 80.

a. Click the Authentication tab to create a strategy with OAuth2 authentication.

Make sure you have selected the following mandatory fields for this use case:

Select the Authentication schemes as OAUTH2.

Specify the Authentication server as local.

Select the Application Type as Public.

226 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Specify the grant type to be used to generate the credentials. For this specific use case,
you must select authorization_code, which are dynamically populated from the
authorization server.

Specify the URIs that the authorization server can use to redirect the resource owner's
browser during the grant process. You can add multiple URIs by clicking +Add.

Specify the OAuth scope that you have created for the local authorization server in
Step 1.

b. Click Add to save the strategy.

c. Click Save to save the application.

3. Get authorization code.

a. Call the authorize endpoint using a REST client.
http(s)://hostname:port/invoke/pub.apigateway.oauth2/authorize?
response_type=code&redirect_uri=<redirectURI>&client_id=<Client
ID>&code_challenge=<Code_Challenge>&code_challenge_method=S256

Note:
Make sure you have replaced the redirectURI , ClientID, and Code_Challenge in the above
mentioned URL. You can get the redirect URI and client ID from the Authentication tab
of the Application screen.

b. Click the Approve button.

c. Provide the credentials of API Gateway user to approve the request.

You are re-directed to the redirect URI as per the configuration in the application strategy.
The screenshot below is just a sample, you are redirected to a different URL based on your
configuration, so the screenshot varies accordingly. If the given redirect URI is not a valid
web page, you might get a Page not found error, which is fine, because we get the
authorization code value from the browser URL.

webMethods API Gateway User's Guide 10.15 227

2 Implement APIs

d. Make a note of the authorization code.

Note:
If the redirect URL screen is not able to display the authorization code, then you can
take it from the address bar of the browser. As highlighted in the above image's URL,
you can see the authorization code in the code=field of the URL.

e. Click Save to save the application.

4. Get access token.

a. Invoke the access token endpoint using a REST client.

Request: POST http(s)://hostname:port/invoke/pub.apigateway.oauth2/getAccessToken.

In the Authorization tab, select the authorization type as Basic Auth . Provide the client
ID as username and client secret as the password. You can get the client ID and client secret
in the Authentication tab of the Application screen.

Sample request body
{

"redirect_uri":"http://test.com",
"scope":"email",
"grant_type":"authorization_code",
"code":"0025abe9f96d4901b61340344c29a576",

"code_verifier":"a4793f15479a4c5697f93b44d055ab6cbd16be50400a4591892f914b1a256da8",
"client_id":"374b1fae-4405-411b-85a0-6e1ab90923ba"

}

Note:
You must replace the redirect_URI, scope, code, and code_verifier with appropriate
values. For the code field, make sure you use the authorization code you noted down
in the step 3.d.

Sample response body
{

"access_token":
"b5b33bc9c57945f388010f8caf5fe9b6b14abef468d346e68e0cd374c0df60d7",

"token_type": "Bearer",
"expires_in": 3600

228 webMethods API Gateway User's Guide 10.15

2 Implement APIs

}

How do I enforce PKCE selectively for each access token call?

You can enforce PKCE specific to each GET access token call. To perform this use case, you must
clear theEnforce PKCE check box in the Administration > Security > JWT/OAuth/OpenID screen.
When you disable the PKCE global option, by default PKCE is not verified. But if you send the
authorize request with the code challenge and code challenge method parameters, you get an
access token with PKCE verification even though you have not enforced PKCE.

How do I generate code verifier and code challenge using JAR files?

If you want to secure the access token by directly calling REST APIs in API Gateway, you have to
generate the code verifier and code challenger using JAR files.

Before you begin

Ensure that you have JShell, which is available as part of JDK from JDK9.

To generate code verifier and code challenge

1. Invoke the JShell file in the Install_Dir\common\lib directorywith class path set to
wm-isclient.jar using the below command:

C:\> jshell -c c:\ Install_Dir\common\lib\wm-isclient.jar

2. Import the PKCE class file using the following command:

jshell> import com.softwareag.util.PKCE;

3. Create code verifier using the following command:

jshell> PKCE.createCodeVerifier();

The code verifier is generated as follows:

$2==>"95b4efde52b141d1bde8a7bfc23bdb244728fdd70d4a4be5b110866cfc218db7"

4. Create code challenger using the following command:

jshell> PKCE.createCodeChallenge("code_verifier","S256");

Note:
Replace the code_verifier parameter with the code verifier string that you generated in the
previous step.

The code challenge is generated using SHA 256 hashing method as follows:

$3==>"tMTWyt3W5QtaPIqNkqAHLTGZnN0aPopp2fsLrUFdAC0"

webMethods API Gateway User's Guide 10.15 229

2 Implement APIs

Inbound Auth - Message

An API Provider can use this policy to enforce authentication on the API. When this policy is
configured for an API, API Gateway expects the clients to pass the authentication credentials
through the payload message that will be added to the request and sent to the native API. API
Gateway supports awide range of authentication schemes, such asX.509Certificate,WSSUsername,
SAML, and Kerberos, in addition to signing and encryption, at the message-level.

Note:
Message-level authentication can be used to secure inbound communication of only SOAPAPIs.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the type of binding assertion required for the message
transfer between the recipient and the initiator.

Binding Assertion

Require Encryption. Specifies that a request's XML element, which is represented by an XPath
expression or by parts of a SOAP request such as the SOAP body or the SOAP headers, be
encrypted.

Click + Add encrypted part to add the required properties. This
allows you to encrypt parts of a SOAP request such as the SOAP
body or the SOAP headers.

Encrypted Parts

Provide the following information:

Entire SOAP Body. Specifies encryption of the entire SOAP
body.

All SOAP Attachments. Specifies encryption of all the SOAP
attachments.

In the SOAP Header section, provide the following information:

Header Name. Specifies the name for the SOAP header field.

Header Namespace. Specifies the namespace of the SOAP
header to be encrypted.

You can add more SOAP headers by clicking .

Click + Add encrypted element to add the required properties.
Select this option to encrypt the entire element, which is represented
by an XPath expression.

Encrypted Elements

Provide the following information:

XPath. Specifies the XPath expression in the API request.

230 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

In the Namespace section, provide the following information:

Namespace Prefix. Specifies the namespace prefix of the
element to be encrypted.

Namespace URI. Specifies the generated XPath element.

You can addmore namespace prefixes andURIs by clicking .

Require Signature. Specifies that a request's XML element, which is represented by an XPath
expression or by parts of a SOAP request such as the SOAP body or the SOAP headers, be signed.

Click + Add require signature to add the required properties. Select
this option to sign the entire element represented by an XPath
expression.

Signed Elements

Provide the following information:

XPath. Specifies the XPath expression in the API request.

For the Namespace section, provide the following information:

Namespace Prefix. Specifies the namespace prefix of the
element to be signed.

Namespace URI. Specifies the generated XPath element.

You can addmore namespace prefixes andURIs by clicking .

Click + Add signed part to add the required properties. Select this
option to sign parts of a SOAP request such as the SOAP body or
the SOAP headers.

Signed Parts

Provide the following information:

Entire SOAP Body. Specifies signing of the entire SOAP body.

All SOAP Attachments. Specifies signing of all the SOAP
attachments.

For the SOAP Header section, provide the following information:

Header Name. Specifies the name for the SOAP header field.

Header Namespace. Specifies the Namespace of the SOAP
header to be signed.

You can addmore namespace prefixes andURIs by clicking .

webMethods API Gateway User's Guide 10.15 231

2 Implement APIs

DescriptionProperty

Validate SAML Audience URIs. Validates the audience restriction in the conditions section of
the SAML assertion. It verifies whether any of the valid audience URI within a valid condition
element in SAMLassertionmatcheswith any of the configuredURI. If two conditions are available,
then one of the audience URIs in the first condition, and one of the audience URIs in the second
condition must match with any of the configured URIs in this policy for the SOAP API.

This property is used in the following scenarios:

When the native API is enforced with the SAML policy, and the service provider wants to
delegate audience restriction validation to API Gateway.

When Require SAML Token assertion is defined for the SOAP API in API Gateway.

Specifies the SAML audience URI.URI

Select one of the following options:Match Criteria

Allow Sublevels. Any one of the audience URI in the incoming
SAML assertion either has to be an exact match or it can have
sub paths to the configured URI. For example, if
http://yahoo.com is configured as the URI and the Allow
Sublevels option is selected, the audience URI has
http://yahoo.com/mygroup and condition is matched because
the main URI matches with the configured URI
(http://yahoo.com). The extra path mygroup is a sublevel path.

Exact match. Any one of the audience URI in the incoming
SAML assertion is verified for the exact match with the
configuredURI. For example, if http://yahoo.com is configured
as theURI and the Exact match option is selected, the audience
URImust be configuredwith http://yahoo.com in order tomatch
the condition. This is selected by default.

Formore information on audienceURI, see conditions and audience
restriction sections in the SAML specification available in the https://
docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf location.

Select the type of token assertion required to authenticate the client.Token Assertions

Select any of the following:

Require X.509 Certificate. Mandates that there should be awss
x.509 token in the incoming SOAP request.

Require WSS Username token. Mandates that there should
be a WSS username token in the incoming SOAP request. Uses
WS-Security authentication to validate user names and
passwords that are transmitted in the SOAPmessage header for
the WSS Username token.

232 webMethods API Gateway User's Guide 10.15

2 Implement APIs

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

DescriptionProperty

Kerberos Token Authentication. Mandates that there should
be aKerberos token in the incoming SOAP request. Authenticates
the client based on the Kerberos token. API Gateway extracts
the Kerberos token from the SOAP body and validates the token
with the KDCusing SPN credentials configured by the provider
for the API. If the Kerberos token sent by the client is valid, API
Gateway forwards the request to the native service and the
response to the client.

Service Principal Name. Specifies a valid SPN,which is the
name type to use while authenticating an incoming client
principal name. The specified value is used by the client or
the server to obtain a service ticket from the KDC server.

Note:
API Gateway supports the username format for Service
Principal Names (SPNs). This format represents the
principal name as a named user defined in LDAP used
for authentication to the KDC.

Service Principal Password. Specifies a valid password of
the Service Principal Name user or the Service Principal
Name host.

Require SAML Token. Mandates that there should be a SAML
token in the incoming SOAP request. Uses a Security Assertion
Markup Language (SAML) assertion token to validate
applications. Provide the following information:

SAML Version. Specifies the supported SAML version.
Available values are SAML 1.0, SAML 2.0

SAML Subject Configuration. Select one of the following:

Bearer of Token. Select the bearer method when the
client wants a security token to be issuedwithout a proof
of possession.

Holder of Key - Symmetric. Select the Holder of Key
(Symmetric) method when either the client or the server
has to generate security tokens such as X509 tokens. A
symmetric key is established using the security token.
You can use this token to sign and encrypt parts and
elements.

Holder of Key - Public. Select theHolder of Key (Public)
methodwhen both the client and the server have security
token such as X509 certificates. In this method, the client

webMethods API Gateway User's Guide 10.15 233

2 Implement APIs

DescriptionProperty

uses its private key to sign and the recipient’s (API
Gateway) public key to encrypt.

WS-Trust Version. Specifies the WS-Trust version to be
used. Available values are WS-Trust 1.0, WS-Trust 1.3

Encrypt Signature. Select Yes to encrypt the signature.

Issuer Address. Specifies the SAML issuer address.

Metadata Reference Address. Specifies the address from
where the metadata reference document is obtained.

Algorithm Suite. Specifies the applicable algorithm suite.

Key. Specifies the Key type of the security token template.

Value. Specifies a value for the request token.

You can add more values for the key-value pair by clicking

.

Custom Token Assertion. Type a search string, select a custom
token assertion name to authenticate the client, and click

to add. You can add more custom token assertions
in a similar way.

Click the Custom Token Assertion arrow to see a list of all
custom token assertions available in API Gateway.

Click to delete the custom token assertion added.

Specifies that the time stamps be included in the request header.
API Gateway checks the time stamp value against the current time

Require Timestamp

to ensure that the request is not an oldmessage. This serves to protect
your system against attempts at message tampering, such as replay
attacks.

Authorize User

This policy authorizes incoming requests against a list of users, a list of groups, or users who
belong to LDAP groups registered in API Gateway.

Note:
LDAP groups cannot be authorized using the List of Groups configuration option. To authorize
a user who belongs to an LDAP group, you must first create a team containing one or more

234 webMethods API Gateway User's Guide 10.15

2 Implement APIs

LDAP groups and then authorize the user using List of Teams configuration option in this
policy.

Use this policy in conjunction with an authentication policy (for example, Require HTTP Basic
Authentication, Require WSS Username Token).

The table lists the parameters of this policy and how they are applied to authorize the incoming
requests.

DescriptionProperty

Authorizes applications against a list of users registered in API
Gateway.

List of Users

Type a search string, select a user, and click to add. You
can add one or more users.

Click to delete the user added.

Authorizes applications against a list of groups registered in API
Gateway.

List of Groups

Type a search string, select a group, and click to add.
You can add one or more groups.

Click to delete the group added.

Authorizes applications against a list of teams registered in API
Gateway.

List of Teams

Type a search string, select a team, and click to add. You
can add one or more teams.

Click to delete a team.

Request Processing
These policies are used to specify how the request message from an application has to be
transformed or pre-processed and configure the masking criteria for the data to be masked before
it is submitted to the native API. This is required to protect the data and accommodate differences
between themessage content that an application is capable of submitting and themessage content
that a native API expects. The policies included in this stage are:

Invoke webMethods IS

Request Transformation

webMethods API Gateway User's Guide 10.15 235

2 Implement APIs

Validate API Specification

Data Masking

Custom Extension

Custom Extension policies allow you to handle requirements that might not be provided by
the out-of-the-box policies. You can add these custom extensions into API Gateway policy
stages. To learn more about Custom Extension, see “Custom Policy Extension” on page 383.

Validate API Specification

This policy validates the incoming request against API's various specifications such as schema,
queryparameters, pathparameters, cookie parameters, content-types, andHTTPHeaders referenced
in their corresponding formats as follows:

The schema is available as part of the API definition. The schema for SOAP API are imported
through WSDL and for REST APIs it can be through swagger, RAML or can be uploaded by
the user when an API is created from scratch.

The query parameters, path parameters, cookie parameters, and content- types are available
as part of the API definition.

The HTTP Headers are specified in the Validate API Specification policy page.

The request sent to the API by an application must conformwith the structure or format expected
by the API. The incoming requests are validated against the API specifications in this policy to
conform to the structure or format expected by the API.

Various API specifications validated are:

Schema:

Schema validation for REST API and SOAP API:

The incoming requests are validated against the schema provided in the API definition. The
schema defines the elements and attributes and specifies the data types of these elements to
ensure that only appropriate data is allowed through to theAPI. APIGateway does not validate
the payload, if the payload is sent as a stream.

For a REST API, the schema can be added inline or uploaded in the Components section on
the API details page. For details on how to add the schema inline or upload, see “Creating a
REST API from Scratch” on page 20.

The schema type for validation is selected based on:

The Content-Type header when the policy is added in the Request processing stage.

The Accept header when the policy is added in the Response processing stage.

If the header or payload is missing the schema validation is skipped.

The table lists the default Content type/Accept header and schema validation type mapping.

236 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Schema validation typeContent-type/Accept

JSON schemaapplication/json

application/json/badgerfish

XML schemaapplication/xml

text/xml

text/html

Regular expressiontext/plain

For a SOAP API, the WSDL and the referenced schema must be provided in a zip format. The
JSON schema validation is supported for the operations that are exposed as REST.

Note:
If schema mapping is not found for a content-type of the request in the API, the behavior
is as follows:

If schema mapping is not available in a REST API or SOAP-to-REST transformed API,
the validation is skipped.
If application/json is mapped to XML schema in the API definition, then the JSON
content in the request is validated against XML schema to provide a backward
compatibility support for APIs migrated from the 10.1 version.
If only XML schemamappings exist for any of the content-types, the payload is converted
into XML and validated against all the XML schemas. If the payload is valid against
one of the schemas, the validation is successful.
If the payload is not XML convertible, the validation is not performed and the request
is allowed to reach the native API.

Schema validation for GraphQL API:

The incoming query or mutation payloads are validated against the GraphQL schema type
system.

Query Parameters:

This is applicable only to a REST API. The incoming requests are validated against the query
parameters specified in the API definition.

Path Parameters:

This is applicable only to a REST API. The incoming requests are validated against the path
parameters specified in the API definition.

Content-types:

This is not applicable to a GraphQL API. The incoming requests are validated against the
content-types specified in the API definition.

Note:

webMethods API Gateway User's Guide 10.15 237

2 Implement APIs

When Content-type validation is selected for a SOAP API, the validation fails in case of
SOAP to REST scenarios and displays an error with 500 status code instead of 400 as
displayed in the other scenarios.

Cookie Parameters:

This is not applicable to a GraphQL API. The incoming requests are validated against the cookie
parameters specified in the API definition.

HTTP Headers:

This is not applicable to a GraphQL API. The incoming requests are validated against the HTTP
Headers specified in this policy to conform to the HTTP headers expected by the API. If the
HTTP Headers are not specified in this policy, API Gateway uses the Headers defined in the
API specification.

The runtime invocations that fail the specification validation are considered as policy violations.
You can view such policy violation events in the dashboard.

The table lists the API specification properties, you can specify for this policy, to be validated:

DescriptionProperty

Validates the request payload against the appropriate schema.Schema

Provide the following additional features for XML schema validation:

This is not applicable to a GraphQL API.

Feature name. Specifies the name of the feature for XML parsing
when performing XML schema validation.

Select the required feature names from the list:

GENERATE_SYNTHETIC_ANNOTATIONS

ID_IDREF_CHECKING

IDENTITY_CONSTRAINT_CHECKING

IGNORE_XSL_TYPE

NAMESPACE_GROWTH

NORMALIZE_DATA

ROOT_ELEMENT_DECL

ROOT_TYPE_DEF

SIGMA_AUGMENT_PSVI

SCHEMA_DV_FACTORY

SCHEMA_ELEMENT_DEFAULT

238 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

SCHEMA_LOCATION

SCHEMA_NONS_LOCATION

SCHEMA_VALIDATOR

TOLERATE_DUPLICATES

ENPARSED_ENTITY_CHECKING

VALIDATE_ANNOTATIONS

XML_SCHEMA_FULL_CHECKING

XMLSCHEMA_VALIDATION

For details about XMLparsing features, see http://xerces.apache.org/
xerces2-j/features.html and for details about the exact constants, see
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/
xerces/parsers/XML11Configuration.html.

Feature value. Specifies whether the feature value is True or False.

Schema validation for GraphQL API:

The incoming query or mutation payloads are validated against the
GraphQL schema type system.

This is applicable only to a REST API. Validates the query parameters in
the incoming request against the query parameters defined in that
request's API Specification.

Query Parameters

This is applicable only to a REST API. Validates the path parameters in the
incoming request against the path parameters defined in that request's
API Specification.

Path Parameters

This is not applicable to a GraphQL API. Validates the cookie parameters
in the incoming request against the cookie parameters defined in that
request's API Specification.

Cookie Parameters

This is not applicable to a GraphQL API. Validates the content-types in the
incoming request against the content-types defined in that request's API
Specification.

Content-types

This is not applicable to a GraphQL API. Validates the HTTP header
parameters in the incoming request against the HTTP headers defined
in that request's API Specification.

HTTP Headers

Provide the following information:

Condition. Specifies the logical operator to use to validate multiple
HTTP headers in the incoming API requests.

webMethods API Gateway User's Guide 10.15 239

2 Implement APIs

http://xerces.apache.org/xerces2-j/features.html
http://xerces.apache.org/xerces2-j/features.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/XML11Configuration.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/XML11Configuration.html

DescriptionProperty

Available values are:

AND. API Gateway accepts only the requests that contain all
configured HTTP headers.

OR. This is selected by default. API Gateway accepts requests
that contain at least one configured HTTP header.

HTTP Header Key. Specifies a key that must be passed through the
HTTP header of the incoming API requests.

Header Value. Optional. Specifies the corresponding key value that
could be passed through the HTTP header of the incoming API
requests. As this property supports variable framework, you can
make use of the available variables to specify the header value. For
details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 373.

You can add more HTTP headers by clicking .

Request Transformation

This policy enables you to configure several transformations on the request messages from clients
into a format required by the native API before it is submitted to the native API.

The transformations include Header, Query Parameter, Path Parameter transformation, HTTP
Method transformation, Payload transformation, andAdvanced transformation. You can configure
conditions according to which the transformations are executed.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Conditions are used to specify when the policy has to be executed. You
can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the requests that comply with all the
configured conditions.

OR. This is selected by default. API Gateway transforms the requests
that comply with any one configured condition.

Click Add Condition and provide the following information and click

.

240 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Variable: Specifies the variable type with a syntax.

Operator: Specifies the operator to use to relate variable and the
value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Not Contains

Exists

Not Exists

Range

Greater Than

Less Than

Value: Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 373.

Transformation Configuration: Specifies various transformations to be configured.

Specifies the Header, Query or path transformation to be configured for
incoming requests.

Header/Query/Path
Transformation for
REST API

You can add ormodify header, query or path transformation parameters
by providing the following information:and

Header
Transformation for
SOAP API

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

You can add multiple variables and corresponding values by clicking

.

You can remove any header, query, or path transformation parameters
by typing the plain value or value with a syntax.

Note:

webMethods API Gateway User's Guide 10.15 241

2 Implement APIs

DescriptionProperty

Software AG recommends you not to modify the headers
${request.headers.Content-Length} and
${request.headers.Content-Encoding} asAPIGateway adds the right
values for these headers before sending the response back to client.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 373.

Note:
Payload transformationdoes not happen automatically for content-type
transformation. When you change the content type, ensure that you
dopayload transformation. For example, if you change the content-type
header from application/xml to application/json, youmust also change
the respective payload from application/xml to application/json.

Specifies the method transformation to be configured for incoming
requests.

Method
transformation for
REST API

Select any of the HTTP Method listed:

GET

POST

PUT

DELETE

HEAD

CUSTOM

Note:
When CUSTOM is selected, the HTTP method in incoming request is
sent to the native service.When othermethods are selected, the selected
method is used in the request sent to the native service.

Note:
OnlyMethodTransformation happenswhen configured, but you have
to take care of adding payload during transformations involving
method change like GET to POST, and so on.

Specifies the payload transformation to be configured for incoming
requests.

Payload
Transformation

Note:
API Gateway does not process the payload, if the payload is sent as a
stream.

242 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Provide the following information:

Payload Type. Specifies the content-type of payload, to which you
want to transform. The Payload field renders the respective payload
editor based on the selected content-type.

Payload. Specifies the payload transformation that needs to be
applied for the incoming requests.

As this property supports variable framework, you can make use of
the available variables to transform the request messages.

For example, consider the native API accepting two integer values
value1 and value2, and you want to pass these two values from API
Gateway to the native API, you can configure the payload field as
follows:
{
"value1" : 12,
"value2" : 34
}

You can also configure the payload field using one or more variables
by using variable framework. Let us see another syntax. For example,
for the same native API seen in the previous example, if your client
sends both the values through headers val1 and val2, and you want
to add it to payload for the native API to recognize the input, you
can do so by configuring the payload field as follows:
{
"value1" :${request.headers.val1},
"value2" :${request.headers.val2}
}

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
If your payload content-type is different from the incoming
payload's content-type, you need to transform the content-type of
the header using Header Transformation.

Click + Add xslt document to add an xslt document and provide
the following information:

XSLT file. Specifies the XSLT file used to transform the request
messages as required.

Click Browse to browse and select a file.

Feature Name. Specifies the name of the XSLT feature.

webMethods API Gateway User's Guide 10.15 243

2 Implement APIs

DescriptionProperty

Feature value. Specifies the value of the XSLT feature.

You can add more XSLT features and xslt documents by clicking

.

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Click + Add xslt transformation alias and provide the following
information:

XSLT Transformation alias. Specifies the XSLT transformation
alias.

When the incoming request is in JSON, you can use a XSLTfile similar
to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="fakeroot">
<xsl:element name="fakenode">

<!-- Apply your transformation rules based on the
request from the Client-->
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

When the incoming request is in XML, you can use a XSLT file similar
to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="soapenv:Envelope">
<xsl:element name="soapenv:Body">

<!-- Apply your transformation rules based on the
request from the Client-->
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

Specifies the advanced transformation to be configured for incoming
requests.

Advanced
Transformation

Provide the following information:

244 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

webMethods IS Service. Specify the webMethods IS service to be
invoked to process the request messages.

You can add multiple services by clicking .

Note:
The webMethods IS service must be running on the same
Integration Server as API Gateway.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the user,
identified by API Gateway, are used to authenticate and invoke the
IS service. You can also specify a particular user, you want API
Gateway to use to invoke the IS service.

Comply to IS Spec. Mark this as true if you want the input and the
output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS service
alias to be invoked to pre-process the request messages.

Transformation Metadata: Specifies the metadata for transformation of the incoming requests.
For example, the namespaces configured in this section can be usedwhen you provide the syntax
for XPath ${request.payload.xpath} For example: ${request.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for transformation.Namespace

Provide the following information:

Namespace Prefix. The namespace prefix of the payload expression
to be validated.

For example, specify the namespace prefix as SOAP_ENV.

Namespace URI. The namespace URI of the payload expression to
be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declaration defines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can add multiple namespace prefixes and URIs by clicking

.

webMethods API Gateway User's Guide 10.15 245

2 Implement APIs

Invoke webMethods IS

This policy pre-processes the requestmessages and transforms themessage into the format required
by the native API or performs some custom logic, before API Gateway sends the requests to the
native APIs.

For example, you might need to accommodate differences between the message content that a
client is capable of submitting and the message content that a native API expects. For example, if
the client submits an order record using a slightly different structure than the structure expected
by the native API, you can use this action to process the record submitted by the client to the
structure required by the native API.

If Comply to IS Spec parameter is configured as true, API Gateway invokes the IS Service with
IS specification in the path pub.apigateway.invokeISService.specifications:RequestSpec for Request
Processing.

The following are the input and output parameters for REST, SOAP, and WebSocket APIs as
specified in the above IS specification. Input parameters can be used to access the existing values
of the request while output parameters can be used to modify/write the values to the request.

DescriptionParameter name

Headers in incoming request.headersInput
parameters

Data type: Document

Query parameters in incoming request (this is
applicable for REST API only).

query

Data type: Document

Path parameter of the incoming request (this is
applicable for REST API only).

path

Data type: String

HTTP Method of the incoming request (this is
applicable for REST API only).

httpMethod

Data type: String

Payload of the incoming request.payload

Data type: String

The payload for binary content types like multi-part
/ form-data.

payloadObject

Data type: Object

The message context object of the request.MessageContext

Data type: Object

246 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionParameter name

Name of the API invoked by the request.apiName

Data type: String

Version of the API invoked by the request.apiVersion

Data type: String

URL of the request.requestUrl

Data type: String

Contains IP information of the request.ipInfo

Data type: Document

Websocket related information of the request.websocketInfo

Data type: Document

Correlation ID of the request/response. This is unique
and same for a request and response.

correlationID

Data type: String

Custom transactional fields can be added to the
transactional events using this field. For more

customFieldsMap

information, see Adding Custom Fields to
Transactional Events section.

Data type: Document

Authorization information of the request. For more
information, see Accessing authorization values
hidden after IAM policy section.

authorization

Data type: Document

Headers in incoming request.headersOutput
parameters

Data type: Document

Query parameters in incoming request (this is
applicable for REST API only).

query

Data type: Document

Path parameter of the incoming request (this is
applicable for REST API only).

path

Data type: String

webMethods API Gateway User's Guide 10.15 247

2 Implement APIs

DescriptionParameter name

HTTP Method of the incoming request (this is
applicable for REST API only).

httpMethod

Data type: String

Payload of the incoming request.payload

Data type: String

The payload for binary content types like multi-part
/ form-data.

payloadObject

Data type: Object

The message context object of the request.MessageContext

Data type: Object

Custom transactional fields can be added to the
transactional events using this field. For more

customFieldsMap

information, see Adding Custom Fields to
Transactional Events section.

Data type: Document

By default the "query" pipeline variable is a key value pair, where the value is of type string. But,
if the incoming request contains multiple values for the same query parameter and if you want
to access those multiple values using webMethods IS Service, you have to ensure two things:

1. Make sure that you have checked the Repeat check box for query parameter in the Add
Resource Parameter section of the API details screen.

2. To access or transform multiple values of that query parameter, you have to insert string list
(instead of string) under the "query" pipeline variable in the webMethods IS Service.

Note:

For SOAP to REST APIS, the payload contains the transformed SOAP request.
Payload transformation does not happen automatically for content-type transformation.
When you change the content type, ensure to do payload transformation also as part of IS
Service. For example, if you change the content-type header from application/xml to
application/json using IS service, you must also change the respective payload from
application/xml to application/json
OnlyMethodTransformation happenswhen configured, but you have to take care of adding
payload during transformations involving method change like GET to POST, and so on.
When Comply to IS spec is true, you can change the values of headers, query, payload,
and so on, programatically using Message Context, as well as using the pipeline variables
given. SoftwareAG recommends younot to change those values directly inMessageContext,
as the values in output pipeline variables arewritten toMessage Context after the invocation
of IS Service.

248 webMethods API Gateway User's Guide 10.15

2 Implement APIs

If Comply to IS Spec parameter is set to false, API Gateway invokes the IS Service with the same
input and output parameters supported in 10.1 and the earlier versions:

proxy.name

JSONRESTContentString (REST only)

SOAPEnvelope (SOAP only)

EnvelopeString (SOAP only)

The table lists the properties that you can specify for this policy:

DescriptionProperty

Invoke webMethods Integration Server Service

Specifies the webMethods IS service to be invoked to pre-process the
request messages and the authentication mode for the IS service.

Add invoke webMethods
Integration Server service

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the request messages.

The webMethods IS service must be running on the same
Integration Server as API Gateway.

Note:
If an exception occurs when invoking the webMethods IS
service, by default APIGateway displays the status code as 500
and error message as Internal Server Error.

You can set custom status code and error message by setting
the following properties in the message context of the
webMethods IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code",
404);
context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:

webMethods API Gateway User's Guide 10.15 249

2 Implement APIs

DescriptionProperty

If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the
user, identified by API Gateway, are used to authenticate and
invoke the IS service. You can also specify a particular user, you
want API Gateway to invoke the IS service.

Note:
It is the responsibility of the user who activates the API to
review the value configured in Run as User field to avoid
misuse of this configuration.

Comply to IS Spec. Mark this as true if you want the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:Software AG recommends users to configure the policy
with Comply to IS Spec as true, as you can read or change the
values of headers, and so on, without having to read from or
write to the message context.

Specifies thewebMethods IS service alias to be invoked to pre-process
the request messages.

webMethods IS Service
alias

Start typing the webMethods alias name, select the alias from the

type-ahead search results displayed and click to add one
or more aliases.

You can use the delete icon to delete the added aliases from the
list.

Adding Custom Fields to Transactional Events

This section explains you how to add custom fields to the transactional events.

1. Create webMethods IS service by specifying the
pub.apigateway.utils:customFieldInTransactionEventSpec as a specification reference.

2. In the webMethods IS service, set the required custom fields in the customFieldsMap output
variable.

250 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3. Oncewhen customFieldsMap gets created, the customfieldswill be available in the transactional
events.

4. Invoke the API with the Invoke webMethods IS policy.

Note:
You can also add the customfields to the transactional events fromAPIGateway by configuring
the customTransactionFields.FIELD_NAME custom variable in the Custom Extension policy.
For more details, see “How Do I Define a Custom Variable?” on page 397.

Accessing authorization values hidden after IAM policy

By default, API Gateway removes all the authorization related information from client request
(for example authorization header) once the IAM policy is engaged. The information like
authorization header can be added back to the request sent to native API using Outbound
Authentication policy in the Routing stage. However, if the you want to extract the authorization
information at the request processing stage for sending the authorization values using a different
header to the native API for audit purposes, or performing some business logic in IS Service based
on the authorization values, then you can access the authorization values using the authorization
pipeline variable.

The following table lists the supported authorization values:

DescriptionTypeName

clientId identified after the OAuth / JWT / OpenID token
is authenticated.

StringclientId

Name of the user identified after the IAM policy.StringuserName

Issuer identified from the JWT token.Stringissuer

Value of the incoming authorization header sent by client.StringauthHeader

Note:
If the authorization header has bearer tokens (such as
OAuth, OpenID, or JWT), then the authHeader pipeline
variable is empty. For such cases, Software AG
recommends to use the incomingTokenpipeline variable.

Value of the token in case the incoming authorization
header contains a bearer token.

StringincomingToken

Audience identified from the incoming JWT token.Stringaudience

API Key sent from client.StringapiKey

Contains the claims present in the JWT token. You can
provide the claim name to access the claim value.

Document

(Key-value pair)

claims

Client certificates used for SSL connectivity.Object Listcertificates

webMethods API Gateway User's Guide 10.15 251

2 Implement APIs

Note:
All the above mentioned authorization values except certificates can be accessed using
authorization pipeline variable.

Accessing client certificates used for SSL connectivity

You can now access the client certificates used for SSL Connectivity in the Invoke webMethods
IS Service (comply to IS Spec = true) using pipeline authorization > certificates.

Since certificates are not string data type, you need to write JAVA code to convert the pipeline
variable certificates into accessible certificate format (Java X509Certificate) and you can read the
values using the methods supported by X509Certificate.

The below sample code converts the pipeline variable certificates to X509Certificate:
import java.security.cert.X509Certificate;
IDataCursor cursor = pipeline.getCursor();
IData authIData = IDataUtil.getIData(cursor, "authorization");
IDataCursor authCursor = authIData.getCursor();
X509Certificate[] certificates = (X509Certificate[])
IDataUtil.getObjectArray(authCursor, "certificates");

The following watt parameters control the certification verification

watt.net.ssl.client.hostnameverification

WhenAPIGateway server acts as aHTTPS client, this parameter specifieswhetherAPIGateway
should restrict outbound HTTPS connections only when a valid hostname is found in the
server’s certificate. If you set this parameter to true, API Gateway verifies if the hostname is
present in the server’s certificate. If this verification fails, an error is logged and the connection
is aborted. If you set this parameter to false, API Gateway skips the hostname verification. By
default, this parameter is set to false.

watt.security.ssl.ignoreExpiredChains

This parameter specifies whether API Gateway server ignores expired CA certificates in a
certificate chain it receives from an Internet resource (that is, aweb server, anotherAPIGateway
server). If you set this parameter to true, API Gateway, ignores the expired CA certificates.
However, API Gateway allows SSL connection to be established, even if the certificate is
expired. Note that this is less secure than denying connections when a certificate is expired. If
you set this parameter to false, API Gateway does not ignore the expired CA certificates and
a connection cannot be established, if a certificate is expired. By default, this parameter is set
to false.

watt.security.ssl.client.ignoreEmptyAuthoritiesList

When API Gateway acts as a client, this parameter specifies if API Gateway sends a certificate
chain, after a remote SSL server returns an empty list of trusted authorities. If you set this
parameter to true, API Gateway ignores the empty trusted authorities list and sends its chain
anyway. If you set this parameter to false, API Gateway requires presentation of trusted
certificates before sending out its certificate chain. By default, this parameter is set to false.

252 webMethods API Gateway User's Guide 10.15

2 Implement APIs

https://docs.oracle.com/javase/7/docs/api/java/security/cert/X509Certificate.html

Data Masking

Data masking is a technique whereby sensitive data is obscured in some way to render it safe and
to protect the actual data while having a functional substitute for occasions when the real data is
not required.

This policy is used to mask sensitive data at the application level. At the application level you
must have an Identify and Access policy configured to identify the application for which the
masking is applied. If no application is specified then it will be applied for all the other requests.
Fields can be masked or filtered in the request messages received. You can configure the masking
criteria as required for the XPath, JSONPath, and Regex expressions based on the content-type.
This policy can also be applied at the API scope level.

The table lists the content-type and masking criteria mapping.

Masking CriteriaContent-type

XPathapplication/xml

text/xml

text/html

JSONPathapplication/json

application/json/badgerfish

Regextext/plain

The table lists themasking criteria properties that you can configure tomask the data in the request
messages received:

DescriptionProperty

Optional. Specifies the applications for which the masking criterion has
to be applied.

Consumer
Applications

Start typing the application name, select the application from the

type-ahead search results displayed, and click to add one or
more applications.

For example: If there is a DataMasking(DM1) criteria created for
application1 a second DataMasking(DM2) for application2 and a third
DataMasking(DM3) with out any application, then for a request that
comes from consumer1 themasking criteria DM1 is applied, for a request
that comes from consumer2 DM2 is applied. If a request comes with out
any application or from any other application except application1 and
application2 DM3 is applied.

webMethods API Gateway User's Guide 10.15 253

2 Implement APIs

DescriptionProperty

You can use the delete icon to delete the added applications from the
list.

XPath: Specifies the masking criteria for XPath expressions in the request messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

You can add multiple masking criteria.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the XPath
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myxpath} and the corresponding mask value as
${request.headers.var1} , and if the incoming request header myxpath
is configured with value //ns:cardNumber, then the card number
derived from the payload is masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated.

Note:
You can add multiple namespace prefix and URI by clicking .

254 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

JSONPath: This is applicable only for REST API. Specifies the masking criteria for JSONPath
expressions in the request messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the
JSONPath is applied on the payload using the value that is resolved
from the variable given.

For example, if you provide a query expression as
${request.headers.myjsonpath} and the corresponding mask value
as ${request.headers.var1} , and if the incoming request header
myjsonpath is configured with value $.cardNumber, then the card
number derived from the payload is masked with the header value
in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Regex: Specifies the masking criteria for regular expressions in the request messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

webMethods API Gateway User's Guide 10.15 255

2 Implement APIs

DescriptionProperty

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the regex
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myregex} and the corresponding mask value as
${request.headers.var1} , then the regex is applied using the value
configured in the request header myregex and the derived value is
masked with the header value in var1.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

Note:
For REST enabled SOAP services

Use JSONPath. To mask the incoming request of application/json
content-type.
Use XPath of transformed SOAP request. To mask native service
request.

Select this option to apply masking criteria for request payload in the
following scenarios:

Apply for payload

incoming request from the client.

outgoing request to the native service.

Routing
The policies in this stage enforce routing of requests to target APIs based on the rules you can
define to route the requests andmanage their respective redirections according to the initial request
path. The policies included in this stage are:

Content-based Routing

Conditional Routing

Dynamic Routing

Load Balancer Routing

Straight Through Routing

Custom HTTP Header

256 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Outbound Auth - Transport

Outbound Auth - Message

JMS/AMQP Routing

JMS/AMQP Properties

Custom Extension

Custom Extension policies allow you to handle requirements that might not be provided by
the out-of-the-box policies. You can add these custom extensions into API Gateway policy
stages. To learn more about Custom Extension, see “Custom Policy Extension” on page 383.

In cases where the internal server is protected by a firewall, the endpoint in the routing policy that
is applied should be configured as apigateway://registrationPort-aliasname/relative path of the API.
Here the registration port alias name is the alias name configured for the external registration port
to communicate with the internal port.

Straight Through Routing

When you select the Straight Through routing protocol, the API routes the requests directly to the
native service endpoint you specify. If your entry protocol is HTTP or HTTPS, you can select the
Straight Through routing policy.

The table lists the properties that you can specify for this policy:

ValueProperty

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the API Gateway instance are also included in
the list.

If you choose a service registry, API Gateway sends a request to
the service registry to discover the IP address and port at which the
native service is running. APIGateway replaces the service registry
alias in the Endpoint URI with the IP address and port returned
by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the

webMethods API Gateway User's Guide 10.15 257

2 Implement APIs

ValueProperty

simple alias and the ${request.headers.nativeport} variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

For a REST API, the ${sys:resource-path} alias in the Endpoint
URI is replaced by the resources and query parameters of the native
service.

For aGraphQLAPI, the ${sys:query_string} alias in theEndpoint
URI is replaced by the query string of the native service.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable to REST-based APIs.HTTP Method

Specifies the available routingmethods:GET, POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

This is applicable for SOAP-based APIs.Soap Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

258 webMethods API Gateway User's Guide 10.15

2 Implement APIs

ValueProperty

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in theConnection timeoutfield in the routingprotocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

webMethods API Gateway User's Guide 10.15 259

2 Implement APIs

ValueProperty

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any keystore,
the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you

260 webMethods API Gateway User's Guide 10.15

2 Implement APIs

ValueProperty

must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you can make use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Custom HTTP Header

You can use this policy to route requests based on the custom HTTP headers specified for the
outgoing message to the native service.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the HTTP header key in the requests.HTTP Header Key

Specifies the Header value contained in the requests. As this
property supports variable framework, you can use the available
variables to specify the header value.

Header Value

For example, if you provide a header value as
${request.header.token1}, the header value in token1 is sent in the
outgoing message to authenticate the backend services .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

You can add multiple entries for the Header key-value pair by clicking .

Outbound Auth - Transport

When the native API is protected and expects the authentication credentials to be passed through
transport headers, you can use this policy to provide the credentials that will be added to the
request and sent to the native API. API Gateway supports awide range of authentication schemes,
such as Basic Authentication, Kerberos, NTLM, and OAuth, at the transport-level.

Note:

webMethods API Gateway User's Guide 10.15 261

2 Implement APIs

Transport-level authentication can be used to secure inbound communication of both the SOAP
APIs and the REST APIs.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Select one of the following schemes for outbound authentication at
the transport level:

Authentication scheme

Basic. Uses basic HTTP authentication details to authenticate
the client.

Kerberos. Uses Kerberos credentials for authentication.

NTLM. Uses NTLM configuration for authentication.

OAuth2. Uses OAuth token details to authenticate the client.

JWT. Uses JSON web token details to authenticate the client.

Anonymous. Authenticates the client without any credentials.

Alias. Uses the configured alias name for authentication.

Select one of the following modes to authenticate the client:Authenticate using

Custom credentials. Uses the values specified in the policy to
obtain the required token to access the native API.

Delegate incoming credentials. Uses the values specified in
the policy by the API providers to select whether to delegate
the incoming token or act as a normal client.

Incoming HTTP Basic Auth credentials. Uses the incoming
user credentials to retrieve the authentication token to access
the native API.

Incoming kerberos credentials. Uses the incoming kerberos
credentials to access the native API.

Incoming OAuth token. Uses the incoming OAuth2 token to
access the native API.

Incoming JWT. Uses the incoming JSONWeb Token (JWT) to
access the native API.

Transparent. Enables NTLM handshake between client and
native API. API Gateway does not perform any authentication
before passing the incoming requests to native API. It simply
passes the incoming credentials to native API. The NTLM
authentication happens at the native API.

262 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Uses the HTTP authentication details to authenticate the client.Basic

APIGateway supports the followingmodes ofHTTP authentication:

Custom credentials

Incoming HTTP Basic Auth credentials

Provide the following credentials:

User Name. Specifies the user name.

Password. Specifies the password of the user.

Domain . Specifies the domain in which the user resides.

Uses the Kerberos credentials to authenticate the client.Kerberos

API Gateway supports the following modes of Kerberos
authentication:

Custom credentials

Delegate incoming credentials

Incoming HTTP basic auth credentials

Incoming kerberos credentials

Provide the following credentials:

Client principal. Provide a valid client LDAP user name.

Client password. Provide a valid password of the client LDAP
user.

Service principal. Provide a valid SPN. The specified value is
used by the client to obtain a service ticket from theKDC server.

Service Principal Name Form. The SPN type to use while
authenticating an incoming client principal name. Select any of
the following:

User name. Specifies the username form.

Hostbased. Specifies the host form.

Uses the NTLM credentials to authenticate the client.NTLM

API Gateway supports the following modes of NTLM
authentication:

Custom credentials

webMethods API Gateway User's Guide 10.15 263

2 Implement APIs

DescriptionProperty

Incoming HTTP basic auth credentials

Transparent

Provide the following credentials:

User Name. Specifies the user name.

Password. Specifies the password of the user.

Domain . Specifies the domain in which the user resides.

Uses the OAuth2 token to authenticate the client.OAuth2

API Gateway supports the following modes of NTLM
authentication:

Custom credentials

Incoming OAuth token

OAuth2 token. Specifies the client's OAuth2 token.

Uses the JSONWeb Token (JWT) to authenticate the client.JWT

If the native API is enforced to use JWT for authenticating the client,
thenAPIGateway enforces the need for a valid JWT in the outbound
request while accessing the native API.

API Gateway supports the Incoming JWT mode of JWT
authentication.

Uses the configured alias to authenticate the client. Provide the
name of the configured alias.

Alias

When you configure an API with an inbound authentication policy, and a client sends a request
with credentials, API Gateway uses the credentials for the inbound authentication.When sending
the request to native server, API Gateway removes the already authenticated credentials when
no outbound authentication policy is configured.

If as an API provider youwant to use the same credentials for authentication at both API Gateway
and native server, you should configure the outbound authentication policy to pass the incoming
credentials to the native service. If you do not configure an outbound authentication policy, API
Gateway removes the incoming credentials, as it is meant for API Gateway authentication only.

However, when both the inbound authentication policy and outbound authentication policy are
not configured, API Gateway just acts as a proxy and forwards the credentials to the native service.
Since the credentials are not meant for API Gateway (as no inbound auth policy is configured),
API Gateway forwards the credentials to native service (unless there are different settings
configured in outbound authentication policy, for example, custom credentials or Anonymous).

264 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Content-based Routing

If you have a native API that is hosted at two or more endpoints, you can use the content-based
routing protocol to route specific types of messages to specific endpoints. You can route messages
to different endpoints based on specific values that appear in the request message. You might use
this capability, for example, to determinewhich operation the consuming application has requested,
and route requests for complex operations to an endpoint on a fast machine. For example, if your
entry protocol is HTTP or HTTPS, you can select the Content-based routing. The requests are
routed according to the content-based routing rules you create. Youmay specify how to authenticate
requests.

Note:
As the content-based routing policy's capabilities can also be configured using conditional
routing policy, the content-based routing policy will be deprecated in future releases and the
configurationswill bemigrated to conditional routing policy. Hence, SoftwareAG recommends
to use conditional routing policy over content-based routing policy.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Default Route To: Specifies the URLs of two or more native services in a pool to which the
requests are routed.

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the API Gateway instance are also included in
the list.

If you choose a service registry, API Gateway sends a request to
the service registry to discover the IP address and port at which
the native service is running. API Gateway replaces the service
registry alias in the Endpoint URI with the IP address and port
returned by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport}variable syntax
is used to define the native port based on the request.

webMethods API Gateway User's Guide 10.15 265

2 Implement APIs

DescriptionProperty

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable for REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

266 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

webMethods API Gateway User's Guide 10.15 267

2 Implement APIs

DescriptionProperty

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL Configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any keystore,
the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by nativeAPIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value for the path parameter. The alias
specified in Path Parameter is substituted with this value when
invoking the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you canmake use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service registry) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var1 retrieved from the
request header substitutes the service name.

268 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Rule: Defines the routing decisions based on one of the following routing options. Click Add
Rule and provide the following information.

Specifies using the payload identifier to identify the client, extract
the custom authentication credentials supplied in the request

Payload Identifier

represented using the payload identifier, and verify the client's
identity.

In the Payload identifier section, click Add payload identifier,
provide the following information, and click Add.

Expression type. Specifies the type of expression, which is
used for identification. You can select one the following
expression type:

XPath. Provide the following information:

Payload Expression. Specifies the payload expression
that the specified XPath expression type in the request
has to be converted to. For example: /name/id

Namespace Prefix. The namespace prefix of the
payload expression to be validated.

Namespace URI. The namespace URI of the payload
expression to be validated.

Note:
You can add multiple namespace prefix and URI by
clicking .

JSONPath. Provide thePayload Expression that specifies
the payload expression that the specified JSONPath
expression type in the request has to be converted to. For
example: $.name.id

Text. Provide the Payload Expression that specifies the
payload expression that the specified Text expression type
in the request has to be converted to. For example: any valid
regular expression.

You can add multiple payload identifiers as required.

Note:

webMethods API Gateway User's Guide 10.15 269

2 Implement APIs

DescriptionProperty

Only one payload identifier of each type is allowed. For example,
you can add amaximum of three payload identifiers, each being
of a different type.

Route To. Specifies the Endpoint URI of native APIs in a pool to which the requests are routed.

Specifies the URI of the native API endpoint to route the request
to.

Endpoint URI

You can use service registries in a similar manner as described in
the main Endpoint URI above.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport}variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable for REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

This is applicable for SOAP-based APIs.Soap Optimization Method

270 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the

webMethods API Gateway User's Guide 10.15 271

2 Implement APIs

DescriptionProperty

Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

Configures keystore, key alias, and truststore for securing
connections to native APIs.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias configured in API
Gateway. This value (along with the value of Client Certificate
Alias) is used for performing SSL client authentication.

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Truststore Alias. Specifies the alias for the truststore that
contains the list of CA certificates that API Gateway uses to
validate the trust relationship with the native API.

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native
APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

272 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value for the path parameter. The alias
specified in Path Parameter is substituted with this value when
invoking the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you canmake use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Conditional Routing

If you have a native API that is hosted at two or more endpoints, you can use the condition-based
protocol to route specific types ofmessages to specific endpoints. The requests are routed according
to the condition-based routing rules you create. For example, if your entry protocol is HTTP or
HTTPS, you can select conditional routing specifying HTTP or HTTPS. A routing rule specifies
where requests should be routed to, and the criteria to use to route. You may also specify how to
authenticate requests.

Note:
The context-based routing policy is renamed and it's capabilities are included in conditional
routing policy. You can use this policy to configure to route the requests conditionally based
on variable types.

The following table provides the existing options of routing till API Gateway version 10.5 and
their corresponding variable syntax to choose the same option in API Gateway version 10.7.

10.7 Transformation
Condition Operator

10.7 Transformation
Variable

10.5 Condition
Operator

10.5 Conditional Variable

Equals${request.application.id}Consumer

webMethods API Gateway User's Guide 10.15 273

2 Implement APIs

10.7 Transformation
Condition Operator

10.7 Transformation
Variable

10.5 Condition
Operator

10.5 Conditional Variable

Lesser than${date}BeforeDate

Greater thanAfter

Lesser than${time}BeforeTime

Greater thanAfter

Predefined System Context Variables

Equals${user}Equal toUser

Not equals${inboundHttpMethod}Not equal toInbound HTTP Method

${routingMethod}Routing Method

${inboundContentType}Inbound Content Type

${inboundAccept}Inbound Accept

${inboundProtocol}Inbound Protocol

${inboundRequestURI}Inbound Request URI

${inboundIPInbound IP

${gatewayHostname}Gateway Hostname

${gatewayIP}Gateway IP

${operationName}Operation Name

Custom Context Variables

Equals${var1}Equal tomx:var1

Not Equals${request.headers.KEY}Not equal toPROTOCOL_HEADERS[KEY]

Lesser than${soapHeaders[INDEX}Lesser thanSOAP_HEADERS[INDEX]

Greater thanGreater than

Range${inboundIP}-IPV4

Range${inboundIP}-IPV6

The table lists the properties that you can specify for this policy:

DescriptionProperty

Route To. Specifies the URLs of two or more native services in a pool to which the requests are
routed.

274 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that have

Endpoint URI

been added to the API Gateway instance are also included in the
list.

If you choose a service registry, API Gateway sends a request to the
service registry to discover the IP address and port at which the
native service is running. API Gateway replaces the service registry
alias in the Endpoint URI with the IP address and port returned by
the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save theAPI or policy
to associate ${alias} syntax with the endpoint alias.

This is applicable to REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:

webMethods API Gateway User's Guide 10.15 275

2 Implement APIs

DescriptionProperty

Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM.API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in theConnection timeoutfield in the routing protocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

276 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL Configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any keystore,
the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native APIs.

Service Registry Configuration

webMethods API Gateway User's Guide 10.15 277

2 Implement APIs

DescriptionProperty

Values required for constructing the discovery service URI.Service Discovery
Endpoint Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you can make use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Rule. Defines the routing decisions based on one of the following routing options.

Provide a name for the rule.Name

Specifies the condition operator to be used.Condition Operator

Select one of the following operators:

OR. Specifies that one of the set conditions should be applied.

AND. Specifies all the set conditions should be applied.

Specify the context variables for processing client requests.Add Condition

Variable: Specifies the variable type.

Operator: Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

278 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Not equals

Not equals ignore case

Contains

Not Contains

Exists

Not Exists

Range

Greater Than

Less Than

Value: Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Route To. Specifies the endpoint URI of native services in a pool towhich the requests are routed.

Specifies the URI of the native API endpoint to route the request to.
You can use service registries in a similar manner as described in
the main Endpoint URI above.

Endpoint URI

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save theAPI or policy
to associate ${alias} syntax with the endpoint alias.

webMethods API Gateway User's Guide 10.15 279

2 Implement APIs

DescriptionProperty

This is applicable for REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

This is applicable for SOAP-based APIs.Soap Optimization Method

Specifies values to enable SSL authentication for SOAP APIs.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in theConnection timeoutfield in the routing protocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

280 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

Configures keystore, key alias, and truststore for securing
connections to native APIs.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias configured in API
Gateway. This value (along with the value of Client Certificate
Alias) is used for performing SSL client authentication.

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

webMethods API Gateway User's Guide 10.15 281

2 Implement APIs

DescriptionProperty

Truststore Alias. Specifies the alias for the truststore that
contains the list of CA certificates that API Gateway uses to
validate the trust relationship with the native API.

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native
APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery
Endpoint Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you can make use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Dynamic Routing

This policy enables API Gateway to support dynamic routing of virtual aliases based on policy
configuration. The configured policies are enforced on the request sent to anAPI and these requests
are forwarded to the dynamic endpoint based on specific criteria that you specify.

Note:
As the dynamic routing policy's capabilities can also be configured using conditional routing
policy, the dynamic routing policy will be deprecated in future releases and the configurations
will be migrated to conditional routing policy. Hence, Software AG recommends to use
conditional routing policy over dynamic routing policy. In future version,when dynamic routing

282 webMethods API Gateway User's Guide 10.15

2 Implement APIs

is migrated to conditional routing policy ${sys:dyn_Endpoint} will be replaced with
${dynamicEndpoint} system variable.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Route To. Specifies the URLs of two or more native services in a pool to which the requests are
routed.

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the API Gateway instance are also included in
the list.

If you choose a service registry, API Gateway sends a request to
the service registry to discover the IP address and port at which the
native service is running. APIGateway replaces the service registry
alias in the Endpoint URI with the IP address and port returned
by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable to REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

webMethods API Gateway User's Guide 10.15 283

2 Implement APIs

DescriptionProperty

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in theConnection timeoutfield in the routingprotocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

284 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL Configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any keystore,
the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

webMethods API Gateway User's Guide 10.15 285

2 Implement APIs

DescriptionProperty

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you can make use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Rule. Defines the routing decisions based on one of the following routing options.

Defines the dynamic URL based on the HTTP header value sent by
the client or the context variable value.

Route Using

Select one of the following:

Header: Select and specify the Name required. This header
name is configured by the API provider and is used to decide
the routing decisions at theAPI level. The requestmessagemust
be routed to the dynamicURL generated from theHTTP header
value.

Context: The API providers must provide IS service in the
policy, InvokewebMethods Integration Server. IS servicewould
perform custommanipulations and set the value for the Context
Variable ROUTING_ENDPOINT. API Gateway takes this

286 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

ROUTING_ENDPOINTvalue as the native endpoint value and
performs the routing.

Name. This field is displayed only when you select Header as
the routing method. Type a name for the Routing header. API
Gateway expects this header name in the incoming request that
invokes the API.

Specifies the endpoint URI of native services in a pool to which the
requests are routed.

Route To

Provide the following information:

Endpoint URI . Specifies the URI of the native API endpoint to
route the request to. You can use service registries in a similar
manner as described in the main Endpoint URI above.

As this property supports variable framework, you can make
use of the available variables. For example, you can configure
the endpoint URI using hard codedURL, simple alias, endpoint
alias, and variable syntax or any of these combination. If you
define the endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable
syntax is used to define the native port based on the request.

