
webMethods API Gateway User's Guide

Version 10.11

October 2021

This document applies to webMethods API Gateway 10.11 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2016-2023 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: YAI-UG-1011-20231210

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Documentation...7
Document Conventions...8
Online Information and Support...8
Data Protection...9

1 webMethods API Gateway...11
Introduction to webMethods API Gateway..12
Searching Data in API Gateway...13
Configuring the Number of APIs listed on a Page..16
Using Help in API Gateway..16

2 User Management...17
Manage Users, Groups, and Teams...18
Manage Your User Settings and Preferences..37

3 APIs..41
Creating APIs - Overview...43
Creating an API by Importing an API from a File...46
Creating an API by Importing an API from a URL...47
Creating an API from Scratch...48
API Mashups...66
Viewing API List and API Details..76
Filtering APIs..87
Activating an API...88
Deactivating an API...91
Publishing APIs..91
Unpublishing APIs...96
Modifying API Details...101
Updating APIs..101
API Mocking...105
Attaching Documents to an API...110
SOAP to REST Transformation...111
CentraSite Provided APIs..120
Versioning APIs..121
API Scopes...122
Exposing a REST API to Applications...130
Exposing a SOAP API and GraphQL API to Applications..131
API Grouping..132
API Tagging...132
Exporting APIs..135
Exporting Specifications..136
Deleting APIs..137
Example: Managing an API..139

webMethods API Gateway User's Guide 10.11 iii

Troubleshooting Tips: APIs...149

4 Policies..151
Policies - Overview...152
Policy Validation and Dependencies...154
Managing Threat Protection Policies...159
System-defined Stages and Policies...171
Managing Global Policies..355
Managing API-level Policies...373
Managing Scope-level Policies..375
Managing Policy Templates..380
Supported Alias and Policy Combinations...391

5 Aliases...397
Overview...398
Creating a Simple Alias...398
Creating an Endpoint Alias...399
Creating an HTTP Transport Security Alias...402
Creating a SOAP Message Security Alias...406
Creating a webMethods Integration Server Service Alias..409
Creating an XSLT Transformation Alias...410

6 Applications...411
Overview...412
Creating an Application..413
Viewing List of Applications and Subscriptions...422
Regenerating API Access Key...422
Modifying Application Details...423
Registering an API with Consumer Applications from API Details Page.............................424
Suspending an Application...424
Activating a Suspended Application...425

7 API Packages and Plans...427
Overview...428
Creating a Package...429
Creating a Plan..432
Activating a Package..438
Publishing a Package...439
Viewing List of Packages and Package Details..440
Viewing List of Plans and Plan Details...440
Viewing a List of Subscriptions..440
Modifying a Package..441
Deleting a Package...442
Modifying a Plan..442
Deleting a Plan..444

8 Export and Import Assets and Configurations..445

iv webMethods API Gateway User's Guide 10.11

Table of Contents

Overview...446
Importing Asset and Configuration Archives..451
Troubleshooting Tips: Import and Export Assets..453

9 API Gateway Analytics..455
Analytics Dashboards..456
Runtime Events and Metrics Data Model...467

10 Microgateway Management..551
Overview...552

11 REST APIs in API Gateway..557
API Gateway Administration...558
Alias Management..567
Application Management..568
API Gateway Archive..569
API Gateway Availability..570
Document Management..570
Data Center Management...571
Internal Service...572
Port Configuration..572
Policy Management..573
Promotion Management..576
Public Services..577
API Gateway Search...577
Server Information...580
Service Management..580
Transaction Data...582
User Management..583
Subscription Management..584
Backward compatibility support for REST APIs...585

12 Remove User Data from API Gateway..587
Removing User Data..588

13 Usage Scenarios...593
Change Ownership of Assets..594
Custom Policy Extension...604
Team Support..626
API First Implementation..642
Gateway Endpoints..651
Secure API using OAuth2 with refresh token workflow..657
Request and Response Processing...665
Securing Access Token Calls with PKCE..696
Trace API..706

14 AppMesh Support in API Gateway...727
webMethods API Gateway User's Guide 10.11 v

Table of Contents

Overview of webMethods AppMesh..728
Configure API Gateway to Connect to a Service Mesh Environment....................................732
AppMesh Deployment..734
Undeploy AppMesh...737
Provisioning of API and Policy Updates..737

15 Accessibility Profile..739
Overview...740

vi webMethods API Gateway User's Guide 10.11

Table of Contents

About this Documentation

■ Document Conventions .. 8

■ Online Information and Support ... 8

■ Data Protection ... 9

webMethods API Gateway User's Guide 10.11 7

This documentation describes howyou can useAPIGateway and other APIGateway components
to effectively manage APIs for services that you want to expose to applications, whether inside
your organization or outside to partners and third parties.

To use this content effectively, you should have an understanding of the APIs that you want to
expose to the developer community and the access privileges you want to impose on those APIs.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

8 webMethods API Gateway User's Guide 10.11

https://documentation.softwareag.com
https://documentation.softwareag.com

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/u/softwareag and discover additional Software AG resources.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

webMethods API Gateway User's Guide 10.11 9

mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com
https://github.com/softwareag/
https://hub.docker.com/u/softwareag
https://hub.docker.com/u/softwareag

10 webMethods API Gateway User's Guide 10.11

1 webMethods API Gateway

■ Introduction to webMethods API Gateway ... 12

■ Searching Data in API Gateway ... 13

■ Configuring the Number of APIs listed on a Page .. 16

■ Using Help in API Gateway .. 16

webMethods API Gateway User's Guide 10.11 11

Introduction to webMethods API Gateway

webMethodsAPIGateway enables an organization to securely exposeAPIs to external developers,
partners, and other consumers for use in building their own applications on their desired platforms.
It provides a dedicated, web-based user interface to perform all the administration andAPI related
tasks such as creatingAPIs, defining and activating policies, creating applications, and consuming
APIs. API Gateway gives you rich dashboard capabilities for API Analytics. APIs created in API
Gateway can also be published to API Portal for external facing developers' consumption.
webMethods API Gateway supports REST-based APIs, SOAP-based APIs, and WebSocket APIs,
provides protection from malicious attacks, provides a complete run-time governance of APIs,
and information about gateway-specific events and API-specific events.

Note:
Software AG recommends usingAPI Gateway user interface for all the functionalities provided
by API Gateway and not use the Integration Server user interface.

API Gateway provides the following key features:

Support for SOAP APIs, REST APIs, and WebSocket APIs

API Gateway supports REST-based APIs, SOAP-based APIs, and WebSocket APIs. This support
enables organizations to leverage their current investments in SOAP-based APIs while adopting
REST for new APIs. The API Gateway's SOAP to REST transformation feature enables an API
provider to expose parts of the SOAPAPI or expose the complete SOAPAPIwith RESTful interface.
APIGateway allows you to customize theway the SOAPoperations are exposed as REST resources.

Secure APIs

API Gateway protects APIs from malicious attacks initiated by external client applications.
Administrators can secure traffic between API consumer requests and the execution of services
onAPIGateway by filtering requests coming fromparticular IP addresses and blacklisting specified
IP addresses, detecting and filtering requests coming from particular mobile devices. You can
avoid additional inbound firewall holes when the native APIs are hosted on webMethods ESB.

Policy enforcement

APIGateway provides complete run-time governance ofAPIs. APIGateway enforces access tokens
such asAPI key check, OAuth2 token and operational policies such as security policies for run-time
requests between applications and native services. API providers can enforce security, traffic
management,monitoring, Service LevelAgreement (SLA)management policies, transform requests
and responses into expected formats, and collect events metrics on API consumption and policy
evaluation. API Policies can be defined globally and applied to a set of APIs. With API Gateway
you can also define policy templates that can be applied across APIs.

Mediation

API Gateway provides routing policies such as content-based routing, and conditional routing,
for run-time requests between applications and native services. These policies perform routing
and load balancing of incoming requests to an API.

Message transformation

12 webMethods API Gateway User's Guide 10.11

1 webMethods API Gateway

API Gateway lets you configure an API and to transform the request and response messages to
suit your requirements. To do this, you can specify an XSLT file to transformmessages during the
mediation process. You can also configure an API to invoke Integration Server services to
pre-process or post-process the request or response messages.

Easy discovery and testing of APIs

API Gateway provides filter capabilities to quickly find APIs of interest. API descriptions and
additional documentation, usage examples, and information about policies enforced at the API
level provide more details to the developers that help them decide whether to adopt a particular
API. Developers can use the provided samples and expected error and return codes to see how
the API works.

Clustering support

Multiple instances of API Gateway can be clustered together to provide scalability and high
availability.

Built-in usage analytics

APIGatewayprovides information aboutGateway-specific events andAPI-specific events, details
about which APIs are more popular than others. The Gateway-specific events information is
available by way of dashboards to users. With this information, providers can understand how
their APIs are being used,which in turn can help identifyways of improving their users' experience
and increase API adoption.

Packages and Plans

API Gateway provides capabilities to create and manage packages and plans. This helps the API
providers in providing tiered access to their APIs to allow different service levels and pricing
plans. Users can view the details of the package, such as includedAPIs and associated plans. Plans
provide information about pricing and quality of service terms defined within them. Consumers
can subscribe to any plan available under the package, based on their business needs.

Functional Privileges

API Gateway allows you to assign functional privileges to a user or group (LDAP or local) using
access profiles. The functional privileges are assigned to users of teams based on the team's
requirements. You must have a functional privilege assigned to perform any of the key API
Gateway features.

API Mashups

API Gateway allows you to consolidate services and expose them as a single service. You can
createAPImashups that extend anAPI operation by grouping itwith otherAPI operations available
in API Gateway.

Searching Data in API Gateway

The search feature in API Gateway is a type-ahead search; a simple and easy to use search facility
where you can type the text of interest to search. You can search for all items that contain one or

webMethods API Gateway User's Guide 10.11 13

1 webMethods API Gateway

more specified keywords (that is, text strings) in the item's properties. Some of the properties are
name, description, version, key, value, and so on in the API.

You can search for the following types of data as shown in the image.

To search for an item, type a string in the search box in the title navigation bar. A list of search
result is displayed directly below the Search box. The number of matches found are displayed in
sections depending on the type they fit in. For example, APIs, Application, Alias, Packages, and
so on. A minimum of five search results are displayed in each category. If there are no results as
per the search string typed, a message displays saying so.

If you find what you are searching for in the search result box, click on it to view the details. You
are navigated to the specific page that displaysmore information. For example, if you are searching
for an API and click the displayed result, you are navigated to the specified API details page. If
you are searching for an application and click the displayed result, you are navigated to the
specified Application details page.

If you want to see all the search results click Show all results in the search result box. The
Advanced search page is displayed. This is a dedicated page that displays extensive search results.
In the Advanced search information page, you can search or filter the results in the following
ways: by type, or by keyword.

By type: Select one ormore types in theSearch by type section to see search results pertaining
to the selected types. For example, if you select the typeAPIs, all theAPIs that have the specified
string is displayed. By default, all filters are selected. To remove a filter, you can clear the check
box next to a filter from the left pane or click next the filter you want to remove.

By keyword: Type a keyword in theSearch by keyword field, all the search results containing
the specified keyword are displayed in the list. For example, if you type the keyword petstore,
all search results containing the petstorewould be filtered and displayed.

Note:

14 webMethods API Gateway User's Guide 10.11

1 webMethods API Gateway

Search by keywordwill not show any search results, if the field names have any special
characters. The following special characters are not supported - ! ? & # $ * % : ; = ' " () / \ < >

The fields that does not support special characters are as follows:

Maturity state
Scope name
Scope description
API Operations info name
API Resource path
API Tags
Application identifiers named values
User Login ID
User First name
User Last name
OAuth scope name
OAuth Scope description

For example, if anAPI has a tag name Test-001, and you searchAPIswith the tag name Test-001,
you will not get any search results.

Note:
You cannot search for REST resources and methods in a REST API. The search function only
works for the name and description of the REST API. For example, you can search for a REST
API named LibraryAPI. But you cannot search for a REST resource named book or a REST
method POSTwithin the REST API. However, the search function works for name, description,
and operations of SOAP APIs.

You cannot search for resources and methods of an OData API.

There are a few configurable properties available for search. These properties can be configured
in the file, uiconfiguration.properties, located at
SAGInstallDir\profiles\IS_default\apigateway\config\. Edit the file as required. Aftermodifying
the properties file, you have to restart Integration Server for the changes to take effect.

You must type in a minimum number of characters in the global search box, to search for data.
This property can be configured.

The following property is used to configure the minimum number of characters to search. The
default value is 3.

apigw.search.minimum.num.chars=3

Note:
The value provided must be a number greater than 0. If you provide an invalid value, it takes
up the default value of 3.

The following property is used to configure the number of search results to load for each type in
the advanced search page. The default value is 10.

apigw.num.results.search=10

webMethods API Gateway User's Guide 10.11 15

1 webMethods API Gateway

Note:
The value provided must be a number greater than 0. If you provide an invalid value, it takes
up the default value of 10.

Configuring the Number of APIs listed on a Page

The default number of APIs that are listed in theManage APIs andManage applications page can
be configured through the properties file located at
SAGInstallDir\profiles\IS_default\apigateway\config\uiconfiguration.properties.

Edit the configuration file as required. You can configure the number of results to load for
pagination. The default value is 20. The provided value should be a number greater than 0.

apigw.num.results.pagination=20

You have to restart Integration Server for the changes to take effect.

You can configure the number of APIs that get listed per page in the Manage APIs or the Manage
applications page. In each of these pages, you can use the pagination bar at the bottom of the page
to navigate from one page to another, the first page, or the last page when there are more than 20
APIs in the list. To change the number of APIs listed in a page, select the required number in the
Show # results per page field in the pagination bar at the bottom of the page. The API list now
displays only thosemanyAPIs in one page as specified. For example, if you selectShow 10 results
per page, only 10 APIs are listed in one page.

This configuration that you change through the drop down ismaintained as long as you are logged
in to API Gateway. Once you log out, the value is reset to the default configured value in the
uiconfiguration.properties file.

The value is set in the drop down is applicable for bothAPIs and applications listing. For example,
if you change the show results to 10 in the Manage APIs drop down, then the number is retained
for Manage applications page as well.

Using Help in API Gateway

APIGateway's built-in context-sensitive help gives an overviewof the functionality ofAPIGateway.

You can access API Gateway Help link by expanding the Utility options icon , in the title bar
and selectingHelp. This opens the introduction to the webMethods API Gateway page in the help
system. You can browse the required topics in the navigation pane. Click on a topic to display the
detailed information. Youwill also find the help links in the form of a help icon on several pages
of the API Gateway user interface. Click the help icon on the page to view the corresponding
detailed information.

16 webMethods API Gateway User's Guide 10.11

1 webMethods API Gateway

2 User Management

■ Manage Users, Groups, and Teams ... 18

■ Manage Your User Settings and Preferences ... 37

webMethods API Gateway User's Guide 10.11 17

Manage Users, Groups, and Teams

You can use API Gateway to define user information on the API Gateway server. The definition
of user contains the login ID, password, and group membership.

Alternatively, you can set upAPIGateway to access the information froma local usermanagement
system or you can use webMethods Integration Server to configure the Lightweight Directory
Access Protocol (LDAP) external directory that your site uses for user information.

Note:
Central User Management is not supported by API Gateway.

webMethods Integration Server uses user information to authenticate clients and determine the
server resources that a client is allowed to access. If the server is using basic authentication
(username and password) to authenticate a client, it uses the login ID and passwords defined in
user accounts to validate the credentials a client supplies.

API Gateway enables you to define user and group information to the API Gateway server. The
user definition contains the user login ID, password, and groupmembership. The group definition
contains the group name and a list of users in the group. After creating users and groups, users
can be given the required functional privileges based on the teams that they are part of. A user
can have different set of functional privileges in the teams that they are part of. For example, a
user can have administrative privileges in a team and view privileges in another.

You can add and manage user information from the User Management page. This page lists all
the basic information for the following:

Users. User personas who can access API Gateway and perform tasks. A predefined user is
an Administrator who has administrator privileges.

Groups. The groupmembership identifies the groups to which a user belongs. User can create
a group, associate users to the group, and delete a group in API Gateway.

Teams. Users who share a common role or responsibility can be grouped as teams. When the
Team feature is enabled, the members of teams can access the API Gateway assets of their
teams and they can perform actions on these assets based on the functional privileges assigned
to their teams.

Account settings. You can define the password restrictions, password expiry and the account
lock settings here.

LDAP configuration. You can configure API Gateway to use LDAP and manage LDAP
directories here.

Adding a User
You must have the API Gateway's manage user administration functional privilege assigned to
add a user to API Gateway.

To add a user

18 webMethods API Gateway User's Guide 10.11

2 User Management

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Users.

3. Click Add user.

4. Provide the following information in the Basic information section:

DescriptionField

Aunique ID using which the user can log on to the account.Login ID

Afirst name that contains letters, numbers, or a combination
of all.

First name

You can also use special characters: . (dot), _ (underscore),
and @ (at). Other special characters and spaces are not
allowed. The user name is case sensitive.

A last name that contains letters, numbers, or a combination
of all.

Last name

You can also use the special characters: . (dot), _
(underscore), and @ (at). Other special characters and spaces
are not allowed. The user name is case-sensitive.

Apassword that contains letters, numbers, special characters,
or a combination all.

Password

Spaces are not allowed. The password is case-sensitive.

Retype your password to confirm.Confirm password

A valid email address of the user.Email addresses

You can add multiple email addresses by clicking

.

AllowDigest Access Authentication to authenticate the API
as described in RFC2617.

Allow digest authentication

5. Click Continue to associate Groups >.

Alternatively, you can click Groups to go to the Groups section and associate the user to
groups. You can search for the group name in the Name field and associate the user to the
group selected. You can associate a user to multiple groups by clicking +.

Click Save to save the user details at this stage and provide the group information for the user
at a later time.

webMethods API Gateway User's Guide 10.11 19

2 User Management

6. Provide the group name in the Name field to which the user is added.

7. Click Save.

Note:
After adding an API Gateway user, youmust include the user in a group that is associated with
a team.

Modifying User Details
You must have the API Gateway's manage user administration functional privilege assigned to
modify user details.

You can modify the basic or the group information of a user. You can add the user to a different
group or delete the user from an existing group.

To modify the user details

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Users.

A list of available users appears.

3. Select the login ID of the user to be modified.

The User details tab appears.

4. Click Edit.

This opens the basic information of the user.

5. Modify the basic information of the user.

Note:
Select Active if you want to make the user an active user.

6. Modify the group details of the user.

You can modify or delete the name of the existing group that appears.

7. Click Save.

Deleting a User
Deleting a user removes the user from all the associated groups.

20 webMethods API Gateway User's Guide 10.11

2 User Management

To delete a user

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Users.

A list of available users appears.

3. Click the delete icon for the user that has to be deleted.

4. Click Yes in the confirmation dialog.

User Groups
API Gateway is shipped with the following predefined groups:

Administrators

API-Gateway-Administrators

API-Gateway-Providers

By default, API Gateway's Administrator user, is part of Administrators and
API-Gateway-Administrators group.

The table lists the privileges based on the user group.

API ProviderAPI Gateway
Administrator

Privileges

YYManage APIs

YYManage aliases

NYManage policy templates

YYActivate/Deactivate APIs

NYManage global policies

NYManage threat protection configurations

YYManage applications

NYActivate/Deactivate global policies

YYPublish API to service registry

YYManage packages and plans

YYActivate/Deactivate packages

webMethods API Gateway User's Guide 10.11 21

2 User Management

API ProviderAPI Gateway
Administrator

Privileges

YYPublish to API Portal

NYView administration configurations

YYExecute service result cache APIs

NYManage user administration

NYChange ownership/teams

NYManage general administration configurations

NYManage destination configurations

YYManage promotions

NYManage scope mapping

NYManage security configurations

NYManage system settings

NYManage service registeries

YYImport assets

YYExport assets

NYManage purge and restore runtime events

NYManage microgateways

NYManage custom dashboards

Authentication and Authorization

API Gateway is primarily accessed using API Gateway user interface, which supports Basic
authentication and SAML SSO.

You can also use REST APIs to manage API Gateway. To invoke the APIs, you must have the
required functional privileges.

Note:
You cannot delete predefined users, groups, and teams but you can delete the groups and access
profiles that are created in API Gateway.

Adding a Group

You can add the required users to a group.

22 webMethods API Gateway User's Guide 10.11

2 User Management

To add a group

1. Expand the menu options icon , in the title bar, and select User management.

2. Select Groups.

3. Click Add group.

The Group details tab appears.

4. Provide the following information in the Basic information section:

DescriptionField

Name of the user group to add.Name

A description for the user group.Description

Click Save to save the group details at this stage and provide the group information for the
user at a later time.

5. Click Continue to associate Users >.

Alternatively, you can click Users to go to the Users section.

6. Provide the user's login ID in the Login ID field.

You can search users based on the characters provided in user name and email id. Select the
required user from the list displayed.

7. Click Save.

Modifying a Group

You can modify details for a selected group. You can add users to a group or remove them if
required.

To modify a group

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Groups.

A list of groups appears.

3. Select the group to be modified.

webMethods API Gateway User's Guide 10.11 23

2 User Management

The Group details tab appears.

4. Click Edit.

This opens the details of the selected group.

5. Modify the basic information of the user.

6. Modify the user details of the group.

Edit or delete (by clicking the delete icon) the name of the existing user that appears.

7. Click Save.

Deleting a Group

You can delete a group from the list that appears in the Groups section of the User Management
page. Once a group is deleted, the user associated to the group is unable to perform the tasks
associated to that group. Deleting a group does not delete the users associated with the group.

To delete a group

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Groups.

A list of groups appears.

3. Click the Delete icon for the group that has to be deleted.

Note:
You cannot delete predefined groups.

4. Click Yes in the confirmation dialog.

API Gateway Functional Privileges

The following table lists the functional privileges and their description:

DescriptionFunctional Privilege

To select all the listed functional controls.Select all

To create and manage APIs.Manage APIs

To activate, deactivate, and manage APIs.Activate/ Deactivate APIs

24 webMethods API Gateway User's Guide 10.11

2 User Management

DescriptionFunctional Privilege

To create, manage applications, and register applications
with the APIs.

Manage applications

To create and manage aliases.Manage aliases

To apply a global policy to all APIs or the selected set of
APIs.

Manage global policies

To activate, deactivate, and manage global policies.Activate/Deactivate global policies

To apply one or more policy templates to an API.Manage policy templates

To preventmalicious attacks on applications that typically
involve large, recursive payloads, and SQL injections.

Manage threat protection
configurations

To publish and unpublish APIs to service registry.Publish API to service registry

To create packages and plans, associate a plan with a
package, and associate APIs with a package. In addition,

Manage packages and plans

you can view the list of packages, package details, APIs,
and plans associated with the package.

To activate, deactivate, and manage packages.Activate/ Deactivate packages

To publish and unpublish assets to API Gateway.Publish to API Portal

To view administration configurations.View administration configurations

To create and manage administration configurations.Manage general administration
configurations

To create and manage security configurations.Manage security configurations

To execute service result cache API.Execute service result cache APIs

To publish events and performance metrics data to the
configured destinations.

Manage destination configurations

To create and manage system settings.Manage system settings

To create and manage users.Manage user administration

To create stages and manage promotions.Manage promotions

To create and manage service registries.Manage service registries

To change ownership of an asset or teams.Change ownership/ teams

To manage OAuth and OpenID scopes.Manage scope mapping

webMethods API Gateway User's Guide 10.11 25

2 User Management

DescriptionFunctional Privilege

To import already exported APIs, application, policies,
aliases, or other assets and configurations using the Import

option in the Menu options ().

Import assets

To export assets to your local system.Export assets

To purge and restore events from the API Data Store by
setting the required date or duration in the API Gateway.

Manage purge and restore runtime
event

To manage the Microgateways connected to the API
Gateway instance.

Manage microgateways

To manage custom dashboards in Global Analytics. You
can not manage custom dashboards if you do not have
this privilege.

Manage custom dashboards

Setting Password Restrictions
For security purposes, API Gateway places length and character restrictions on passwords for
administrator and non-administrator users.

To set password restrictions

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Account settings > Password restrictions.

3. Provide the following information to set the required password restrictions.

DescriptionField

Specifies whether users are allowed to change their passwords.Enable password change

This is selected by default.

Specifies whether Administrator users are allowed to choose
passwords that are not impacted by the password restriction
settings.

Password enforcement
mode

When this property is set to Strict, API Gateway enforces the
password restrictions.

When set to Lax, the password restrictions are not enforced.

26 webMethods API Gateway User's Guide 10.11

2 User Management

DescriptionField

Specifies the minimum number of characters (alphabetic
characters, digits, and special characters combined) the password
must contain.

Minimum password
length

The default value is 8.

Specifies the maximum number of characters (alphabetic
characters, digits, and special characters combined) the password
must contain.

Maximum password
length

Maximum number of characters that a password can have is 128.

The default value is 64.

Specifies theminimumnumber of uppercase alphabetic characters
the password must contain.

Minimum number of
uppercase characters

The default value is 0.

Specifies theminimumnumber of lowercase alphabetic characters
the password must contain.

Minimum number of
lowercase characters

The default value is 0.

Specifies the minimum number of digits the password must
contain.

Minimum number of
digits

The default value is 0.

Specifies the minimum number of special characters, such as
asterisk (*), period (.), and question mark (?) the password must
contain.

Minimum number of
special characters
(neither alphabetic nor
digits)

Note:
The use of special characters is regulated by the following
restrictions:

A password cannot begin with an asterisk (*).
Passwords cannot contain quotationmarks ("), backslashes
(\), ampersands (&), or less-than signs (<). Use the
watt.server.illegalUserChars configuration property to
restrict the use of additional characters.

The default value is 0.

Specifies the maximum number of identical characters in a row
a password can contain.

Maximum number of
identical characters in a
row

The default value is 3.

Specifies themaximumnumber of previously set passwords that
API Gateway saves for a user (excluding the current password).

Number of old passwords
to remember (per user)

webMethods API Gateway User's Guide 10.11 27

2 User Management

DescriptionField

You cannot choose a password that matches any of the stored
passwords. Maximum number of saved passwords is 12.

The default value is 0.

4. Click Save.

Setting Password Expiry Restrictions
For security purposes, APIGateway allows administrators to set password expiration requirements
on passwords for administrator and non-administrator users. An administrator user receives a
reminder email to reset the password before certain number of days, as specified in the Password
expiration settings page.

To set password expiry restrictions

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Account settings > Password expiry settings.

3. Provide the following information to set the required password expiry restrictions.

DescriptionField

Specifies whether to enable the password expiry settings.Enabled

This option is disabled by default. Select Enabled to enable the
password expiry settings.

Specifies the number of days after which a password expires, if
not changed.

Expiration interval (days)

The value should be a non-zero integer.

The default value is 90.

Note:
Upon save, when this option is enabled, any password that is
set before the expiration interval are considered expired and
have to be reset. For example, if you changed your password
10 days ago and now, theAdministrator changes the Expiration
interval to 5 days, then your password has expired and needs
to be reset.

28 webMethods API Gateway User's Guide 10.11

2 User Management

DescriptionField

Specifies the number of days prior to password expiry that API
Gateway starts sending the reminder emails for password reset.

Days prior to password
expiry for email
reminders The emails are sent daily until the user either updates the

password or changes the expiration interval.

The default value is 3.

Set the value to 0 to prevent API Gateway from sending the
reminder emails for soon to expire passwords.

Note:
API Gateway uses the SMTP server and port details specified
in Integration Server in the Email Notification section on
Resource Settings screen (Settings > Resources).

Specifies the list of email addresses to which API Gateway sends
an email notification informing that the user password is about
to expire or has already expired.

Expiration notice email
addresses

You can add multiple email addresses by clicking +Add.

Specifies the users to whom these settings apply.Applies to users

You can add multiple users by clicking +Add.

4. Click Save.

Configuring Account Locking Settings
For security purposes, it is important to lock an user account when the user fails to provide the
correct password after a specified number of failed login attempts to API Gateway. A locked user
account remains locked for a specific period of time, after which the account gets unlocked. API
Gateway allows administrators to configure the account locking settings for administrator and
non-administrator users. You can set the values for number of attempts by a user before locking
the account and also the duration of the lock interval.

To configure account locking settings

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Account settings > Account locking settings.

3. Provide the following information to configure the required account locking settings.

webMethods API Gateway User's Guide 10.11 29

2 User Management

DescriptionField

Specifies whether to enable the account locking settings.Enabled

This option is disabled by default. Select Enabled to enable the
account locking settings.

Specifies the number of attempts in the specified time interval
(minutes, hours, or days) to provide the correct password before
locking the account.

Maximum login attempts

The default value is None.

Specifies the duration (minutes, hours, or days) for which the
account remains locked.

Lockout duration

The default value is None.

Specifies the list of users to whom the account locking settings
apply.

Apply account locking
policy to

Specify one of the following:

All users. Indicates the account locking rules apply to all user
accounts.

All users except predefined users. Indicates that account
locking rules apply to all user accounts except the predefined
user accounts (Administrator).

4. Click Save.

Unlocking User Accounts
API Gateway unlocks a user account after the specified locked duration. However, as an
Administrator, you can manually unlock user accounts within the lockout duration configured.

To unlock locked user accounts

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Account settings > Account locking settings.

The Locked users section displays all the locked users.

3. From the list of locked user accounts, click to unlock the user account.

4. Click Save.

30 webMethods API Gateway User's Guide 10.11

2 User Management

Restricting User Accounts
API Gateway provides an option to restrict the user accounts, who are part only of the Default
team and not any other team. You can enable this option to restrict those user accounts from
logging into API Gateway.

To restrict user accounts who belongs only to the default team

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Account settings > Account locking settings.

3. In the Login Restrictions section, select Restrict login for users who are not member of
any team other than Default if youwant to restrict the user accounts associated to theDefault
team and not any other team.