You can also use the system-defined alias ${sys:dyn-Endpoint}.
When you use the system-defined alias, the variables are
replaced at runtime by the Header value or the Context value,
selected as the Route To option.

Consider the following URL with the system-defined alias:

http://HOSTNAME:5555/rest/com/
softwareag/mediator/samples/dynamicRouting/
validateDynamicURI/${sys:dyn-Endpoint}

Now, if the incoming request hasHeader value as resource, the
${sys:dyn-Endpoint} alias in theURL is replaced by theHeader
value and the effective URL is

http://HOSTNAME:5555/rest/com/
softwareag/mediator/samples/dynamicRouting/validateDynamicURI/
resource.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

webMethods API Gateway User's Guide 10.15 287

2 Implement APIs

DescriptionProperty

Note:
If you use endpoint alias, make sure the endpoint alias is
created before you define it in the policy. For example, if you
define ${alias} syntax in the policy before creating the alias
as endpoint alias, API Gateway considers ${alias} as custom
variable or simple alias and tries to resolve against those. So
in that case, after creating endpoint alias you have to edit and
save the API or policy to associate ${alias} syntax with the
endpoint alias.

HTTP Method. This applicable to REST-based APIs. Specifies
the available routingmethods:GET,POST,PUT,DELETE, and
CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selected method is used in the request sent to the
native service.

HTTP Connection Timeout (seconds). Specifies the time
interval (in seconds) after which a connection attempt times
out.

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then theConnection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global
level.

2. If you specify a value 0 for the Connection timeout field
in routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of anAPI. TheReadTimeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeoutfield in the routing protocol processing
step at the API level or specify a value 0 at an alias level,
then API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses
the default value of 30 seconds.

288 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Read Timeout (seconds). Specifies the time interval (in
seconds) after which a socket read attempt times out.

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in
the Endpoint alias section takes precedence over the timeout
values defined at the API level and the global level.

2. If you specify a value 0 for theRead timeout field in routing
endpoint alias, then API Gateway uses the value specified
in theRead Timeoutfield in the routing protocol processing
step of an API. The Read Timeout value specified at an API
level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Read timeout field in the routing protocol processing step
at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.readTimeout property.

4. If youdonot specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

SSL Configuration. Configures keystore, key alias, and
truststore for securing connections to native APIs. Provide the
following information:

Keystore Alias. Specifies the keystore alias configured in
API Gateway. This value (along with the value of Client
Certificate Alias) is used for performing SSL client
authentication.

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Key Alias. Specifies the alias for the private key, whichmust
be stored in the keystore specified by the keystore alias.

Truststore Alias. Specifies the alias for the truststore that
contains the list of CA certificates that API Gateway uses to
validate the trust relationship with the native API.

If you do not configure any truststore alias, it implies that
API Gateway does not validate the certificates provided by
native APIs.

This is applicable for SOAP-based APIs.SOAP Optimization Method

webMethods API Gateway User's Guide 10.15 289

2 Implement APIs

DescriptionProperty

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

Load Balancer Routing

If you have an API that is hosted at two or more endpoints, you can use the load balancing option
to distribute requests among the endpoints. Requests are distributed across multiple endpoints.
The requests are routed based on the round-robin strategy. The load for a service is balanced by
directing requests to two or more services in a pool, until the optimum level is achieved. The
application routes requests to services in the pool sequentially, starting from the first to the last
service without considering the individual performance of the services. After the requests have
been forwarded to all the services in the pool, the first service is chosen for the next loop of
forwarding.

If the entry protocol is HTTP or HTTPS, you can select the Load Balancer routing.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Route To. Specifies the URLs of two or more native services in a pool to which the requests are
routed.

Specifies the URI of the native API endpoint to route the request
to in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the API Gateway instance are also included in
the list.

If you choose a service registry, API Gateway sends a request to
the service registry to discover the IP address and port at which
the native service is running. API Gateway replaces the service

290 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

registry alias in the Endpoint URI with the IP address and port
returned by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport}variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable to REST APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

webMethods API Gateway User's Guide 10.15 291

2 Implement APIs

DescriptionProperty

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

292 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

A numeric timeout value (in seconds). The default value is 30.Suspend duration
(seconds)

This property specifies the time, in seconds, forwhichAPIGateway
temporarily suspends an endpoint, whenever Read time-out or
Connection time-out occurs for the endpoint, and routes the request
to the next configured endpoint in this time interval.

For example: If you have 3 endpoints configured endpoint #1,
endpoint #2, and endpoint #3, the suspend duration is configured
as 60 seconds for endpoint #2, and there is a Read Timeout or
ConnectionTimeout for endpoint #2, thenAPIGateway temporarily
suspends endpoint #2 for 60 seconds. In this time interval API
Gateway skips endpoint #2 while routing the requests to the
configured endpoints.

Request 1 -> endpoint #1

Request 2 -> endpoint #3 (endpoint #2 is suspended for 60 seconds
and hence the request is sent to endpoint #3

Request 3 -> endpoint #1

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL Configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the above keystore alias.

Key Alias

webMethods API Gateway User's Guide 10.15 293

2 Implement APIs

DescriptionProperty

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gatewaydoes not validate the certificates provided by nativeAPIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you canmake use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Failover behavior during load balancing

When an endpoint that is configured in Load balancer routing returns any of these exceptions -
ConnectException, MalformedURLException, NoRouteToHostException, ProtocolException,
SocketTimeoutException,UnknownHostException,UnknownServiceException - thenAPIGateway
treats the endpoint to be inactive and routes to the next endpoint as per the round-robin strategy.
In this case, the endpoint is suspended for the durationmentioned in the suspendDurationparameter
(default is 30s), which indicates the duration to suspend the endpoint without repeatedly trying
to reach it.

In this way API Gateway tries to invoke all the endpoints configured in the load balance routing.
If all endpoints return downtime error, API Gateway returns a Service is down error.

294 webMethods API Gateway User's Guide 10.15

2 Implement APIs

If an endpoint returns an exception other than the Downtime exception then that exception is sent
to the client and the remaining endpoints are not invoked.

You can control the behavior of consideringDowntime exceptions only for load balancing through
the extended property pg.lb.failoverOnDowntimeErrorOnly, which you can set through
Administration > General > Extended settings page. The default value of this property is true.
If you set the value to false all failures from the endpoint are treated as downtime and load
balancing takes place.

Outbound Auth - Message

When the native API is protected and expects the authentication credentials to be passed through
payload message, you can use this policy to provide the credentials that is added to the request
and sent to the native API. API Gateway supports a wide range of authentication schemes, such
asWSSUsername, SAML, andKerberos, in addition to signing and encryption at themessage-level.

Note:
Message-level authentication can be used to secure outbound communication of only SOAP
APIs.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Select one of the following schemes for outbound authentication at
the message level:

Authentication scheme

WSS username. Uses WSS credentials authenticate the client.

SAML. Uses SAML issuer configuration details for
authentication.

Kerberos. Uses Kerberos credentials for authentication.

None. Authenticates the client without any authentication
schemes.

Alias. Uses the configured alias name for authentication.

Remove WSS headers. Uses the WSS headers for
authentication.

Select one of the following modes to authenticate the client:Authenticate using

Custom credentials. Uses the values specified in the policy to
obtain the required token to access the native service.

Incoming HTTP Basic Auth credentials. Uses the incoming
user credentials to retrieve the authentication token to access
the native API

webMethods API Gateway User's Guide 10.15 295

2 Implement APIs

DescriptionProperty

Delegate incoming credentials. Uses the values specified in
the policy by the API providers to select whether to delegate
the incoming token or act as a normal client.

Uses the WSS credentials to authenticate the client.WSS username

Provide the following credentials:

User Name. Specifies the user name.

Password. Specifies the password of the user.

Uses the Kerberos credentials to authenticate the client.Kerberos

Provide the following information:

Client principal. Provide a valid client LDAP user name.

Client password. Provide a valid password of the client LDAP
user.

Service principal. Provide a valid SPN. The specified value is
used by the client to obtain a service ticket from theKDC server.

Service Principal Name Form. The SPN type to use while
authenticating an incoming client principal name. Select any of
the following:

User name. Specifies the username form.

Hostbased. Specifies the host form.

Provide the SAML issuer that is configured.SAML

Uses the signing configuration details to authenticate the client.Signing Configurations

Provide the following information:

Keystore Alias. Specifies a user-specified text identifier for an
APIGateway keystore. The alias points to a repository of private
keys and their associated certificates.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Uses the encryption configuration details to authenticate the client.Encryption Configurations

Provide the following information:

Truststore alias. Specifies the alias for the truststore. The
truststore contains the trusted root certificate for the CA that
signed theAPIGateway certificate associatedwith the key alias.

296 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Certificate alias. Provide a text identifier for the certificate
associated with the truststore alias. API Gateway populates the
certificate alias list with the certificate aliases from the selected
truststore alias.

Uses the configured alias to authenticate the client. Provide the
name of the configured alias.

Alias

Specify a stage, if you want the configuration to be applicable to a
specific stage.

Stage

When you configure an API with an inbound authentication policy, and a client sends a request
with credentials, API Gateway uses the credentials for the inbound authentication.When sending
the request to native server, API Gateway removes the already authenticated credentials when
no outbound authentication policy is configured.

If as an API provider youwant to use the same credentials for authentication at both API Gateway
and native server, you should configure the outbound authentication policy to pass the incoming
credentials to the native service. If you do not configure an outbound authentication policy, API
Gateway removes the incoming credentials, as it is meant for API Gateway authentication only.

However, when both the inbound authentication policy and outbound authentication policy are
not configured, API Gateway just acts as a proxy and forwards the credentials to the native service.
Since the credentials are not meant for API Gateway (as no inbound auth policy is configured),
API Gateway forwards the credentials to native service (unless there are different settings
configured in outbound authentication policy, for example, custom credentials or Anonymous).

JMS/AMQP Policies

To configure API Gateway for JMS with Message broker native protocol support or JMS with
AMQP protocol you need to:

Create one or more JNDI provider aliases to specify where API Gateway can look up when it
needs to create a connection to JMS provider or specify a destination for sending or receiving
messages.

Create one ormore connection aliases that encapsulate the properties that API Gateway needs
to create a connection with the JMS provider.

JMS/AMQP Routing

You can use this policy when you want to specify a JMS queue or topic to which API Gateway
submits the request, and the destination where the response should be routed to where API
Gateway waits to listen to the response from the native API.

For example, you can use this policy when you have a native API that is exposed over AMQP or
JMS and that requires clients to communicate with the server using other protocols. This policy
allows you to bridge protocols between the client and the native API.

webMethods API Gateway User's Guide 10.15 297

2 Implement APIs

You can apply the JMS/AMQP routing policy to both REST and SOAPAPIS. The following sections
explain their usage.

Use case 1: Using the JMS/AMQP routing policy (JMS with a message broker native
protocol) for a SOAP API

This describes the high level workflow for the scenario where you use the JMS/AMQP routing
policy (JMS with a message broker native protocol) for a SOAP API.

1. Create an alias to a JNDI Provider For a detailed procedure, see webMethods API Gateway
Administration.

2. ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

3. Create a WS (Web Service) JMS Provider endpoint alias and configure the Alias, Description,
Type (Provider), Transport Type (JMS) fields and JMS Transport Properties. For a detailed
procedure, see webMethods API Gateway Administration.

4. A WS (Web Service) endpoint trigger is created when you configure WS (Web Service) JMS
Provider endpoint alias. This trigger consists of the input source details like Queue name or
Topic name. You can update the WS (Web Service) endpoint trigger, as required. For detailed
procedures, see webMethods API Gateway Administration.

5. Select the required API.

6. Click Edit.

7. In the API Details section click Policies.

8. Enforce the JMS/AMQP SOAP Routing policy with the following properties configured.

a. Specify the connection URL for connecting to the JMS provider.

b. Specify a queue name where a reply to the message must be sent.

c. Provide a priority of this JMS message.

d. Provide expiration time of the JMS message.

e. Specify the message delivery mode for the request message.

For details on the JMS/AMQP SOAP Routing policy, see “ JMS/AMQP SOAP Routing” on
page 301.

9. Click Save.

The enforced policy JMS/AMQP SOAP Routing with the required configuration now allows
any java client to communicate with the API asynchronously.

298 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Use case 2: Using the JMS/AMQP routing policy (JMS with AMQP protocol) for a
SOAP API

This describes the high level workflow for the scenario where you use the JMS/AMQP routing
policy (JMS with AMQP protocol) for a SOAP API.

1. Configure API Gateway to use JMS with AMQP protocol.

Configure JNDI settings and JMS settings as per the client you are using to achieve JMS over
AMQP protocol support.

Note:
For a sample procedure on configuringAPI Gateway to use JMSwithAMQPprotocol using
Apache qpid libraries, see “Configuring API Gateway for JMS with AMQP Protocol” on
page 106.

2. Select the required API.

3. Click Edit.

4. In the API Details section click Policies.

5. Enforce the JMS/AMQP SOAP Routing policy with the following properties configured.

a. Specify the connection URL for connecting to the JMS provider.

b. Specify a queue name where a reply to the message must be sent.

c. Provide a priority for this AMQP message.

d. Provide expiration time of the AMQP message.

e. Specify the message delivery mode for the request message.

For details on the JMS/AMQP SOAP Routing policy, see “ JMS/AMQP SOAP Routing” on
page 301.

6. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows all the
clients such as Python, Ruby, Java, and Dotnet to communicate with the API asynchronously.

Use case 3: Using the JMS/AMQP routing policy (JMS with a message broker native
protocol) for a REST API

This describes the high level workflow for the scenario where you use the JMS/AMQP routing
policy (JMS with a message broker native protocol) for a REST API.

1. Create an alias to a JNDI Provider For a detailed procedure, see webMethods API Gateway
Administration.

webMethods API Gateway User's Guide 10.15 299

2 Implement APIs

2. ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

3. Select the required API.

4. Click Edit.

5. In the API Details section click Policies.

6. Enforce the JMS/AMQP REST Routing policy with the following properties configured.

a. Specify the connection alias that contains the configuration information needed to establish
a connection to a specific JMS provider.

b. Specify the destination to which the request message is sent.

c. Specify the destination type to which the request message is sent.

d. Specify the destination to which the response message is sent.

e. Specify the type of destination, queue or topic, to which the response message is sent.

f. Provide expiration time of the JMS message.

g. Provide the time for which API Gateway listens for the response message.

h. Specify the message delivery mode for the request message.

For details on the JMS/AMQP REST Routing policy, see “JMS/AMQP REST Routing” on
page 304.

7. Click Save.

The enforced policy JMS/AMQP REST Routing with the required configuration now allows
any java client to communicate with the API asynchronously.

Use case 4: Using the JMS/AMQP routing policy (JMS with AMQP protocol) for a
REST API

This describes the high level workflow for the scenario where you use the JMS/AMQP routing
policy (JMS with AMQP protocol) for a REST API.

1. Configure API Gateway to use JMS with AMQP protocol.

Configure JNDI settings and JMS settings as per the client you are using to achieve JMS over
AMQP protocol support.

Note:
For a sample procedure on configuringAPI Gateway to use JMSwithAMQPprotocol using
Apache qpid libraries, see “Configuring API Gateway for JMS with AMQP Protocol” on
page 106.

2. Select the required API.

300 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3. Click Edit.

4. In the API Details section click Policies.

5. Enforce the JMS/AMQP REST Routing policy with the following properties configured.

a. Specify the connection alias that contains the configuration information needed to establish
a connection to a specific JMS provider.

b. Specify the destination to which the request message is sent.

c. Specify the destination type to which the request message is sent.

d. Specify the destination to which the response message is sent.

e. Specify the type of destination, queue or topic, to which the response message is sent.

f. Provide expiration time of the AMQP message.

g. Provide the time for which API Gateway listens for the response message.

h. Specify the message delivery mode for the request message.

For details on the JMS/AMQP REST Routing policy, see “JMS/AMQP REST Routing” on
page 304.

6. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows all the
clients such as Python, Ruby, Java, and Dotnet to communicate with the API asynchronously.

JMS/AMQP SOAP Routing

If you are using JMS with Message broker native protocol support ensure that following actions
are performed before using the Enable JMS/AMQP policy:

Create an alias to a JNDI Provider For a detailed procedure, see webMethods API Gateway
Administration.

ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

Create a WS (Web Service) JMS Provider endpoint alias and configure the Alias, Description,
Type (Provider), Transport Type (JMS) fields and JMS Transport Properties. For a detailed
procedure, see webMethods API Gateway Administration.

Configure a WS (Web Service) endpoint trigger. For detailed procedures, see webMethods API
Gateway Administration.

If you are using JMS with AMQP protocol support, ensure the following before using the Enable
JMS/AMQP policy:

You have configured API Gateway for JMS with AMQP. For details, see “Configuring API
Gateway for JMS with AMQP Protocol” on page 106.

webMethods API Gateway User's Guide 10.15 301

2 Implement APIs

The table lists the properties that you can specify for this policy:

DescriptionProperty

Provide a connection alias for connecting to the JMS provider (for example, an
Integration Server alias or a JNDI URL). The connection URL contains various

Connection
URL

elements that construct the destination and other connection specific parameters.
The structure of the connection URL is:
<protocol>:<lookupVariant>:<destination>?<parameters>where

protocol. Specify the name of the transport protocol. The default value is JMS.

lookupVariant. Specify the destination type such as queue or topic. The default
value is queue.

destination. Specify the destination name of the JMS Provider. For dynamic
queue the destination name is: dynamicQueues/<Queue name>

Parameters

wm-wsendpointalias. Specify the JMS consumer endpoint alias. This
parameter is required for API Gateway to look up the JMS consumer alias
and send the request to the specified queue.

jndiInitialContextFactory. Specify the initial context factory for the JNDI
look up. For example:
org.apache.activemq.jndi.ActiveMQInitialContextFactory forActiveMQ

jndiConnectionFactoryName. Specify the connection factory look up name.
For example:

ConnectionFactory forActiveMQ if you are using the JMSwith broker
native protocol.

qpidConnectionFactory for ActiveMQ if you are using the JMS with
AMQP protocol.

jndiURL. Specify the Provider URL for the Active MQ to connect to API
Gateway. For example:

tcp://vmmeddemo03:61616 for ActiveMQ if you are using the JMSwith
broker native protocol.

The file path location of the properties file, for example, Install
directory\IntegrationServer\lib\jars\amqp.properties if you are
using JMS with AMQP protocol.

targetService. Specify the API Gateway API name. This parameter is
required if you are sending the request to another API in API Gateway
that uses JMS as the entry protocol.

Sample: With consumer endpoint alias

302 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty
jms:queue:dynamicQueues/MyTestQueue?
wm-wsendpointalias=JMSConsumerEndpointAlias&target
Service=EchoS_VS_JMS_IN

Sample: With JNDI lookup parameters
jms:queue:dynamicQueues/MyTestQueue?
jndiConnectionFactoryName=ConnectionFactory
&jndiInitialContextFactory=org.apache.
activemq.jndi.ActiveMQInitialContextFactory
&targetService=EchoS_VS_JMS_IN

Sample: With JNDI lookup parameters for AMQP protocol
jms:queue:dynamicQueues/MyTestQueue?
jndiConnectionFactoryName=qpidConnectionFactory
&jndiInitialContextFactory=org.apache.qpid.jms.
jndi.JmsInitialContextFactory
&targetService=EchoS_VS_JMS_IN

Specify a queue name where a reply to the message must be sent.Reply To
Destination

Type an integer that represents the priority of this JMS or AMQP message with
respect to othermessages that are in the same queue. The priority value determines

Priority

the order in which the messages are routed. The lowest priority value is 0 and
the highest priority value is 9. Themessages with this priority value are executed
first.

Priority values 0 through 9.

The default priority for a JMS or AMQP message is 0.

Provide a numeric value that specifies the expiration time (inmilliseconds) of the
JMS or AMQP message.

Time to Live
(ms)

If the time-to-live is specified as zero, expiration is set to zero which indicates the
message does not expire.

The default value is 0.

The message delivery mode for the request message. This is the delivery mode
that web service clients must specify in the JMS or AMQP message that serves
as the request message for the web service. The available options are:

Delivery Mode

Non-persistent. Indicates that the request message is not persistent. The
message might be lost if the JMS provider fails.

Persistent. Indicates that the request message should be persistent. The
message is not lost if the JMS provider fails.

webMethods API Gateway User's Guide 10.15 303

2 Implement APIs

JMS/AMQP REST Routing

If you are using JMS with Message broker native protocol support ensure that following actions
are performed before using the Enable JMS/AMQP policy:

Create an alias to a JNDI Provider For a detailed procedure, see webMethods API Gateway
Administration.

ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

If you are using JMS with AMQP protocol support, ensure the following before using the Enable
JMS/AMQP policy:

You have configured API Gateway for JMS with AMQP. For details, see “Configuring API
Gateway for JMS with AMQP Protocol” on page 106.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the name of the connection alias.Connection Alias
Name

Each connection alias contains the configuration information needed to
establish a connection to a specific JMS provider.

Specify the name of the destination to, which the request message is sent.Destination Name

As this property supports variable framework, you can use the available
variables to specify the destination name.

For example, you can provide a destination name as
${request.header.var1}. The destination name used in var1 is where the
Queue or Topic that is created in Universal Messaging stores the events.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 373.

Specify the destination type to which the request message is sent.Destination Type

Specify the name of the destination to, which the responsemessage is sent.Reply To Name

As this property supports variable framework, you can use the available
variables to specify the destination name.

For example, you can provide a destination name as
${request.header.dest1}. The destination nameused in dest1 is theQueue
or Topic that is created dynamically in Universal Messaging.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 373.

304 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Specifies the type of destination to which the response message is sent.Reply To Type

Select one of the following source type:

QUEUE. Indicates that the response message is sent to a particular
queue.

TOPIC. Indicates that the responsemessage is sent to a particular topic.

Provide a numeric value that specifies the expiration time (inmilliseconds)
of the JMS or AMQP message. If the time-to-live is specified as zero,
expiration is set to zero which indicates the message does not expire.

Time to Live (ms)

The default value is 0.

Defines the time inmilliseconds forwhichAPIGateway listens to the Reply
To Queue or Topic for the response message.

Time to Wait (ms)

The message delivery mode for the request message. This is the delivery
mode that web service clients must specify in the JMS or AMQP message

Delivery Mode

that serves as the requestmessage for theweb service. The available options
are:

Non-persistent. Indicates that the request message is not persistent.
The message might be lost if the JMS provider fails.

Persistent. Indicates that the request message should be persistent.
The message is not lost if the JMS provider fails.

JMS/AMQP Properties

The JMS/AMQPProperties policy can be configured to setAMQPor JMSProperties, a few standard
AMQP or JMS Headers, and HTTP Transport Headers in the outgoing JMS message that is being
sent from the proxy API to the native API.

AMQP or JMS headers are part of the JMS message that are used by both clients and providers.
They are used to identify a message and to route the message to the applicable JMS Providers or
consumers.

You can add HTTP Headers such as API Key, Authorization header, and so on. This is useful
when the native API is configured with the Enable AMQP/JMS policy and the proxy API wants
to pass the security headers over to that native API.

Every JMSmessage includes JMS/AMQPproperties that are always passed fromprovider to client.
The purpose of the properties is to convey extra information to the client outside the normal content
of themessage body. Additionally, JMS/AMQPproperty values are set exclusively by the consumer
application. When a client receives a message, the properties are in read-only mode. If a client
tries to modify any of the properties, a MessageNotWriteableException occurs.

webMethods API Gateway User's Guide 10.15 305

2 Implement APIs

The properties are standard Java name or value pairs. The property names must conform to the
message selector syntax specifications defined in the message interface. Property fields are most
often used for message selection and filtering. By using a property field, a message consumer can
interrogate the property field and perform message filtering and selection. When this action is
configured for a proxy API, API Gateway uses the JMS or AMQP properties to authenticate client
requests before submitting to the native APIs. JMS or AMQP headers can also be set using
properties, however, JMS or AMQP properties take precedence over headers.

The JMS/AMQPproperties section has separate policies that you can configure for REST and SOAP
APIs. They are as follows:

JMS/AMQP REST Properties

JMS/AMQP SOAP Properties

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specify the JMS property key.JMS Property Key

Specify the JMS property value for the specified key.JMS Property Value

As both these properties support variable framework, you can use the available variables to specify
the JMS property key and value.

For example, if you provide a property key as ${request.header.token1} and the corresponding
property value as ${request.header.token2}, then the value in token1 and token2 passes security
headers to the native API.

For details about the variables available in API Gateway, see “Variables Available in API
Gateway” on page 373.

Predefined JMS Properties

DescriptionPropertyProperty
categories

If the jms.messageType is set to
TextMessage, the SOAP envelope in the

Run-time
settings

jms.deliveryMode

jms.priority request is sent as a textmessage to the JMS
queue instead of byte stream.jms.timeToLive

jms.messageType

The following headers are not applicable.
If they are added an error responsewould
be sent at runtime:

Standard JMS
headers

JMSType

JMSCorrelationID

JMSXGroupID JMSMessageID

306 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionPropertyProperty
categories

JMSXGroupSeq
JMSExpiration

JMSRedelivered

JMSTimestamp

JMSDeliveryMode

JMSPriority

JMSReplyTo

JMSDestination

Application
specific
properties

SOAPJMS_requestURI

SOAPJMS_bindingVersion

SOAPJMS_soapAction

SOAPJMS_targetService

SOAPJMS_contentType

Mapping AMQP messages to JMS

Header

DescriptionField name

When receiving a message, the durable field of header MUST be
mapped to the JMSDeliveryMode header of theMessage. If the durable

durable

field of header is set to false or is not set then the JMSDeliveryMode
MUST be taken to be NONPERSISTENT. When the durable field of
header is set to true the JMSDeliveryMode of the Message MUST be
taken to be PERSISTENT.

This field is mapped to the JMSPriorityheader of the Message. JMS
Priority is specified as being of type int despite the valid values only

priority

being 0-9. AMQP allows for the priority field of header to be any
valid ubyte value.When receiving amessage with the priority field
of header greater than 9, the JMSPriorityMUST be set to 9. If the
priorityfield of header is unset then the JMSPriorityMUSTbe taken
to be DEFAULT_PRIORITY that is, the value 4).

This field defines the number of milliseconds for which a given
message is considered live. There is no direct equivalent for the ttl
field of header in the JMS specification.

ttl

webMethods API Gateway User's Guide 10.15 307

2 Implement APIs

DescriptionField name

If and only if the absolute-expiry-time field of properties is not
set,JMSExpiration SHOULD be based on the ttl field of header if
set, by summing it with the current time in milliseconds since the
Unix Epoch

This field does not have a direct equivalent within the JMS
specification, although JMSRedelivered is related, and so vendor
property JMS_AMQP_FIRST_ACQUIRER SHOULD be used.

first acquirer

This field ismapped to the JMS-defined JMSXDeliveryCountproperty
and JMSRedelivered header of the Message as follows.

delivery-count

AMQP uses the delivery-count field of header to track previously
failed delivery attempts for amessage, with the first delivery attempt
having a value of zero, and soon.

JMSXDeliveryCount is defined as a Java int count of delivery attempts,
set by the provider on receive, where the first delivery attempt has
value 1, the second has value 2 and so on.

The value of JMSXDeliveryCount property is thus equal to
delivery-count + 1.

The JMSRedelivered header MUST be considered to be true if and
only if the delivery-count field of header has a value greater than 0.

Properties

DescriptionField name

This field is equivalent to the JMSMessageID header of theMessage.message-id

The JMSMessageID value is a Java Stringwhere as the message-id
field of properties is defined as being of type providing message-id,
that is message-id-ulong, message-id-uuid, message-id-binary or
message-id-string.

The JMS client libraryMUSTprefix ID: to the value of the message-id
field of properties before returning it as the JMSMessageID value.

This field is mapped to the JMS-defined JMSXUserID property of the
Message.

user-id

JMSXUserID is specified as being of type String, while the user-id
field of properties field is specified as type binary. To maintain
end-to-end fidelity for this property implementations SHOULD
convert between AMQP binary and Java String by using the UTF-8
Unicode[UNICODE63] character encoding.

308 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField name

This field is mapped to the JMSDestination header of the Message.to

JMSDestination is defined as being of the JMS Destination type,
while the to field of properties requires an address-string.

If the to field of properties was not set on a received message, the
JMSDestination header value SHOULD be derived from the
Destination to which the receiving consumer was established.

This field is mapped to the JMSType header of the Message.subject

This field is mapped to the JMSReplyTo header of the Message.reply-to

JMSReplyTo is defined as being of the JMSDestination type, while the
reply-to field of properties requires an address-string.

This field ismapped to the JMSCorrelationID header of theMessage.correlation-id

The JMSCorrelationID value is a Java Stringwhere as the
correlation-id field of properties is defined as being of type
providing message-id, that is message-id-ulong, message-id-uuid,
message-id-binary or message-id-string.

Where the correlation-idfield of properties for the receivedmessage
is of type message-id-string and the booleanmessage annotation
with symbol key of x-opt-app-correlation-id is either not set or is
false, then the correlation-idfield of propertiesMUSTbe formatted
as a JMSMessageID, that is the client library MUST prefix ID: to the
value before returning it as the JMSCorrelationID value.

This field does not have an equivalent within the JMS specification,
and so the vendor property JMSAMQPCONTENTTYPESHOULD
be used.

content-type

This field does not have an equivalent within the JMS specification,
and so the vendor property
JMSAMQPCONTENTENCODINGSHOULD be used.

content-encoding

This field is mapped to the JMSExpiration head of the Message.absolute-expiry-time

If the absolute-expiry-time field of properties is set, then
JMSExpirationMUST have the equivalent Java long value,
representing the time at which the message expires, in milliseconds
since theUnix Epoch. If the absolute-expiry-timefield of properties
is not set then JMSExpiration SHOULD be based on the ttl field of
header instead if set.

This field is mapped to the JMSTimestamp header of the Message.creation-time

If the creation-time field of properties is not set, then JMSTimestamp
MUST have the value zero. If the creation-time field of properties

webMethods API Gateway User's Guide 10.15 309

2 Implement APIs

DescriptionField name

field is set, then JMSTimestampMUST have the equivalent Java long
value, representing the time atwhich themessagewas sent or created,
in milliseconds since the Unix Epoch.

This field is mapped to the JMS-defined JMSXGroupID property of the
Message.

group-id

This field is mapped to the JMS-defined JMSXGroupSeq property of
the Message.

group-sequence

As the group-sequence field of properties is an uint and JMSXGroupSeq

is an int, group-sequence values in the range 231 to 232-1 inclusive
MUST be mapped to JMSXGroupSeq values in the range −231 to -1
inclusive.

This field does not have an equivalent within the JMS specification,
and so the vendor property JMS_AMQP_REPLY_TO_GROUP_ID
MUST be used.

reply-to-group-id

For more information on AMQP properties and JMS to AMQP mapping properties, see https://
www.oasis-open.org/committees/download.php/56418/amqp-bindmap-jms-v1.0-wd06.pdf.

Traffic Monitoring
The policies in this stage provide ways to enable logging request and response payload, enable
monitoring run-time performance conditions for APIs and applications, enforce limits for the
number of service invocations during a specified time interval and send alerts to a specified
destination when the performance conditions are violated, and enable caching of the results of
API invocations depending on the caching criteria defined. The policies included in this stage are:

Log Invocation

Monitor Performance

Monitor SLA

Traffic Optimization

Service Result Cache

Log Invocation

This policy enables logging requests or responses to a specified destination. This action also logs
other information about the requests or responses, such as the API name, operation name, the
Integration Server user, a timestamp, and the response time.

The table lists the properties that you can specify for this policy:

310 webMethods API Gateway User's Guide 10.15

2 Implement APIs

https://www.oasis-open.org/committees/download.php/56418/amqp-bindmap-jms-v1.0-wd06.pdf
https://www.oasis-open.org/committees/download.php/56418/amqp-bindmap-jms-v1.0-wd06.pdf

DescriptionProperty

Logs all request headers.Store Request Headers

Logs all request payloads.Store Request Payload

Logs all response headers.Store Response Headers

Logs all response payloads.Store Response Payload

Compresses the logged payload data.Compress Payload Data

For details about payload compression and how to uncompress
a payload, see “Uncompressing a payload” on page 312.

Specifies how frequently to log the payload.Log Generation Frequency

Select one of the following options:

Always. Logs all requests and responses.

On Failure. Logs only the failed requests and responses.

On Success. Logs only the successful responses and
requests.

Specifies the destination where to log the payload.Destination

Select the required options:

API Gateway

API Portal

Audit Log

Audit log destination can be configured as DB or File in the
Administration > Destinations screen. Software AG
recommends to use DBwhen you choose Audit Log as the
destination to log transactions throughLog Invocation policy.

If you choose File, warnings appear in the log file since a few
of the transaction log fields are not compatible with Audit
log file destination such as BLOB types. For more
information, see Configure Audit Logging section in
webMethods Audit Logging Guide.

CentraSite

Note:
This option is applicable only for theAPIs published from
CentraSite to API Gateway.

Digital Events

webMethods API Gateway User's Guide 10.15 311

2 Implement APIs

DescriptionProperty

Elasticsearch

Email (you can add multiple email addresses by clicking

).

Note:
If an email alias is available, you can type the email alias
in the Email Address field with the following syntax,
${emailaliasname}. For example, if test is the email alias,
then type ${test}.

JDBC

Local Log: You can select the severity of the messages to be
logged (logging level) from the Log Level drop-down list.
The available log levels are ERROR, INFO, and WARN.

Note:

Set the Integration Server Administrator's logging
level for API Gateway to match the logging levels
specified for the run-time actions (go to Settings >
Logging > Server Logger). For example, if a Log
Invocation action is set to the logging level of Error,
you must also set Integration Server Administrator's
logging level for API Gateway to Error. If the action's
logging level is set to a low level (Warning-level or
Information level), but Integration Server
Administrator's logging level for API Gateway is set
to a higher level (Error-level), then only the
higher-level messages are written to the log file.
Entries posted to the local log are identified by a
product code of YAI and suffixed with the initial
alphabet of the logging level selected. For example,
for an error level, the entry appears as
[YAI.0900.0002E].

SNMP

List of destinations configured using the Custom
destinations section. For details on publishing to custom
destinations, see webMethods API Gateway Administration.

Uncompressing a payload

Payload compression helps you to optimize the storage by reducing the size of the actual payload.
It improves the performance while rendering the analytics information in the dashboard.

312 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The request and response payload of the API Gateway API and native API is compressed in the
encoded form.

To generate the data and uncompress the payload.

1. Ensure you have an API enforced with a Log invocation policy with the property Compress
payload data selected.

See the following examplewhere anAPI is enforcedwith a Log invocationpolicywithCompress
payload data selected.

2. Invoke the same API using an external REST client such as Postman or SoapUI to see the API
transaction.

TransactionalEvent is generated every time an API invocation happens.

3. Click Analytics of the same API in API Gateway UI.

This displays the different types of events generated in the dashboard. For details about
analytics, see webMethods API Gateway Administration.

4. Select Runtime events and click to expand your transaction.

5. Click JSON or Table and copy the encoded string (value) of the request or response payload
that you want to uncompress.

webMethods API Gateway User's Guide 10.15 313

2 Implement APIs

6. Pass the copied string as an input to the following Java program.

public static String uncompressString(String zippedBase64Str) throws IOException
{

String unCompressedPayload = null;
byte[] bytes = Base64.getDecoder().decode(zippedBase64Str);
GZIPInputStream zi = null;
try{
zi = new GZIPInputStream(new ByteArrayInputStream(bytes));
unCompressedPayload = IOUtils.toString(zi);
}finally{
IOUtils.closeQuietly(zi);
}
return unCompressedPayload;
}

See the following example, where an encoded string from the request payload is passed as an
input to the Java program.

314 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The Java output contains the uncompressed payload.

Note:
This code snippet is applicable only for the payload compressed by the log invocation policy.

You can also query the data using theREST endpoints from the swagger fileAPIGatewaySearch.json
and uncompress the payload with the same code snippet.

For details about the REST endpoints, see webMethods API Gateway Developer's Guide.

webMethods API Gateway User's Guide 10.15 315

2 Implement APIs

Traffic Optimization

This policy limits the number of API invocations during a specified time interval, and sends alerts
to a specified destination when the performance conditions are violated. You can use this policy
to avoid overloading the back-end services and their infrastructure, to limit specific clients in terms
of resource usage, and so on.

The Traffic optimization policy generates two types of events when the specified limit is breached:

Policy violation event. Indicates the violations that occur for anAPI. If there are 100 violations,
then 100 policy violation events are generated.

Monitor event. Controlled by the alert frequency configuration specified in the policy.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Limit Configuration

Specifies the name of throttling rule to be applied. By default, the
Total Request Count appears as the rule name and you cannot
modify this.

Rule name

Specifies the operator that connects the rule to the value specified. By
default, the Greater Than operator is selected. It indicates that the

Operator

316 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

throttling rule is applied when the Total Request Count for an API is
greater than (exceeds the limit specified for) the value specified in the
Value field.

Specifies the value of the request count beyond which the policy is
violated.

Value

When multiple requests are made at the same time, it might be
possible that this limit applied to trigger an alert is not strictly adhered
to. There is no loss observed in the invocation counts data, but there
might be aminor delay in aggregating the count. The invocation count
gets incremented, onlywhenAPIGateway receives the response from
the native API. For example, if you have set the limit at 5 with an
interval alert of 1 minute and if you invoke 5 requests in parallel, out
of which for 1 of the request the native API delays sending the
response to API Gateway. In such cases, the invocation count would
still be 4 as the native API is yet to send the response to API Gateway.
There is a minor delay in aggregating the count due to native API
response delay. Hence, API Gateway allows additional invocation.
However, when the invocation count exceeds 5 an alert is triggered.

Specifies the destination to log the alerts.Destination

Select the required options:

API Gateway

API Portal

CentraSite

Note:
Applicable only for the APIs published from CentraSite to API
Gateway.

Digital Events

Elasticsearch

Email (you can add multiple email addresses by clicking

).

Note:
If an email alias is available, you can type the email alias in the
Email Address field with the following syntax,
${emailaliasname}. For example, if test is the email alias, then
type ${test}.

webMethods API Gateway User's Guide 10.15 317

2 Implement APIs

DescriptionProperty

JDBC

Local Log: You can select the severity of themessages to be logged
(logging level) from the Log Level drop-down list. The available
log levels are ERROR, INFO, and WARN.

Note:

Set the Integration ServerAdministrator's logging level for
API Gateway to match the logging levels specified for the
run-time actions (go to Settings > Logging > Server
Logger). For example, if a Log Invocation action is set to
the logging level of Error, you must also set Integration
Server Administrator's logging level for API Gateway to
Error. If the action's logging level is set to a low level
(Warning-level or Information level), but Integration Server
Administrator's logging level for API Gateway is set to a
higher level (Error-level), then only the higher-level
messages are written to the log file.
Entries posted to the local log are identified by a product
code of YAI and suffixed with the initial alphabet of the
logging level selected. For example, for an error level, the
entry appears as [YAI.0900.0002E].

SNMP

List of destinations configured using the Custom destinations
section. For details on publishing to custom destinations, see
webMethods API Gateway Administration.

Specifies the interval of time for the limit to be reached.Alert Interval

The timer starts once the first API is activated and resets after the
configured time interval. If an API is deactivated the interval gets
reset, and on API activation the time interval starts afresh.

Specifies the unit of measurement of the Alert Interval configured,
to monitor performance, before sending an alert. For example:

Unit

Minutes

Hours

Days

Calendar Week. The time interval starts on the first day of the
week and ends on the last day of the week. By default, the start
day of the week is set to Monday.

For example:

318 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

If an API is activated on a Wednesday and Alert Interval is
set to 1, the time interval ends on Sunday, that is, 5 days.

If an API is activated on a Wednesday and Alert Interval is
set to 2, the time interval still ends on Sunday, but the period
is two calendar weeks, that is 12 days.

You can change the start day of the week using the extended
setting startDayOfTheWeek in the Administration > General >
Extended settings section. Restart the API Gateway server for
the changes to take effect.

Calendar Month. The time interval starts on the first day of the
month and ends on the last day of the month.

For example:

If an API is activated in the month of August and Alert
Interval is set to 1, the time interval ends on the last day of
August.

If an API is activated in the month of August and Alert
Interval is set to 2, the time interval ends in two calendar
months, that is on the last day of September.

Specifies the frequency at which the alerts are issued and themonitor
events are logged.

Alert Frequency

Specify one of the options:

Only Once. Triggers an alert every time the specified condition
is violated and logs amonitor event for the alert interval specified.

Every Time. Triggers an alert every time the specified condition
is violated and logsmultiplemonitor events based on the number
of API invocations.

Specifies the text message to be included in the alert.Alert Message

Specifies whether the configured invocation limit has to apply to all
consumer applications together or to each application individually.

Consumer-specific
throttling

Note:
This field is applicable only when you select the required
applications from the Consumer Applications field.

Possible values:

If this option is selected, each application specified in the
Consumer Applications field is allowed to invoke the API the

webMethods API Gateway User's Guide 10.15 319

2 Implement APIs

DescriptionProperty

specifiednumber of timeswithin the given time limit. For example,
consider the following:

You have specified consumer applications Consumer1 and
Consumer2 and you allow 100 invocations per minute.

Then, Consumer1 can perform up to 100 invocations per minute
and Consumer2 as well can perform the same without policy
violation.

If this option is not selected, the specified invocation limit is
applied to all consumer applications together. For example,
consider the following:

You have specified consumer applications Consumer1 and
Consumer2 and you allow 100 invocations per minute.

Then, both consumer applications together can invoke the API
for 100 times per minute without policy violation.

Specifies the consumer applications for which the policy is applied.
Do one of the following:

Consumer Applications

Select the required consumer applications. Type a keyword to
find the required application and click + to add it.

Select an option to apply the configured invocation limit:

All consumers. To apply the invocation limit to all consumers.
All consumer applications - including the registered, global
applications, and default applications - to invoke the API the
specified number of times within the given time limit. That
is, the specified invocation limit is shared by all consumer
applications.

For example, if you specify 1000 invocations per minute for
an API, then the total number of invocations performed by all
consumer applications in a minute cannot exceed 1000.

All registered consumers. To apply the invocation limit to
all registered consumers. Allows all registered consumer
applications to invoke the API the specified number of times
within the given time limit. That is, the specified invocation
limit is shared by all registered consumer applications. The
registered consumer applications are the applications that are
registered with API to which the policy is applied.

For example. if you specify 1000 invocations per minute for
an API, then the total number of invocations performed by all

320 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

registered consumer applications in a minute cannot exceed
1000.

All non-registered consumers. To apply the invocation limit
to all non-registered consumers. Allows all non-registered
consumer applications to invoke the API for the specified
number of times within the given time limit. That is, the
specified invocation limit is shared by all non-registered
application. The non-registered applications are the
applications that are not registered with the API to which the
policy is applied.

For example, if you specify 1000 invocations per minute for
an API, then the total number of invocations performed by all
non-registered consumer applications in a minute cannot
exceed 1000.

Note:
You can invoke an API using a non-registered consumer
application only if the Global applications or Global
applications and DefaultApplication option is selected
from the Application Lookup Control field of the
corresponding Identify & Authorize policy.

Each consumer. To apply the invocation limit to each
consumer. Allows each consumer application to invoke the
API the specified number of timeswithin the given time limit.
That is, the specified invocation limit is applicable individually
for each consumer application.

For example, if you specify 1000 invocations per minute for
an API, then each consumer application can perform 1000
invocations in a minute

Each registered consumer. To apply the invocation limit to
each registered consumer. Allows each registered consumer
application to invoke the API the specified number of times
within the given time limit. That is, the specified invocation
limit is applicable individually for each registered consumer
application.

For example, if you specify 1000 invocations per minute, then
each registered consumer application can perform 1000
invocations in a minute.

Each non-registered consumer. To apply the invocation
limit to each non-registered consumer. Allows each
non-registered consumer application to invoke the API the

webMethods API Gateway User's Guide 10.15 321

2 Implement APIs

DescriptionProperty

specified number of times within the given time limit. That
is, the specified invocation limit is applicable individually for
each non-registered consumer application.

For example, if you specify 1000 invocations per minute, then
each non-registered consumer application can perform 1000
invocations in a minute.

The invocation limit applied to newly added applications depends
on the application type. The time limit starts when the associated
API is activated or the application is associated to the policy. For
example, consider the following:

API-level Traffic Optimization policy configuredwith invocation
limit as 500 for 5 minutes, for All registered consumers. The
available registered consumers are Consumer1 and Consumer2.

When you activate the policy, the two consumers together perform
200 invocations in 2minutes. Register a new consumer application,
Consumer3 to the list after 2 minutes from the start time. Then, all
three consumers perform the remaining 300 invocations during
the last 3 minutes without violating the policy.

Let us see one more example.

Global Traffic Optimization policy configured with invocation
limit as 100 for 15 minutes, for Each consumer. The available
consumers are Consumer1 and Consumer2.

When you activate the policy, the each consumer performs 100
invocations in 10 minutes. Add a new consumer application,
Consumer3 to the list after 2minutes from the start time. Then, the
new consumer can also perform 100 invocations during the last
5 minutes without violating the policy.

Note:
If you select All consumers or Each consumer from this field and
specify Registered applications from the Application Lookup
Control field of the corresponding Identify & Authorize policy,
then only the registered applications are allowed to invoke theAPI.
In such scenarios, only the registered consumer applications can
utilize the specified invocation limit.

You can invoke APIs using non-registered consumer applications
only if the Global applications or Global applications and
DefaultApplicationoption is selected from theApplication Lookup
Control field of the corresponding Identify & Authorize policy.

322 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Traffic Optimization Policy Enforcement Scenarios

You can enforce more than one Traffic Optimization policy for an API based on your requirement.
This section lists a sample requirement scenario and the possible solution:

How do I?

Allow 1000 invocation per minute for each registered consumer application.

Allow 500 invocation for 15 minutes for all non-registered consumer applications.

Possible solution

Create two Traffic Optimization policies with the following specifications

Policy 1

Value. 1000.

Alert Interval. 1.

Alert Frequency. minute.

Consumer Applications. Each registered consumer.

Policy 2

Value. 500.

Alert Interval. 15.

Alert Frequency. minute.

Consumer Applications. All non-registered consumers.

Service Result Cache

This policy enables caching of the results of API invocations depending on the caching criteria
defined. You can define the elements for which the API responses are to be cached based on the
criteria such as HTTP Header, XPath, Query parameters, and so on. You can also limit the values
to store in the cache using awhitelist. For the elements that are stored in the cache, you can specify
other parameters such as Time to Live and Maximum Response Payload Size.

Caching the results of an API request increases the throughput of the API call and improves the
scalability of the API.

The cache criteria applicable for a SOAP-based API request are HTTP Header and XPATH. The
cache criteria applicable for a REST-based API request are HTTP Header and Query parameters.
The caching works only for GET methods for REST APIs.

Note:
If there are no values set for any of the criteria, then, by default, all the SOAP requests and GET
requests for the Rest API are based on the URL.

webMethods API Gateway User's Guide 10.15 323

2 Implement APIs

The table lists the properties that you can specify for this policy:

DescriptionProperty

Cache Criteria. Specifies the criteria that APIGateway uses to determine the request component,
that is, the actual payload based on which the results of the API invocation are cached.

Uses the HTTP header in the API request. You can use this criterion for
APIs that accept payloads only in HTTP format.

HTTP Header

Header Name. Specifies the HTTP header name.

Cache responses only for these values. API Gateway caches the API
responses only for requests whose cache criteria match with those set
for the action, and whose criteria evaluation results in any one of the

values in this list. You can add multiple entries by clicking .

Note:
If this field is empty, all the values that satisfy the criterion are cached.

You can use this criterion for REST-based API requests. Specifies the
names and values of the query parameters to filter the incoming requests
and cache the results based on the names and values specified.

Query Parameters

Parameter Name. Specifies the parameter name.

Cache responses only for these values. API Gateway caches the API
responses only for requests whose cache criteria match those set for the
action, and whose criteria evaluation results in any one of the values in

this list. You can add multiple entries by clicking .

You can use this criterion for SOAP-based API requests whose payload
is a SOAP envelope. Uses the XPath expression in the API request.

XPath

Name Space. Specifies the namespace of the XPath expression.

Prefix. Specifies the prefix for the namespace.

URI. Specifies the namespace URI.

You can add multiple entries by clicking .

XPath Expression. Specifies the XPath expression in the API request.

Cache responses only for these values. API Gateway caches the API
responses only for requests whose cache criteria match those set for the
action, and whose criteria evaluation results in any one of the values in

this list. You can add multiple entries by clicking .

324 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Note:
If this field is empty, all the values that satisfy the criteria are cached.

Specifies the lifespan of the elements in the cache after which the
elements are considered to be out-of-date.

Time to Live (e.g., 5d
4h 1m)

The time is specified in terms of days, hours, andminutes; for example,
5d 4h 1m.

If you do not specify any value, the Time to Live is considered to be
unlimited (does not expire). If you set the value to 0d 0h 0m, the API
results are not cached.

The default time format is minutes if the input is a number.

Specifies the maximum payload size for the API in kilo bytes.Maximum Response
Payload Size (in KB)

The value -1 stands for unlimited payload size.

Example of enforcing caching criteria:

ValuesXPATHQuery
parameters

HTTP HeaderCache
criteria

h1, h2Header1C1

Header2C2

q1, q2query1C3

In the example, there are twoHTTP headers and one query parameter as cache criteria. The HTTP
HeaderHeader2 has no values specified. Hence, all the incoming requests with the HTTPHeader
Header2 are cached.

When there are multiple cache criteria, the following behaviour is observed in the cache result:

If the incoming request R1matches criteria C1, then the result is cached. APIGateway responds
to any further incoming request R1 that matches criteria C1 from the cache.

If the incoming request R1 matches criteria C1 and C2, then the result is cached as a new
request.

If you configuremultiple cache criteria, and if one ormore cache criteria match, then the result
is cached. The criteria are matched with the cached results while caching the request, and it
follows the AND condition among the matched criteria.

Monitor Performance

This policy monitors a set of run-time performance conditions for an API, and sends alerts when
the performance conditions are violated. However, this policy monitors run-time performance at

webMethods API Gateway User's Guide 10.15 325

2 Implement APIs

the API level. Parameters like success count, fault count and total request count are immediate
monitoring parameters and the evaluation happens immediately after the limit is breached. The
rest of the parameters are Aggregatedmonitoring parameters whose evaluation happens once the
configured interval is over. If there is a breach in any of the parameters, an event notification (
Monitor event) is sent to the configureddestination. In a single policy,multiple action configurations
behave as AND condition. The OR condition can be achieved by configuring multiple policies.

The table lists the properties that you can specify for this policy:

ValueProperty

Action Configuration. Specifies the type of action to be configured.

Specifies the name of the metric to be monitored.Name

You can select one of the available metrics:

Availability. Indicates whether the native API is available to the
clients as specified in the current interval. API Gateway calculates
the availability of the nativeAPI based on the alert interval specified
and it is calculated from the instant the API activation takes place.
The availability of the API is calculated as = (time for which the
native API is up / total interval of time) x 100. This value is
measured in %.

For example, if you set Availability as less than 90, then whenever
the availability of the native API falls below 90%, in the specified
time interval, API Gateway generates an alert. Suppose, the alert
interval is set as 1 minute (60 seconds) and if there are 7 API
invocations at various times in that 1 minute with a combination
of up and down as shown in the table, the availability is calculated
as follows:

Up timeService
status

Invocation time
(the second at
which the API is
invoked)

Request
#

5 (from start to now)Up51

10 (between 1 and 2)Up152

15 (between 2 and 3)Down303

0 (since last state is
Down)

Down404

0Up455

5 (between 5 and 6)Down506

326 webMethods API Gateway User's Guide 10.15

2 Implement APIs

ValueProperty

Up timeService
status

Invocation time
(the second at
which the API is
invoked)

Request
#

0Up557

5 (remaining 5 seconds
considered as Up inline
with last state)

40 (Availability is 67%)Total

As the availability of the native API calculated is 66.67% and falls
below 90%, API Gateway generates an alert. The API is considered
to be down for the ongoing request when API Gateway receives a
connection related error from the native API in the outbound call.
If the API does not respond with an HTTP response, then it is
considered as down.

Average Response Time. Indicates the average time in
milliseconds taken by the service to complete all invocations in the
current interval. The average is calculated from the instant the API
activation takes place for the configured interval.

For example, if you set an alert for Average response time greater
than 30 ms with an interval of 1 minute then on API activation, the
monitoring interval starts and the average of the response time of
all runtime invocations for this API in 1minute is calculated. If this
is greater than 30 ms, then a monitor event is generated. If this is
configured under Monitor Performance, then all the runtime
invokes are taken into account.

Fault Count. Indicates the number of faults returned in the current
interval. The HTTP status codes greater than or equal to 400,
returned from API Gateway are considered as fault request
transactions. This includes the downtime errors as well.

Maximum Response Time. Indicates the maximum time in
milliseconds to respond to a request in the current interval.

Minimum Response Time. Indicates the minimum time in
milliseconds to respond to a request in the current interval.

Success Count. Indicates the number of successful requests in
the current interval.

webMethods API Gateway User's Guide 10.15 327

2 Implement APIs

ValueProperty

Total Request Count. Indicates the total number of requests
(successful and unsuccessful) in the current interval.

Specifies the operator applicable to the metric selected.Operator

Select one of the available operator:Greater Than, Less Than,Equals
To.

Specifies the alert value for which the monitoring is applied.Value

Specifies the destination where the alert is to be logged.Destination

Select the required options:

API Gateway

API Portal

CentraSite

Note:
This option is applicable only for the APIs published from
CentraSite to API Gateway.

Digital Events

Elasticsearch

Email (you can add multiple email addresses by clicking

).

Note:
If an email alias is available, you can type the email alias in the
Email Address field with the following syntax,
${emailaliasname}. For example, if test is the email alias, then
type ${test}.

JDBC

Local Log: You can select the severity of themessages to be logged
(logging level) from the Log Level drop-down list. The available
log levels are ERROR, INFO, and WARN.

Note:

Set the Integration Server Administrator's logging level for
API Gateway to match the logging levels specified for the
run-time actions (go to Settings > Logging > Server
Logger). For example, if a Log Invocation action is set to the

328 webMethods API Gateway User's Guide 10.15

2 Implement APIs

ValueProperty
logging level of Error, you must also set Integration Server
Administrator's logging level for API Gateway to Error. If
the action's logging level is set to a low level (Warning-level
or Information level), but Integration Server Administrator's
logging level for API Gateway is set to a higher level
(Error-level), then only the higher-levelmessages arewritten
to the log file.
Entries posted to the local log are identified by a product
code of YAI and suffixed with the initial alphabet of the
logging level selected. For example, for an error level, the
entry appears as [YAI.0900.0002E].

SNMP

List of destinations configured using the Custom destinations
section. For details on publishing to custom destinations, see
webMethods API Gateway Administration.

Specifies the time period in which to monitor performance before
sending an alert if a condition is violated.

Alert Interval

The timer starts once theAPI is activated and resets after the configured
time interval. If an API is deactivated the interval gets reset, and on
API activation the time interval starts afresh.

Specifies the unit of measurement of the Alert Interval configured, to
monitor performance, before sending an alert. For example:

Unit

Minutes

Hours

Days

CalendarWeek. The time interval starts on the first day of theweek
and ends on the last day of the week. By default, the start day of
the week is set to Monday.

For example:

If an API is activated on a Wednesday and Alert Interval is set
to 1, the time interval ends on Sunday, that is, 5 days.

If an API is activated on a Wednesday and Alert Interval is set
to 2, the time interval still ends on Sunday, but the period is
two calendar weeks, that is 12 days.

You can change the start day of theweek using the extended setting
startDayOfTheWeek in the Administration > General > Extended
settings section. Restart the API Gateway server for the changes
to take effect.

webMethods API Gateway User's Guide 10.15 329

2 Implement APIs

ValueProperty

Calendar Month. The time interval starts on the first day of the
month and ends on the last day of the month.

For example:

If anAPI is activated in themonth of August andAlert Interval
is set to 1, the time interval ends on the last day of August.

If anAPI is activated in themonth of August andAlert Interval
is set to 2, the time interval ends in two calendar months, that
is on the last day of September.

Specifies how frequently to issue alerts for the counter-based metrics
(Total Request Count, Success Count, Fault Count).

Alert Frequency

Select one of the options:

Only Once. Triggers an alert only the first time one of the specified
conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text to be included in the alert.Alert Message

Monitor SLA

This policy monitors a set of run-time performance conditions for an API, and sends alerts to a
specified destination when the performance conditions are violated. This policy enables you to
monitor run-time performance for one or more specified applications. You can configure this
policy to define a Service Level Agreement (SLA), which is a set of conditions that defines the
level of performance that an application should expect from an API. You can use this policy to
identify whether the API threshold rules are met or exceeded. For example, you might define an
agreement with a particular application that sends an alert to the application if responses are not
sent within a certainmaximum response time. You can configure SLAs for eachAPI or application
combination.

Parameters like success count, fault count and total request count are immediate monitoring
parameters and the evaluation happens immediately after the limit is breached. The rest of the
parameters areAggregatedmonitoring parameterswhose evaluation happens once the configured
interval is over. If there is a breach in any of the parameters, an event notification (Monitor event)
is sent to the configured destination. In a single policy, multiple action configurations behave as
AND condition. The OR condition can be achieved by configuring multiple policies.

The table lists the properties that you can specify for this policy:

ValueProperty

Action Configuration. Specifies the type of action to be configured.

330 webMethods API Gateway User's Guide 10.15

2 Implement APIs

ValueProperty

Specifies the name of the metric to be monitored.Name

You can select one of the available metrics:

Availability. Indicates whether the native API is available to the
clients as specified in the current interval. API Gateway calculates
the availability of the native API based on the alert interval specified
and it is calculated from the instant the API activation takes place.
The availability of the API is calculated as = (time for which the
native API is up / total interval of time) x 100. This value ismeasured
in %.

For example, if you set Availability as less than 90, then whenever
the availability of the native API falls below 90%, in the specified
time interval, API Gateway generates an alert. Suppose, the alert
interval is set as 1 minute (60 seconds) and if there are 7 API
invocations at various times in that 1 minute with a combination of
up and down as shown in the table, the availability is calculated as
follows:

Up timeService
status

Invocation time
(the second at
which the API is
invoked)

Request
#

5 (from start to now)Up51

10 (between 1 and 2)Up152

15 (between 2 and 3)Down303

0 (since last state is
Down)

Down404

0Up455

5 (between 5 and 6)Down506

0Up557

5 (remaining 5 seconds
considered as Up inline
with last state)

40 (Availability is 67%)Total

As the availability of the native API calculated is 66.67% and falls
below 90%, API Gateway generates an alert. The API is considered
to be down for the ongoing request when API Gateway receives a

webMethods API Gateway User's Guide 10.15 331

2 Implement APIs

ValueProperty

connection related error from the native API in the outbound call.
If the API does not respond with an HTTP response, then it is
considered as down.

Average Response Time. Indicates the average time taken in
milliseconds (ms) by the service to complete all invocations in the
current interval. The average is calculated from the instant the API
activation takes place for the configured interval.

For example, if you set an alert for Average response time greater
than 30 ms with an interval of 1 minute then on API activation, the
monitoring interval starts and the average of the response time of
all runtime invocations for this API in 1 minute is calculated. If this
is greater than 30 ms, then a monitor event is generated. If this is
configured under Monitor SLA policy with an option to configure
applications so that application specific SLAmonitoring can be done,
then the monitoring for the average response time is done only for
the specified application.

Fault Count. Indicates the number of faults returned in the current
interval. TheHTTP status codes greater than or equal to 400, returned
fromAPIGateway are considered as fault request transactions. This
includes the downtime errors as well.

Maximum Response Time. Indicates the maximum time in
milliseconds (ms) to respond to a request in the current interval.

Minimum Response Time. Indicates the minimum time in
milliseconds (ms) to respond to a request in the current interval.

Success Count. Indicates the number of successful requests in the
current interval.

Total Request Count. Indicates the total number of requests
(successful and unsuccessful) in the current interval.

Specifies the operator applicable to the metric selected.Operator

Select one of the available operator: Greater Than, Less Than, Equals
To.

Specifies the alert value for which the monitoring is applied.Value

Specifies the destination where the alert is to be logged.Destination

Select the required options:

API Gateway

API Portal

332 webMethods API Gateway User's Guide 10.15

2 Implement APIs

ValueProperty

CentraSite

Note:
This option is applicable only for the APIs published from
CentraSite to API Gateway.

Digital Events

Elasticsearch

Email (you can add multiple email addresses by clicking

).

Note:
If an email alias is available, you can type the email alias in the
Email Addressfieldwith the following syntax, ${emailaliasname}.
For example, if test is the email alias, then type ${test}.

JDBC

Local Log: You can select the severity of the messages to be logged
(logging level) from the Log Level drop-down list. The available
log levels are ERROR, INFO, and WARN.

Note:

Set the Integration Server Administrator's logging level for
API Gateway to match the logging levels specified for the
run-time actions (go toSettings >Logging >Server Logger).
For example, if a Log Invocation action is set to the logging
level of Error, you must also set Integration Server
Administrator's logging level for API Gateway to Error. If
the action's logging level is set to a low level (Warning-level
or Information level), but Integration Server Administrator's
logging level for API Gateway is set to a higher level
(Error-level), then only the higher-level messages are written
to the log file.
Entries posted to the local log are identified by a product code
of YAI and suffixed with the initial alphabet of the logging
level selected. For example, for an error level, the entry
appears as [YAI.0900.0002E].

SNMP

List of destinations configured using the Custom destinations
section. For details on publishing to custom destinations, see
webMethods API Gateway Administration.

webMethods API Gateway User's Guide 10.15 333

2 Implement APIs

ValueProperty

Specifies the time period (in minutes) in which to monitor performance
before sending an alert if a condition is violated.

Alert Interval

The timer starts once theAPI is activated and resets after the configured
time interval. If and API is deactivated the interval gets reset and on
API activation its starts afresh.

Specifies the unit of measurement of the Alert Interval configured, to
monitor performance, before sending an alert. For example:

Unit

Minutes

Hours

Days

CalendarWeek. The time interval starts on the first day of the week
and ends on the last day of the week. By default, the start day of the
week is set to Monday.

For example:

If an API is activated on a Wednesday and Alert Interval is set
to 1, the time interval ends on Sunday, that is, 5 days.

If an API is activated on a Wednesday and Alert Interval is set
to 2, the time interval still ends on Sunday, but the period is two
calendar weeks, that is 12 days.

You can change the start day of the week using the extended setting
startDayOfTheWeek in the Administration > General > Extended
settings section. Restart the API Gateway server for the changes to
take effect.

Calendar Month. The time interval starts on the first day of the
month and ends on the last day of the month.

For example:

If an API is activated in the month of August and Alert Interval
is set to 1, the time interval ends on the last day of August.

If an API is activated in the month of August and Alert Interval
is set to 2, the time interval ends in two calendar months, that is
on the last day of September.

Specifies how frequently to issue alerts for the counter-based metrics
(Total Request Count, Success Count, Fault Count).

Alert Frequency

Select one of the options:

334 webMethods API Gateway User's Guide 10.15

2 Implement APIs

ValueProperty

Only Once. Triggers an alert only the first time one of the specified
conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text to be included in the alert.Alert Message

Specifies the application towhich this Service Level Agreement applies.Consumer Applications

You can type a search term tomatch an application and click
to add it.

You can add multiple applications or delete an added application by
clicking .

Response Processing
These policies are used to specify how the response message from the API has to be transformed
or pre-processed and configure themasking criteria for the data to bemasked before it is submitted
to the application. This is required to protect the data and accommodate differences between the
message content that an API is capable of submitting and the message content that an application
expects. The policies included in this stage are:

Invoke webMethods IS

Response Transformation

Validate API Specification

CORS

Data Masking

Custom Extension

Custom Extension policies allow you to handle requirements that might not be provided by
the out-of-the-box policies. You can add these custom extensions into API Gateway policy
stages. To learn more about Custom Extension, see webMethods API Gateway User's Guide.

Validate API Specification

This policy validates the responses against API's various specifications such as schema,
content-types, and HTTP Headers referenced in their corresponding formats as follows:

The schema is available as part of the API definition. The schema for SOAP API are imported
through WSDL and for REST APIs it can be through swagger, RAML or can be uploaded by
the user when an API is created from scratch.

webMethods API Gateway User's Guide 10.15 335

2 Implement APIs

The content- types are available as part of the API definition. FOR SOAP APIs these are
imported through WSDL and for REST APIs it can be through swagger, RAML or can be
uploaded by the user.

The HTTP Headers are specified in the Validate API Specification policy page.

The response sent to theAPI by an applicationmust conformwith the structure or format expected
by the API. The responses from the native API are validated against the API specifications in this
policy to conform to the structure or format expected by the API.

Various API specifications validated are:

Schema:

The responses from the native API are validated against the schema provided in the API
definition. API Gateway does not validate the payload, if the payload is sent as a stream.

The schema defines the elements and attributes and specifies the data types of these elements
to ensure that only appropriate data is allowed through to theAPI. For a RESTAPI, the schema
can be added inline or uploaded in the Components section on theAPIDetails page. For details
on how to add the schema inline or upload, see “Creating a RESTAPI from Scratch” on page 20.

The schema type for validation is selected based on:

The Content-Type header when the policy is added in the Request processing stage.

The Accept header when the policy is added in the Response processing stage.

If the header or payload is missing the schema validation is skipped.

The table lists the default Content type/Accept header and schema validation type mapping.

Schema validation typeContent-type/Accept

JSON schemaapplication/json

application/json/badgerfish

XML schemaapplication/xml

text/xml

text/html

Regular expressiontext/plain

For a SOAP API, the WSDL and the referenced schema must be provided in a zip format. The
JSON schema validation is supported for the operations that are exposed as REST.

Content-types:

The responses from the native API are validated against the content-types specified in the API
definition.

HTTP Headers:

336 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The responses from the native API are validated against the HTTP Headers specified in this
policy to conform to the HTTP headers expected by the API. If the HTTP Headers are not
specified in this policy, API Gateway uses the Headers defined in the API specification.

The run-time invocations that fail the specification validation are considered as policy violations.
Such policy violation events that are generated can be viewed in the dashboard.

The table lists the API specification properties, you can specify for this policy, to be validated:

DescriptionProperty

Validates the response payload against the appropriate schema.Schema

Provide the following additional features for XML schema validation:

Feature name. Specifies the name of the feature for XML parsing
when performing XML schema validation.

Select the required feature names from the list:

GENERATE_SYNTHETIC_ANNOTATIONS

ID_IDREF_CHECKING

IDENTITY_CONSTRAINT_CHECKING

IGNORE_XSL_TYPE

NAMESPACE_GROWTH

NORMALIZE_DATA

ROOT_ELEMENT_DECL

ROOT_TYPE_DEF

SIGMA_AUGMENT_PSVI

SCHEMA_DV_FACTORY

SCHEMA_ELEMENT_DEFAULT

SCHEMA_LOCATION

SCHEMA_NONS_LOCATION

SCHEMA_VALIDATOR

TOLERATE_DUPLICATES

ENPARSED_ENTITY_CHECKING

VALIDATE_ANNOTATIONS

XML_SCHEMA_FULL_CHECKING

webMethods API Gateway User's Guide 10.15 337

2 Implement APIs

DescriptionProperty

XMLSCHEMA_VALIDATION

For details about XMLparsing features, see http://xerces.apache.org/
xerces2-j/features.html and for details about the exact constants, see
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/
xerces/parsers/XML11Configuration.html.

Feature value. Specifies whether the feature value is True or False.

Validates the content-types in the incoming response against the
content-types defined in that response's API Specification.

Content-types

Validates the HTTP header parameters in the incoming response against
the HTTP headers defined in that response's API Specification.

HTTP Headers

Provide the following information:

Condition: Specifies the logical operator to use to validate multiple
HTTP headers in the incoming API responses.

Available values are:

AND. API Gateway accepts only the responses that contain all
configured HTTP headers.

OR. This is selected by default. API Gateway accepts responses
that contain at least one configured HTTP header.

HTTP Header Key. Specifies a key that must be passed through the
HTTP header of the incoming API responses.

Header Value. Optional. Specifies the corresponding key value that
could be passed through the HTTP header of the incoming API
responses. As this property supports variable framework, you can
make use of the available variables to specify the header value.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

You can add more HTTP headers by clicking .

Response Transformation

This policy specifies the properties required to transform response messages from native APIs
into a format required by the client.

The transformations includeHeader transformation, Status transformation, Payload transformation,
andAdvanced transformation. You can configure conditions according towhich the transformations
are executed

338 webMethods API Gateway User's Guide 10.15

2 Implement APIs

http://xerces.apache.org/xerces2-j/features.html
http://xerces.apache.org/xerces2-j/features.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/XML11Configuration.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/XML11Configuration.html

The table lists the properties that you can specify for this policy:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the responses that comply
with all the configured conditions

OR. This is selected by default. API Gateway transforms the
responses that comply with any one configured condition.

ClickAdd Condition and provide the following information and

click .

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Not Contains

Exists

Not Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Transformation Configuration. Specifies various transformations to be configured.

Specifies the header, query or path transformation to be
configured for the responses received from the native API.

HeaderTransformation

webMethods API Gateway User's Guide 10.15 339

2 Implement APIs

DescriptionProperty

You can add or modify header, query or path transformation
parameters by providing the following information:

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

You can add multiple variables and corresponding values by

clicking .

You can remove any header, query, or path transformation
parameters by typing the plain value or value with a syntax.

Note:
Software AG recommends you not to modify the headers
${response.headers.Content-Length} and
${response.headers.Content-Encoding} asAPIGateway adds
the right values for these headers before sending the response
back to client.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
Payload transformation does not happen automatically for
content-type transformation. When you change the content
type, ensure to do payload transformation. For example, if you
change the content-type header from application/xml to
application/json, youmust also change the respective payload
from application/xml to application/json.

Specifies the status transformation to be configured for the
responses received from the native API.

Status transformation

Provide the following information:

Code. Specifies the status code that is sent in the response to
the client.

For example if you want to transform status code as 201,
provide 201 in the Code field.

Message. Specifies the Status message that is sent in the
response to the client.

As both these properties support variable framework, you
can make use of the available variables to transform the
response code and message.

340 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

For example You have submitted successfully can be used to
transform the original OK status message.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Specifies the payload transformation to be configured for the
responses received from the native API.

Payload Transformation

Note:
API Gateway does not process the payload, if the payload is
sent as a stream.

Provide the following information:

Payload Type. Specifies the content-type of payload, towhich
you want to transform. The Payload field renders the
respective payload editor based on the selected content-type.

Payload. Specifies the transformation that needs to be applied
for the response.

As this property supports variable framework, you canmake
use of the available variables to transform the response
messages.

For example, consider the client accepting two integer values
value1 and value2, and you want to pass these two values
fromAPIGateway to the client, you can configure the payload
field as follows:
{
"value1" : 12,
"value2" : 34
}

You can also configure the payload field using one or more
variables by using variable framework. Let us see another
syntax. For example, for the same API seen in the previous
example, if your native sends both the values through headers
val1 and val2, and youwant to add it to payload for the client
to recognize the input, you can do so by configuring the
payload field as follows:
{
"value1" :${response.headers.val1},
"value2" :${response.headers.val2}
}

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

webMethods API Gateway User's Guide 10.15 341

2 Implement APIs

DescriptionProperty

Note:
If your payload content-type is different from the incoming
payload's content-type, you need to transform the
content-type of the header using Header Transformation.

Click + Add xslt document to add an xslt document and
provide the following information:

XSLT file. Specifies the XSLT file used to transform the
response messages as required.

Click Browse to browse and select a file.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can add more XSLT features and xslt documents by

clicking .

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Click + Add xslt transformation alias and provide the
following information:

XSLT Transformation alias. Specifies the XSLT
transformation alias

When you receive the response in JSON, you can use a XSLT
file similar to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="fakeroot">
<xsl:element name="fakenode">

<!-- Apply your transformation rules based
on the response received from the native API-->
</xsl:element>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

When you receive the response in XML, you can use a XSLT
file similar to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

342 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="soapenv:Envelope">
<xsl:element name="soapenv:Body">

<!-- Apply your transformation rules based
on the response received from the native API-->
</xsl:element>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

Specifies the advanced transformation to be configured for the
responses received from the native API..

Advanced Transformation

Provide the following information:

webMethods IS Service. Specify thewebMethods IS service
to be invoked to process the response messages.

You can add multiple services by clicking .

Note:
The webMethods IS service must be running on the same
Integration Server as API Gateway.

Run as User. Specifies the authentication mode to invoke
the IS service. If this field is left blank the incoming credentials
of the user, identified by API Gateway, are used to
authenticate and invoke the IS service. You can also specify
a particular user, you want API Gateway to use to run the IS
service.

Comply to IS Spec. Mark this as true if you want the input
and the output parameters to comply to the IS Spec present
in pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS
service alias to be invoked to pre-process the request
messages.

Transformation Metadata. Specifies the metadata for transformation of the responses received
from the native API. For example, the namespaces configured in this section can be used when
you provide the syntax for XPath ${response.payload.xpath} For example:
${response.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for
transformation.

Namespace

webMethods API Gateway User's Guide 10.15 343

2 Implement APIs

DescriptionProperty

Provide the following information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

For example, specify the namespace prefix as SOAP_ENV.

Namespace URI. The namespace URI of the payload
expression to be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declarationdefines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can addmultiple namespace prefix andURI by clicking

.

Invoke webMethods IS

This policy processes the nativeAPI’s responsemessages into the format required by the application,
before API Gateway returns the responses to the application.

If Comply to IS Spec parameter is configured as true, API Gateway invokes the IS Service with
IS specification in the path pub.apigateway.invokeISService.specifications:ResponseSpec (for
Response Processing).

Note:
The pipeline variables in the Invoke IS service include only the response headers and they do
not include request headers (sent by the client or the ones added during the request
transformation step). To access the request headers in the Invoke IS Service flow, use the
pub.flow:getTransportInfo service.

The following are the input and output parameters for REST, SOAP, and WebSocket APIs as
specified in the above IS Specification. Input parameters can be used to access the existing values
of the response while output parameters can be used to modify/write the values to the response.

DescriptionParameter name

Headers in response.headersInput
parameters

Data type: Document

Payload of the response.payload

Data type: String

344 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionParameter name

The payload for binary content types like multi-part
/ form-data.

payloadObject

Data type: Object

Status code of the response.statusCode

Data type: String

Status message of the response.statusMessage

Data type: String

The message context object of the response.MessageContext

Data type: Object

Name of the API invoked by the response.apiName

Data type: String

URL of the response.requestUrl

Data type: String

Contains IP information of the response.ipInfo

Data type: Document

Websocket related information of the response.websocketInfo

Data type: Document

Correlation ID of the request/response. This is unique
and same for a request and response.

correlationID

Data type: String

Custom transactional fields can be added to the
transactional events using this field. For more

customFieldsMap

information, see Adding Custom Fields to
Transactional Events section.

Data type: Document

Headers in response.headersOutput
parameters

Data type: Document

Payload of the response.payload

Data type: String

webMethods API Gateway User's Guide 10.15 345

2 Implement APIs

DescriptionParameter name

The payload for binary content types like multi-part
/ form-data.

payloadObject

Data type: Object

Status code of the response.statusCode

Data type: String

Status message of the response.statusMessage

Data type: String

The message context object of the response.MessageContext

Data type: Object

Custom transactional fields can be added to the
transactional events using this field. For more

customFieldsMap

information, see Adding Custom Fields to
Transactional Events section.

Data type: Document

Note:

For SOAP to REST APIS, the payload contains the transformed JSON response.
Payload transformation does not happen automatically for content-type transformation.
When you change the content type, ensure to do payload transformation also as part of IS
Service.
When Comply to IS spec is true, you can change the values of headers, query, payload,
and so on, programatically using Message Context, as well as using the pipeline variables
given. SoftwareAG recommends younot to change those values directly inMessageContext,
as the values in output pipeline variables arewritten toMessage Context after the invocation
of IS Service.

If Comply to IS Spec parameter is set to false, API Gateway invokes the IS Service with the same
input and output parameters supported in 10.1 and the earlier versions::

proxy.name

JSONRESTContentString (REST only)

SOAPEnvelope (SOAP only)

EnvelopeString (SOAP only)

The table lists the properties that you can specify for this policy:

346 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Invoke webMethods Integration Server Service

Specifies the webMethods IS service to be invoked to process the
response messages and the authentication mode for the IS service.

Add invoke webMethods
Integration Server service

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the response messages.

The webMethods IS service must be running on the same
Integration Server as API Gateway

Note:
If an exception occurs when invoking the webMethods IS
service, by default APIGateway displays the status code as 500
and error message as Internal Server Error.

You can set custom status code and error message by setting
the following properties in the message context of the
webMethods IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code",
404);
context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the
user, identified by API Gateway, are used to authenticate and
invoke the IS service. You can also specify a particular user, you
want API Gateway to invoke the IS service.

webMethods API Gateway User's Guide 10.15 347

2 Implement APIs

DescriptionProperty

Note:
It is the responsibility of the user who activates the API to
review the value configured in Run as User field to avoid
misuse of this configuration.

Comply to IS Spec. Mark this as true if you want the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:Software AG recommends users to configure the policy
with Comply to IS Spec as true, as you can read or change the
values of headers, and so on, without having to read from or
write to the message context.

Specifies the webMethods IS service alias used to invoke the
webMethods IS service to pre-process the response messages.

webMethods IS Service
alias

Start typing the webMethods alias name, select the alias from the

type-ahead search results displayed and click to add one
or more aliases.

You can use the delete icon to delete the added aliases from the
list.

Adding Custom Fields to Transactional Events

This section explains you how to add custom fields to the transactional events.

1. Create webMethods IS service by specifying the
pub.apigateway.utils:customFieldInTransactionEventSpec as a specification reference.

2. In the webMethods IS service, set the required custom fields in the customFieldsMap output
variable.

3. Oncewhen customFieldsMap gets created, the customfieldswill be available in the transactional
events.

4. Invoke the API with the Invoke webMethods IS policy.

Note:
You can also add the customfields to the transactional events fromAPIGateway by configuring
the customTransactionFields.FIELD_NAME custom variable in the Custom Extension policy.
For more details, see webMethods API Gateway User's Guide.

348 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Data Masking

Data masking is a technique whereby sensitive data is obscured in some way to render it safe and
to protect the actual data while having a functional substitute for occasions when the real data is
not required.

This policy is used to mask sensitive data at the application level. At the application level you
must have an Identify and Access policy configured to identify the application for which the
masking is applied. If no application is specified then it will be applied for all the other responses.
Fields can bemasked or filtered in the responsemessages to be sent. You can configure themasking
criteria as required for the XPath, JSONPath, and Regex expressions based on the content-types.
This policy can also be applied at the API scope level.

Note:
API Gateway does not mask the payload, if the payload is sent as a stream.

The table lists the content-type and masking criteria mapping.

Masking CriteriaContent-type

XPathapplication/xml

text/xml

text/html

JSONPathapplication/json

application/json/badgerfish

Regextext/plain

The table lists the masking criteria properties that you can configure to mask the data in the
response messages:

DescriptionProperty

Optional. Specifies the applications for which the masking criterion has
to be applied.

Consumer
Applications

Start typing the application name, select the application from the

type-ahead search results displayed, and click to add one or
more applications.

For example: If there is a DataMasking(DM1) criteria created for
application1 a second DataMasking(DM2) for application2 and a third
DataMasking(DM3) with out any application, then for a request that
comes from consumer1 themasking criteria DM1 is applied, for a request
that comes from consumer2 DM2 is applied. If a request comes with out

webMethods API Gateway User's Guide 10.15 349

2 Implement APIs

DescriptionProperty

any application or from any other application except application1 and
application2 DM3 is applied.

You can use the delete icon to delete the added applications from
the list.

XPath: Specifies the masking criteria for XPath expressions in the response messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

You can add multiple masking criteria.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the XPath
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myxpath} and the corresponding mask value as
${request.headers.var1} , and if the incoming request header myxpath
is configured with value //ns:cardNumber, then the card number
derived from the payload is masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated

Note:

350 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

You can add multiple namespace prefix and URI by clicking .

JSONPath. This is applicable only for REST API. Specifies the masking criteria for JSONPath
expressions in the response messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the
JSONPath is applied on the payload using the value that is resolved
from the variable given.

For example, if you provide a query expression as
${request.headers.myjsonpath} and the corresponding mask value
as ${request.headers.var1} , and if the incoming request header
myjsonpath is configured with value $.cardNumber, then the card
number derived from the payload is masked with the header value
in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Regex. Specifies the masking criteria for regular expressions in the response messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

webMethods API Gateway User's Guide 10.15 351

2 Implement APIs

DescriptionProperty

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the regex
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myregex} and the corresponding mask value as
${request.headers.var1} , then the regex is applied using the value
configured in the request header myregex and the derived value is
masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

When you select this option the transactional log for the response is
masked on top of response sent to the client.

Select this option to apply masking criteria for response payload in the
following scenarios:

Apply for payload

response received from the native service.

response sent to the client.

Note:
When you select this option it automatically masks the data in the
transactional log.

CORS

The Cross-Origin Resource Sharing (CORS) mechanism supports secure cross-domain requests
and data transfers between browsers and web servers. The CORS standard works by adding new
HTTP headers that allow servers to describe the set of origins that are permitted to read that
information.

This policy provides CORS support that uses additional HTTP headers to let a client or an
application gain permission to access selected resources. An application or a client makes a
cross-origin HTTP request when it requests a resource from a different domain, protocol, or port
than the one from which the current request originated.

If you want to apply this policy in API Gateway at API level, make sure you have set the
watt.server.cors.enabled property to false. CORS policy is not supported at scope-level. \

352 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Note:
Both the Integration Server CORS policy and API Gateway CORS policy cannot coexist. When
you enforce theCORSpolicy at Integration Server level, CORS enforcment is done for all requests.
The preflight requests are handled by the Integration Server before even it reaches API Gateway.

This policy is applicable for REST, SOAP, and ODATA APIs.

The table lists the CORS response specifications, you can specify for this policy:

DescriptionProperty

Specifies the origin from which the responses originating are allowed.Allowed Origins

syntax for the origin: scheme://host:port

You can add multiple origins by clicking .

You can also provide Regular expressions for allowed origins.

Allowed origins can also be specified in the Advanced section under
Applications. Allowed origins of applications registered with this API
are also allowed to access this API.

Specifies the Headers that are allowed in the request.Allow Headers

You can add multiple headers that are to be allowed by clicking .

Specifies the headers that be exposed to the user on request failure.Expose Headers

You can add multiple headers that are to be allowed by clicking .

Specifies whether API Gateway includes the
Access-Control-Allow-Credentials header.

Allow Credentials

Specifies the methods that are allowed in the request.Allowed Methods

Specify one or more of the following: GET, POST, PUT, DELETE, and
PATCH.

Specifies the age for which the preflight response is valid.Max Age

AcorrespondingHTTPheader is set for all the values above as per the specification. For additional
information, see https://www.w3.org/TR/cors/.

API Gateway handles CORS preflight request and CORS request differently. To knowmore about
the work flow of CORS preflight and CORS request refer the respective flowchart.

CORS Preflight Request

ACORSpreflight request is aHTTP request that a browser sends before the original CORS request
to check whether the API Gateway server will permit the actual CORS request. CORS preflight
request uses OPTIONS method and includes these headers as part of the request sent from the
browser to API Gateway:

webMethods API Gateway User's Guide 10.15 353

2 Implement APIs

https://www.w3.org/TR/cors/

1. Origin

2. Access-Control-Request-Method

3. Access-Control-Request-Headers

The following flow chart explains the flowof the CORSpreflight request received inAPIGateway:

The following table shows the various use cases of the CORS preflight request originating from
browser and how API Gateway responds to each CORS preflight requests:

354 webMethods API Gateway User's Guide 10.15

2 Implement APIs

API Gateway sends the
respective response to
browser

ConfiguredCORSPolicy inAPI
Gateway

CORS Preflight request
headers from browser

#

Sends 403 Specified
Origin is not allowed

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test.com

Access-Control-Request-Method
: POST

1

status, as the Origin
header (http://test.com)Access-Control-Allow-Methods

: POST,GET,PUT
Access-Control-Request-Headers
: test1,test2

from the browser does not
match with the
Access-Control-Allow-Origin

Access-Control-Allow-Headers :
test1,test2

(http://test2.com)
configured in the CORS
policy.

Sends 405 Method Not
Allowed status, as the

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test2.com

Access-Control-Request-Method
: DELETE

2

Access-Control-Request-Method
header (DELETE) fromAccess-Control-Allow-Methods

: POST,GET,PUT
Access-Control-Request-Headers
: test1,test2

the browser does not
match with the
Access-Control-Allow-Methods

Access-Control-Allow-Headers :
test1,test2

(POST,GET,PUT)
configured in the CORS
policy.

Sends 403 Header Not
Supported, as the

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test2.com

Access-Control-Request-Method
: POST

3

Access-Control-Request-Headers
header (test3) from theAccess-Control-Allow-Methods

: POST,GET,PUT
Access-Control-Request-Headers
: test3

browser does not match
with the
Access-Control-Allow-Headers

Access-Control-Allow-Headers :
test1,test2

(test1,test2) configured in
the CORS policy.

Sends 200OK status with
the following headers:

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test2.com

Access-Control-Request-Method
: POST

4

Access-Control-Allow-Methods
: POST

Access-Control-Allow-Origin
: http://test2.com

Access-Control-Request-Headers
: test1 Access-Control-Allow-Headers :

test1, test2
Access-Control-Allow-Methods
: POST,GET,PUT

Access-Control-Max-Age: 100 Access-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Credentials
: true Access-Control-Max-Age:

100

webMethods API Gateway User's Guide 10.15 355

2 Implement APIs

API Gateway sends the
respective response to
browser

ConfiguredCORSPolicy inAPI
Gateway

CORS Preflight request
headers from browser

#

Access-Control-Expose-Headers
: header1,header2 Since the origin,methods,

and headers from the
browser matches with
configured CORS policy
in API Gateway.

Sends 200OK status with
the following headers:

Access-Control-Allow-Origin :
http://test1.com

Origin: http://test2.com

Access-Control-Request-Method
: POST

5

Access-Control-Allow-Methods
: POST

Access-Control-Allow-Origin
: http://test2.com

Access-Control-Request-Headers
: test1 Access-Control-Allow-Headers :

test1, test2
Access-Control-Allow-Methods
: POST,GET,PUT

Access-Control-Max-Age: 100 Access-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Credentials
: true Access-Control-Max-Age:

100
Access-Control-Expose-Headers
: header1,header2 Even though the origin

header from the browser
In addition, if you have specified
the Javascript origins in the
application as http://test2.com

does not match with
configured CORS policy,
it matches with the
configured javascript
origins in the application.

CORS Request

A CORS request is a HTTP request that includes an Origin header. When API Gateway receives
the CORS request, the Origin header in the CORS request is verified against the
Access-Control-Allow-Origin configured in the CORS policy, if it matches then API Gateway allows
to access the resources.

The following flow chart explains the flow of the CORS request received in API Gateway:

356 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The following table shows the various use cases of the CORS request originating from browser
and how API Gateway responds to each CORS requests:

API Gateway sends the
respective response to
browser

Configured CORS Policy in
API Gateway

CORS Request headers
from browser

#

Sends 403 Specified Origin is
not allowed status, as the

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test.com1

Origin header (http://test.com)
Access-Control-Allow-Methods
: POST,GET,PUT

from the browser does not
match with the

Access-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Origin
(http://test2.com) configured
in the CORS policy.

Access-Control-Max-Age: 100

Access-Control-Allow-Credentials
: true

Access-Control-Expose-Headers
: header1,header2

Sends 200 OK status with the
following headers:

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test2.com2

webMethods API Gateway User's Guide 10.15 357

2 Implement APIs

API Gateway sends the
respective response to
browser

ConfiguredCORSPolicy inAPI
Gateway

CORS Request headers
from browser

#

Access-Control-Allow-Methods
: POST,GET,PUT

Access-Control-Allow-Origin
:

http://test2.comAccess-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Credentials
: trueAccess-Control-Max-Age: 100

Access-Control-Allow-Credentials
: true

Access-Control-Expose-Headers
: header1,header2

Access-Control-Expose-Headers
: header1,header2

Access-Control-Allow-Credentials
: true

Since the Origin header
(http://test2.com) from the
browser matches with the
Access-Control-Allow-Origin
(http://test2.com) configured
CORS policy in API Gateway.

Sends 200 OK status with the
following headers:

Access-Control-Allow-Origin :
http://test1.com

Origin: http://test2.com

Access-Control-Request-Method
: POST

3

Access-Control-Allow-Methods
: POST

Access-Control-Allow-Origin
: http://test2.com

Access-Control-Request-Headers
: test1 Access-Control-Allow-Headers

: test1, test2
Access-Control-Allow-Methods
: POST,GET,PUT

Access-Control-Max-Age: 100 Access-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Credentials
: true Access-Control-Max-Age:

100
Access-Control-Expose-Headers
: header1,header2 Access-Control-Allow-Credentials

: true
In addition, if you have specified
the Javascript origins in the
application as http://test2.com

Even though the origin header
from the browser does not
match with configured CORS
policy, it matches with the
configured javascript origins
in the application.

Note:

358 webMethods API Gateway User's Guide 10.15

2 Implement APIs

If native service supports CORSmechanism and if you have not configured the CORSpolicy
in API Gateway, then API Gateway goes to pass-through security mode and forwards the
CORS request to the native service.
If native service supports CORS mechanism and if you have also configured the CORS
policy in API Gateway, then API Gateway takes precedence in handling the CORS request.

Error Handling
The policy in this stage enables you to specify the error conditions, lets you determine how these
error conditions are to be processed. You can also mask the data while processing the error
conditions. The policies included in this stage are:

Conditional Error Processing

Data Masking

Custom Extension

Custom Extension policies allow you to handle requirements that might not be provided by
the out-of-the-box policies. You can add these custom extensions into API Gateway policy
stages. To learn more about Custom Extension, see “Custom Policy Extension” on page 383.

Conditional Error Processing

Error Handling is the process of passing an exception message issued as a result of a run-time
error to take any necessary actions. This policy returns a custom error message (and the native
provider's service fault content) to the application when the API Gateway or native provider
returns a service fault. You can configure conditional error processing and use variables to create
custom error messages.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Conditions are used to specify when the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the error responses that comply
with all the configured conditions

OR. This is selected by default. API Gateway transforms the
error responses that complywith any one configured condition.

Click Add Condition and provide the following information and

click .

Variable. Specifies the variable type with a syntax.

webMethods API Gateway User's Guide 10.15 359

2 Implement APIs

DescriptionProperty

Operator. Specifies the operator to use to relate variable and the
value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Not Contains

Exists

Not Exists

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Pre-Processing. Specifies how the error response is to be processed before this policy processes
it.

Specify thewebMethods IS service to pre-process the errormessage.Invoke webMethods
Integration Server Service

Provide the following information

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the error messages.

You can add multiple entries for webMethods IS service by

clicking .

Run as User. Specifies the authentication mode to invoke the
IS service. If this field is left blank the incoming credentials of
the user, identified by API Gateway, are used to authenticate
and invoke the IS service. You can also specify a particular user,
you want API Gateway to use to run the IS service.

Comply to IS Spec. Mark this as true, if you want the input
and the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in the
wmAPIGateway package.

360 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

webMethods IS Service alias. Start typing the webMethods
alias name and select the alias from the type-ahead search results
displayed to add one or more aliases.

Provide the XSLT file and feature you want to use to transform the
service error response.

XSLT Transformation

Click Browse to select the XSLT file and upload it.

Provide the following information for the XSLT feature:

Feature Name. Specifies the name of the XSLT feature.

Feature Value. Specifies the value for the feature.

You can addmultiple entries for feature name and value by clicking

.

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Transformation Configuration. Specifies various transformations to be configured.

Customizes the list of headers in the error response that is sent to
the client.

Header Transformation

You can add or modify header parameters by providing the
following information:

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

You can addmultiple variables and corresponding values by clicking

.

You can remove any header by typing the plain value or value with
a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Specifies the status transformation to be configured for the error
responses.

Status Transformation

Provide the following information:

Code. Specifies the status code that is sent in the response to the
client.

webMethods API Gateway User's Guide 10.15 361

2 Implement APIs

DescriptionProperty

For example if youwant to transform status code as 403, provide
403 in the Code field.

Message. Specifies the Status message that is sent in the
response to the client.

For example The data you are looking for is not found can be used
to transform the original 404 Not Found status message.

Defines a custom variable name to a complex variable expression
or constant value. This can be particularly useful when you want

Define custom variables

to use this complex expression multiple times in the error payload
transformation or when you want to use a short notation for a
complex variable expression.

Provide the following information:

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

For example if you provide a variable as id and the corresponding
value as ${response.payload.jsonPath[$.id]}, this creates a custom
variable that can be used in failure message transformation.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Failure Message. Specifies the custom failure message format that API Gateway should send to
the application.

Specifies the payload transformation to be configured for the error
responses.

Failure Messages

Click text and specify the payload to use to transform the error
response messages as required.

Click json and specify the payload to use to transform the error
response messages as required.

Click xml and specify the payload to use to transform the error
response messages as required.

Note:
For a SOAP API, select the type text and provide the failure
message to be included in the faultstring of the SOAP
response.

Failure message in type json, xml are not used for the SOAP
response.

362 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

As this property supports variable framework, to transform the
error response messages you can make use of the available
variables in addition to the custom variables defined in this
policy. For details about the variables available in API Gateway,
see “Variables Available in API Gateway” on page 373.

Click Send Native Provider Fault Message to send the native
failure message to the application without applying payload
transformation.

This field is not applicable for APIswhen they participate inAPI
mashups.

Post-Processing. Specifies how the error response sent by the native service is to be processed
before sending the same to the application.

Specify the webMethods IS Service for post-processing the error
message.

Invoke webMethods
Integration Server Service

Provide the following information

webMethods IS Service. Specify the webMethods IS service to
be invoked to post-process the error messages.

You can add multiple entries for webMethods IS service by

clicking .

Note:
The pipeline variables in the Invoke IS service include only
the response headers and they do not include request headers
(sent by the client or the ones added during the request
transformation step). To access the request headers in the
Invoke IS Service flow, use the pub.flow:getTransportInfo
service.

Run as User. Specifies the authentication mode to invoke the
IS service. If this field is left blank the incoming credentials of
the user, identified by API Gateway, are used to authenticate
and invoke the IS service. You can also specify a particular user,
you want API Gateway to use to run the IS service.

Comply to IS Spec. Mark this as true if youwant the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:

webMethods API Gateway User's Guide 10.15 363

2 Implement APIs

DescriptionProperty

The response headers sent by the native service and API
Gateway does not include any info regarding the request
headers or the headers added during the request
transformation. Use the pub.flow:getTransportInfo flow
service to retrieve the request headers in the pipeline.

webMethods IS Service alias. Start typing the webMethods
alias name and select the alias from the type-ahead search results
displayed to add one or more aliases.

Provide the XSLT file that you want to use to transform the service
error response.

XSLT Transformation

Provide the following information for the XSLT feature:

Feature Name. Specifies the name of the XSLT feature.

Feature Value. Specifies the value for the feature.

You can add multiple entries for feature names and values by

clicking .

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Transformation Metadata. Specifies the metadata for transformation of the error responses
received from the native API. For example, the namespaces configured in this section can be used
when you provide the syntax for XPath ${response.payload.xpath} For example:
${response.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for
transformation. This is applicable only for XML transformation.

Namespace

Provide the following information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

For example, specify the namespace prefix as SOAP_ENV.

Namespace URI. The namespaceURI of the payload expression
to be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declaration defines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:

364 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

You can addmultiple namespace prefixes andURIs by clicking

.

Data Masking

Data masking is a technique whereby sensitive data is obscured in some way to render it safe and
to protect the actual data while having a functional substitute for occasions when the real data is
not required.

This policy is used to mask sensitive data in the custom error messages being processed and sent
to the application. Fields can be masked or filtered in the error messages. You can configure the
masking criteria as required for the XPath, JPath, and Regex expressions. This policy can also be
applied at the API scope level.

Note:
API Gateway does not mask the payload, if the payload is sent as a stream.

The table lists themasking criteria properties that you can configure tomask the data in the request
messages received:

DescriptionProperty

Specifies the applications for which the masking criterion has to be
applied.

Consumer
Applications

Start typing the application name, select the application from the

type-ahead search results displayed, and click to add one or
more applications.

You can use the delete icon to delete the added applications from
the list.

XPath. Specifies the masking criteria for XPath expressions in the error messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

webMethods API Gateway User's Guide 10.15 365

2 Implement APIs

DescriptionProperty

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

You can add multiple masking criteria.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the XPath
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myxpath} and the corresponding mask value as
${request.headers.var1} , and if the incoming request header myxpath
is configured with value //ns:cardNumber, then the card number
derived from the payload is masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated

Note:
You can add multiple namespace prefix and URI by clicking .

JSONPath. This is applicable only for REST API. Specifies the masking criteria for JSONPath
expressions in the error messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

366 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the
JSONPath is applied on the payload using the value that is resolved
from the variable given.

For example, if you provide a query expression as
${request.headers.myjsonpath} and the corresponding mask value
as ${request.headers.var1} , and if the incoming request header
myjsonpath is configured with value $.cardNumber, then the card
number derived from the payload is masked with the header value
in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Regex. Specifies the masking criteria for regular expressions in the error messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the regex
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myregex} and the corresponding mask value as
${request.headers.var1} , then the regex is applied using the value
configured in the request header myregex and the derived value is
masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

webMethods API Gateway User's Guide 10.15 367

2 Implement APIs

DescriptionProperty

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

When you select this option the transactional log for the response is
masked on top of response sent to the client.

Select this option to apply masking criteria for payload.Apply for payload

When you select this option the payload in the response sent to the client
is masked.

Note:
When you select this option it automatically masks the data in the
transactional log.

Policy Validation and Dependencies
The following table lists the following:

Policy dependencies; whether a policy must be used in conjunction with another particular
policy.

Conflicting or incompatible policies.

Whether a policy can be includedmultiple times in a single API. If a policy cannot be included
multiple times in a single API, API Gateway selects one, depending on the precedence of the
policy at the enforcement level, for the effective policy and processes at run-time.

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

No. API Gateway
includes only one

None.Identify & AuthorizeREST

SOAP

Authorize User

policy in the effective
policy.

Yes. API Gateway
includes all

None.None.REST

SOAP

Conditional
Error Processing

Conditional Error
Processing policies in
the effective policy.

No. API Gateway
includes only one

Straight Through
Routing, Load

None.REST

SOAP

Conditional
Routing

policy in the effective
policy.

BalancerRouting,
Dynamic
Routing,
Content-based
Routing

368 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

No. API Gateway
includes only one

Straight Through
Routing, Load

None.REST

SOAP

Content-based
Routing

policy in the effective
policy.

BalancerRouting,
Dynamic
Routing,
Conditional
Routing

No. API Gateway
includes only one

None.None.REST

SOAP

Custom HTTP
Header

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Data Masking

(ErrorHandling) policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Data Masking

(Response
Processing)

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Data Masking

(Request
Processing)

policy in the effective
policy.

No. API Gateway
includes only one

Straight Through
Routing, Load

None.REST

SOAP

Dynamic
Routing

policy in the effective
policy.

BalancerRouting,
Content-based
Routing,
Conditional
Routing

No. API Gateway
includes only one

None.None.REST

SOAP

Enable HTTP /
HTTPS

policy in the effective
policy.GraphQL

No. API Gateway
includes only one

NoneNoneREST

SOAP

Enable JMS /
AMQP

policy in the effective
policy.

webMethods API Gateway User's Guide 10.15 369

2 Implement APIs

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

No. API Gateway
includes only one

None.Inbound Auth -
Message policy is

REST

SOAP

Identify &
Authorize

policy in the effective
policy.

required if
Identification Type
is configured as WS

GraphQL

Security Username
Token or WS Security
X.509 Certificate or
Kerberos Token for
SOAP-based APIs.

No. API Gateway
includes only one

None.None.SOAPInbound Auth -
Message

policy in the effective
policy.

Yes. API Gateway
includes all Invoke

None.None.REST

SOAP

Invoke
webMethods IS

(Response
Processing)

webMethods IS
policies in the effective
policy.

Yes. API Gateway
includes all Invoke

None.None.REST

SOAP

Invoke
webMethods IS

(Request
Processing)

webMethods IS
policies in the effective
policy.

No. API Gateway
includes only one

NoneJMS/AMQP REST
Routing

RESTJMS/AMQP
REST Properties

policy in the effective
policy.

No. API Gateway
includes only one

None.JMS/AMQP SOAP
Routing

SOAPJMS/AMQP
SOAP Properties

policy in the effective
policy.

No. API Gateway
includes only one

Straight Through
Routing,

NoneRESTJMS/AMQP
REST Routing

policy in the effective
policy.

Dynamic
Routing,
Content-based
Routing,
Conditional
Routing

370 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

No. API Gateway
includes only one

Straight Through
Routing,

None.SOAPJMS/AMQP
REST Routing

policy in the effective
policy.

Dynamic
Routing,
Content-based
Routing,
Conditional
Routing

No. API Gateway
includes only one

Straight Through
Routing,

None.REST

SOAP

Load Balancer
Routing

policy in the effective
policy.

Dynamic
Routing,
Content-based
Routing,
Conditional
Routing

Yes. API Gateway
includes all Log

None.None.REST

SOAP

Log Invocation

Invocation policies in
the effective policy.GraphQL

Yes. API Gateway
includes all Monitor

None.None.REST

SOAP

Monitor
Performance

Performance policies
in the effective policy.

Yes. API Gateway
includes all Monitor

None.Identify & AuthorizeREST

SOAP

Monitor SLA

Service Level
Agreement policies in
the effective policy.

No. API Gateway
includes only one

None.None.SOAPOutbound Auth
- Message

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Outbound Auth
- Transport

policy in the effective
policy.

Yes. API Gateway
includes all XSLT

None.None.REST

SOAP

Response
Transformation

Transformation

webMethods API Gateway User's Guide 10.15 371

2 Implement APIs

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

policies in the effective
policy.

Yes. API Gateway
includes all XSLT

None.None.REST

SOAP

Request
Transformation

Transformation
policies in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Service Result
Cache

policy in the effective
policy.

No. API Gateway
includes only one

None.None.RESTSet Media Type

policy in the effective
policy.

No. API Gateway
includes only one

Load Balancer
Routing,

None.REST

SOAP

Straight Through
Routing

policy in the effective
policy.

Dynamic
Routing,
Content-based

GraphQL

Routing,
Conditional
Routing

Yes. API Gateway
includes all Traffic

None.Identify & AuthorizeREST

SOAP

Traffic
Optimization

Optimization policies
in the effective policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Validate API
Specification

(Response
Processing)

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Validate API
Specification

(Request
Processing)

policy in the effective
policy.GraphQL

372 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Variable Framework
This figure depicts how the variable framework is used to access the variables in various policies
across stages.

Note:
Any variables that access the request or response payloads cannot be used in the variable
framework, if the payload is sent as a stream.

The following table summarizes the keywords that are used to define the variable syntaxes:

DescriptionVariable keyword

Defines the stage of the system defined policy. Possible values are:paramStage

request

response

Defines the specific parameter of the request or response. Possible values
are:

paramType

payload

headers

query

path

httpMethod

statusCode

statusMessage

webMethods API Gateway User's Guide 10.15 373

2 Implement APIs

DescriptionVariable keyword

Defines the query that can be applied over string elements like payload.
Possible values are:

queryType

xpath

jsonPath

regex

The following variable types are available in the request or response stages:

${paramStage.paramType}

You can use this syntax to access the following string variables: path, statusCode, statusMessage,
httpMethod.

Examples: ${request.path}, ${response.statusCode}

${paramStage.paramType.paramName}

You can use this syntax to access map types, such as query, headers, and path.

Example: ${request.query.var1}, ${response.header.Content-Type}, ${request.path.name}.

${paramStage.paramType.queryType[queryValue]}

You can use this syntax to access the payload. Examples:

${request.payload.xpath[//ns:emp/ns:empName]}

Where "//ns:emp/ns:empName" is the XPath to be applied on the payload if contentType is
application/xml, text/xml, or text/html.

${response.payload.jsonPath[$.cardDetails.number]}

Where $.cardDetails.number is the jsonPath to be applied on payload if contentType is
application/json or application/json/badgerfish.

${request.payload.regex[[0-9]+]}

Where [0-9]+ is the regular expression to be applied on the payload if contentType is
text/plain.

${request.isSoapToRest} or ${response.isSoapToRest}

This variable returns True if the current invoke is REST invoke for a SOAP API. Else it
returns False.

Note:
While xpath and jsonPath are applicable only to payload, regEx can be used with both
payload and path.

${paramStage[stepName].paramType.paramName]}

374 webMethods API Gateway User's Guide 10.15

2 Implement APIs

You can use this syntax to access the header or payload in the request or response stage.

Example:

Variable: ${response.headers.id}

Value: ${response[customExtension].payload.jsonPath[$.id]}

This transformation adds a header to the response with the name id, and its value is derived
from the JSON payload that is sent from the external callout as per the JSON path.

The following sections summarize the variables that are available in API Gateway as part of
variable framework template in addition to the existing predefined system context and custom
context variables:

Request Variables

Variables that allow you to extract and reuse values in the request processing stage.

DescriptionVariable Syntax

Gets the value of the header name in the
request.

${request.headers.NAME}

Example: ${request.headers.Content-Type}

Gets the value of the query name in the
request.

$ {request.query.NAME}

Example: ${request.query.var1}

Gets the value of the path in the request.${request.path}

Gets the value of the path in the request.${request.path.regex[EXPR]}

Example: ${request.path.regex[0]}

Gets the method in the request.${request.httpMethod}

Gets the value after applying a xpath
expression on the request path.

${request.payload.xpath[EXPR]}

Example:${request.payload.xpath[//ns:emp/ns:empName]},
where //ns:emp/ns:empName is the xpath to be applied
on the payload if contentType is application/xml.

Note:
The namespace URI for the prefixes
you have configured in the xpath
expression are resolved using
namespaces configured in the
metadata section in the policy or
using the namespaces configured
through XpathNamespaces custom
variable in the custom extension
policy.

Gets the value after applying a JSON
expression on the request path.

${request.payload.jsonPath[EXPR]}

webMethods API Gateway User's Guide 10.15 375

2 Implement APIs

DescriptionVariable Syntax

Example:
${request.payload.jsonPath[$.cardDetails.number]}
where $.cardDetails.number is the jsonPath to be applied
on the payload if contentType is application/json.

Provide the following variable, if there is a blank space
in the parameter name
${request.payload.jsonPath[$.['param name']]}

For example, if the parameter name is first name, then
provide the variable as
${request.payload.jsonPath[$.['first name']]}.

Gets the value after applying a regular
expression on the request path.

${request.payload.regex[EXPR]}

Example: ${request.payload.regex[[0-9]+]}where
[0-9]+ is the regex to be applied on the payload if
contentType is text/plain

Gets the value of the client ID identified
from the authorization header by the

${request.authorization.clientId}

configured IAM policy. This value is
available only if the relevant IAMpolicy
is configured.

Gets the value of the issuer identified
from the authorization header by the

${request.authorization.issuer}

configured IAM policy. This value is
available only if the relevant IAMpolicy
is configured.

Gets the value of the username
identified from the authorization header

${request.authorization.userName}

by the configured IAM policy. This
value is available only if the relevant
IAM policy is configured.

Gets the value of the authorization
header by the configured IAM policy.

${request.authorization.authHeader}

This value is available only if the
relevant IAM policy is configured.

Note:
If the authorization header has bearer
tokens (such as OAuth, OpenID, or
JWT), then you cannot use this
variable. In such cases, Software AG
recommends to use the

376 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionVariable Syntax

${request.authorization.incomingToken}
variable.

Gets the value of the API key from the
authorization header by the configured

${request.authorization.apiKey}

IAM policy. This value is available only
if the relevant IAMpolicy is configured.

Gets the value of the incoming token
from the authorization header by the

${request.authorization.incomingToken}

configured IAM policy. This value is
available only if the relevant IAMpolicy
is configured.

Gets the value of the audience from the
authorization header by the configured

${request.authorization.audience}

IAM policy. This value is available only
if the relevant IAMpolicy is configured.

Gets the value for the claim name from
the claims identified from the

${request.authorization.claims.CLAIM_NAME}

Example: ${request.authorization.claims.emp.company
}

Authorization header by the configured
IAM policy. This value is available only
if the relevant IAM policy is configured

Gets the correlation ID for this request.${request.correlationID}

Gets the ID of the application identified
for this request.

${request.application.id}

Gets the name of the application
identified for this request.

${request.application.name}

Gets the version ID of the application
identified for this request.

${request.application.version}

Gets the value of the claim name for the
claims identifier configured in the
application identified for this request.

${request.application.claims.CLAIM_NAME}

Example:${request.application.claims.sample}

Gets the partner ID of the application
identified for this request.

${request.application.partnerId}

Gets the description of the application
identified for this request.

${request.application.description}

Gets the value of the hostname identifier
in the specified index for the application
identified for this request.

${request.application.hostname[NUMBER]}

Example: ${request.application.hostname[0]}

webMethods API Gateway User's Guide 10.15 377

2 Implement APIs

DescriptionVariable Syntax

Gets the value of the payload identifier
in the specified index for the application
identified for this request.

${request.application.payloadIdentifier[NUMBER]}

Example:${request.application.payloadIdentifier[1]}

Gets the value of the team identifier in
the specified index for the application
identified for this request.

${request.application.team[NUMBER]}

Example: ${request.application.team[0]}

Gets the value of the token identifier in
the specified index for the application
identified for this request.

${request.application.token[NUMBER]}

Example:${request.application.token[1]}

Gets the value of the username identifier
in the specified index for the application
identified for this request.

${request.application.username[NUMBER]}

Example:${request.application.username[0]}

Gets the value of the wssUsername
identifier in the specified index for the
application identified for this request.

${request.application.wssUsername[NUMBER]}

Example:${request.application.wssUsername[0]}

Gets the value of the header name for
the headers identifier configured in the
application identified for this request.

${request.application.headers.HEADER_NAME}

Example:${request.application.headers.Accept}

In SOAP to REST context, this variable
returns the SOAP request to be sent to
the native API.

${request.payload.native.xpath [EXPR]}

Response variables

Variables that allow you to extract and reuse values in the response processing stage.

DescriptionVariable Syntax

Gets the value of the header
name in the response.

${response.headers.NAME}

Example: ${response.headers.Accept}

Gets the value for the status
code for the response.

${response.statusCode}

Gets the value for the status
message in the response

${response.statusMessage}

Gets the value of the payload
from the specified xpath of the
response.

${response.payload.xpath[EXPR]}

Example:${response.payload.xpath[//ns:emp/ns:empName]}where
//ns:emp/ns:empName is the xpath to be applied on the payload
if contentType is application/xml Note:

378 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionVariable Syntax

The namespace URI for the
prefixes you have
configured in the xpath
expression are resolved
using namespaces
configured in the metadata
section in the policy or
using the namespaces
configured through
XpathNamespaces custom
variable in the custom
extension policy.

Gets the value of the payload
from the specified jsonPath of
the response.

${response.payload.jsonPath[EXPR]}

Example:${response.payload.jsonPath[$.cardDetails.number]}
where $.cardDetails.number is the jsonPath to be applied on the
payload if contentType is application/json

Gets the value of the payload
from the specified regex of the
response.

${response.payload.regex[EXPR]}

Example: ${ response.payload.regex[[0-9]+]}where [0-9]+ is
the regex to be applied on the payload if contentType is text/plain

In SOAP to REST context, this
variable returns the native

${response.payload.native.xpath [EXPR]}

SOAP response, returned by
the native SOAP API.

API Gateway evaluates and supports the array expressions in JSON path.