4. Click Save.

Configuring API Gateway to Use LDAP
If your site uses Lightweight Directory Access Protocol (LDAP) for user and group information,
you can configure API Gateway to obtain user and group information from the external directory.

LDAP protocols are designed to facilitate sharing information about resources on a network.
Typically, they are used to store profile information (login ID, password, and so on.). You can also
use them to store additional information. API Gateway uses LDAP for performing external
authentication.

Using your existing LDAP information allows you to take advantage of a central repository of
user and group information. System administrators can add and remove users from the central
location. Users do not need to remember a separate password for webMethods applications; they
can use the same user names and passwords that they use for other applications. Remember to
use your LDAP tools to administer users or groups stored in an external directory.

To configure the server to use LDAP, you need to:

Instruct API Gateway to use the LDAP protocol.

Define one or more configured LDAP servers that API Gateway is to use for these users.

If an LDAP provider is SSL-enabled, you can set the watt.server.ssl.trustStoreAlias property
to point to the trusstore alias that contains the certificates required to establish a secure
connection with the LDAP server.

To specify LDAP as the external provider

webMethods API Gateway User's Guide 10.11 31

2 User Management

1. Expand the menu options icon , in the title bar, and select User management.

2. Click LDAP configuration.

3. Under Provider select LDAP.

4. Provide the following information:

DescriptionField

Specifies themaximumnumber of LDAP users API Gateway can
keep in memory in the user cache.

Cache size (number of
users)

The default value is 10.

Once the limit is reached, API Gateway selects users for removal
from the cache based on how long they have been idle. As a result,
activity can extend the time a user remains in the cache.

Specifies the number of minutes an LDAP user's credentials
(userid and password) can remain in the credential cache before
being purged.

Credential time-to-live
(minutes)

The default is 60 minutes.

When a user first attempts to log in, API Gateway creates a user
object and checks the user's credentials against the LDAP
directory. API Gateway stores the credentials so that subsequent
requests to authenticate are made against the cached credentials,
not the LDAP directory.

5. Click Save.

Managing LDAP Directories
You canmanage the LDAP directories in the LDAP directories section. You can view all the LDAP
directories configured listed in a table herewith their directoryURLdetails. You can create, update,
delete and prioritize the LDAP directories here.

To add an LDAP directory

1. Expand the menu options icon , in the title bar, and select User management.

2. Click LDAP configuration.

3. In the LDAP directories section, click Add LDAP directory.

32 webMethods API Gateway User's Guide 10.11

2 User Management

4. Provide the following information to add an LDAP directory.

DescriptionField

Specifies the complete URL of the LDAP server.Directory URL

The URL has the format protocol ://hostname :portnumberwhere

The protocol is LDAP for standard connections or LDAPS for
secure connections

The host is the host name or IP address of the LDAP server.
The port is the port on which the server is running. The port
is optional. If omitted, the port defaults to 389 for LDAP, or
636 for LDAPS

For example, specifying the URL ldaps:// ldapserv1:700would
create a secure connection to the LDAP server running on the
non-standard port 700 on the host called ldapserv1.

If you specify ldaps, API Gateway attempts to make a secure
connection to the directory server using an SSL socket. If the
directory server is configured to use SSL, it has a server certificate
in place to identify itself to clients. This certificatemust be signed
by an authority to prove its validity that is, the server certificate
is signed by aCA). By default, APIGateway only trusts certificates
signed by a signing authority whose CA certificate is in the API
Gateway's trusted CAs directory.

Specifies the user ID API Gateway should supply to connect to
the LDAP server.

Principal

For example, o=webm.com or dc=webm,dc=com.

This user should not be the Administrator account, but a user
that has permission to query groups and group membership. If
your LDAP server allows anonymous access, leave this field blank.

Specifies the password API Gateway should supply to connect
to the LDAP server, that is, the Principal's password.

Credentials

Specifies the number of seconds API Gateway waits while trying
to connect to the LDAP server.

Connection timeout
(seconds)

After this time has passed, API Gateway tries for the next
configured LDAP server on the list.

The default is 5 seconds.

Specifies the minimum number of connections allowed in the
pool that API Gateway maintains for connecting to the LDAP
server.

Minimum connection pool
size

webMethods API Gateway User's Guide 10.11 33

2 User Management

DescriptionField

When API Gateway starts, the connection pool initially contains
this minimum number of connections. API Gateway adds
connections to the pool as needed until it reaches the maximum
allowed, which is specified in the Maximum Connection Pool
field.

The default value is 0.

Specifies the maximum number of connections allowed in the
pool that API Gateway maintains for connecting to the LDAP
server.

Maximum connection
pool size

When API Gateway starts, the connection pool initially contains
theminimumnumber of connections as specified in theMinimum
Connection Pool field. API Gateway adds connections to the
pool as needed until it reaches the maximum allowed.

The default value is 10.

Distinguished Name (DN) method. Specifies the directory name to be built on selecting any
of the following criteria.

Builds a distinguished name by adding a prefix and suffix to the
user name. The Synthesize DN method can be faster than the

Synthesize DN

Query DN method because it does not perform a query against
the LDAP directory. However, if your LDAP system does not
contain all users in a single flat structure, use the Query DN
method instead.

DN prefix

A string that specifies the beginning of a DN you want to pass to
the LDAP server.

DN suffix

A string that specifies the end of a DN you want to pass to the
LDAP server.

For example, if the prefix is cn= and the suffix is ,ou=Users and
a user logs in specifying bob, then API Gateway builds the DN
cn=bob,ou=Users and sends it to the LDAP server for
authentication.

Note:
Be sure to specify all the characters required to form a proper
DN. For instance, if you omit the comma from the suffix above,
that is, you specify ou=Users instead of ,ou=Users, APIGateway
builds an invalid DN cn=bobou=Users.

34 webMethods API Gateway User's Guide 10.11

2 User Management

DescriptionField

Builds a query that searches a specified root directory for the user.Query DN

Use this method instead of the Synthesize DN method if your
LDAP directory has a complex structure.

UID property

Aproperty that identifies an LDAP userid, such as "cn" or "uid".

User root DN

Provide the full distinguished name. For example, if you specify
ou=users,dc=webMethods,dc=com, API Gateway issues a query
that starts searching in the root directory ou=users for a common
name that matches the name the user has logged in with.

Specifies the name of the email attribute in the LDAP directory.
The email ID of the API Gateway's user object is mapped to the
value specified in this field .

User email attribute

This value depends on the schema of the LDAP directory.

Specifies the API Gateway group with which the user is
associated.

Default group

The user is allowed to access APIs that members of this API
Gateway group can access. This access is controlled by the ACLs
with which the group is associated.

If you also specify a value in the Group member attribute field,
the user has the same access as members of the API Gateway
group and members of LDAP groups that have been mapped to
an ACL.

Note:
If you do not want to select a default group, you can select
<None> from the options provided.

Specifies the name of the attribute in a group's directory entry
that identifies each member of the group.

Group member attribute

This value is usually member or uniqueMember, but can vary
depending on the schema of the LDAP directory.

API Gateway uses this information during ACL checking to see
if the user attempting to log in belongs to an LDAP group that
has been mapped to an ACL.

If no value is specified here, API Gateway does not check for
membership in an LDAP group. As a result, the user's ability to

webMethods API Gateway User's Guide 10.11 35

2 User Management

DescriptionField

access API Gateway services is controlled by the API Gateway
group specified in the Default group field.

Specifies a property that identifies an LDAP group, such as CN.Group ID property

Specifies the full distinguished name.Group root DN

For example, if you specify ou=groups,webMethods,dc=com, API
Gateway issues a query that displays all the LDAP groups.

Note:
You must specify values in the Group ID property field and
Group root DN fields.

5. Click Save.

The LDAP directory is added and listed in a table under the LDAP directories section.

Note:

If you define multiple LDAP servers, API Gateway searches the LDAP directories in the
order in which they are displayed in the User Management > LDAP directories section. If
API Gateway does not find the user in in the first LDAP directory, it searches in order
through the list.
If the connection between API Gateway and the LDAP server drops intermittently, and
you notice the following exception in the Trace logs, connect to the Global Catalog port
(3268/3269) on the LDAP server, instead of using the standard LDAPport (389). For example,
ldap://hostname:3268
PartialResultException in the trace logs : [ISS.0002.0000T]
[LDAPv2] javax.naming.PartialResultException [Root exception is
javax.naming.CommunicationException:
[Root exception is java.net.SocketTimeoutException: connect timed out]]
If the connection issues continue despite using the Global Catalog port (3268/3269), it may
be due to the following errors:

Connection timeout error
Communication error
Resource shortage error
An orphaned domain acts as the Global Catalog

Set appropriate values for the watt.server.ldap.retryCount and watt.server.ldap.retryWait
parameters to restore the connection in case of transient errors.

Next Steps:

You can perform the following operations in the LDAP directories section where the configured
LDAP directories are listed.

You can update an LDAP directory by clicking on the LDAP directory URL field in the table,
modify the details as required and save the changes.

36 webMethods API Gateway User's Guide 10.11

2 User Management

You can prioritize the LDAP directory as required by clicking in the Prioritize column for the
corresponding LDAP directory.

You can delete an LDAP directory by clicking the icon in the Delete column for the
corresponding LDAP directory.

Manage Your User Settings and Preferences

You can set the personal preferences and settings to control how you interact with API Gateway.
You can specify custom values in the User settings page that are used instead of default values
set by an Administrator for your user account.

The User settings page displays a summary of your current user preferences. In the User settings
page, you can do the following:

Change your account settings.

Change your password.

Change your display language on the user interface.

View your roles and permissions.

Based on the logged in user, the User settings page is displayed in one of the following ways:

As an LDAP user: Displays the roles and permissions that are assigned to your user account
in the Roles and permissions section.

As an API Gateway user: Displays the roles and permissions that are assigned to your user
account in the Roles and permissions section.

Changing Your Account Settings
User account settings include the user name and email address. These settings are attributes of
local users who are validated against credentials stored in API Gateway. If API Gateway uses an
external authentication mechanism, such as an LDAP, you must change the equivalent settings
in the external LDAP system.

When the administrator creates a user account and an email address for the user, that email address
is set as the default email address for the account. If you have multiple email addresses, you can
set up additional email addresses in the User settings page.

To change your user name and email address

1. Expand the menu options icon , in the title bar, and select Profile.

The User settings page appears with your user preferences.

2. Provide the following information in the Account settings section.

webMethods API Gateway User's Guide 10.11 37

2 User Management

DescriptionField

Type your first name.First name

First name is case sensitive. A first name can contain letters,
numbers, or a combination of all. You can also use special
characters: . (dot), _ (underscore), and @ (at). Other special
characters and spaces are not allowed.

Type your last name.Last name

Last name is case sensitive. A last name can contain letters,
numbers, or a combination of all. You can also use special
characters: . (dot), _ (underscore), and @ (at). Other special
characters and spaces are not allowed.

Type a valid email address.Email addresses

If the email address is invalid, API Gateway prompts you
with an error message.

You can add multiple email addresses by clicking .

3. Click Save.

The changes are applied immediately.

Changing Your Password
You can change the password that you use to log on to API Gateway.

To change your password

1. Expand the menu options icon , in the title bar, and select Profile.

The User settings page appears with your user preferences.

2. Provide the following information in the Change password section.

DescriptionField

Type the current password.Current password

Type a new password.New password

Passwords are case sensitive. Your passwordmust meet the
complexity requirements configured in Integration Server

38 webMethods API Gateway User's Guide 10.11

2 User Management

DescriptionField

(in the Integration Server Administrator, go to Security >
User Management > Password Security Settings).

Retype the new password to confirm.Confirm new password

3. Click Save.

The password is changed immediately.

Changing Your Display Language
You can select the language for the user interface of API Gateway.

API Gateway displays the user interface in English (en) by default. If you want API Gateway to
use a different language other than English, you must install the intended language pack from
the Software AG Installer.

To change your display language

1. Expand the menu options icon , in the title bar, and select Profile.

The User settings page appears with your user preferences.

2. In the Display settings section, select the language you would like to use for the user
interface.

Note:
If the language you want to use is not available by default in the Language list box, you
need to install the intended language pack from the Software AG Installer.

3. Click Save.

4. Log out and log on to API Gateway for the change to take effect.

Viewing Your Roles and Permissions
The User settings page displays a list of all the roles and permissions that are assigned to your
user account. The roles and permissions assigned to your user account are defined through user
groups and corresponding teams (see “Manage Users, Groups, and Teams” on page 18 for more
information).

To view your roles and permissions

webMethods API Gateway User's Guide 10.11 39

2 User Management

1. Expand the menu options icon , in the title bar.

2. Select Profile from the menu options.

In the Roles and permissions section, you can view the list of roles and permissions that
are assigned to you.

40 webMethods API Gateway User's Guide 10.11

2 User Management

3 APIs

■ Creating APIs - Overview ... 43

■ Creating an API by Importing an API from a File ... 46

■ Creating an API by Importing an API from a URL .. 47

■ Creating an API from Scratch ... 48

■ API Mashups .. 66

■ Viewing API List and API Details .. 76

■ Filtering APIs .. 87

■ Activating an API .. 88

■ Deactivating an API .. 91

■ Publishing APIs .. 91

■ Unpublishing APIs .. 96

■ Modifying API Details ... 101

■ Updating APIs .. 101

■ API Mocking ... 105

■ Attaching Documents to an API ... 110

■ SOAP to REST Transformation .. 111

■ CentraSite Provided APIs ... 120

■ Versioning APIs .. 121

■ API Scopes ... 122

■ Exposing a REST API to Applications .. 130

■ Exposing a SOAP API and GraphQL API to Applications .. 131

■ API Grouping .. 132

webMethods API Gateway User's Guide 10.11 41

■ API Tagging .. 132

■ Exporting APIs ... 135

■ Exporting Specifications ... 136

■ Deleting APIs .. 137

■ Example: Managing an API .. 139

■ Troubleshooting Tips: APIs ... 149

42 webMethods API Gateway User's Guide 10.11

3 APIs

Creating APIs - Overview

API Gateway provides the ability to view, create, and manage APIs, and publish the APIs to API
Portal for consumption. API administrators and users with the appropriate functional privileges
can use API Gateway to create and manage APIs, and publish the APIs to API Portal or service
registries from where they can be consumed.

API Gateway supports the following API types:

Representational State Transfer (REST) defines a set of architectural principles that allow
accessing andmanipulating resources by using capabilities already built into HTTP, including
uniform and predefined set of stateless operations, resources that are accessible using URIs,
and resources that are represented by media types. This framework provides RESTful APIs
based on REST architecture. There are multiple specification formats for REST APIs. In API
Gateway, you would create a REST API using one of the supported formats: RAML, Swagger
2.0, OpenAPI 3.0 Specification.

The RAML specification is a YAML-based language for the definition of HTTP-basedAPIs
that embody most or all of the principles of REST. The RAML specification provides all
the information necessary to describe RESTful or practically-RESTful APIs.

The Swagger 2.0 specification defines a standard, language-agnostic interface to RESTful
APIs. The Swagger specification provides a complete framework implementation for
describing, producing, consuming, and visualizing RESTful APIs.

The OpenAPI 3.0 Specification (OAS) has a much more modular and reusable approach
for describing and documenting RESTful APIs. OAS enables more power and versatility
when it comes to describing the request and responsemessages, aswell as providing details
on the common components like the schemas and security definitions

Simple Object Access Protocol (SOAP) defines a communication method for XML-based
message exchange over different transport protocols, such asHTTP and SMTP. This framework
provides SOAP APIs based on Web Services Description Language (WSDL).

Open Data Protocol (OData) defines a set of best practices for the creation and consumption
of RESTful APIs. It provides a uniform way to describe both data and the data model. The
OData framework provides interoperable OData APIs (with a RESTful interface) based on
OData standards.

WebSocket protocol defines two-way (full-duplex) communications between the client and
the server, over a single Transmission Control Protocol (TCP) socket. The WebSocket protocol
facilitates real-time data transfer from and to the server. This framework provides WebSocket
APIs (with a RESTful interface) based on W3C standards.

GraphQL is a query language designed to build client applications by providing a flexible
syntax and provides a comprehensive description of data within an API. Using GraphQLAPI,
you can ask for specific data from the server and get the response in a predictable way. API
Gateway supports proxying an existing GraphQL endpoint and provides API management
capabilities to clients like authentication, analytics, and so on. API Gateway supports GraphQL
version 16.2.

webMethods API Gateway User's Guide 10.11 43

3 APIs

Asynchronous APIs

The synchronous and asynchronous nature of an API is a function of the time frame from the
request to the return of data. In the case of synchronous APIs, the expectation is that there would
be an immediate return of data, read from a database, from the internet, from the disk, or any
other I/O source of data. You would use synchronous APIs where data or service availability,
resources and connectivity are high and low latency is a requirement. The application requests
data and waits for it until a value is returned.

In the case of asynchronous APIs, the availability of a resource, service or data store may not be
immediate. An asynchronous API returns a response acknowledging the receipt of the request
and it continues with the processing of the data till it is done, and returns a response to the client
only when the processing of the data is completed. Youwould use asynchronous APIs where data
or service availability and connectivity are low or over-saturated with demand. These APIs may
use the callback functionality to send the callback request to the requester when the requested
resource is ready.

FewAPIsmay take a lot of time to complete their processes, for example, processes such as purging
or archiving of events, and bulk processing operations. In such a scenario, a time-out may occur
for these API invocations as it takes longer time in the synchronous way where there is a wait
period for the return of the data.

Example: Let us consider an example of purging logs.

In the synchronous way, the client application sends a request to the native API to purge a set of
logs with a filter specified. The native API in turn sends out a response with an acceptance along
with a Job ID. The client uses this job ID to send out requests to the native API to check whether
the job is completed. In this case the clientmay have to send outmultiple requests to checkwhether
the job is done.

To avoid the hassle of multiple calls to the native API and waiting for the job to get done, you can
implement anAPI to behave asynchronously to avoidmultiple checks. You can implement a REST
API with a callback option that can be used to call back the requestor when the job is done. In this
scenario, when the client application sends out a request to the native API to purge a set of logs
with a filter specified, the native API in turn sends out a response with an acknowledgement of
having received the request and makes a note of the callback request URL that it receives in the
request. Now, the client does not have to send out multiple requests to the native API to check
whether the job is done. Instead once the job is done, the native API uses the callback URL details
to send out a response to the requestor regarding the status of the job being done.

API Gateway provides asynchronous form of API support for REST APIs. API Gateway provides
the capability of defining the callback component with the supported method parameters while
creating a REST API. For details on creating an API with the callback definition, see “Creating a
REST API” on page 53. In addition you can configure API Gateway to accept the requests from
the client that contain the callback request URL and wrap it with its own URL before routing it to
the native API. This lets API Gateway track the requests that the client sends to the native API
and the responses that are sent by the native API to the client. For details on how to configure the
callback processor settings to enable processing the callback requests, seewebMethods API Gateway
Administration. When a client sends a request with the callback request URL to the native API, API
Gateway identifies the callback request URL in the incoming request, depending on the configured

44 webMethods API Gateway User's Guide 10.11

3 APIs

callback processor settings wraps the request coming from the client with its ownURL and routes
it to the native API. When the requested resource is ready, the native API sends a request to the
callback request URL it has received in the request from API Gateway. API Gateway then routes
this request to the client. You can configureAPIGateway to enforce any of the response processing
policies that suits your needs on the immediate responses as well as the callback requests being
sent from the native API to the client.

The callback requests-related event types can be distinguished by a new field with the value set
to true and displayed in the dashboard in the transaction event type. For a normal request this
field is set as false. The following are the field names that are displayed for various configured
destinations:

For API Gateway destination the field name is callbackRequest, which is set to true.

For Elasticsearch destination the field name is isCallbackRequest, which is set to true.

For all other destinations, API Portal, Audit Log, CentraSite, Email, JDBC, and Local log, the
field name is isCallbackRequest, which is wrapped under the customFields column.

You can create and manage APIs from the Manage APIs page. The page lists all the APIs, their
description, and version number. You can create an API, delete an API, view API details, activate
or deactivate an API, publish or unpublish an API, and view API analytics from this page.

You can create an API in one of the following ways:

Create anAPI by importing a definition for an existingAPI (for example, in Swagger or RAML
format) using an API importer

Create an API from scratch and set its attributes manually

An API importer generates an API from a URL or an input file in one of the supported formats.
For example, the RAML importer installed with API Gateway reads a RAML file and generates a
REST API that the RAML definition describes. The importer also uploads the RAML file to the
API Gateway repository and links the file to the REST API.

The table lists the API types and the file formats required as input to create an API using an
importer.

File formatAPI type

RESTful API Modeling Language (RAML)REST

Yet Another Markup Language (YAML)

JavaScript Object Notation (JSON)

OpenAPI Specification (OAS)

Web Service Definition Language (WSDL)SOAP

Entity Data Model (EDMX)OData

GraphQL Schema Definition Language (GraphQL SDL)GraphQL

webMethods API Gateway User's Guide 10.11 45

3 APIs

Creating an API by Importing an API from a File

You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

To create an API by importing an API from a file

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Click Create API.

3. Select Import API from file.

4. Click Browse to select a file.

5. Select the required file and click Open.

The Swagger parser is a self-contained file with no external references and can be uploaded
as is. If the RESTful API Modeling Language (RAML) file to be imported contains external
references, the entire set of files must be uploaded as a ZIP file with a structure as referenced
by the RAML file.

Note:
Importing an API fails for an invalid WSDL file.

6. Type a name for the API name in the Name field.

If you provide an API name, this overwrites the API name mentioned in the uploaded file
and the API is displayed with the name provided.

If you do not provide an API name, the API namementioned in the uploaded file is picked
up and the API is displayed with that name.

If you do not provide an API name and the uploaded file does not have an API name
mentioned, then the API is displayed as Untitled.

7. Select the required type.

The available types are OpenAPI, RAML, Swagger, WSDL, and GraphQL SDL.

8. Provide a version for the API in the Version field.

9. Select the team to which the API must be assigned in the Team field.

This field appears only when the Team feature is enabled. It displays only the teams that you
are a part of. If you have the User management functional privilege, all teams are displayed.

46 webMethods API Gateway User's Guide 10.11

3 APIs

You can select more than one team. To remove a team, click the icon next to the team to
be removed.

10. Click Create.

An API is created with default policies.

Note:

To avoid encountering errors while parsing large responses from the native service, you
have to change the enablesoapValidation property by commenting out the <parameter
name="enableSoapValidation">true</parameter> in SAG_Install_Directory\
IntegrationServer\instances\default\config\wss\axis2.xml and restart the server for
the change to take effect.
Since the GraphQL API schema does not contain a native endpoint, you must manually
update the Native endpoint URL in the API details section and the Endpoint URI in the
routing policy after you create a GraphQL API.

Creating an API by Importing an API from a URL

You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

To create an API by importing an API from a URL

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Click Create API.

3. Select Importing API from URL.

4. Type the URL from where the API is to be imported.

5. Select Protected to make the API a protected API and provide the required credentials.

6. Type a name for the API name in the Name field.

If you provide an API name, this overwrites the API name mentioned in the uploaded file
and the API is displayed with the name provided.

If you do not provide an API name, the API namementioned in the uploaded file is picked
up and the API is displayed with that name.

If you do not provide an API name and the uploaded file does not have an API name
mentioned, then the API is displayed as Untitled.

7. Provide a description for the API in the Description field.

webMethods API Gateway User's Guide 10.11 47

3 APIs

8. Select the required type.

The available types are OData, OpenAPI, RAML, Swagger, WSDL, and GraphQL SDL.

9. Provide a version for the API in the Version field.

10. Select the team to which the API must be assigned in the Team field.

This field appears only when the Team feature is enabled. It displays only the teams that you
are a part of. If you have the User management functional privilege, all teams are displayed.

You can select more than one team. To remove a team, click the icon next to the team to
be removed.

11. Click Create.

An API is created with default policies.

Note:

Importing an API fails for an invalid WSDL file.
Creating an API by importing swagger files from an HTTPS URL that is using self-signed
certificates might fail. To workaround this, you can set the system environment variable
as: export TRUST_ALL=true, so that the invalid certificates are ignored. Be aware that setting
this variablemakes the swagger-parser ignore all invalid certificates too. So thisworkaround
has to be used with caution.
To avoid encountering errors while parsing large responses from the native API, you have
to change the enablesoapValidation property by commenting out the <parameter
name="enableSoapValidation">true</parameter> in SAG_Install_Directory\
IntegrationServer\instances\default\config\wss\axis2.xml and restart the server for
the change to take effect.
Since the GraphQL API schema does not contain a native endpoint, you must manually
update the Native endpoint URL in the API details section and the Endpoint URI in the
routing policy after you create a GraphQL API.

Creating an API from Scratch

You can create the following APIs from scratch, meaning that you create the asset and set its
attributes manually:

REST

WebSocket

Overview of Creating a REST API from Scratch

The Create REST API wizard breaks down the task of creating a REST API from scratch into
logical steps. The following figure illustrates the different pages of the wizard.

48 webMethods API Gateway User's Guide 10.11

3 APIs

Basic Information

The Basic Information page includes fields that allow you to identify, categorize, and group an
API.

Technical Information

The Technical Information page includes fields that allow you to define one ormore server URLs
for the API. You can also define and include variables in the URLs.

You can also specify parameters for data that must be included in every request to the API. For
example, if you want a specific query parameter to be included in every request, you can add a
parameter of the type Query and specify the value that it must include.

Resources and methods

TheResources and methods page includes fields that allow you to define the API resources and
methods, including callbackmethods. In this page, you can add all the resources and theirmethods
that are exposed by the API.

At the resource level, you add a resource by defining the following properties: name, path, and
supported methods. You can additionally add parameters for data that must be included in every
request to that resource. For example, if the methods in a resource are invoked using URLs that
have a query string; you can add a query string parameter that captures the queries sent by the
clients.

At the method level, you identify a method by adding an operation id. In addition, you can add
tags that help you to categorize and search for similar methods. You can also add parameters at
the method level. Similar to the parameters at the API and resource levels, method parameters

webMethods API Gateway User's Guide 10.11 49

3 APIs

enable you to capture and process the data that is sent in a particular request. In the case ofmethod
parameters, the data in the request for that method is captured and processed.

Method Requests

In the request section of a method, you can define the schema for requests that contain a JSON or
XML payload. As a method can support multiple content types, you need to add a content type
and then define the schema supported by that content type.

You can enter a schema or select an existing schema or global schema that you have previously
added on the Components page, Schemas section. You can also add a sample for the schema
that you have added or selected. These samples can be used for API mocking. They can also be
used by end users to get a better understanding of the API.

Method Responses

You can define responses for different HTTP status codes. API Gateway gives you the flexibility
to define responses for a status codes series (such as the 2XX series or the 4XX series) or for specific
response codes, such as 201 or 400.

Note:
If you have defined the response for a series and specific numbers in that series, themore specific
one is used. Example: If you have added an entry for 2XX and 201, a response with the HTTP
status code 200 will be the same as 2XX. However, a response with the HTTP status code 201
will pick the one that is defined for 201.

For each status code in a method response, you define the following:

Response body: you define the response body using the following fields:

Content Type: You can select from any of the content types.

Schema: You can define a schema if the response contains JSON or XML data.

Sample: The samples are used for API mocking. They can also be used by end users to get
a better understanding of the API.

Header parameter: You can add a parameter to capture and process a header in the response
sent by the native API.

Links: Links allow the developer of the native API to define the relationship and traversal
mechanism between a response and other operations. You can include links to other methods
that are related to the response. This enables anAPI client to dynamically navigate themethods
that are exposed by theAPI. For example, amethod that returns the temperature in Fahrenheit
for a given placemay also include links tomethods that return: a) the temperature inCentigrade;
and b) the temperature of the place on a given day of the year.

Note:
You can define the complete response, or any part of it (response body schema, header parameter,
or link), in the Components page; and reuse it wherever required by giving a reference.

50 webMethods API Gateway User's Guide 10.11

3 APIs

Method Callbacks

A callback is an asynchronous API request that originates from the API server and is sent to the
client in response to an earlier request sent by that client. APIs can use callbacks to signal an event
of interest and share data related to that event. API clients that are interested in an event or data
related to that event, include a callback URL in the request they send to the API. For more
information about Asynchronous APIs, see “ Asynchronous APIs” on page 44.

To enable API Gateway to process callback messages, you must configure the Callback processor
settings, as explained in webMethods API Gateway Administration.

If yourAPI supports callbacks, you can useAPIGateway to process the initial requests, the callback
URLs sent by clients, and the response sent by the API—including the callback messages. Clients
can provide the callback URL to API Gateway in any of the following ways:

Request header

Query parameter

Request body (if the response body has JSON or XML content)

You must define the relevant parameter to capture the callback URL to process it. API Gateway
can wrap the client callback URLs with its own URL to process these requests if the callback URL
path defined in the following formats. Otherwise, API Gateway sends the requests received from
client as it receives it.

DescriptionFormat

Where param-name is the name of the query
parameter that contains the callback URL.

{$request.query.param-name}

Where header-name is the name of the header
that contains the callback URL.

{$request.header.header-name}

Where field-name is a field in the request body.
If the field is an array, use the syntax

{$request.body#/field-name}

{$request.body#/field-name/arrayIndex}, where
arrayIndex is the index of the callback URL in
the array.

Where header-name is any of the valid header.${response.header.header-name} and
${response.headers.header-name}

Where param-name is the name of the query
parameter that contains the callback URL.

${request.query.param-name}

Where queryValue is a valid JSON path
expression.

${response.payload.jsonPath[queryValue]}

Where queryValue is a valid XPath path
expression.

${response.payload.xpath[queryValue]}

webMethods API Gateway User's Guide 10.11 51

3 APIs

If you have enabled API Gateway to process callback messages, API Gateway wraps the callback
URL provided by the client and sends an API Gateway URL to the native API. When the native
API invokes the same callback URL, API Gateway processes the response and applies the policies
that you have defined.

API Gateway can apply the following policies on the callback messages:

Invoke webMethods IS

Response Transformation

Validate API Specification

Data Masking

Log Invocation

Note:
These policies are applied to the immediate responses of an API request and to all its callback
requests. These policies are enforced against callback request payloads.

API mocking

API mocking allows you to simulate a native API that is not available. The mock response that
you define is returned to the client that invokes the API, if the native API is not available. API
mocking is not available while you are creating an API. To use API mocking, you must edit the
API after creating it and enable API mocking. For more information about API mocking, see “API
Mocking” on page 105.

Components

The Components page allows you to add reusable elements that you can use in other pages of
the wizard. You can reference these global elements using the $ref variable. You can add the
following global elements:

Schemas: The schema specified here can be reused in the resource andmethod specifications
across multiple methods and resources.

Parameters: You can define parameters that can be used as API, resource, and method
parameters.

Headers: You can define parameters that can be reused as header parameters at the API,
method, and response levels.

Examples: You can add examples that can be reused as samples across operations in the API.

Links: You can define links that can be reused in responses. For more information about links,
see LinkswithinMethod Responses above.

Callbacks: You can define callback methods in this page and include them in the callback
section of the methods that use it. For more information about callbacks, see “ Method
Callbacks” on page 51.

52 webMethods API Gateway User's Guide 10.11

3 APIs

Request Bodies: You can define request bodies in this page and reuse them in methods. A
request body includes the content type, a schema, and a sample.

Responses: You can define responses in this page and reuse them in methods. A response
includes the content type, a schema, and a sample. It can also include header parameters and
links.

Documentation

In the view mode, the Documentation page provides the following links:

Links to the Swagger, RAML, and OpenAPI versions of the API on the Integration Server.

Note:
If Cross-Site Request Forgery (CSRF) token is enabled on the Integration Server, the links
to three types of APIs will not work. You must configure Integration Server to allow these
links to work.

Links to download the API in the three different formats: Swagger, RAML, and OpenAPI.

In the editmode, theDocumentationpage allows you to add a file that contains any documentation
that you want to include with the API. This file is accessible only from API Gateway.

Creating a REST API
You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

You can create a RESTAPI from scratch by providing the basic information, technical information,
and defining the resources and methods as required.

To create a REST API from scratch

1. Click APIs in the title navigation bar.

A list of all existing APIs appears.

2. Click Create API.

3. Select Create from scratch.

4. Select REST.

5. Click Create.

The Basic information page of the Create REST API wizard appears.

6. Provide the following information in the Basic information section:

webMethods API Gateway User's Guide 10.11 53

3 APIs

DescriptionField

Name of the API.Name

Version of the API being created.Version

Team to which the API must be assigned.Team

This option is visible only if you have enabled the Teams feature.

You can select more than one team. To remove a team, click the

icon next to the team to be removed.

Maturity state of the API.Maturity state

Available values are: Beta, Deprecated, Experimental,
Production, Test.

The available values depend on the Maturity states configured in
the apiMaturityStatePossibleValues property under
Administration > Extended settings section.

Group under which the API would be categorized.API grouping

Available values are: Finance Banking and Insurance, Sales
and Ordering, Search, and Transportation and Warehousing.

The available values depend on the groups configured in the
apiGroupingPossibleValues property under Administration >
Extended settings section.

Keywords for categorizing, identifying, and organizing APIs. You
select from the list of existing tags or create new tags.

Tags

Description of the API.Description

7. Click Continue to provide technical information for this API >.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

8. Provide the details of the servers that serve the API in the Add server details section.

a. Click Add server and provide a Server URL and Description.

You can include variables in the server URL by enclosing them in curly braces. These
variables are added to the list of variables. However, you have to edit these variables to
add a default value, and optionally one or more values and a description.

b. Click Add variables and provide the following values:

54 webMethods API Gateway User's Guide 10.11

3 APIs

Name

Description

Default

Value

Note:
Click + to add the value that you have entered.

c. Click Add to add the variable.

9. ClickAdd Parameter and provide the following information to add the API-level parameters.

DescriptionField

Name of the parameter.Name

If youwant to reuse a parameter defined on theComponents page,
select the parameter from the drop-down list.

Reference

Description of the parameter.Description

Specifies the parameter type.Type

Available values: Query-string, Header, Cookie.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, File.

Specifies the parameter is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values.Value

Note:
You need to define parameters only for data that you want API Gateway to process.

10. Type a Service registry display name.

By default, the API is displayed in service registries with the name: APIName_Version. If you
want the API to be displayed in the service registries with a different name, you can type the
name here.

11. Click Continue to provide Resource and methods for this API>.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

webMethods API Gateway User's Guide 10.11 55

3 APIs

12. Add resources to the API using the Resources and methods page:

a. Click Add Resources and provide the following information:

DescriptionField

Name of the resource.Resource name

This is the display name of the resource and resource path is
used for execution.

Specifies the path of the resource.Resource path

The resource path should contain a "/".

Description of the resource.Description

Select themethods that are supported by theAPI: GET,HEAD,
POST, PUT, DELETE, PATCH.

Supported methods

b. Click Add.

The resource is added. You can multiple resources, if required.

c. Add Tags.

d. Click Add Resource Parameter and provide the following information:

DescriptionField

Name of the parameter.Name

If youwant to reuse a parameter defined on theComponents page,
select the parameter from the drop-down list.

Reference

Brief description of the parameter.Description

Specifies the parameter type.Type

Available values: Path, Header, Query-string, Cookie.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, File.

Specifies the parameter is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the parameter.Value

56 webMethods API Gateway User's Guide 10.11

3 APIs

e. Click + Add to add the resource parameter.

13. For each supported method that you have added for a resource, provide the following
information:

a. Common information:

DescriptionField

Type a description for the operation.Description

Type an operation Id.OperationId

Type or select the keywords that you want to add to the operation.Tags

b. Method parameters

DescriptionField

Name of the parameter.Name

If youwant to reuse a global parameter defined on theComponents
page, select the parameter from the drop-down list.

Reference

Brief description of the parameter.Description

Specifies the parameter type.Type

Available values: Query-string, Header, Cookie.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, File.

Specifies the parameter is required, if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the parameter.Value

c. Requests.

You can select an existing global request defined on the Components page or specify a
new request. To create a new request, select New request.

To add a new request that has to be processed, click Add Request + and provide the
following information:

Content type. Select one and click Add.

webMethods API Gateway User's Guide 10.11 57

3 APIs

Schema. Type a schema in the text box or select an existing schema from the Select
a Schema list. You can also click Add global schema and create a new global schema
on the Components page. After creating the global schema you can select it from the
Select a Schema list.

Sample. Type a sample for selected schema. This sample can be used for APImocking,
if required.

To use an existing global request to process a request, select Global request and provide
the following information:

Name.

Reference. Select one and click Add.

d. Responses.

First, add a status code using the Status Code drop-down list. Next, click on the status
code to select it. For the selected status code, you can select an existing global response
defined on the Components page or type a new response. To enter a new response, select
New response and define the response by adding a schema and a sample for the response
body, header parameters, and links.

Note:
You can also define the response for an HTTP status code series, such as 2** or 4**.

To define a new response for the selected status code, click Add response + and provide
the following information:

Content type. Select one and click Add.

Schema. Type a schema in the text box or select an existing schema from the Select
a Schema list. You can also click Add global schema and create a new global schema
on the Components page. After creating the global schema you can select it from the
Select a Schema list.

Sample. Type a sample for selected schema. This sample can be used for APImocking,
if required.

To use an existing global response, select Global response and provide the following
information:

Name. Name of the response.

Reference. Select one and click Add.

To add a header parameter, click + Add method parameter and provide the following
information to add a method parameter:

DescriptionField

Name of the parameter.Name

58 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionField

If you want to reuse a global parameter defined on the
Components page, select the parameter from the drop-down list.

Reference

Brief description of the parameter.Description

Specifies the parameter type.Type

Available values: Header.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, File.

Specifies the parameter is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the parameter.Value

Click + in the Value text box to add a value to the list, and click Add to add the header.

To add a link, click + Add links and enter the following information to add a link:

Name. Name of the link.

Description. Description for the link.

Link. You can add a new link or select an existing global link that is defined on the
Components page.

To add a new link, select New link and provide the following information:

Type. Select OperationId for local operations only. OperationRef can be used for
both local and external operations.

Value. If Type is OperationRef, provide a reference to the target operation using
the JSON Reference syntax (using by the $ref keyword); and if the Type is
OperationId provide the OperationId of the target operation.

Parameters. Specify the parameters of the target operation that are required to
follow the link. Enter a Name and Value, and click Add.

Request body. Type a request body only if the target operation has a body. Define
the contents of the body of the target operation.

To include an existing global link, select Global link and then select an existing global
link from the Reference drop-down list.

e. Callbacks. You can add the callbacks that are supported by the method. You can add new
callbacks and select existing global callbacks.

webMethods API Gateway User's Guide 10.11 59

3 APIs

Note:
For more information about using callbacks to develop asynchronous APIs, see
Asynchronous APIs in “Creating APIs - Overview” on page 43. For more information on
defining and using callbacks in API Gateway, see “ Overview of Creating a REST API
from Scratch” on page 48.

To specify a new callback, click + Add callbacks and define the callback:

Name. A name for the callback resource.

Click + Add resources and provide details of the API that serves as the callback API.

Note:
The user interface and procedure for defining a callback is similar to defining a
resource and methods within the resource.

To include a global callback defined on the Components page, provide the following
information:

Name. Name of the callback resource.

Reference. If you want to reuse a global callback defined on the Components page,
select the callback from the drop-down list and click Add.

14. Click Continue to provide Mocking information for this API>.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

The API mocking page appears. API mocking is not enabled for a new API. You must edit the
API and enable API mocking after creating the API.

15. Click Continue to define API components for this API>.

Alternatively, you can click Components.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

16. Define the reusable elements that you want to reuse in other pages of the Create REST API
wizard.

An API may have several elements that are common across resources and methods, such as
schemas for response bodies. You can place such common elements in theComponents section
and reference them using the $ref alias.

a. In the Schemas section, click + Add schema and provide the following information:

60 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionField

Name of the schema.Name

Specifies the schema type.Value

Available types:

Inline schema. Type the request and response values for the
schema in the text box.

Upload schema. ClickBrowse and upload a schema file that
you have from a saved location.

Click to add the schema.
Action

Click + Add to add the schema component.

b. In the Parameters section, click + Add parameter and provide the following information:

DescriptionField

Name of the parameter.Name

Description of the parameter.Description

Specifies the parameter type.Type

Available values: Path, Query-string, Header, and Cookie.

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, and File.

Specifies the parameter is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the parameter.Value

Click + Add to add the parameter component.

c. In the Headers section, click + Add header and provide the following information:

DescriptionField

Name of the header.Name

Description of the header.Description

webMethods API Gateway User's Guide 10.11 61

3 APIs

DescriptionField

Specifies the header type. This is fixed as Header for headers.Type

Specifies the data type.Data type

Available values: String, Date, Date time, Integer, Double,
Boolean, and File.

Specifies the header is required if selected.Required

Select if the input parameter is of type array.Repeat

Specifies the possible values for the header.Value

Click + Add to add the header component.

d. In the Examples section, click + Add examples and provide the following information:

DescriptionField

Name of the example.Name

Description of the example.Summary

The content of the example.Value

Click + Add to add the example component.

e. In the Links section, click + Add links and provide the following information:

DescriptionField

Name of the link.Name

Description of the link.Description

Specifies the link type: OperationId or OperationRef.Type

Path to the target operation or a reference to the target operation.Value

Name of the parameter to pass as a parameter to the target
operation.

Parameter name

Value for the parameter. Click + Add to add the parameter. You
can additional parameters if required.

Parameter value

Payload of the request sent to the target operation.Request body

Click Add to add the link component.

62 webMethods API Gateway User's Guide 10.11

3 APIs

f. In the Callbacks section, click + Add callback and provide the following information:

a. Type a name for the callback.

b. Click + Add resources.

c. Type the Callback path.

d. Select the supported methods.

e. Click Add.

f. For each method that you have just added, complete the next two steps.

g. Click + Add Resource Parameter and add the required resource parameters. The
procedure for adding resource parameters is given in Step 11d.

h. Define the selected methods. The procedure for defining methods is given in Step 12.

g. In theRequest Bodies section, click+ Add request andprovide the following information:

DescriptionField

Name of the request.Name

Select a content type from the list.Content type

Select an existing schema from the list.Schema

Type a sample of the schema.Sample

Click Add to add the request component.

h. In the Responses section, click + Add Response and provide the following information:

DescriptionField

Name of the response.Name

Click Add.Content type

Select an existing schema from the list.Schema

Type a sample of the schema.Sample

Click + Add Header Parameter and provide the required
information. Then, click + Add to add the header parameter.

Header Parameter

Click + Add Links and provide the required information. Then,
click Add to add the link.

Links

Click Add to add the response component.

webMethods API Gateway User's Guide 10.11 63

3 APIs

17. Click Continue to provide API documents for this API>.

Note:
Click Save to save the API at this stage and close the Create REST API wizard.

The Documentation page appears.

18. Type a display name and click Browse to select a file.

19. Click + Add to upload the file and add a new row.

20. Click Save to save your changes and create the API.

Creating a WebSocket API
You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

You need the WebSocket port to access the WebSocket API. Assigning global and API-specific
policies is similar to assigning policies to REST or SOAP APIs.

Note:
You can not apply global policies and policy templates to a WebSocket API.

To create a WebSocket API from scratch

1. Click APIs in the title navigation bar.

2. Click Create API.

3. Select Create from scratch.

4. Select WebSocket.

5. Click Create.

6. Provide the following information in the Basic information section:

DescriptionField

Name of the API.Name

Version of the API.Version

Team to which the API must be assigned.Team

64 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionField

This option is visible only if you have enabled the Teams
feature.

You can select more than one team. To remove a team, click

the icon next to the team to be removed.

Description of the API.Description

7. Click Continue to provide technical information for this API>.

Alternatively, you can click Technical information to go to the Technical information section.

Click Save to save the API at this stage and provide the technical information for the API at
a later time.

8. Provide the following information in the Technical information section:

a. Type the WS URL in the WS Url field.

The format used is ws://hostname:port/path.

b. Click + Add parameter and provide the following information:

DescriptionField

Name of the parameter.Name

Description of the parameter.Description

Specifies the parameter type.Type

Available values are: Query-string, Header.

Specifies the data type.Data type

Available values are: String, Date, Date time, Integer,
Double, Boolean.

Select this to specify that the parameter is required.Required

Select this to specify that the array is required.Array

Type the required value and click + to add the value.Value

Click to include multiple values.

c. Click + Add message and provide the following information.

webMethods API Gateway User's Guide 10.11 65

3 APIs

DescriptionField

Specifies the origin of the message.Origin

Available values are: Server, Client.

Specifies the message type.Type

Available types are: Text, Binary

Provide the sample message payload.Sample message payload

Provide the message description.Message description

Click to include multiple messages.

9. Click Save.

API Mashups

Overview

Servers that provide an API may expose a vast set of functionality. However, each individual
service in the API usually provides a very specific functionality. While this is usually effective,
sometimes it is useful or required to consolidate a few services and expose them as a single service.
In other situations, you might want to extend a service with the functionality provided by an
external API. API mashups address these requirements for grouping services and exposing them
as a single service.

Note:
Currently, API Gateway supports API mashups for REST APIs only. You can define a mashup
only in a REST API and only REST APIs can be included in the mashup.

The APIs that are included in an API mashup (participating APIs) can be connected to each other
in the following ways:

API chaining. Two or more participating APIs are connected and invoked in a sequence—one
after the other.

API aggregation. Two ormore participatingAPIs are connected to a common aggregator step.
The aggregator step captures the response of the aggregatedAPIs. The aggregator step enables
you to:

Collate the responses and pass to the next step.

Process the responses and pass the processed data to the next step.

66 webMethods API Gateway User's Guide 10.11

3 APIs

Usage scenario: API chaining

Assume anAPI that provides information about courses offered by different universities in a given
location. This API provides a service that returns the list of universities for a given course name
and postal code. This service could be:
GET /universities?course=medicine&postalcode=600012

The provider of the API wants to extend this API for use in mobile applications that have access
to users’ location. As mobile applications can access a user’s location in terms of longitude and
latitude, this involves first retrieving the postal code for the users’ current location and then passing
that information to the existing API.

Suppose there is a publically available API that returns the postal code based on longitude and
latitude values. This service could be:
GET /postalcode?lat=331&long=22324321

If this public API meets other requirements, such as security, performance, and usage limits, it
can be utilized to deliver the required functionality.

Using an API mashup, you can create and expose a single service that calls both services: the
external service that returns the postal code and the existing service that provides the list of
universities. The resulting service could be:
GET /universities?course=medicine&lat=331&long=22324321

Usage scenario: API aggregation

Assume an IT services provider that provides hosting and cloud services to its customers. Users
can create accounts for the different types of services that they need to use: bare metal servers,
Virtual Private Servers, platforms as a service, and so on. A customer hasmultiple types of accounts.
The statement for each type of account is returned by a different API. The API provider wants to
provide a single API that consolidates the statements of a given customer and returns a single
response with all the information.

Key Features of a REST API Mashup

An API mashup allows you to orchestrate multiple resources and methods and expose the
behavior as a single service. In a regular method that is not a mashup, API Gateway applies
all the enforced policies and then routes the request to the native endpoint. In the case of a
mashup, API Gateway still applies all the enforced policies in the request flow till routing; but
thereafter, it starts the orchestration flow defined in the mashup. After the orchestration flow
ends, all the policies defined for that method are applied in the response flow—in the same
way as a regular method.

APImashups are defined at themethod level. You can edit any RESTAPI and define amashup
for one or more methods within it.

You can include any REST API defined within API Gateway in the mashup.

webMethods API Gateway User's Guide 10.11 67

3 APIs

The entire framework that API Gateway provides to a regular REST API method is available
to an API mashup method. Therefore, you can utilize query parameters, path parameters,
aliases, variables, payload transformations using XSLT transforms, transformations using
webMethods IS services, and custom pipeline variables.

Considerations for Creating an API Mashup

By default, the policies of an API that is participating in anAPImashup are not enforcedwhen
it is invoked within the API mashup. However, if you select the Should execute Outbound
policies option, the outbound security policies of the participating API are enforced in the
context of the API mashup.

The following are specific to a mashup step and are not automatically passed from one step
to another:

Headers

Query parameters

Path parameters

Payload

However, you can add parameters in a mashup step to access data from any of the previous
steps or another source.

An exception to this rule is the first step (the first participating service) in a mashup, which
receives the complete request sent by the client.

A participating API cannot have reverse invoke routing.

Structure of an API Mashup

An API mashup consists of one or more mashup steps, and each step invokes an API. A mashup
step defines the request for the API that it invokes. A step can use the data objects provided by
API Gateway to access data in the initial request sent to the operation that has the mashup and
any of the previous steps.

The following table summarizes the data objects and variables that are available in API Gateway.

Possible valuesObject/Variable Type

paramStage request

response

paramType payload or body

headers

query

path

68 webMethods API Gateway User's Guide 10.11

3 APIs

Possible valuesObject/Variable Type

httpMethod

statusCode

statusMessage

queryType xpath

jsonPath

regex

The following data objects are available to a mashup step:

${paramStage.paramType}

You can use this syntax to access the following string variables: path, statusCode, statusMessage,
httpMethod. Examples: ${request.path}, ${response.statusCode}

${paramStage.paramType.paramName}

You can use this syntax to access map types, such as query, headers, and path. Example:
${request.query.var1}, ${response.header.Content-Type}, ${request.path.name}.

${paramStage.paramType.queryType[queryValue]}

This syntax can be used to query a paramType. Examples:

${request.payload.xpath[//ns:emp/ns:empName]}

Where //ns:emp/ns:empName is the XPath to be applied on the payload if contentType is
application/xml, text/xml, or text/html.

${response.payload.jsonPath[$.cardDetails.number]}

Where $.cardDetails.number is the jsonPath to be applied on payload if contentType is
application/json or application/json/badgerfish.

${request.payload.regex[[0-9]+]}

Where [0-9]+ is the regular expression to be applied on the payload if contentType is
text/plain.

Note:
While xpath and jsonPath are applicable only to payload, regEx can be used with both
payload and path.

${paramStage[stepName].paramType.queryType[queryValue]}

You can use this syntax to access data in any step. For example, you can use the following
syntax to access the payload of a step named createAPI:
${response[createAPI].payload.jsonPath[$.apiResponse.api.id]}.

webMethods API Gateway User's Guide 10.11 69

3 APIs

You can define your own variables using the Custom Pipeline variables field:

Examples: ${key}, ${value}. The custom pipeline variables that you define are available in
subsequent steps.

Note:
Data objects from any of the steps of the mashup can also be accessed by response processing
policies and error processing policies of the API that contains the mashup.

Creating an API Mashup
To create a mashup you require:

The APImust include the resource and themethod inwhich youwant to add the APImashup.

The participatingAPIs (that youwant to include in themashup)must exist in theAPIGateway
instance.

To create a mashup in a REST API

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Click the required API.

The API details page appears.

3. Click Edit.

4. Click Mashups.

The Mashups tab appears. It displays the resources in the API and their methods on the left
and an empty (Default routing) routing diagram.

Note:
If the API does not have any mashup, the Mashup tab displays the list of resources only in
the Edit mode; the tab is empty in the view mode.

5. In the List of resources, click the resource in which you want to include the mashup.

The resource tab expands and the methods included in the resource are displayed.

6. Click the toggle button to enable the method in which you want to create the mashup.

Note:
If you use the toggle button and disable amethod that has amashup, themashup definition
for that method is immediately cleared.

70 webMethods API Gateway User's Guide 10.11

3 APIs

7. Click Add invoke to add a mashup step.

a. Connect the step to Start.

The Start and Stop terminators and all steps have connection points that you can connect
to the other steps and terminators. p

To select a connection point and connect it to another connection point:

a. Hover the mouse over the top or bottom of the step or terminator till the connection
point is highlighted.

b. Click the connection point and drag to the other step or terminator.

b. Configure the step properties as desired.

The Mashup Routing panel that appears on the right side of the mashup canvas displays
the properties for the selected step. You can configure the following properties using the
Mashup Routing panel:

DescriptionFieldSection

Provide a name for the mashup step that is
unique within the mashup.

Mashup step
name

The API endpoint that you want to invoke in
the mashup step. The API must be published
on the current API Gateway instance.

API Endpoint

The endpoint of the API that youwant to use.
You can type a few letters and select from the
autocomplete list.

API Gateway API

The resource in the API that you want to use.
You can type a few letters and select a
resource from the autocomplete list.

Resource

The specific method of the resource that you
want to invoke.

Method

Select if you want the outbound security
policies of the participatingAPI to be enforced
in the context of an API mashup.

Execute outbound
authentication policy

Headers

Select to use the headers in the incoming
request.

Use incoming Headers

Custom headers that you can add in addition
or instead of the incoming headers. Each
customheadermust have the following fields:

Custom Headers

webMethods API Gateway User's Guide 10.11 71

3 APIs

DescriptionFieldSection

Header Name

Header Value

Provide the following values:Query
Parameters

Query Parameter Name

Query Parameter Value

Provide the following values:Path Parameters

Path Parameter Name

Path Parameter Value

Type the Payload.Payload

ClickAdd xslt document and select the XSLT
file for transforming the payload. Provide the
following values:

XSLT Document

XSLT File

Feature Name

Feature value

For information about transforming the
payload using XSLT, see “Request
Transformation” on page 217.

Click Add xslt transformation alias and
select an existing XSLT transformation alias.

XSLT Transformation
alias

Advanced
Transformation

Click Add webMethods IS service and
provide the following values:

webMethods IS service

webMethods IS Service

Run As User

Select Comply to IS Spec

For information about these fields and using
the webMethods IS Service, see “Invoke
webMethods IS” on page 210.

72 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionFieldSection

For information about the webMethods IS
ServiceAlias, see “InvokewebMethods IS” on
page 210.

webMethods IS
Service Alias

Transformation
Metadata

Provide the following values:Namespace

Namespace Prefix

Namespace URI

For information about transformation
metadata, see “Request Transformation” on
page 217.

You can use custompipeline variables to hold
values that need to be used in another step of
theAPImashup. Provide the following values:

Custom Pipeline
Variables

Name

Value

For more information, see “Structure of an
API Mashup” on page 68.

Note:
In several fields, such asHeader Valuewithin customheaders,Query Parameter Value,
and Path Parameter Value, you can use values from previous steps and other data
using the variable and alias framework provided byAPIGateway. Formore information,
see “Structure of an API Mashup” on page 68.

8. Click Add aggregator to add an aggregator step.

Note:
You can also add an aggregator step by connecting two invocation steps to the same previous
step. An aggregator step is automatically added after the stepswhen you connect the second
step to the same previous step.

9. If you have added the aggregator by clickingAdd aggregator, add the following connections:

a. Connect the steps that need to be aggregated to the aggregator step.

b. Connect the aggregator step to the next step.

10. To add additional steps to the aggregated block, complete the following steps

webMethods API Gateway User's Guide 10.11 73

3 APIs

a. To add a new step to the aggregated block, click Add invoke and connect the new step to
the same previous step.

You can configure the properties of the new step immediately or later. For details on
configuring the step properties, see step 7.

b. To add an existing step to the aggregated block, delete the connections of the step, if any
and then connect the step to the previous step for the aggregated block and the aggregator
step.

11. Click the mashup step and configure the properties of the mashup step as desired.

You can configure themashup step properties using theMashupAggregator action panel that
appears on the right side of the mashup canvas when you click the aggregator step. You can
configure the following properties using the Mashup Aggregator action panel:

DescriptionFieldSection

Headers

Select to use the headers in the incoming
request.

Use incoming Headers

Custom headers that you can add in addition
or instead of the incoming headers. Each
customheadermust have the following fields:

Custom Headers

Header Name

Header Value

Provide the following values:Query
Parameters

Query Parameter Name

Query Parameter Value

Provide the following values:Path Parameters

Path Parameter Name

Path Parameter Value

Type the Payload.Payload

ClickAdd xslt document and select the XSLT
file for transforming the payload. Provide the
following values:

XSLT Document

XSLT File

Feature Name

74 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionFieldSection

Feature value

Click Add xslt transformation alias and
select an existing XSLT transformation alias.

XSLT Transformation
alias

Advanced
Transformation

Click Add webMethods IS service and
provide the following values:

webMethods IS
Service

webMethods IS Service

Select a Run As User

Select Comply to IS Spec

For information about these fields and using
the webMethods IS Service, see “Invoke
webMethods IS” on page 210.

Select an existingwebMethods IS service alias.webMethods IS
Service Alias

Transformation
Metadata

Provide the following values:Namespace

Namespace Prefix

Namespace URI

You can use custompipeline variables to hold
values that need to be used in another step of
theAPImashup. Provide the following values:

Custom Pipeline
Variables

Name

Value

For more information, see “Structure of an
API Mashup” on page 68.

Mashup
Response
Transformation

Select Aggregate response

Payload

Note:
In several fields, such as Header Value within custom headers, Query Parameter Value,
and Path Parameter Value, you can use values from previous steps and other data using

webMethods API Gateway User's Guide 10.11 75

3 APIs

the variable and alias framework provided by API Gateway. For more information, see
“Structure of an API Mashup” on page 68.

12. Add, configure, and connect additional API invocation steps and API aggregator steps as
desired.

13. Click Save.

The mashup is created for the selected method.

Note:
You must activate the API to make the mashup available to client applications. For more
information about activating an API, see “Activating an API” on page 88.

Viewing API List and API Details

You can view the list of registered APIs, activate, delete, or view analytics of a specific API in the
Manage APIs page. In addition, you can view API details, modify API details, activate and
deactivate an API in the API details page.

Note:
If you encounter any problem viewing the API details with a message that says API loading
has failed, this would be because the property watt.server.http.jsonFormat is set to a value
that is not parsed(the default value), which API Gateway does not support.

To view API list and API details

1. Click APIs in the title navigation bar.

A list of all registered APIs appears. The APIs are sorted based on their names. When there is
more than one API with same name, they are sorted based on their system versions. The list
displays the following details:

DescriptionColumn

Displays API name with an icon representing the API type.Name

API type can be REST, SOAP, OData, and WebSocket.

Displays brief description of the API.Description

Indicates the active endpoints available for the API and shows
how an API can be called.

Active endpoints

These are the active endpoint indicators:

specifies that the API Gateway endpoint is active. This
implies that the API can be called on the API Gateway
endpoint.

76 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionColumn

specifies that the API Gateway endpoint is inactive. The
API is not exposed by API Gateway and API calls are rejected
by API Gateway with HTTP 404 responses.

specifies that the API is deployed to one or more
Microgateways and therefore has active Microgateway
endpoints. The API does not have any active API Gateway
endpoints. Any API calls against API Gateway are rejected by
API Gateway with HTTP 404 responses. The available
Microgateway endpoints can be looked up in the API details
screen. The list of active Microgateway endpoints is updated
whenever a newMicrogateway is registered or aMicrogateway
is de-registered. If the lastMicrogateway becomes unavailable,
the endpoint indicator no longer shows active Microgateway
endpoints

specifies that API Gateway and Microgateway
endpoints are active but there is no routing of API calls from
APIGateway toMicrogateway endpoints. This situation results
from deploying an API with an active API Gateway endpoint
to one ormoreMicrogateways. The policy enforcement is done
on the API Gateway and Microgateways independently.
Deactivating and activating theAPI inAPIGateway establishes
the routing to the Microgateway endpoints.

specifies that API Gateway and Microgateway
endpoints are active. API calls against the API Gateway
endpoint are routed to theMicrogateway endpoints. Ifmultiple
Microgateway endpoints are available, API Gateway applies
load balanced routing to the API calls. The load balancing
follows the round-robin algorithm. If aMicrogateway endpoint
becomes unavailable the next endpoint is contacted. If no
Microgateway endpoint replies, the API call in API Gateway
fails. The list of Microgateways covered by the routing is
updated dynamically.