Example: Consider the following payload.
{
"firstName":"John",
"lastName":"doe",
"age":26,
"address":
{"streetAddress":"naist street","city":"Nara","postalCode":"630-0192"}
,
"phoneNumbers":[
{"type":"iPhone","number":"0123-4567-8888"}
,
{"type":"home","number":"0123-4567-8910"}
]
}

Following are the responses for the expressions after evaluating the array expressions in JSON
path.

webMethods API Gateway User's Guide 10.15 379

2 Implement APIs

ResponseExpressions

"home"$.phoneNumbers[1].type

["iPhone","home"]$.phoneNumbers[0,1].type or
$.phoneNumbers[:2].type

[{"type":"iPhone","number":"0123-4567-8888"}
\{"type":"home","number":"0123-4567-8910"}]

$.phoneNumbers[0,1] or $.phoneNumbers[:2]

["John"]$..firstName

"John"$.firstName

"Nara"$.address.city

System Context Variables

API Gateway provides predefined system context variables and the values of these variables are
extracted from the client request.

DescriptionVariable Syntax

Get the value of the API ID.${apiId}

Get the name of the API.${apiName}

Get the version of the API.${apiVersion}

Get the value of the package ID.${packageId}

Get the value of the plan ID.${planId}

Provides you an option to get or set custom fields
to the transactional events for this request. To set

${customTransactionFields.FIELD_NAME}

Example: ${customTransactionFields.sample} the custom fields, you can configure the
customTransactionFields.FIELD_NAME custom
variable in Custom Extension policy.

Gets the time taken in milliseconds between the
request sent to native server and response received
from native server for this transaction.

${providerTime}

Gets the date when the request gets invoked.${date}

Gets the value of the ROUTING_ENDPOINT
context variable set using
pub.apigateway.ctxvar:setContextVariable

${dynamicEndpoint}

Gets the time when the request gets invoked.${time}

380 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionVariable Syntax

Gets the value of the user ID who sends the
request.

${user}

Gets the value theHTTPmethod used by the client
to send the request.

${inboundHttpMethod}

Example: GET

Gets the value of the HTTP method used by the
API Gateway in the routing policy to send the
request to native API.

${routingMethod}

Example: POST

Gets the content type of the request.${InboundContentType}

Example: application/json

Gets the accept header in the incoming request
from the client.

${inboundAccept}

Example: */*

Gets the protocol of the request.${inboundProtocol}

A partial reference to an API (for HTTP and
HTTPS only). The protocol, host and port are not
part of the value.

${inboundRequestURI}

For example, if the API is invoked: http://
host:port/gateway/API then the expected
value of this variable would be /gateway/API.

For a REST API, the URL also includes query
string parameters.

For example, if the following API is invoked:
http://host:port/gateway/cars?vin=1234 the
expected value of this variable would be /
gateway/cars?vin1234.

Gets the value of the client IP address used to send
the request.

${inboundIP}

Example: 210.178.9.0

Gets the API Gateway host name.${gatewayHostname}

Example: uk.myhost.com

Gets API Gateway IP address.${gatewayIP}

Example: 198.168.1.9

Gets the value of API operation selected from the
request. Operation names are available only for
SOAP APIs. It is empty for REST API.

${operationName}

Example: addInts

webMethods API Gateway User's Guide 10.15 381

2 Implement APIs

DescriptionVariable Syntax

Gets the value of the native endpoints from the
request. It returns value only after executing the
routing policy.

${nativeEndpoint}

Example: http://host:port/Service

In addition, the variable framework also supports the following variables:

${jms.headers.NAME}

${jms.query.NAME}

${jms.path}

${jms.path.regex[EXPR]}

${jms.httpMethod}

${jms.payload.xpath[EXPR]}

${jms.payload.jsonPath[EXPR]}

${jms.payload.regex[EXPR]}

${jms.statusCode}

Note:
You can use these variables when you want to use JMS/AMQP so that transformation can be
applied for the JMS/AMQP values. For example, if you set the path parameter as
jms.path.petidand the corresponding value as jms.header.h1, then if the request contains the
header value h1, the value h1 is replaced by the path parameter petid.

Enhancements to Variable Framework Support

Until API Gateway version 10.5, the variable framework was supported in API Mashup, Request
Transformation, Response Transformation, Conditional Error Processing, and Custom Extension
policies.

In API Gateway version 10.7 the existing variable framework is enhanced to support the following
use cases:

Simple aliases can be accessed across all stages using variable framework. For example:
${simpleAlias}.

The existing custom and system context variables are now accessible using variable framework.
As part of variable framework, the custom context variables that were defined using ctxVar
IS service are merged into custom variables. The syntax for accessing the system context
variables or custom context variables using variable framework is similar to the custom
variables. Example : ${variableName}. For details on how the system and custom context
variables were declared in API Gateway version 10.5, see “Conditional Routing” on page 273.

Note:

382 webMethods API Gateway User's Guide 10.15

2 Implement APIs

As like the earlier versions ofAPIGateway, you can also define and access the custom-context
variable or custom-variable using the ctxVar IS Service. For details, see webMethods API
Gateway User's Guide .

Both system context variables and custom variables (that includes custom context variables)
are accessible across all policy parameters that support variables.

Custom Policy Extension
API Gateway provides a range of out-of-the-box policies to address common API management
requirements like security, transformation, validation, error processing, and so on. In addition,
API Gateway provides an option to add custom extensions or custom variables.

Custom Extensions

You can add these custom extensions into API Gateway policy stages to handle a requirement
that might not be handled by any of the existing policies. You can use custom extensions in
conjunctionwith the existing policies across stages. For example, if youwant to invoke a third-party
API or call an external endpoint during any stage of API processing, you can add custom logic in
the corresponding policy stage and use it as required.

API Gateway supports the following custom extension types:

External endpoint

Use this custom extension when you have an external endpoint exposed, which can be
configured and invoked during any stage in API processing.

For example, if a native API expects the request in a certain format and the client application
sends the request in a different format, you can add a custom extension tomodify the incoming
request to the required format before sending it to the native API.

webMethods IS service

Use this custom extension when you want to invoke the webMethods IS policy.

AWS Lambda

Use this custom extension to invoke an Amazon Web Services (AWS) Lambda function and
use the business logic built-in the Lambda function in any stage of API processing.

Messaging

Use this custom extension when you want to send some data to a queue or topic during any
stage inAPI processing and a system can read themessage from the queue or topic and process
it asynchronously.

Custom extensions are applicable to the REST, SOAP, and OData API types. Custom extensions
are supported at all levels such as, API, Scope, Global and can be added in any or all policy
enforcement stages except the transport policy and the traffic monitoring policy stages.

The figure depicts a sample workflow for custom extension support in the request and response
processing stages in API Gateway.

webMethods API Gateway User's Guide 10.15 383

2 Implement APIs

Custom Variables

You can configure custom variables under custom extension policy. You can assign a value or a
variable expression to a custom variable which can be used in other policy parameters. Custom
variable also provides option to set custom field to the transactional events. To set the custom
fields, you have to define customTransactionFields.FIELD_NAMEcustomvariable. It also provides
an option to configure namespaces for XPath expressions. To configure the namespaces you have
to define XpathNamespaces custom variable.

How Do I Invoke an API through HTTP or HTTPS using Custom Extension?

This use case explains how to invoke a service through HTTP or HTTPS using custom extension.
The custom extension configured can be enforced in any of the policy stages and used during API
processing.

The use case starts when you have an API that has to be enforced with a custom extension and
ends when you successfully invoke the API with the custom extension enforced.

To invoke a service through HTTP or HTTPS using custom extension

1. Ensure you have the external endpoint URL to be invoked during API processing using a
custom extension.

2. Click APIs on the title navigation bar.

3. Click the required API.

The API details page appears.

4. Click Edit.

5. Select Policies.

384 webMethods API Gateway User's Guide 10.15

2 Implement APIs

6. Click Required Policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

Click to open the policy properties section in a full page.

7. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add .

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

webMethods API Gateway User's Guide 10.15 385

2 Implement APIs

DescriptionProperty

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variable Framework” on page 373.

8. Click Custom Action.

9. Select External endpoint in the custom extension Type field.

10. Provide the following information in the External Endpoint section, as required:

DescriptionProperty

Provide the external endpoint URI that you want to invoke.Endpoint URI

Specify the method exposed by the API.Method

Available values are:PUT,POST,GET,DELETE,HEAD,CUSTOM.

Note:
If you selectCUSTOM, theHTTPmethod in the incoming request
is sent to the native API.

Specifies the required SSL configuration details of the external
endpoint.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias. For details on
Keystore configuration, see webMethods API Gateway
Administration.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Truststore Alias. Specifies the alias for the truststore. For details
on Truststore configuration, see webMethods API Gateway
Administration.

386 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

HTTP Connection Timeout (seconds). Specifies the time
interval (in seconds) after which a connection attempt to the
external endpoint URL times out.

Read Timeout (seconds). Specifies the time interval (in
seconds) after which a socket read attempt times out.

Specifies the path parameter you want to configure to your custom
extension.

Path Parameters

Provide the following information:

Path Parameter Name. Species the name of the path parameter
you want to configure in your custom extension. This path
parameter name should bepresent in the endpointURLenclosed
with {} to be replaced at runtime. For example, define external
URL as http://host/authors/{id}/books and provide id as
path parameter name with the value you need to populate at
runtime.

Path Parameter Value. Specifies the value for the path
parameter specified.

11. Configure the custom properties of the custom extension as required.

For details about the custom extension properties and their descriptions, see “CustomExtension
Properties” on page 400.

12. Click Save.

The API is saved with the added custom extension.

13. Invoke the API.

The applied custom extension invokes thementionedHTTP orHTTPS endpoint and processes
as configured.

How Do I Invoke an IS Service using a Custom Extension?

This use case explains how to invoke an IS service using custom extension in one of the policy
stages and enforce during API processing.

For example you may want to process the request messages and transform them into a format
required by the native API or perform some custom logic before API Gateway sends the requests
to the native API.

The use case starts when you have an API which has to be enforced with a messaging custom
extension and ends when you successfully invoke the API with the custom extension enforced.

webMethods API Gateway User's Guide 10.15 387

2 Implement APIs

To invoke an IS service using custom extension

1. Click APIs on the title navigation bar.

2. Click the required API.

The API details page appears.

3. Click Edit.

4. Select Policies.

5. Click Any policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

Click to open the policy properties section in a full page.

6. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

388 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

ClickAdd Condition andprovide the following information and
click Add.

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variable Framework” on page 373.

7. Click Custom Action.

8. Select webMethods IS service in the custom extension Type field.

9. Provide the following information in the Invoke webMethods IS section, as required:

DescriptionProperty

Specify the webMethods IS service to be invoked to process the
messages.

webMethods IS Service

ThewebMethods IS servicemust be running on the same Integration
Server as API Gateway.

Note:
If an exception occurswhen invoking thewebMethods IS service,
by default APIGateway displays the status code as 500 and error
message as Internal Server Error.

webMethods API Gateway User's Guide 10.15 389

2 Implement APIs

DescriptionProperty

You can set custom status code and error message by setting the
following properties in the message context of the webMethods
IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code", 404);

context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Specifies the authentication mode to invoke the IS service.Run As User

If this field is left blank the incoming credentials of the user,
identified by API Gateway, are used to authenticate and invoke the
IS service. You can also specify a particular user, you want API
Gateway to invoke the IS service.

Select this property to mark it true, if you want the input and the
output parameters to comply to the IS Spec present in

Comply to IS Spec

pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Specifies the webMethods IS service alias to be invoked to process
the messages.

webMethods IS Service
Alias

Start typing the webMethods alias name, select the alias from the
type-ahead search results displayed, and click to add one or
more aliases.

10. Click Save.

The API is saved with the added custom extension.

11. Invoke the API.

390 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The applied custom extension invokes the IS service and processes as configured.

How Do I Invoke an AWS Lambda Function using Custom Extension?

This use case explains how to invoke an AWS Lambda function using custom extension. The
custom extension configured can be enforced in any of the policy stages and used during API
processing.

The use case starts when you have an API that has to be enforced with a custom extension and
ends when you successfully invoke the API with the custom extension enforced.

To invoke an AWS Lambda function using custom extension

1. Create a Lambda function and ensure it is active.

For details on how to create an AWS Lambda function, see https://docs.aws.amazon.com/
lambda/latest/dg/getting-started.html.

2. Configure AWS alias.

For details on how to configure an AWS alias, see webMethods API Gateway Administration.

3. Click APIs on the title navigation bar.

4. Click the required API.

The API details page appears.

5. Click Edit.

6. Select Policies.

7. Click Required Policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

webMethods API Gateway User's Guide 10.15 391

2 Implement APIs

https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

Click to open the policy properties section in a full page.

8. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add.

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

9. Click Custom Action.

10. Select AWS Lambda in the custom extension Type field.

11. Provide the following information in the AWS Lambda section, as required:

392 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Provide the AWS Lambda function name you want to invoke. As
this property supports variable framework, you canuse the available

Function Name

variables. For details about the variables available in API Gateway,
see “Variables Available in API Gateway” on page 373.

Specify the AWS invocation type, asynchronous or synchronous.Invocation Type

Available options are:

RequestResponse (synchronous type)

Event (asynchronous type)

Provide the AWS alias configured for the AWS account.AWS Alias

Provide the following client configuration details and click .Client Configuration

Name. Start typing the client property name and select the
required property from the type-ahead search results displayed.

API Gateway supports the following properties that you can
configure: Socket timeout(ms), Connection timeout(ms), Request
timeout(ms), Connection expiration timeout(ms), Maximum
Connection idle time(ms), Client execution timeout(ms), Server
error retry count, Enable throttle retries, Maximum client retry
count, TCP send buffer size hints, TCP receive buffer size hints,
Enable gzip requests, Enable Expect-Continue, Enable host
prefix injection, Enable Keep-alive, Enable, Response metadata
caching, Response metadata cache size, and Signature
Algorithm.

Value. Provide a value for the client property specified.

You can configure multiple properties.

For details about the supported client properties, see the following
AWS documents:

https://docs.aws.amazon.com/sdk-for-java/v1/developer-
guide/section-client-configuration.html

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/
amazonaws/ClientConfiguration.html

12. Configure the custom properties of the custom extension as required.

For details about the custom extension properties and their descriptions, see “CustomExtension
Properties” on page 400.

13. Click Save.

webMethods API Gateway User's Guide 10.15 393

2 Implement APIs

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/section-client-configuration.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/section-client-configuration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html

The API is saved with the added custom extension.

14. Invoke the API.

The applied custom extension invokes the AWS lambda function and processes as configured.

How Do I Invoke an API Asynchronously through JMS/AMQP using a Custom
Extension?

This use case explains how to add messaging as a custom extension in one of the policy stages
and invoke a service asynchronously during API processing.

Youwant to use theAMQPmessaging setup to send somedata to a queue during request processing
using the configured custom extension. This data that is sent can then be read from a queue,
processed, and sent in an asynchronous way.

The use case starts when you have an API which has to be enforced with a messaging custom
extension and ends when you successfully invoke the API with the custom extension enforced.

To invoke an API asynchronously through JMS/AMQP using custom extension

1. Ensure you have a JMS/AMQP environment set up with the required connection alias
configured.

For details on setting up the JMS/AMQP setup, see webMethods API Gateway Administration.

2. Click APIs on the title navigation bar.

3. Click the required API.

The API details page appears.

4. Click Edit.

5. Select Policies.

6. Click Any policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

394 webMethods API Gateway User's Guide 10.15

2 Implement APIs

7. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add.

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

webMethods API Gateway User's Guide 10.15 395

2 Implement APIs

DescriptionProperty

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

8. Click Custom Action.

9. Select Messaging in the custom extension Type field.

10. Provide the following information in the Messaging section, as required:

DescriptionProperty

Name of the connection alias you have configured.Connection Alias Name

You can configure the connection alias under Administration >
Messaging section. For details on how to configure the connection
alias, see webMethods API Gateway Administration.

Specify the destination to which the request message is sent.Destination Name

Specify the destination type to which the request message is sent.Destination Type

Specify the destination to which the response message is sent.Reply To Name

Specifies the destination type towhich the responsemessage is sent.Reply To Type

Select one of the following types:

QUEUE. Indicates that the response message is sent to a
particular queue.

TOPIC. Indicates that the responsemessage is sent to a particular
topic.

Provide a numeric value that specifies the expiration time (in
milliseconds) of the JMS or AMQP message.

Time to Live (ms)

If the time-to-live is specified as zero, expiration is set to zero, which
indicates that the message does not expire.

Defines the time in milliseconds for which API Gateway listens to
the Reply To Queue or Topic for the response message.

Time to Wait (ms)

396 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

The message delivery mode for the request message. This is the
delivery mode that web service clients must specify in the JMS or

Delivery Mode

AMQP message that serves as the request message for the web
service.

Select one of the following modes:

Non-Persistent. Indicates that the request message is not
persistent. The message might be lost if the JMS provider fails.

Persistent. Indicates that the request message should be
persistent. The message is not lost if the JMS provider fails.

11. Configure the custom properties of the custom extension as required.

For details on the custom extension properties and their description, see “Custom Extension
Properties” on page 400.

12. Click Save.

The API is saved with the added custom extension..

13. Invoke the API.

The applied custom extension calls the queue or topic that is configured.

How Do I Define a Custom Variable?

This use case explains how to define custom variable using custom extension. The defined custom
variable can be used in any of the subsequent policy stages during API processing.

The use case starts when you have to define a custom variable, which is not available in API
Gateway and ends when you successfully defined and accessed the variable in the subsequent
policy stages.

To define a custom variable using custom extension

1. Click APIs on the title navigation bar.

2. Click the required API.

webMethods API Gateway User's Guide 10.15 397

2 Implement APIs

The API details page appears.

3. Click Edit.

4. Select Policies.

5. Click Required Policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

Click to open the policy properties section in a full page.

6. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage.

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add.

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

398 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variable Framework” on page 373 .

7. Click Custom Variable.

8. Provide the following information in the Define Custom Variables section, as required:

DescriptionProperty

Specify the custom variable with a syntax to be accessed across
subsequent stages and click Add.

Custom Variable

Variable. Specifies the custom variable with a syntax.

Value. Specifies a plain value or value with a syntax.

For example, if you want to use the client's request related
information like content-type header at response stage, you can
define the ${clientContentType} custom variable to store the
${request.headers.Content-Type} variable. The ${clientContetType}
custom variable can be accessed in any other policy across
subsequent stages such as response or error processing stage.

For details about the variables available in API Gateway, see
“Variable Framework” on page 373.

9. Provide the following information in the Custom Extension Metadata section, as required.
This is applicable only for XML transformation:

DescriptionProperty

Provide the namespace prefix of the payload expression to be
validated.

Namespace Prefix

webMethods API Gateway User's Guide 10.15 399

2 Implement APIs

DescriptionProperty

For example, specify the namespace prefix as SOAP_ENV.

Provide the namespaceURI of the payload expression to be validated.Namespace URI

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declaration defines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can add multiple namespace prefixes and URIs by clicking
Add.

10. Click Save.

The API is saved with the added custom variables.

11. Invoke the API.

The custom variables are defined and can be accessed in the subsequent policy stages.

Custom Extension Properties

The table lists the properties that you can specify for a custom extension.

Request Processing Section

The table lists the custom extension properties you can configure in the Request processing section:

DescriptionProperty

Provide the request payload to be sent to the custom extension in one of
the following ways:

Payload

Type the request payload in the text box.

For details on the data objects and variables available in the Request
Processing section that you can use to configure, see “Data Objects
and Variables Available in API Gateway” on page 402.

Click and select one of the following and provide the required
information:

Inline Request. Type the required payload.

Load from Schema. Click Browse to upload a JSON or XML
schema file and click Save.

400 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Provide the following information, if you want to configure the headers
you need to send to the custom extension. By default, no headers are sent
to the custom extension.

Headers

Select Use incoming headers to use the header content in the
incoming requests from the client.

Provide the Header Name and the Header Value in the incoming
client request that has to be processed.

Provide the following information, if you want to configure query
parameters you need to send to the custom extension.

Query Parameters

Provide the Query Parameter Name and the Query Parameter
Value in the incoming client request that has to be processed.

For details on the data objects and variables available in the Request
Processing section that you can use to configure, see “Data Objects and
Variables Available in API Gateway” on page 402.

Response Processing section

The table lists the custom extension properties you can configure in the Response processing
section:

DescriptionProperty

Select to copy the entire response received from the external call out.Copy the entire
response

This response is used in the subsequent step by using ${request.payload}
or ${response.payload}.

Note:
Donot select this if you are usingAWSLambda custom extensionwith
invocation type as Event as there is no response returned.

Select to abort the API execution when the external callout encounters
any failures.

Abort API execution
in case of failure

If you do not select this option, API Gateway logs the failure and
continues with the processing.

Specify the following custom variables with a syntax to be accessed from
the response of the custom extension and click Add.

Transformation

Variable. Specifies the variable type with a syntax.

Value. Specifies a value with a syntax.

webMethods API Gateway User's Guide 10.15 401

2 Implement APIs

DescriptionProperty

For example if you provide a variable as ${var} and the corresponding
value as ${response[customExtension].payload.jsonPath[$.id]}, this
transformation evaluates the JSONpath from the custompolicy response
payload to get the value of the attribute id. The evaluated value is
assigned to the variable var given in the Variable field. You can use the
${var} syntax in the subsequent policies that support variable framework.

For details about the data objects and variables available in the Response
Processing section that you can use to configure, see “Data Objects and
Variables Available in API Gateway” on page 402.

This is used for XML transformation.Custom extension
metadata

Namespace Prefix. Provide the namespace prefix of the payload
expression to be validated.

Namespace URI. Provide the namespace URI of the payload
expression to be validated.

Custom Extension Metadata section

The table lists the customextension properties you can configure in theCustomExtensionMetadata
section. This is applicable only for XML transformation.

DescriptionProperty

Provide the namespace prefix of the payload expression to be validated.Namespace Prefix

Provide the namespace URI of the payload expression to be validated.Namespace URI

For details about the data objects and variables that you can use to configure, see “Data Objects
and Variables Available in API Gateway” on page 402.

Data Objects and Variables Available in API Gateway

The following table summarizes the data objects and variables that are available in API Gateway:

Possible valuesObject or Variable type

paramStage request

response

paramType payload or body

headers

query

402 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Possible valuesObject or Variable type

path

httpMethod

statusCode

statusMessage

queryType xpath

jsonPath

regex

The following data objects are available in the request processing or response processing steps:

${paramStage.paramType}

You can use this syntax to access the following string variables: path, statusCode, statusMessage,
httpMethod. Examples: ${request.path}, ${response.statusCode}

${paramStage.paramType.paramName}

You can use this syntax to access map types, such as query, headers, and path. Example:
${request.query.var1}, ${response.header.Content-Type}, ${request.path.name}.

${paramStage.paramType.queryType[queryValue]}

You can use this syntax to query a paramType. Examples:

${request.payload.xpath[//ns:emp/ns:empName]}

Where "//ns:emp/ns:empName" is the XPath to be applied on the payload if contentType is
application/xml, text/xml, or text/html.

${response.payload.jsonPath[$.cardDetails.number]}

Where $.cardDetails.number is the jsonPath to be applied on payload if contentType is
application/json or application/json/badgerfish.

${request.payload.regex[[0-9]+]}

Where [0-9]+ is the regular expression to be applied on the payload if contentType is
text/plain.

Note:
While xpath and jsonPath are applicable only to payload, regEx can be used with both
payload and path.

${paramStage[stepName].paramType.paramName]}

You can use this syntax to access header or payload from the response of the custom extension
in the response processing step.

webMethods API Gateway User's Guide 10.15 403

2 Implement APIs

Example:

Variable: ${response.headers.id}

Value: ${response[customExtension].payload.jsonPath[$.id]}

This transformation adds a header to the response with name id and its value is derived from
the json payload that is sent from the external callout as per the json path.

You can define your own variables in the Transformation variables field in the response
processing step.

Examples: ${key}, ${value}. The custom transformation variables that you define are available
in subsequent steps.

Request and Response Transformation Policies
Transformation policy enables you to configure several transformations on the requests from the
clients into a format required by the native API, or to transform the response by the native API
into a format required by the client.

The transformations include Header, Query Parameter, Path Parameter transformation, HTTP
Method transformation, Payload transformation, and Advanced transformation. The
transformations are applied based on the configurations provided in the transformation policies.

When can you use transformation policies?

You can use transformation policies:

When the API Provider wants to read the contents of the request and response to do audit
logging, or trigger a notification based on the contents of the request.

When the API Provider wants to modify the request before forwarding the request to native
API as the native API wants to identify all incoming requests from API Gateway. In such case
the provider can configure the Request transformation policy to add a header to all requests
before they get routed to the native API.

Pre-Requisites

Install API Gateway advanced edition 10.2 or higher.

Basic understanding of API Gateway and policy enforcement.

Ensure that you have the Manage API privilege.

How do I transform a request using Request Transformation Policy?

Use the Request Transformation policy to modify the contents of an incoming request such as
headers, payload, query parameters, path parameters, HTTP method using the configurations
given by the API Provider.

404 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The request transformation workflow is as follows:

1. The API Provider configures the Request Transformation policy in the Request Processing
stage of API Gateway. The API provider configures the details about when and how to
transform the contents of an incoming request.

2. The client sends the request to API Gateway.

3. API Gateway applies the transformations configured by the API Provider and transforms the
incoming request.

4. API Gateway sends the transformed request to the native API.

5. Native API processes the transformed request and sends the response to API Gateway.

6. API Gateway forwards the response to the client.

Consider a scenario where you have a legacy REST API (employeeApi) that does not adhere to
the REST API standards. For example, it accepts functional information such as employee name
through a header employeeName instead of accepting them through query or path parameters and
you want to modify the API to REST standards.

To configure request transformation policy:

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Select a Rest API from the list of APIs and click Edit.

3. Select Policies > Request Processing > Request Transformation.

The Request Transformation details page appears.

4. In the Condition section, select OR.

webMethods API Gateway User's Guide 10.15 405

2 Implement APIs

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set to AND operator. The configured transformation is applied
only when all the set conditions are satisfied.

5. Click Add Condition to configure the conditions to evaluate the contents on the request.

a. Specify the Variable. Example, Content-Type.

b. Specify the Operator to use to relate variable and the value provided. Example, Equals.

c. Specify the Value. Example, application/json.

When you select the operator -Equals, the Condition checks if theVariable: Content-Type
is equal to the Value: application/json.

d. Click Add.

6. Select Transformation Configuration > Header/Query/Path transformation.

The Header/Query/Path transformation details page appears.

7. In Add/Modify section, add the variable and set its value.

Here, native API accepts employee name through header ${request.headers.employeeName}
and you want the native API to accept these values through the query parameter
${request.query.name} and expose this change to the client without exposing the query
parameter.

To achieve this, set the variable and the value parameters as follows:

a. Variable: ${request.headers.employeeName}

b. Value: ${request.query.name}

c. Click Add.

Note:
For details about the variables available in API Gateway, see “Variables Available in
API Gateway” on page 373.

8. In the Remove section, add ${request.query.name} to remove the query parameter from the
request so that it does not reach the native API.

9. Click Save.

This request transformation policy configuration allows the nativeAPI to accept the header values
through query parameters. The nativeAPI accepts the header values through the query parameters

406 webMethods API Gateway User's Guide 10.15

2 Implement APIs

by transforming the query parameters to header parameters and then removing the query parameter
from the incoming request.

Request Transformation Policy Properties

The table lists the properties that you can specify for the Request Transformation policy:

DescriptionProperty

Conditions are used to specify when the policy has to be executed. You
can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the requests that comply with all the
configured conditions.

OR. This is selected by default. API Gateway transforms the requests
that comply with any one configured condition.

Click Add Condition and provide the following information and click

.

Variable: Specifies the variable type with a syntax.

Operator: Specifies the operator to use to relate variable and the
value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value: Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 373.

Transformation Configuration: Specifies various transformations to be configured.

webMethods API Gateway User's Guide 10.15 407

2 Implement APIs

DescriptionProperty

Specifies the Header, Query or path transformation to be configured for
incoming requests.

Header/Query/Path
Transformation for
REST API

You can add ormodify header, query or path transformation parameters
by providing the following information:and

Header
Transformation for
SOAP API

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

You can add multiple variables and corresponding values by clicking

.

You can remove any header, query, or path transformation parameters
by typing the plain value or value with a syntax.

Note:
Software AG recommends you not to modify the headers
${request.headers.Content-Length} and
${request.headers.Content-Encoding} asAPIGateway adds the right
values for these headers before sending the response back to client.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 373.

Note:
Payload transformationdoes not happen automatically for content-type
transformation. When you change the content type, ensure that you
dopayload transformation. For example, if you change the content-type
header from application/xml to application/json, youmust also change
the respective payload from application/xml to application/json.

Specifies the method transformation to be configured for incoming
requests.

Method
transformation for
REST API

Select any of the HTTP Method listed:

GET

POST

PUT

DELETE

HEAD

CUSTOM

408 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Note:
When CUSTOM is selected, the HTTP method in incoming request is
sent to the native service.When othermethods are selected, the selected
method is used in the request sent to the native service.

Note:
OnlyMethodTransformation happenswhen configured, but you have
to take care of adding payload during transformations involving
method change like GET to POST, and so on.

Specifies the payload transformation to be configured for incoming
requests.

Payload
Transformation

Provide the following information:

Payload Type. Specifies the content-type of payload, to which you
want to transform. The Payload field renders the respective payload
editor based on the selected content-type.

Payload. Specifies the payload transformation that needs to be
applied for the incoming requests.

As this property supports variable framework, you can make use of
the available variables to transform the request messages.

For example, consider the native API accepting two integer values
value1 and value2, and you want to pass these two values from API
Gateway to the native API, you can configure the payload field as
follows:
{
"value1" : 12,
"value2" : 34
}

You can also configure the payload field using one or more variables
by using variable framework. Let us see another syntax. For example,
for the same native API seen in the previous example, if your client
sends both the values through headers val1 and val2, and you want
to add it to payload for the native API to recognize the input, you
can do so by configuring the payload field as follows:
{
"value1" :${request.headers.val1},
"value2" :${request.headers.val2}
}

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

webMethods API Gateway User's Guide 10.15 409

2 Implement APIs

DescriptionProperty

Note:
If your payload content-type is different from the incoming
payload's content-type, you need to transform the content-type of
the header using Header Transformation.

Click + Add xslt document to add an xslt document and provide
the following information:

XSLT file. Specifies the XSLT file used to transform the request
messages as required.

Click Browse to browse and select a file.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can add more XSLT features and xslt documents by clicking

.

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Click + Add xslt transformation alias and provide the following
information:

XSLT Transformation alias. Specifies the XSLT transformation
alias

When the incoming request is in JSON, you can use a XSLTfile similar
to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="fakeroot">
<xsl:element name="fakenode">

<!-- Apply your transformation rules based on the
request from the Client-->
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

When the incoming request is in XML, you can use a XSLT file similar
to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

410 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="soapenv:Envelope">
<xsl:element name="soapenv:Body">

<!-- Apply your transformation rules based on the
request from the Client-->
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

Specifies the advanced transformation to be configured for incoming
requests.

Advanced
Transformation

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to be
invoked to process the request messages.

You can add multiple services by clicking .

For details about usage of Invoke webMethods IS policy in versions
10.2 and higher, see “Invoke webMethods IS Policy” on page 421.

Note:
The webMethods IS service must be running on the same
Integration Server as API Gateway.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the user,
identified by API Gateway, are used to authenticate and invoke the
IS service. You can also specify a particular user, you want API
Gateway to use to invoke the IS service.

Comply to IS Spec. Mark this as true if you want the input and the
output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS service
alias to be invoked to pre-process the request messages.

Transformation Metadata: Specifies the metadata for transformation of the incoming requests.
For example, the namespaces configured in this section can be usedwhen you provide the syntax
for XPath ${request.payload.xpath} For example: ${request.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for transformation.Namespace

webMethods API Gateway User's Guide 10.15 411

2 Implement APIs

DescriptionProperty

Provide the following information:

Namespace Prefix. The namespace prefix of the payload expression
to be validated.

For example, specify the namespace prefix as SOAP_ENV.

Namespace URI. The namespace URI of the payload expression to
be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declaration defines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can add multiple namespace prefixes and URIs by clicking

.

How do I transform a request and its response using Transformation Policy?

Use the Response Transformation policy to modify the contents of an outgoing response such as
headers, payload, query parameters, path parameters, HTTP method using the configurations
given by the API Provider.

The response transformation workflow is as follows:

1. The API Provider configures the Response Transformation policy in the Response Processing
stage of API Gateway. The API provider configures the details about when and how to
transform contents of an outgoing response.

2. The client sends the request to API Gateway.

3. API Gateway forwards the request to native API.

4. Native API processes the request and sends response to API Gateway.

5. API Gateway applies the transformations configured by the API Provider and transforms the
outgoing response.

6. API Gateway forwards the transformed response to the client.

412 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Consider a scenario, where a native API URL is moved permanently or temporarily, the native
API sends a 301 or 302 status code, and also sends the new address in the location header. However,
when API Gateway comes across the 301 or 302 status code, API Gateway reads the status code
and the location header, and redirects the request to new addressmentioned in the location header.
API Gateway, then sends the response from the new address to the client. This is how 3xx status
code is handled in API Gateway.

In this scenario, if you do not want API Gateway to do the redirection, instead youwant the clients
to receive the 3xx status code, and then do the redirection. This can be achieved by using the Status
Transformation policy in the Response Processing stage.

To achieve this transformation:

1. Change the native API to send an intermediate 2xx status code instead of 3xx status code, for
request from API Gateway.

For example, a demo service package contains a couple of REST services - source and
destination.

The REST service source ismoved to a new address and it sends a 301 status alongwith location
header. However, it sends 297 status code with the location header for requests from API
Gateway. The location header contains the address for destination, which is the new address
of the moved resource.

2. Configure the API in API Gateway with a Request Transformation policy to send a request
header requestOrigin with the value APIGateway. To configure the request transformation
policy, perform the following steps:

a. Click APIs in the title navigation bar.

A list of available APIs appears.

webMethods API Gateway User's Guide 10.15 413

2 Implement APIs

b. Select a Rest API from the list of APIs and click Edit.

c. Select Policies > Request Processing > Request Transformation.

The Request Transformation details page appears.

d. In the Condition section, select OR.

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set toANDoperator. The configured transformation is applied
only when all the set conditions are satisfied.

e. Click Add Condition to configure the conditions to evaluate the contents on the request.

f. Specify the Variable. Example, Content-Type.

g. Specify the Operator to use to relate variable and the value provided. Example, Equals.

h. Specify the Value. Example, application/json.

When you select the operator -Equals, the Condition checks if theVariable: Content-Type
is equal to the Value: application/json.

i. Click Add.

j. Select Transformation Configuration > Header/Query/Path transformation.

The Header/Query/Path transformation details page appears.

k. In Add/Modify section, add the variable and set its value.

Set the Variable and Value parameters as follows:

Variable: ${request.headers.requestOrigin}

Value: APIGateway

Note:
For details about the variables available in API Gateway, see “Variables Available in
API Gateway” on page 373.

l. Click Save.

This Request Transformation policy allows the API in API Gateway to send a request header
requestOrigin with the value APIGateway. This will help the native API identify the request
from API Gateway and send the response code 297.

414 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3. Configure the API in API Gateway with the Status Transformation policy to transform the 297
status code to 301 status code. To configure the status transformation policy, perform the
following steps:

a. Click APIs in the title navigation bar.

A list of available APIs appears.

b. Select a Rest API from the list of APIs and click Edit.

c. Select Policies > Response Processing > Response Transformation .

The Response Transformation details page appears.

d. In the Condition section, select OR.

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set toANDoperator. The configured transformation is applied
only when all the set conditions are satisfied.

e. Click Add Condition to configure the conditions to evaluate the contents on the request.

f. Specify the Variable. Example, ${response.statusCode}.

Note:
For details about the variables available in API Gateway, see “Variables Available in
API Gateway” on page 373.

g. Specify the Operator to use to relate variable and the value provided. Example, Equals.

h. Specify the Value. Example, 297.

When you select the operator - Equals, the Condition checks if the Variable:
${response.statusCode} is equal to the Value: 297.

i. Click Add.

j. Select Transformation Configuration > Status transformation.

The Status transformation details page appears.

k. Specify the Code and Message values that you would like in the response.

Set the Code and Message parameters as follows:

Code: 301

webMethods API Gateway User's Guide 10.15 415

2 Implement APIs

Message: Moved Permanently

l. Click Save.

This transformation policy allows the clients to receive the 301 status code, and then redirect to
the new address mentioned in location header.

Response Transformation Policy Properties

The table lists the properties that you can specify for the Response Transformation policy:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the responses that comply
with all the configured conditions

OR. This is selected by default. API Gateway transforms the
responses that comply with any one configured condition.

ClickAdd Condition and provide the following information and

click .

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

416 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Transformation Configuration. Specifies various transformations to be configured.

Specifies the header, query or path transformation to be
configured for the responses received from the native API.

HeaderTransformation

You can add or modify header, query or path transformation
parameters by providing the following information:

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

You can add multiple variables and corresponding values by

clicking .

You can remove any header, query, or path transformation
parameters by typing the plain value or value with a syntax.

Note:
Software AG recommends you not to modify the headers
${response.headers.Content-Length} and
${response.headers.Content-Encoding} asAPIGateway adds
the right values for these headers before sending the response
back to client.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
Payload transformation does not happen automatically for
content-type transformation. When you change the content
type, ensure to do payload transformation. For example, if you
change the content-type header from application/xml to
application/json, youmust also change the respective payload
from application/xml to application/json.

Specifies the status transformation to be configured for the
responses received from the native API.

Status transformation

Provide the following information:

Code. Specifies the status code that is sent in the response to
the client.

For example if you want to transform status code as 201,
provide 201 in the Code field.

webMethods API Gateway User's Guide 10.15 417

2 Implement APIs

DescriptionProperty

Message. Specifies the Status message that is sent in the
response to the client.

As both these properties support variable framework, you
can make use of the available variables to transform the
response code and message.

For example You have submitted successfully can be used to
transform the original OK status message.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Specifies the payload transformation to be configured for the
responses received from the native API.

Payload Transformation

Provide the following information:

Payload Type. Specifies the content-type of payload, towhich
you want to transform. The Payload field renders the
respective payload editor based on the selected content-type.

Payload. Specifies the transformation that needs to be applied
for the response.

As this property supports variable framework, you canmake
use of the available variables to transform the response
messages.

For example, consider the client accepting two integer values
value1 and value2, and you want to pass these two values
fromAPIGateway to the client, you can configure the payload
field as follows:
{
"value1" : 12,
"value2" : 34
}

You can also configure the payload field using one or more
variables by using variable framework. Let us see another
syntax. For example, for the same API seen in the previous
example, if your native sends both the values through headers
val1 and val2, and youwant to add it to payload for the client
to recognize the input, you can do so by configuring the
payload field as follows:
{
"value1" :${response.headers.val1},
"value2" :${response.headers.val2}
}

418 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 373.

Note:
If your payload content-type is different from the incoming
payload's content-type, you need to transform the
content-type of the header using Header Transformation.

Click + Add xslt document to add an xslt document and
provide the following information:

XSLT file. Specifies the XSLT file used to transform the
response messages as required.

Click Browse to browse and select a file.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can add more XSLT features and xslt documents by

clicking .

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Click + Add xslt transformation alias and provide the
following information:

XSLT Transformation alias. Specifies the XSLT
transformation alias

When you receive the response in JSON, you can use a XSLT
file similar to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="fakeroot">
<xsl:element name="fakenode">

<!-- Apply your transformation rules based
on the response received from the native API-->
</xsl:element>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

When you receive the response in XML, you can use a XSLT
file similar to the below sample:

webMethods API Gateway User's Guide 10.15 419

2 Implement APIs

DescriptionProperty
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="soapenv:Envelope">
<xsl:element name="soapenv:Body">

<!-- Apply your transformation rules based
on the response received from the native API-->
</xsl:element>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

Specifies the advanced transformation to be configured for the
responses received from the native API..

Advanced Transformation

Provide the following information:

webMethods IS Service. Specify thewebMethods IS service
to be invoked to process the response messages.

You can add multiple services by clicking .

For details about usage of Invoke webMethods IS policy in
versions 10.2 and higher, see “Invoke webMethods IS
Policy” on page 421.

Note:
The webMethods IS service must be running on the same
Integration Server as API Gateway.

Run as User. Specifies the authentication mode to invoke
the IS service. If this field is left blank the incoming credentials
of the user, identified by API Gateway, are used to
authenticate and invoke the IS service. You can also specify
a particular user, you want API Gateway to use to run the IS
service.

Comply to IS Spec. Mark this as true if you want the input
and the output parameters to comply to the IS Spec present
in pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS
service alias to be invoked to pre-process the request
messages.

420 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Transformation Metadata. Specifies the metadata for transformation of the responses received
from the native API. For example, the namespaces configured in this section can be used when
you provide the syntax for XPath ${response.payload.xpath} For example:
${response.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for
transformation.

Namespace

Provide the following information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

For example, specify the namespace prefix as SOAP_ENV.

Namespace URI. The namespace URI of the payload
expression to be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declarationdefines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can addmultiple namespace prefix andURI by clicking

.

Invoke webMethods IS Policy
This policy pre-processes the requestmessages and transforms themessage into the format required
by the native API or performs some custom logic, before API Gateway sends the requests to the
native APIs.

For example, you might need to accommodate differences between the message content that a
client is capable of submitting and the message content that a native API expects. For example, if
the client submits an order record using a slightly different structure than the structure expected
by the native API, you can use this action to process the record submitted by the client to the
structure required by the native API.

This policy also processes the native API’s response messages into the format required by the
application, before API Gateway returns the responses to the application.

The transformations using Invoke webmethods IS policy include Header, Query Parameter, Path
Parameter transformation, HTTP Method transformation, Payload transformation, Status Code,
and Status Message.

webMethods API Gateway User's Guide 10.15 421

2 Implement APIs

When can you use Invoke webmethods IS policy?

You can use Invoke webmethods IS policy:

When as an API Provider wants to read the contents of the request and response to do audit
logging, or trigger a notification based on the contents of the request.

When the API Provider wants to modify the request before forwarding the request to native
API as the native API wants to identify all incoming requests from API Gateway. In such case
theAPI Provider can configure the Invokewebmethods IS policy to add a header to all requests
before they get routed to the native API.

When the API Provider wants to achieve complex use cases of transformation by writing an
Invoke IS Service.

When the API Provider wants to write some custom logic using Java code to do the
transformation.

How do I transform a request using Invoke webMethods IS policy?

Use the Invoke webMethods IS policy to modify the contents of an incoming request such as
headers, payload, query parameters, path parameters, HTTP method using the configurations
given by the API Provider.

The Invoke webMethods IS workflow is as follows:

1. The API Provider creates an IS Service in Integration Server in which API Gateway is running.
The API Provider configures the IS Service to transform the request contents as per their need.

2. TheAPI Provider configures the InvokewebMethods IS policy in the Request Processing stage
of API Gateway with the created IS Service.

3. The client sends the request to API Gateway.

4. API Gateway invokes the webMethods IS Service configured by the API Provider. The IS
Service transforms the request contents as defined by the API Provider.

5. API Gateway sends the transformed request to the native API.

6. Native API processes the transformed request and sends the response to API Gateway.

7. API Gateway forwards the response to the client.

422 webMethods API Gateway User's Guide 10.15

2 Implement APIs

To configure Invoke webMethods IS policy in the Request Processing stage:

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Select a Rest API from the list of APIs and click Edit.

3. Select Policies > Request Processing > Request Transformation.

The Request Transformation section appears.

4. In the Condition section, select OR.

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set to AND operator. The configured transformation is applied
only when all the set conditions are satisfied.

5. Click Add Condition to configure the conditions to evaluate the contents on the request.

a. Specify the Variable. Example, Content-Type.

b. Specify the Operator to use to relate variable and the value provided. Example, Equals.

c. Specify the Value. Example, application/json.

webMethods API Gateway User's Guide 10.15 423

2 Implement APIs

When you select the operator -Equals, the Condition checks if theVariable: Content-Type
is equal to the Value: application/json.

d. Click Add.

6. Select Transformation Configuration > Advanced Transformation.

The Advanced Transformation section appears.

7. In webMethods IS Service section, click + Add webmethods is service.

8. Provide the following information.

webMethods IS Service. Specify the webMethods IS service to be invoked to process the
request messages.

You can add multiple services by clicking .

Note:
The webMethods IS service must be running on the same Integration Server as API
Gateway.

Run as User. Specifies the authentication mode to invoke the IS service. If this field is left
blank the incoming credentials of the user, identified by API Gateway, is used to
authenticate and invoke the IS service. You can also specify a particular user, you want
API Gateway to use to invoke the IS service.

Comply to IS Spec. Mark this as true if you want the input and the output parameters
to comply to the IS Spec present in pub.apigateway.invokeISService.specifications folder
in wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS service alias to be invoked
to pre-process the request messages.

Note:
For details about the variables available in API Gateway, see “Invoke webMethods IS Policy
Properties for Request Processing” on page 424.

9. Click Save.

This Invoke webMethods IS policy modifies the contents of an incoming request based on the IS
Service invoked.

Invoke webMethods IS Policy Properties for Request Processing

If Comply to IS Spec parameter is configured as true, API Gateway invokes the IS Service with
IS specification in the path pub.apigateway.invokeISService.specifications:RequestSpec for Request
Processing

424 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The following are the input and output parameters for REST, SOAP, and WebSocket APIs as
specified in the above IS Specification.

Output parametersInput parametersAPI type

REST headersheaders

query query

payloadpayload

path path

httpMethodhttpMethod

messageContext messageContext

apiName

requestUrl

correlationID (this is unique for
request and response)

SOAP headersheaders

payload payload

messageContextmessageContext

apiName payloadObject

payloadObject

requestUrl

correlationID (this is unique for
request and response)

WebSocket headersheaders

payload (this is applicablewhen the
message type is Text)

payload

messageContext
payloadObject (this is applicable
when the message type is Binary) payloadObject

messageContext

apiName

requestUrl

websocketInfo

webMethods API Gateway User's Guide 10.15 425

2 Implement APIs

Output parametersInput parametersAPI type

correlationID (this is unique for
request and response)

By default the "query" pipeline variable is a key value pair, where the value is of type string. But,
if the incoming request contains multiple values for the same query parameter and if you want
to access those multiple values using webMethods IS Service, you have to ensure two things:

1. Make sure that you have checked the Repeat check box for query parameter in the Add
Resource Parameter section of the API details screen.

2. To access or transform multiple values of that query parameter, you have to insert string list
(instead of string) under the "query" pipeline variable in the webMethods IS Service.

Note:

For SOAP to REST APIS, the payload contains the transformed SOAP request.
Payload transformation does not happen automatically for content-type transformation.
When you change the content type, ensure to do payload transformation also as part of IS
Service. For example, if you change the content-type header from application/xml to
application/json using IS service, you must also change the respective payload from
application/xml to application/json
OnlyMethodTransformation happenswhen configured, but you have to take care of adding
payload during transformations involving method change like GET to POST, and so on.
When Comply to IS spec is true, you can change the values of headers, query, payload,
and so on, programatically using Message Context, as well as using the pipeline variables
given. Software AG recommends you do not change those values directly in Message
Context, as the values in output pipeline variables are written to Message Context after the
invocation of IS Service.

If Comply to IS Spec parameter is set to false, API Gateway invokes the IS Service with the same
input and output parameters supported in 10.1 and the earlier versions:

proxy.name

JSONRESTContentString (REST only)

SOAPEnvelope (SOAP only)

EnvelopeString (SOAP only)

The table lists the properties that you can specify for this policy:

DescriptionProperty

Invoke webMethods Integration Server Service

Specifies the webMethods IS service to be invoked to pre-process the
request messages and the authentication mode for the IS service.

Add invoke webMethods
Integration Server service

Provide the following information:

426 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the request messages.

The webMethods IS service must be running on the same
Integration Server as API Gateway .

Note:
If an exception occurs when invoking the webMethods IS
service, by default APIGateway displays the status code as 500
and error message as Internal Server Error.

You can set custom status code and error message by setting
the following properties in the message context of the
webMethods IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code",
404);
context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the
user, identified by API Gateway, are used to authenticate and
invoke the IS service. You can also specify a particular user, you
want API Gateway to invoke the IS service.

Note:
It is the responsibility of the user who activates the API to
review the value configured in Run as User field to avoid
misuse of this configuration.

Comply to IS Spec. Mark this as true if you want the input and
the output parameters to comply to the IS Spec present in

webMethods API Gateway User's Guide 10.15 427

2 Implement APIs

DescriptionProperty

pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:Software AG recommends users to configure the policy
with Comply to IS Spec as true, as you can read or change the
values of headers, and so on, without having to read from or
write to the message context.

Specifies thewebMethods IS service alias to be invoked to pre-process
the request messages.

webMethods IS Service
alias

Start typing the webMethods alias name, select the alias from the

type-ahead search results displayed and click to add one
or more aliases.

You can use the delete icon to delete the added aliases from the
list.

Adding Custom Fields to Transactional Events

This section explains you how to add custom fields to the transactional events.

1. Create webMethods IS service by specifying the
pub.apigateway.utils:customFieldInTransactionEventSpec as a specification reference.

2. In the webMethods IS service, set the required custom fields in the customFieldsMap output
variable.

3. Oncewhen customFieldsMap gets created, the customfieldswill be available in the transactional
events.

4. Invoke the API with the Invoke webMethods IS policy.

Note:
You can also add the customfields to the transactional events fromAPIGateway by configuring
the customTransactionFields.FIELD_NAME custom variable in the Custom Extension policy.
For more details, see “How Do I Define a Custom Variable?” on page 397.

How do I transform a response using Invoke webMethods IS policy?

Use the Invoke webMethods IS policy to modify the contents of an outgoing response such as
headers, payload, query parameters, path parameters, HTTP method using the configurations
given by the API Provider.

The Invoke webMethods IS workflow is as follows:

428 webMethods API Gateway User's Guide 10.15

2 Implement APIs

1. The API Provider creates an IS Service in Integration Server in which API Gateway is running.
The API Provider configures the IS Service to transform the response contents as per their
need.

2. The API Provider configures the Invoke webMethods IS policy in the Response Processing
stage of API Gateway with the created IS Service.

3. The client sends the request to API Gateway.

4. API Gateway forwards the request to native API.

5. Native API processes the request and sends the response to API Gateway.

6. API Gateway invokes the webMethods IS Service configured by the API Provider. The IS
Service transforms the response contents as defined by the API Provider.

7. API Gateway forwards the transformed response to the client

To configure Invoke webMethods IS policy in the Response Processing stage:

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Select a Rest API from the list of APIs and click Edit.

3. Select Policies > Response Processing > Response Transformation.

The Response Transformation section appears.

4. In the Condition section, select OR.

webMethods API Gateway User's Guide 10.15 429

2 Implement APIs

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set to AND operator. The configured transformation is applied
only when all the set conditions are satisfied.

5. Click Add Condition to configure the conditions to evaluate the contents on the response.

a. Specify the Variable. Example, Content-Type.

b. Specify the Operator to use to relate variable and the value provided. Example, Equals.

c. Specify the Value. Example, application/json.

When you select the operator -Equals, the Condition checks if theVariable: Content-Type
is equal to the Value: application/json.

d. Click Add.

6. Select Transformation Configuration > Advanced Transformation.

The Advanced Transformation section appears.

7. In webMethods IS Service section, click + Add webmethods is service.

8. Provide the following information.

webMethods IS Service. Specify the webMethods IS service to be invoked to process the
request messages.

You can add multiple services by clicking .

Note:
The webMethods IS service must be running on the same Integration Server as API
Gateway.

Run as User. Specifies the authentication mode to invoke the IS service. If this field is left
blank the incoming credentials of the user, identified by API Gateway, are used to
authenticate and invoke the IS service. You can also specify a particular user, you want
API Gateway to use to invoke the IS service.

Comply to IS Spec. Mark this as true if you want the input and the output parameters
to comply to the IS Spec present in pub.apigateway.invokeISService.specifications folder
in wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS service alias to be invoked
to pre-process the request messages.

Note:

430 webMethods API Gateway User's Guide 10.15

2 Implement APIs

For details about the variables available in API Gateway, see “Invoke webMethods IS Policy
Properties for Response Processing” on page 431.

9. Click Save.

This Invoke webMethods IS policy modifies the contents of an outgoing response to the client
based on the IS Service invoked.

Invoke webMethods IS Policy Properties for Response Processing

If Comply to IS Spec parameter is configured as true, API Gateway invokes the IS Service with
IS specification in the path pub.apigateway.invokeISService.specifications:ResponseSpec (for
Response Processing)

The following are the input and output parameters for REST, SOAP, and WebSocket APIs as
specified in the above IS Specification.

Output parametersInput parametersAPI type

REST headersheaders

payload payload

messageContextmessageContext

statusCode statusCode

statusMessagestatusMessage

apiName

requestUrl

correlationID (this is
unique for request and
response)

SOAP headersheaders

payload payload

messageContextmessageContext

statusCode statusCode

statusMessagestatusMessage

apiName

payloadObject

requestUrl

webMethods API Gateway User's Guide 10.15 431

2 Implement APIs

Output parametersInput parametersAPI type

correlationID (this is
unique for request and
response)

WebSocket headersheaders

payload (this is
applicable when the
message type is Text)

payload

messageContext

payloadObjectpayloadObject (this is
applicable when the
message type is Binary)

messageContext

apiName

requestUrl

websocketInfo

correlationID (this is
unique for request and
response)

Note:

For SOAP to REST APIS, the payload contains the transformed JSON response.
Payload transformation does not happen automatically for content-type transformation.
When you change the content type, ensure to do payload transformation also as part of IS
Service.
When Comply to IS spec is true, you can change the values of headers, query, payload,
and so on, programatically using Message Context, as well as using the pipeline variables
given. Software AG recommends you do not change those values directly in Message
Context, as the values in output pipeline variables are written to Message Context after the
invocation of IS Service.

If Comply to IS Spec parameter is set to false, API Gateway invokes the IS Service with the same
input and output parameters supported in 10.1 and the earlier versions::

proxy.name

JSONRESTContentString (REST only)

SOAPEnvelope (SOAP only)

EnvelopeString (SOAP only)

The table lists the properties that you can specify for this policy:

432 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionProperty

Invoke webMethods Integration Server Service

Specifies the webMethods IS service to be invoked to process the
response messages and the authentication mode for the IS service.

Add invoke webMethods
Integration Server service

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the response messages.

The webMethods IS service must be running on the same
Integration Server as API Gateway

Note:
If an exception occurs when invoking the webMethods IS
service, by default APIGateway displays the status code as 500
and error message as Internal Server Error.

You can set custom status code and error message by setting
the following properties in the message context of the
webMethods IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code",
404);
context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the
user, identified by API Gateway, are used to authenticate and
invoke the IS service. You can also specify a particular user, you
want API Gateway to invoke the IS service.

webMethods API Gateway User's Guide 10.15 433

2 Implement APIs

DescriptionProperty

Note:
It is the responsibility of the user who activates the API to
review the value configured in Run as User field to avoid
misuse of this configuration.

Comply to IS Spec. Mark this as true if you want the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:Software AG recommends users to configure the policy
with Comply to IS Spec as true, as you can read or change the
values of headers, and so on, without having to read from or
write to the message context.

Specifies the webMethods IS service alias used to invoke the
webMethods IS service to pre-process the response messages.

webMethods IS Service
alias

Start typing the webMethods alias name, select the alias from the

type-ahead search results displayed and click to add one
or more aliases.

You can use the delete icon to delete the added aliases from the
list.

Adding Custom Fields to Transactional Events

This section explains about how to add custom fields to the transactional events.

1. Create webMethods IS service by specifying the
pub.apigateway.utils:customFieldInTransactionEventSpec as a specification reference.