The policy definitions in API Gateway are enforced by
Microgateways. To activate the routing in API Gateway to
Microgateways, theAPIs have to be deployed toMicrogateway
first before activating the API in API Gateway. If the last
Microgateway becomes unavailable the routing is not removed
implicitly. API calls against API Gateway fail as no
Microgateway endpoint is available.

webMethods API Gateway User's Guide 10.11 77

3 APIs

DescriptionColumn

specifies that an API has an active AppMesh
endpoint, but no active API Gateway endpoint. An AppMesh
endpoint is established by performing anAPIfy operation. The
policy definitions in API Gateway are enforced within the
AppMesh. The API is not exposed by API Gateway and API
calls are rejected by API Gateway with HTTP 404 responses.

specifies thatAPIGatewayandAppMeshendpoints
are active. API calls against the API Gateway endpoint are
routed to theAppMesh endpoint. The policy definitions inAPI
Gateway are enforced within the AppMesh.

Displays API version.Version

Displays the time when the API was last modified.Modified Time

You can perform the following operations in the Manage APIs page.

Filter APIs by Type, Activation status, Team, or Active endpoints. Select the required
API type, status, team or active endpoints to view the APIs based on the provided filters.

Note:
The Team filter is applicable only if you have enabled the Teams feature.

Activate an API by clicking that denotes an inactive state.

Once an API is activated, the Gateway endpoint is available which can be used by the
consumers of this API.

Deactivate an API by clicking that denotes an active state.

Export an API by clicking

Delete an API by clicking in the respective row.

View API analytics by clicking in the respective row.

Publish or Unpublish an API by clicking and respectively.

2. Click any API to view API details.

The API details page displays the basic information, technical information, resources and
methods, and specification for the selected API. This page allows you to edit some of the API

details. Also, this page provides options to activate or deactivate an API. Click to export,
enable or disable mocking, update, and create new version operations.

78 webMethods API Gateway User's Guide 10.11

3 APIs

Note:
The link provided in the Documentation section of the API details tab can be accessed
using API Gateway internal users credentials and cannot be accessed using SSO user
credentials.

REST API Details
TheREST framework enables you tomodelAPIs conforming to the ResourceOrientedArchitecture
(ROA) design. For example, you might model an API that serves to expose the web service data
and functionality as a collection of resources. Each resource is accessible with unique Uniform
Resource Identifiers (URIs). In yourAPI, you expose a set ofHTTP operations (methods) to perform
on a specific resource and capture the request and response messages and status codes that are
unique to the HTTP method and linked within the specific resource of the API.

The API details view for a REST API displays the details of the API such as basic and technical
information, resources and methods, API mocking details, and specifications. You can also view
the scopes associated, policies enforced, registered applications and the API-specific analytics.

The table lists the API details displayed for the API

DescriptionField

Displays the information about the API, such as Name, Version,
Owner of the API, the teams that the API is assigned to, status of

Basic information

the API whether its is Active or Inactive, the maturity state of the
API, the date onwhich theAPIwas created and a brief description
of the API.

Displays the following endpoints of the API:Technical information

Native endpoints.

Gateway endpoints. Displays these endpoints when the API
is deployed to a gateway.

Microgateway endpoints. Displays these endpoints when
the API is deployed to a Microgateway.

AppMesh endpoints. Displays these endpointswhen theAPI
is deployed through AppMesh.

Service Registry display name. Displays the name of the
service registry where the API is deployed.

Displays a list of resources ormethods available in the API sorted
by resource/pathname.

Resources and methods

The list of resources are displayed in sorted order of the path
names. Click each resource to view the corresponding HTTP
methods, along with a summary. Below each of these methods,
details such as parameters and response codes are displayed.

webMethods API Gateway User's Guide 10.11 79

3 APIs

DescriptionField

Details are visible only when API mocking is enabled.API mocking

Displays a list of mocked responses for the operations in the API,
custom IS service list and conditions along with its mocked
response.

Displays the schemas defined at the API level.Components

Displays the definition of the API in different formats.Documentation

Various tabs displayed in the API details page display the following details:

The Scopes tab lists the scopes available for the API.

The Policies tab displays the policies enforced for the API.

The Mashups tab displays the mashups defined in the API.

The Applications tab displays all the applications registered with the API.

The Analytics tab displays the API-specific analytics for the time interval selected.

You can perform the following operations from the API details page:

You can enable API mocking by clicking the Enable mocking button. If API mocking is
enabled, you can disable it by clicking the Disable mocking button. This option is available
when the API is in the deactivated state.

You can update an API by importing from file or from URL by clicking the Update button.
This option is available when the API is in the deactivated state.

You can create a new version of the API by clicking the Create new version button.

You can modify details of an API by clicking the Edit button. This option is available when
the API is in the deactivated state.

You can activate an API by clicking the Activate button. If the API is already activated, you
can deactivate it by clicking the Deactivate button.

Microgateway endpoints

Microgateway endpoints are exposed in this section when one or more Microgateways start
connecting to API Gateway with a particular API. When you activate the API, the routing to the
connectedMicrogateway endpoints comes in effect. Thismeans thatwhen you call theAPIGateway
endpoint in the usual way, the request is directly routed to theMicrogateway. If there are multiple
Microgateways, the routing is done in a round-robin order to each of the participating
Microgateways. The called Microgateway processes the request with all the defined policies.

AppMesh endpoints

The AppMesh endpoint gets exposed only for APIs created by AppMesh's APIfy operation. In an
AppMesh context, Microgateway and the corresponding micro services are behind a Kubernetes

80 webMethods API Gateway User's Guide 10.11

3 APIs

service or a loadbalancer. When you activate the API, the routing to this AppMesh endpoint
(depending on your Kubernetes service loadbalancer setting) comes in effect. This means that
when you call the API Gateway endpoint in the usual way the request is directly routed to that
endpoint.

SOAP API Details
The API details view for a SOAP API displays the details of the API such as Basic and Technical
information, Operations available, REST transformation details, API mocking details, and
specifications. You can also view the scopes associated, policies enforced, registered applications
and the API-specific analytics.

The table lists the API details displayed for the API

DescriptionField

Displays the information about the API, such as Name, Version, Owner
of the API, the teams that the API is assigned to, status of the APIwhether

Basic information

its is Active or Inactive, the maturity state of the API, the date on which
the API was created and a brief description of the API.

Displays the following endpoints of the API:Technical
information

Native endpoints.

Gateway endpoints. Displays these endpoints when the API is
deployed to a gateway.

Service Registry display name. Displays the name of the service
registry where the API is deployed.

Displays a list of operations available in the API and they are sorted
alphabetically.

Operations

Operations are displayed along with their type of binding (SOAP 11 ,
SOAP 12, and other HTTP methods). Click each method to view details
such as input, output, and fault messages.

Displays a list of operations exposed as REST resources and they are sorted
alphabetically.

REST transformation

Operations are displayed along with their type of binding. Click each
method to view details such as input, output, and fault messages.

Details are visible only when API mocking is enabled.API mocking

Displays a list of mocked responses for the operations in the API, custom
IS service list and conditions alongwith itsmocked response that contains
the status code and mock payload details.

Displays a list of specifications for the API.Documentation

webMethods API Gateway User's Guide 10.11 81

3 APIs

Various tabs displayed in the API details page display the following details:

The Scopes tab lists the scopes available for the API.

The Policies tab displays the policies enforced for the API.

The Applications tab displays all the applications registered with the API.

The Analytics tab displays the API-specific analytics for the time interval selected.

You can perform the following operations from the API details page:

You can enable API mocking by clicking the Enable mocking button. If API mocking is
enabled, you can disable it by clicking the Disable mocking button. This option is available
when the API is in the deactivated state.

You can update an API by importing from file or from URL by clicking the Update button.
This option is available when the API is in the deactivated state.

You can create a new version of the API by clicking the Create new version button.

You can modify details of an API by clicking the Edit button. This option is available when
the API is in the deactivated state.

You can activate an API by clicking the Activate button. If the API is already activated, you
can deactivate it by clicking the Deactivate button.

Exposing a SOAP API to Applications

An active SOAP API exposes its WSDL with a couple of adaptions:

The service name becomes the selected API Name.

Custom endpoints as well as URL aliases appear with separate port elements.

The HTTP and HTTPS endpoints are exposed if they meet the respective settings in the
Transport policy.

The SOAP and SOAP12 entries are exposed if theymeet the respective settings in the Transport
policy.

Only enabled operations are exposed.

The values from the InboundAuth -Message policy are integrated into theWSDL asws:Policy
entries. Note that the original ws:Policy entries from the importingWSDL are not considered.

OData API Details
Open Data Protocol (OData) enables the creation of REST-based APIs, which allow resources to
be exposed as endpoints and identified using the Uniform Resource Identifiers (URIs). In general,
OData is represented by an abstract data model called Entity DataModel (EDM). This Entity Data
Model allowsweb clients to publish and edit REST services and their resources using simpleHTTP
messages. OData leverages the principles of HTTP, REST andATOM, and combines the simplicity
of REST and SOAPmetadata definitions to describe service interfaces, datamodels, and semantics.

82 webMethods API Gateway User's Guide 10.11

3 APIs

API Gateway supports OData V4 and V2 services.

The API details view for an OData API displays the details of the API such as basic and technical
information, OData entity sets, singletons, function imports, actions imports and specifications.
You can also view the policies enforced, registered applications and the API-specific analytics.

The API Gateway UI exposes only OData navigation properties to visualize the resource path
structure of OData APIs. Any other OData property is not displayed.

Note:
APIGateway does not support the querying ofDerived Entity Types. This includes the following
operations:

Requesting a Derived Entity
Requesting a Derived Entity Collection
Filter on Derived Type

Operations on Derived Types are rejected by API Gateway.

The table lists the API details displayed for the API.

DescriptionField

Displays the information about the API, such as Name, Version,
the teams that the API is assigned to, status of the API whether

Basic information

its is Active or Inactive, the date on which the API was created,
and a brief description of the API.

Displays base URL of the API and the OData version supportedTechnical information

Displays a list of OData entity sets. An entity set element
represents a single entity or a collection of entities of a specific
entity type in the data model

OData entity sets

The list of entity sets is sorted alphabetically. Click each entity set
to view the resource path, entity type, resource parameter details,
and the corresponding HTTP methods.

The entity types are structured records consisting of named and
typed properties and key properties whose values uniquely
identify one instance from another.

Displays a list of OData singletons. Singletons are single entities
which are accessed as children of the entity container.

OData singletons

The list of singletons is sorted alphabetically. Click each singleton
to view the resource path, entity type, the corresponding HTTP
methods, and the navigation properties that allow navigation
from an entity to related entities.

The OData navigation property has an impact on the resource
structure. This property is represented as anOData Resource and
denoted as OData Navigation properties inside the OData

webMethods API Gateway User's Guide 10.11 83

3 APIs

DescriptionField

Resources profile. There is no restriction to the number of levels
you can drill down.

Displays a list of OData function imports. The Function Import
element represents a function in an entity model.

OData function imports

The list of OData function imports is sorted alphabetically. Click
each function import to view the resource path, entity type, and
the corresponding HTTP methods.

Displays a list ofOData action imports. TheAction Import element
represents an action in an entity model.

OData action imports

The list of OData action imports is sorted alphabetically. Click
each action import to view the resource path, entity type, and the
corresponding HTTP methods.

Displays a list of specifications for the API.Documentation

The metadata document. The metadata document describes the
Entity Data Model that is, the structure and organization of the
OData service resources) exposed as HTTP endpoints by that
particular service. This document describes the entity types, entity
sets, functions, and actions.

Various tabs displayed in the API details page display the following details:

The Policies tab displays the policies enforced for the API.

The Applications tab displays all the applications registered with the API.

The Analytics tab displays the API-specific analytics for the time interval selected.

You can perform the following operations from the API details page:

You can update an API by importing from URL by clicking the Update button. This option is
available when the API is in the deactivated state.

You can create a new version of the API by clicking the Create new version button.

You can modify details of an API by clicking the Edit button. This option is available when
the API is in the deactivated state. Only the following properties of an OData API can be
modified:

Name

Description

Version

API group

84 webMethods API Gateway User's Guide 10.11

3 APIs

Maturity state

For updating the OData entity sets, singletons, function imports and action imports a new
import has to be performed.

You can activate an API by clicking the Activate button. If the API is already activated, you
can deactivate it by clicking the Deactivate button.

GraphQL API Details
API Gateway supports proxying an existing GraphQL endpoint and provides API management
capabilities to clients like authentication, analytics, and so on. The GraphQLAPIs can be accessed
using the HTTP GET and POST methods. You can create and deploy a GraphQL API using the
API Gateway UI or REST endpoints.

The following table lists the features that API Gateway supports for GraphQL.

SupportedGraphQL Features

YesBasic GraphQL
concepts:

Schema

Operations

Types

YesRoot operations for
resources:

Query

Mutation

NoRoot operations for
resources: Subscription

YesInput and output data
types:

Scalar type

Object type

Interface type

Union type

Enum type

The following table lists the API Gateway-specific features that are not supported for GraphQL
API.

webMethods API Gateway User's Guide 10.11 85

3 APIs

SupportedAPI Gateway Features for
GraphQL

NoAPI tagging

NoAPI mocking

NoPolicy scopes

NoPackages and plan

NoAdding or updating
GraphQL schema types

NoPublishing GraphQL API
to API Portal

TheAPI details view for aGraphQLAPI displays the details of theAPI such as basic and technical
information, operations available, and specifications. You can also view the policies enforced,
registered applications, and the API-specific analytics.

The table lists the API details displayed for the API:

DescriptionField

Displays the information about the API, such as Name, Version, Owner
of the API, the teams that the API is assigned to, Active or Inactive status

Basic information

of the API , the maturity state of the API, the date on which the API was
created, and a brief description of the API.

Displays the following endpoints of the API:Technical
information

Native endpoint(s).

Gateway endpoint(s). Displays these endpoints when the API is
deployed to a gateway.

Service Registry display name. Displays the name of the service
registry where the API is deployed.

Displays a list of operations available in the API sorted alphabetically.Operations

Operations are displayed along with their type (Query and Mutation).

Displays a list of specifications for the API.Documentation

Various tabs displayed in the API details page display the following details:

The Policies tab displays the policies enforced for the API.

The Applications tab displays all the registered applications with the API.

The Analytics tab displays the API-specific analytics for the time interval selected.

86 webMethods API Gateway User's Guide 10.11

3 APIs

You can perform the following operations from the API details page:

You can export an API using the Export button. For more information about exporting APIs,
see “Exporting APIs” on page 135.

You can update an API by importing from file or from URL by clicking the Update button.
This option is available when the API is in the deactivated state. For more information about
updating APIs, see “Updating APIs” on page 101.

You can create a new version of the API by clicking the Create new version button. For more
information about versioning APIs, see “Versioning APIs” on page 121.

You can modify details of an API by clicking the Edit button. This option is available when
the API is in the deactivated state. For more information about modifying API details, see
“Modifying API Details” on page 101.

You can activate an API by clicking the Activate button. If the API is already activated, you
can deactivate it by clicking the Deactivate button.

Filtering APIs

You can filter APIs based on the API type, the activation status, team association or deployment
type of the API.

To filter APIs

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. You can filter APIs based on the following filter options. You can use a combination of these
options to filter the APIs.

Type. Select REST, SOAP, OData, WebSocket, GraphQL or all to filter APIs by type.

Activation status. Select Active or Inactive to filter APIs by their activation status.

Team. This filter is applicable only if you have enabled the Teams feature. Select the teams
listed to filter APIs by their association with the teams selected.

Active endpoints. SelectAPI Gateway,Microgateway, orAppMesh to filterAPIs by their
active endpoints available.

3. Click Apply filter.

The filtered list of APIs is displayed. You can click Reset to reset the values to the original
values.

webMethods API Gateway User's Guide 10.11 87

3 APIs

Activating an API

You can activate an API in the Manage APIs page. Alternatively you can also activate the API
from the API Details page.

You must have the Activate/Deactivate APIs functional privilege assigned to perform this task.

To activate an API

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Do one of the following:

Click the toggle button, in the corresponding column of the API to be activated, to change

the status to to activate the API.

Select the API to open the API details page. Click Activate.

3. Click Yes in the confirmation dialog box.

The API is now activated. The Gateway endpoint is now available, which can be used by the
consumers of this API. You can now publish the API to the required destination and expose
the API for consumption by the consumers.

You can modify API details or update the API, except the name and version of the API, when
the API is in the active state. Active APIs are replaced during deploymentwith zero downtime
and do not break ongoing requests. The updated APIs do not become effective for ongoing
requests.

Note:

If there is an error while saving after updating an active API, the API becomes inactive
but the changes are saved.
Once the API is activated, you can define the custom gateway endpoints. For more
information about gateway endpoints, see “ Gateway Endpoints” on page 651.
Once the API is activated, you can enable the tracer. For more information about how
to enable the tracer and view the tracing details, see “ Trace API” on page 706.

WSDLs in API Gateway
When you activate a SOAP API in API-Gateway, the API exposes a link to the WSDL describing
the API Gateway usage. The format of the link is as follows:
http://apigw-host:apigw-port/ws/<service-name>/1?wsdl

For example: http://myhost:5555/ws/Hello_Service/1?wsdl

88 webMethods API Gateway User's Guide 10.11

3 APIs

If the WSDL imports more files, for example, subWSDLs or XML schemas, then these files can be
accessed through:
http://<apigw-host>:<apigw-port>/ws/<service-name>/1/<id>?xsd=<name>

For example: http://myhost:5555/ws/Hello_Service/1/53fe951a-2c04-4283-8b2d-8ee2957531b1?xsd=A

During this action, unlike all other parts of the WSDL, the <service> section is completely
regenerated. For each activated HTTP or HTTPS port, depending on the API's transport policy,
one or more endpoint entries are generated into the WSDL. By default, the following entries are
present:

Usual entry with service name and version number

Mediator-compatible entry with service name and original port name

One entry for each custom endpoint

Port names

The port names are numbered through the different entries to ensure uniqueness.Moreover,when
the original port name has a http or https specifier at its end, then this specifier is taken over to the
generated port name.

Examples

Example 1: With a single active HTTP port
<service name="Hello_Service">

<port name="Hello_Port2" binding="tns:Hello_Binding">
<soap:address location="http://myhost:5555/ws/Hello_Service/1"/>

</port>
<port name="Hello_Port" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/ws/Hello_Service.Hello_Port/1"/>
</port>

</service>

You can add custom endpoints to the API, for example, per UI. The customized values (prefix,
servicename, version) appear in the <service> section.

Example 2: With an additional custom endpoint
<service name="Hello_Service">

<port name="Hello_Port3" binding="tns:Hello_Binding">
<soap:address location="http://myhost:5555/ws/Hello_Service/1"/>

</port>
<port name="Hello_Port2" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/myprefix/myservice/5"/>
</port>
<port name="Hello_Port" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/ws/Hello_Service.Hello_Port/1"/>
</port>

</service>

Example 3:With an additionalHTTPS port that gets enabled and switched on in theAPI's transport
policy

webMethods API Gateway User's Guide 10.11 89

3 APIs

<service name="Hello_Service">
<port name="Hello_Port" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/ws/Hello_Service.Hello_Port/1"/>
</port>
<port name="Hello_Port3" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/ws/Hello_Service.Hello_Port/1"/>
</port>
<port name="Hello_Port2" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/ws/Hello_Service/1"/>
</port>
<port name="Hello_Port4" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/ws/Hello_Service/1"/>
</port>
<port name="Hello_Port5" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/myprefix/myservice/5"/>
</port>
<port name="Hello_Port6" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/myprefix/myservice/5"/>
</port>

</service>

Parameters for refining the exposed port entries

Use the parameter wsdlPortLayout in Administration > Extended settings section to refine the
exposed port entries. The parameter can have the following values:

service-port

All the port entries are exposed. This is the default value and the results as explained in the
examples above apply.

service-only

Only one port (with servicename or version) is exposed.When this value is set, only the simple
endpoint with the service name is generated. Example 3 would now look as follows:
<service name="Hello_Service">

<port name="Hello_Port" binding="tns:Hello_Binding">
<soap:address location="http://myhost:5555/ws/Hello_Service/1"/>

</port>
<port name="Hello_Port2" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/ws/Hello_Service/1"/>
</port>
<port name="Hello_Port3" binding="tns:Hello_Binding">

<soap:address location="http://myhost:5555/myprefix/myservice/5"/>
</port>
<port name="Hello_Port4" binding="tns:Hello_Binding">

<soap:address location="https://myhost:5559/myprefix/myservice/5"/>
</port>

</service>

mediator-comp

When this value is set, the entries generated are in mediator compatibility mode. Note that
custom endpoints do not appear in this case. The entries look as follows:
<service name="Hello_Service">

90 webMethods API Gateway User's Guide 10.11

3 APIs

<port name="Hello_Portsoaphttp" binding="tns:Hello_Binding">
<soap:address

location="http://myhost:5555/ws/Hello_Service.Hello_Portsoaphttp/1"/>
</port>
<port name="Hello_Portsoaphttps" binding="tns:Hello_Binding">

<soap:address

location="https://myhost:5559/ws/Hello_Service.Hello_Portsoaphttps/1"/>
</port>

</service>

Deactivating an API

You can deactivate an API in the Manage APIs page. Alternatively you can also deactivate the
API from the API Details page.

You must have the Activate/Deactivate APIs functional privilege assigned to perform this task.

To deactivate an API

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Click the toggle button, in the corresponding column of the API to be deactivated, to change
the status to to deactivate the API

3. Click Yes in the confirmation dialog box.

The API is now deactivated. The API is no more available to be consumed by consumers.

Publishing APIs

You can publish anAPI to the following destinations: API Portal, Service Registries, and Integration
Servers.

Publishing APIs to API Portal
Publishing an API to API Portal sends the SOAP and REST APIs to API Portal on which they are
exposed for testing and user consumption.

Note:
API Gateway does not support publishing GraphQL API to API Portal.

The process of publishing an API to API Portal is initiated from API Gateway and is carried out
on the API Portal server.

Doing this involves the following high-level steps:

webMethods API Gateway User's Guide 10.11 91

3 APIs

Step 1: You initiate the publish process by selecting the API to be published, specify the API
endpoints to be visible to the consumers, and the API Portal communities in which the API is
to be published.

Step 2: API Gateway publishes the API to each of the specified API Portal communities.

Step 3: During bulk publishing of APIs, the process continues even if API Gateway encounters
a failure with API Portal.

When publishing an API to the API Portal destination, keep the following points in mind:

The API Portal destination must be configured in API Gateway.

You must have the Publish to API Portal functional privilege.

You cannot publish anAPI if it is in inactive state. You have to activate theAPI before publishing
it.

Publishing a Single API to API Portal

Pre-requisites:

You must have the Publish to API Portal functional privilege assigned to perform this task.

To publish an API to API Portal

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Click the Publish icon for the API that you want to publish. Alternatively, you can click the
Publish button from the API details page of the required API.

3. Select the API endpoints that need to be visible to the consumers.

At least one endpoint should be selected before publishing the API.

4. Select the API type if you want to publish a REST-enabled SOAP API.

When the REST transformation is enabled for a SOAP API in API Gateway, you can publish
the REST-enabled SOAP API to API Portal in one of the following ways:

Publish as REST. Default. The API is published as a REST API to API Portal. The REST
resources and methods which correspond to the transformed SOAP operations are also
published to API Portal.

Publish as SOAP. The API is published as a SOAP API with the SOAP operations to API
Portal.

Publish as REST and SOAP. When both the options are selected, the API is published as
a REST API as well as a SOAP API in API Portal and marked as a HYBRID API.

92 webMethods API Gateway User's Guide 10.11

3 APIs

Note:
The Publish as option is available only if the REST transformation is enabled for the SOAP
API.

5. Select the communities to which the API needs to be published.

By default, an API is published to the Public Community of API Portal.

Note:
If anAPI is already a part of the package published to a community then you cannot remove
it from that community.

6. Click Publish.

The API along with the selected endpoints is published to API Portal and available for the
consumers to consume it.

A REST-enabled SOAP API is published to API Portal based on the selected API type:

REST API.TheAPIDetails viewdisplays the publishedAPI as a RESTAPIwith the defined
REST resources and methods.

SOAP API. The API Details view displays the published API as a SOAP API with the
defined SOAP operations.

HYBRID API. The API Details view, by default, displays the published API as a REST API
with the REST resources and methods. There is an option SOAP that can be selected to
display the published API as a SOAP API with the SOAP operations.

Once an API is published, the Publish icon changes to Republish icon.

You can unpublish an API once it is published by clicking the Unpublish icon.

Publishing Multiple APIs to API Portal in a Single Operation

Pre-requisites:

You must have the Publish to API Portal functional privilege assigned to perform this task.

You can bulk publish APIs to API Portal.

To publish multiple APIs to API Portal in a single operation

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to publish.

By default, all the respectiveAPI endpoints are internally selected to be visible to the consumers.

webMethods API Gateway User's Guide 10.11 93

3 APIs

3. In the Menu icon, click Publish.

4. Select the communities to which the APIs have to be published.

By default, the APIs are published to the Public Community of API Portal.

5. Click Publish.

The APIs along with their associated endpoints are published to API Portal and available for
the consumers to consume.

If you have selected several APIs where one or more of them are REST-enabled SOAP APIs
in API Gateway, then these SOAP APIs are published as REST APIs along with their specific
REST endpoints in API Portal.

6. Examine the Publish APIs report window and check for any errors that occurred during the
publishing process.

The Publish APIs report window displays the following information:

DescriptionField

The name of the published API.Name

The version of the published API.Version

The status of the publishing process. The available values are:Status

Success

Failure

A descriptive information if the API publishing process fails or if
a warning occurs.

Description

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

7. Click Download the detailed report here to download the detailed report as an HTML file.

Publishing APIs to Service Registries
Publishing anAPI to a service registry enables applications to dynamically locate anAPI Gateway
instance that can process that API.

When publishing an API to a service registry, keep the following points in mind:

Before you publish an API to a service registry destination, you must add the service registry
to the API Gateway instance from where you want to publish.

94 webMethods API Gateway User's Guide 10.11

3 APIs

You must have the Publish API to service registry functional privilege to publish APIs to a
service registry.

You can publish only active APIs. You cannot publish APIs that are in the inactive state.

An API that is published to a service registry:

Is automatically de-registered from the service registry if the API is deactivated in API
Gateway.When theAPI is activated again, it is automatically registered on the same service
registry.

Is automatically de-registered from the service registry if the API Gateway instance from
where it was registered goes down. When the API Gateway instance comes up again, the
API is registered on the same service registry.

In a cluster of API Gateway nodes, only the API Gateway instance from where you publish
an API is added to the service registry. You have to separately publish the API from each API
Gateway instance that the service registry can use for an API.

Note:
Similarly, you have to separately unpublish the API from each API Gateway instance from
where you want to unpublish the API.

If a load balancer has been configured for the API Gateway cluster, APIs from all instances
are registered using the load balancer URL.

Publishing a Single API to Service Registries

Pre-requisites:

You must have the Publish API to service registry functional privilege assigned to perform this
task.

To publish an API to service registries

1. Click APIs in the title navigation bar.

The list of APIs defined in API Gateway appears.

2. Click the Publish icon for the API that you want to publish. Alternatively, you can click the
Publish button from the API details page of the required API.

3. Select Service Registries.

The list of service registries that have been added to API Gateway is displayed.

4. Select the service registry to which you want to publish the API.

The list of endpoints in the selected API are displayed.

5. Select the endpoints that you want to publish to the selected service registry.

webMethods API Gateway User's Guide 10.11 95

3 APIs

6. Repeat the previous two steps to publish the API to additional service registries.

7. Click Publish.

Once an API is published, the Publish icon changes to Republish icon.

You can unpublish a published API by clicking the Unpublish icon.

Publishing Multiple APIs to Service Registries in a Single Operation

Pre-requisites:

You must have the Publish API to service registry functional privilege assigned to perform this
task.

Note:
When you publish multiple APIs to one or more service registries in a single operation, all
endpoints in the APIs are published. To selectively publish endpoints within an API, you must
publish the API separately as a single API.

To publish multiple APIs to service registries in a single operation

1. Click APIs in the title navigation bar.

The list of APIs defined in API Gateway appears.

2. Select the APIs that you want to publish.

3. On the menu, click Publish.

4. Select Service Registries.

The list of service registries that have been added to API Gateway is displayed.

5. Select the service registry to which you want to publish the API and click Publish.

Once an API is published, the Publish icon changes to Republish icon.

You can unpublish a published API by clicking the Unpublish icon.

Unpublishing APIs

You can manually unpublish APIs that you had previously published to an API Portal or to one
or more service registries.

96 webMethods API Gateway User's Guide 10.11

3 APIs

Unpublishing APIs from API Portal
After you publish an API to API Portal, the API remains published and available on API Portal
for consumption until you manually unpublish the API.

You can unpublish a SOAP or REST API from API Portal to suspend its interaction, testing, and
user consumption in API Portal.

Unpublishing a Single API from API Portal

Pre-requisites:

You must have the Publish to API Portal functional privilege assigned to perform this task.

To unpublish an API from API Portal

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Click the Unpublish icon for the API that you want to unpublish. Alternatively, you can click
the Unpublish button from the API details page of the required API.

The Unpublish API dialog box is displayed.

3. Select API Portal in Destination.

4. Select Unpublish.

5. Click Yes in the confirmation dialog.

The API is unpublished from the API Portal destination. The API is no longer available on API
Portal for testing and user consumption.

Once an API is unpublished, the Republish icon changes to Publish icon.

You can publish an API once it is unpublished by clicking the Publish icon.

Unpublishing Multiple APIs from API Portal in a Single Operation

Pre-requisites:

You must have the Publish to API Portal functional privilege assigned to perform this task.

You can bulk unpublish APIs from API Portal.

To unpublish multiple APIs from API Portal in a single operation

webMethods API Gateway User's Guide 10.11 97

3 APIs

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to unpublish.

3. In the Menu icon, click Unpublish.

4. Click Yes in the confirmation dialog.

The selected APIs are unpublished from API Portal.

5. Examine the Unpublish APIs report window and check for any errors that occurred during
the unpublishing process.

The Unpublish APIs report window displays the following information:

DescriptionParameter

The name of the unpublished API.Name

The status of the unpublishing process. The available
values are:

Status

Success

Failure

A descriptive information if the API unpublishing
process fails or if a warning occurs.

Description

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

6. Click Download the detailed report here to download the detailed report as an HTML file.

Unpublishing APIs from a Service Registry
You can manually unpublish APIs that you had previously published on service registries.

You must consider the following points before unpublishing an API from a service registry:

You must have the Publish API to service registry functional privilege to unpublish APIs
from a service registry.

There is no option to unpublish individual endpoints. When youmanually unpublish an API,
all the endpoints in that API are unpublished from the selected service registries.

As both—API publishing to service registries and API unpublishing to service registries—are
specific to the current API Gateway instance, APIs are unpublished only for the API Gateway
instance from where you unpublish. Therefore, if the same API was published from other

98 webMethods API Gateway User's Guide 10.11

3 APIs

instances of API Gateway, it continues to be available on the service registries from those API
Gateway instances.

APIs may also get unpublished automatically from service registries, as described below.

Automatic Unpublishing of APIs

API Gateway automatically, but temporarily unpublishes an API in the following situations:

When you deactivate an API after publishing it to a service registry.

Note:
When you reactivate the API, the temporarily unpublished endpoints are published again
to the original service registries.

When you disable or delete an API Gateway port that has endpoints that have been published
to a service registry.

Note:
When you enable or add back the port again, the temporarily unpublished endpoints are
published again to the original service registries.

Unpublishing a Single API from Service Registries

Pre-requisites:

You must have the Publish API to service registry functional privilege assigned to perform this
task.

To unpublish an API from Service Registries

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Click the Unpublish icon for the API that you want to unpublish.

The Unpublish API dialog box is displayed.

3. Select Service registries in Destination.

The list of service registries to which the API was published is displayed.

4. Select the service registries from which you want to unpublish the API.

5. Select Force unpublish tomark the API as unpublished inAPI Gateway even if the unpublish
fails on the selected service registries.

The API is unpublished from the selected service registries. The API is no longer available on
selected service registries for testing and user consumption.

webMethods API Gateway User's Guide 10.11 99

3 APIs

Once an API is unpublished, the Republish icon changes to Publish icon.

Unpublishing Multiple APIs from Service Registries in a Single Operation

Pre-requisites:

You must have the Publish API to service registry functional privilege assigned to perform this
task.

You can bulk unpublish APIs from one or more service registries.

To unpublish multiple APIs from service registries in a single operation

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to unpublish.

3. In the Menu icon, click Unpublish.

4. Select Service registries in Destination.

The list of service registries to which the APIs were published is displayed.

5. Select the service registries from which you want to unpublish the selected APIs.

6. SelectForce unpublish tomark theAPIs as unpublished inAPIGateway even if the unpublish
fails on the destination service registries.

7. Examine the Unpublish APIs report window and check for any errors that occurred during
the unpublishing process.

The Unpublish APIs report window displays the following information:

DescriptionParameter

The name of the unpublished API.Name

The status of the unpublishing process. The available
values are:

Status

Success

Failure

A descriptive information if the API unpublishing
process fails or if a warning occurs.

Description

100 webMethods API Gateway User's Guide 10.11

3 APIs

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

8. Click Download the detailed report here to download the detailed report as an HTML file.

TheAPIs are unpublished from the selected service registries for the current APIGateway instance.
Once an API is unpublished, the Republish icon changes to Publish icon.

Modifying API Details

You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

You can modify API details, as required, from the API details page.

To modify API details

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Click the required API.

The API details page appears.

3. Click Edit.

Note:
If the API is in the active state, you cannot modify the name and version of the API. The
API mocking section is unavailable for any changes.

4. Modify the information as required.

5. Click Save.

Note:

If the API is in the active state when you modify API details, the active API is replaced
with the modified API.
The modified APIs do not become effective for ongoing requests.

Updating APIs

You can update the definition of an existing API by uploading WSDL, Swagger, or RAML file or
URL. The uploaded file can also be in a ZIP format. When an API is updated, it retains the Expose
to consumers settings, the existing scope definitions, the configured policies, and the REST-enabled
path configurations for SOAP API. You can also edit an API using the Edit option for minor edits,
whereas the update feature helps you to overwrite the complete API definition using a file or a
URL at the same time.

webMethods API Gateway User's Guide 10.11 101

3 APIs

You can update an active API. You cannot modify the name and version of an API while updating
an active API.

Note:
The active APIs are replaced with the updated API. The updated APIs do not become effective
for ongoing requests. Updates to an activated API are propagated across a cluster and trigger
a hot deploy on each cluster node separately.

You can update an existing API in the following ways:

By importing an API definition from a file

By importing an API definition from a URL

Updating an API by Importing an API from a File
You must have the API Gateway's manage APIs or Activate/deactivate APIs functional privilege
assigned to perform this task. You can not update an API by importing an API from a file if the
API is in the active state.

To modify API details

1. Click APIs in the title navigation bar.

2. Select the required API from the list of APIs.

The API details page for the selected API appears.

3. Click and select Update.

The Update API window appears.

4. Select Update API by importing from file.

5. Provide the following information:

DescriptionField

ClickBrowse to browse to the location of file to be imported
and select the required file or ZIP format file.

Select file

The REST API can be updated using only the Swagger or
RAML file type. The SOAP API can be updated using only
the WSDL file type.

If you have selected a file in ZIP format, type the relative
path of the main file within the ZIP file.

Root File Name

102 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionField

Name for the API. Edit or delete the name of the existing
API displayed.

Name

If you provide an API name, this overwrites the API
name mentioned in the uploaded file and the API is
updated with the name provided.

If you do not provide an API name, the API name
mentioned in the uploaded file is picked up and the API
is updated with that name.

Select the required type. The available types are OpenAPI,
RAML, Swagger, WSDL, and GraphQL SDL.

Type

For a REST API, the available options are RAML and
Swagger.

For a SOAP API, the available option is WSDL.

For a GraphQL API, the available option is GraphQL
SDL.

Version number of the API. The existing version number of
the API is automatically displayed. You can edit or delete

Version

the version number. If the version number is deleted and
the imported file does not have a version number, then the
system automatically assigns a version number during the
update.

This overwrites the version of the API.

Description of the API. The existing description of the API
is automatically displayed. You can edit or delete the

Description

description. If you delete the description then the description
from the imported file is used.

6. Click Update.

The API definition is updated with the latest changes from the file and is displayed in the API
details page.

Updating an API by Importing an API from a URL
You must have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform this task.

To modify API details

webMethods API Gateway User's Guide 10.11 103

3 APIs

1. Click APIs in the title navigation bar.

2. Select the required API from the list of APIs.

The API details page for the selected API appears.

3. Click and select Update.

The Update API window appears.

4. Select Update API by importing from URL.

5. Provide the following information:

DescriptionField

Type the URL from which the API is being imported.URL

Note:
The REST API can be updated using only the Swagger or
RAML type information that the URL is pointing to. The
SOAPAPI can be updated using only theWSDL file type
information that the URL is pointing to. The entity sets,
singletons, function imports, and action imports of an
OData API can only be updated by a re-import of the
OData API definition through the URL.

Select this option if you want to import an API from a URL
that is password protected. The user name and password

Protected

fields are displayed usingwhich you can access the provided
URL.

Type the user name required to access the password
protected URL.

Username

If you have selected the Protected option, this field is
displayed.

Type the password associated with the username.Password

If you have selected the Protected option, this field is
displayed.

Name for the API. The existing name of the API is
automatically displayed.

Name

If you provide an API name, this overwrites the API
namementioned in the file referred byURL and the API
is updated with the name provided.

104 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionField

If you do not provide an API name, the API name
mentioned in the file referred to by URL is picked up
and the API is updated with that name.

Select the required type. The available types are OpenAPI,
RAML, Swagger, WSDL, OData, and GraphQL SDL.

Type

For a REST API, the available options are RAML and
Swagger.

For a SOAP API, the available option is WSDL.

For a OData API, the available option is OData.

For a GraphQL API, the available option is GraphQL SDL.

Version number of the API. The existing version number of
the API is automatically displayed. You can edit or delete

Version

the version number. If the version number is deleted and
the file referred to by URL does not have a version number,
then the system automatically assigns a version number
during the update.

This overwrites the version of the API.

Description of the API. The existing description of the API
is automatically displayed. You can edit or delete the

Description

description. If you delete the description then the description
from the file referred to by URL is used.

6. Click Update.

The API definition is updated with the latest changes from the URL and is displayed in the
API details page.

API Mocking

Using API Gateway, you can mock an API by simulating the native API. For example, if you have
anAPIwithout a native implementation, you canmock thatAPI. Themocked response is returned
to the consumer when the API is invoked.

In API Gateway, when you enable mocking for an API, a default mock response is configured for
each combination of resource, operation, status code, and content-type based on the example and
schema specified in that API. You can add a condition to the operation in the resource.

Note:

You cannot enable or disable mocking for an active API.
API Gateway does not support API Mocking for GraphQL API.

webMethods API Gateway User's Guide 10.11 105

3 APIs

As anAPI Provider, you can create ormodify the defaultmock response. You can specify conditions
and associate an IS service with the mocked API. When an IS service is associated with a mocked
API, the associated IS service must adhere to the apigateway.specifications:mockService specification.

At runtime, when the mocked API is invoked, instead of calling the native API, API Gateway
returns the mocked response to the consumer based on the following priorities:

1. If any of the conditions for the invoked operation satisfies, API Gateway returns the associated
mocked response.

2. If any of the conditions for the invoked operation is not satisfied, and if an IS service is
configured for the API, then API Gateway invokes the IS service and returns the IS service
response.

3. If any of the conditions for the invoked operation is not satisfied, and if an IS service is not
configured for the API, then API Gateway returns the default mocked response.

API mocking is supported only for SOAP and REST APIs.

Note:
Youmust have the API Gateway's manage APIs or activate/deactivate APIs functional privilege
assigned to perform API mocking.

Enabling API Mocking
You can enable or disable API mocking through the API details page.

Note:
You cannot enable or disable API mocking for active APIs.

To enable API mocking

1. Click APIs in the title navigation bar.

2. Select the required API from the list of available APIs.

The API details page for the selected API appears.

3. Click and select Enable mocking.

This generates the default mock responses.

Modifying API Mocking Details

You must select Enable mocking from the API details page.

You can modify API mocking details, as required, from the API details page.

106 webMethods API Gateway User's Guide 10.11

3 APIs

To modify API mocking details

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Click the required API.

The API details page appears.

3. Click Edit.

4. Click API mocking.

5. Specify the following information in the ESB service section:

DescriptionField

Specifies the webMethods Integration Server service to be
invoked.

Invoke service

Note:
The webMethods Integration Server service must be
running on the same Integration Server as API Gateway.

Type the user name you want API Gateway to use to invoke
the IS service.

Run as user

6. Select the operation that you want to modify from the Mocked responses section.

7. Click Add Response if you want to add a response and select the status code from the
drop-down.

8. Click .

This adds the status code created to the existing status code list.

9. Select the status code you want to modify.

10. Click + Add Response Header and provide the following information to add the required
response headers:

DescriptionField

Specify the HTTP header key that would be contained in the
header of HTTP response.

Header key

webMethods API Gateway User's Guide 10.11 107

3 APIs

DescriptionField

Specify the HTTP header value that would be contained in
the header of HTTP response.

Header value

You can add more response headers by clicking .

11. Click + Add Content-type to add a content-type to the status code selected and provide the
following information:

DescriptionField

Select the content-type to be added to the selected status code
from the drop-down list.

Content type

Specify a mock response payload for the content-type
selected.

Mock payloads

You can add more content-types by clicking Add .

12. Click + Add Conditions to add a condition to the operation in the resource:

DescriptionField

Specify the name for the condition.Condition name

Select the type to which the condition is to be applied. The
available options are:

Condition parameter

Body

Header

Query parameter (Applicable only for REST APIs)

The key can be a string for the header and query parameter
and for body it can be a JSON path or an XML path.

Key

Note:
The XML path must not contain namespace prefixes.

The value of the condition. Additionally, you can type an *
(asterisk) to ignore the value specified in this parameter and

Value

the condition is satisfied based on the value specified in the
Key parameter.

Select the status code from the drop-down list.Status code

Note:

108 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionField
You must enable the property Send native provider
fault in the Administration > General > API fault
section in order to have correct mock response for
status code 506.
This field is not applicable for APIs when they
participate in API mashups.
While invoking an API remember to use the query
parameter expectedStatusCode in order to have correct
mock responses for status codes 100 and 202.

Add a response header to the resource selected by providing
the following information:

+ Add Response Header

Header key. Specify the HTTP header key that would
be contained in the header of HTTP response

Header value. Specify theHTTPheader value thatwould
be contained in the header of HTTP response.

Add a content-type to the status code selected by providing
the following information:

+ Add Content-type

Content type. Select the content-type to be added to the
selected status code from the drop-down list.

Mock payload. Specify a mock response payload for the
content-type selected.

You can add more conditions by clicking Add .

13. Click Save.

Custom Replacer
API Gateway allows you to send a dynamic custom response instead of a static mocked response
to the consumerwhen themockedAPI is invoked. In themocked response, you can specifymultiple
custom replacers. Custom replacer is used to replace the custom variables with the values defined
in the request headers, query parameters, and request body. The custom replacer is available in
the ${request.ConditionParameter.Key|JsonPath|XPath} format. The custom replacers are:

${request.header.headerKey}: To replace the value of the headerKey from the request headers.

${request.query.queryKey}: To replace the value of the queryKey from the query parameters
in the request URL.

${request.body.JsonPath|XPath}: To replace the value of the JsonPath|XPath from the request
body.

webMethods API Gateway User's Guide 10.11 109

3 APIs

Attaching Documents to an API

Pre-requisites:

You must have the Manage APIs functional privilege assigned to perform this task.

You can associate an input document that includes the RAML, Swagger, or WSDL specification,
and additional documents such as programming guides, sample code, script files, and project plan
with an API. For example, SOAP APIs can contain external documents such as Functional
Requirements, Error Messages, Release Notes, and so on.

When attaching a document to an API, keep the following points in mind:

You cannot attach ormodify a document to theAPI if it is in active state. You have to deactivate
the API before attaching or modifying it.

API Gateway relies on file extensions to determine a file's type. When you upload a file from
your local machine to the API, be sure the name of the file on your local machine includes a
file extension so that API Gateway can determine the file's type and attach it correctly to the
API.

You cannot upload types of files that are restricted for attaching as the input document to the
API.

API Gateway provides the ability to restrict certain kinds of files from being uploaded to the
API, based on the file extension. The list of restricted files may vary depending on the file
extensions configured in the apiDocumentsRestrictedExtensionproperty underAdministration
> Extended settings section.

When you try to upload a file type that is restricted, API Gateway prompts you with an error
message.

By default, several standard file extensions are blocked in API Gateway, including any file
extensions that are treated as executable files byWindows Explorer. The file extensions blocked
by default are - .bat, .bin, .dll, and .exe.

You cannot upload files that exceed the maximum allowed size for the API.

API Gateway provides the ability to limit the maximum file upload size to the API. The
maximum file upload size is configured in the apiDocumentsUploadSizeLimitInMB property
under Administration > Extended settings section.

When you try to upload a file that exceeds themaximumfile upload size, APIGateway prompts
you with an error message.

You can rename an uploaded document. When you rename a document, you can only modify
the display name of the document and not the document itself. If you want to modify the
document as well, you must delete the file attachment, and attach the latest file.

To attach a document

1. Click APIs in the title navigation bar.

110 webMethods API Gateway User's Guide 10.11

3 APIs

A list of all registered APIs appears.

2. Select the required API.

The API details page appears.

3. Click Edit.

4. Click Documentation.

5. Click Browse to select a file and upload it.

6. Rename the document in the Display name field as required.

This is the display name of the document in the API details page.

7. Click Add.

The attached document is listed in a table. You can edit and delete the document by clicking

the and icons.

8. Repeat steps 5 to 7 for each document that you want to attach to the API.

9. Click Save.

SOAP to REST Transformation

SOAP APIs are commonly used to expose data within enterprises. With the rapid adoption of the
REST APIs, API providers must be able to provide RESTful interfaces to their existing SOAPAPIs
instead of creating newRESTAPIs. Using theAPIGateway SOAP to REST transformation feature,
the API provider can either expose the parts of the SOAP API or expose the complete SOAP API
with RESTful interface. API Gateway allows you to customize the way the SOAP operations are
exposed as REST resources. Additionally, the Swagger or RAML definitions can be generated for
these REST interfaces.

Activating SOAP to Rest Transformation
You must have the Manage APIs functional privilege assigned to perform this task.

To activate SOAP to REST transformation for a SOAP operation

1. Click APIs in the title navigation bar.

2. Select the required API from the list of available APIs.

The API details page for the selected API appears.

webMethods API Gateway User's Guide 10.11 111

3 APIs

3. Click Edit.

4. Click REST transformation.

A list of SOAP operations already exposed to the consumers as well as to be transformed from
SOAP to REST appears. By default, all the SOAP operations are in inactive state.

5. Click to activate the SOAP to REST transformation for the SOAP operations.

Alternatively, you can activate the SOAP to REST transformation formultiple SOAP operations
simultaneously by clicking the Transform all operations activation toggle button.

6. Select the operation to edit the SOAP operations.

7. In the Transformation Configuration section, configure the following settings:

Use Schema for XML to JSON transformation

If you select this checkbox, the XML schema (present in the WSDL) defines the data type
of the entity. The data type can either be String, Int, Double, Float, or Boolean. In the
response from the native server, if an entity is of a different data type other than the ones
defined in the XML schema, API Gateway returns it is as a String data type and not an
error.

If you do not select this checkbox, API Gateway does not honor the XML schema during
transformation. Instead, API Gateway derives the data type of entities based on the native
service response.

By default, this checkbox is not selected for any SOAPAPI. If you havemigrated yourAPIs
from another instance of APIGateway , the value of this checkboxwill depend on the value
of the Extendedpropertypg.soapToRest.typeConvertorEnabled in the sourceAPIGateway
of themigratedAPIs. Thepg.soapToRest.typeConvertorEnabledproperty specifieswhether
the key values in a SOAP request must be converted to their primitive type when a SOAP
API is transformed to REST API.

Note:
Date and Enumeration data types are also considered to be strings. When API Gateway
cannot determine the data type of any value, it considers the data type to be a string.

Use default values from schema

If you select this checkbox, API Gateway considers the default values provided in the XML
schema, if there are no values present in a request or response. If the request or response
has some value, this value overrides the default value from XML schema.

If you do not select this checkbox, APIGateway does not consider the default values present
in the XML schema even if there are no values present in the request or response.

Remove operation name in response

112 webMethods API Gateway User's Guide 10.11

3 APIs

If you select this checkbox, the root node is not passed as a part of SOAP to REST response
and only the JSON is passed. Root node is generally the SOAP operation name or SOAP
operation response name, present in the XML schema. This check box is applicable only
to JSON responses.

If you do not select this checkbox, JSON response is accompanied by the root node. By
default, this check box is not selected for any SOAP API.

8. Click Save.

The API details page for the selected API appears.

9. Click REST transformation.

A list of REST resources for the SOAP operations appears. Click on each resource to view the
details that are available as REST definitions.

Modifying the REST Definitions for SOAP Operations
You must have the Manage APIs functional privilege assigned to perform this task.

To modify the REST definitions for SOAP operation

1. Click APIs in the title navigation bar.

2. Select the required API from the list of available APIs.

The API details page for the selected API appears.

3. Click Edit.

4. Click REST transformation.

A list of SOAP operations already exposed to the consumers as well as to be transformed from
SOAP to REST appears.

5. Click to activate SOAP to REST transformation, for the required operation.

Alternatively, you can activate the SOAP to REST transformation for all the SOAP operations
simultaneously by clicking the Transform all operations activation toggle button.

webMethods API Gateway User's Guide 10.11 113

3 APIs

6. Provide the following information:

DescriptionField

Name of the resource.Resource name

The existing name of the SOAP operation automatically
appears, you can modify this name.

Path of the resource.Resource path

The existing path of the SOAP operation automatically
appears, you can modify this path.

Tags to add to your operation.Tags

Select tags for the operation from the drop-down menu.

Description of the resource.Description

A few lines to describe the resource. This is an optional field.

7. Click + Add Parameter and provide the following information to add the required resource
level parameters:

DescriptionField

Name of the parameter.Name

Description of the parameter.Description

Specifies the parameter type.Type

Available values are: Path, Query-string.

Specifies the data type.Data type

Available values are: String, Date, Date time, Integer,
Double, Boolean.

114 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionField

Specifies the parameter is required if selected.Required

Applicable to parameters of type query. The query parameter
value can take comma separated array values.

Repeat

Specifies the possible value.Value

Specifies how the request parameter must be mapped to the
SOAP payload that is sent to the native SOAP service. For
example,

XPath

/soapenv:Envelope/soapenv:Body/axis:sayHello/axis:name,
or //axis:name (If the SOAP request has only one element
such as name).

Specifies the namespace prefix of the element that appears
in the XPath.

Namespace prefix

Specifies the namespace URI for the XPath element.Namespace URI

You can add more namespace prefixes and namespace URIs

by clicking .

You can add more parameters by clicking .

8. Select one of the availablemethods:GET,POST,PUT, orDELETE. By default,POST is selected.

By default, API Gateway generates the sample JSON request and response based on the XML
schema definitions of the SOAP API. Additionally, you can provide a schema and modify the
generated sample.

9. Click Add Request and provide the schema and a sample for the content-type.

10. ClickAdd Response and select the status code from the drop-down and provide a description
for the status code selected.

Additionally, to add a content-type to the status code selected, click the status code to which
you want to add a content-type and select the Content type. Provide a schema and a sample
for the content-type selected. By default, status code 200 is automatically generated by the
system.

11. Click Save.

Supported Content-types and Accept Headers
The following table specifies the content-type available for the HTTP methods:

webMethods API Gateway User's Guide 10.11 115

3 APIs

Accept HeadersContent-typesHTTP
Method

application/jsonapplication/x-www-form-urlencodedGET

application/xml or text/xml

multipart/form-data or multipart/mixed

application/jsonapplication/jsonPOST

application/xml or text/xmlapplication/xml or text/xml

multipart/form-data or multipart/mixedmultipart/form-data or multipart/mixed

application/x-www-form-urlencoded

application/jsonapplication/jsonPUT

application/xml or text/xmlapplication/xml or text/xml

multipart/form-data or multipart/mixedmultipart/form-data or multipart/mixed

application/x-www-form-urlencoded

application/jsonapplication/x-www-form-urlencodedDELETE

application/xml or text/xml

multipart/form-data or multipart/mixed

Note:
If a content-type is not specified, then the request verifies the value of the Set Media Type
parameter. If the value of the Set Media Type parameter is not defined, then by default, for
POST and PUT HTTP methods, the application/json content-type is used. Whereas for GET
and DELETE HTTP methods, the application/x-www-form-urlencoded content-type is used.

REST API Endpoints
After providing the information required for the SOAP to REST transformation and activating the
API, the API can be invoked as either SOAP or REST API.

The REST transformation of the SOAPAPI does not change the API name. The only change to the
SOAP invocation is that the resource-path-for-the-operation is appended:

/ws/API-NAME/version-number/resource-path-for-the-resource

Note:
The REST-enabled SOAP API cannot be invoked using the /rest directive.

116 webMethods API Gateway User's Guide 10.11

3 APIs

Samples for REST Request

application/json

The following table provides the samples of the REST request for the application/json content-type
application and the equivalent SOAP request after transformation from REST to SOAP:

Equivalent SOAP RequestRequest
<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<axis:name>user1/axis:name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

{
"name":"user1"

}

Consists of only one
element (qualified
namespaces)

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<name>user1</name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

{
"name":"user1"

}

Consists of only one
element
(non-qualified
namespaces)

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<addInts>

<a>12
</addInts>
</soapenv:Body>

</soapenv:Envelope>

{
"a":"1",
"b" : 2

}

Consists ofmultiple
elements

application/xml and text/xml

The following table provides the samples of the REST request for the application/xml and text/xml
content-type application and the equivalent SOAP request after transformation from REST to
SOAP:

webMethods API Gateway User's Guide 10.11 117

3 APIs

Equivalent SOAP RequestRequest
<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<axis:name>user1</axis:name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

<axis:name xmlns:
axis=
"http://ws.apache.org/axis2"
>user1</axis:name>

Consists of only
one element
and namespace
added by the
client

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<axis:name>user1</axis:name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

<someOtherNamespace
:name xmlns:toMed=
"http:
//someOtherNamespace"
>user1
</someOtherNamespace
:name>

Consists of only
one element
and client does
not send the
Namespace

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:axis="http://ws.apache.org/axis2">
<soapenv:Body>

<axis:sayHello>
<axis:name>user1</axis:name>

</axis:sayHello>
</soapenv:Body>

</soapenv:Envelope>

<toMed:name xmlns:
toMed="http://tOMed"
>user1</toMed:name>

Consists of only
one element
and the client
sends a
different
namespace to
API Gateway

<soapenv:Envelope xmlns:soapenv=
"http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<addInts>

<a>23
</addInts>

</soapenv:Body>
</soapenv:Envelope>

<addInts>
<a>2
3
</addInts>

Multiple XML
elements

Path and Query Parameters

The following table provides the samples of the REST request having path and query parameters
and the equivalent SOAP request after transformation from REST to SOAP:

Equivalent SOAP RequestRequest
<ws:addInts
xmlns:ws="http:test">
<num1>10</num1></ws:addInts>s

/ws/CalcService/
add/{num1}

or

Simple query or
path parameter

/ws/CalcService/
add?num1=10

118 webMethods API Gateway User's Guide 10.11

3 APIs

Equivalent SOAP RequestRequest
<ws:addInts
xmlns:ws="http:test">
<num1></num1><num2></num2>
</ws:addInts>

/ws/CalcService/
add/{num1}/{num2}

or

Multiple query or
path parameters

/ws/CalcService/
add?num1=10&num2=3

or
/ws/CalcService/
add/{num1}&num2=3

<ws:addInts
xmlns:ws="http:test">
<num1></num1> <num2></
num2></ws:addInts>

/ws/CalcService/add/
{num1}/anotherNumber/{num2}

/ws/CalcService/
add/{num1}/
anotherNumber/{num2}

Hierarchical
elements

multipart/form-data

If you send the multipart/form-data content-type as the REST request, then you have to optimize
the method to be used. This optimization is based on the value specified in the SOAP Optimization
Method parameter available in Routing policy. The default optimization type is Message
Transmission Optimization Mechanism (MTOM). For example, API Gateway converts REST
requests with multipart/form-data and multipart/mixed types as follows:

1. The Multipurpose Internet Mail Extensions (MIME) parts that have a content ID or name that
match the elements of type base64Binary or hexBinary in the schema are added as attachments
to the outbound request.

2. Parts other than the content ID or name types are converted into XML depending on the
content-type of the MIME part. The application/xml and application/json content-types are
converted. If API Gateway is unable to process the MIME part, it wraps the MIME part inside
an XML element with the name of the content ID.

Limitations
The following limitations apply when you perform a SOAP to REST transformation:

When the API provider defines the mapping for the SOAP operation to the REST resource or
method, API Gateway allows the provider to specify either the path and the query parameters
or the body but not both. These mappings are used when transforming the incoming REST
request to the SOAP request.

If both path and query parameters and body are sent in the incoming REST request, then the
path and the query parameters are ignored.

webMethods API Gateway User's Guide 10.11 119

3 APIs

If your REST resource accepts the text/xml content-type, then you cannot modify the default
resource path and resource name automatically generated by the system. This name must be
same as the SOAP operation name. However, this limitation is not applicable for other
content-types.

The HTTP method filters of the global policy are not applicable to the REST transformed
method of the SOAP API.

The REST (REST transformed SOAP operations) resources do not appear as general REST
resources when filtered in the Scopes section of the API in API Gateway.

You cannot apply the Inbound Authentication-Messagepolicy to the SOAPoperation enabled
as REST.

The SOAP services that haveWeb Services InteroperabilityOrganization (WS-I) non-compliant
WSDLs cannot be REST-enabled.

CentraSite Provided APIs

When you want to perform governed API development with CentraSite and API Gateway, you
can create an API in CentraSite defining the design-time aspects. The API can be deployed to the
API Gateway. In such cases, you can also see that particular CentraSite destination is being
configured in the API Gateway. The API details for the CentraSite provided APIs are set as
read-only. However, you can edit the run-time aspects such as scope and policies.

Note:
When you remove the CentraSite destination from the API Gateway, this implies that the API
is provided by the API Gateway and therefore the details of API are not read-only. You can edit
them as required.

When you deploy

A REST API from CentraSite, then you cannot modify the Basic information, Technical
information, Resource and methods, and Components sections. The above mentioned
sections are marked as read-only. However, you can modify the fields in the API Mocking
and Documentation sections.

A SOAP API from CentraSite, then you cannot modify the Basic information, Technical
information, Resource and methods, and Components sections. The above mentioned
sections are marked as read-only. However, you can modify the fields in the REST
transformation,API Mocking, and Documentation sections.