2. In the webMethods IS service, set the required custom fields in the customFieldsMap output
variable.

3. Oncewhen customFieldsMap gets created, the customfieldswill be available in the transactional
events.

4. Invoke the API with the Invoke webMethods IS policy.

Note:
You can also add the customfields to the transactional events fromAPIGateway by configuring
the customTransactionFields.FIELD_NAME custom variable in the Custom Extension policy.
For more details, see “How Do I Define a Custom Variable?” on page 397.

434 webMethods API Gateway User's Guide 10.15

2 Implement APIs

System Context Variables
APIGateway provides predefined system context variables and you can declare your own custom
context variables. Any context variable state defined during the inbound request processing steps
is available during the outbound response processing steps. To set, get, or remove the predefined
context variables, use “The API for Context Variables” on page 437 provided in API Gateway.

The table lists the predefined system context variables that you can configure in the conditional
routing policy through the API Gateway user interface.

DescriptionSystem Context Variable Name

The identified API Gateway user for the current request.User

The HTTP method used by the client to send the request.Inbound HTTP method

For example, GET, POST, PUT, DELETE, and PATCH.

The HTTP method used by the routing policy when you select
CUSTOM as the HTTP method.

Routing method

If you do not define this context variable, then themethod used
is from the Inbound HTTP method.

Content type of the request.Inbound content type

Accept header in the incoming request from the client.Inbound accept

The protocol of the request.Inbound protocol

For example, HTTP or HTTPS.

A partial reference to an API (for HTTP and HTTPS only). The
protocol, host and port are not part of the value.

Inbound request URI

For example, if the API is invoked: http://host:port/gateway/API
then the expected value of this variablewould be /gateway/API.

For a RESTAPI, theURL also includes query string parameters.
For example, if the following API is invoked:
http://host:port/gateway/cars?vin=1234 the expected value of
this variable would be /gateway/cars?vin1234.

The Client IP address used to send the request.Inbound IP

API Gateway host name.Gateway hostname

API Gateway IP address.Gateway IP

Operation name for SOAP APIs.Operation name

It is empty for REST API.

webMethods API Gateway User's Guide 10.15 435

2 Implement APIs

DescriptionSystem Context Variable Name

Retrieves the native endpoint in the incoming request from the
client.

Native Endpoint

The table lists the predefined context variables that you can set or get in API Gateway using an IS
service. For details, see “The API for Context Variables” on page 437.

DescriptionContext Variable Name

The name of the consumer application accessing the API.CONSUMER_APPLICATION

The number of service faults for the interval.INTERVAL_FAULT_COUNT

The number of success counts for a given API.INTERVAL_SUCCESS_COUNT

The total number of counts for a given service.INTERVAL_TOTAL_COUNT

The average amount of time it took the service to complete all
invocations in the current interval. This is measured from the

AVG_SUCCESS_TIME

moment API Gateway receives the request until the moment it
returns the response to the caller.

Note:
By default, average response time does not include metrics
for failed invocations.

Minimum Response Time.FASTEST_SUCCESS_INVOKE

Note:
Bydefault,MinimumResponseTimedoes not includemetrics
for failed invocations.

Maximum Response Time.SLOWEST_SUCCESS_INVOKE

Note:
By default, Maximum Response Time does not include
metrics for failed invocations.

Contains an array of the SOAP header elements in the request.SOAP_HEADERS

Contains a map of key-value pairs in the request, where the
values are provided as strings.

PROTOCOL_HEADERS

The name of the service.SERVICE_NAME

The reason returned by the native provider in the case where
it produced a SOAP fault. This will not contain API Gateway

NATIVE_PROVIDER_ERROR

errors such as security policy enforcement errors. This variable
only contains the reason text wrapped in a SOAP fault.

436 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionContext Variable Name

Note:
When you use this variable in Conditional Error Processing
message that you specify in the Response Processing step,
note the following: if a request is denied due to security policy
enforcement, the fault handler variable $ERROR_MESSAGE
would contain a native service provider error message or
other error messages that result from enforced security
assertions. However, $NATIVE_PROVIDER_ERROR is null
in this case.

API Gateway takes the ROUTING_ENDPOINT value from the
message context and replaces the ${sys:dyn-Endpoint} variable

ROUTING_ENDPOINT

in the Route Through field of dynamic routing policy
configuration.

The API for Context Variables
API Gateway provides an IS service that you can use to:

Set, get, declare, and remove custom context variables.

Set and get the predefined system context variables. (It is not allowed to declare or remove
the predefined system context variables.)

API Gateway provides the following JAVA services, which are defined in the class
ISMediatorRuntimeFacade.java:

pub.apigateway.ctxvar:getContextVariable

pub.apigateway.ctxvar:setContextVariable

pub.apigateway.ctxvar:declareContextVariable

pub.apigateway.ctxvar:removeContextVariable

pub.apigateway.ctxvar:getContextVariable

Use this JAVA service to retrieve a context variable’s value and assign it to a pipeline variable. All
parameter names are case-sensitive.

ExamplesDescriptionData
Type

Pipeline
Type

Parameter

N/AThis object is inserted into the
pipeline by API Gateway.

Object refinMessageContext

For system context variable,
use just the variable name to

Context variable name (system
or custom).

StringinvarName

webMethods API Gateway User's Guide 10.15 437

2 Implement APIs

ExamplesDescriptionData
Type

Pipeline
Type

Parameter

get its value. For example,
PROTOCOL_HEADERS.

For custom context variable,
use the prefix "mx:" with the
variable name to get its value.
For example, mx:CUSTOM_VAR

Java.io.serializable value.
(Usually a string).

Object refoutserValue

The table lists the predefined system context variables and its syntax used to get system context
variables using pub.apigateway.ctxvar:getContextVariable.

Set or Get SupportedctxVar IS Service SyntaxSystem Context Variable
Name

Supports getUSERUser

Supports getINBOUND_HTTP_METHODInbound HTTP method

Supports getROUTING_METHODRouting method

Supports getMESSAGE_TYPEInbound content type

Supports getBUILDER_TYPEInbound accept

Supports getINBOUND_PROTOCOLInbound protocol

Supports getINBOUND_REQUEST_URIInbound request URI

Supports getINBOUND_IPInbound IP

Supports getMEDIATOR_HOSTNAMEGateway hostname

Supports getMEDIATOR_IPGateway IP

Supports getOPERATIONOperation name

Supports getNATIVE_ENDPOINTNative Endpoint

Note:
This variable returns native
endpoint value, only after Routing
policy gets executed.

Supports set and getPROTOCOL_HEADERS[xxx]Protocol headers

Supports set and getSOAP_HEADERS[xxx]SOAP headers

438 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Notes on getting and setting the PROTOCOL_HEADERS

All context variable values are typed as either string or int except for the predefined context
variables, PROTOCOL_HEADERS, which is of the type IData. You can set or get value for
PROTOCOL_HEADERS in one of the following ways:

set or get the entire structure.

To set the entire structure, you must:

Set the varName parameter in pub.apigateway.ctxvar:setContextVariable to
PROTOCOL_HEADERS.

Use the method ISMediatorRuntimeFacade.setContextVariableValue().

To get the entire structure, you must:

Set the varName parameter in pub.apigateway.ctxvar:getContextVariable to
PROTOCOL_HEADERS.

Use the method ISMediatorRuntimeFacade.getContextVariableValue().

If the varName is set to PROTOCOL_HEADERS, you get or set the entire IData structure
containing all of the transport headers. The key is the transport header name (for example,
Content-Type) and the value is a String. The IData object for PROTOCOL_HEADERS contains
a set of string values where each IData string key matches the header name in the transport
headers map. The set of possible keys includes the HTTP v1.1 set of headers as well as any
custom key-value pairs you might have defined.

Alternatively, you can set the varName parameter to address a specific element in the array.
For example, setting it to PROTOCOL_HEADERS[Content-Type] would apply to the
Content-Type transport header.

set or get a nested value.

Set a nested value in one of the following ways:

Set the varName parameter in pub.apigateway.ctxvar:setContextVariable to
PROTOCOL_HEADERS[arrayElement], where [arrayElement] refers to a specific element. For
example, PROTOCOL_HEADERS[Content-Type] (to indicate the first array element in the set).

Alternatively, use themethod ISMediatorRuntimeFacade.setContextVariableValue(). Use
this method only if you are writing a JAVA service and you want to access it through the
JAVA source code.

Get a nested value in one of the following ways:

Set the varName parameter in pub.apigateway.ctxvar:getContextVariable to
PROTOCOL_HEADERS[arrayElement], where [arrayElement] refers to a specific element. For
example, PROTOCOL_HEADERS[Content-Type] (to indicate the first array element in the set).

Alternatively, use themethod ISMediatorRuntimeFacade.getContextVariableValue(). Use
this method only if you are writing a JAVA service and you want to access it through the
JAVA source code.

webMethods API Gateway User's Guide 10.15 439

2 Implement APIs

You can set or get a nested value inside PROTOCOL_HEADERS through an additional
keyName. In this case, the object reference is not an IData object. For PROTOCOL_HEADERS,
the keyNamemust match the transport header name in a case-sensitive manner (for example,
PROTOCOL_HEADERS[Content-Type] or PROTOCOL_HEADERS[Authorization]). In this case, the
Serializable value will be a string.

pub.apigateway.ctxvar:setContextVariable

Use this JAVA service to set a value on a context variable. The pipeline variable containing the
context variable value should be an object reference that implements java.io.Serializable. All
parameter names are case-sensitive.

ExamplesDescriptionData TypePipeline
Type

Parameter

N/AThis object is inserted into
the pipeline by API
Gateway.

Object refinMessageContext

PROTOCOL_HEADERSContext variable name
(predefined or custom).

StringinvarName

mx:CUSTOM_VAR

Java.io.serializable value.
(Usually a string).

Object refinserValue

pub.apigateway.ctxvar:declareContextVariable

Use this JAVA service to declare a custom context variable. All custom-defined context variables
must be declared in a custom namespace that is identified by using the prefix mx (for example,
mx:CUSTOM_VARIABLE). All parameter names are case-sensitive.

Note:
It is not legal to use this service to declare the predefined context variables; you can only declare
custom variables.

DescriptionData TypePipeline
Type

Parameter

The document type defining the context variable object. Use
the ctxVar Document Type provided in the JAVA service

Object refinctxVar

pub.apigateway.ctxvar:ctxVar and map it to this input
variable. Define the name (for example,
mx:CUSTOM_VARIABLE), the schema_type (string or int),
and isReadOnly (true or false).

The set Context variable document type.Object refoutctxVar

440 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionData TypePipeline
Type

Parameter

javax.xml.namespace.QName value. The QName of the
variable.

Object refoutvarNameQ

Note the following:

After declaring the context variable, you can use the setContext variable to set a value on the
context variable.

You do not need to declare the following kinds of context variables:

The predefined context variables provided by API Gateway. If you attempt to declare an
existing predefined context variable, an error will occur.

Any custom context variable that you define in a routing rule that you create in the
conditional routing step.

Any custom context variables that you explicitly declare in source code using the API will
have a declaration scope of SESSION.

Any custom context variable's state that is defined during the inbound request processing
steps will still be available during the outbound response processing steps.

All context variable values are typed as either string or int (excluding the
PROTOCOL_HEADERS variables, which are of the type IData).

Valid names should be upper case (by convention) and must be a valid JAVA Identifier. In
general, use alpha-numerics, $ or _ symbols to construct these context names. Names with
punctuation,whitespace or other characterswill be considered invalid andwill fail deployment.

All custom context variables must be declared in a custom namespace that is identified by
using an mx prefix (for example, mx:CUSTOM_VARIABLE).

To reference a custom context variable in a flat string, you need to prepend a $ symbol to the
context variable name to indicate that variable’s value should be referenced. Think of this
usage as being similar to the & address operation for C variables.

An expression that references a custom context variable might look like this:

$mx:TAXID=1234 or $mx:ORDER_SYSTEM_NAME="Pluto"

Notice that the values of the data type “int” are not enclosed in quotation marks, while the
values of the data type “string” are. The quotation marks are only needed if a context variable
expression (as opposed to a reference) is defined.

Referencing an undefined context variable does not result in an error.

Once a variable has been declared it cannot be declared again.

webMethods API Gateway User's Guide 10.15 441

2 Implement APIs

pub.apigateway.ctxvar:removeContextVariable

Use this JAVA service to remove a custom context variable from a request or response session. All
parameter names are case-sensitive.

Note:
Keep the following points in mind:

It is not legal to use this service to remove any predefined context variables; you can only
remove custom variables.
Attempting to remove a non-existent context variable will not result in an error.

ExamplesDescriptionData TypePipeline
Type

Parameter

N/AThis object is inserted into the
pipeline by API Gateway.

Object refinMessageContext

mx:CUSTOM_VARCustom context variable name.StringinvarName

Sample Flow Service: Getting a Context Variable Value

This flow service sets the value of a custom context variable to be used in a response.

This flow service declares a pipeline variable named customName, which is set to the value
mx:COMP_TEST.

This flow service will retrieve the context variable for customName and create an element for its
context variable value in the response message return to the consumer.

Step 1. Declaring customName

442 webMethods API Gateway User's Guide 10.15

2 Implement APIs

You can define the customName variable value to be mx:COMP_TEST so you can use this variable to
lookup the custom variable name that was seeded in the previous example.

Step 2. Setting customName to mx:COMP_TEST

webMethods API Gateway User's Guide 10.15 443

2 Implement APIs

Clicking on the customName pipeline variable displays the name.

Step 3. Displaying the value of customName

444 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The call to pub.mediator.ctxvar:getContextVariable retrieves the value of the custom context
variable from the context variable map.

Step 4. Calling meditor.ctxvar:getContextVariable

webMethods API Gateway User's Guide 10.15 445

2 Implement APIs

This is just a sample JAVA service that takes the context variable and creates a top-level element
in the response message using the same name and value.

Step 5. Sample service using the context variable

446 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Sample Flow Service: Setting a Context Variable Value

This flow service sets the value of a custom context variable to be used in a response.

This flow service declares a pipeline variable named customName, which is set to the value
mx:COMP_TEST.

This flow service retrieves the context variable for customName and create an element for its context
variable value in the response message return to the consumer.

Step 1. Declaring customName

webMethods API Gateway User's Guide 10.15 447

2 Implement APIs

You define the customName variable value to be mx:COMP_TEST so you can use this variable to lookup
the custom variable name that was seeded in the previous example.

Step 2. Setting customName to mx:COMP_TEST

448 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Clicking on the customName pipeline variable displays the name.

Step 3. Displaying the value of customName

webMethods API Gateway User's Guide 10.15 449

2 Implement APIs

The call to pub.mediator.ctxvar:getContextVariable retrieves the value of the custom context
variable from the context variable map.

Step 4. Calling meditor.ctxvar:getContextVariable

450 webMethods API Gateway User's Guide 10.15

2 Implement APIs

This is just a sample JAVA service that takes the context variable and creates a top-level element
in the response message using the same name and value.

Step 5. Sample service using the context variable

webMethods API Gateway User's Guide 10.15 451

2 Implement APIs

Assigning a Policy to an API

Ensure that the API is in Edit mode before you start assigning a policy to the API.

To assign a policy to an API

1. Click APIs in the title navigation bar.

2. Select the required API.

3. Click the Policies tab.

4. Select the policy stage and the required policy.

The policy is displayed in the infographic with its properties displayed in properties section.

452 webMethods API Gateway User's Guide 10.15

2 Implement APIs

5. Provide the properties for the selected policy.

6. Click Save.

The policy is assigned to the API.

Viewing API Policy Details

The Policies tab on the API details page specifies the set of policies that are applied for that
particular API.

TheAPI can have a set of policies that are configured globally through a policy, or directly through
a policy template or a scope-level policy.

The global policy in an API details page has each of its policies differentiated using a specific icon
from the rest of the policies that are defined at the API-level and scope-level. The icon in the policy
indicates the Identify & Authorize policy's enforcement level within an API:

DescriptionIcon

Policy is applied from a global policy. This policy is
applicable across all resources / methods / operations of all
APIs.

Policy is applied from a policy template or at the API
definition. This policy is applicable across all resources /
methods / operations of that particular API.

Policy is applied for theAPI's scope. This policy is applicable
across a set of resources / methods / operations of that
particular API.

Policy is applied through an active package definition. This
policy is applicable across all resources / methods /
operations of that particular API.

Unlike the policy defined at API-level or scope-level, the policy defined as part of a global policy
cannot be edited or deleted through the details page of an API.

To view the policy details of an API

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

webMethods API Gateway User's Guide 10.15 453

2 Implement APIs

3. Click the Policies tab.

The Infographic view displays policies configured for the API.

When this API is associated with one or more plans through active packages, a list of the
Identify & Authorize policies and Threat Protection policies that are inherited from the
corresponding plans and enforced on the API also appears. The inherited policies are

differentiated using the package icon. The Identify & Authorize policy, always, has the
Identification Type set to API Key.

4. Click .

A list of all available policies enforced on the API appears.

Modifying API Policy Details

Ensure that the API is in Edit mode before you modify a policy that is assigned to the API.

To modify the policy details of an API

1. Click APIs in the title navigation bar.

2. Select the required API.

3. Click the Policies tab.

4. Select the policy stage, and the required policy.

The Infographic view displays policies configured for the API.

5. You can do one of the following:

Addmore policies to theAPI. Select the policy stage and add the required policy. Configure
the properties for the newly added policy as required.

Modify the already configured policy. Select the required policy andmodify the properties
as required.

Delete policies from the API. To remove a policy, click the x icon.

6. Click Save.

Aliases

An alias inAPIGateway holds stage-specific property values that can be shared bymultiple policy
configurations. Aliases referenced by policy configurations are substituted during runtime.
Changing an alias value affects all referencing policies. Aliases are referenced through a name

454 webMethods API Gateway User's Guide 10.15

2 Implement APIs

therefore alias names have to be unique within an API Gateway. The corresponding alias value
is substituted in place of an alias name during run-time. Thus the same alias can be referred to in
multiple policies and the change in a particular alias would affect all the policy properties. Aliases
have optional stage information, in addition to a name and value, which allows to define
stage-specific aliases in a multi-stage environment. For details about stage-specific aliases, see
webMethods API Gateway Staging and Promotion. An alias definition without stage information
applies to the API Gateway instance where the alias is defined.

Not all policies support the full set of aliases that are available in API Gateway. Some aliases are
applicable onlywith certain policies and for certain policy parameters. For details, see “Supported
Alias and Policy Combinations” on page 467.

You can create six types of alias:

Simple alias

Endpoint alias

HTTP transport security alias

SOAP message security alias

webMethods IS Service alias

XSLT Transformation alias

Creating a Simple Alias
You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

A simple alias holds simple key property values. The name of the alias can be used in the
configuration of the properties of a routing policy or an email destination for the Log Invocation,
Monitor SLA, Monitor Performance, and Traffic Optimization policies.

To create a simple alias

1. Expand the menu options icon , in the title bar, and select Aliases.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select Simple alias.Type

Description of the alias.Description

webMethods API Gateway User's Guide 10.15 455

2 Implement APIs

4. Click Technical information and specify a value in the Default value field.

Note:
You can specify multiple email addresses, if you are creating an email alias, for example,
abc@gmail.com, test@gmail.com, and so on.

5. Specify a stage, if you want the alias to be applicable to a specific stage.

6. Click Save.

Note:
If you want to configure this alias in the routing policies, you can follow the syntax
${aliasname}. For example, if you want to route it to an endpoint
http/mydevenv.com:7000/api, you can create a simple alias with the name mystage and its
value being http/mydevenv.com:7000. The endpoint URL can be specified in the properties
as ${mystage}/api.

Creating an Endpoint Alias
You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

An endpoint alias stores the endpoint value along with additional properties such as connection
timeout, read timeout, whether to pass security headers or not, keystore alias, key alias, and so
on.

To create an endpoint alias

1. Expand the menu options icon , in the title bar, and select Aliases.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select Endpoint alias.Type

Description of the alias.Description

4. Click Technical information and provide the following information:

456 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField

This is applicable only for a SOAP API.Optimization technique

Specify the optimization technique for the SOAP request received.
Select any one of the following:

None. This is the default value. API Gateway does not use
any optimization method to parse the SOAP requests to the
API.

MTOM. Indicates thatAPIGateway expects to receive a request
with a Message Transmission Optimization Mechanism
(MTOM) attachment and forwards the attachment to the native
service.

SWA. Indicates that API Gateway expects to receive a SOAP
with Attachment (SWA) request and forwards the attachment
to the native service.

Passes the security header.Pass WS-Security
Headers

Specify the default URI or components of the URI such as service
name.

Endpoint URI

Specify the time interval (in seconds) after which a connection
attempt times out.

Connection timeout

The precedence of the Connection Timeout configuration is as
follows:

a. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global
level.

b. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

c. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

webMethods API Gateway User's Guide 10.15 457

2 Implement APIs

DescriptionField

d. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specify the time interval (in seconds) after which a socket read
attempt times out.

Read timeout

The precedence of the Read Timeout configuration is as follows:

a. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout
values defined at the API level and the global level.

b. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing
step of an API. The Read Timeout value specified at an API
level takes precedence over the global configuration.

c. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the
API level or specify a value 0 at an alias level, then API
Gateway uses the value specified in this
pg.endpoint.readTimeout property.

d. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

Specifies the keystore alias configured inAPIGateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore alias

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key alias

Specifies the alias for the truststore that contains the list of CA
certificates that APIGateway uses to validate the trust relationship
with the native API.

Truststore alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native
APIs.

Specify a stage, if you want the alias to be applicable to a specific
stage.

Stage

458 webMethods API Gateway User's Guide 10.15

2 Implement APIs

5. Click Save.

Creating an HTTP Transport Security Alias
You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

An HTTP Transport security alias contains transport level security information required while
accessing the native API. Transport level security that are supported in API Gateway outbound
are as follows:

HTTP Basic authentication

OAuth2 authentication

NTLM authentication

Kerberos authentication

JWT authentication

To create an HTTP transport secure alias

1. Expand the menu options icon , in the title bar, and select Aliases.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select HTTP transport security alias.Type

Description of the alias.Description

4. Click Technical information and provide the following information:

DescriptionField

Specify the type of authentication you want to use while
communicating with the native API.

Authentication scheme

Select one of the following:

Basic. Uses basic authentication (user name and password).

webMethods API Gateway User's Guide 10.15 459

2 Implement APIs

DescriptionField

Kerberos. Uses Kerberos authentication.

NTLM. Uses NTLM authentication.

OAuth2. Uses OAuth2 authentication.

JWT. Uses JWT authentication.

For the Authentication type Basic, authenticate using the following:

Specifies the values provided in the policy required to access the
native API.

Custom credentials

Provide the following information:

Username. Specify a username to access the native API.

Password. Specify a password to access the native API.

Domain. Specify a domain to access the native API.

No properties required. Considers the incoming HTTP basic
authentication credentials.

Incoming HTTP basic auth
credentials

For Authentication type Kerberos, authenticate using any of the following:

Specifies the values provided in the policy required to obtain
the Kerberos token to access the native API.

Custom credentials

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAPuser.

Service principal. A valid Service Principal Name (SPN).
The specified value is used by the client to obtain a service
ticket from the KDC server.

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Select one of the
following:

Username. Represents the principal name as a named
user defined in LDAPused for authentication to theKDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

460 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField

Specifies the values provided in the policy required by the API
providers to select whether to delegate the incoming Kerberos
token or act as a normal client.

Delegate incoming
credentials

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAPuser.

Service principal. A valid Service Principal Name (SPN).
The specified value is used by the client to obtain a service
ticket from the KDC server.

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Select one of the
following:

Username. Represents the principal name as a named
user defined in LDAPused for authentication to theKDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

Specifies the incomingHTTP basic authentication credentials in
the transport header of the incoming request for client principal
and client password.

Incoming HTTP basic auth
credentials

Provide the following information:

Service principal. A valid Service Principal Name (SPN).
The specified value is used by the client to obtain a service
ticket from the KDC server.

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Available values are:

Username. Represents the principal name as a named
user defined in LDAPused for authentication to theKDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

No properties required. Considers the incoming kerberos
credentials.

Incoming kerberos
credentials

For Authentication type NTLM, authenticate using any of the following:

webMethods API Gateway User's Guide 10.15 461

2 Implement APIs

DescriptionField

Specifies the credentials that are required for the NTLM
handshake.

Custom credentials

Provide the following information:

Username. Name of a consumer who is available in the
Integration Server on which API Gateway is running.

Password. A valid password of the consumer.

Domain. The domain used by the server to authenticate the
consumer.

No properties required. Considers the incoming HTTP basic
authentication credentials.

Incoming HTTP basic auth
credentials

No properties required.Transparent

For the Authentication type OAuth2, authenticate using any of the following:

Specifies the OAuth2 token value that would be added as bearer
token in the transport header while accessing the native API.

Custom credentials

Considers the incoming OAuth token to access the native API.Incoming OAuth token

For Authentication type JWT, authenticate using any of the following:

Considers the incoming JSON web token to access the native
API.

Incoming JWT

5. Specify a stage, if you want the alias to be applicable to a specific stage.

6. Click Save.

Creating a SOAP Message Security Alias
You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

A SOAP message security alias contains message level security information that is requires to
access the native API. If the native service is enforced with any WS security policy, API Gateway
enforces those policies in the outbound request while accessing the native API using the
configuration parameters specified in the alias.

To create SOAP message secure alias

1. Expand the menu options icon , in the title bar, and select Aliases.

462 webMethods API Gateway User's Guide 10.15

2 Implement APIs

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select SOAP message secure alias.Type

Description of the alias.Description

4. Click Technical information and provide the following information:

DescriptionField

Specify the type of authentication scheme you want to use to
authenticate the client.

Authentication scheme

Available values are:

None. Does not use any authentication types to authenticate
the client.

WSS Username. Generates aWSSusername token and sends
it in the soap header to the native API.

Kerberos. Fetches a Kerberos token and sends it to the native
API.

SAML. Fetches a SAML token and sends it to the native API.

For Authentication scheme None. Does not require any properties.

For Authentication type WSS Username, authenticate using any of the following:

Specifies the values provided in the policy to be used to obtain
the WSS username token to access the native API.

Custom credentials

Provide the following information:

Username. Specifies a username used to generate the WSS
username token.

Password. Specifies the password used to generate the WSS
username token.

For Authentication type Kerberos, authenticate using any of the following:

Uses the Basic authentication credentials coming in the transport
header of the incoming request for client principal and client
password.

Custom Credentials

webMethods API Gateway User's Guide 10.15 463

2 Implement APIs

DescriptionField

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAP user.

Service principal. A valid Service Principal Name (SPN). The
specified value is used by the client to obtain a service ticket
from the KDC server.

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Select one of the
following:

Username. Represents the principal name as a named
user defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

Specifies the values provided in the policy to be used by the API
providers to select whether to delegate the incoming Kerberos
token or act as a normal client.

Delegate incoming
credentials

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAP user.

Service principal. A valid Service Principal Name (SPN). The
specified value is used by the client to obtain a service ticket
from the KDC server.

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Available values are:

Username. Represents the principal name as a named
user defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

Specifies the incoming HTTP basic authentication credentials to
access the native API.

Incoming HTTP basic
auth credentials

Provide the following information:

464 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Select one of the
following:

Username. Represents the principal name as a named
user defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

For Authentication type SAML

Specifies the SAML issuer configuration that is used by the API
Gateway to fetch the SAML token which is then added in the
SOAP header and sent to the native API.

SAML issuer
configuration

This field is visible and required only if you have configured a
SAML issuer inAdministration >Security >SAML issuer section.

Signing configurations

Specify the keystore that needs to be used by API Gateway while
sending the request to the native API. A keystore is a repository
of private key and its corresponding public certificate.

Keystore alias

The key alias is the private key that is used sign the request sent
to the native API.

Key alias

Encryption configurations

Select the truststore to be used by API Gateway when sending
the request to the native API. Truststore is a repository that holds
all the trusted public certificates.

Truststore alias

Select the certificate from the truststore that is used to encrypt the
request that is sent to the native API.

Certificate alias

Specify a stage, if you want the alias to be applicable to a specific
stage.

Stage

5. Click Save.

Creating a webMethods Integration Server Service Alias
You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

webMethods API Gateway User's Guide 10.15 465

2 Implement APIs

A webMethods Integration Server service alias holds the IS service value. The name of the alias
can be used to invoke the Invoke webMethods IS policy for request and response processing.

To create a webMethods IS service alias

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select webMethods IS Service alias.Type

Description of the alias.Description

4. Click Technical information and provide the following information:

DescriptionField

Specify the IS service name.Service name

Note:
The IS service must be available in the
Integration Server, to which the aliases are
deployed.

Select . Comply to IS Spec, if you want the input
and the output parameters to comply to the IS
Spec specified.

Comply to IS Spec

(pub.apigateway.invokeISService
.specifications)

Specify a stage, if you want the alias to be
applicable to a specific stage.

Stage

5. Click Save.

Creating an XSLT Transformation Alias
You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

An XSLT transformation alias holds a list of XSLT style sheets. The name of the alias can be used
in the XSLT Transformation policies for request and response processing.

466 webMethods API Gateway User's Guide 10.15

2 Implement APIs

To create a transformation alias

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select XSLT Transformation alias.Type

Description of the alias.Description

4. Click Technical information and browse and select an XSLT style sheet in the Select
transformation file field.

5. Specify a stage, if you want the alias to be applicable to a specific stage.

6. Click Save.

Supported Alias and Policy Combinations
API Gateway provides a set of aliases whose runtime-specific environment variables can be used
in configuring the policy routing endpoints, routing rules, endpoint connection properties, and
outbound authentication tokens. The types of aliases whose properties you can use for the policy
configurations are:

Simple alias

Endpoint alias

HTTP transport security alias

SOAP message security alias

webMethods IS Service alias

XSLT Transformation alias

Not all policies support the full set of aliases that are available in API Gateway. Some aliases are
applicable only with certain policies and for certain policy parameters. For example, a Simple alias
applies to the routing and traffic monitoring policies, whereas an Endpoint alias applies only to
the routing policies. When you define a Straight Through Routing policy with a simple alias, the
alias property is defined using the EndpointURI field.When you define the same Straight Through
Routing policy with an endpoint alias, the alias property is defined using a set of fields - Endpoint

webMethods API Gateway User's Guide 10.15 467

2 Implement APIs

URI, SOAP Optimization Method, HTTP Connection Timeout, Read Timeout, Pass WS-Security
Headers, and Keystore Alias.

The following table identifies the policies and policy parameters that each alias type supports:

Simple Alias

Policy Parameter NamePolicy Name

In the Straight Through Routing definition:Straight Through
Routing

Endpoint URI

In the default and custom Route To rule definitions:Content-based Routing

Endpoint URI

In the default and custom Route To rule definitions:Conditional Routing

Endpoint URI

In the Route To rule definition:Load Balancer Routing

Endpoint URI

In the default and custom Route To rule definitions:Dynamic Routing

Endpoint URI

In the Email Destination section:Log Invocation

Email Address

In the Email Destination section:Monitor Performance

Email Address

In the Email Destination section:Monitor SLA

Email Address

In the Email Destination section:Traffic Optimization

Email Address

Endpoint Alias

Policy Parameter NamePolicy Name

In the Straight Through Routing definition:Straight Through
Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

468 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Policy Parameter NamePolicy Name

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

Key Alias

In the default and custom Route To rule definitions:Content-based Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

Key Alias

In the default and custom Route To rule definitions:Conditional Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

Key Alias

In the Route To rule definition:Load Balancer Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

webMethods API Gateway User's Guide 10.15 469

2 Implement APIs

Policy Parameter NamePolicy Name

Key Alias

In the default and custom Route To rule definitions:Dynamic Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

Key Alias

HTTP Transport Security Alias

Policy Parameter NamePolicy Name

In the Authentication scheme:Outbound Auth -
Transport

Alias

SOAPMessage Security Alias (Applicable only for SOAP APIs)

Policy Parameter NamePolicy Name

In the Authentication scheme:Outbound Auth -
Message

Alias

webMethods IS Service Alias

Policy Parameter NamePolicy Name

webMethods IS Service AliasInvoke webMethods IS
(Request Processing)

webMethods IS Service AliasInvoke webMethods IS
(Response Processing)

XSLT Transformation Alias

470 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Policy Parameter NamePolicy Name

Transformation ConfigurationRequest Transformation
(Request Processing)

Payload Transformation

XSLT Transformation alias

Transformation ConfigurationResponse
Transformation
(Response Processing) Payload Transformation

XSLT Transformation alias

Global Policies

Important:
API Gateway's Standard Edition License does not support the functionality of Global Policies.
You can create and manage global policies only using the Advanced Edition License.

Global policies are a set of policies that are associated globally to all APIs or the selected set of
APIs. Global policies are supported for SOAP and REST APIs but not supported for GraphQL
API.

By associating policies globally to all APIs or the selected set of APIs, the administrator can ensure
that a set of policies is applied to the selected APIs by default. The administrator can, for example,
define a global policy that attaches aWS-Security (WSS) authentication to all SOAPAPI endpoints
within a specific IP range. In this case, any client request from the specific IP range automatically
inherits the security configuration defined in the global policy for SOAP APIs.

API Gateway provides a system global policy, Transaction logging, which is bundled with the
product. By default, the policy is in the Inactive state. The transaction logging policy has standard
filters and log invocation policy, that log request or response payloads to a specified destination.
You can modify this policy to include additional filters or modify the policy properties, but you
cannot delete this policy. You can activate this policy in the Polices > Global policies page or
through the global policy details page. Activating the policy enforces it on all APIs inAPIGateway
based on the configured filters, and logs transactions across all the APIs. If you have multiple log
invocation policies assigned to an API, the policies are compiled into a single policy and one
transaction log is created per destination.

Global Policy Matrix

This table lists the stage-specific policies that can be configured as global policy for different types
of APIs at the global level.

Note:
The Policy configuration page displays only the policies that are common to one or more API
types selected in the global policy filter.

webMethods API Gateway User's Guide 10.15 471

2 Implement APIs

PoliciesStages

Transport Enable bulkhead - This policy can be enforced to configure themaximumnumber
of concurrent requests that the APIs can process.

Enable HTTP/HTTPS - This policy can be enforced for all types of API. But the
SOAP versions 1.1 and 1.2 are applicable only for SOAP-based APIs. The SOAP
1.1 and SOAP 1.2 sub types are not available in UI when the REST and ODATA
APIs are selected.

Note:
Software AG recommends to create a separate policy for each API type.

Set Media Type - This policy is applicable only for a REST request and the policy
name is not listed in Policy configuration page when the SOAP and ODATA
APIs are selected.

Enable JMS/AMQP - This policy is applicable only for SOAPAPIs and the policy
name is not listed in Policy configuration page when the REST and ODATA
APIs are selected.

Identity &
Access

Authorize User, Identify &Authorize - These policies can be enforced to anyAPI
Type.

Inbound Auth - Message - This policy is applicable only for SOAP-based APIs
and the policy name is not listed in Policy configuration page when the REST
and ODATA APIs are selected.

Request
Processing

InvokewebMethods IS, ValidateAPI Specification, DataMasking - These policies
can be enforced to any API Type.

Request Transformation - This policy is applicable only for SOAP andRESTAPIs.
and not for ODATA services. When all three API types are selected, Request
Transformation policy cannot be applied at the global level.

Routing CustomHTTP Header, Outbound Auth - Transport, Outbound Auth - Message.
The Routing stage policies can be applied at a global level for all types of API.

Traffic
Monitoring

Log Invocation, Monitor Performance, Monitor SLA, Traffic Optimization, and
Service Result Cache. The Traffic Monitoring stage policies can be applied at a
global level for all types of API.

Response
Processing

InvokewebMethods IS, ValidateAPI Specification, DataMasking - These policies
can be enforced to any API Type.

Response Transformation - This policy can be enforced only for SOAP and REST
APIs and the policy name is not listed in Policy configuration page when
ODATA API type is selected.

CORS - This policy can be enforced only for REST and ODATA APIs and the
policy name is not listed in Policy configuration page when SOAP-based API
is selected.

472 webMethods API Gateway User's Guide 10.15

2 Implement APIs

PoliciesStages

Conditional Error Processing and Data Masking. The Error handling stage policies
can be applied at a global level for all types of API.

Error
handling

Creating a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

To create a global policy you must perform the following high-level steps:

1. Create a new global policy: During this step, you specify the basic details of the global policy.

2. Optionally refine the scope of the policy: During this step, you can specify additional criteria
to narrow the set of APIs to which the global policy applies.

3. Configure the policies: During this step, you associate one ormore policies, and assign values
to each of the associated policy's properties.

4. Activate the policy: During this step, you put the new global policy into effect.

To create a global policy

1. Click Policies in the title navigation bar.

2. Click the Global policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. In the Policies page, click the Create global policy button.

If you do not see the Create global policy button, it is probably because you do not have the
API Gateway Administrator role to create a global policy in API Gateway.

This opens the Create global policy page with the default Policy details tab.

4. In the Basic information section, provide the required information as follows:

DescriptionField

Name of the global policy.Name

Description of the global policy.Description

You can save the global policy by clicking Save at this stage and add the filters and policy
configuration at a later time.

5. Click Continue to filters >.

webMethods API Gateway User's Guide 10.15 473

2 Implement APIs

Alternatively, you can click Filters in the left navigation panel.

6. To filter APIs by API type, select one or more API types.

Available API types are REST, SOAP, and OData. The global policy would apply to the APIs
specified by the filter.

7. This is applicable to REST APIs. To filter APIs by HTTP methods, select one or more HTTP
methods.

Available HTTP methods are GET, POST, PUT, DELETE, PATCH, and HEAD. The global
policy would apply to the APIs that have the methods specified by the filter.

For details about the HTTPmethods, see “ Refining the Scope of a Global Policy” on page 477.

8. To filter APIs by attributes:

a. Select an attribute

Available attributes are API name, API description, API version, API tag,
Resource/Operation tag, Method tag.

b. Select a comparison operator.

c. Specify the match string.

d. Click + Add.

You can add multiple criteria by clicking the + Add button and repeating the above steps.

e. Select the logical conjunction (AND) or disjunction (OR) operation to apply whenmultiple
criteria are specified for the global policy. The default value is AND.

The global policy would apply to the APIs that match the attributes specified in the filter. For
details about attributes, see “ Refining the Scope of a Global Policy” on page 477.

Example: To apply the global policy to APIs that match the criteria API name that contains
pet and API tag that contains a, you can configure a filter as follows:

474 webMethods API Gateway User's Guide 10.15

2 Implement APIs

9. To add multiple attribute filter groups, as required, click the +Add button. and specify the
logical conjunction (AND) or disjunction (OR) operation to apply between filter groups. The
global policy would apply to the APIs that match the filter groups specified in the filter.

Example: To apply the global policy to APIs that match criteria API name that contains pet
and API tag that contains a in filter group 1 and API version that equals 1 in filter group 2,
you can configure a filter as follows:

You can save the global policy by clicking Save at this stage and configure policies at a later
time.

10. Click Continue to policy configuration >.

Alternatively, you can click the Policy configration tab.

11. In the Policy configuration section, you can select the policies and configure the properties for
each policy that you want API Gateway to enforce when it applies this global policy.

For details, see “ Configuring Properties for a Global Policy” on page 481.

webMethods API Gateway User's Guide 10.15 475

2 Implement APIs

12. Click Save.

The global policy is created and displays the policy details page.

You can now activate the global policy. For details, see “ Activating a Global Policy” on page 484.

Modifying the Scope of a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

Scope refers to the set of properties that determine a selected set of APIs for the enforcement of
the policy. For a global policy, scope is determined by the policy's property API type in the Policy
details tab.

DescriptionAPI Type

Global policy is applied on all REST APIs in API Gateway.REST

Global policy is applied on all SOAP APIs in API Gateway.SOAP

Global policy is applied on all OData APIs in API Gateway.ODATA

To modify the scope of a global policy

1. Click Policies in the title navigation bar.

2. Click the Global policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The global policy details page appears.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to modify the scope of a global policy in API Gateway.

5. In the Filters section, specify the following:

a. In the API type section, select the API types (REST, SOAP, ODATA, or all) to which you
want to apply the policy.

b. Optional. In the Filter using attributes section, specify additional selection criteria to narrow
the set of APIs to which this policy will be applied. For details, see “ Refining the Scope of
a Global Policy” on page 477.

476 webMethods API Gateway User's Guide 10.15

2 Implement APIs

6. Click Save.

Refining the Scope of a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

If you want to further restrict the set of APIs to which the global policy is applied, you can specify
additional selection criteria in the Filter section of the API details page. Using the Filter section,
you can filter APIs by Name, Description, Version attributes, HTTP Methods (applicable only for
REST APIs), API tag (applicable for all selected API types), Resource/Operation tag (applicable
for REST and SOAP APIs) and Method tag (applicable for a REST API). For details about the API
types and their components for which you can add a tag, see “Adding Tags to an API” on page 56.
If you specify no filter criteria, API Gateway applies the global policy to all the selected APIs.

If the specified attribute does not apply for the selected API type, it is not evaluated for that API
type alone. For example, if you specify Resource/Operation tag = secure and select all API types,
REST, SOAP, and ODATA, then while evaluating the condition for each API, the expression
evaluates only for SOAP and REST API and does not evaluate the filter for OData API.

Filtering by Name, Description, Version and Tag attributes

You can filter APIs based on their Name, Description, Version, API tag, Resource/Operation tag
and Method tag attributes using any of the following comparison operators:

DescriptionComparison Operators

SelectsAPIswhoseName,Description, Version or Tag valuematches
a given string of characters. For example, use this operator to apply

Equals

a policy only to REST APIs with the Name or Description value 4G
Mobile Store.

Selects APIs whose Name, Description, Version or Tag value does
notmatch a given string of characters. For example, use this operator

Not Equals

to apply a policy only to all RESTAPIs except thosewith theName,
Description, or Tag value Mobile.

Selects APIswhoseName, Description or Tag value includes a given
string of characters anywhere within the attribute's value. For

Contains

example, use this operator to apply a policy to REST APIs that had
the word Mobile anywhere in their Name, Description, or Tag
attribute.

Selects APIs whose Name, Description, or Tag value begins with a
given string. For example, use this operator to apply a policy only

Starts with

to REST APIs whose Name, Description, or Tag begins with the
characters 4G.

Selects APIs whose Name, Description, or Tag value ends with a
given string. For example, use this operator to apply a policy only

Ends with

webMethods API Gateway User's Guide 10.15 477

2 Implement APIs

DescriptionComparison Operators

to RESTAPIs whoseName, Description, or Tag value endswith the
characters Store.

When specifying match strings for the comparison operators described above, keep the following
points in mind:

Match strings are not case-sensitive. If you define a filter for names that start with ABC it select
names starting with abc and Abc.

Wildcard characters are not supported. That is, you cannot use characters such as * or % to
represent any sequence of characters. These characters, if present in the match string, are simply
treated as literal characters that are to be matched.

Filtering by HTTP Methods (Applicable only for REST APIs)

You can optionally restrict a policy to specific HTTP methods of the REST APIs by specifying
the options GET, POST, PUT, DELETE, PATCH, and HEAD.

DescriptionHTTP Methods

Policy applies only to HTTP GET requests for any resource in
the API. For example, use this option to apply a policy to
resources of a REST API during an incoming GET request.

GET

Policy applies only to HTTP POST requests for any resource
in the API. For example, use this option to apply a policy to
resources of a REST API during an incoming POST request.

POST

Policy applies only to HTTP PUT requests for any resource in
the API. For example, use this option to apply a policy to
resources of a REST API during an incoming PUT request.

PUT

Policy applies only toHTTPDELETE requests for any resource
in the API. For example, use this option to apply a policy to
resources of a RESTAPI during an incoming DELETE request.

DELETE

Policy applies only to HTTP PATCH requests for any resource
in the API. For example, use this option to apply a policy to
resources of a REST API during an incoming PATCH request.

PATCH

Policy applies only to HTTP HEAD requests for any resource
in the API. For example, use this option to apply a policy to
resources of a REST API during an incoming HEAD request.

HEAD

To refine the scope of a global policy

1. Click Policies in the title navigation bar.

478 webMethods API Gateway User's Guide 10.15

2 Implement APIs

2. Click the Global policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The global policy details page appears.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to refine the scope of a global policy in API Gateway.

5. Click Filters.

6. To filter by API types, select the API types by which you want to filter APIs.

7. Applicable only for REST APIs. To filter by HTTP methods, in the Filter using HTTP methods
section, select the HTTPmethods by which youwant to filter APIs with appropriate incoming
requests.

8. To filter by Name, Description, Version, or Tags perform the following steps in the Filter using
attributes section:

a. Select an attribute to filter the APIs to which you want to apply the global policy.

Available attributes: API name, API description, API version, API tag,
Resource/Operation tag, Method tag.

b. Select the comparison operator.

c. Specify the match string in the third field.

d. To specify additional criteria, click the Add button and repeat the above steps.

e. Select the logical conjunction (AND) or disjunction (OR) operation to apply whenmultiple
criteria are specified for the global policy. The default value is AND.

You can add multiple attribute filter groups by clicking the +Add button. You can also specify
the logical conjunction (AND) or disjunction (OR) operation to apply between filter groups.

9. Click Save to save the updated policy.

Associating Policies to a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

webMethods API Gateway User's Guide 10.15 479

2 Implement APIs

The Policy Configuration tab on the Global Policy details page specifies the policy stages and the
list of policies (applicable for each stage) that you want API Gateway to execute when it enforces
the global policy.

Whenmodifying the list of policies for a global policy, API Gateway validates the policies to ensure
that there are no policy conflicts.

To modify the list of policies of a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to modify the list of policies of a global policy in API Gateway.

5. Select the policy's Policy Configuration tab.

The policy information is provided in the following sections:

Policy catalog - Transport, Identify and Access, Request Processing, Routing, Traffic
Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the expanded list of policies, select the policies that youwant API Gateway to execute when
it applies this global policy. To select a policy, click the Add (+) icon next to the policy name.
The selected policies are displayed in the Infographic section.

When you select the policies for the global policy, keep the following points in mind:

The policies shown in the Policy catalog section are determined by the API types that you
have specified on the Filters section of the Global Policy Details page.

If you do not see a policy that you need, that policy is probably not compatible with the
API type that you selected in the Filters section.

480 webMethods API Gateway User's Guide 10.15

2 Implement APIs

If necessary, you can click the Policy Details tab and change your API type selection.

Use the x icon in any individual policy to remove that particular policy from the Infographic
section.

8. To configure the properties for any new policies that youmight have added to the Infographic
section in the preceding steps or to make any necessary updates to the properties for existing
policies in the global policy, see “ Configuring Properties for a Global Policy” on page 481.

9. Click Save.

10. Click to view the complete list of policies in the updated policy.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Configuring Properties for a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

The Policy Configuration tab on the Global Policy details page specifies the list of policies that
are applicable for each policy stage in the Policy catalog section. Each policy in the Infographic
section has properties that you must set to configure the policy's enforcement behavior.

To configure the properties for a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to configure the properties of a global policy in API Gateway.

5. Select the policy's Policy Configuration tab.

The policy information is provided in the following sections:

webMethods API Gateway User's Guide 10.15 481

2 Implement APIs

Policy catalog - Transport, Identify and Access, Request Processing, Routing, Traffic
Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine or set.

b. In the Policy properties section, set the values for the policy's properties as necessary.

Note:
Required properties are marked with an asterisk.

8. Click Open in full-screen to view the policy's properties in full screen mode.

The Open in full-screen link is located in the upper right-hand corner of the Policy
Configuration tab. Set the properties of the displayed policy, and then click OK.

To exit out of full screen mode, click the Minimize icon.

9. Click Save.

10. Click to view the complete list of policies in the updated policy.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Viewing List of Global Policies and Policy Details

The Global Policies tab displays a list of all globally available policies in API Gateway. Global
policies are listed alphabetically by name.

In addition to viewing the list of policies, you can also examine the details of a policy, create a
copy of the template, activate, and delete a global policy in the Global Policies tab.

To view the policy list and properties of a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

482 webMethods API Gateway User's Guide 10.15

2 Implement APIs

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

The Global Policies tab provides the following information about each policy:

DescriptionColumn

Name of the global policy.Name

The description for the global policy.Description

You can also perform the following operations on a global policy:

Activate a policy to begin enforcing runtime behaviors.

Deactivate a policy to suspend enforcement of runtime behaviors.

Create a new copy of the policy.

Delete a policy to remove it from API Gateway.

3. Select the required policy whose details you want to examine.

The Global Policy details page appears. The policy details are displayed in the following tabs:

Policy Details: This tab contains a summary of basic information such as name, description,
scope of the policy as towhen the policywill apply, applicable APIs, and other information.

Policy Configuration: This tab contains the policy stages, applied policies, as well as the
configuration details of individual policies.

Modifying Global Policy Details
You must have the API Gateway's manage global policies functional privilege assigned.

You use the Global Policy details page to examine and modify the properties of a policy.

When modifying the details of a global policy, keep the following points in mind:

You will not be allowed to save the policy unless all of its properties have been set.

On successful modification of the policy details for an active global policy, the policy changes
apply with immediate effect in all the active APIs that are applicable for this global policy.

You will not be allowed to remove an individual policy (for example, Identify & Authorize)
from the active global policy, if the global policy is already applied to an active API, and if the
Identify&Authorize is a dependent policy for another policy (for example, TrafficOptimization)
that is applied for the API.

If modification of the policy details for an active global policy fails, API Gateway issues an
error message with details of the incompatible or conflicting policies.

webMethods API Gateway User's Guide 10.15 483

2 Implement APIs

To modify the properties of a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears. The policy details are displayed in the following tabs:

Policy Details: This tab contains a summary of basic information such as name, description,
scope of the policy as towhen the policywill apply, applicable APIs, and other information.

Policy Configuration: This tab contains the policy stages, applied policies, as well as the
configuration details of individual policies.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to modify the properties of a global policy in API Gateway.

5. On the Policy Details tab, modify the basic properties, selection criteria, and the applicable
APIs as necessary.

6. On thePolicy Configuration tab,modify the policy list and the policy's configuration properties
as necessary.

7. When you have completed the required modifications in the Global Policy details page, click
Save to save the updated policy.

8. Click Overview to view the complete list of policies in the updated policy.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Activating a Global Policy
You must have the API Gateway's activate global policies functional privilege assigned.

Global policies are not enforced until they are activated.

When you activate a global policy, be aware that:

484 webMethods API Gateway User's Guide 10.15

2 Implement APIs

When a global policy becomes active, API Gateway begins enforcing it immediately in all the
applicable APIs that are currently in theActive state. You can suspend enforcement of a policy
by switching it to the Inactive state as described in “Deactivating aGlobal Policy” on page 485.

Activation of a global policy fails if there is a conflict in the effective policy validation in at
least one of the active APIs that are applicable for this policy. API Gateway reports the conflict,
and the global policy can only be activated when the conflict is resolved.

To determine whether a global policy is active or inactive, examine the policy's Active indicator
on thePolicies >Global Policies tab. The icon in theActive column indicates the policy's activation
state as follows:

DescriptionIcon

Policy is active.

Policy is inactive.

The activation state of a policy is also reported in the Global Policy Details page.

To activate a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears.

4. Click Activate.

If you do not see the Activate button, it is probably because you do not have the API Gateway
Administrator role to activate a global policy, or the policy is already in an Active state in API
Gateway.

Deactivating a Global Policy
You must have the API Gateway's activate global policies functional privilege assigned.

Deactivating a global policy causes API Gateway to suppress enforcement of the policy.

You usually deactivate a policy to suspend enforcement of a particular policy (temporarily or
permanently).

webMethods API Gateway User's Guide 10.15 485

2 Implement APIs

To deactivate a policy, you change the policy to the Inactive state. At a later time, you can begin
enforcing a global policy by switching it to the Active state as described in “ Activating a Global
Policy” on page 484.

When you deactivate a global policy, be aware that:

Deactivation of a global policy fails if there is a conflict in the effective policy validation in at
least one of the active APIs that are applicable for this policy. API Gateway reports the conflict,
and the global policy can only be activated when the conflict is resolved.

To determine whether a global policy is active or inactive, examine the policy's Active indicator
on thePolicies >Global Policies tab. The icon in theActive column indicates the policy's activation
state as follows:

DescriptionIcon

Policy is active.

Policy is inactive.

The deactivation state of a policy is also reported in the Global Policy Details page.

To deactivate a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears.

4. Click Deactivate.

If you do not see theDeactivate button, it is probably because you do not have theAPIGateway
Administrator role to deactivate a global policy, or the policy is already in an Inactive state
in API Gateway.

Deleting a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

You delete a global policy to remove it from API Gateway permanently.

To delete a global policy, the following conditions must be satisfied:

486 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The policy must not be in-progress.

The policy must be inactive.

To delete a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Click the Delete () icon for the required policy.

If you do not see the Delete button, it is probably because you do not have the API Gateway
Administrator role to delete a global policy, or the policy is in an Active state in API Gateway.

4. Click Yes in the confirmation dialog.

Copying a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

A global policy can become quite complex, especially if it includesmany policies. Instead of creating
a new policy from scratch, it is sometimes easier to copy an existing policy that is similar to the
one you need and edit the copy.

When you create a copy of a global policy, be aware that:

When API Gateway creates a copy of a policy, the new copy of the policy is identical to the
original one.

Like all new policies, the copied policy is marked as Inactive.

There is no expressed relationship between the copy and the original policy (that is, API
Gateway does not establish any type of association between the two policies).

In general, a copied policy is no different from a policy that you create from scratch.

To copy a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

webMethods API Gateway User's Guide 10.15 487

2 Implement APIs

3. Click the Copy icon for the required policy.

If you do not see the Copy button, it is probably because you do not have the API Gateway
Administrator role to create the copy of a global policy in API Gateway.

4. In the Copy of Global Policy dialog box, provide the required information for each of the
displayed data fields:

DescriptionField

Name of the global policy.Name

API Gateway automatically adds the name of the existing
global policy to the Name field. You can change the name
of the policy to suit your needs. But you cannot leave this
field empty.

The description for the global policy.Description

5. Click Copy to save the new policy.

6. Modify the new policy as necessary and then save it.

Activate the new policy when you are ready to put it into effect.

Exporting Global Policies
You must have the API Gateway's export assets functional privilege assigned.

Note:
For more information about exporting and importing global policies,

To export the global policies

1. Click Policies in the title navigation bar.

2. Select Global Policies.

3. Click to export a single policy.

Alternatively, you can select multiple APIs to be exported simultaneously by clicking the
checkboxes adjacent to the names of the API.

Click and select Export from the drop-down list.

The browser prompts you to either open or save the export archive.

488 webMethods API Gateway User's Guide 10.15

2 Implement APIs

4. Select the appropriate option and click OK.

Scope-level Policies

You can define policies at the API-level or scope-level for an API. API-level policies are processed
for all incoming requests to the API. Scope-level policies are processed only for incoming requests
that apply to a specific scope in the API. Any policy you specify at the API-level is overridden by
the policy defined at the scope-level if the policies are the same. In contrast, the API-level policies
will not affect the scope-level policies. But if there are policies applied at the global-level (through
a global policy) for the API, then those policies will override every other policy configured at the
API-level.

The scope-level policies for anAPI provide a granular enforcement of policies at the resource-level,
method-level, or both for the REST API, or at the operation-level for the SOAP API.

Note:
Scope-level policies are not supported for OData APIs.

An API can have zero or more scope-level policies. When you define the scope-level policies for
an API, keep the following points in minds:

For a policy (for example, Identify & Authorize) that can appear only once in an API, if the
same policy is already applied through the API details page, API Gateway prompts you with
a warning message that the scope-level policy takes precedence over the API-level policy, and
is enforced on the API at run-time.

For a policy (for example, Monitor SLA) that can appear multiple times in an API, if the same
policy is already applied to the API through a global policy, API Gateway prompts you with
a warning message that the global policy takes precedence over the scope-level policy, and is
enforced on the API at run-time.

If a resource ormethod or operation has the same policy (for example, RequireHTTP /HTTPs)
applied through different scopes, API Gateway prompts you with an error message and sets
the focus to the conflicting policies. You must remove the required policy from the individual
scope(s) to resolve the conflicts.

API Gateway supports scope-level policies only for the following stages:

Identify and Access: All policies in this stage are supported.

Request Processing: Only Data Masking policy in this stage is supported.

Traffic Monitoring: All policies in this stage are supported.

Response Processing: Only Data Masking policy in this stage is supported.

Error Handling: Only Data Masking policy in this stage is supported.

For information on the usage scenarios of policies configured for the scopes of anAPI, see “Example:
Usage Scenarios of API Scopes” on page 498.

webMethods API Gateway User's Guide 10.15 489

2 Implement APIs

API Scopes
API definitions can be complex and span across multiple REST resources and methods, or SOAP
operations for an API. To reduce the complexity of an API definition, you can define scopes and
impose a set of policies on each scope to suit your requirements.

A scope represents a logical grouping of REST resources, methods, or both, and SOAP operations
in an API. You can then enforce a specific set of policies on each individual scope in the API.

An API can have a set of declared scopes. The available scopes for an API are listed in the Scopes
tab of the API details page.

Creating an API Scope

Scopes enable you to group a set of REST resources, methods, or both, and SOAP operations for
an API.

A scope consists of a name, description, and zero or more resources, methods, or operations. An
API can have zero or more scopes.

You can define a set of policies and configure its properties for each individual scope. These policies
apply to each of the resources, methods, or operations that are associated to the scope.

Instructions throughout the remainder of this guide use the term scope-level policywhen referring
to a set of policies configured for an individual scope of the API.

Note:
Ensure that you have a unique set of resources, methods, or operations in every scope in the
API.

To create a scope

1. Click APIs in the title navigation bar.

A list of APIs available in API Gateway appears.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway prompts you to deactivate it.

4. Click the Scopes tab.

This displays a list of scopes available in the API.

5. In the List of scopes section, click Add scope.

490 webMethods API Gateway User's Guide 10.15

2 Implement APIs

6. In the Basic information section, provide the required information for each data field that
appears:

DescriptionField

Name of the scope. A scope name must be unique within
an API.

Name

Note:
API Gateway automatically adds the name New Scope to
the Name field. You can change the name of the scope to
suit your needs. But you cannot leave this field empty.

Description of the scope.Description

7. Applicable only for REST APIs. In the Resources and methods section, select the resources,
methods, or both, you want to associate to this scope.

When selecting a resource ormethod for the scope definition, you can select whether youwant
some or all of the methods within that resource to be selected as well.

8. Applicable only for SOAP APIs. In the Operations section, select the operations you want to
associate to this scope.

9. Click Save.

The scope is created and listed in the List of scopes section.

Post-requisites:

Activate the API when you are ready to put it into effect.

To apply and configure policies for this API scope, see “ Creating a Scope-level Policy” on
page 494.

Viewing List of API Scopes and Scope Details

The Scopes tab in the API details page displays a list of all available scopes in the API.

In addition to viewing the list of scopes, you can also examine and modify the details of a scope,
and delete a scope in the Scopes tab.

To view the scope list and properties of a scope

1. Click APIs in the title navigation bar.

A list of APIs available in API Gateway appears.

2. Click the name of the required API.

webMethods API Gateway User's Guide 10.15 491

2 Implement APIs

This opens the API details page.

3. Click the Scopes tab.

This displays a list of scopes available in the API.

4. In the List of scopes section, click the name of the scope you want to examine.

This opens the details of the scope. The scope details appear in the following sections:

Basic information: This section contains a summary of basic information such as name and
description of the scope.

Resources and methods: Applicable only for REST APIs. This section contains a collection
of REST resources, methods, or both, that are associated to the scope.

Operations: Applicable only for SOAP APIs. This section contains a collection of SOAP
operations that are associated to the scope.

Modifying API Scope Details

You use the Scopes tab in the API details page to examine and modify the details of a scope.

To modify the properties of a scope

1. Click APIs in the title navigation bar.

A list of APIs available in API Gateway appears.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Scopes tab.

This displays a list of scopes available in the API.

5. In the List of scopes section, click the name of the scope you want to modify.

This opens the details of the scope. The scope details appears in the following sections:

Basic information: This section contains a summary of basic information such as name and
description of the scope.

Resources and methods: Applicable only for REST APIs. This section contains a collection
of REST resources, methods, or both, that are associated to the scope.

492 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Operations: Applicable only for SOAP APIs. This section contains a collection of SOAP
operations that are associated to the scope.

6. Modify the basic properties, applicable resources, methods, or operations of the scope.

7. Click Save.

Activate the API, if it is not active, to put it into effect.

Deleting an API Scope

You delete a scope to remove it from the API permanently.

When a scope is deleted from the API definition, API Gateway deletes the existing associations
between the scope and the collection of resources, methods, or operations in the API. But, the
collection of resources, methods, or operations continue to exist in the API.

To delete a scope

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Scopes tab.

This tab displays a list of scopes available with the API.

5. In the List of scopes section, locate the name of the scope you want to delete.

6. Click the Delete () icon next to the scope name.

7. Click Yes in the confirmation dialog.

The scope is removed from the List of scopes section.

8. Click Save to save the updated API.

Activate the API, if it is not active, to put it into effect.

webMethods API Gateway User's Guide 10.15 493

2 Implement APIs

Creating a Scope-level Policy
You create a policy for the API scope, to enforce the specific set of policies on a collection of
resources, methods, or both, or operations that are associated to the scope. An API can have zero
or more scope-level policies.

To create a scope-level policy

1. Click APIs in the title navigation bar.

This displays a list of APIs available in API Gateway.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Policies tab.

This displays a list of scopes and policies available in the API.

5. In the API Scope box, select the scope for which you want to create a policy.

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the expanded list of policies, select the policies that you want to associate with this scope.
To select a policy, click the Add (+) icon next to the policy name. The selected policies are
displayed in the Infographic section.

When you select the policies for the scope-level policy, keep in mind that the policies shown
in the Policy catalog section are determined by the type of the displayed API. If you do not
see a policy that you need, that policy is probably not compatible with this API.

Use the Delete (X) icon in any individual policy to remove that particular policy from the
Infographic section.

8. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine or set.

b. In the Policy properties section, set the values for the policy's properties as necessary.

494 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Note:
Required properties are marked with an asterisk.

9. Click Open in full-screen to view the policy's properties in full-screen mode.

The Open in full-screen link is located in the upper right-corner of the Policies tab.

10. Set the properties of the displayed policy, and then click OK.

To exit out of full-screen mode, click the Minimize icon.

11. Click Save to create the new scope-level policy.

Click to view the complete list of policies in the updated API. Activate the API,
if it is not active, to put it into effect.

Viewing List of Scope-level Policies and Policy Details
The Infographic section displays the list of policies that are associated to a selected scope in the
API's Policies tab.

To view the scope-level policies and properties of a policy

1. Click APIs in the title navigation bar.

This displays a list of APIs available in API Gateway.

2. Click the name of the required API.

This opens the API details page.

3. Click the Policies tab.

This displays a list of scopes and policies available in the API.

4. In the API Scope box, select the scope whose policy details you want to examine.

5. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine.

b. In the Policy properties section, examine the values for the policy's properties as required.

6. Click Open in full-screen to view the policy's properties in full-screen mode.

The Open in full-screen link is located in the upper right-corner of the Policies tab. Examine
the properties of the displayed policy, and then click OK.

webMethods API Gateway User's Guide 10.15 495

2 Implement APIs

To exit out of full-screen mode, click the Minimize icon.

7. Click to view the complete list of policies in the updated API.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Modifying Scope-level Policy Details
The API can have a set of policies that are configured globally through a global policy, or directly
through a policy template, or a set of individual policies at the API-level or scope-level.

To customize the policy configurations at the scope-level, you need to apply the policies that are
available for the API's scope, and then configure the properties of the individual policies to suit
the needs of runtime behavior of that particular API.

You use the Policies tab to examine and modify the properties of a policy at the scope-level.

To modify the properties of a scope-level policy

1. Click APIs in the title navigation bar.

This displays a list of APIs available in API Gateway.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Policies tab.

This displays a list of scopes and policies available in the API.

5. In the API Scope box, select the scope whose policy details you want to modify.

6. On the Infographic section, modify the policy list and the policy's configuration properties as
necessary.

Use the Delete (X) icon in any individual policy to remove that particular policy from the
Infographic section.

7. Click Open in full-screen to view the policy's properties in full-screen mode.

The Open in full-screen link is located in the upper right-corner of the Policies tab.

496 webMethods API Gateway User's Guide 10.15

2 Implement APIs

8. Modify the properties of the displayed policy, and then click OK.

To exit full-screen mode, click the Minimize icon.

9. When you have completed the required modifications for the scope-level policy, click Save
to save the updated scope-level policy.

Click to view the complete list of policies in the updated API. Activate the API,
if it is not active, to put it into effect.

Deleting a Scope-level Policy
You delete a policy at the scope-level to remove the association between the policy and a scope.

When deleting a scope-level policy in the API details page, keep the following points in mind:

When a scope is deleted from the API details, API Gateway removes the policies that were
associated with the deleted scope.

To delete a scope-level policy

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Policies tab.

A list of scopes and policies available with the API appears.

5. In the API Scope box, select the scope whose policy you want to remove.

6. On the Infographic section, click the x icon in any individual policy to remove that particular
policy from the scope.

7. When you have removed the policy, click Save to save the updated scope-level policy.

Click to view the complete list of policies in the updated API. Activate the API,
if it is not active, to put it into effect.

webMethods API Gateway User's Guide 10.15 497

2 Implement APIs

Example: Usage Scenarios of API Scopes

API Provider can restrict the enforcement of policies at the resource-level or method-level for a
REST API, and at the operations-level for a SOAP API. This policy enforcement on the resources,
methods, or operations of the API will apply in addition to the default enforcement of policies at
the global-level and the user-defined enforcement of policies at the API-level.

Consider you have a REST API, for example, PhoneStore API, with a collection of resources and
methods.

Supported MethodsResource PathResource Name

GET/phones/ordersResource A

POST

GET/phones/orders/{order-id}Resource B

PUT

DELETE

GET/phones/orders/{order-id}/paymentdetailsResource C

POST

The following section demonstrates the application of scopes and the policy enforcement using
Resource C: /phones/orders/{order-id}/paymentdetails of the PhoneStore API.

You can create scopes in the PhoneStore API, and define the individual scopes with a specific set
of resources, methods, or both.

Applied MethodApplied ResourceScope Name

Resource C:
/phones/orders/{order-id}/paymentdetails

PAYMENT Scope

POSTResource C:
/phones/orders/{order-id}/paymentdetails

WRITE Scope

Assume you have an API-level policy which enforces an Identify & Authorize policy with HTTP
BasicAuthentication for the PhoneStoreAPI. Now, youmight need to have different authentication
mechanisms for different methods and resources (collectively, scopes) of the PhoneStore API,
depending on the level of access you need.

For example, you might want to enforce an Identify & Authorize policy for the Resource C in
PAYMENT Scope to enforce secured access to the data. You might also want to apply an Identify
& Authorize policy with API Key authentication and Traffic Optimization policy (with 5 API
invocations per minute), in particular, for the POST method of the Resource C in WRITE Scope to
enforce a higher-level of secured access and manipulation of the REST data.

498 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Applied PoliciesAPI-level / Scope-level Policy

Identify & Authorize policy with HTTP Basic
Authentication

API-level Policy

Identify & Authorize policyScope-level Policy for PAYMENT Scope

Identify & Authorize policy with API KeyScope-level Policy for WRITE Scope

Traffic Optimization

The API Scopes definition looks like this:

Applied PoliciesAPI-level / Scope-level Policy

Identify & Authorize policy with HTTP Basic
Authentication

API-level Policy

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for PAYMENT Scope

Identify & Authorize policy

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for WRITE Scope

Method: POST

Identify & Authorize policy with API Key

Traffic Optimization

The precedence of the policy enforcement effective for an API at run-time is as follows:

1. Global Policy Enforcement

2. Method-level Policy Enforcement (RESTAPIs) -OR-Operation-level Policy Enforcement (SOAP
APIs)

3. Resource-level Policy Enforcement (REST APIs)

4. API-level Policy Enforcement

The specific aspect of processing during the handling of an API invocation at run-time in API
Gateway can be best understood with the following scenarios:

Scenario A: Invoke GET method on the Resource C: /phones/orders/{order-id}/paymentdetails

Global Policy: Not applicable

Method-level Policy: Not applicable

Resource-level Policy(s): Identify & Authorize

API-level Policy: Identify & Authorize policy with HTTP Basic Authentication

webMethods API Gateway User's Guide 10.15 499

2 Implement APIs

As per the precedence of policy enforcement, the Inbound Authentication - Transport at the
resource-level and the Identify&Authorize policywithHTTPBasicAuthentication at theAPI-level
are enforced at run-time.

The effective policy set enforced on the API for the GET method at run-time includes:

Identify & Authorize

Identify & Authorize policy with HTTP Basic Authentication

Scenario B: Invoke POST method on the Resource C: /phones/orders/{order-id}/paymentdetails
in WRITE Scope

Global Policy: Not applicable

Method-level Policy(s): (1) Identify & Authorize policy with API Key (2) Traffic Optimization

Resource-level Policy(s): Identify & Authorize

API-level Policy: Identify & Authorize policy with HTTP Basic Authentication

As per the precedence of policy enforcement, the Identify & Authorize policy with API Key at the
method-level takes precedence over the Identify&Authorize policywithHTTPBasicAuthentication
at the API-level, and is enforced at run-time.

The effective policy set enforced on the API for the POST method at run-time includes:

Identify & Authorize

Identify & Authorize policy with API Key

Traffic Optimization

Now, consider that you apply an active Global Policy that has the Identify & Authorize policy
with Hostname Address for all REST APIs (including our PhoneStore API).

Scenario C: Invoke POST method on the Resource C: /phones/orders/{order-id}/paymentdetails
in WRITE Scope

Global Policy: Identify & Authorize policy with Hostname Address

Method-level Policy(s): (1) Identify & Authorize policy with API Key (2) Traffic Optimization

Resource-level Policy(s): Identify & Authorize

API-level Policy: Identify & Authorize policy with HTTP Basic Authentication

As per the precedence of policy enforcement, the Identify & Authorize policy with Hostname
Address applied through the global policy takes precedence over every other Identify &Authorize
policy that is applied at the method-level and the API-level, and is enforced at run-time.

The effective policy set enforced on the API for the POST method at run-time includes:

Identify & Authorize

Identify & Authorize policy with Hostname Address

500 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Traffic Optimization

Resolving Scope Conflicts

When you save anAPI, APIGateway combines the scopes specifiedwith the set of policies defined
at the API-level, and on saving the API, API Gateway applies the policies to the API at various
enforcement levels. API Gateway validates the scope list to ensure that it contains no conflicting
or incompatible policies. If the list contains conflicts or inconsistencies, API Gateway prompts you
with an error message.

Consider that you modify the existing UPDATE scope to include a POST method for Resource C.
The API Scopes definition now looks like this:

Applied PoliciesAPI-level / Scope-level
Policy

Identify & Authorize policy with HTTP Basic AuthenticationAPI-level Policy

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for PAYMENT
Scope

Identify & Authorize policy

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for WRITE Scope

Method: POST

Identify & Authorize policy with API Key

Traffic Optimization

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for UPDATE Scope

Method: POST

Identify & Authorize policy with API Key

Scenario D: Save the updated PhoneStore API.

Global Policy: Not applicable

Method-level Policy(s): (1) Identify & Authorize policy with API Key (2) Identify & Authorize
policy with IP Address Range (3) Traffic Optimization

Resource-level Policy(s): Identify & Authorize

API-level Policy: Identify & Authorize policy with HTTP Basic Authentication

As per the precedence of policy enforcement, the Identify & Authorize policy at the method-level
in WRITE and UPDATE Scopes take precedence over the Identify & Authorize policy at the
API-level. But the Identify & Authorize policy with the API Key and IP Address Range
authentications that are applied at the method-level results in a policy conflict.

To resolve the conflicts, you can choose one of the following workaround:

webMethods API Gateway User's Guide 10.15 501

2 Implement APIs

Option 1: Remove the existing association between the POST method and the WRITE Scope
or UPDATE Scope through the API Scope details.

Option 2: Delete the WRITE Scope or UPDATE Scope.

Option 3: Remove the Identify & Authorize policy from theWRITE Scope or UPDATE Scope.

Policy Templates

Important:
API Gateway's Standard Edition License does not support policy templates. You can create and
manage policy templates only using the Advanced Edition License.

Policy templates are a set of policies that can be associated directly with an individual API. The
direct association of the policy template with an API provides the flexibility to alter the policy's
configurations to suit the individual API requirements.

To apply a policy template to an API, modify the details page of the API, and apply the selected
policy template.

Creating a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

To create a policy template you must perform the following high-level steps:

1. Create a new policy template: During this step, you specify the basic details of the policy
template.

2. Configure the policies: During this step, you associate one ormore policies with the template,
and assign values to each of the associated policy's properties.

To create a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. In the Policies page, click the Create Policy Template button.

This opens the Create Policy Template page with the default Policy Details tab.

4. In the Basic Information section, provide the required information for each of the displayed
data fields:

502 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionField

Name of the policy template.Name

Description of the policy template.Description

5. Click Continue to policy configuration.

6. In thePolicy Configuration tab, select the policies and configure the properties for each policy
that you want API Gateway to execute when it applies this policy template.

For details, see “Associating Policies with a Policy Template” on page 503 and “ Configuring
Properties for a Policy Template” on page 504.

7. Click Save.

Associating Policies with a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

ThePolicy Configuration tab on the Policy Template details page specifies the set of policy stages
and the list of policies (applicable for each stage).

To modify the list of policies of a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Select the required template.

The Policy Template details page appears.

4. Click Edit.

5. Click the Policy Configuration tab.

The policy template information is provided in the following sections:

Policy catalog - Transport, Identify and Access, Request Processing, Routing, Traffic
Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

webMethods API Gateway User's Guide 10.15 503

2 Implement APIs

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the expanded list of policies, select the policies that youwant API Gateway to execute when
it applies this policy template. To select a policy, click the Add (+) icon next to the policy name.
The selected policies are displayed in the Infographic section.

Use the Delete (X) icon in any individual policy to remove that particular policy from the
Infographic section.

8. To configure the properties for any new policies that youmight have added to the Infographic
section in the preceding steps or to make any necessary updates to the properties for existing
policies in the policy template, see “ Configuring Properties for a Policy Template” on page 504.

9. When the list of policies is complete and you have configured all of the properties for the
policies correctly, click Save to save the updated policy template.

10. Click to view the complete list of policies in the updated policy template.

TheOverview button is located in the lower right-corner of the Infographic section. In addition,
you can view the configured properties for the individual policies.

To exit the overview, click the Close icon.

Configuring Properties for a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

The Policy Configuration tab on the Policy Template details page specifies the list of policies that
are applicable for each policy stage in the Policy catalog section. Each policy in the Infographic
section has properties that you must set to configure the policy's enforcement behavior.

To configure the properties for a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Select the required template.

The Policy Template details page appears.

4. Click Edit.

504 webMethods API Gateway User's Guide 10.15

2 Implement APIs

5. Click the Policy Configuration tab.

The policy template information is provided in the following sections:

Policy catalog - Transport, Identify and Access, Request Processing, Routing, Traffic
Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine or set.

b. In the Policy catalog section, set the properties as necessary.

Note:
Required properties are marked with an asterisk.

8. Click Open in full-screen to view the policy's properties in full screen mode.

The Open in full-screen link is located in the upper right-hand corner of the Policy
Configuration tab. Set the properties of the displayed policy, and then click OK.

To exit full screen mode, click the Minimize icon.

9. After you configure the properties for all of the policies in the Infographic section, click Save
to save the updated policy template.

10. Click to view the complete list of policies in the updated policy template.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Viewing List of Policy Templates and Template Details

The Policy Templates tab displays a list of all available policy templates in API Gateway. Policy
templates are listed alphabetically by name.

In addition to viewing the list of policy templates, you can also examine the details of a template,
create a copy of the template, and delete a policy template in the Policy Templates tab.

webMethods API Gateway User's Guide 10.15 505

2 Implement APIs

To view the policy template list and properties of a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page. This tab
provides the following information about each template:

DescriptionColumn

Name of the policy template.Name

The description for the policy template.Description

You can also perform the following operations on a policy template:

Create a new copy of the policy template.

Delete a policy template to remove it from API Gateway.

3. Select the required policy template.

The Policy Template details page appears. The policy template details are displayed in the
following tabs:

Policy Details: This tab contains a summary of basic information such as the name and
description of the policy template.

Policy Configuration: This tab contains the policy stages, applied policies, as well as the
configuration details of individual policies.

Modifying Policy Template Details
You must have the API Gateway's manage policy templates functional privilege assigned.

You use the Policy Template details page to examine andmodify the properties of a policy template.

To modify the properties of a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Select the required template.

506 webMethods API Gateway User's Guide 10.15

2 Implement APIs

The Policy Template details page appears. The policy template details are displayed in the
following tabs:

Policy Details: This tab contains a summary of basic information such as name and
description of the policy template.

Policy Configuration: This tab contains the policy stages, applied policies, as well as the
configuration details of individual policies.

4. Click Edit.

5. On the Policy Details tab, modify the basic properties of the policy as necessary.

6. On thePolicy Configuration tab,modify the policy list and the policy's configuration properties
as necessary.

7. When you have completed the required modifications on the Policy Template details page,
click Save to save the updated policy template.

If update of a policy template fails, API Gateway displays a pop-up style error message.

8. Click Overview to view the complete list of policies in the updated policy template.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Deleting a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

You delete a policy template to remove it from API Gateway permanently.

To delete a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Click the Delete () icon for the required template.

4. Click Yes in the confirmation dialog.

webMethods API Gateway User's Guide 10.15 507

2 Implement APIs

Copying a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

A policy template can become quite complex, especially if it includes many policies. Instead of
creating a new policy template from scratch, it is sometimes easier to copy an existing template
that is similar to the one you need and edit the copy.

When you create a copy of a policy template, be aware that:

When API Gateway creates a copy of a policy template, the new copy of the policy template
is identical to the original one.

There is no expressed relationship between the copy and the original policy (that is, API
Gateway does not establish any type of association between the two policy templates).

In general, a copied policy template is no different from a policy template that you create from
scratch.

To copy a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Click the Copy icon for the required template.

4. In the Copy of Policy Template dialog box, provide the required information for each of the
displayed data fields:

DescriptionField

Name of the policy template.Name

API Gateway automatically adds the name of the existing
policy template to theName field. You can change the name
of the template to suit your needs. But you cannot leave this
field empty.

The description for the policy template.Description

5. Click Copy to save the new policy template.

6. Modify the new policy template as necessary and then save it.

508 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Applying a Policy Template on the API Details Page
You must have the API Gateway's manage APIs functional privilege assigned.

The Policies tab on the API details page specifies the set of policies that API Gatewaywill execute
when an application requests access to that particular API.

The API can have a set of policies that are applied through a global policy, through a policy
template, through a scope-level policy, and through API-level policies.

To customize the policy configurations for an API using a policy template, you need to apply the
template (containing a set of policies), and then configure the properties of the individual policies
to suit the runtime requirements for that API.

To apply a policy template on the API details page

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

3. Click Edit.

4. Click the Policies tab.

The API's policy information is provided in the following sections:

Policy stages - Threat Protection, Transport, Identify and Access, Request Processing,
Routing, Traffic Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

5. Click Apply template located in the lower right-corner of the Infographic section.

This opens the Apply template dialog box.

6. In the Template chooser, select one or more policy templates that you want to apply to the
API.

You can choose to display the details of an individual policy template by clicking the Info icon.
This option populates the list of policies that are defined in the particular template.

7. Select one or more policy templates that you want API Gateway to execute at run-time.

8. Click Next.

You must have at least one template selected to use the Next button.

webMethods API Gateway User's Guide 10.15 509

2 Implement APIs

9. In theApply Templates to APIwizard, review the list of policies and the configuration details
of the associated policies.

If necessary, you can clickPrevious to return to the Template chooserwizard and change
your template selections.

If at any time you wish to abandon all your changes and return to the Policies tab, click
Cancel.

10. Click Apply.

If you have one or more policy conflicts, API Gateway displays the conflicting/incompatible
policies with a Conflict icon. You can choose to resolve the policy conflicts and do a Apply,
or simply continue to Apply with conflicts.

If you choose the continuewith conflicts, APIGateway sets the focus on the conflicting policies
with Conflict () icon displayed next to the policy names in the Infographic section and the
corresponding policy stages.

API Gateway will redirect you to the Policies tab. The newly applied policy template
comprising a set of policies and the policy properties is displayed in the Infographic section.

11. After you apply the required policy templates, click Save to save the updated API.

Post-requisites:

Activate the API when you are ready to put it into effect.

Modifying a Policy Template on the API Details Page
You must have the API Gateway's manage policy templates functional privilege assigned.

The Policies tab on the API details page specifies the set of policies that API Gateway executes
when an application requests access to that particular API.

The API can have a set of policies that are applied through a global policy, through a policy
template, through a scope-level policy, and through API-level policies.

To modify the details of a policy template on the API details page

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

510 webMethods API Gateway User's Guide 10.15

2 Implement APIs

4. Click the Policies tab.

The API's policy information is provided in the following sections:

Policy catalog - Threat Protection, Transport, Identify and Access, Request Processing,
Routing, Traffic Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

5. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine or set.

b. In the Policy properties section, set the properties as necessary.

Note:
Required properties are marked with an asterisk.

c. Use the Delete (X) icon in any individual policy to remove that particular policy from the
Infographic section.

6. Click Open in full-screen to view policy properties in full screen mode.

The Open in full-screen button is located in the upper right-hand corner of the Policy
Configuration tab.

7. Set the properties of the displayed policy, and then click OK.

To exit full screen mode, click the Minimize icon.

8. Click Save to save the updated API.

Activate the API, if it is not active, to put it into effect.

Saving Policy Definition of an API as Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

The Policies tab on the API details page specifies the set of policies that API Gatewaywill execute
when an application requests access to that particular API.

The API can have a set of policies that are applied through a global policy, through a policy
template, through a scope-level policy, and through API-level policies.

You can save the current policy definition of an API as a new policy template. At a later time, you
can reuse this policy template in otherAPIs. Formore information, see “Applying a Policy Template
on the API Details Page” on page 509.

webMethods API Gateway User's Guide 10.15 511

2 Implement APIs

To save policy definition as policy template

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

3. Click the Policies tab.

The API's policy information is provided in the following sections:

Policy catalog - Threat Protection, Transport, Identify and Access, Request Processing,
Routing, Traffic Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

4. Click Save as template located in the lower right-hand corner of the Infographic section.

5. In theSave as template dialog box, provide the required information for each of the displayed
data fields:

DescriptionField

Name of the policy template.Name

Description of the policy template.Description

6. Click Save.

Change Ownership of Assets

Assets such as APIs and applications in API Gateway have an option where the ownership of the
asset can be changed. Applications have confidential data like API key and client certificateswhich
only the owner can view. Therefore, if the owner of an asset has to take up a different responsibility
or leave the organization, no other user can view the secrets of the asset. The edit option available
on the asset details page, enables the transfer of ownership of the asset to another user, so that the
new owner of the asset can access or view the confidential data of the asset. API Gateway provides
an option to configure an approval process for the assets' ownership change. Approval and auditing
contribute to the governance of change ownership.

Before you begin

Ensure that you have:

API Gateway advanced edition version 10.5 or higher installed.

512 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Basic understanding of API Gateway and its related components like the API Gateway user
interface.

Change owner/team privilege.

For details on functional privileges available, see webMethods API Gateway Administration.

The change owner approval process configured and enabled if youwant to enforce an approval
process for ownership changes of assets.

For details on configuring the approval process, see webMethods API Gateway Administration.

The figure depicts the workflow for changing ownership of assets.

How Do I Change the Ownership of an API?
This use case explains how to change the ownership of an API. You can configure an approval
process for the change of ownership to take effect, if required.

The use case starts when you have an API that requires a change of owner and ends when you
successfully change the API's ownership.

In this example, an API petstore is owned by user1. The ownership of petstore has to be changed to
user2 through an approval process.

Before you begin

Ensure that you have the change owner privilege.

To change the ownership of an API

webMethods API Gateway User's Guide 10.15 513

2 Implement APIs

1. Log on to API Gateway as a user with the change owner privilege.

2. Click APIs on the title navigation bar.

3. Click petstore.

The API details page appears. The owner of the API petstore is user1 as displayed in the Basic
information section.

4. Click change.

5. Select user2 from the list and click .

The change approval process is initiated.

Note:
If the approval flow is not configured, the owner of the API changes to user2 and a success
message appears. Skip to step 8.

6. An approval request is sent to the approver.

7. The approver approves the request that resides in the Pending Requests section of the API
Gateway UI.

514 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Note:
The approver can click Reject to reject the request for ownership change if the request is
invalid. A reject notification is sent to the requester and the ownership of petstore remains
with user1.

Click Change ownership request details to view the request details. The Request details
dialog box appears.

The approval notification is sent to the requester.

8. The owner of the API petstore is changed from user1 to user2.

webMethods API Gateway User's Guide 10.15 515

2 Implement APIs

How Do I Change the Ownership of an Application?
This use case explains how to change the ownership of an application. You can configure an
approval process for the change of ownership to take effect, if required.

The use case startswhen an application requires a change of owner and endswhen you successfully
change the application's ownership.

In this example, an application App1 is owned by the team Administrators. The ownership of App1
has to be changed to DevTeam through an approval process.

Before you begin

Ensure that you have the change owner privilege.

To change the ownership of an application

1. Log on to API Gateway as a user with the change owner privilege.

2. Click Applications on the title navigation bar.

3. Click the required application app1.

The application details page appears. The owner of the application App1 is Administrators as
displayed in the Basic information section.

4. Click .

5. Select Team.

516 webMethods API Gateway User's Guide 10.15

2 Implement APIs

6. Select DevTeam from the list and click .

The change approval process is initiated.

Note:
If the approval flow is not configured, the owner of the application changes and a success
message appears. Skip to step 8.

7. An approval request is sent to the approver.

8. The approver approves the request that resides in the Pending Requests section of the API
Gateway UI.

Note:
The approver can click Reject to reject the request for ownership change if the request is
invalid. A reject notification is sent to the requester and the ownership does not change.

Click Change ownership request details to view the request details. The Request details
dialog box appears.

The approval notification is sent to the requester.

9. The owner of the application App1 is changed from Administrators to DevTeam.

Alternate steps

You can select User or Team in the Owner type field (in Step 5)

If you select Team, the list of teams appear in the field.

webMethods API Gateway User's Guide 10.15 517

2 Implement APIs

How Do I Change the Ownership of Multiple Assets?
It is convenient to change the asset ownership for multiple assets with a single REST request than
doing it separately for individual assets. This use case explains how to change the ownership of
multiple assets by sending a REST request. You can configure an approval process, if required,
for the change of ownership to take effect.

The use case starts whenmultiple assets require change of owner and endswhen you successfully
change the ownership of the assets to another user.

To change the ownership of multiple assets

1. Use the following REST request to change the asset ownership to a new user.
POST http://host:port/rest/apigateway/assets/owner
Content-Type: application/json
{

"assetType": "*", (API/APPLICATION)
"assetIds": ["*"],
"currentOwner": "user1",
"newOwner": "user2"

}

Provide the following information in the REST request:

assetType. Specifies the asset type for which you want to change the owner. Available
values are API, APPLICATION, or the wildcard *. The wildcard * specifies all the assets, APIs
and applications owned by the user specified in currentOwner.

assetIds. Specifies the ID of the assets specified in assetType.

Note:
This is optional. assetIds is not required if you specify currentOwner.

currentOwner. Specifies the user name of the owner of the assets specified in the assetType
field.

Note:
If both currentOwner and assetIds are specified, both are validated. For example, consider
user1 and user2 are owners of assetID1 and assetID2 respectively. In the request payload,
if you include assetID1 and assetID2 in the assetIds field and user1 in the currentOwner
field, then only assetID1 ownership changes.

newOwner. Specifies the user name of the user who would be the new owner of the assets
specified.

Example 1: If user1 owns two assets, an API petstore and application app1, and you want the
ownership to be transferred to user2, send a REST request as follows:
POST http://localhost:5555/rest/apigateway/assets/owner
Content-Type: application/json
{

"assetType": "*", (API/APPLICATION)

518 webMethods API Gateway User's Guide 10.15

2 Implement APIs

"currentOwner": "user1",
"newOwner": "user2"

}

This request transfers the ownership of all the assets owned by user1 to user2.

The change approval process is initiated.

Example 2: user1 owns three APIs, api1, api2, and api3 and 2 applications, app1 and app2. If
you want the ownership of api1, api2, and app1 to be transferred to user2, send a REST request
as follows:
POST http://localhost:5555/rest/apigateway/assets/owner
Content-Type: application/json
{

"assetType": "*", (API/APPLICATION)
"assetIds": ["apiID1, apiID2, appID1"],
"currentOwner": "user1",
"newOwner": "user2"

}

where apiID1, apiID2, and appID1 are asset IDs of api1, api2, and app1 respectively.

The change approval process is initiated.

Note:
If the approval flow is not configured, the ownership of the assets changes from user1 to
user2. Skip to step 4.

2. An approval request is sent to the approver.

The approval request contains information of all the assets whose ownership needs to change
and the new owners' name.

3. The approver approves the request in the Pending Requests section of the API Gateway UI.

The approval notification is sent to the requester.

4. The owner of the assets is changed from user1 to user2.

Debugging API

With Trace API support, you can monitor the complete life cycle of the runtime requests within
API Gateway. This use case explains how to trace an API call in API Gateway. You can perform
tracing for any runtime requests. Inspecting the failed runtime requests help you to debug and
troubleshoot your API calls. You can trace REST, SOAP, and OData API calls only.

On enabling the tracer for an API, you can view the list of runtime requests that invoked the API.
For each request, you can view

the list of policies that were invoked in each stage

time taken to execute the stage and its corresponding policies

policy configured at the time of invocation

webMethods API Gateway User's Guide 10.15 519

2 Implement APIs

values that were passed as input before the execution of the policies and values that were
transformed at the end of the policy execution

conditions and transformations that were applied and performed at the time of invocation

server log captured at the time of invocation

Note:
Server logs are captured based on the log level settings enabled for runtime requests. To
capture detailed logs during tracing, set the log level to DEBUG or TRACE for all the required
stages in the Integration Server.

Important considerations when you trace an API:

When you create a new API version from an API for which tracing is enabled, by default
tracing is disabled in the newly versioned API.

When you import an API with the Overwrite option selected as All or Custom - API, and if
the API already exists after you import the API, by default the trace is disabled. You have to
enable trace explicitly.

When you promote an API with the option Overwrites assets except alias that already
exist on the selected target stages selected, by default after you promote the API to the
target instance, the trace is disabled. You have to enable trace explicitly.

API Gateway does not support tracing for threat protection policies and rules.

API Gateway does not support tracing for Microgateway groups.

The following policies are covered as part of trace API:

Transport

Enable HTTP/HTTPS

Set Media Type

Identify & Access

Authorize Users

Identify & Authorize

Custom Extension

Request Processing

Invoke webMethods IS

Request Transformation

Data Masking

Custom Extension

Routing

520 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Straight Through Routing

Custom HTTP Header

Outbound Auth - Transport

Custom Extension

Response Processing

Invoke webMethods IS

Response Transformation

CORS

Data Masking

Custom Extension

Error Handling

Data Masking

Custom Extension

Note:
You can enable or disable tracing for an API by using the Service Management REST API. For
more details about this API, see webMethods API Gateway Developer's Guide.

How do I enable tracing?
This use case starts when you want to enable trace for an API and ends when you view the trace
details for that API.

Before you begin

Ensure that you have:

Manage APIs privilege.

Activated the API before you enable the tracer.

To enable tracing

1. Click APIs in the title navigation bar.

2. Click an API for which you want to enable the trace.

The API details page displays the basic information, technical information, resources and
methods, and specification for the selected API.

3. Click the Enable tracing button.

webMethods API Gateway User's Guide 10.15 521

2 Implement APIs

Once you have enabled the tracer, the API details page displays the warning message, This
API has tracing enabled. Tracing impacts performance and storage, hence disable
tracing when it is not needed.

4. Click the Tracer tab to view the trace details

The Trace API page displays theRuntime events,Policies applied, andEvent tracer details
sections.

Note:
When you enable tracer, API Gateway captures a large amount of data, whichmight impact
the performance and availability of the product. Hence Software AG strongly recommends
you to disable the tracer when not needed and employ data house keeping procedures. For
more information about Data housekeeping, see webMethods API Gateway Administration .

How do I filter the runtime request?
This use case starts when youwant to filter the client request based on its runtime events and ends
when you view the trace details of the filtered client request.

To filter the runtime event

1. Click the Tracer tab.

The Trace API page displays theRuntime events,Policies applied, andEvent tracer details
sections.

2. In the Runtime events section, click to filter the runtime events.

The Apply filter pop-up window displays.

522 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3. To filter the runtime events, click and select the time interval using the options:

Quick select. Specify the time interval. Click Apply to filter the runtime events based on
the time interval.

Commonly used. Select a commonly used time interval, and the filter is applied
automatically. To view the runtime events between a time interval, click Custom range
> From Date > To Date > Apply.

The Runtime events section displays the list of runtime events based on the applied filter.

webMethods API Gateway User's Guide 10.15 523

2 Implement APIs

The runtime events are displayed using various legends to indicate the different types of
requests along with their status code.

The below table displays the legends and their description:

DescriptionLegends

Successful API calls

Failed API calls due to client-side errors

Failed API calls due to Server-side errors

Redirection calls

Informational calls

How do I view the trace details?
This use case starts when you want to view the stage-wise and policy-wise trace details about the
selected client request and ends when you view the trace details at the policy level.

Before you begin

Ensure that you have:

Manage APIs and Activate APIs privileges.

Invoked the API after you have enabled the tracer.

To view the trace details

1. In the Runtime events section, click the client request for which you want to view the trace
details.

The Trace API page refreshes and populates data in the Policies applied and Event tracer
details sections. By default, theEvent tracer details section displays theGeneral Information,
API request and response, andServer logs sections. Under theAPI request and response
section, you have the following sub-sections:

Request sent by client. Displays the request headers and request body sent by the client
to API Gateway.

Response sent to client. Displays the response headers and response body sent to the
client from API Gateway.

524 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Request sent to native service . Displays the request headers and request body sent to
the native API from API Gateway.

Response sent by native service. Displays the response headers and response body sent
by the native API to API Gateway.

Note:
If the request and response body has streaming content, the tracer does not capture the
streaming content even if you have enabled the tracer.

webMethods API Gateway User's Guide 10.15 525

2 Implement APIs

2. In the Policies applied section, click the stage name for which you want to view the trace
details.

The Trace API page refreshes the Event tracer details section with the stage_ name stage
execution status section displaying the status and response time of the stage and policies
that are enforced during API invocation.

526 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Note:

In thePolicies applied section, if no policies is enforced in a stage during the invocation
then that stage is disabled. In this use case, Error Handling stage is disabled.
The Status column indicates that whether the corresponding policy is invoked or not.

If the Status column displays , it indicates the corresponding policy is
enforced successfully during invocation but it does notmean that the conditions specified
in the policy are matched. You can click the respective policy to know more details on
how the conditions were applied during invocation.

3. In the Policies applied section, click the policy name for which you want to view the trace
details.

The Trace API page refreshes the Event tracer details sections with the policy_name policy
config/input/output section displaying the configuration details, values that were passed as
input before the enforcement of the policies and values that were transformed at the end of
the policy enforcement, conditions and transformations that were applied and performed at
the time of invocation, and payloads.

webMethods API Gateway User's Guide 10.15 527

2 Implement APIs

Note:
The template of the policy_name policy config/input/output section varies based on the
policy.

528 webMethods API Gateway User's Guide 10.15

2 Implement APIs

How do I inspect failed runtime requests using tracer?
This use case startswhen youwant to inspect the failed runtime request and endswhen youdebug
and troubleshoot the failed API requests.

To inspect the failed runtime request

1. In the Runtime events section, click the client request for which you want to inspect the trace
details.

The Trace API page refreshes and populates data in the Policies applied and Event tracer
details sections. By default, theEvent tracer details section displays theGeneral Information,
API request and response, andServer logs sections. Under theAPI request and response
section, you have the following sub-sections:

Request sent by client . Displays the request headers and request body sent by the client
to API Gateway.

Response sent to client. Displays the response headers and response body sent to the
client from API Gateway.

Request sent to native service . Displays the request headers and request body sent to
the native API from API Gateway.

Response sent by native service. Displays the response headers and response body sent
by the native API to API Gateway.

Note:
If the request and response body has streaming content, the tracer does not capture the
streaming content even if you have enabled the tracer.

webMethods API Gateway User's Guide 10.15 529

2 Implement APIs

2. In the Policies applied section, click the stage name highlighted in red for which you want
to inspect the trace details.

The Trace API page refreshes the Event tracer details section with the stage_ name stage
execution status section displaying the status and response time of the stage and policies
that failed during API invocation.

530 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Note:
In the Policies applied section, if no policies in a stage is enforced during the invocation
then that stage is disabled. In this use case, Response Processing stage is disabled and it
is not enforced as the API invocation fails in the Routing stage. The Error Handling stage
was enforced in order to handle the Routing stage failure.

3. In thePolicies applied section, click the policy name request highlighted in red for which you
want to inspect the trace details.

The Trace API page refreshes the Event tracer details sections with the policy_name policy
config/input/output section displaying the configuration details, values that are passed during
the enforcement of that policy, transformation conditions, and payloads. It also highlights the
exact location where the policy invocation failed along with the failure reason.

webMethods API Gateway User's Guide 10.15 531

2 Implement APIs

Note:
The template of the policy_name policy config/input/output section varies based on the
policy.

532 webMethods API Gateway User's Guide 10.15

2 Implement APIs

How do I import runtime requests?
This use case starts when you want to import the client request from any other API Gateway
instance to your API Gateway instance and ends when you view the trace details for the imported
request.

Before you begin

Ensure that the imported request's API ID matches with the API ID to which you import the
request. The API type must also match with the API to which you import the archived request. If
the imported request's API ID or API type does not match with the existing API, API Gateway
rejects the import request.

To import the runtime request

1. Click the Tracer tab.

The Trace API page displays theRuntime events,Policies applied, andEvent tracer details
sections.

2. In the Runtime events section, click to import the archived runtime request.

The Import and view events pop-up window displays.

3. Browse the runtime request file that you want to import.

Note:
Make sure the file that you import does not exceed 50 MB.

4. Click the View button.

The imported request gets displayed in the Runtime events section.

webMethods API Gateway User's Guide 10.15 533

2 Implement APIs

How do I export or download runtime requests?
This use case starts when you want to export the client request from your API Gateway instance
to your local machine and ends when you import the request in another API Gateway instance.

To export the runtime request

1. Click the Tracer tab.

The Trace API page displays theRuntime events,Policies applied, andEvent tracer details
sections.

2. In the Runtime events section, select the runtime event that you want to export.

Note:
The Runtime events section lists only 20 runtime events per page. When you click Select
all per page check box, all the runtime events of the API do not get selected. Instead, the
20 runtime events that are listed in that particular page gets selected.

3. Click to export the runtime request.

The selected request is downloaded to your local machine in a predefined location.

How do I archive or purge the tracer details?
This use case starts when you want to archive or purge the tracer details and ends when you have
successfully archived or purged the tracer details.

534 webMethods API Gateway User's Guide 10.15

2 Implement APIs

To archive or purge the trace details

1. Expand the menu icon in the title bar and selectAdministration >Manage Data >Archive
and purge.

2. Select

the event type as Mediator trace span to archive or purge the stage-wise mediator details
captured when you enabled the tracer.

the event type as Server log trace span to archive or purge the server logs that were
captured when you enabled the tracer.

the event type as Request response trace span to archive or purge the requests and
response logs that were captured when you enabled the tracer.

Note:
Ensure that all the three event types mentioned are archived or purged, so that the tracer
does not impact the performance of API Gateway.

3. Click either the

Archive check box to archive the tracer data.

Purge check box to purge the tracer data.

4. Select one of the following options to archive the required data.

Select Range. Select a period during which you want the data to be archived.

webMethods API Gateway User's Guide 10.15 535

2 Implement APIs

To archive selected types of data from a particular date till the current date, select the
required date in the From date field.

To archive selected types of data from the beginning (events start date) till a particular
date, select the required date in the To date field.

API Gateway archives the selected type of data for the specified date range.

Select Duration. Type the maximum time after which you want the data to be archived.

API Gateway archives the selected types of data after the time specified in years, months,
days, hours, minutes, or seconds (1y, 1m, 1d, 1H, 1M, 1S).

5. Click the Submit button.

Based on your selection, API Gateway archives or purges the trace details.

How do I archive and purge the tracer details using REST API
Calls?
API Gateway provides the following REST API and the resources to archive and purge the trace
details:

To archive the trace details use the following REST API calls:

POST/rest/apigateway/
apitransactions?action=archive&eventType=serverLogTraceSpan&from=yyyy-MM-dd
HH:mm:ss&until=yyyy-MM-dd HH:mm:ss

This archives the server logs that were captured when you enabled the tracer for the specified
range.

POST/rest/apigateway/apitransactions/
archives?action=archive&eventType=serverLogTraceSpan&olderThan= 7d

This archives the server logs that were captured when you enabled the tracer for the specified
duration.

With this REST API call you can archive the server logs that were captured during the last 7
days. Similarly, you can archive the last months and years trace details by specifying the
olderThan as 2y for 2 years and 3M for 3 months. You can specify the number of days, years,
and months as per your need.

To purge the trace details use the following REST API calls:

DELETE/rest/apigateway/
apitransactions?action=purge&eventType=serverLogTraceSpan&from=yyyy-MM-dd
HH:mm:ss&until=yyyy-MM-dd HH:mm:ss

This deletes the server logs that were captured when you enabled the tracer for the specified
range.

536 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DELETE/rest/apigateway/
apitransactions?action=purge&eventType=serverLogTraceSpan&olderThan= 7d

This deletes the server logs that were captured when you enabled the tracer for the specified
duration.

With this REST API call you can delete the server logs that were captured during the last 7
days. Similarly, you can delete the last months and years trace details by specifying the
olderThan as 2y for 2 years and 3M for 3 months. You can specify the number of days, years,
and months as per your need.

To archive and purge the trace details use the following REST API calls:

DELETE/rest/apigateway/
apitransactions?action=archiveAndPurge&eventType=serverLogTraceSpan&from= yyyy-MM-dd
HH:mm:ss&until=yyyy-MM-dd HH:mm:ss

This archives and deletes the server logs that were captured when you enabled the tracer for
the specified range.

DELETE/rest/apigateway/
apitransactions?action=archiveAndPurge&eventType=serverLogTraceSpan&olderThan= 7d

This archives and deletes the server logs that were captured when you enabled the tracer for
the specified duration.

With this REST API call you can archive and delete the server logs that were captured during
the last 7 days. Similarly, you can archive and delete the last months and years trace details
by specifying the olderThan as 2y for 2 years and 3M for 3 months. You can specify the number
of days, years, and months as per your need.

Note:
In all these REST API calls,

if you want to archive and purge the stage-wise mediator details, specify the eventType as
mediatorTraceSpan.
if you want to archive and purge the requests and response logs, specify the eventType as
requestResponseTraceSpan.

When you make these REST API calls, you can see the job ID in the response, which is used in the
following REST API call to retrieve the status of the job.

To view the status of archive or purge jobs:

You can view the status of archive or purge jobs using the following REST API call:

GET/rest/apigateway/apitransactions/jobs/JobID retrieves the status of the specified job ID.

Sample request: GET/rest/apigateway/apitransactions/jobs/ca108bf0-34f3-4726-83a0-2eab4f8b947

Sample response payload:
{

"status": "Completed",
"action": "purge",

webMethods API Gateway User's Guide 10.15 537

2 Implement APIs

"jobId": "ca108bf0-34f3-4726-83a0-2eab4f8b9473",
"creationDate": "2021-08-16 09:07:35 GMT",
"totalDocuments": 4456,
"deletedDocuments": 4456

}

API Mashups

Overview

Servers that provide an API may expose a vast set of functionality. However, each individual
service in the API usually provides a very specific functionality. While this is usually effective,
sometimes it is useful or required to consolidate a few services and expose them as a single service.
In other situations, you might want to extend a service with the functionality provided by an
external API. API mashups address these requirements for grouping services and exposing them
as a single service.

Note:
Currently, API Gateway supports API mashups for REST APIs only. You can define a mashup
only in a REST API and only REST APIs can be included in the mashup.

The APIs that are included in an API mashup (participating APIs) can be connected to each other
in the following ways:

API chaining. Two or more participating APIs are connected and invoked in a sequence—one
after the other.

API aggregation. Two or more participating APIs are connected to a common aggregator step
and invoked in the specified sequence—one after the other. The aggregator step captures the
response of the aggregated APIs. The aggregator step enables you to:

Collate the responses and pass to the next step.

Process the responses and pass the processed data to the next step.

Usage scenario: API chaining

Assume anAPI that provides information about courses offered by different universities in a given
location. This API provides a service that returns the list of universities for a given course name
and postal code. This service could be:
GET /universities?course=medicine&postalcode=600012

The provider of the API wants to extend this API for use in mobile applications that have access
to users’ location. As mobile applications can access a user’s location in terms of longitude and
latitude, this involves first retrieving the postal code for the users’ current location and then passing
that information to the existing API.

Suppose there is a publically available API that returns the postal code based on longitude and
latitude values. This service could be:
GET /postalcode?lat=331&long=22324321

538 webMethods API Gateway User's Guide 10.15

2 Implement APIs

If this public API meets other requirements, such as security, performance, and usage limits, it
can be utilized to deliver the required functionality.

Using an API mashup, you can create and expose a single service that calls both services: the
external service that returns the postal code and the existing service that provides the list of
universities. The resulting service could be:
GET /universities?course=medicine&lat=331&long=22324321

Usage scenario: API aggregation

Assume an IT services provider that provides hosting and cloud services to its customers. Users
can create accounts for the different types of services that they need to use: bare metal servers,
Virtual Private Servers, platforms as a service, and so on. A customer hasmultiple types of accounts.
The statement for each type of account is returned by a different API. The API provider wants to
provide a single API that consolidates the statements of a given customer and returns a single
response with all the information.

Key Features of a REST API Mashup

An API mashup allows you to orchestrate multiple resources and methods and expose the
behavior as a single service. In a regular method that is not a mashup, API Gateway applies
all the enforced policies and then routes the request to the native endpoint. In the case of a
mashup, API Gateway still applies all the enforced policies in the request flow till routing; but
thereafter, it starts the orchestration flow defined in the mashup. After the orchestration flow
ends, all the policies defined for that method are applied in the response flow—in the same
way as a regular method.

APImashups are defined at themethod level. You can edit any RESTAPI and define amashup
for one or more methods within it.

You can include any REST API defined within API Gateway in the mashup.

The entire framework that API Gateway provides to a regular REST API method is available
to an API mashup method. Therefore, you can utilize query parameters, path parameters,
aliases, variables, payload transformations using XSLT transforms, transformations using
webMethods IS services, and custom pipeline variables.

Considerations for Creating an API Mashup

By default, the policies of an API that is participating in anAPImashup are not enforcedwhen
it is invoked within the API mashup. However, if you select the Should execute Outbound
policies option, the outbound security policies of the participating API are enforced in the
context of the API mashup.

The following are specific to a mashup step and are not automatically passed from one step
to another:

Headers

Query parameters

webMethods API Gateway User's Guide 10.15 539

2 Implement APIs

Path parameters

Payload

However, you can add parameters in a mashup step to access data from any of the previous
steps or another source.

An exception to this rule is the first step (the first participating service) in a mashup, which
receives the complete request sent by the client.

A participating API cannot have reverse invoke routing.

Structure of an API Mashup

An API mashup consists of one or more mashup steps, and each step invokes an API. A mashup
step defines the request for the API that it invokes. A step can use the data objects provided by
API Gateway to access data in the initial request sent to the operation that has the mashup and
any of the previous steps.

The following table summarizes the data objects and variables that are available in API Gateway.

Possible valuesObject/Variable Type

paramStage request

response

paramType payload or body

headers

query

path

httpMethod

statusCode

statusMessage

queryType xpath

jsonPath

regex

The following data objects are available to a mashup step:

${paramStage.paramType}

You can use this syntax to access the following string variables: path, statusCode, statusMessage,
httpMethod. Examples: ${request.path}, ${response.statusCode}

${paramStage.paramType.paramName}

540 webMethods API Gateway User's Guide 10.15

2 Implement APIs

You can use this syntax to access map types, such as query, headers, and path. Example:
${request.query.var1}, ${response.header.Content-Type}, ${request.path.name}.

${paramStage.paramType.queryType[queryValue]}

This syntax can be used to query a paramType. Examples:

${request.payload.xpath[//ns:emp/ns:empName]}

Where //ns:emp/ns:empName is the XPath to be applied on the payload if contentType is
application/xml, text/xml, or text/html.

${response.payload.jsonPath[$.cardDetails.number]}

Where $.cardDetails.number is the jsonPath to be applied on payload if contentType is
application/json or application/json/badgerfish.

${request.payload.regex[[0-9]+]}

Where [0-9]+ is the regular expression to be applied on the payload if contentType is
text/plain.

Note:
While xpath and jsonPath are applicable only to payload, regEx can be used with both
payload and path.

${paramStage[stepName].paramType.queryType[queryValue]}

You can use this syntax to access data in any step. For example, you can use the following
syntax to access the payload of a step named createAPI:
${response[createAPI].payload.jsonPath[$.apiResponse.api.id]}.

You can define your own variables using the Custom Pipeline variables field:

Examples: ${key}, ${value}. The custom pipeline variables that you define are available in
subsequent steps.

Note:
Data objects from any of the steps of the mashup can also be accessed by response processing
policies and error processing policies of the API that contains the mashup.

Creating an API Mashup
To create a mashup you require:

The APImust include the resource and themethod inwhich youwant to add the APImashup.

The participatingAPIs (that youwant to include in themashup)must exist in theAPIGateway
instance.

To create a mashup in a REST API

webMethods API Gateway User's Guide 10.15 541

2 Implement APIs

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Click the required API.

The API details page appears.

3. Click Edit.

4. Click Mashups.

The Mashups tab appears. It displays the resources in the API and their methods on the left
and an empty (Default routing) routing diagram.

Note:
If the API does not have any mashup, the Mashup tab displays the list of resources only in
the Edit mode; the tab is empty in the view mode.

5. In the List of resources, click the resource in which you want to include the mashup.

The resource tab expands and the methods included in the resource are displayed.

6. Click the toggle button to enable the method in which you want to create the mashup.

Note:
If you use the toggle button and disable amethod that has amashup, themashup definition
for that method is immediately cleared.

7. Click Add invoke to add a mashup step.

a. Connect the step to Start.

The Start and Stop terminators and all steps have connection points that you can connect
to the other steps and terminators. p

To select a connection point and connect it to another connection point:

a. Hover the mouse over the top or bottom of the step or terminator till the connection
point is highlighted.

b. Click the connection point and drag to the other step or terminator.

b. Configure the step properties as desired.

The Mashup Routing panel that appears on the right side of the mashup canvas displays
the properties for the selected step. You can configure the following properties using the
Mashup Routing panel:

542 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionFieldSection

Provide a name for the mashup step that is
unique within the mashup.

Mashup step
name

The API endpoint that you want to invoke in
the mashup step. The API must be published
on the current API Gateway instance.

API Endpoint

The endpoint of the API that youwant to use.
You can type a few letters and select from the
autocomplete list.

API Gateway API

The resource in the API that you want to use.
You can type a few letters and select a
resource from the autocomplete list.

Resource

The specific method of the resource that you
want to invoke.

Method

Select if you want the outbound security
policies of the participatingAPI to be enforced
in the context of an API mashup.

Execute outbound
authentication policy

Headers

Select to use the headers in the incoming
request.

Use incoming Headers

Custom headers that you can add in addition
or instead of the incoming headers. Each
customheadermust have the following fields:

Custom Headers

Header Name

Header Value

Provide the following values:Query
Parameters

Query Parameter Name

Query Parameter Value

Provide the following values:Path Parameters

Path Parameter Name

Path Parameter Value

Type the Payload.Payload

webMethods API Gateway User's Guide 10.15 543

2 Implement APIs

DescriptionFieldSection

ClickAdd xslt document and select the XSLT
file for transforming the payload. Provide the
following values:

XSLT Document

XSLT File

Feature Name

Feature value

For information about transforming the
payload using XSLT, see “Request
Transformation” on page 240.