AnODataAPI fromCentraSite, then you cannotmodify theBasic informationand Technical
information sections. The above mentioned sections are marked as read-only. However, you
can modify the fields in the Documentation section.

For more information about Modifying API, see “Modifying API Details” on page 101.

120 webMethods API Gateway User's Guide 10.11

3 APIs

Versioning APIs

API Gateway supports the creation of new API versions from the existing versions. The new API
has the same metadata but with an updated version. The version can either be a number or a
string.

The API details page has a drop-down list that displays all the existing API versions. You can
create a new version of an API and retain applications that are associated with older versions of
the API. When an API is updated, it retains the Expose to consumers settings, the existing scope
definitions, the configured policies, and the REST-enabled path configurations for SOAP API.

When you create a new version, the newer version is assigned to the teams of the older version
by default. You can later change the teams, if required.

Creating New API Version
Youmust have the API Gateway'smanageAPIs functional privilege assigned to perform this task.

You can create a new version of an API from the latest version available for the API. For example,
if the existing version is 1.1 for an API, you can create a version 1.2. If you want to create a version
1.3, you can only create it from the latest version 1.2 and not from 1.1. However, you can delete
the intermediate versions. Additionally, even though the owner of the older API version is a
different provider, when you create a new version of the API, you are the owner of the newly
created version of the API. The new API version is in inactive state, irrespective of the state of the
API from which it was versioned.

To create a new version

1. Click APIs in the title navigation bar.

2. Select the required API from the list of APIs.

The API details page for the selected API appears.

3. Click and select Create new version.

4. In the Version field, type the new version for the API.

5. Clear the Retain applications checkbox if you do not want to retain applications that are
associated with older versions of the API.

6. Click Create.

The Version drop-down lists the newly created API version in latest to older order in the API
details page. The corresponding API details page is displayed when you select any particular
version.

webMethods API Gateway User's Guide 10.11 121

3 APIs

Note:
The version is appended to the Gateway endpoint(s) URL once the API is activated and this
can be seen in the Technical information section of the API details page. When a client
application invokes theAPIwithout the version in the endpoint, APIGateway invokes the latest
version.

API Scopes

API definitions can be complex and span across multiple REST resources and methods, or SOAP
operations for an API. To reduce the complexity of an API definition, you can define scopes and
impose a set of policies on each scope to suit your requirements.

A scope represents a logical grouping of REST resources, methods, or both, and SOAP operations
in an API. You can then enforce a specific set of policies on each individual scope in the API.

An API can have a set of declared scopes. The available scopes for an API are listed in the Scopes
tab of the API details page.

Creating an API Scope
Scopes enable you to group a set of REST resources, methods, or both, and SOAP operations for
an API.

A scope consists of a name, description, and zero or more resources, methods, or operations. An
API can have zero or more scopes.

You can define a set of policies and configure its properties for each individual scope. These policies
apply to each of the resources, methods, or operations that are associated to the scope.

Instructions throughout the remainder of this guide use the term scope-level policywhen referring
to a set of policies configured for an individual scope of the API.

Note:
Ensure that you have a unique set of resources, methods, or operations in every scope in the
API.

To create a scope

1. Click APIs in the title navigation bar.

A list of APIs available in API Gateway appears.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway prompts you to deactivate it.

122 webMethods API Gateway User's Guide 10.11

3 APIs

4. Click the Scopes tab.

This displays a list of scopes available in the API.

5. In the List of scopes section, click Add scope.

6. In the Basic information section, provide the required information for each data field that
appears:

DescriptionField

Name of the scope. A scope name must be unique within
an API.

Name

Note:
API Gateway automatically adds the name New Scope to
the Name field. You can change the name of the scope to
suit your needs. But you cannot leave this field empty.

Description of the scope.Description

7. Applicable only for REST APIs. In the Resources and methods section, select the resources,
methods, or both, you want to associate to this scope.

When selecting a resource ormethod for the scope definition, you can select whether youwant
some or all of the methods within that resource to be selected as well.

8. Applicable only for SOAP APIs. In the Operations section, select the operations you want to
associate to this scope.

9. Click Save.

The scope is created and listed in the List of scopes section.

Post-requisites:

Activate the API when you are ready to put it into effect.

To apply and configure policies for this API scope, see “ Creating a Scope-level Policy” on
page 376.

Viewing List of API Scopes and Scope Details

The Scopes tab in the API details page displays a list of all available scopes in the API.

In addition to viewing the list of scopes, you can also examine and modify the details of a scope,
and delete a scope in the Scopes tab.

To view the scope list and properties of a scope

webMethods API Gateway User's Guide 10.11 123

3 APIs

1. Click APIs in the title navigation bar.

A list of APIs available in API Gateway appears.

2. Click the name of the required API.

This opens the API details page.

3. Click the Scopes tab.

This displays a list of scopes available in the API.

4. In the List of scopes section, click the name of the scope you want to examine.

This opens the details of the scope. The scope details appear in the following sections:

Basic information: This section contains a summary of basic information such as name and
description of the scope.

Resources and methods: Applicable only for REST APIs. This section contains a collection
of REST resources, methods, or both, that are associated to the scope.

Operations: Applicable only for SOAP APIs. This section contains a collection of SOAP
operations that are associated to the scope.

Modifying API Scope Details

You use the Scopes tab in the API details page to examine and modify the details of a scope.

To modify the properties of a scope

1. Click APIs in the title navigation bar.

A list of APIs available in API Gateway appears.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Scopes tab.

This displays a list of scopes available in the API.

5. In the List of scopes section, click the name of the scope you want to modify.

124 webMethods API Gateway User's Guide 10.11

3 APIs

This opens the details of the scope. The scope details appears in the following sections:

Basic information: This section contains a summary of basic information such as name and
description of the scope.

Resources and methods: Applicable only for REST APIs. This section contains a collection
of REST resources, methods, or both, that are associated to the scope.

Operations: Applicable only for SOAP APIs. This section contains a collection of SOAP
operations that are associated to the scope.

6. Modify the basic properties, applicable resources, methods, or operations of the scope.

7. Click Save.

Activate the API, if it is not active, to put it into effect.

Deleting an API Scope
You delete a scope to remove it from the API permanently.

When a scope is deleted from the API definition, API Gateway deletes the existing associations
between the scope and the collection of resources, methods, or operations in the API. But, the
collection of resources, methods, or operations continue to exist in the API.

To delete a scope

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Scopes tab.

This tab displays a list of scopes available with the API.

5. In the List of scopes section, locate the name of the scope you want to delete.

6. Click the Delete () icon next to the scope name.

7. Click Yes in the confirmation dialog.

webMethods API Gateway User's Guide 10.11 125

3 APIs

The scope is removed from the List of scopes section.

8. Click Save to save the updated API.

Activate the API, if it is not active, to put it into effect.

Example: Usage Scenarios of API Scopes
API Provider can restrict the enforcement of policies at the resource-level or method-level for a
REST API, and at the operations-level for a SOAP API. This policy enforcement on the resources,
methods, or operations of the API will apply in addition to the default enforcement of policies at
the global-level and the user-defined enforcement of policies at the API-level.

Consider you have a REST API, for example, PhoneStore API, with a collection of resources and
methods.

Supported MethodsResource PathResource Name

GET/phones/ordersResource A

POST

GET/phones/orders/{order-id}Resource B

PUT

DELETE

GET/phones/orders/{order-id}/paymentdetailsResource C

POST

The following section demonstrates the application of scopes and the policy enforcement using
Resource C: /phones/orders/{order-id}/paymentdetails of the PhoneStore API.

You can create scopes in the PhoneStore API, and define the individual scopes with a specific set
of resources, methods, or both.

Applied MethodApplied ResourceScope Name

Resource C:
/phones/orders/{order-id}/paymentdetails

PAYMENT Scope

POSTResource C:
/phones/orders/{order-id}/paymentdetails

WRITE Scope

Assume you have an API-level policy which enforces an Identify & Authorize policy with HTTP
BasicAuthentication for the PhoneStoreAPI. Now, youmight need to have different authentication
mechanisms for different methods and resources (collectively, scopes) of the PhoneStore API,
depending on the level of access you need.

126 webMethods API Gateway User's Guide 10.11

3 APIs

For example, you might want to enforce an Identify & Authorize policy for the Resource C in
PAYMENT Scope to enforce secured access to the data. You might also want to apply an Identify
& Authorize policy with API Key authentication and Traffic Optimization policy (with 5 API
invocations per minute), in particular, for the POST method of the Resource C in WRITE Scope to
enforce a higher-level of secured access and manipulation of the REST data.

Applied PoliciesAPI-level / Scope-level Policy

Identify & Authorize policy with HTTP Basic
Authentication

API-level Policy

Identify & Authorize policyScope-level Policy for PAYMENT Scope

Identify & Authorize policy with API KeyScope-level Policy for WRITE Scope

Traffic Optimization

The API Scopes definition looks like this:

Applied PoliciesAPI-level / Scope-level Policy

Identify & Authorize policy with HTTP Basic
Authentication

API-level Policy

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for PAYMENT Scope

Identify & Authorize policy

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for WRITE Scope

Method: POST

Identify & Authorize policy with API Key

Traffic Optimization

The precedence of the policy enforcement effective for an API at run-time is as follows:

1. Global Policy Enforcement

2. Method-level Policy Enforcement (RESTAPIs) -OR-Operation-level Policy Enforcement (SOAP
APIs)

3. Resource-level Policy Enforcement (REST APIs)

4. API-level Policy Enforcement

The specific aspect of processing during the handling of an API invocation at run-time in API
Gateway can be best understood with the following scenarios:

Scenario A: Invoke GET method on the Resource C: /phones/orders/{order-id}/paymentdetails

Global Policy: Not applicable

webMethods API Gateway User's Guide 10.11 127

3 APIs

Method-level Policy: Not applicable

Resource-level Policy(s): Identify & Authorize

API-level Policy: Identify & Authorize policy with HTTP Basic Authentication

As per the precedence of policy enforcement, the Inbound Authentication - Transport at the
resource-level and the Identify&Authorize policywithHTTPBasicAuthentication at theAPI-level
are enforced at run-time.

The effective policy set enforced on the API for the GET method at run-time includes:

Identify & Authorize

Identify & Authorize policy with HTTP Basic Authentication

Scenario B: Invoke POST method on the Resource C: /phones/orders/{order-id}/paymentdetails
in WRITE Scope

Global Policy: Not applicable

Method-level Policy(s): (1) Identify & Authorize policy with API Key (2) Traffic Optimization

Resource-level Policy(s): Identify & Authorize

API-level Policy: Identify & Authorize policy with HTTP Basic Authentication

As per the precedence of policy enforcement, the Identify & Authorize policy with API Key at the
method-level takes precedence over the Identify&Authorize policywithHTTPBasicAuthentication
at the API-level, and is enforced at run-time.

The effective policy set enforced on the API for the POST method at run-time includes:

Identify & Authorize

Identify & Authorize policy with API Key

Traffic Optimization

Now, consider that you apply an active Global Policy that has the Identify & Authorize policy
with Hostname Address for all REST APIs (including our PhoneStore API).

Scenario C: Invoke POST method on the Resource C: /phones/orders/{order-id}/paymentdetails
in WRITE Scope

Global Policy: Identify & Authorize policy with Hostname Address

Method-level Policy(s): (1) Identify & Authorize policy with API Key (2) Traffic Optimization

Resource-level Policy(s): Identify & Authorize

API-level Policy: Identify & Authorize policy with HTTP Basic Authentication

As per the precedence of policy enforcement, the Identify & Authorize policy with Hostname
Address applied through the global policy takes precedence over every other Identify &Authorize
policy that is applied at the method-level and the API-level, and is enforced at run-time.

128 webMethods API Gateway User's Guide 10.11

3 APIs

The effective policy set enforced on the API for the POST method at run-time includes:

Identify & Authorize

Identify & Authorize policy with Hostname Address

Traffic Optimization

Resolving Scope Conflicts

When you save anAPI, APIGateway combines the scopes specifiedwith the set of policies defined
at the API-level, and on saving the API, API Gateway applies the policies to the API at various
enforcement levels. API Gateway validates the scope list to ensure that it contains no conflicting
or incompatible policies. If the list contains conflicts or inconsistencies, API Gateway prompts you
with an error message.

Consider that you modify the existing UPDATE scope to include a POST method for Resource C.
The API Scopes definition now looks like this:

Applied PoliciesAPI-level / Scope-level
Policy

Identify & Authorize policy with HTTP Basic AuthenticationAPI-level Policy

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for PAYMENT
Scope

Identify & Authorize policy

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for WRITE Scope

Method: POST

Identify & Authorize policy with API Key

Traffic Optimization

Resource C: /phones/orders/{order-id}/paymentdetailsPolicy for UPDATE Scope

Method: POST

Identify & Authorize policy with API Key

Scenario D: Save the updated PhoneStore API.

Global Policy: Not applicable

Method-level Policy(s): (1) Identify & Authorize policy with API Key (2) Identify & Authorize
policy with IP Address Range (3) Traffic Optimization

Resource-level Policy(s): Identify & Authorize

API-level Policy: Identify & Authorize policy with HTTP Basic Authentication

As per the precedence of policy enforcement, the Identify & Authorize policy at the method-level
in WRITE and UPDATE Scopes take precedence over the Identify & Authorize policy at the

webMethods API Gateway User's Guide 10.11 129

3 APIs

API-level. But the Identify & Authorize policy with the API Key and IP Address Range
authentications that are applied at the method-level results in a policy conflict.

To resolve the conflicts, you can choose one of the following workaround:

Option 1: Remove the existing association between the POST method and the WRITE Scope
or UPDATE Scope through the API Scope details.

Option 2: Delete the WRITE Scope or UPDATE Scope.

Option 3: Remove the Identify & Authorize policy from theWRITE Scope or UPDATE Scope.

Exposing a REST API to Applications

The API Provider can restrict the exposure of specific resources and methods of a REST API to
other applications.

Consider you have a native REST API created in API Gateway with resources - Resource A,
Resource B, and Resource C. You might want to expose Resource A and Resource C, and restrict
the visibility of Resource B to other applications. You can use the Expose to consumers button
to switch on the visibility of Resource A and Resource C and switch off the visibility of Resource
B as required. Similarly, you can restrict the visibility of one ormoremethodswithin each individual
resource.

If an application attempts to invoke the Resource C in the above REST API, API Gateway returns
a HTTP response code 404.

By default, the Expose to consumers button is switched on for all resources and methods of the
REST API. Once the API is activated, all of its resources and methods are exposed to registered
applications. If you do not want a particular set of resources and methods, or a set of methods in
a particular resource to be hidden for registered applications, switch off theExpose to consumers
button in the REST API definition.

Note:
Be aware that API Gateway does not allow you to activate a REST API if none of the methods
in the API are selected for exposing to other applications. You must select at least one method
of the REST API to enforce runtime invocations.

To expose a set of resources and methods of the REST API

1. Click APIs in the title navigation bar.

A list of APIs available in API Gateway appears.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

130 webMethods API Gateway User's Guide 10.11

3 APIs

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click Resources and methods.

This displays a list of resources and methods available in the API.

a. To select a resource, switch on the Expose to consumers button next to the resource URI.

You can select one or more resources to expose to other applications.

b. To select a method within the resource, click on the resource path. In the expanded list of
methods, switch on the Expose to consumers button next to the method name.

You can select one or more methods to expose to other applications.

5. Click Save to save the updated API.

Activate the API, if it is not active, to put it into effect.

Exposing a SOAP API and GraphQL API to Applications

The API Provider can restrict the exposure of specific operations of a SOAP API and GraphQL
API to other applications.

Consider you have a native SOAP API or GraphQL API created in API Gateway with operations
- Operation A, Operation B, and Operation C. You might want to expose the Operation A and
OperationC, and restrict the visibility of Operation B to other applications. You can use theExpose
to consumers button to switch on the visibility of Operation A and Operation C and switch off
the visibility of Operation B, as required.

If an application attempts to invoke the Operation B in the SOAP API or GraphQL API, API
Gateway returns a HTTP response code 404 for SOAP API and response code 400 for GraphQL
API.

By default, the Expose to consumers action is switched on for all operations of the SOAP API
and GraphQL API. Once the API is activated, exposed operations are available for use in the
registered applications. If you do notwant a particular set of operations to be hidden for registered
applications, switch off Expose to consumers in the SOAP API or GraphQL API definition.

Note:
APIGatewaywill not allowyou to activate a SOAPAPI orGraphQLAPI if none of the operations
in the API are selected for exposure to other applications. Youmust select at least one operation
of the SOAP API or GraphQL API to enforce runtime invocations.

To expose a set of operations of the SOAP API or GraphQL API

1. Click APIs in the title navigation bar.

This displays a list of APIs available in API Gateway.

webMethods API Gateway User's Guide 10.11 131

3 APIs

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click Operations.

This displays a list of operations available in the API.

To select an operation, switch on the Expose to consumers action next to the operation URI.
You can select one or more operations to expose to other applications.

5. Click Save to save the updated API.

Activate the API, if it is not active, to put it into effect.

API Grouping

You can group APIs based on various categories. Categories help consumers locate APIs easily.
For example, if you are offering APIs to help your consumers manage their sales and ordering
better, classifying the APIs under Sales and Ordering helps them locate these APIs easily.

The default groups available under which you can group the APIs are Finance Banking and
Insurance, Sales and Ordering, Search, and Transportation and Warehousing. If you want
to include more groups you can update the property apiGroupingPossibleValues under
Administration > Extended settings that enables API grouping. You canmodify the existing list
of groups by deleting or adding new group names as comma separated values in this field. Ensure
that the group name does not contain a comma as part of the name.

API grouping can be applied in one of these ways:

While creating an API from scratch

While editing an API

You can select one or more groups in the API grouping field. When an API is published to API
Portal, the published APIs in API Portal are grouped as per the group assigned.

API Tagging

Tags arewords or phrases that act as keywords for categorizing, identifying, and organizingAPIs.

In API Gateway, you can assign tags to APIs, and their resources, methods, or operations. Tags
help to logically categorize APIs in different ways, for example, by usage, owner, consuming
application, or other criteria. Tags are especially useful when there are multiple APIs of the same
type - it enables to quickly identify a specific API based on the tag assigned to it. For example, you

132 webMethods API Gateway User's Guide 10.11

3 APIs

can assign the tag GET-Methods to specificGETmethods in different RESTAPIs, and use it to search
for the list of REST APIs with the GET-Methods tag in API Gateway.

You can use tagging, for example, to do the following:

Tag and untag REST APIs in API Gateway.

Use tags to search for multiple resources andmethods across the REST APIs that are available
in API Gateway.

Use tags to search for multiple operations across the SOAP APIs that are available in API
Gateway.

You can assign one or more tags, remove a tag, and view the tags on the API details page. When
a tagged API is published to API Portal, the published API in API Portal is tagged with the same
tag defined in API Gateway.

Adding Tags to an API
Pre-requisites:

You must have the Manage APIs functional privilege assigned to perform this task.

Tags are not automatically assigned to APIs, resources, methods, or operations. You can add one
or more tags, and you can remove tags from an API, resource, method, or operation at any time.

You can define a set of consistent tags that meets your needs for each API, resource, method, or
operation. Using a consistent set of tags makes it easier to manage the APIs, resources, methods,
or operations. You can search the APIs, resources, methods, or operations based on the tags you
add. To add an existing tag, you can use the typeahead search support that lists the existing tags,
which match the character you type. You can restrict the number of existing tags that display,
which match the typeahead character you provide, by configuring the extended setting
tagsTypeAheadSearchResultSize in the Administration > General > Extended settings section.
For details about configuring extended settings, see webMethods API Gateway Administration.

When tagging an API, keep the following points in mind:

You can assign tags to the following API types and their components:

SOAP API. You can assign tags to the SOAP API and to its operations.

REST API. You can assign tags to the REST API, and to its resources and methods.

REST-enabled SOAP API. You can assign tags to the REST-enabled SOAP API. Also, you
can assign tags to the REST resources and methods which correspond to the transformed
SOAP operations.

OData API. You can assign tags to the OData API only.

WebSocket API. You can assign tags to the WebSocket API only.

When you delete an API, resource, method, or operation in API Gateway, any tags that were
assigned to that API, resource, method, or operation are not deleted.

webMethods API Gateway User's Guide 10.11 133

3 APIs

To tag an API

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

The API details page appears.

3. Click Edit.

4. To add tags to an API, in the Basic information section, do one of the following:

To add an existing tag, select an existing tag from the drop-down list and click .

Alternatively, you can search an existing tag by typing characters in the Tags field that
displays a list of existing tags that contain the character, select the required tag, and click

.

To add a new tag, type the new tag and click .

The tag is listed below the Tags field. To delete a tag, click the x icon.

5. To add tags to resources or methods of a REST API, in the Resources and methods section,
locate the required resource or method and do one of the following:

To add an existing tag, select an existing tag from the drop-down list and click .

Alternatively, you can search an existing tag by typing characters in the Tags field that
displays a list of existing tags that contain the character, select the required tag, and click

.

To add a new tag, type the new tag and click .

The tag is listed below the Tags field. To delete a tag, click the x icon.

6. To add tags to an operation of a SOAP API, in the Operations section, locate the required
operation and do one of the following:

To add an existing tag, select an existing tag from the drop-down list and click .

134 webMethods API Gateway User's Guide 10.11

3 APIs

Alternatively, you can search an existing tag by typing characters in the Tags field that
displays a list of existing tags that contain the character, select the required tag, and click

.

To add a new tag, type the new tag and click .

The tag is listed below the Tags field. To delete a tag, click the x icon.

7. Click Save.

Exporting APIs

You must have the Export assets functional privilege assigned to perform this task.

Note:
API Gateway supports backward compatibility for all the exported APIs from API Gateway
10.1 version or higher. For more information about exporting and importing APIs, see
“Overview” on page 446.

To export an API

1. Click APIs in the title navigation bar.

2. You can export a single or multiple APIs as follows:

To export a single API, click next to the required API.

To exported multiple APIs simultaneously, click the check-boxes adjacent to the names of

the API, click and select Export from the drop-down list.

Select the API to open the API details page. Click and select Export.

The Export archive window appears.

3. Select Include applications if you want to export the applications associated with the APIs.

4. Select Include application registrations if you want to add the RegisterdApplication object
lists to be added to the exported APIs.

This is not selected by default. But if you select Include applications, this option also gets
selected.When both the options Include applications and Include application registrations
are selected the export archive contains APIs with RegisteredApplication objects and
applications referenced by APIs with RegisteredApplication objects.

These exported RegisteredApplication objects are merged with the RegisteredApplication
objects in the API Gateway instance where it is imported. The import of these

webMethods API Gateway User's Guide 10.11 135

3 APIs

RegisteredApplication objects is based on the value of the import optionOverwrite Registered
Application. The option Overwrite Registered Application is not selected by default. But, if
you select the option Overwrite Application during an import, then Overwrite Registered
Application is also selected to support backward compatibility.

5. Select Include groups if you want to export the groups associated to the team that the APIs
belong to.

6. Select Include users if youwant to export the users associated to the team that the APIs belong
to.

Note:
The Include groups and Include users check boxes appear, only if you have set the
enableTeamWork extended setting to true.

7. Click Export.

The browser prompts you to either open or save the export archive.

8. Select the appropriate option and click OK.

Exporting Specifications

For a RESTAPI, you can export specifications in Swagger andRAML formats to your local system.
Similarly, for a SOAP API, you can export a specification in WSDL format to your local system.
The exportedWSDL is in a ZIP format consisting of theWSDLfilewhereas for Swagger andRAML
the respective files are directly exported. API Gateway supports the following versions:

Swagger 2.0 for a Swagger file

RAML 0.8 for a RAML file

You can exportAPIs that have been created from scratch or by importing their respective definitions.
The Swagger or RAML definition provides the consumer view on a REST API deployed to the
API Gateway. Similarly, the WSDL definition provides the consumer view on a SOAP API.
Consumer view indicates that the Swagger, RAML, orWSDL definitions contain the API Gateway
endpoint and information about those resources and operations, which are exposed to customers.

Note:
In the downloaded Swagger document, the valid JSON schemas attached to a response or a
request does not always appear. Only the valid JSON schemas appear correctly. For any other
schema information just the generic JSON schema such as {"type":"object"} appears.

To export the specification

1. Click APIs in the title navigation bar.

2. Select the required API from the list of available APIs .

136 webMethods API Gateway User's Guide 10.11

3 APIs

The API details page for the selected API appears.

3. Click Documentation.

4. Based on the type of specification that you have selected to export, select any of the following:

Swagger data link to export the Swagger specification.

RAML data link to export the RAML specification.

OpenAPI data link to export the OpenAPI specification.

Artifacts link to export the WSDL specification.

OData meta document link to a zip containing the OData API and metadata document.
If the OData API is active, a link to the service document and a link to the metadata
document are also displayed.

Schema link to download the GraphQL schema.

5. Select the appropriate option and click OK.

Deleting APIs

Deleting an API permanently removes the API from API Gateway.

When deleting an API, keep the following points in mind:

You cannot delete an API if it is in active state. You have to deactivate the API before deleting
it.

You must have the Manage APIs functional privilege.

Deleting a Single API
Pre-requisites:

You must have the Manage APIs functional privilege assigned to perform this task.

You delete an API to remove it from API Gateway permanently.

To delete an API

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Click the Delete icon for the API that you want to delete.

3. Select the Force delete option to delete an API forcefully.

webMethods API Gateway User's Guide 10.11 137

3 APIs

API Gateway ignores any failures even if the API is used by other applications, and clears all
data from the API Gateway database.

4. Click Yes in the confirmation dialog.

The API is deleted forcefully.

Deleting Multiple APIs in a Single Operation
Pre-requisites:

You must have the Manage APIs functional privilege assigned to perform this task.

You can bulk delete APIs in API Gateway.

To delete multiple APIs in a single operation

1. Click APIs in the title navigation bar.

A list of all APIs appears.

2. Select the APIs that you want to delete.

3. In the Menu icon, click Delete.

4. Select the Force delete option to delete APIs forcefully.

API Gateway ignores any failures even if the selected APIs are used by other applications, and
clears all data from the API Gateway database.

5. Click Yes in the confirmation dialog.

The APIs are deleted forcefully from API Gateway.

6. Examine the Delete APIs report window and check for any errors that occurred during the
deletion process.

The Delete APIs report window displays the following information:

DescriptionParameter

The name of the deleted API.Name

The status of the deletion process. The available
values are:

Status

Success

Failure

138 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionParameter

A descriptive information if the deletion fails or if a
warning occurs.

Description

API Gateway writes these results to the Audit logs dashboard, so you can view them later.

7. Click Download the detailed report here to download the detailed report as an HTML file.

Example: Managing an API

This section explains everything you would want to know about an API and how to manage it
with an example API phonestore. You can model an API that serves to expose API data and
functionality as a collection of resources. Each resource is accessiblewith uniqueUniformResource
Identifiers (URIs). In your API, you expose a set of HTTP operations (methods) to perform on a
specific resource and capture the request and response messages and status codes that are unique
to the HTTP method and linked within the specific resource of the API.

The basic elements of an API are:

The API itself (for example, phonestore)

Its resource (phones), available on the unique base URL (/phones)

The defined HTTP method (GET) for accessing the resource (phones)

Parameters for request representations (412456)

A request generated for this method (Request 123)

A response with the status code received for this request (Response ABCD)

The exampleAPI phonestore considered here is defined to support an online phone store application.
Assume, this sample phonestore API currently has a database that defines the various brands of
phones, features in the individual phones, and the inventory of each phone. This API is used as
a sample to illustrate how to model URL patterns for resources, resource methods, HTTP headers
and response codes, content types, and parameters for request representations to resources.

Base URL

The base URL of an API is constructed by the domain, port, and context mappings of the API. For
example, if the server name is www.phonestore.com, port is 8080, and the API context is api. The
full Base URL is:
http://www.phonestore.com:8080/api

API Parameters

Parameters defined at the higher API level are inherited by all resources and methods included
in the individual resources.

API Resources

webMethods API Gateway User's Guide 10.11 139

3 APIs

Resources are the basic components of an API. Examples of resources from an online phonestore
API include a phone, an order from a store, and a collection of customers. After you identify a
service to expose as an API, you define the resources for the API.

For example, for the online phonestoreAPI, there are a number of ways to represent the data in the
phone store database as an API. The verbs in the HTTP request maps to the operations that the
database supports, such as select, create, update, delete.

Each resource has to be addressed by a unique URI. Along with the URI you're going to expose
for each resource, you also need to decide what can be done to each resource. The HTTPmethods
passed as part of anHTTP request header directs theAPI onwhat has to be donewith the addressed
resource.

Resource URLs

An URL identifies the location of a specific resource.

For example, for the online phonestore API, the resources have the following URLs:

DescriptionURL

Specifies the collection of phones
contained in the online store.

http://www.phonestore.com/api/phones

Accesses a phone referenced by the
product code 412456.

http://www.phonestore.com/api/phones/412456

Specifies a set of reviews posted for a
phone of code 412456.

http://www.phonestore.com/api/phones/412456/reviews

Accesses a specific review referenced by
the unique ID 78 contained in the reviews
of the phone of code 412456.

http://www.phonestore.com/api/phones/412456/reviews/78

API Gateway supports the following patterns of resource URL: a collection of resources or a
particular resource.

For example, in the online phonestore API, the patterns are as follows:

Collection URL: http://phonestore.com/api/phones

UniqueURL: http://phonestore.com/api/phones/412456/features to retrieve a collection resource
describing the key features of phone whose product code is 412456.

Resource Parameters

Parameters defined at the higher resource level are inherited by all methods in the particular
resource; it does not affect the API.