Click Add xslt transformation alias and
select an existing XSLT transformation alias.

XSLT Transformation
alias

Advanced
Transformation

Click Add webMethods IS service and
provide the following values:

webMethods IS service

webMethods IS Service

Run As User

Select Comply to IS Spec

For information about these fields and using
the webMethods IS Service, see “Invoke
webMethods IS” on page 246.

For information about the webMethods IS
ServiceAlias, see “InvokewebMethods IS” on
page 246.

webMethods IS
Service Alias

Transformation
Metadata

Provide the following values:Namespace

Namespace Prefix

Namespace URI

For information about transformation
metadata, see “Request Transformation” on
page 240.

544 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionFieldSection

You can use custompipeline variables to hold
values that need to be used in another step of
theAPImashup. Provide the following values:

Custom Pipeline
Variables

Name

Value

For more information, see “Structure of an
API Mashup” on page 540.

Note:
In several fields, such asHeader Valuewithin customheaders,Query Parameter Value,
and Path Parameter Value, you can use values from previous steps and other data
using the variable and alias framework provided byAPIGateway. Formore information,
see “Structure of an API Mashup” on page 540.

8. Click Add aggregator to add an aggregator step.

Note:
You can also add an aggregator step by connecting two invocation steps to the same previous
step. An aggregator step is automatically added after the stepswhen you connect the second
step to the same previous step.

9. If you have added the aggregator by clickingAdd aggregator, add the following connections:

a. Connect the steps that need to be aggregated to the aggregator step.

b. Connect the aggregator step to the next step.

10. To add additional steps to the aggregated block, complete the following steps:

a. To add a new step to the aggregated block, click Add invoke and connect the new step to
the same previous step.

You can configure the properties of the new step immediately or later. For details on
configuring the step properties, see step 7.

b. To add an existing step to the aggregated block, delete the connections of the step, if any
and then connect the step to the previous step for the aggregated block and the aggregator
step.

11. Click the mashup step and configure the properties of the mashup step as desired.

You can configure themashup step properties using theMashupAggregator action panel that
appears on the right side of the mashup canvas when you click the aggregator step. You can
configure the following properties using the Mashup Aggregator action panel:

webMethods API Gateway User's Guide 10.15 545

2 Implement APIs

DescriptionFieldSection

Headers

Select to use the headers in the incoming
request.

Use incoming Headers

Custom headers that you can add in addition
or instead of the incoming headers. Each
customheadermust have the following fields:

Custom Headers

Header Name

Header Value

Provide the following values:Query
Parameters

Query Parameter Name

Query Parameter Value

Provide the following values:Path Parameters

Path Parameter Name

Path Parameter Value

Type the Payload.Payload

ClickAdd xslt document and select the XSLT
file for transforming the payload. Provide the
following values:

XSLT Document

XSLT File

Feature Name

Feature value

Click Add xslt transformation alias and
select an existing XSLT transformation alias.

XSLT Transformation
alias

Advanced
Transformation

Click Add webMethods IS service and
provide the following values:

webMethods IS
Service

webMethods IS Service

Select a Run As User

Select Comply to IS Spec

546 webMethods API Gateway User's Guide 10.15

2 Implement APIs

DescriptionFieldSection

For information about these fields and using
the webMethods IS Service, see “Invoke
webMethods IS” on page 246.

Select an existingwebMethods IS service alias.webMethods IS
Service Alias

Transformation
Metadata

Provide the following values:Namespace

Namespace Prefix

Namespace URI

You can use custompipeline variables to hold
values that need to be used in another step of
theAPImashup. Provide the following values:

Custom Pipeline
Variables

Name

Value

For more information, see “Structure of an
API Mashup” on page 540.

Mashup
Response
Transformation

Select Aggregate response

Payload

Note:
In several fields, such as Header Value within custom headers, Query Parameter Value,
and Path Parameter Value, you can use values from previous steps and other data using
the variable and alias framework provided by API Gateway. For more information, see
“Structure of an API Mashup” on page 540.

12. Add, configure, and connect additional API invocation steps and API aggregator steps as
desired.

13. Click Save.

The mashup is created for the selected method.

Note:
You must activate the API to make the mashup available to client applications. For more
information about activating an API, see “Activating an API” on page 566.

webMethods API Gateway User's Guide 10.15 547

2 Implement APIs

SOAP to REST Transformation

SOAP APIs are commonly used to expose data within enterprises. With the rapid adoption of the
REST APIs, API providers must be able to provide RESTful interfaces to their existing SOAPAPIs
instead of creating newRESTAPIs. Using theAPIGateway SOAP to REST transformation feature,
the API provider can either expose the parts of the SOAP API or expose the complete SOAP API
with RESTful interface. API Gateway allows you to customize the way the SOAP operations are
exposed as REST resources. Additionally, the Swagger or RAML definitions can be generated for
these REST interfaces.

Activating SOAP to Rest Transformation
You must have the Manage APIs functional privilege assigned to perform this task.

To activate SOAP to REST transformation for a SOAP operation

1. Click APIs in the title navigation bar.

2. Select the required API from the list of available APIs.

The API details page for the selected API appears.

3. Click Edit.

4. Click REST transformation.

A list of SOAP operations already exposed to the consumers as well as to be transformed from
SOAP to REST appears. By default, all the SOAP operations are in inactive state.

5. Click to activate the SOAP to REST transformation for the SOAP operations.

Alternatively, you can activate the SOAP to REST transformation formultiple SOAP operations
simultaneously by clicking the Transform all operations activation toggle button.

6. Select the operation to edit the SOAP operations.

7. In the Transformation Configuration section, configure the following settings:

Use Schema for XML to JSON transformation

If you select this checkbox, the XML schema (present in the WSDL) defines the data type
of the entity. The data type can either be String, Int, Double, Float, or Boolean. In the
response from the native server, if an entity is of a different data type other than the ones
defined in the XML schema, API Gateway returns it is as a String data type and not an
error.

548 webMethods API Gateway User's Guide 10.15

2 Implement APIs

If you do not select this checkbox, API Gateway does not honor the XML schema during
transformation. Instead, API Gateway derives the data type of entities based on the native
service response.

By default, this checkbox is not selected for any SOAPAPI. If you havemigrated yourAPIs
from another instance of APIGateway , the value of this checkboxwill depend on the value
of the Extendedpropertypg.soapToRest.typeConvertorEnabled in the sourceAPIGateway
of themigratedAPIs. Thepg.soapToRest.typeConvertorEnabledproperty specifieswhether
the key values in a SOAP request must be converted to their primitive type when a SOAP
API is transformed to REST API.

Note:
Date and Enumeration data types are also considered to be strings. When API Gateway
cannot determine the data type of any value, it considers the data type to be a string.

Use default values from schema

If you select this checkbox, API Gateway considers the default values provided in the XML
schema, if there are no values present in a request or response. If the request or response
has some value, this value overrides the default value from XML schema.

If you do not select this checkbox, APIGateway does not consider the default values present
in the XML schema even if there are no values present in the request or response.

Remove operation name in response

If you select this checkbox, the root node is not passed as a part of SOAP to REST response
and only the JSON is passed. Root node is generally the SOAP operation name or SOAP
operation response name, present in the XML schema. This check box is applicable only
to JSON responses.

If you do not select this checkbox, JSON response is accompanied by the root node. By
default, this check box is not selected for any SOAP API.

8. Click Save.

The API details page for the selected API appears.

9. Click REST transformation.

A list of REST resources for the SOAP operations appears. Click on each resource to view the
details that are available as REST definitions.

Modifying the REST Definitions for SOAP Operations
You must have the Manage APIs functional privilege assigned to perform this task.

To modify the REST definitions for SOAP operation

1. Click APIs in the title navigation bar.

webMethods API Gateway User's Guide 10.15 549

2 Implement APIs

2. Select the required API from the list of available APIs.

The API details page for the selected API appears.

3. Click Edit.

4. Click REST transformation.

A list of SOAP operations already exposed to the consumers as well as to be transformed from
SOAP to REST appears.

5. Click to activate SOAP to REST transformation, for the required operation.

Alternatively, you can activate the SOAP to REST transformation for all the SOAP operations
simultaneously by clicking the Transform all operations activation toggle button.

6. Provide the following information:

DescriptionField

Name of the resource.Resource name

The existing name of the SOAP operation automatically
appears, you can modify this name.

Path of the resource.Resource path

The existing path of the SOAP operation automatically
appears, you can modify this path.

Tags to add to your operation.Tags

Select tags for the operation from the drop-down menu.

Description of the resource.Description

A few lines to describe the resource. This is an optional field.

550 webMethods API Gateway User's Guide 10.15

2 Implement APIs

7. Click + Add Parameter and provide the following information to add the required resource
level parameters:

DescriptionField

Name of the parameter.Name

Description of the parameter.Description

Specifies the parameter type.Type

Available values are: Path, Query-string.

Specifies the data type.Data type

Available values are: String, Date, Date time, Integer,
Double, Boolean.

Specifies the parameter is required if selected.Required

Applicable to parameters of type query. The query parameter
value can take comma separated array values.

Repeat

Specifies the possible value.Value

Specifies how the request parameter must be mapped to the
SOAP payload that is sent to the native SOAP service. For
example,

XPath

/soapenv:Envelope/soapenv:Body/axis:sayHello/axis:name,
or //axis:name (If the SOAP request has only one element
such as name).

Specifies the namespace prefix of the element that appears
in the XPath.

Namespace prefix

Specifies the namespace URI for the XPath element.Namespace URI

You can add more namespace prefixes and namespace URIs

by clicking .

You can add more parameters by clicking .

8. Select one of the availablemethods:GET,POST,PUT, orDELETE. By default,POST is selected.

By default, API Gateway generates the sample JSON request and response based on the XML
schema definitions of the SOAP API. Additionally, you can provide a schema and modify the
generated sample.

9. Click Add Request and provide the schema and a sample for the content-type.

webMethods API Gateway User's Guide 10.15 551

2 Implement APIs

10. ClickAdd Response and select the status code from the drop-down and provide a description
for the status code selected.

Additionally, to add a content-type to the status code selected, click the status code to which
you want to add a content-type and select the Content type. Provide a schema and a sample
for the content-type selected. By default, status code 200 is automatically generated by the
system.

11. Click Save.

Supported Content-types and Accept Headers
The following table specifies the content-type available for the HTTP methods:

Accept HeadersContent-typesHTTP
Method

application/jsonapplication/x-www-form-urlencodedGET

application/xml or text/xml

multipart/form-data or multipart/mixed

application/jsonapplication/jsonPOST

application/xml or text/xmlapplication/xml or text/xml

multipart/form-data or multipart/mixedmultipart/form-data or multipart/mixed

application/x-www-form-urlencoded

application/jsonapplication/jsonPUT

application/xml or text/xmlapplication/xml or text/xml

multipart/form-data or multipart/mixedmultipart/form-data or multipart/mixed

application/x-www-form-urlencoded

application/jsonapplication/x-www-form-urlencodedDELETE

application/xml or text/xml

multipart/form-data or multipart/mixed

Note:
If a content-type is not specified, then the request verifies the value of the Set Media Type
parameter. If the value of the Set Media Type parameter is not defined, then by default, for
POST and PUT HTTP methods, the application/json content-type is used. Whereas for GET
and DELETE HTTP methods, the application/x-www-form-urlencoded content-type is used.

552 webMethods API Gateway User's Guide 10.15

2 Implement APIs

REST API Endpoints
After providing the information required for the SOAP to REST transformation and activating the
API, the API can be invoked as either SOAP or REST API.

The REST transformation of the SOAPAPI does not change the API name. The only change to the
SOAP invocation is that the resource-path-for-the-operation is appended:

/ws/API-NAME/version-number/resource-path-for-the-resource

Note:
The REST-enabled SOAP API cannot be invoked using the /rest directive.

Samples for REST Request

application/json

The following table provides the samples of the REST request for the application/json content-type
application and the equivalent SOAP request after transformation from REST to SOAP:

Equivalent SOAP RequestRequest
<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<axis:name>user1/axis:name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

{
"name":"user1"

}

Consists of only one
element (qualified
namespaces)

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<name>user1</name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

{
"name":"user1"

}

Consists of only one
element
(non-qualified
namespaces)

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<addInts>

<a>12
</addInts>
</soapenv:Body>

</soapenv:Envelope>

{
"a":"1",
"b" : 2

}

Consists ofmultiple
elements

webMethods API Gateway User's Guide 10.15 553

2 Implement APIs

application/xml and text/xml

The following table provides the samples of the REST request for the application/xml and text/xml
content-type application and the equivalent SOAP request after transformation from REST to
SOAP:

Equivalent SOAP RequestRequest
<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<axis:name>user1</axis:name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

<axis:name xmlns:
axis=
"http://ws.apache.org/axis2"
>user1</axis:name>

Consists of only
one element
and namespace
added by the
client

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<axis:name>user1</axis:name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

<someOtherNamespace
:name xmlns:toMed=
"http:
//someOtherNamespace"
>user1
</someOtherNamespace
:name>

Consists of only
one element
and client does
not send the
Namespace

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<axis:name>user1</axis:name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

<toMed:name xmlns:
toMed="http://tOMed"
>user1</toMed:name>

Consists of only
one element
and the client
sends a
different
namespace to
API Gateway

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<addInts>

<a>23
</addInts>

</soapenv:Body>
</soapenv:Envelope>

<addInts>
<a>2
3
</addInts>

Multiple XML
elements

Path and Query Parameters

The following table provides the samples of the REST request having path and query parameters
and the equivalent SOAP request after transformation from REST to SOAP:

554 webMethods API Gateway User's Guide 10.15

2 Implement APIs

Equivalent SOAP RequestRequest
<ws:addInts
xmlns:ws="http:test">
<num1>10</num1></ws:addInts>s

/ws/CalcService/
add/{num1}

or

Simple query or
path parameter

/ws/CalcService/
add?num1=10

<ws:addInts
xmlns:ws="http:test">
<num1></num1><num2></num2>
</ws:addInts>

/ws/CalcService/
add/{num1}/{num2}

or

Multiple query or
path parameters

/ws/CalcService/
add?num1=10&num2=3

or
/ws/CalcService/
add/{num1}&num2=3

<ws:addInts
xmlns:ws="http:test">
<num1></num1> <num2></
num2></ws:addInts>

/ws/CalcService/add/
{num1}/anotherNumber/{num2}

/ws/CalcService/
add/{num1}/
anotherNumber/{num2}

Hierarchical
elements

multipart/form-data

If you send the multipart/form-data content-type as the REST request, then you have to optimize
the method to be used. This optimization is based on the value specified in the SOAP Optimization
Method parameter available in Routing policy. The default optimization type is Message
Transmission Optimization Mechanism (MTOM). For example, API Gateway converts REST
requests with multipart/form-data and multipart/mixed types as follows:

1. The Multipurpose Internet Mail Extensions (MIME) parts that have a content ID or name that
match the elements of type base64Binary or hexBinary in the schema are added as attachments
to the outbound request.

2. Parts other than the content ID or name types are converted into XML depending on the
content-type of the MIME part. The application/xml and application/json content-types are
converted. If API Gateway is unable to process the MIME part, it wraps the MIME part inside
an XML element with the name of the content ID.

Limitations
The following limitations apply when you perform a SOAP to REST transformation:

When the API provider defines the mapping for the SOAP operation to the REST resource or
method, API Gateway allows the provider to specify either the path and the query parameters

webMethods API Gateway User's Guide 10.15 555

2 Implement APIs

or the body but not both. These mappings are used when transforming the incoming REST
request to the SOAP request.

If both path and query parameters and body are sent in the incoming REST request, then the
path and the query parameters are ignored.

If your REST resource accepts the text/xml content-type, then you cannot modify the default
resource path and resource name automatically generated by the system. This name must be
same as the SOAP operation name. However, this limitation is not applicable for other
content-types.

The HTTP method filters of the global policy are not applicable to the REST transformed
method of the SOAP API.

The REST (REST transformed SOAP operations) resources do not appear as general REST
resources when filtered in the Scopes section of the API in API Gateway.

You cannot apply the Inbound Authentication-Messagepolicy to the SOAPoperation enabled
as REST.

The SOAP services that haveWeb Services InteroperabilityOrganization (WS-I) non-compliant
WSDLs cannot be REST-enabled.

API First Implementation

APIs form the nerve center of software applications. So, it is very important for the providers to
be clear about what they would provide and for the consumers to be clear about what they want
to consume. Better understanding of APIs guarantee an excellent output. API First is all about the
establishment of a common agreement between the providers and consumers. Thus, this design
helps both the parties to be on the same page.

When adapting API First approach, API developers start the API development with the API
contract and work on the implementation part at a later stage. This approach of prioritizing the
API design over its implementation is beneficial to both, providers and consumers.

In conventional scenarios, providers expose APIs to their consumers only after the API is
implemented. Consumers test the API and let the providers know their feedback about the API.
Providers must then revisit the API to incorporate the feedback received from their consumers.
You can optimize this process by adapting API First design.

When followingAPI First approach, consumer does not have towait for the provider to implement
the API. Consumers can proceed with their application development using the exposed API. The
implementation status of API does not have an impact on consumers as they receive the designated

556 webMethods API Gateway User's Guide 10.15

2 Implement APIs

responses for their requests through themockedAPI. So, theAPI development and the application
development can take place at the same time.

Once the provider implements the API, the end-point is updated to divert the invocations to the
actual implementation instead of mocked response. The provider can then disable mocking.

The following diagram explains the flow of API development as per the API First design:

As per the API First design, providers expose their API to consumers when the development is
underway.

API First Design using API Gateway

Starting API Gateway 10.5, the application provides seamless support for API First approach for
your APIs.

UsingAPIGateway, you candefineAPI contract for theAPIs anddownloadprovider specification
for theAPIs that you create. As a provider, youwould notwant to expose all resources andmethods
of an API to consumers. The API Contract given to the consumer has only the part of API exposed
to the consumer whereas the provider specification contains the complete specification. This is
useful for providers to implement the API.

You can enablemocking and activate theAPI for consumption. Themocked version of API returns
respective responses for the consumer requests. This ensures the required end-user experience to
the consumers.

When the API is ready to be implemented, you can implement the API in Integration Server or
any other implementation server. If you are using Integration Server, you can add the required
Integration Server instance in API Gateway. You can add multiple Integration Server instances
and publish your API to the required instance. If you are using Integration Server, you can send
the API contract from API Gateway. Else, the API contract has to be retrieved from API Gateway.

After implementation, you can update the actual implementation end-point to API Gateway. This
step is mandatory to disable API mocking and divert the invocations to the actual end-point.

The following workflow shows the high-level workflow of API First implementation approach
using API Gateway:

webMethods API Gateway User's Guide 10.15 557

2 Implement APIs

API First Implementation using Integration Server
This use case explains the steps involved in adapting API First from Integration Server. When an
API created in API Gateway is implemented in Integration Server, then the API Contract is sent
from API Gateway to Integration Server.

The use case starts when you create an API in API Gateway and ends when you communicate the
API implementation endpoint to API Gateway.

In this example, the APIFirst API is created in API Gateway and implemented in the Integration
Server instance, IS1 that is configured in API Gateway.

Before you begin

Ensure that you have the Manage API privilege.

Configure the required Integration Server instances in API Gateway for implementing your
APIs. For details about configuring Integration Server instances, see webMethods API Gateway
Administration.

To adapt API First design using Integration Server

1. Log on to API Gateway.

2. Click APIs in the title navigation bar.

A list of all existing APIs appears.

3. Click Create API to create an API with required API documentation.

558 webMethods API Gateway User's Guide 10.15

2 Implement APIs

4. Click Policies and define required policies for the API.

5. Click Enable Mocking to mock and generate API mock responses.

This step enables the API to send responses to the requests received from consumers.

6. From the APIs page, click Publish for the APIFirst API.

The Publish API dialog box appears.

7. Select Integration Servers.

The list of configured Integration Server instances appears.

webMethods API Gateway User's Guide 10.15 559

2 Implement APIs

8. Select the IS1 instance from the list.

9. In the Package Name and Folder Name fields, provide the package name and folder name
of the IS instance in which the API must be implemented.

The API along with the API contract is published to Integration Server.

10. After implementing the API in Integration Server, invoke the REST end-point to communicate
API implemented endpoint to API Gateway:

PUT http://<API Gateway host>:<port>/rest/apigateway/apis/{apiId}/implementation
{
"maturityState": "string",
"nativeBaseURLs": [

"string"
]

}

You can provide required values for the parameters in the above command. For information
on parameters, see “List of Parameters used in API Implementation” on page 563.

Example:
PUT http://10.2.151.149:5555/rest/apigateway/apis/
94dfd243-dd54-4d7e-8ba5-396ffaf6fe4e/implementation
{
"nativeBaseURLs":["https://10.2.35.125:5556/ws/srvs:Calculator/
CalculatorHttpSoap11Endpoint",
"http://10.2.151.149:5555/ws/srvs:Calculator/CalculatorHttpSoap11Endpoint"],
"maturityStatus" : "Implemented"
}

For details about the REST API, see the swagger file APIGatewayServiceManagement.json,
located at SAG_Install_Directory/IntegrationServer/instances/default/packages/
WmAPIGateway/resources/apigatewayservices/APIGatewayServiceManagement.json. For
more information about Service Management, see webMethods API Gateway Developer's Guide.

As a result of the REST call, the mocking of the API is disabled and the consumers requests
are directed to the actual implementation.

API First Implementation using a Third-party Server
This use case explains the steps involved in adapting API First approach using a third-party
implementation server.

The use case starts when you create an API in API Gateway and ends when you communicate the
API implementation endpoint to API Gateway.

Before you begin

Ensure that you have the Manage API privilege in API Gateway.

Configure a third-party implementation server for implementing your APIs.

560 webMethods API Gateway User's Guide 10.15

2 Implement APIs

To adapt API First design using a third-party implementation server

1. Log on to API Gateway.

2. Click APIs in the title navigation bar.

A list of all existing APIs appears.

3. Click Create API to create an API with required API documentation.

4. Click Policies and define required policies for the API.

5. Click Enable Mocking to mock and generate API mock responses.

6. Using an external REST client such as Postman or SoapUI, run the below command to search
for the API in API Gateway for implementation:

POST http://<API Gateway host>:<port>/rest/apigateway/search
{
"types" : ["api"],
"scope" : [

{
"attributeName" : "maturityState",
"keyword" : "ToBeImplemented"

}
]

}

The maturityState parameter in the above command is used search for APIs based on their
maturity state. In this use case, you must search for APIs that are to be implemented. Hence,

webMethods API Gateway User's Guide 10.15 561

2 Implement APIs

you can provide the ToBeImplemented value for the parameter. This command returns the list
of APIs that are yet to be implemented.

7. Using theAPI Id of theAPI that youwant to implement, run the following command to retrieve
the API contract from API Gateway:

GET http://<host>:<port>/rest/apigateway/apis/{apiId}/
providerspecification?format=swagger

The value for the format parameter can be swagger, raml, or openapi for REST APIs; and wsdl
for SOAP APIs.

Note:
You can search for an API based on its maturity status in API Gateway using the following
command:

POST http://<API Gateway host>:<port>/rest/apigateway/search
{
"types" : ["api"],
"scope" : [

{
"attributeName" : "maturityState",
"keyword" : "ToBeImplemented"

}
]

}

8. Implement the API in the required implementation server.

9. After implementation, invoke the REST end-point to communicateAPI implemented endpoint
to API Gateway:

PUT http://<API Gateway host>:<port>/rest/apigateway/apis/{apiId}/implementation
{
"maturityState": "string",
"nativeBaseURLs": [

"string"
]

}

You can provide required values for the parameters in the above command. For information
on parameters, see “List of Parameters used in API Implementation” on page 563.

Example:
PUT http://10.2.151.149:5555/rest/apigateway/apis/
94dfd243-dd54-4d7e-8ba5-396ffaf6fe4e/implementation
{
"nativeBaseURLs":["https://10.2.35.125:5556/ws/srvs:Calculator/
CalculatorHttpSoap11Endpoint",
"http://10.2.151.149:5555/ws/srvs:Calculator/CalculatorHttpSoap11Endpoint"],
"maturityStatus" : "Implemented"
}

For details about the REST API, see the swagger file APIGatewayServiceManagement.json,
located at Install directory/IntegrationServer/instances/default/packages/

562 webMethods API Gateway User's Guide 10.15

2 Implement APIs

WmAPIGateway/resources/apigatewayservices/APIGatewayServiceManagement.json. For
more information about Service Management, see webMethods API Gateway Developer's Guide.

As an outcome of the REST call, the mocking of the API is disabled and API Gateway starts
requests for the actual implementation.

List of Parameters used in API Implementation
The following are some of the parameters used during API implementation:

PurposeParameter

Endpoint URLs of the native service. This parameter is mandatory to route the
requests to this implemented API. The existing endpoint values of the routing
policies of the API are replaced with the URLs given against this parameter.

nativeBaseURLs

You can providemultipleHTTP andHTTPSURLs for this parameter. TheURLs
that you provide for this parameter appears under the Native endpoint(s)
section in theTechnical informationpage ofAPIGateway. The first URL among
the list of URLs is used in the routing policies by this update call. If you want
to use any other URL in the routing policies, you can update the API policies
accordingly.

Indicates the maturity state of APIs. Use this parameter to search for an API
based on its maturity state and retrieve the API for implementation. Also, you
can use this to update the maturity state of an API after implementation.

maturityState

Typically, the value of this parameter would be the consecutive state defined
in the apiMaturityStatePossibleValues extended setting configuration.

For example,

If any of the following states are configured in the
apiMaturityStatePossibleValues setting : Design, Implementation, Testing,
Production; and current state of anAPI is Implementation, then youmust specify
Testing as the parameter value because that would be next stage as per the
configuration.

Troubleshooting Tips: Implement APIs

I see errors when API Gateway parses huge responses received from the native
SOAP API

I see the following errors when API Gateway parses huge responses received from the native
SOAP API:

com.fasterxml.aalto.WFCException: Unexpected end-of-input when trying to parse

webMethods API Gateway User's Guide 10.15 563

2 Implement APIs

com.fasterxml.aalto.WFCException:Unexpected end-of-inputwhen trying to parseCHARACTERS
at [row,col {unknown-source}]: [13621,577]

com.fasterxml.aalto.WFCException: 500 for SOAP APIs exchanging bigger payloads

Resolution:

To avoid encountering errors while parsing large responses from the native API, change the
enablesoapValidation property in the axis2.xml file located at Install_dir\IntegrationServer\
instances\default\config\wss\ in one of the following ways:

By commenting out the line
<!--<parameter name="enableSoapValidation">true</parameter> -->

By setting the property enablesoapValidation to false

<parameter name="enableSoapValidation">false</parameter>

You must restart the API Gateway server for the change to take effect. The impact of this change
is that the SOAP API request and responses are no more validated if they are compliant with the
SOAP specification.

564 webMethods API Gateway User's Guide 10.15

2 Implement APIs

3 Publish APIs

■ Why Publish APIs? ... 566

■ Activating an API .. 566

■ Deactivating an API .. 570

■ Exposing a REST API to Applications .. 570

■ Exposing a SOAP API and GraphQL API to Applications .. 571

■ Gateway Endpoints .. 572

■ Publishing APIs to API Portal ... 578

■ Publishing APIs to Service Registries .. 583

■ Publishing APIs to Integration Server ... 588

webMethods API Gateway User's Guide 10.15 565

Why Publish APIs?

After you build your APIs, you have to publish them to make the APIs available for consumption
by developers and consumers. Publishing an API enables developers and consumers to consume
the functionalities exposed through yourAPI. They can then integrate the functionalities, the APIs
provide, into applications easily. Creating and developing an API in API Gateway does not make
it accessible to your users. You must first activate the API before publishing it to a portal so that
the gateway endpoint is available for developers and consumers to invoke the API.

API Gateway allows you to publish APIs to Developer Portal from where they are available for
consumption by developers and consumers.

Optionally, API Gateway also allows you to publish the APIs to the following destinations:

Service registries. This enables applications to dynamically locate an API Gateway instance
that can process that API.

Integration Server. This is used in API first implementation approach.

In addition to publishing, API Gateway provides you with capabilities to customize your APIs
before publishing them. You can customize APIs depending on how youwant to restrict exposure
of specific information the APIs handle as follows:

Restrict the exposure of specific resources, methods, and operations of an API to other
applications.

Define a custom gateway endpoint by customizing the URL of the gateway endpoint.
Consumers can use the customized URL to access the API.

The following sections describe how you can activate an API, customize the gateway endpoint,
and publish APIs to different destinations.

Activating an API

You must first activate the API before publishing it to a portal so that the gateway endpoint is
available for developers and consumers to invoke the API.

566 webMethods API Gateway User's Guide 10.15

3 Publish APIs

You must have the Activate/Deactivate APIs functional privilege assigned to perform this task.
You can activate an API in the Manage APIs page. Alternatively you can also activate the API
from the API Details page.

To activate an API

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Do one of the following:

Click the toggle button, in the corresponding column of the API to be activated, to change

the status to to activate the API.

Select the API to open the API details page. Click Activate.

3. Click Yes in the confirmation dialog box.

The API is now activated. The Gateway endpoint is now available, which can be used by the
consumers of this API. You can now publish the API to the required destination and expose
the API for consumption by the consumers.

You can modify API details or update the API, except the name and version of the API, when
the API is in the active state. Active APIs are replaced during deploymentwith zero downtime
and do not break ongoing requests. The updated APIs do not become effective for ongoing
requests.

Note:

If there is an error while saving after updating an active API, the API becomes inactive
but the changes are saved.
Once the API is activated, you can define the custom gateway endpoints. For more
information about gateway endpoints, see “ Gateway Endpoints” on page 572.
Once the API is activated, you can enable the tracer. For more information about how
to enable the tracer and view the tracing details, see “Debugging API” on
page 519“Debugging API” on page 519.

WSDLs in API Gateway
When you activate a SOAP API in API-Gateway, the API exposes a link to the WSDL describing
the API Gateway usage. The format of the link is as follows:
http://apigw-host:apigw-port/ws/<service-name>/1?wsdl

For example: http://myhost:5555/ws/Hello_Service/1?wsdl

If the WSDL imports more files, for example, subWSDLs or XML schemas, then these files can be
accessed through:
http://<apigw-host>:<apigw-port>/ws/<service-name>/1/<id>?xsd=<name>

webMethods API Gateway User's Guide 10.15 567

3 Publish APIs

For example: http://myhost:5555/ws/Hello_Service/1/53fe951a-2c04-4283-8b2d-8ee2957531b1?xsd=A

During this action, unlike all other parts of the WSDL, the <service> section is completely
regenerated. For each activated HTTP or HTTPS port, depending on the API's transport policy,
one or more endpoint entries are generated into the WSDL. By default, the following entries are
present:

Usual entry with service name and version number

Mediator-compatible entry with service name and original port name

One entry for each custom endpoint

Port names

The port names are numbered through the different entries to ensure uniqueness.Moreover,when
the original port name has a http or https specifier at its end, then this specifier is taken over to the
generated port name.

Examples

Example 1: With a single active HTTP port
<service name="Hello_Service">

<port name="Hello_Port2" binding="tns:Hello_Binding">
<soap:address location="http://myhost:5555/ws/Hello_Service/1"/>

</port>
<port name="Hello_Port" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/ws/Hello_Service.Hello_Port/1"/>
</port>

</service>

You can add custom endpoints to the API, for example, per UI. The customized values (prefix,
servicename, version) appear in the <service> section.

Example 2: With an additional custom endpoint
<service name="Hello_Service">

<port name="Hello_Port3" binding="tns:Hello_Binding">
<soap:address location="http://myhost:5555/ws/Hello_Service/1"/>

</port>
<port name="Hello_Port2" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/myprefix/myservice/5"/>
</port>
<port name="Hello_Port" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/ws/Hello_Service.Hello_Port/1"/>
</port>

</service>

Example 3:With an additionalHTTPS port that gets enabled and switched on in theAPI's transport
policy
<service name="Hello_Service">

<port name="Hello_Port" binding="tns:Hello_Binding">
<soap:address location="http://myhost:5555/ws/Hello_Service.Hello_Port/1"/>

</port>
<port name="Hello_Port3" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/ws/Hello_Service.Hello_Port/1"/>

568 webMethods API Gateway User's Guide 10.15

3 Publish APIs

</port>
<port name="Hello_Port2" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/ws/Hello_Service/1"/>
</port>
<port name="Hello_Port4" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/ws/Hello_Service/1"/>
</port>
<port name="Hello_Port5" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/myprefix/myservice/5"/>
</port>
<port name="Hello_Port6" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/myprefix/myservice/5"/>
</port>

</service>

Parameters for refining the exposed port entries

Use the parameter wsdlPortLayout in Administration > Extended settings section to refine the
exposed port entries. The parameter can have the following values:

service-port

All the port entries are exposed. This is the default value and the results as explained in the
examples above apply.

service-only

Only one port (with servicename or version) is exposed.When this value is set, only the simple
endpoint with the service name is generated. Example 3 would now look as follows:
<service name="Hello_Service">

<port name="Hello_Port" binding="tns:Hello_Binding">
<soap:address location="http://myhost:5555/ws/Hello_Service/1"/>

</port>
<port name="Hello_Port2" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/ws/Hello_Service/1"/>
</port>
<port name="Hello_Port3" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/myprefix/myservice/5"/>
</port>
<port name="Hello_Port4" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/myprefix/myservice/5"/>
</port>

</service>

mediator-comp

When this value is set, the entries generated are in mediator compatibility mode. Note that
custom endpoints do not appear in this case. The entries look as follows:
<service name="Hello_Service">

<port name="Hello_Portsoaphttp" binding="tns:Hello_Binding">
<soap:address

location="http://myhost:5555/ws/Hello_Service.Hello_Portsoaphttp/1"/>
</port>
<port name="Hello_Portsoaphttps" binding="tns:Hello_Binding">

webMethods API Gateway User's Guide 10.15 569

3 Publish APIs

<soap:address

location="https://myhost:5559/ws/Hello_Service.Hello_Portsoaphttps/1"/>
</port>

</service>

Deactivating an API

You can deactivate an API in the Manage APIs page. Alternatively you can also deactivate the
API from the API Details page.

You must have the Activate/Deactivate APIs functional privilege assigned to perform this task.

To deactivate an API

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Click the toggle button, in the corresponding column of the API to be deactivated, to change
the status to to deactivate the API

3. Click Yes in the confirmation dialog box.

The API is now deactivated. The API is no more available to be consumed by consumers.

Exposing a REST API to Applications

The API Provider can restrict the exposure of specific resources and methods of a REST API to
other applications.

Consider you have a native REST API created in API Gateway with resources - Resource A,
Resource B, and Resource C. You might want to expose Resource A and Resource C, and restrict
the visibility of Resource B to other applications. You can use the Expose to consumers button
to switch on the visibility of Resource A and Resource C and switch off the visibility of Resource
B as required. Similarly, you can restrict the visibility of one ormoremethodswithin each individual
resource.

If an application attempts to invoke the Resource C in the above REST API, API Gateway returns
a HTTP response code 404.

By default, the Expose to consumers button is switched on for all resources and methods of the
REST API. Once the API is activated, all of its resources and methods are exposed to registered
applications. If you do not want a particular set of resources and methods, or a set of methods in
a particular resource to be hidden for registered applications, switch off theExpose to consumers
button in the REST API definition.

Note:

570 webMethods API Gateway User's Guide 10.15

3 Publish APIs

Be aware that API Gateway does not allow you to activate a REST API if none of the methods
in the API are selected for exposing to other applications. You must select at least one method
of the REST API to enforce runtime invocations.

To expose a set of resources and methods of the REST API

1. Click APIs in the title navigation bar.

A list of APIs available in API Gateway appears.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click Resources and methods.

This displays a list of resources and methods available in the API.

a. To select a resource, switch on the Expose to consumers button next to the resource URI.

You can select one or more resources to expose to other applications.

b. To select a method within the resource, click on the resource path. In the expanded list of
methods, switch on the Expose to consumers button next to the method name.

You can select one or more methods to expose to other applications.

5. Click Save to save the updated API.

Activate the API, if it is not active, to put it into effect.

Exposing a SOAP API and GraphQL API to Applications

The API Provider can restrict the exposure of specific operations of a SOAP API and GraphQL
API to other applications.

Consider you have a native SOAP API or GraphQL API created in API Gateway with operations
- Operation A, Operation B, and Operation C. You might want to expose the Operation A and
OperationC, and restrict the visibility of Operation B to other applications. You can use theExpose
to consumers button to switch on the visibility of Operation A and Operation C and switch off
the visibility of Operation B, as required.

webMethods API Gateway User's Guide 10.15 571

3 Publish APIs

If an application attempts to invoke the Operation B in the SOAP API or GraphQL API, API
Gateway returns a HTTP response code 404 for SOAP API and response code 400 for GraphQL
API.

By default, the Expose to consumers action is switched on for all operations of the SOAP API
and GraphQL API. Once the API is activated, exposed operations are available for use in the
registered applications. If you do notwant a particular set of operations to be hidden for registered
applications, switch off Expose to consumers in the SOAP API or GraphQL API definition.

Note:
APIGatewaywill not allowyou to activate a SOAPAPI orGraphQLAPI if none of the operations
in the API are selected for exposure to other applications. Youmust select at least one operation
of the SOAP API or GraphQL API to enforce runtime invocations.

To expose a set of operations of the SOAP API or GraphQL API

1. Click APIs in the title navigation bar.

This displays a list of APIs available in API Gateway.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click Operations.

This displays a list of operations available in the API.

To select an operation, switch on the Expose to consumers action next to the operation URI.
You can select one or more operations to expose to other applications.

5. Click Save to save the updated API.

Activate the API, if it is not active, to put it into effect.

Gateway Endpoints

Gateway endpoint is the URL that is used to access an API through API Gateway. By default, API
Gateway provides a default gateway endpoint for all active APIs. The default gateway endpoint
is in the protocol://host:port/{defaultPrefix}/{apiName}/{apiVersion}/{resourcePath} format.

When there is a need to access theAPI using a different endpoint, you can define a customgateway
endpoint. In custom gateway endpoints, you can customize the portion of the URL between port
and resourcePath.

572 webMethods API Gateway User's Guide 10.15

3 Publish APIs

Custom gateway endpoints can be specific to an API or a global template can be defined through
global gateway endpoint.

How do I Define API-specific Gateway Endpoints?
This use case explains how to define custom gateway endpoints specific to an API. You can define
more than one custom gateway endpoint to an API. Custom gateway endpoints can be added for
all types of APIs such as REST, SOAP, OData, and WebSocket.

The use case starts when you want to define API specific gateway endpoint and ends when you
have created the API specific gateway endpoint.

Here are some points that you need to consider, when you define API specific gateway endpoint:

Custom gateway endpoints cannot be created for the APIs that have blank space or special
characters in API name or API version.

Gateway endpoint is case-sensitive.

Gateway endpoint cannot start with pre-defined prefixes such as rest or invoke .

URL path of one custom gateway endpoint cannot start with the URL path of the another
custom gateway endpoint or default gateway endpoint. For example, if any of the API has a
customendpointwithURLpath abc/custom, you cannot have another customgateway endpoint
withURL path abc/customendpoint. Similarly, if any of theAPI has a default gateway endpoint
gateway/myAPI/v1, you cannot have customendpointwithURLpath gateway/myAPI. However,
it is possible to have two valid custom gateway endpoints with URL paths abc/custom1 and
abc/custom2, because here one of the URL path is not the extension of another URL path.

In order to use the gateway endpoints feature, thewatt.server.url.alias.partialMatching property
needs to be true . By default, this property is set to true .

API Gateway internally creates the URL aliases, when you create a custom gateway endpoint.
These internal URL aliases are hidden from the API Gateway users, and are displayed only in
the Integration Server. SoftwareAG recommends that youdo notmodify anyURL alias through
Integration Server.

A gateway endpoint can use following variables, which are resolved dynamically:

${defaultPrefix} - resolves based on API type. For REST and OData the defaultPrefix is
gateway, SOAP the defaultPrefix is ws, and Websockets the defaultPrefix is websocket.

${apiName} - replaces with the API name value.

For example, when a gateway endpoint uses ${apiName} variable, and if you change the
API name, it automatically gets reflected in the gateway endpoint.

${apiVersion} - replaces with the API version value.

Note:
If you want to use a gateway endpoint across all versions of an API, Software AG
recommends you to use the ${apiVersion} variable so that the gateway endpoint becomes
unique across different versions.

webMethods API Gateway User's Guide 10.15 573

3 Publish APIs

Important:
At any given point, API Gateway does not allow you to provide the same gateway endpoint
for different APIs nor different versions of same API. Hence, make sure that you provide an
unique gateway endpoint, so that it does not match with any of the existing APIs' default or
custom gateway endpoints.

Before you begin

Ensure that you have:

Manage APIs functional privilege.

Activated the API.

To define API-specific gateway endpoints

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

Note:
You can manage the gateway endpoints of an API, directly from the view mode of the API
details screen.

2. Click the corresponding API for which you want to customize the gateway endpoint.

The API details page appears.

3. Click Technical information.

4. Click +Add custom gateway endpoint and provide the following information.

DescriptionField

Specifies the name for the custom gateway endpoint.Name

A gateway endpoint name must be unique within an API.

Specifies the custom gateway endpoint.URL

The gateway endpoint URL cannot include a space, nor can it include the
following special characters: # % ? ' " < \

574 webMethods API Gateway User's Guide 10.15

3 Publish APIs

5. Click Save.

The added custom gateway endpoint appears in the Gateway endpoint(s) field of the API
details page. In addition to the default gateway endpoint, you can access the API using this
custom gateway endpoint.

Note:
You can edit or delete the gateway endpoint from API details page either by clicking the

or icon corresponding to the gateway endpoint that you want to edit or delete.

How do I Define Global Gateway Endpoint?
This use case explains how to define global gateway endpoint. The global gateway endpoint creates
gateway endpoint template for all APIs. Each API inherits this global endpoint in addition to the
default and custom endpoints of an API.

webMethods API Gateway User's Guide 10.15 575

3 Publish APIs

The use case starts when you want to define global gateway endpoint and ends when you have
created the global gateway endpoint.

Global gateway endpoint is not supported for the APIs that have blank space or special characters
in API name or API version.

In order to generate a unique gateway endpoint for eachAPI version, the global gateway endpoint
template must use the following variables:

${apiName}

${apiVersion)

Before you begin

Ensure that you haveManage APIs functional privilege.

To define global gateway endpoint

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the Global gateway endpoint section, provide the global gateway endpoint that you want
to define across the APIs.

4. Click Save.

The added global gateway endpoint appears in the Gateway endpoint(s) field of the API
details page of all APIs. In addition to the default and API-specific gateway endpoints, you
can access your APIs using this global gateway endpoint.

576 webMethods API Gateway User's Guide 10.15

3 Publish APIs

How do I Edit Global Gateway Endpoint?

This use case explains you how to edit the global gateway endpoint. You can edit the global
gateway endpoint, when you want to change or update the existing global gateway endpoint
template for all the APIs.

The use case starts when you want to edit global gateway endpoint and ends when you have
updated the global gateway endpoint.

To edit global gateway endpoint

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the Global gateway endpoint section, update the value specified in the Global gateway
endpoint field.

4. Click Save.

The updated global gateway endpoint appears in the Gateway endpoint(s) field of the API
details page. All the APIs can be accessed using the updated global gateway endpoint.

Note:
You cannot access the APIs using the older global gateway endpoint.

How do I Delete Global Gateway Endpoint?

This use case explains you how to delete the global gateway endpoint. You can delete the global
gateway endpoint, when you do not want to access any of your APIs using the existing global
gateway endpoint template.

The use case starts when you want to delete global gateway endpoint and ends when you have
deleted the global gateway endpoint.

webMethods API Gateway User's Guide 10.15 577

3 Publish APIs

To delete global gateway endpoint

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the Global gateway endpoint section, delete the value specified in the Global gateway
endpoint field.

4. Click Save.

The global gateway endpoint is removed from the Gateway endpoint(s) field of the API
details page and you cannot access any of your APIs using global gateway endpoint.

Other Gateway Endpoint Usecases

Publishing APIs to API Portal

Just like publishing the default gateway endpoints, you can also publish the custom gateway
endpoints to API Portal. Published custom gateway endpoints can be accessed through the API
Portal interface.

Supporting Custom Prefix in CentraSite deployed APIs

When you virtualize a service in CentraSite, you can replace the default prefix of an invocation
alias with custom prefix. When you publish such services to API Gateway, the custom prefix that
was specified in CentraSite are supported in API Gateway by automatically adding the custom
gateway endpoint to the respective API.

Publishing APIs to API Portal

Publishing an API to API Portal sends the SOAP and REST APIs to API Portal on which they are
exposed for testing and user consumption.

Note:
API Gateway does not support publishing GraphQL API to API Portal.

The process of publishing an API to API Portal is initiated from API Gateway and is carried out
on the API Portal server.

Doing this involves the following high-level steps:

Step 1: You initiate the publish process by selecting the API to be published, specify the API
endpoints to be visible to the consumers, and the API Portal communities in which the API is
to be published.

Step 2: API Gateway publishes the API to each of the specified API Portal communities.

578 webMethods API Gateway User's Guide 10.15

3 Publish APIs

Step 3: During bulk publishing of APIs, the process continues even if API Gateway encounters
a failure with API Portal.

When publishing an API to the API Portal destination, keep the following points in mind:

The API Portal destination must be configured in API Gateway.

You must have the Publish to API Portal functional privilege.

You cannot publish anAPI if it is in inactive state. You have to activate theAPI before publishing
it.

Publishing a Single API to API Portal
Pre-requisites:

You must have the Publish to API Portal functional privilege assigned to perform this task.

To publish an API to API Portal

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Click the Publish icon for the API that you want to publish. Alternatively, you can click the
Publish button from the API details page of the required API.

3. Select the API endpoints that need to be visible to the consumers.

At least one endpoint should be selected before publishing the API.

4. Select the API type if you want to publish a REST-enabled SOAP API.

When the REST transformation is enabled for a SOAP API in API Gateway, you can publish
the REST-enabled SOAP API to API Portal in one of the following ways:

Publish as REST. Default. The API is published as a REST API to API Portal. The REST
resources and methods which correspond to the transformed SOAP operations are also
published to API Portal.

Publish as SOAP. The API is published as a SOAP API with the SOAP operations to API
Portal.

Publish as REST and SOAP. When both the options are selected, the API is published as
a REST API as well as a SOAP API in API Portal and marked as a HYBRID API.

Note:
The Publish as option is available only if the REST transformation is enabled for the SOAP
API.

5. Select the communities to which the API needs to be published.

webMethods API Gateway User's Guide 10.15 579

3 Publish APIs

By default, an API is published to the Public Community of API Portal.

Note:
If anAPI is already a part of the package published to a community then you cannot remove
it from that community.

6. Click Publish.

The API along with the selected endpoints is published to API Portal and available for the
consumers to consume it.

A REST-enabled SOAP API is published to API Portal based on the selected API type:

REST API.TheAPIDetails viewdisplays the publishedAPI as a RESTAPIwith the defined
REST resources and methods.

SOAP API. The API Details view displays the published API as a SOAP API with the
defined SOAP operations.

HYBRID API. The API Details view, by default, displays the published API as a REST API
with the REST resources and methods. There is an option SOAP that can be selected to
display the published API as a SOAP API with the SOAP operations.

Once an API is published, the Publish icon changes to Republish icon.

You can unpublish an API once it is published by clicking the Unpublish icon.

Publishing Multiple APIs to API Portal in a Single Operation
Pre-requisites:

You must have the Publish to API Portal functional privilege assigned to perform this task.

You can bulk publish APIs to API Portal.

To publish multiple APIs to API Portal in a single operation

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to publish.

By default, all the respectiveAPI endpoints are internally selected to be visible to the consumers.

3. In the Menu icon, click Publish.

4. Select the communities to which the APIs have to be published.

By default, the APIs are published to the Public Community of API Portal.

580 webMethods API Gateway User's Guide 10.15

3 Publish APIs

5. Click Publish.

The APIs along with their associated endpoints are published to API Portal and available for
the consumers to consume.

If you have selected several APIs where one or more of them are REST-enabled SOAP APIs
in API Gateway, then these SOAP APIs are published as REST APIs along with their specific
REST endpoints in API Portal.

6. Examine the Publish APIs report window and check for any errors that occurred during the
publishing process.

The Publish APIs report window displays the following information:

DescriptionField

The name of the published API.Name

The version of the published API.Version

The status of the publishing process. The available values are:Status

Success

Failure

A descriptive information if the API publishing process fails or if
a warning occurs.

Description

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

7. Click Download the detailed report here to download the detailed report as an HTML file.

Unpublishing APIs from API Portal
After you publish an API to API Portal, the API remains published and available on API Portal
for consumption until you manually unpublish the API.

You can unpublish a SOAP or REST API from API Portal to suspend its interaction, testing, and
user consumption in API Portal.

Unpublishing a Single API from API Portal

Pre-requisites:

You must have the Publish to API Portal functional privilege assigned to perform this task.

To unpublish an API from API Portal

1. Click APIs in the title navigation bar.

webMethods API Gateway User's Guide 10.15 581

3 Publish APIs

A list of all APIs appears.

2. Click the Unpublish icon for the API that you want to unpublish. Alternatively, you can click
the Unpublish button from the API details page of the required API.

The Unpublish API dialog box is displayed.

3. Select API Portal in Destination.

4. Select Unpublish.

5. Click Yes in the confirmation dialog.

The API is unpublished from the API Portal destination. The API is no longer available on API
Portal for testing and user consumption.

Once an API is unpublished, the Republish icon changes to Publish icon.

You can publish an API once it is unpublished by clicking the Publish icon.

Unpublishing Multiple APIs from API Portal in a Single Operation

Pre-requisites:

You must have the Publish to API Portal functional privilege assigned to perform this task.

You can bulk unpublish APIs from API Portal.

To unpublish multiple APIs from API Portal in a single operation

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to unpublish.

3. In the Menu icon, click Unpublish.

4. Click Yes in the confirmation dialog.

The selected APIs are unpublished from API Portal.

5. Examine the Unpublish APIs report window and check for any errors that occurred during
the unpublishing process.

The Unpublish APIs report window displays the following information:

582 webMethods API Gateway User's Guide 10.15

3 Publish APIs

DescriptionParameter

The name of the unpublished API.Name

The status of the unpublishing process. The available
values are:

Status

Success

Failure

A descriptive information if the API unpublishing
process fails or if a warning occurs.

Description

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

6. Click Download the detailed report here to download the detailed report as an HTML file.

Publishing APIs to Service Registries

Publishing anAPI to a service registry enables applications to dynamically locate anAPI Gateway
instance that can process that API.

When publishing an API to a service registry, keep the following points in mind:

Before you publish an API to a service registry destination, you must add the service registry
to the API Gateway instance from where you want to publish.

You must have the Publish API to service registry functional privilege to publish APIs to a
service registry.

You can publish only active APIs. You cannot publish APIs that are in the inactive state.

An API that is published to a service registry:

Is automatically de-registered from the service registry if the API is deactivated in API
Gateway.When theAPI is activated again, it is automatically registered on the same service
registry.

Is automatically de-registered from the service registry if the API Gateway instance from
where it was registered goes down. When the API Gateway instance comes up again, the
API is registered on the same service registry.

In a cluster of API Gateway nodes, only the API Gateway instance from where you publish
an API is added to the service registry. You have to separately publish the API from each API
Gateway instance that the service registry can use for an API.

Note:
Similarly, you have to separately unpublish the API from each API Gateway instance from
where you want to unpublish the API.

webMethods API Gateway User's Guide 10.15 583

3 Publish APIs

If a load balancer has been configured for the API Gateway cluster, APIs from all instances
are registered using the load balancer URL.

Publishing a Single API to Service Registries
Pre-requisites:

You must have the Publish API to service registry functional privilege assigned to perform this
task.

To publish an API to service registries

1. Click APIs in the title navigation bar.

The list of APIs defined in API Gateway appears.

2. Click the Publish icon for the API that you want to publish. Alternatively, you can click the
Publish button from the API details page of the required API.

3. Select Service Registries.

The list of service registries that have been added to API Gateway is displayed.

4. Select the service registry to which you want to publish the API.

The list of endpoints in the selected API are displayed.

5. Select the endpoints that you want to publish to the selected service registry.

6. Repeat the previous two steps to publish the API to additional service registries.

7. Click Publish.

Once an API is published, the Publish icon changes to Republish icon.

You can unpublish a published API by clicking the Unpublish icon.

Publishing Multiple APIs to Service Registries in a Single
Operation
Pre-requisites:

You must have the Publish API to service registry functional privilege assigned to perform this
task.

Note:

584 webMethods API Gateway User's Guide 10.15

3 Publish APIs

When you publish multiple APIs to one or more service registries in a single operation, all
endpoints in the APIs are published. To selectively publish endpoints within an API, you must
publish the API separately as a single API.

To publish multiple APIs to service registries in a single operation

1. Click APIs in the title navigation bar.

The list of APIs defined in API Gateway appears.

2. Select the APIs that you want to publish.

3. On the menu, click Publish.

4. Select Service Registries.

The list of service registries that have been added to API Gateway is displayed.

5. Select the service registry to which you want to publish the API and click Publish.

Once an API is published, the Publish icon changes to Republish icon.

You can unpublish a published API by clicking the Unpublish icon.

Unpublishing APIs from a Service Registry
You can manually unpublish APIs that you had previously published on service registries.

You must consider the following points before unpublishing an API from a service registry:

You must have the Publish API to service registry functional privilege to unpublish APIs
from a service registry.

There is no option to unpublish individual endpoints. When youmanually unpublish an API,
all the endpoints in that API are unpublished from the selected service registries.

As both—API publishing to service registries and API unpublishing to service registries—are
specific to the current API Gateway instance, APIs are unpublished only for the API Gateway
instance from where you unpublish. Therefore, if the same API was published from other
instances of API Gateway, it continues to be available on the service registries from those API
Gateway instances.

APIs may also get unpublished automatically from service registries, as described below.

Automatic Unpublishing of APIs

API Gateway automatically, but temporarily unpublishes an API in the following situations:

When you deactivate an API after publishing it to a service registry.

webMethods API Gateway User's Guide 10.15 585

3 Publish APIs

Note:
When you reactivate the API, the temporarily unpublished endpoints are published again
to the original service registries.

When you disable or delete an API Gateway port that has endpoints that have been published
to a service registry.

Note:
When you enable or add back the port again, the temporarily unpublished endpoints are
published again to the original service registries.

Unpublishing a Single API from Service Registries

Pre-requisites:

You must have the Publish API to service registry functional privilege assigned to perform this
task.

To unpublish an API from Service Registries

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Click the Unpublish icon for the API that you want to unpublish.

The Unpublish API dialog box is displayed.

3. Select Service registries in Destination.

The list of service registries to which the API was published is displayed.

4. Select the service registries from which you want to unpublish the API.

5. Select Force unpublish tomark the API as unpublished inAPI Gateway even if the unpublish
fails on the selected service registries.

The API is unpublished from the selected service registries. The API is no longer available on
selected service registries for testing and user consumption.

Once an API is unpublished, the Republish icon changes to Publish icon.

Unpublishing Multiple APIs from Service Registries in a Single Operation

Pre-requisites:

You must have the Publish API to service registry functional privilege assigned to perform this
task.

You can bulk unpublish APIs from one or more service registries.

586 webMethods API Gateway User's Guide 10.15

3 Publish APIs

To unpublish multiple APIs from service registries in a single operation

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to unpublish.

3. In the Menu icon, click Unpublish.

4. Select Service registries in Destination.

The list of service registries to which the APIs were published is displayed.

5. Select the service registries from which you want to unpublish the selected APIs.

6. SelectForce unpublish tomark theAPIs as unpublished inAPIGateway even if the unpublish
fails on the destination service registries.