Resource Methods

Individual resources can define their capabilities using supported HTTP methods. To invoke an
API, the client would call an HTTP operation on the URL associated with the API's resource. For

140 webMethods API Gateway User's Guide 10.11

3 APIs

example, to retrieve the key feature information for phonewhose product code is 412456, the client
would make a service call HTTP GET on the following URL:
http://www.phonestore.com/phones/412456/features

Supported HTTP Methods

APIGateway supports the standardHTTPmethods formodelingAPIs: GET, POST, PUT, DELETE,
and PATCH.

The following table describes the semantics of HTTP methods for the sample Phone Store API:

DescriptionHTTP
Method

Resource URI

Asks for a representation of all
of the orders.

GET/phones/orders

Attempts to create a new order,
returning the location (in the

POST/phones/orders

Location HTTP Header) of the
newly created resource.

Asks for a representation of a
specific Order resource.

GET/phones/orders/{order-id}

Requests the deletion of a
specified Order resource.

DELETE/phones/orders/{order-id}

Asks for a representation of a
specific Order's current status.

GET/phones/orders/{order-id}/status

Asks for a representation of a
specificOrder's payment details.

GET/phones/orders/{order-id}/paymentdetails

Updates a specific Order's
payment details

PUT/phones/orders/{order-id}/paymentdetails

Method Parameters

Parameters defined at the lower method level apply only to that particular method; it does not
affect either the API or the resource.

API Parameters

Parameters specify additional information to a request. You use parameters as part of the URL or
in the headers or as components of a message body.

Parameter Levels

A parameter can be set at different levels of an API. When you document a REST API in API
Gateway, you define parameters at the API level, resource level, or method level to address the
following scenarios:

webMethods API Gateway User's Guide 10.11 141

3 APIs

If you have the parameter applicable to all resources in theAPI, then you define this parameter
at the API level. This indirectly implies that the parameter is propagated to all resources and
methods under the particular API.

If you have the parameter applicable to all methods in the API, then you define this parameter
at the resource level. This indirectly implies that the parameter is propagated to all methods
under the particular resource.

If you have the parameter applicable only to amethod in theAPI, then youdefine this parameter
at the method level.

API-level Parameters

Setting parameters at the API level enables the automatic assignment of the parameters to all
resources and methods included in the API. Any parameter value you specify at the higher API
level overrides the parameter value you set at the lower resource level or the lower method level
if the parameter names are the same.

For example, if you have a header parameter called API Key that is used for consuming an API.
x-Gateway-APIKey:a4b5d569-2450-11e3-b3fc-b5a70ab4288a

This parameter is specific to the entire API and to the individual components, that is resources
and methods, directly below the API. Such a parameter can be defined as a parameter at the API
level.

At an API level, API Gateway allows you to define the following types of parameters:

Query-String parameter

Header parameter

Resource-level Parameters

Setting parameters at the resource level enables the automatic assignment of the parameters to all
methodswithin the resource.Anyparameter value you specify at the higher resource level overrides
the parameter value you set at the lower method level if the parameter names are the same. In
contrast, the lower resource level parameters do not affect the higher API level parameters.

Consider the sample phonestoreAPI maintains a database of reviews about different phones. Here
is a request to display information about a particular user review, 78 of the phone whose product
code is 412456.
GET /phones/412456/user_reviews/78

In the example, /user_reviews/78 parameter narrows the focus of a GET request to review /78
within a particular resource /412456.

This parameter is specific to the particular resource phone whose product code is 412456 and to
any individual methods that are directly below the particular resource. Such a parameter can be
defined as a parameter at the resource level.

At a resource level, API Gateway allows you to define the following types of parameters:

Query-String parameter

142 webMethods API Gateway User's Guide 10.11

3 APIs

Header parameter

Path parameter

Method-level Parameters

If you do not set parameters at the API level or resource level, you can set them at a method level.
Parameters you set at the method level are used for the HTTP method execution. They are useful
to restrict the response data returned for a HTTP request. Any parameter value you specify at the
lower method level is overridden by the value set at higher API-level parameter or the higher
resource-level parameter if the names are the same. In contrast, the lowermethod-level parameters
do not affect the higher API-level or resource-level parameters.

For example, the phonestoreAPI describedmight have a request to display information contributed
by user Allen in 2013 about a phone whose product code is 412456.
GET /phones/412456/user_reviews/78?year=2013&name=Allen

In this example, year=2013 and name=Allen narrow the focus of the GET request to entries that
user Allen added to user review 78 in 2013.

At a method level, API Gateway allows you to define the following types of parameters:

Query-String parameter

Header parameter

Parameter Types

API Gateway supports three types of parameters in REST API: Query-String, Header, and Path.

The following example explains how you can use different parameter types for parameterizing
the resources.

Query-String Parameters

Query-String parameters are appended to theURI after a ?with name-value pairs. The name-value
pairs sequence is separated either by a semicolon or an ampersand.

For instance, if the URL is http://phonestore.com/api/phones?itemID=itemIDValue, the query
parameter name is itemID and value is the itemIDValue. Query parameters are often used when
filtering or paging through HTTP GET requests.

Now, consider the online phonestore API. A customer, when trying to fetch a collection of phones,
might wish to add options, such as, android v4.3 OS and 8MP camera. The URI for this resource
would look like:
/phones?features=androidosv4.3&cameraresolution=8MP

You can also use query string to invoke the required resource of an API by appending API Key
to ? like the example seen below:
http://pie-3HKYMH2:5555/gateway/PetstoreAPI/1.0.3/store/inventory?APIKey=faab7ac6-97a4-4228-908d-f1930faba470

Header Parameters

webMethods API Gateway User's Guide 10.11 143

3 APIs

Header parameters are HTTP headers. Headers often contain metadata information for the client,
or server.
x-Gateway-APIKey:a4b5d569-2450-11e3-b3fc-b5a70ab4288a

You can create custom headers, as required. As a best practice, Software AG recommends that
you prefix the header name with x-.

HTTP/1.1 defines the headers that can appear in a HTTP response in three sections of RFC 2616:
4.5, 6.2, and 7.1. Examine these codes to determine which are appropriate for the API.

Path Parameters

Path parameters are defined as part of the resource URI. For example, the URI can include
phones/item, where /item is a path parameter that identifies the item in the collection of resource
/phones. Because path parameters are part of the URI, they are essential in identifying the request.

Now, consider the online phonestore API. A customer wishes to fetch details about a phone
{phone-id}whose product code is 412456. TheURI for this resourcewould look like: /phones/412456

Important:
As a best practice, Software AG recommends that you adopt the following conventions when
specifying a path parameter in the resource URI:

Append a path parameter variable within curly {} brackets.
Specify a path parameter variable such that it exactly matches the path parameter defined
at the resource level.

Parameter Data Types

When you add a parameter to the API, you specify the parameter's data type. The data type
determines what kind of information the parameter can hold.

API Gateway supports the following data types for parameters:

DescriptionData Type

Specifies a string of text.String

Specifies a date stamp that represents a specific date.Date

The date input parameters allow year, month, and day input.

This data type only accepts date values in the format yyyy-mm-dd

Specifies a timestamp that represents a specific time.Time

The time input parameters allow hour and minute.

This data type only accepts date values in the format hh:mm:ss

Specifies a timestamp that represents a specific date and/or time.Date/Time

The date/time input parameters allow year, month, and day input as well as
hour and minute. Hour and minute default to 0.

144 webMethods API Gateway User's Guide 10.11

3 APIs

DescriptionData Type

This data type only accepts date values in the format yyyy-mm-dd; and time
values in the format hh:mm:ss

Specifies an integer value for the data type.Integer

This is generally used as the default data type for integral values.

Specifies the double data type value.Double

This is a double-precision 64-bit IEEE 754 floating point and is generally used
as the default data type for decimal values.

Specifies a true or false value.Boolean

Supported HTTP Status Codes

An API response returns a HTTP status code that indicates success or failure of the requested
operation.

API Gateway allows you to specify HTTP codes for each method to help clients understand the
response. While responses can contain an error code in XML or other format, clients can quickly
andmore easily understand anHTTP response status code. TheHTTP specification defines several
status codes that are typically understood by clients.

APIGateway includes a set of predefined content types that are classified in the following taxonomy
categories:

DescriptionCategory

Informational.1xx

Success.2xx

Redirection. Need further action.3xx

Client error. Correct the request data and retry.4xx

Server error.5xx

HTTP/1.1 defines all the legal status codes. Examine these codes to determinewhich are appropriate
for your API.

Now, consider the online phonestoreAPI. The following table describes the HTTP status codes that
each of the URIs and HTTP methods combinations will respond:

Supported HTTP Status CodesSupported
HTTP
Methods

Resource URI

200 (OK, Success)GET/phones/orders

webMethods API Gateway User's Guide 10.11 145

3 APIs

Supported HTTP Status CodesSupported
HTTP
Methods

Resource URI

201 (Created) if the Order resource is
successfully created, in addition to a

POST/phones/orders

Location header that contains the link to the
newly created Order resource; 406 (Not
Acceptable) if the format of the incoming
data for the new resource is not valid

200 (OK); 404 (Not Found) if Order Resource
not found

GET/phones/orders/{order-id}

200 (OK); 404 (Not Found) if Order Resource
not found

DELETE/phones/orders/{order-id}

200 (OK); 404 (Not Found) if Order Resource
not found

GET/phones/orders/{order-id}/status

200 (OK); 404 (Not Found) if Order Resource
not found

GET/phones/orders/{order-id}/paymentdetails

201 (Created); 406 (Not Acceptable) if there
is a problemwith the format of the incoming

PUT/phones/orders/{order-id}/paymentdetails

data on the new payment details; 404 (Not
Found) if Order Resource not found

Sample Requests and Responses

To illustrate the usage of an API, you provide a sample request and response messages. Consider
the sample phonestore API that maintains a database of phones in different brands. The phonestore
API might provide the following examples to illustrate its usage:

Sample 1 - Retrieve a list of phones

Client Request
GET /phones HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.api.phonestore.com
Accept-Language: en-us
Accept-Encoding: text/xml
Connection: Keep-Alive

Server Response
HTTP/1.1 200 OK
Date: Mon, 29 August 11:53:27 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Mon, 18 July 2016 09:18:16 GMT
Content-Length: 356
Content-Type: text/xml
<phones>

146 webMethods API Gateway User's Guide 10.11

3 APIs

<phone>
<name>Asha</name>
<brand>Nokia</brand>
<price currency="irs">11499</price>
<features>

<camera>
<back>3</back>

</camera>
<memory>

<storage scale="gb">8</storage>
<ram scale="gb">1</ram>

</memory>
<network>

<gsm>850/900/1800/1900 MHz</gsm>
</network>

</features>
</phone>
<phone>

<name>Nexus7</name>
<brand>Google</brand>
<price currency="irs">16499</price>
<features>

<camera>
<front>1.3</front>
<back>5</back>

</camera>
<memory>

<storage scale="gb">16</storage>
<ram scale="gb">2</ram>

</memory>
<network>

<gsm>850/900/1800/1900 MHz</gsm>
<HSPA>850/900/1900 MHz</HSPA>

</network>
</features>

</phone>
</phones>

Client Request
GET /phones/phone-4156 HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.api.phonestore.com
Accept-Language: en-us
Accept-Encoding: text/xml
Connection: Keep-Alive

Server Response
POST /phones/phone HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.api.phonestore.com
Accept-Language: en-us
Accept-Encoding: text/xml
Content-Length: 156
Connection: Keep-Alive
<phones>

<phone>
<name>iPhone5</name>
<brand>Apple</brand>

webMethods API Gateway User's Guide 10.11 147

3 APIs

<price currency="irs">24500</price>
<features>

<camera>
<front>1.2</front>
<back>8</back>

</camera>
<memory>

<storage scale="gb">32</storage>
<ram scale="gb">2</ram>

</memory>
<network>

<gsm>850/900/1800/1900 MHz</gsm>
<HSPA>850/900/1900 MHz</HSPA>

</network>
</features>

<phone>
</phones>

Sample 3 - Create a phone
POST /phones/phone HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Host: www.api.phonestore.com
Accept-Language: en-us
Accept-Encoding: text/xml
Content-Length: 156
Connection: Keep-Alive
<phones>

<phone>
<name>iPhone5</name>
<brand>Apple</brand>
<price currency="irs">24500</price>
<features>

<camera>
<front>1.2</front>
<back>8</back>

</camera>
<memory>

<storage scale="gb">32</storage>
<ram scale="gb">2</ram>

</memory>
<network>

<gsm>850/900/1800/1900 MHz</gsm>
<HSPA>850/900/1900 MHz</HSPA>

</network>
</features>

<phone>
</phones>

Server Response
HTTP/1.1 200 OK
Date: Mon, 29 August 11:53:27 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Wed, 18 June 2014 09:18:16 GMT
Content-Type: text/xml
Content-Length: 15
<id>2122</id>

148 webMethods API Gateway User's Guide 10.11

3 APIs

Troubleshooting Tips: APIs

I see errors when API Gateway parses huge responses received from the native API

I see the following errors when API Gateway parses huge responses received from the native API:

com.fasterxml.aalto.WFCException: Unexpected end-of-input when trying to parse

com.fasterxml.aalto.WFCException:Unexpected end-of-inputwhen trying to parseCHARACTERS
at [row,col {unknown-source}]: [13621,577]

com.fasterxml.aalto.WFCException: 500 for SOAP APIs exchanging bigger payloads

Resolution:

To avoid encountering errors while parsing large responses from the native API, change the
enablesoapValidation property in the axis2.xml file located at Install_dir\IntegrationServer\
instances\default\config\wss\ in one of the following ways:

By commenting out the line
<!--<parameter name="enableSoapValidation">true</parameter> -->

By setting the property enablesoapValidation to false

<parameter name="enableSoapValidation">false</parameter>

You must restart the API Gateway server for the change to take effect. The impact of this change
is that the SOAP API request and responses are no more validated if they are compliant with the
SOAP specification.

I see that an error displays while searching scroll ID when importing an API

When you import an API where the alias used in the archive is not present in API Gateway, Error
while searching scroll ID error is displayed.

Sample error is as follows:

Error while searching scroll ID -
DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAKWEWUjVjczBsaktRbmE4M0RNR2RRdkhfUQ==.
Message - No search context found for id [10593]. No search context found for id [10593]

Resolution:

To resolve this issue, increase the heap size of Elasticsearch.

To increase the heap space of Elasticsearch, modify the parameters Xms2g and Xmx2g in the
jvm.options file located at SAG_Install_Directory\InternalDataStore\config.

webMethods API Gateway User's Guide 10.11 149

3 APIs

150 webMethods API Gateway User's Guide 10.11

3 APIs

4 Policies

■ Policies - Overview ... 152

■ Policy Validation and Dependencies ... 154

■ Managing Threat Protection Policies .. 159

■ System-defined Stages and Policies .. 171

■ Managing Global Policies ... 355

■ Managing API-level Policies ... 373

■ Managing Scope-level Policies ... 375

■ Managing Policy Templates .. 380

■ Supported Alias and Policy Combinations ... 391

webMethods API Gateway User's Guide 10.11 151

Policies - Overview

API Gateway provides a policy framework to manage and secure APIs.

A policy can be enforced on an API to perform specific tasks, such as transport, security, logging,
routing of requests to target services, and transformation of data from one format to another. You
can also define a policy to evaluate and process the various API invocations at run-time. For
example, a policy could instruct API Gateway to perform any of the following tasks and prevent
malicious attacks:

Verify that the requests submitted to an API come from applications that are authenticated
and authorized using the specified set of identifiers in the HTTP header to access and use the
particular API.

Validate digital signatures in the security header of request and response messages.

Monitor a user-specified set of run-time performance conditions and limit the number of
invocations during a specified time interval for a particular API and for applications, and send
alerts to a specified destination when these performance conditions are violated.

Log the request and responsemessages, and the run-time performancemeasurements for APIs
and applications.

Policies are grouped into stages as per their usage. For example, the policies in a Threat Protection
stage can be enforced for all APIs to protect against malicious attacks that could cause problems
such as, large and recursive payloads, viruses, scanningwith external systems, and SQL injections.
The policies in the Identify and Access stage can be enforced on an API to specify the kind of
identifiers that are used to identify the application and authorize it against all applications registered
in API Gateway.

Policy enforcement mode

You can enforce policies in an API in the following ways:

Global Policies. You can apply a global policy to all APIs or the selected set of APIs. You do
this by configuring the filters for the API and the policy configuration in the Global Policy
details page. The global policies apply globally to the selected APIs.

Policy Templates. You can apply one or more policy templates to an API. You do this by
applying the policy templates in the API details page. These policy templates apply at the
API-level, and can be customized to suit the needs of a particular API.

API-specific Policies. You can apply one or more individual policies to an API. You do this
by applying the policies in the API details page. These policies apply at the API-level, and can
be customized to suit the needs of a particular API.

API Scope-specific Policies. You can apply one or more policies at the scope-level of an API.
You do this by defining theAPI scopeswith a collective set of resources,methods, or operations
in theAPI details page. These policies apply at the corresponding resource-level, method-level,
or operation-level, and can be customized to suit the needs of an individual API scope.

152 webMethods API Gateway User's Guide 10.11

4 Policies

After you apply the policies both globally (through global policies) and directly (throughAPI-level
policies and scope-level policies) to an API, API Gateway determines the effective set of policies
for that API by taking into account the precedence of policy enforcement at the API-level, the
policy stages, the priority of policies, run-time constraints, and the status (activated or deactivated)
of any applied global policy.

When you apply the Transport policy at the global level, the Transport policy applied at the API
level is in the disabled state. When you try deleting the API-level Transport policy that is in the
disabled state an error displays and you are not allowed to delete this policy as the API-level
Transport policy is required and gets enforced when you deactivate the global policy.

Policy hierarchy

You can enforce policies on an API at the following levels:

Global Policy Enforcement: This enforcement applies globally to all APIs defined in API
Gateway.

API-level (API-specific) Policy Enforcement. This enforcement applies to all resources and
its nested methods of a REST API, or all operations of a SOAP API.

Resource-level (Scope-specific) Policy Enforcement. Applicable only for REST APIs. This
enforcement applies to one or more resources and its nested methods in the REST API.

Method-level (Scope-specific) Policy Enforcement. Applicable only for REST APIs. This
enforcement applies to one or more methods nested within a resource in the REST API.

-OR-

Operation-level (Scope-specific) Policy Enforcement. Applicable only for SOAP APIs. This
enforcement applies to one or more operations in the SOAP API.

For example, if an API was given the Identify & Authorize policy at the following policy
enforcement levels:

1. Global Policy Enforcement

2. API-level Policy Enforcement

3. Resource-level Policy Enforcement

4. Method-level Policy Enforcement (or) Operation-level Policy Enforcement

The precedence of the policy enforcement which are effective for the API at run-time is as follows:

1. Global Policy Enforcement

2. Method-level Policy Enforcement (or) Operation-level Policy Enforcement

3. Resource-level Policy Enforcement

4. API-level Policy Enforcement

webMethods API Gateway User's Guide 10.11 153

4 Policies

If the API has the Identify & Authorize policy applied through both a global policy and at the
API-level, API Gateway does not show conflict. The Identify & Authorize policy applied through
the global policy takes precedence and is processed at run-time.

Similarly for a REST API, Identify & Authorize policy is applied through a scope-level policy (at
the resource-level) and also at the API-level, the Identify & Authorize policy applied through the
scope-level policy takes precedence and is processed at run-time.

Transaction logging policy

API Gateway provides a system global policy, Transaction logging, which is shipped with the
product. By default, the policy is in the Inactive state. The transaction logging policy has standard
filters and log invocation policy that log request or response payloads to a specified destination.
You can edit this policy to include additional filters ormodify the policy properties but you cannot
delete this policy. You can activate this policy in the Polices > Global policies page or through
the Global Policy details page. Activating the policy enforces it on all APIs in API Gateway based
on the configuredfilters and logs transactions across all theAPIs. If you havemultiple log invocation
policies assigned to an API, the policies are compiled into a single policy and the one transaction
log is created per destination.

Policy Validation and Dependencies

When you enforce a policy to govern an API at run-time, API Gateway validates the policies to
ensure that:

Any policy (for example, Log Invocation) that can appear in an API multiple times is allowed
to appear multiple times.

For policies (for example, Require HTTP / HTTPS) that can appear only once in an API, API
Gateway issues an error message.

For policies (for example, Monitor SLA) that are dependent and use another policy in
conjunction (for example, Identify & Authorize) in an API, API Gateway prompts you with a
warning message to include the dependent policy.

When you save anAPI, APIGateway combines the policies from all of the global and direct policies
that apply to the API (that is, at the API-level) and generates what is called the effective policy for
the API. For example, let's say your REST API is within the scope of two policies: one policy that
performs a logging task and another policy that performs a security task.When you save the REST
API, API Gateway automatically combines the two policies into one effective policy. The effective
policy, which contains both the logging task and the security task, is the policy that API Gateway
actually uses to publish the REST API.

When API Gateway generates the effective policy, it validates the resulting policy to ensure that
it contains no conflicting or incompatible policies.

If the policy contains conflicts or inconsistencies, API Gateway computes the effective API policy
according to policy resolution rules. For example, an effective API policy can include only one
Identify & Authorize policy. If the resulting policy list contains multiple Identify & Authorize
policies, API Gateway shows the conflict by including an including a Conflict () icon next to the
name of the conflicting policies in the effective policy.

154 webMethods API Gateway User's Guide 10.11

4 Policies

The following table shows:

Policy dependencies (that is, whether a policy must be used in conjunction with another
particular policy).

Conflicting or incompatible policies.

Whether a policy can be includedmultiple times in a single API. If a policy cannot be included
multiple times in a single API, API Gateway selects one (depending on the precedence of the
policy at the enforcement level) for the effective policy and processes at run-time.

Policy Validation and Dependencies:

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

No. API Gateway
includes only one

None.Identify & AuthorizeREST

SOAP

Authorize User

policy in the effective
policy.

Yes. API Gateway
includes all

None.None.REST

SOAP

Conditional
Error Processing

Conditional Error
Processing policies in
the effective policy.

No. API Gateway
includes only one

Straight Through
Routing, Load

None.REST

SOAP

Conditional
Routing

policy in the effective
policy.

BalancerRouting,
Dynamic
Routing,
Content-based
Routing

No. API Gateway
includes only one

Straight Through
Routing, Load

None.REST

SOAP

Content-based
Routing

policy in the effective
policy.

BalancerRouting,
Dynamic
Routing,
Conditional
Routing

No. API Gateway
includes only one

None.None.REST

SOAP

Custom HTTP
Header

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Data Masking

(ErrorHandling)

webMethods API Gateway User's Guide 10.11 155

4 Policies

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Data Masking

(Response
Processing)

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Data Masking

(Request
Processing)

policy in the effective
policy.

No. API Gateway
includes only one

Straight Through
Routing, Load

None.REST

SOAP

Dynamic
Routing

policy in the effective
policy.

BalancerRouting,
Content-based
Routing,
Conditional
Routing

No. API Gateway
includes only one

None.None.REST

SOAP

Enable HTTP /
HTTPS

policy in the effective
policy.GraphQL

No. API Gateway
includes only one

NoneNoneREST

SOAP

Enable JMS /
AMQP

policy in the effective
policy.

No. API Gateway
includes only one

None.Inbound Auth -
Message policy is

REST

SOAP

Identify &
Authorize

policy in the effective
policy.

required if
Identification Type
is configured as WS

GraphQL

Security Username
Token or WS Security
X.509 Certificate or
Kerberos Token for
SOAP-based APIs.

No. API Gateway
includes only one

None.None.SOAPInbound Auth -
Message

policy in the effective
policy.

156 webMethods API Gateway User's Guide 10.11

4 Policies

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

Yes. API Gateway
includes all Invoke

None.None.REST

SOAP

Invoke
webMethods IS

(Response
Processing)

webMethods IS
policies in the effective
policy.

Yes. API Gateway
includes all Invoke

None.None.REST

SOAP

Invoke
webMethods IS

(Request
Processing)

webMethods IS
policies in the effective
policy.

No. API Gateway
includes only one

NoneJMS/AMQP REST
Routing

RESTJMS/AMQP
REST Properties

policy in the effective
policy.

No. API Gateway
includes only one

None.JMS/AMQP SOAP
Routing

SOAPJMS/AMQP
SOAP Properties

policy in the effective
policy.

No. API Gateway
includes only one

Straight Through
Routing,

NoneRESTJMS/AMQP
REST Routing

policy in the effective
policy.

Dynamic
Routing,
Content-based
Routing,
Conditional
Routing

No. API Gateway
includes only one

Straight Through
Routing,

None.SOAPJMS/AMQP
REST Routing

policy in the effective
policy.

Dynamic
Routing,
Content-based
Routing,
Conditional
Routing

No. API Gateway
includes only one

Straight Through
Routing,

None.REST

SOAP

Load Balancer
Routing

policy in the effective
policy.

Dynamic
Routing,
Content-based
Routing,

webMethods API Gateway User's Guide 10.11 157

4 Policies

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

Conditional
Routing

Yes. API Gateway
includes all Log

None.None.REST

SOAP

Log Invocation

Invocation policies in
the effective policy.GraphQL

Yes. API Gateway
includes all Monitor

None.None.REST

SOAP

Monitor
Performance

Performance policies
in the effective policy.

Yes. API Gateway
includes all Monitor

None.Identify & AuthorizeREST

SOAP

Monitor SLA

Service Level
Agreement policies in
the effective policy.

No. API Gateway
includes only one

None.None.SOAPOutbound Auth
- Message

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Outbound Auth
- Transport

policy in the effective
policy.

Yes. API Gateway
includes all XSLT

None.None.REST

SOAP

Response
Transformation

Transformation
policies in the effective
policy.

Yes. API Gateway
includes all XSLT

None.None.REST

SOAP

Request
Transformation

Transformation
policies in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Service Result
Cache

policy in the effective
policy.

No. API Gateway
includes only one

None.None.RESTSet Media Type

158 webMethods API Gateway User's Guide 10.11

4 Policies

Can include multiple
times in an API?

Mutually
Exclusive Policy

Dependent PolicyApplicable
API Type

Policy

policy in the effective
policy.

No. API Gateway
includes only one

Load Balancer
Routing,

None.REST

SOAP

Straight Through
Routing

policy in the effective
policy.

Dynamic
Routing,
Content-based

GraphQL

Routing,
Conditional
Routing

Yes. API Gateway
includes all Traffic

None.Identify & AuthorizeREST

SOAP

Traffic
Optimization

Optimization policies
in the effective policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Validate API
Specification

(Response
Processing)

policy in the effective
policy.

No. API Gateway
includes only one

None.None.REST

SOAP

Validate API
Specification

(Request
Processing)

policy in the effective
policy.GraphQL

Managing Threat Protection Policies

Threat protection policies preventmalicious attacks from client applications that typically involve
large, recursive payloads, and SQL injections. You can limit the size of things, such as maximum
message size, maximum number of requests, and maximum node depth and text node length, in
the XML document. You can configure the global threat protection policies and rules for all the
incoming requests that comes through the external port of API Gateway. These policies and rules
are enforced by API Gateway based on your configuration.

You must have the API Gateway's manage threat protection functional privilege to configure the
following policies and rules.

Global Denial of Service

Denial of Service by IP

Rules

webMethods API Gateway User's Guide 10.11 159

4 Policies

In addition, the API Gateway administrator can configure the necessary mobile devices and
applications for which you want to deny the access, configure and customize the deny and alert
rules, and manage the denied IPs.

Note:

If the API Gateway instances used for Threat protection are clustered using TSA, and if you
apply threat protection policy configuration in one of the API Gateway instances, the other
API Gateway instances are updated automatically.
If the API Gateway instances used for Threat Protection are not clustered using TSA, then
you need to apply the required threat protection policy configurations in each of the API
Gateway instance.

Basically, when you configure the threat protection policy in a clustered setup, you specify the
limitations (such as number of requests and concurrent request) that an API Gateway instance in
the cluster can handle during a specified time interval. Hence, if you addX number of APIGateway
instances, the limitations set in the configuration also increases by X times.

For example, if you have two API Gateway instances and set the limitations as 100 requests per
minute, then the API Gateway instances should be able to handle 200 requests per minute. When
you add one more API Gateway instance, the processing capacity also increases to 300 requests
per minute. Here, the API Gateway cluster used for Threat Protection does not act as a single unit.

Note:
When you have configured a load balancer, the load balancer exposes the actual client IP address
using the X-Forwarded-For (XFF) headers. The
watt.server.enterprisegateway.ignoreXForwardedForHeader property specifies whether API
Gateway uses or ignores the IP address in the XFF headers. By default, API Gateway ignores
the client IP address and so the watt.server.enterprisegateway.ignoreXForwardedForHeader
property is set to true. If you want API Gateway to use the actual client IP address present in
the XFF, then set thewatt.server.enterprisegateway.ignoreXForwardedForHeader property to
false.

Configuring Global Denial of Service Policy
You can configure this policy in API Gateway to prevent Denial of Service (DoS) attacks. One form
of DoS attack occurs when a client floods a server with many requests in an attempt to interfere
with server processing. UsingAPIGateway, you can limit the number of requests that APIGateway
acceptswithin a specified time interval and the number of requests that it can process concurrently.
By specifying these limits, you can protect API Gateway from DoS attacks.

You can configure API Gateway to limit the total number of incoming requests from the external
ports. For example, youmight want to limit the total number of requests received to 1000 requests
in 10 seconds, and limit the number of concurrent requests to 100 requests in 10 seconds. When
API Gateway detects that a limit has been exceeded, it blocks the exceeding requests for a specific
time interval and displays an error message to the client based on your configuration. You can
also configure a list of trusted IP addresses so that the requests from these IP addresses are always
allowed and not blocked.