7. Examine the Unpublish APIs report window and check for any errors that occurred during
the unpublishing process.

The Unpublish APIs report window displays the following information:

DescriptionParameter

The name of the unpublished API.Name

The status of the unpublishing process. The available
values are:

Status

Success

Failure

A descriptive information if the API unpublishing
process fails or if a warning occurs.

Description

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

8. Click Download the detailed report here to download the detailed report as an HTML file.

TheAPIs are unpublished from the selected service registries for the current APIGateway instance.
Once an API is unpublished, the Republish icon changes to Publish icon.

webMethods API Gateway User's Guide 10.15 587

3 Publish APIs

Publishing APIs to Integration Server

Publishing an API to an Integration Server enables applications to dynamically locate an API
Gateway instance that can process that API.

When publishing an API to an Integration Server instance, keep the following points in mind:

Before you publish an API to an Integration Server destination, you must add the Integration
Server instance to the API Gateway instance from where you want to publish.

You must have the Manage API functional privilege to publish APIs to Integration Server.

You can publish only active APIs. You cannot publish APIs that are in the inactive state.

An API that is published to a Integration Server:

Is automatically de-registered from Integration Server if the API is deactivated in API
Gateway. When the API is activated again, it is automatically registered on the same
Integration Server.

Is automatically de-registered from Integration Server if the API Gateway instance from
where it was registered goes down. When the API Gateway instance comes up again, the
API is registered on the same Integration Server.

In a cluster of API Gateway nodes, only the API Gateway instance from where you publish
an API is added to the Integration Server. You have to separately publish the API from each
API Gateway instance that the Integration Server can use for an API.

Note:
Similarly, you have to separately unpublish the API from each API Gateway instance from
where you want to unpublish the API.

If a load balancer has been configured for the API Gateway cluster, APIs from all instances
are registered using the load balancer URL.

Publishing a Single API to Integration Server
Pre-requisites:

You must have the Manage API functional privilege assigned to perform this task.

To publish an API to Integration Server

1. Click APIs in the title navigation bar.

The list of APIs defined in API Gateway appears.

2. Click the Publish icon for the API that you want to publish.

Alternatively, you can click the Publish button from the API details page of the required API.

588 webMethods API Gateway User's Guide 10.15

3 Publish APIs

3. Select Integration Servers.

The list of configured Integration Server instances appears.

4. Select the Integration Server to which you want to publish the API.

5. Provide the package name and folder name of the IS instance in which the API must be
implemented

6. Repeat the previous two steps to publish the API to additional Integration Server instances.

7. Click Publish.

Once an API is published, the Publish icon changes to Republish icon.

You can unpublish a published API by clicking the Unpublish icon.

Publishing Multiple APIs to Integration Server in a Single
Operation
Pre-requisites:

You must have the Manage API functional privilege assigned to perform this task.

To publish multiple APIs to Integration Server in a single operation

1. Click APIs in the title navigation bar.

The list of APIs defined in API Gateway appears.

2. Select the APIs that you want to publish.

3. On the menu, click Publish.

4. Select Integration Servers.

The list of Integration Servers that have been added to API Gateway appears.

5. Select the Integration Server to which you want to publish the API and click Publish.

Once an API is published, the Publish icon changes to Republish icon.

You can unpublish a published API by clicking the Unpublish icon.

Unpublishing APIs from Integration Server
You can manually unpublish APIs that you had previously published on Integration Server.

webMethods API Gateway User's Guide 10.15 589

3 Publish APIs

You must consider the following points before unpublishing an API from an Integration Server
instance:

Youmust have theManage API functional privilege to unpublishAPIs from Integration Server.

As both—API publishing to Integration Server andAPI unpublishing to Integration Server—are
specific to the current API Gateway instance, APIs are unpublished only for the API Gateway
instance from where you unpublish. Therefore, if the same API was published from other
instances of API Gateway, it continues to be available on the Integration Server instance from
those API Gateway instances.

APIs may also get unpublished automatically from Integration Server, as described below.

Automatic Unpublishing of APIs

API Gateway automatically, but temporarily unpublishes an API in the following situations:

When you deactivate an API after publishing it to Integration Server.

When you disable or delete an API Gateway port that has endpoints that have been published
to Integration Server.

Unpublishing a Single API from Integration Server

Pre-requisites:

You must have the Manage API functional privilege assigned to perform this task.

To unpublish an API from Integration Server

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Click the Unpublish icon for the API that you want to unpublish.

The Unpublish API dialog box is displayed.

3. Select Integration Servers in Destination.

The list of Integration Servers to which the API was published is displayed.

4. Select the Integration Server from which you want to unpublish the API.

5. Select Force unpublish tomark the API as unpublished inAPI Gateway even if the unpublish
fails on the selected Integration Server.

The API is unpublished from the selected Integration Server. The API is no longer available
on selected Integration Server for testing and user consumption.

Once an API is unpublished, the Republish icon changes to Publish icon.

590 webMethods API Gateway User's Guide 10.15

3 Publish APIs

Unpublishing Multiple APIs from Integration Server in a Single Operation

Pre-requisites:

You must have the Manage API functional privilege assigned to perform this task.

You can bulk unpublish APIs from one or more Integration Servers.

To unpublish multiple APIs from Integration Server in a single operation

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to unpublish.

3. In the Menu icon, click Unpublish.

4. Select Integration Servers in Destination.

The list of Integration Servers to which the APIs were published is displayed.

5. Select the Integration Server from which you want to unpublish the selected APIs.

6. SelectForce unpublish tomark theAPIs as unpublished inAPIGateway even if the unpublish
fails on the destination Integration Server.

7. Examine the Unpublish APIs report window and check for any errors that occurred during
the unpublishing process.

The Unpublish APIs report window displays the following information:

DescriptionParameter

The name of the unpublished API.Name

The status of the unpublishing process. The available
values are:

Status

Success

Failure

A descriptive information if the API unpublishing
process fails or if a warning occurs.

Description

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

8. Click Download the detailed report here to download the detailed report as an HTML file.

webMethods API Gateway User's Guide 10.15 591

3 Publish APIs

The APIs are unpublished from the selected Integration Server for the current API Gateway
instance. Once an API is unpublished, the Republish icon changes to Publish icon.

592 webMethods API Gateway User's Guide 10.15

3 Publish APIs

4 Monetize APIs

■ API Monetization .. 594

■ Packages and Plans ... 595

■ Creating a Package .. 596

■ Creating a Plan ... 598

■ Activating a Package .. 604

■ Publishing a Package ... 605

■ Viewing List of Packages and Package Details .. 606

■ Viewing List of Plans and Plan Details ... 606

■ Viewing a List of Subscriptions ... 607

■ Modifying a Package .. 607

■ Modifying a Plan ... 608

■ Deleting a Package .. 609

■ Deleting a Plan ... 610

webMethods API Gateway User's Guide 10.15 593

API Monetization

Once you create and configure your APIs in API Gateway, you can create a monetization strategy
for your APIs.

APIGateway allows you to create packages andplans. As anAPI provider orAPI productmanager,
you can configure the packages and plans as per your organization requirements tomonetize your
APIs.

The general flow to monetize APIs is as follows:

When you add an API to a package for monetization, the API key authentication mechanism is
automatically added to the IAM policy at API level. If the API already contains an IAM policy
that has two authentication mechanisms with the AND condition, then the condition is switched
toOR. This ensures that themonetization is supportedwhen certain consumer applications access
the API by just using the API key.

In a typical API monetization solution, you have the following components. You can create an
end-to-end monetization experience by integrating these components.

API Gateway. You can create APIs, packages and plans and host them in API Gateway. In
addition, you can enforce quota and rate limits and monitor the API usage.

Note:
If you are configuring API consumption rate limits for any purpose other than monitoring,
apply the Traffic optimization policy, instead of packaging. For information about the policy,
see “Traffic Optimization” on page 316.

Billing solution. You can translate the APIs, Packages, and Plans into billable products. You
can perform customer information and billing related activities here, based on the usage quota.

API Portal. Here consumers find and subscribe to the API packages and plans.

594 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

Note:
With API Gateway 10.11, you can create a subscription by using the Subscription REST API.
For more details about this API, see webMethods API Gateway Administration.

API Gateway does not support a billing solution. However, it provides the following extensions,
which you can use to integrate with a billing system.

APIs to create, read, update, and delete the APIs, packages, plans, and subscriptions.

Extensible model that enables extending meta data for packages, plans, and subscriptions to
store additional (billing or consumer related) data.

Auditing and lifecycle provides support to track the changes to assets. You can use the Search
API to retrieve the audit data or you can configure the audit data to be pushed to different
destinations as andwhen there is a change. Formore details about Search API, seewebMethods
API Gateway Administration. For more details about custom destination, see webMethods API
Gateway Administration.

APIGatewaymonitors the usage and transactions. APIs are available to retrieve themonitoring
and transactions data or you can configure API Gateway to push this data to different
destinations. Alerts can be configured to be sent to different destinations for different metrics.
To learn more, see webMethods API Gateway Administration.

API Gateway provides APIs to retrieve the usage information for an API or a subscription.
You can use this data to determine the quota usage and for billing purposes.

Note:
To view usage metrics, you must either add log invocation policy to each API or use global
policy to generate transaction events.

On the API Gateway to API Portal integration, API Gateway provides support for publishing
APIs, packages and plans to API Portal and also provides support for creating subscriptions from
the API Portal. Additionally, API Gateway pushes API transactions to API Portal.

Packages and Plans

AnAPI Package refers to a logical grouping ofmultipleAPIs from a singleAPI provider. A package
can contain one or more APIs and an API can belong to more than one package. You must have
the API Gateway 's manage packages and plans functional privilege assigned to manage API
packages and plans.

An API Plan is the contract proposal presented to consumers who are about to subscribe to APIs.
Plans are offered as tiered offerings with varying availability guarantees, SLAs or cost structures
associated with them. An API package can be associated with multiple plans at a time. This helps
the API providers in providing tiered access to their APIs to allow different service levels and
pricing plans. Though you can edit or delete a plan that has subscribers, Software AG recommends
you not to do so.

Note:
Package and plan subscriptions can be done only through API Portal.

webMethods API Gateway User's Guide 10.15 595

4 Monetize APIs

You can create packages and plans, associate a planwith a package, associate APIswith a package,
view the list of packages, package details, and APIs and plans associated with the package in the
API Gateway user interface

Creating a Package

Youmust have the manage packages and plans functional privilege assigned to perform this task.

AnAPI Package refers to a logical grouping ofmultipleAPIs from a singleAPI provider. A package
can contain one or more APIs and an API can belong tomore than one package. You can subscribe
to a package from the API Portal or using the Subscription APIs.

You can create an API Package from the Manage packages and plans page.

To create an API Package

1. Click Packages in the title navigation bar.

2. Click Create in the Manage packages and plans section.

3. Select Package.

4. Click Create.

5. Provide the following information in the Basic information section:

DescriptionField

Name of the API package.Name

Version assigned for the API package.Version

Team to which the applicationmust be assigned to. You can select

more than one team. To remove a team, click the icon next to
the team.

Team

A brief description for the API package.Description

An icon that is displayed for the API package.Icon

Click Browse and select the required image to be displayed as the
icon for the API package. The icon size should not be more than
100 KB.

You can save the API package at this point and add the plans at a later time. The above fields
are basic fields, provided by API Gateway.

6. Click Additional information to create custom fields for your package.

596 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

You can use these fields to extendmeta data for Packages to store additional (billing/consumer
related) data. For example, you can create an additional field calledCategory,which determines
the category of a package. You can add drop-down values like gold, silver, and bronze. So you
can now categorize packages as gold package, silver package, and so on.

7. Click Add field to create a new custom field.

8. (Optional) Click Add to add multiple custom fields.

9. Provide the following information:

DescriptionField

Name of the custom field.Name

Value for the custom field.Field Value

A brief description for the custom field.Description

10. Click Save.

11. Click Plans in the left navigation pane.

12. Select the plans that are to be associated with the API package.

You can save the API package at this point and add APIs at a later time.

13. Click Continue to add APIs.

Alternatively, click APIs in the left navigation pane.

webMethods API Gateway User's Guide 10.15 597

4 Monetize APIs

When you add an API to a package for monetization, the API key authentication mechanism
is automatically added to the IAM policy at API level. If the API already contains an IAM
policy that has two authentication mechanisms with the AND condition, then the condition
will be switched to OR. This ensures the monetization is supported when certain consumers
access the API by just using the API key.

14. Type characters in the search box and click the search icon to search for the required APIs.

A list of APIs that contain the characters specified in the search box appears.

15. Select the required APIs to be associated with the Package and click + to add them.

You can delete the APIs from the package by clicking the Delete icon adjacent to the API in
the API list.

16. Click Save.

Creating a Plan

You must have the API Gateway's manage packages and plans functional privilege assigned to
perform this task.

An API Plan is the contract proposal presented to consumers who are about to subscribe to APIs.
Plans are offered as tiered offerings with varying availability guarantees, SLAs or cost structures
associated with them. An API package can be associated with multiple plans at a time. This helps
the API providers in providing tiered access to their APIs to allow different service levels and
pricing plans. Though you can edit or delete a plan that has subscribers, Software AG recommends
you not to do so.

You can create packages and plans, associate a planwith a package, associate APIswith a package,
view the list of packages, package details, and APIs and plans associated with the package in the
API Gateway user interface.

You can create a plan from the Manage packages and plans page.

To create a plan

1. Click Packages in the title navigation bar.

2. Click Create in the Manage packages and plans section.

3. Select Plan.

4. Click Create.

5. Provide the following information in the Basic information section:

598 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

DescriptionField

Name of the plan.Name

Version assigned for the plan.Version

Team towhich the applicationmust be assigned to. You can select

more than one team. To remove a team, click the icon next to
the team.

Team

A brief description for the plan.Description

An icon that is displayed for the plan.Icon

Click Browse and select the required image to be displayed as the
icon for the plan. The icon size should not be more than 100 KB.

You can save the API package at this point and add the plans at a later time. The above fields
are basic fields, provided byAPIGateway. You can add additional information in theAdditional
information section.

6. Click Additional information to create custom fields for your plan.

You can use these fields to extendmeta data for Packages to store additional (billing/consumer
related) data. For example, you can have a field called plan type. This field can have drop-down
values called prepaid and postpaid. You can categorize all the plans as either prepaid or
postpaid plans.

7. Click Add field to create a new custom field.

8. (Optional) Click Add to add multiple custom fields.

webMethods API Gateway User's Guide 10.15 599

4 Monetize APIs

9. Provide the following information:

DescriptionField

Name of the custom field.Name

Value for the custom field.Field Value

A brief description for the custom field.Description

10. Click Save.

11. Click Pricing in the left navigation pane. .

12. Provide the following information in the Pricing section:

DescriptionField

Specifies the cost for the plan.Cost

Specifies the terms of conditions for the pricing.Terms

Specifies the license information.License

You can save the plan at this point and provide traffic optimization configurations at a later
time.

13. Click Continue to Quality of Service.

Alternatively, click Rate limits in the left navigation pane.

Note:
If you are configuring API consumption rate limits for any purpose other than monitoring,
apply the Traffic optimization policy, instead of packaging. For information about the policy,
see “Traffic Optimization” on page 316.

14. Click + Add Rule.

15. Provide the following information in the Create Rule section:

DescriptionField

Specifies the maximum number of requests handled.Maximum request count

Value provided should be an integer.

Specifies the value for the interval forwhich themaximum request
count is handled.

Interval

600 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

DescriptionField

Value provided should be an integer.

Specifies the unit ofmeasurement of the time interval. For example:Interval unit

Minutes

Hours

Days

Calendar Week. The plan starts on the first day of the week
and ends on the last day of the week. By default, the start day
of the week is set to Monday.

For example:

If you subscribe to a package on aWednesday and Interval
is set to 1, the validity of the plan ends on Sunday, that is,
5 days.

If you subscribe to a package on aWednesday and Interval
is set to 2, the validity of the plan still ends on Sunday, but
the validity of the plan is two calendar weeks, that is 12
days.

You can change the start day of the week using the extended
setting startDayOfTheWeek in the Administration > General
> Extended settings section. Restart the API Gateway server
for the changes to take effect.

CalendarMonth. Starts on the first day of themonth and ends
on the last day of the month.

For example:

If you subscribe to a package in the month of August and
Interval is set to 1, the validity of the plan ends on the last
day of August.

If you subscribe to a package in the month of August and
Interval is set to 2, the validity of the plan ends in two
calendar months, that is on the last day of September.

Specifies how frequently to send alerts toAPIGatewaydestination
when the Rate limits condition is violated.

Alert frequency

Select one of the options:

Only Once. Triggers an alert only the first time one of the
specified conditions is violated.

webMethods API Gateway User's Guide 10.15 601

4 Monetize APIs

DescriptionField

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text that appears when the rule is violated.Violation message

16. Click Ok.

This creates the rule and displays it in the Configured rules table. Click + Add rule to add
more rules. You can edit or delete the rules by clicking the Edit and the Delete icons
respectively.

At a later time, when this plan is applied to an API through a package, the rules that you
configured for this plan are enforced on the applied API.

17. Click Quota and provide the following information in the Quota settings section.

DescriptionField

Specifies the maximum number of requests handled.Maximum request quota

Value provided should be an integer.

When selected, it specifies that the access to the API is blocked
when there is a rule violation. Also, a notification is sent to API
Gateway destination depending on the Alert frequency.

Block on breach

By default, this option is not selected.

Specifies the value for the interval forwhich themaximum request
quota is handled.

Interval

Value provided should be an integer.

Specifies the unit ofmeasurement of the time interval. For example:Interval unit

Minutes

Hours

Days

Calendar Week. The plan starts on the first day of the week
and ends on the last day of the week. By default, the start day
of the week is set to Monday.

For example:

If you subscribe to a package on aWednesday and Interval
is set to 1, the validity of the plan ends on Sunday, that is,
5 days.

602 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

DescriptionField

If you subscribe to a package on aWednesday and Interval
is set to 2, the validity of the plan still ends on Sunday, but
the validity of the plan is two calendar weeks, that is 12
days.

You can change the start day of the week using the extended
setting startDayOfTheWeek in the Administration > General
> Extended settings section. Restart the API Gateway server
for the changes to take effect.

CalendarMonth. Starts on the first day of themonth and ends
on the last day of the month.

For example:

If you subscribe to a package in the month of August and
Interval is set to 1, the validity of the plan ends on the last
day of August.

If you subscribe to a package in the month of August and
Interval is set to 2, the validity of the plan ends in two
calendar months, that is on the last day of September.

Specifies how frequently to send alerts toAPIGatewaydestination
when the Quota condition is violated.

Alert frequency

Select one of the options:

Only Once. Triggers an alert only the first time one of the
specified conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text that displays when the policy is violated.Violation message

Specifies whether notifications are to be sent on rule violations.Notification settings

Enable the toggle button to enable the notifications and provide
the following information:

Notify after (in %). Provide a value which is a number. A
notification is sent to the configured email IDs once the total
request count reaches the%value as provided in themaximum
quota value.

Violation message. Provide the content of the mail that is
sent to the configured email Ids once the quota request count
reaches the limit specified.

webMethods API Gateway User's Guide 10.15 603

4 Monetize APIs

DescriptionField

Email Ids. Provide an email Id of the recipient to which
notifications have to be sent once the quota request count
reaches the limit specified. Click to add multiple
recipients.

Note:
The SMTP settings under Administrator settings >
Destinations has to be provided for an email to be sent.

Send Digital Events

Custom destination. Select customdestinations towhich the
notification must be sent. You can select multiple custom
destinations. The custom destinations displayed in this field
are populated from the customdestinations, configured in the
Administration > Destinations > Custom destinationspage.

Important:
Incase of a server crash or restart, the quota status is determined by the value set in the
pgmen.quotaSurvival.addLostIntervals property and works as follows:

If the property is set to false, remaining time in quota is retained even after a restart or
crash. For example, If quota is of 60 minutes and 7 minutes was used before the server
crash or restart, then quota remaining time of 53 minutes is retained after server crash
or restart, if the property is set to false.
If the property is set to true, and if the sumof time between server shutdown and restart
and quota elapsed time does not exceed the interval of the subscription, the quota usage
value is retained. In this case the remaining quota time is calculated as {current interval
cycle - (elapsed time + (start time - shutdown time))}. For example, if the current
subscription duration is 1 month and if the server starts on the 10th day of the cycle and
restarts on the 12th day of the cycle, the remaining quota time is calculated as {30 - (10
+ (12-10))} = 18 days.
If the property is set to true, and if the sumof time between server shutdown and restart
and quota elapsed time exceeds the interval of the subscription, a new interval is created.
Quota usage value is not retained in this case.

18. Click Save.

The plan is created and listed in the list of plans.

Activating a Package

You must have the API Gateway's activate/deactivate packages assigned to perform this task.

You can activate a package so that a consumer can try out APIs in the package with the package
level token. When the consumer requests a token from API Portal, the request is processed in API
Gateway and a token is sent back to API Portal. This token is visible to the consumer on the Access

604 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

Token page. The consumer can test the APIs in the package with this token on the API Try out
page.

To activate a package

1. Click Packages in the title navigation bar.

A list of all packages appears with their status as Inactive or Active.

2. Click the activation toggle button for the package.

The package is now activated.

Alternatively you can click Activate on the Packages details page to activate the package.

Publishing a Package

You must have the API Gateway's publish to API Portal functional privilege assigned to perform
this task.

You can publish a package to the configured destination, for exampleAPI Portal. Once the package
is published, the APIs associated with the package are available to consumers. The package level
token is applicable to all APIs associated with the package. The consumers do not have to request
an access token for individual APIs to consume them.

Ensure the following before publishing a package:

A destination is configured.

The package is active.

The package has at least one plan and API associated with it.

The APIs associated with the package is published to the destination.

To publish a package

1. Click Packages in the title navigation bar.

A list of all packages appears.

2. Click the Publish icon for the package that has to be published.

3. Select the communities to which the package needs to be published.

By default, a package is published to the Public Community of API Portal.

Note:
The list of communities displayed are those that are common to which the APIs associated
with this package are already published to.

webMethods API Gateway User's Guide 10.15 605

4 Monetize APIs

4. Click Publish.

A success messages is displayed when the package is successfully published. The package is
now published to the destination, for example API Portal, that is configured and is available
on API Portal to consumers.

You can unpublish a package once it is published by clicking the Unpublish icon for the required
package.

Viewing List of Packages and Package Details

You can view the list of packages in the Packages section of the Manage packages and plans page
from where you can create, delete, and select a package to view its details.

To view the package list and package details

1. Click Packages in the title navigation bar.

A list of all packages appears. You can perform various operations like activating a package,
publishing or unpublishing a package, and deleting a package.

2. Select a package.

The basic information, and the associated plans and APIs for the selected package appears in
the package details page.

Viewing List of Plans and Plan Details

You can view the list of plans in the Plans section of the Manage packages and plans page from
where you can create, delete, and select a plan to view its details.

To view the plan list and plan details

1. Click Packages in the title navigation bar.

2. Click Plans.

A list of all plans appears. You can delete a plan by clicking the Delete icon for the respective
plan.

3. Select a plan.

The basic information, the pricing, and Quality of service associated with the selected plan
appears in the plan details page.

606 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

Viewing a List of Subscriptions

In the Manage packages and plans page, the Subscriptions tab lists the applications and the
associated package name, plan, used quota, start time, end time, and the remaining period of the
subscription. The Subscriptions tab lists only the packages and plans that are subscribed from
API Portal.

In the Subscription tab, you can also search for the subscriptions by name, package name, and
plan name.

Modifying a Package

You must have the API Gateway's manage packages and plans assigned to perform this task.

You can modify the basic information, include or exclude plans and APIs of the package. You can
modify a package when it is either in active or inactive state. If you modify a package when it is
in the active state, the following points are applicable:

If you remove an API from the package, subscribers cannot leverage the service of that API.

If you add an API to a package, subscribers can leverage the service of the API without
performing any setup.

If a package's plan has active subscribers, you cannot remove that plan from the package.

To modify a package

1. Click Packages in the title navigation bar.

A list of all packages appears.

2. Select a package.

The basic information, and the associated plans and APIs for the selected package appear on
the package details page.

3. Click Edit.

The package details appear.

Note:
The Edit option is available only if the package is in inactive state.

4. You can modify the information related to the package, as required, in the Basic information
section.

5. Click Plans in case you want to modify the plans associated with the package.

A list of plans associated with the package and list of available plans appears.

webMethods API Gateway User's Guide 10.15 607

4 Monetize APIs

6. You can do the following:

Add more plans to the package by selecting plans listed in the available plans list.

Delete the plans from the package by clearing the check box of the plan associated with
the package.

7. Click APIs in case you want to modify the APIs associated with the package.

A list of APIs associated with the package and a search box to search for APIs that need to be
added to the package appear.

8. You can do one of the following:

Add more APIs to the package. You can search for APIs using the search box and click +
adjacent to the API to add it

Delete the APIs from the package by clicking the Delete icon adjacent to the API in the
APIs list.

9. Click Save.

This saves the modified package.

Modifying a Plan

You must have the API Gateway's manage packages and plans functional privilege assigned to
perform this task.

You can modify a plan to change the pricing details and Quality of service associated with the
plan. You can modify a plan when the package associated with the plan is active or inactive. If
you modify a plan when it is in the active state, the following points are applicable:

The quota usage data is not reset for the existing customers. However, you can explicitly reset
or modify the quota usage. If you modify the quota usage, a new cycle is initiated for all the
subscribers.

If you modify the Rate limits or pricing, it does not impact the quota usage.

To modify a plan

1. Click Packages in the title navigation bar.

A list of all packages appears.

2. Click Plans.

A list of all plans appears.

3. Select a plan.

608 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

The plan details page displays the basic information, pricing details, and theQuality of service
associated with the plan.

4. Click Edit.

The plan details appear with fields that you can edit.

5. You can modify the information related to the plan, as required, in the Basic information
section.

6. Click Pricing in case you want to modify the pricing model associated with the plan.

7. Modify the pricing plan as required.

8. Click Rate limits if you want to modify the rules associated with the plan.

A list of rules associated with the plan appears.

9. You can do one of the following:

Add more rules to the plan. Click Add rule to create and add rules to the plan.

Modify the already configured rule. Click theEdit icon for the rule listed in theConfigured
rules list and modify the details as required.

Delete rules from the plan. Click the Delete icon adjacent to the rule in the Configured
rules list.

10. Click Quota settings if you want to modify the quota settings for the plan.

11. Modify the quota settings as required.

12. Click Save.

This saves the modified plan.

Deleting a Package

You must have the API Gateway's manage packages and plans assigned to perform this task.

You can delete a package from the Package list that appears on the Manage packages and plans
page. You can not delete a package if it is in active state. You have to deactivate it before deleting
it.

To delete a package

1. Click Packages in the title navigation bar.

A list of all packages appears.

webMethods API Gateway User's Guide 10.15 609

4 Monetize APIs

2. Click the Delete icon for the package that has to be deleted.

3. Click Yes in the confirmation dialog.

Deleting a Plan

You must have the API Gateway's manage packages and plans functional privilege assigned to
perform this task.

You can delete a plan from the Plans list that appears in the Plans section of the Manage packages
and plans page. You can delete a plan only if it is not associated with a package. You have to
disassociate the plan with the package before deleting it.

To delete a plan

1. Click Packages in the title navigation bar.

2. Click Plans.

A list of plans appears.

3. Click the Delete icon for the plan that has to be deleted.

4. Click Yes in the confirmation dialog.

610 webMethods API Gateway User's Guide 10.15

4 Monetize APIs

5 Monitor APIs

■ Analytics ... 612

■ API-specific Dashboard .. 612

webMethods API Gateway User's Guide 10.15 611

Analytics

APIGatewayprovidesmonitoring capabilities tomonitorAPIGateway andAPI usage by collecting
and analyzing data about the availability and performance of an API. This helps in identifying
problems that impact users. In addition to monitoring the performance of APIs, you may also
want to get an insight into how developers are using the published APIs. This data provides a
better understanding of any improvements that might be required to enhance the API usage or
performance.

The analytics dashboard in theAPIGatewayUI displays a variety of charts to provide an overview
of API Gateway performance and its API usage. The data for these dashboards come from the API
Gateway destination store. The dashboard has various filters that you can apply depending on
what youwant tomonitor. API Gateway also provides the capability to create a customdashboard.

API Gateway dashboard. Displays API Gateway-wide analytics such as Summary of APIs,
API usage, API trends, the top performing API and the non-performing API analytics, audit
logs, applications and package related event information. Click > Analytics to access API
Gateway-wide analytics. For details about the API Gateway dashboard, see webMethods API
Gateway Administration.

API-specific dashboard. Displays API specific analytics such as API invocation trends by
response time, success and failure rates, API performance, consumer or application traffic for
a specific API. This can be accessed from the API details page.

Custom dashboards. Displays API Gateway-wide analytics or API specific analytics as
configured. Click > Analytics to access API Gateway-wide analytics. A custom dashboard
is a collection of visualizations. You can add the visualizations as per your requirement and
compile the visualizations as a customdashboard. For details about creating customdashboard,
see webMethods API Gateway Administration.

The dashboard viewdepends on the events andmetrics generated inAPIGateway and their types.
An event is a kind of notification or alert generated by the API Gateway Metrics and Event
Notificationmodule. Various types of events are generated based on the behavior of the transactions
in the system. Events generated by API Gateway are real-time events made persistent in the store
and sent to configured destinations.

API-specific Dashboard

You can view theAPI-specific dashboard by navigating to theAPI details page and clickAnalytics.

Select the API-specific dashboard from the drop-down list. The dashboard displays the following
analytics based on the metrics monitored.

To filter the API-specific analytics, select the time interval using the options:

Quick select. Specify the time interval. Click Apply to filter the analytics based on the time
interval.

612 webMethods API Gateway User's Guide 10.15

5 Monitor APIs

Commonly used. Select a commonly used time interval, and the filter is applied automatically.
To view the API-specific analytics between a time interval, click Custom range > From Date
> To Date > Apply.

Recently used. Select a recently used time interval, and the filter is applied automatically.

When you log in and view the analytics, the last used time interval is saved for each dashboard.
When you view the dashboard again, the last used time interval for that dashboard is applied.
The last used time interval is valid for the current session only.

For the specified time interval, you can also filter based on anAPI. TheAPI drop-down list displays
all the APIs. On selecting an API, the data displayed is for the selected API.

You can click on the specific event in the list under Legend to view the specific event in any of the
widgets. You can view additional details for an event by hovering the cursor over a particular
color in the graphical representations.

DescriptionMetric

Displays the trending of events generated by the selectedAPI
over time.

Events over time

Displays the number of times the API was invoked during
the specified time.

API invocations

Displays the number of successful API invocations and failed
API invocations during the specified time.

API invocations - Status wise

API invocations is the sum of successful API invocations and
failed API invocations.

Displays API invocation over period of time during the
specified time interval in the form of a line graph.

API invocation pattern

Displays information on how fast the native service responds
to the request received in the specified time based on the data
in the transactional event.

Native service performance

Displays the comparison between gatewayTime performance
and providerTime performance.

Gateway vs Provider time

Displays the trend based on the response codes received from
various events for the API during the specified time.

Response code trend

Displays the trending of the selected API based on the
response time from the performance metrics for that API.

API trend by response

Displays the trending of API based on its success rate as
compared to its failure rate in the performancemetrics for the
specified time.

Success vs Failure

Displays the run time event details for the selected API.
Displays information on the event type, date when the event

Runtime events

webMethods API Gateway User's Guide 10.15 613

5 Monitor APIs

DescriptionMetric

was created, the agent on which the event was generated,
description of the alert generated, the source of event, and the
application that generated the event.

Displays a bar graph showing the number of responses served
from cache and the number of responses fetched from the

Service result cache

native service at the operation level for the selectedAPI during
the specified time.

The Service result cache metric graphical representation is
not supported for GraphQL API.

Displays the method level invocations per operation for the
API during the specified time.

Method level invocations

You can hover the cursor over the stacked bar chart to view
the various methods invoked per operation or resource and
also the operations or resources for the selected API during
the specified time.

The Service result cache metric graphical representation is
not supported for GraphQL API.

614 webMethods API Gateway User's Guide 10.15

5 Monitor APIs

6 Microservices

■ Manage Microservices ... 616

■ Microgateways .. 616

■ AppMesh Support .. 620

webMethods API Gateway User's Guide 10.15 615

Manage Microservices

In comparison to a monolithic architecture, where all processes are tightly coupled and run as a
single service, amicroservices architecture structures an application as a collection of services that
are loosely coupled and independently deployable. The microservices architecture enables the
rapid, frequent, and reliable delivery of large, complex applications. Each component service in
a microservices architecture can be developed, deployed, operated, and scaled without affecting
the functioning of other services.

The adoption of the microservices architecture pattern drives the need for lightweight gateways
or microgateways. webMethods Microgateway gives control over a microservice landscape by
enforcing policies that perform authentication, traffic monitoring, and traffic management. The
lightweight nature of a Microgateway allows a flexible deployment to avoid gaps or bottlenecks
in policy enforcement.

Businesses are adopting microservices for agility and scalability. In managing the complexity of
distributedmicroservices environments, themicroservices architecturemight run into operational
challenges, such as service discovery, connectivity, security, and fault tolerance. This is where a
service mesh helps in providing critical capabilities that provide a solution to the operational
challenges you face. webMethods AppMesh is just such a solution that allows you to apply an
application context to service mesh or microservice deployments.

The following sections describe how API Gateway facilitates management of deployed
Microgateways and configuration of the AppMesh infratructure to manage microservices.

Microgateways

API Gateway enables you to monitor the Microgateways that are connected to it. You can view
the active APIs and detailed analytics for eachMicrogateway that is connected to theAPI Gateway.

The Microgateways management page displays all Microgateway groups that are connected to
the API Gateway. A Microgateway group enables you to group Microgateways that have some
common element, such as domain (finance or human resources) or type of APIs (external-facing
or internal use). For each Microgateway group, the Microgateways management page displays
the following information:

Name and Description of the Microgateway group.

The number of Microgateways that are part of the group.

The number of APIs that are available in that group.

You can perform the following operation on this page:

Click View details to view more information about a Microgateway group.

Click Analytics to view the Analytics tab of a Microgateway group. For information about
Microgateway Analytics, see “ Microgateway Group Analytics” on page 618.

Note:

616 webMethods API Gateway User's Guide 10.15

6 Microservices

For information about installing, configuring, and using Microgateways, see the webMethods
Microgateway User's Guide.

Microgateway Groups
AMicrogateway group is a collection of Microgateway instances that are grouped based on a
common domain or API type. The Microgateway groups page displays the available groups and
the Microgateways that are included in a particular group. The page displays the following
information for each Microgateway group:

Basic information section includes

Name of the group

Description

Number of APIs in the group

Microgateways section includes the following details of each Microgateway instance in the
group:

Host name

HTTP and HTTPS ports that the Microgateway uses to expose the APIs that are provision
on it

A description of the Microgateway

The number of APIs available on the Microgateway

To add a Microgateway to the group, you have to add the following information to the custom-
settings.yml file:
microgatewayPool:

microgatewayPoolName: poolNameHere
microgatewayPoolDescription: poolDescriptionHere

Where poolNameHere is the name of the group and poolDescriptionHere is an optional description
of the group. If a poolNameHere is not provided, the Microgateway is added to the Default group.

Note:
Formore information about custom-settings.yml, see thewebMethodsMicrogatewayUser's Guide.

You can perform the following operations on this page:

Click to delete a Microgateway from API Gateway. You can also delete multiple
Microgateways.

Click the Microgateway name to view more information about it.

webMethods API Gateway User's Guide 10.15 617

6 Microservices

Microgateway Group Analytics

TheMicrogateway groupAnalytics tab displays detailed analytics based on the data cumulatively
received from the Microgateways in a group. This tab displays the following information:

Overall events. Displays a pie chart that lists different events being monitored. Each of these
event categories is depicted with different colors.

Application Activity. Displays a pie chart to indicate activities based on applications. You can
view the number of APIs that are authorized with applications and the number of APIs that
are not authorized using any applications.

API Invocation. Displays a pie chart to indicate the number of invocations made to each API
present in the group.

Runtime events. Displays the run time event details such as time when the event was
generated, API Name, the application that generated the event, event type, description of the
alert generated due to the event, status, and the source of event.

Payload size. Displays the payload size of the request and responses during data transfer in
the specified time. This data is picked up from the transactional event that is triggered when
a log invocation policy is applied to the API.

You can perform the following operations on this page:

Apply filters. The Analytics tab provides filters that you can use to view selective data or
events. You can use the displayed duration filter and add a custom filter using the filter query
builder.

To apply a duration filter, select the time interval from the drop-down list, and clickApply
filter to filter the analytics based on the time interval chosen. To specify a custom duration,
selectCustom from the drop-down list, select the requiredFrom Date andTo Date values,
and click Apply filter.

You can also add filters based on a filter query. To add a filter based on a filter query, click
Add a filter, select the desired field, operator and value, and click Save.

View specific events. Click on the specific event in the list under Legend to view the specific
event in any of thewidgets. You can view additional details for an event by hovering the cursor
over a particular color in the graphical representations.

Microgateway Details
The Microgateway details page provides information about a particular Microgateway.

The Microgateway Info tab includes two sections:

The Basic information section provides information about the Microgateway.

618 webMethods API Gateway User's Guide 10.15

6 Microservices

The APIs tab section provides the information of the APIs provisioned on that Microgateway.
Clicking an API opens the API details page. The active Microgateway endpoints of the API
are also displayed in the API details page.

Note:
All the Service Registries to which a Microgateway is publishing an API must be configured in
API Gateway.

You can perform the following operations on this page:

Click an API to view the API details.

Click Analytics to view detailed analytics based on the data received from an individual
Microgateway. The tab includes the following analytic graphs:

Overall events

Application activity

Runtime events

Payload size

Similar to the Microgateway Group Analytics tab, you can apply required filters and view
specific events. For more information about the widgets and instructions to view graphs, see
“ Microgateway Group Analytics” on page 618.

Deleting Microgateway Instances
When you stop aMicrogateway instance, the instance is deleted fromAPI Gateway automatically.
But, if a Microgateway stops abruptly, the corresponding instance remains stale in API Gateway.
You can remove such stale instances by deleting them.

Important:
When deletingMicrogateways, ensure that they are not in Running status. Deleting an instance
removes it completely from API Gateway. For information on checking the status of a
Microgateway, see Creating API Gateway Asset Archives using the Command Line section in the
Microgateway User's Guide.

You can delete one Microgateway or multiple instances from a Microgateway group at the same
time.

Deleting a Microgateway

To delete a Microgateway

1. Click Microgateways in the title navigation bar.

2. Click the required Microgateway group.

webMethods API Gateway User's Guide 10.15 619

6 Microservices

The Microgateway group details appears.

3. From the Microgateways section, click next to the required Microgateway.

A warning message appears.

4. Click Yes to delete.

Deleting Multiple Microgateways

To delete multiple Microgateways

1. Click Microgateways in the title navigation bar.

2. Click the required Microgateway group.

The Microgateway group details appears.

3. From theMicrogateways section, select theMicrogateways that youwant to delete by selecting
the check boxes next to the required host names.

4. Click and select Delete from the drop-down list.

A warning message appears.

5. Click Yes to delete the selected Microgateways.

The selected Microgateways are deleted and the Delete Microgateways report appears.

6. Click Download the delete report here to download the report.

The report displays the following details of the deleted Microgateways.

Host name

HTTP or HTTPS port name

Status

AppMesh Support

Businesses are adopting microservices for agility and scalability. In managing the complexity of
distributed microservices environments, the microservices-based architecture might run into
operational challenges, such as service discovery, connectivity, security, and fault tolerance. This
is where a service mesh helps in providing critical capabilities that provide a solution for the
operational challenges you face. For example, the collaboration of services within a microservice
architecture requires the exchange of requests. In case a service is overloaded by requests, the

620 webMethods API Gateway User's Guide 10.15

6 Microservices

service mesh reroutes the requests to address the overload situation for optimizing the services
to work together.

As an application develops, new services are added; this complicates the communication network,
increases chances of failure, and adds to the complexity of finding where the problem occurred.
A service mesh makes handling the complex network easier as it captures the service-to-service
communication details. In a service mesh, the requests between the microservices are routed
through the proxies in its own infrastructure layer.

The figure below depicts the microservice environment on the left and the microservice with the
service mesh infrastructure on the right. The microservices have individual proxies deployed
alongside each service, in a separate container. The service-to-service communication is routed
through these proxies.

Since the servicemesh is built into the application, it helps in fast and easy communication amongst
the services with less downtime as the application grows in size.

Why AppMesh?

Though the service mesh helps in managing a complex landscape of microservices, there is a
limitation when it comes to application awareness. It is difficult to achieve application-level
enforcement on the requests before they reach themicroservices.webMethodsAppMeshprovides
the required solution of applying an application context to a service mesh or microservice
deployments.

webMethods AppMesh extends the service mesh platform by providing application awareness
through theAPIfy action on the microservices, where it provides an API face to the microservices.
This enables the reuse, governance, consumption, landscapemanagement capabilities, and drives
the API-led integration of microservices.

The figure below depicts an AppMesh deployment, wherein a business context is added to the
service mesh through API Gateway. Each service is APIfied and has a Microgateway injected as a
sidecar.

webMethods API Gateway User's Guide 10.15 621

6 Microservices

Features and Benefits

AppMesh allows your organizations to manage microservices-led applications to:

Gainbetter control. Group andmanagemicroservices as business applications. Create,manage,
and deliver new applications quickly.

Govern applications centrally. Add context to your microservices and API landscape.

Deliver without disruption. Enhance your application without making changes to existing
services.

In detail, AppMesh provides several critical functions, which include:

Discovering services.

Creating, managing, and delivering new applications quickly.

Applying business rules to drive application-specific behavior.

Deep visibility into how the application is running and who is using it.

Istio-based AppMesh

Istio is an open source service mesh platform that provides a way to control how microservices
share datawith one another and is designed to run in a variety of environments; Kubernetes being
one of them. Istio support is added to a service by deploying an Envoy proxy that sits alongside
a service and routes requests to and from other proxies.

API Gateway provides the capability to discover services in a Kubernetes-based Istio deployment.
It allows to APIfy a service, and deploy it back to the Kubernetes environment. After deploying
the services back into the Kubernetes environment, you can provision theAPIs and service updates
from theAPIGateway user interface, through theMicrogateway injected as a sidecar for the service
in the Kubernetes pod.

The APIs that AppMesh creates as a result of theAPIfy action are directly linked to and are hosted
by Microgateway, and are used to enforce the policies to the service-to-service communication,
which is called the East-West traffic.

622 webMethods API Gateway User's Guide 10.15

6 Microservices

The figure belowdepicts the Istio-basedAppMesh architecturewhere the communication between
the pods is through the envoy proxy and the Microgateway injected into the pod communicates
with the API Gateway.

Kubernetes-based AppMesh

You can deploy AppMesh in a Kubernetes environment even without a service mesh or Istio
deployment. API Gateway provides the capability to discover services,APIfy a service, and deploy
it back to the Kubernetes environment. On deploying the AppMesh, the Microgateway is injected
as a sidecar for the service in the Kubernetes pods. The Microgateway injected into the pod acts
as a proxy for the services for the inter-service communication. You can now provision the APIs
and service updates, from the API Gateway user interface, through the Microgateway injected as
a sidecar for the service in the Kubernetes pod.

The figure below depicts the Kubernetes-based AppMesh architecture without a service mesh
deployment. TheMicrogateway injected into the pod as a sidecar communicateswithAPIGateway
and any updates to the APIs or policies enforced on the services are provisioned through the
Microgateway into the Kubernetes pod.

webMethods API Gateway User's Guide 10.15 623

6 Microservices

Supported Platforms

webMethods AppMesh supports the following platforms:

Istio on Azure Kubernetes

Istio on Kubernetes

Istio on Rancher

API Gateway supports Kubernetes versions 1.9 to 1.17.0, and Istio versions 1.5 and 1.6.

AppMesh Licensing

The API Gateway license is extended with the AppMesh feature.

You can configure the AppMesh feature license in the Administration > General > License >
Configuration section. For details about configuring API Gateway license, see webMethods API
Gateway Administration.

You can view the AppMesh license details in the Administration > General > License > Details
section. For details about viewing license details, see webMethods API Gateway Administration.

If the API Gateway license does not contain theAppMesh feature support, the following functions
are not available in an API Gateway instance:

AppMesh tab in the API Gateway user interface.

Service mesh configuration section under Administration > External accounts in the API
Gateway user interface.

Configure API Gateway to Connect to a Service Mesh
Environment
To discover the services and deploy AppMesh, you must configure API Gateway to connect to
the service mesh environment where the services reside.

This configuration section is visible in the API Gateway user interface if you have the required
AppMesh license and theManage general administration configurations privileges.

Before you begin

Ensure that you have:

Manage general administration configurations privileges.

Valid AppMesh license.

Kubernetes client configuration file and its location to set up the connection between API
Gateway and the service mesh.

624 webMethods API Gateway User's Guide 10.15

6 Microservices

For details about Kubernetes in general and the Kubernetes client configuration file, see
Kubernetes documentation.

Valid namespaces in Kubernetes with or without the Istio service mesh environment setup.

Docker image for Microgateway pushed to a registry that is reachable by your Kubernetes
environment.

For details about how to create the Microgateway image, see “Creating a Microgateway
Image” on page 626.

To configure API Gateway to connect to a service mesh environment

1. Click and select Administration.

2. Click External accounts > Service mesh.

3. Click Browse, select and upload the required Kubernetes client configuration file.

On successful upload of the file, the cluster name and the cluster endpoint details appear in
the table.

API Gateway supports a single Kubernetes cluster and context. If multiple cluster or contexts
exist, AppMesh uses the context present in the current context field of the Kubernetes client
configuration file.

4. Provide the following details required for AppMesh configuration:

DescriptionField

Optional. Specify the API Gateway URL of the API Gateway
instance.

API Gateway URL

This is required to set up the communication channel between
API Gateway and the Microgateway that is injected into the
Kubernetes pod.

If you do not configure the API Gateway URL, the default
value is picked up from the Load balancer URLs that are
configured under Administration > Load balancer in the
following precedence:

a. First of the HTTPS Load balancer URL, if configured.

b. First of the HTTP Load balancer URL, if configured.

c. Default host name with 5555 as the default port.

The username of the API Gateway instance.API Gateway username

webMethods API Gateway User's Guide 10.15 625

6 Microservices

DescriptionField

The password of the API Gateway instance.API Gateway password

Specify the location of the Microgateway image to deploy
Microgateway as a sidecar in the Kubernetes pod.

Microgateway image

Specify the port the Microgateway listens on.Microgateway port

Specify theKubernetes namespace tomonitor usingAppMesh.Namespaces

You can add multiple namespaces.

If you do not provide any namespace, then the default
namespace default, that is present inKubernetes environment
is picked up.

5. Click Save configuration.

The service mesh environment is configured, and the communication between API Gateway
and the service mesh is enabled.

You can now proceed with discovery of services and deploying AppMesh.

Creating a Microgateway Image

The Microgateway image is required to deploy the Microgateway as a sidecar in the Kubernetes
pods. The Microgateway has to be present in the registry repository for it to be available for
deployment as a sidecar into a Kubernetes pod.

1. Run the following commands to build the required Microgateway image:

./microgateway.sh createDockerFile --docker_dir . -p 9090
docker build -t your-repo:mcgw-app-mesh -f Microgateway_DockerFile
docker push your-repo:mcgw-app-mesh

The Microgateway image can now be used to inject Microgateway as a sidecar in the Kubernetes
pods while deploying AppMesh.

AppMesh Deployment
This section describes how microservices are discovered and deployed in AppMesh.

Before you begin

You must have a Kubernetes environment with or without service mesh configured, and an
AppMesh environment set up in API Gateway.

Stages in AppMesh deployment

1. “Service Discovery” on page 627

626 webMethods API Gateway User's Guide 10.15

6 Microservices

2. “APIfy” on page 628

3. “Update API Definition and Policies” on page 628

4. “Deploy AppMesh” on page 629

Service Discovery

AppMeshuses theKubernetes RESTAPI to search for services or deployments from theKubernetes
environment for the configured namespaces.

You can view all the discovered services in the API Gateway user interface in the AppMesh tab.

A list of microservices created in the Kubernetes environment as deployments, present in the
configured AppMesh namespaces appears.

To view the service details, click View details. The service details page displays the following
information:

ComponentsService Details

Basic information Service name. Name of the microservice.

Namespace. Name of the namespace added in themicroservice.

Internal endpoints. These are the native endpoints of the
microservice, which is present in the routing policy of the API,
that are only reachable within the cluster. These endpoints are
created in the Kubernetes environment as services.

External endpoints. These are the service endpoints that are
used by the external client to invoke an API.

Deployment details Deployment configuration. Provides the YAML deployment
configuration.

Deployment flow. Provides the microservice pod traffic details.

Provides the following service mesh proxy details:Service mesh sidecar

Virtual services that are associated with the service

Destination rules

Authorization policies

Envoy filters

Note:
Formore information about servicemesh proxy details, see https://
istio.io/latest/docs.

Microgateway sidecar API. Provides a link to the API details page.

webMethods API Gateway User's Guide 10.15 627

6 Microservices

https://istio.io/latest/docs
https://istio.io/latest/docs

ComponentsService Details

Microgateway. Provides a link to Microgateway groups.

You can perform the following actions in the service details page:

APIfy

Deploy

Undeploy

APIfy

APIfy is the process of giving an API face to the Kubernetes service. APIfy creates an empty API
with the endpoint that API Gateway receives from the service.

Click APIfy to APIfy a microservice. An API is created for the microservice in API Gateway and
you can access it using the APIs tab or the API link in the Microgateway sidecar section of the
service details page.

The API created by default has a single resource with resource path (/) and the routing endpoint
is the first internal endpoint of the service.

Note:
Only one API can be created for a microservice.

Update API Definition and Policies

The API created after you APIfy a microservice, may need updates to the API definition and API
policies (if any). You can update the API definition with the OpenAPI, Swagger, or RAML files.

To update the API definition and policies

1. Click APIs in the title navigation bar.

Note:
Alternatively, you can navigate to the API details page using the API link in the
Microgateway sidecar section of the service details page.

2. Select an API from the list of APIs.

3. Click and select Update.

The Update API window appears.

628 webMethods API Gateway User's Guide 10.15

6 Microservices

4. Update the API definition in one of the following ways:

By importing the API definition from a file.

By importing the API definition from a URL.

For more information about how to update APIs, see webMethods API Gateway User's Guide.

5. Click Update.

The updated API definitionmust match the API implemented by themicroservices. The REST
resources and the available REST operations are enforced by the injected Microgateway.

Service requests against undefined resources or operations are rejected.

Deploy AppMesh

After updating the API definition, the service is deployed and the policies that are assigned in
API Gateway are injected to the Kubernetes pod as a Microgateway sidecar.

Click Deploy to deploy AppMesh.

Note:
Before you deploy a service, you must APIfy it and the service must contain an API in API
Gateway.

After you deployAppMesh, you can view the injectedMicrogateway details in one of the following
ways:

Using theMicrogateway link in theMicrogateway sidecar section of the service details page.

Using the Microgateways tab.

Note:

There is a downtime in the initial deployment, due to the Kubernetes service definition
update.
Services for deployments that have their target ports,which are referencedwith the container
ports, are not supported by AppMesh. As AppMesh injects an additional container to the
deployment, it causes an ambiguity in the referenced service target ports.

Undeploy AppMesh
The undeploy action removes the injected Microgateway from the microservice deployment, and
corrects the service definition to point to the microservice.

Click Undeploy to undeploy AppMesh.

Note:
There is a downtime in the undeployment, due to the Kubernetes service definition update.

webMethods API Gateway User's Guide 10.15 629

6 Microservices

Provisioning of API and Policy Updates
To provision theAPI definition and policy updates for aMicrogateway deployed in the Kubernetes
pod, you have to update the API and redeploy AppMesh.

To provision API and policy updates in the AppMesh environment

1. Click AppMesh.

A list of microservices in the Kubernetes environment present in the namespaces, configured
in the AppMesh configuration, and those that expose a nodePort and the corresponding
deployments appears.

2. Click View details to view the service details.

3. Open the corresponding API of the microservice.

4. Update the API definition of the API.

a. Update the API definition in one the following ways:

By importing the API definition from a file.

By importing the API definition from a URL.

For more information about how to update APIs, see “Updating APIs” on page 48.

b. Update the required API policies, if any.

Formore information about how to update policies, see “ModifyingAPI PolicyDetails” on
page 454.

5. Click AppMesh to view the microservices updated with the API definition and API policies.

6. Click View details to view the service details.

7. Click Deploy.

The service is redeployed and Microgateway is injected to the Kubernetes pod.

To allow redeployment updates to occur with zero downtime of the pods, the Kubernetes
out-of-the-box support through rolling updates is used. This ensures that the deployment does
not break the current requests, and no requests are dropped due to a pod failure.

The Kubernetes rolling updates strategy used in AppMesh redeployment has the following
parameters:

RollingUpdate. New pods are added gradually, and old pods are terminated gradually.

630 webMethods API Gateway User's Guide 10.15

6 Microservices

maxSurge. The number of pods that can be created above the desired amount of pods during
an update.

maxUnavailable. The number of pods that can be unavailable during the update process.

Sample Rolling Update strategy you must add in the deployment descriptor that allows for
maximum available pods is as follows:
strategy:

type: RollingUpdate
rollingUpdate:

maxUnavailable: 0
maxSurge: 1

webMethods API Gateway User's Guide 10.15 631

6 Microservices

632 webMethods API Gateway User's Guide 10.15

6 Microservices

7 Accessibility Profile

■ Web Content Accessibility Guidelines .. 634

webMethods API Gateway User's Guide 10.15 633

Web Content Accessibility Guidelines

API Gateway supports Web Content Accessibility Guidelines (WCAG) through a separate UI
profile calledAccessibility profile. TheAccessibility profile is a read-only profilewith limited coverage
in terms of number of screens as well as the functionalities. Users can access API Gateway
accessibility profile using the following URL:
http://hostname:9071/apigatewayui/accessibility.jsp

Currently the following screens are available with this profile:

API Gateway Login page

API List page

API Details page

634 webMethods API Gateway User's Guide 10.15

7 Accessibility Profile

	Table of Contents
	About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	1 Define and Manage APIs
	Defining and Managing APIs
	Creating an API by Importing an API from a File
	Creating an API by Importing an API from a URL
	Creating an API from Scratch
	Viewing API List and API Details
	Searching Data in API Gateway
	Filtering APIs
	Configuring the Number of APIs listed on a Page
	Modifying API Details
	Updating APIs
	Exporting Specifications
	Attaching Documents to an API
	API Grouping
	API Tagging
	Versioning APIs
	Deleting APIs
	Example: Managing an API
	CentraSite Provided APIs

	2 Implement APIs
	API Implementation
	API Mocking
	Consumer Applications
	Policies
	Aliases
	Global Policies
	Scope-level Policies
	Example: Usage Scenarios of API Scopes
	Policy Templates
	Change Ownership of Assets
	Debugging API
	API Mashups
	SOAP to REST Transformation
	API First Implementation
	Troubleshooting Tips: Implement APIs

	3 Publish APIs
	Why Publish APIs?
	Activating an API
	Deactivating an API
	Exposing a REST API to Applications
	Exposing a SOAP API and GraphQL API to Applications
	Gateway Endpoints
	Publishing APIs to API Portal
	Publishing APIs to Service Registries
	Publishing APIs to Integration Server

	4 Monetize APIs
	API Monetization
	Packages and Plans
	Creating a Package
	Creating a Plan
	Activating a Package
	Publishing a Package
	Viewing List of Packages and Package Details
	Viewing List of Plans and Plan Details
	Viewing a List of Subscriptions
	Modifying a Package
	Modifying a Plan
	Deleting a Package
	Deleting a Plan

	5 Monitor APIs
	Analytics
	API-specific Dashboard

	6 Microservices
	Manage Microservices
	Microgateways
	AppMesh Support

	7 Accessibility Profile
	Web Content Accessibility Guidelines