To configure global denial of service policy

160 webMethods API Gateway User's Guide 10.11

4 Policies

1. Click Policies in the title navigation bar.

2. Select Threat protection > Global denial of service.

3. Set the Enable button to the On position to enable the policy.

4. Type the maximum number of requests, in the Maximum requests field, that API Gateway
can accept from any IP address in a given time interval.

5. Specify time in seconds, in the In (seconds) field, in which the maximum requests have to be
processed.

6. Type the maximum number of concurrent requests, in the Maximum requests in progress
field, that API Gateway can process concurrently.

7. Specify the time inminutes, in theBlock intervals (minutes)field, forwhich youwant requests
to be blocked.

8. Type the alert message text, in the Error message field, to be displayed when the policy is
breached.

9. Add IP addresses, in the Trusted IP addresses field, that can be trusted and are always
allowed.

API Gateway supports IPv4 and IPv6 addresses in the trusted IP addresses lists.

You can specify a range of IP addresses using the classless inter-domain routing (CIDR)
notation. To specify an IP address range, type the first IP address in the range followed by
a forward slash (/) and a CIDR suffix.

Example IPv4 address range:

192.168.100.0/22 represents the IPv4 addresses from 192.168.100.0 to 192.168.103.255

148.20.57.0/30 represents the IPv4 addresses from 148.20.57.0 to 148.20.57.3

Example IPv6 address range:

f000::/1 represents the IPv6 addresses from f000:: to ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff.

2001:db8::/48 represents the IPv6 addresses from 2001:db8:0:0:0:0:0:0 to
2001:db8:0:ffff:ffff:ffff:ffff:ffff.

Click to add more than one IP address.

10. Click Save.

webMethods API Gateway User's Guide 10.11 161

4 Policies

Configuring Denial of Service by IP Policy
You can configure this policy in API Gateway to prevent Denial of Service (DoS) attacks. One form
of DoS attack occurs when a particular client floods a server with many requests in an attempt to
interfere with server processing and not letting other clients in accessing the server. Using Denial
of Service (DoS) by IP policy, you can limit the number of requests that API Gateway accepts from
a particular IP address within a specified time interval and the number of requests that it can
process concurrently from any IP address. By specifying these limits, you can protect API Gateway
from DoS attacks by a particular IP address. When API Gateway detects that a limit has been
exceeded, it blocks or denies the requests from that particular IP address and displays an error
message to the client based on your configuration. You can also configure a list of trusted IP
addresses so that the requests from these IP addresses are always allowed and not denied.

Note:

When you configure a load balancer, you need to insert the XFF headers on the load balancer
to track the actual client IP address. When you use Load Balancer for high availability between
the API Gateway instances, by default for all the incoming request, the source IP address will
be the load balancer's IP address instead of the actual client IP address. In such scenario, when
the Denial of Service by IP policy is enforced, all incoming requests will be denied irrespective
of the problematic client. So, to prevent DoS attack from a problematic client, you need to
consider the XFF headers that are inserted on the load balancer. This is achieved by setting
watt.server.enterprisegateway.ignoreXForwardedForHeader property to false.When this setting
is configured, the incoming request header will have the XFF header and tracks actual client IP
address, which in turn allows you to configure DoS by IP.

To configure the denial of service by IP policy

1. Click Policies in the title navigation bar.

2. Select Threat protection > Denial of service by IP.

3. Set the Enable button to the On position to enable the policy.

4. Type the maximum number of requests, in the Maximum requests field, that API Gateway
can accept from a specific IP address in a given time interval.

5. Specify time in seconds, in the In (seconds) field, in which the maximum requests have to be
processed.

6. Type the maximum number of requests, in the Maximum requests in progress field, that
API Gateway can process concurrently from any single IP address.

7. Select one of the following actions to be takenwhen the number of requests from a non-trusted
IP address exceeds the specified limits:

Add to deny list to permanently deny future requests from the IP address.

162 webMethods API Gateway User's Guide 10.11

4 Policies

Block temporarily block requests from this IP address.

8. Type the alert message text, in the Error message field, to be displayed when the policy is
breached.

9. Add IP addresses, in the Trusted IP Addresses field, that can be trusted and not blocked.

API Gateway supports IPv4 and IPv6 addresses in the trusted IP addresses lists.

You can specify a range of IP addresses using the classless inter-domain routing (CIDR)
notation. To specify an IP address range, type the first IP address in the range followed by
a forward slash (/) and a CIDR suffix

Example IPv4 address range:

192.168.100.0/22 represents the IPv4 addresses from 192.168.100.0 to 192.168.103.255

148.20.57.0/30 represents the IPv4 addresses from 148.20.57.0 to 148.20.57.3

Example IPv6 address range:

f000::/1 represents the IPv6 addresses from f000:: to ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff.

2001:db8::/48 represents the IPv6 addresses from 2001:db8:0:0:0:0:0:0 to
2001:db8:0:ffff:ffff:ffff:ffff:ffff.

Click to add more than one IP address.

10. Click Save.

Managing Denied IP List
The Denied IPs section has a list of client IPs that were denied access due to breach of denial of
service by IP policy. You can delete the IP from the denial list and make it available on client's
request.

To manage the denied IP list

1. Click Policies in the title navigation bar.

2. Select Threat protection > Denied IPs.

This displays a list of IP address that are denied from access.

3. Click in the Action column so that the specified IP can be made available.

webMethods API Gateway User's Guide 10.11 163

4 Policies

Configuring Rules
You can configure rules to filtermalicious requests based onmessage size, authentication requests,
requests from specific mobile devices and applications that could be harmful, requests that could
cause an SQL injection attack, requests on anti-virus scan, XML / JSON requests, or use custom
filters to avoid malicious attacks.

When a rule is established without any filters, with the Action set to Deny Request and Alert
and the Request Type configured asAll, all requests entering through the external port are rejected

API Gateway applies rules in the order in which they are displayed on the Threat Protection >
Rules screen. Because a violation of a denial rule stops API Gateway from processing a request,
hence it is important to prioritize the rules based on the order in, which you want them to be
executed. The API Gateway processes denial rules followed by the alert rules.

To configure rules

1. Click Policies in the title navigation bar.

2. Select Threat protection > Rules.

This displays a list of rules that are already configured.

3. Click Add rule.

4. In the Rule properties section provide the following information:

a. Type a name for the rule in the Rule name field.

Valid rule names:

Must be unique.

Must not be empty.

Must not contain spaces.

Must not contain the special characters - ? ~ ` ! @ # $ % ^ & * () - + = { } | [] \\ : \" ; ' <
> , /

b. Type a description for the rule in the Description field.

c. Select an action to be followed when the policy is violated:

Deny request and alert to deny the access and send an alertwhen the policy is violated.

Alert to allow the request and send an alert when the policy is violated.

164 webMethods API Gateway User's Guide 10.11

4 Policies

d. Type the alert message text, in the Error message field, to be displayed when the policy
is violated.

e. Select the required Request type to which you want to apply the rule and provide the
additional information required.

The available values are:

ALL. Applies the rule to all requests.

REST. Applies the rule to all REST requests.

SOAP. Applies the rule to all SOAP requests.

INVOKE. Applies the rule to all INVOKE requests.

CUSTOM. Applies the rule to all requests specified by the custom directives. You can
use this option if you want a single rule applied for multiple request types and custom
directives.

f. Provide the following information to filter the requests depending on the Request type
selected:

Resource path. Provide theResource path for theREST, SOAP, INVOKE, orCUSTOM
Request type selected to filter the requests based on the resource being requested. The
format for the REST, SOAP, and INVOKE request types is folder_name/service_name
and the format for a CUSTOM request type is given_directive/service_name. You can
add multiple resource paths using the Add button.

Custom directives. Provide the custom directives for the CUSTOM Request type to
filter the incoming requests. For example, if you provide gateway as the directive, the
rule applies to all these requests that are received in API Gateway with the directive
gateway. You can add multiple directives using the Add button.

5. Configure the required filters as follows:

Alert settings. Select one of the following options:

Default. Sets the default alert settings to be used.

Custom. You can specify this option to use the custom alert settings and provide the
required information.

Alert destination. Specify the alert destination. Values areEmail andFlow service.

If you select Email, provide the email ids to which the alert notification has to be sent.

If you select Flow service, a flow service is invoked. Specify the name of the flow service.
You can create a flow service using the pub.security.enterpriseGateway:alertSpec as the signature
of the service and or use the pre-defined flow service,
pub.apigateway.threatProtection:violationListener. When you use the pre-defined service, the alerts
are saved in API Data Store and displayed in the API Gateway Dashboard. For more

webMethods API Gateway User's Guide 10.11 165

4 Policies

information about the pub.security.enterpriseGateway:alertSpec specification, see the Integration
Server Built-In Services Reference Guide.

Provide the user, who has permissions to execute the service, as the user type. For
example, Administrator.

Send alert: Select a condition depending onwhen youwant the alert to be sent. Available
values are On rule violation which sends an alert every time a request violates a rule or
Every and specify the time interval (in minutes), which send alerts at specified intervals.

Message size filter

Set the Enable button to the On position to enable the filter.

Type the maximum size allowed for HTTP and HTTPS requests in the Maximum
message size (MB) field.

If the request is larger than the size specified in this limit, the request violates the rule
and API Gateway performs the configured action.

OAuth filter

Set the Enable button to the On position to enable the filter.

Set the Require OAuth credentials toggle button to the On position. This implies the
request should contain the OAuth credentials else the request would be denied.

Mobile application protection filter

You can configure this filter to disable access for certain mobile application versions on a
predefined set of mobile platforms. By disabling access to these versions, you are ensuring
that all users are using the latest versions of the applications and taking advantage of the
latest security and functional updates.

Set the Enable button to the On position to enable the filter.

Select the device type.

Select the mobile application.

Select the operator condition =, >, <, >=, <= or <>.

Type the mobile application version.

You can add multiple entries by clicking .

SQL injection protection filter

You can use the SQL injection protection filter to block requests that could possibly cause
an SQL injection attack. When this filter is enabled, API Gateway checks each request
message for specific patterns of characters or keywords that are associated with potential
SQL injection attacks. If amatch is found in the request parameters or payload,APIGateway
blocks the request from further processing.

166 webMethods API Gateway User's Guide 10.11

4 Policies

Set the Enable button to the On position to enable the selected filter.

Select the required filters as follows:

Select Database-specific SQL injection protection and select a database against
which specific parameters needs to be checked.

When enabled,APIGateway checks the incomingpayload based on the specifieddatabase
and GET or POST request parameters. If no parameter is specified, all input parameters
are checked for possible SQL injection attack.

Select Standard SQL injection protection and specify one or more GET or POST
request parameters that could be present in the incoming requests. Parameters can
contain only alphanumeric characters, dollar sign ($), and underscore (_).

You can add multiple entries by clicking .

Anti virus scan filter

You can use the antivirus scan filter to configure API Gateway to interact with an Internet
ContentAdaptation Protocol (ICAP)-compliant server. An ICAP server is capable of hosting
multiple services that you can use to implement features such as virus scanning or content
filtering. Using the antivirus scan filter, API Gateway can leverage the ICAP protocol to
scan all incoming HTTP requests and payloads for viruses.

Set the Enable button to the On position to enable the filter.

Type the antivirus ICAP engine name in the ICAP name field.

Type the host name or IP address of the machine on which the ICAP server is running
in the ICAP host name or IP address field.

Type the port number on which the ICAP server is listening in the ICAP port number
field.

Type the name of the service exposed by the ICAP server that you can use to scan your
payload for viruses in the ICAP service name field.

JSON threat protection filter

You can use this filter to block attacks through JSON payload that have infinitely long
strings or deeply nested payloads. Software AG recommends that this protection should
be combined with message size filter to identify infinite payloads.

Set the Enable button to the On position to enable the filter.

You can specify any of these parameters as filter criteria. If you do not specify a value, the
system applies a default value of -1, which means an unlimited value.

webMethods API Gateway User's Guide 10.11 167

4 Policies

DescriptionField

Specifies themaximumallowed containment depth, where the
containers are objects or arrays.

Container depth

For example, an array containing an object which contains an
object would result in a containment depth of 3.

Specifies themaximumnumber of entries allowed in an object.Object entry count

Specifies the maximum string length allowed for a property
name within an object.

Object entry name
length field

Specifies the maximum number of elements allowed in an
array.

Array element count

Specifies the maximum length allowed for a string value.String value length

Specify any other content types to be included in the filter.Applicable content type

You can add more entries by clicking .

XML threat protection filter

You can use this filter to block attacks through XML payload that have infinitely long
strings or deeply nested payloads. Software AG recommends that this protection should
be combined with message size filter to identify infinite payloads.

Set the Enable button to the On position to enable the filter.

You can specify any of these parameters as filter criteria. If you do not specify a value, the
system applies a default value of -1, which the system equates to no limit.

DescriptionField

Specifies a limit on the maximum number of characters
permitted in the namespace prefix in the XML document.

Namespace prefix
length

Specifies a character limit for any namespace URIs present in
the XML document.

Namespace URI length

Specifies the maximum number of namespace definition
allowed for any element.

Namespace count per
element

Specifies the maximum number of child elements allowed for
any element.

Child count

Specifies a limit on the maximum number of characters
permitted in any attribute name in the XML document.

Attribute name length

168 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionField

Specifies a limit on the maximum number of characters
permitted in any attribute value in the XML document.

Attribute value length

Specifies the maximum number of attributes allowed for any
element.

Attribute count per
element

Specifies a limit on the maximum number of characters
permitted in any element name in the XML document.

Element name length

Specifies a character limit for any text node present in the XML
document.

Text length

Specifies a character limit for any comments present in the XML
document.

Comment length

Specifies a limit on the maximum number of characters
permitted in the target of any processing instructions in the
XML document.

Processing instruction
target length

Specifies a limit on the maximum number of characters
permitted in the data value of any processing instructions in
the XML document.

Processing instruction
data length

Specifies the maximum node depth allowed in the XML.Node depth

Specify any other content types to be included in the filter.Applicable content
types

You can add multiple values by clicking .

Custom filter

You can use the customfilter to invoke a service that is available onAPIGateway to perform
actions such as custom authentication of external clients in the DMZ, logging or auditing
in the DMZ, or implementation of custom rules for processing various payloads.

Set the Enable button to the On position to enable the filter.

Click Browse and select a service to invoke it.

Select the user name of a user you want API Gateway to run the service. The default
value is Administrator.

6. Click Save.

The new rule is created and appears in the list of rules in the Rules page.

The rule is applied to requests only if the rule is enabled. You can enable the rule in the Rules page
by selecting the enable icon for the required rule.

webMethods API Gateway User's Guide 10.11 169

4 Policies

Registering a Mobile Device or Application
You can use API Gateway to disable access for certainmobile application versions on a predefined
set of mobile platforms. By registering the required devices and applications and disabling access
to these versions, you ensure that all users use the latest versions of the applications and take
advantage of the latest security and functional updates.

To register a mobile device or application

1. Click Policies in the title navigation bar.

2. Select Global Policies > Mobile devices and apps.

3. Provide the mobile device type name and click .

You can add more entries by clicking . You can delete the added ones by clicking .

4. Provide the mobile application name and click .

You can add more entries by clicking . You can delete the added ones by clicking .

5. Click Save.

Configuring Alert Settings
You can configure the alert settings to control the following aspects of alerts that API Gateway
sends when a request violates a rule:

Whether API Gateway issues an alert for a rule violation.

How often API Gateway issues the alert.

The method API Gateway uses to send the alert.

Whether a rule uses the default alert options or its own customized alert options.

To configure alert settings

1. Click Policies in the title navigation bar.

2. Select Global Policies > Alert settings.

3. Select one or both the alert destination types:

170 webMethods API Gateway User's Guide 10.11

4 Policies

Email. This sends email alerts.

Type the email ids to which the email has to be sent.

Flow Service. This invokes a flow service to alert you of a rule violation. Specify the name
of the flow service. You can create a flow service using the pub.security.enterpriseGateway:alertSpec
specification as the signature of the service or use the pre-defined flow service,
pub.apigateway.threatProtection:violationListener. When you use the predefined service, the alerts
are saved in API Data Store and the displayed API Gateway Dashboard. For more
information about the pub.security.enterpriseGateway:alertSpec specification, see the Integration
Server Built-In Services Reference Guide.

Provide the user, who has permissions to execute the service, as the user type. For
example, Administrator.

4. Select one of the following conditions depending on when you want the alert to be sent.

On rule violation to send an alert every time a request violates a rule,

Every and specify the time interval (inminutes) to send to send alerts at specified intervals.

5. Click Save.

System-defined Stages and Policies

API Gateway provides system-defined policies that are grouped into stages depending on their
usage:

Transport

Identify & Access

Request Processing

Routing

Traffic Monitoring

Response Processing

Error Handling

In each stage of the system-defined policies, you define multiple policy parameters to configure
the values. By default, all the policy parameters use hardcoded value to configure the values. For
some of the policy parameters, you can configure the value using variable syntax. During run-time,
the value gets extracted based on the request or response.

Variable Framework
All types of variables such as request, response, custom, custom-context, and system context
variables are handled through the common framework called variable framework. The variable
framework in API Gateway provides an option to extract variable values that can be used across

webMethods API Gateway User's Guide 10.11 171

4 Policies

stages. For example, you can use the extracted variable to transform request and response contents
such as headers, query parameters, path parameters payload, and so on as per your requirement.
With the variable framework, you can normalize the syntax and create a common template for
accessing the various variable types.

The following table summarizes the keywords that are used to define the variable syntaxes:

DescriptionVariable keyword

Defines the stage of the system defined policy. Possible values are:paramStage

request

response

Defines the specific parameter of the request or response. Possible values
are:

paramType

payload

headers

query

path

httpMethod

statusCode

statusMessage

Defines the query that can be applied over string elements like payload.
Possible values are:

queryType

xpath

jsonPath

172 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionVariable keyword

regex

The following variable types are available in the request or response stages:

${paramStage.paramType}

You can use this syntax to access the following string variables: path, statusCode, statusMessage,
httpMethod.

Examples: ${request.path}, ${response.statusCode}

${paramStage.paramType.paramName}

You can use this syntax to access map types, such as query, headers, and path.

Example: ${request.query.var1}, ${response.header.Content-Type}, ${request.path.name}.

${paramStage.paramType.queryType[queryValue]}

You can use this syntax to access the payload. Examples:

${request.payload.xpath[//ns:emp/ns:empName]}

Where "//ns:emp/ns:empName" is the XPath to be applied on the payload if contentType is
application/xml, text/xml, or text/html.

${response.payload.jsonPath[$.cardDetails.number]}

Where $.cardDetails.number is the jsonPath to be applied on payload if contentType is
application/json or application/json/badgerfish.

${request.payload.regex[[0-9]+]}

Where [0-9]+ is the regular expression to be applied on the payload if contentType is
text/plain.

${request.isSoapToRest} or ${response.isSoapToRest}

This variable returns True if the current invoke is REST invoke for a SOAP API. Else it
returns False.

Note:
While xpath and jsonPath are applicable only to payload, regEx can be used with both
payload and path.

${paramStage[stepName].paramType.paramName]}

You can use this syntax to access the header or payload in the request or response stage.

Example:

Variable: ${response.headers.id}

webMethods API Gateway User's Guide 10.11 173

4 Policies

Value: ${response[customExtension].payload.jsonPath[$.id]}

This transformation adds a header to the response with the name id, and its value is derived
from the JSON payload that is sent from the external callout as per the JSON path.

The following sections summarize the variables that are available in API Gateway as part of
variable framework template in addition to the existing predefined system context and custom
context variables:

Request Variables

Variables that allow you to extract and reuse values in the request processing stage.

DescriptionVariable Syntax

Gets the value of the header name in the
request.

${request.headers.NAME}

Example: ${request.headers.Content-Type}

Gets the value of the query name in the
request.

$ {request.query.NAME}

Example: ${request.query.var1}

Gets the value of the path in the request.${request.path}

Gets the value of the path in the request.${request.path.regex[EXPR]}

Example: ${request.path.regex[0]}

Gets the method in the request.${request.httpMethod}

Gets the value after applying a xpath
expression on the request path.

${request.payload.xpath[EXPR]}

Example:${request.payload.xpath[//ns:emp/ns:empName]},
where //ns:emp/ns:empName is the xpath to be applied
on the payload if contentType is application/xml.

Note:
The namespace URI for the prefixes
you have configured in the xpath
expression are resolved using
namespaces configured in the
metadata section in the policy or
using the namespaces configured
through XpathNamespaces custom
variable in the custom extension
policy.

Gets the value after applying a JSON
expression on the request path.

${request.payload.jsonPath[EXPR]}

Example:
${request.payload.jsonPath[$.cardDetails.number]}
where $.cardDetails.number is the jsonPath to be applied
on the payload if contentType is application/json.

174 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionVariable Syntax

Provide the following variable, if there is a blank space
in the parameter name
${request.payload.jsonPath[$.['param name']]}

For example, if the parameter name is first name, then
provide the variable as
${request.payload.jsonPath[$.['first name']]}.

Gets the value after applying a regular
expression on the request path.

${request.payload.regex[EXPR]}

Example: ${request.payload.regex[[0-9]+]}where
[0-9]+ is the regex to be applied on the payload if
contentType is text/plain

Gets the value of the client ID identified
from the authorization header by the

${request.authorization.clientId}

configured IAM policy. This value is
available only if the relevant IAMpolicy
is configured.

Gets the value of the issuer identified
from the authorization header by the

${request.authorization.issuer}

configured IAM policy. This value is
available only if the relevant IAMpolicy
is configured.

Gets the value of the username
identified from the authorization header

${request.authorization.userName}

by the configured IAM policy. This
value is available only if the relevant
IAM policy is configured.

Gets the value of the authorization
header by the configured IAM policy.

${request.authorization.authHeader}

This value is available only if the
relevant IAM policy is configured.

Note:
If the authorization header has bearer
tokens (such as OAuth, OpenID, or
JWT), then you cannot use this
variable. In such cases, Software AG
recommends to use the
${request.authorization.incomingToken}
variable.

Gets the value of the API key from the
authorization header by the configured

${request.authorization.apiKey}

webMethods API Gateway User's Guide 10.11 175

4 Policies

DescriptionVariable Syntax

IAM policy. This value is available only
if the relevant IAMpolicy is configured.

Gets the value of the incoming token
from the authorization header by the

${request.authorization.incomingToken}

configured IAM policy. This value is
available only if the relevant IAMpolicy
is configured.

Gets the value of the audience from the
authorization header by the configured

${request.authorization.audience}

IAM policy. This value is available only
if the relevant IAMpolicy is configured.

Gets the value for the claim name from
the claims identified from the

${request.authorization.claims.CLAIM_NAME}

Example: ${request.authorization.claims.emp.company
}

Authorization header by the configured
IAM policy. This value is available only
if the relevant IAM policy is configured

Gets the correlation ID for this request.${request.correlationID}

Gets the ID of the application identified
for this request.

${request.application.id}

Gets the name of the application
identified for this request.

${request.application.name}

Gets the version ID of the application
identified for this request.

${request.application.version}

Gets the value of the claim name for the
claims identifier configured in the
application identified for this request.

${request.application.claims.CLAIM_NAME}

Example:${request.application.claims.sample}

Gets the partner ID of the application
identified for this request.

${request.application.partnerId}

Gets the description of the application
identified for this request.

${request.application.description}

Gets the value of the hostname identifier
in the specified index for the application
identified for this request.

${request.application.hostname[NUMBER]}

Example: ${request.application.hostname[0]}

Gets the value of the payload identifier
in the specified index for the application
identified for this request.

${request.application.payloadIdentifier[NUMBER]}

Example:${request.application.payloadIdentifier[1]}

176 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionVariable Syntax

Gets the value of the team identifier in
the specified index for the application
identified for this request.

${request.application.team[NUMBER]}

Example: ${request.application.team[0]}

Gets the value of the token identifier in
the specified index for the application
identified for this request.

${request.application.token[NUMBER]}

Example:${request.application.token[1]}

Gets the value of the username identifier
in the specified index for the application
identified for this request.

${request.application.username[NUMBER]}

Example:${request.application.username[0]}

Gets the value of the wssUsername
identifier in the specified index for the
application identified for this request.

${request.application.wssUsername[NUMBER]}

Example:${request.application.wssUsername[0]}

Gets the value of the header name for
the headers identifier configured in the
application identified for this request.

${request.application.headers.HEADER_NAME}

Example:${request.application.headers.Accept}

In SOAP to REST context, this variable
returns the SOAP request to be sent to
the native API.

${request.payload.native.xpath [EXPR]}

Response variables

Variables that allow you to extract and reuse values in the response processing stage.

DescriptionVariable Syntax

Gets the value of the header
name in the response.

${response.headers.NAME}

Example: ${response.headers.Accept}

Gets the value for the status
code for the response.

${response.statusCode}

Gets the value for the status
message in the response

${response.statusMessage}

Gets the value of the payload
from the specified xpath of the
response.

${response.payload.xpath[EXPR]}

Example:${response.payload.xpath[//ns:emp/ns:empName]}where
//ns:emp/ns:empName is the xpath to be applied on the payload
if contentType is application/xml Note:

The namespace URI for the
prefixes you have
configured in the xpath

webMethods API Gateway User's Guide 10.11 177

4 Policies

DescriptionVariable Syntax

expression are resolved
using namespaces
configured in the metadata
section in the policy or
using the namespaces
configured through
XpathNamespaces custom
variable in the custom
extension policy.

Gets the value of the payload
from the specified jsonPath of
the response.

${response.payload.jsonPath[EXPR]}

Example:${response.payload.jsonPath[$.cardDetails.number]}
where $.cardDetails.number is the jsonPath to be applied on the
payload if contentType is application/json

Gets the value of the payload
from the specified regex of the
response.

${response.payload.regex[EXPR]}

Example: ${ response.payload.regex[[0-9]+]}where [0-9]+ is
the regex to be applied on the payload if contentType is text/plain

In SOAP to REST context, this
variable returns the native

${response.payload.native.xpath [EXPR]}

SOAP response, returned by
the native SOAP API.

API Gateway evaluates and supports the array expressions in JSON path.

Example: Consider the following payload.
{
"firstName":"John",
"lastName":"doe",
"age":26,
"address":
{"streetAddress":"naist street","city":"Nara","postalCode":"630-0192"}
,
"phoneNumbers":[
{"type":"iPhone","number":"0123-4567-8888"}
,
{"type":"home","number":"0123-4567-8910"}
]
}

Following are the responses for the expressions after evaluating the array expressions in JSON
path.

ResponseExpressions

"home"$.phoneNumbers[1].type

178 webMethods API Gateway User's Guide 10.11

4 Policies

ResponseExpressions

["iPhone","home"]$.phoneNumbers[0,1].type or
$.phoneNumbers[:2].type

[{"type":"iPhone","number":"0123-4567-8888"}
\{"type":"home","number":"0123-4567-8910"}]

$.phoneNumbers[0,1] or $.phoneNumbers[:2]

["John"]$..firstName

"John"$.firstName

"Nara"$.address.city

System Context Variables

API Gateway provides predefined system context variables and the values of these variables are
extracted from the client request.

DescriptionVariable Syntax

Get the value of the API ID.${apiId}

Get the name of the API.${apiName}

Get the version of the API.${apiVersion}

Get the value of the package ID.${packageId}

Get the value of the plan ID.${planId}

Provides you an option to get or set custom fields
to the transactional events for this request. To set

${customTransactionFields.FIELD_NAME}

Example: ${customTransactionFields.sample} the custom fields, you can configure the
customTransactionFields.FIELD_NAME custom
variable in Custom Extension policy.

Gets the time taken in milliseconds between the
request sent to native server and response received
from native server for this transaction.

${providerTime}

Gets the date when the request gets invoked.${date}

Gets the value of the ROUTING_ENDPOINT
context variable set using
pub.apigateway.ctxvar:setContextVariable

${dynamicEndpoint}

Gets the time when the request gets invoked.${time}

Gets the value of the user ID who sends the
request.

${user}

webMethods API Gateway User's Guide 10.11 179

4 Policies

DescriptionVariable Syntax

Gets the value theHTTPmethod used by the client
to send the request.

${inboundHttpMethod}

Example: GET

Gets the value of the HTTP method used by the
API Gateway in the routing policy to send the
request to native API.

${routingMethod}

Example: POST

Gets the content type of the request.${InboundContentType}

Example: application/json

Gets the accept header in the incoming request
from the client.

${inboundAccept}

Example: */*

Gets the protocol of the request.${inboundProtocol}

A partial reference to an API (for HTTP and
HTTPS only). The protocol, host and port are not
part of the value.

${inboundRequestURI}

For example, if the API is invoked: http://
host:port/gateway/API then the expected
value of this variable would be /gateway/API.

For a REST API, the URL also includes query
string parameters.

For example, if the following API is invoked:
http://host:port/gateway/cars?vin=1234 the
expected value of this variable would be /
gateway/cars?vin1234.

Gets the value of the client IP address used to send
the request.

${inboundIP}

Example: 210.178.9.0

Gets the API Gateway host name.${gatewayHostname}

Example: uk.myhost.com

Gets API Gateway IP address.${gatewayIP}

Example: 198.168.1.9

Gets the value of API operation selected from the
request. Operation names are available only for
SOAP APIs. It is empty for REST API.

${operationName}

Example: addInts

Gets the value of the native endpoints from the
request. It returns value only after executing the
routing policy.

${nativeEndpoint}

Example: http://host:port/Service

180 webMethods API Gateway User's Guide 10.11

4 Policies

In addition, the variable framework also supports the following variables:

${jms.headers.NAME}

${jms.query.NAME}

${jms.path}

${jms.path.regex[EXPR]}

${jms.httpMethod}

${jms.payload.xpath[EXPR]}

${jms.payload.jsonPath[EXPR]}

${jms.payload.regex[EXPR]}

${jms.statusCode}

Note:
You can use these variables when you want to use JMS/AMQP so that transformation can be
applied for the JMS/AMQP values. For example, if you set the path parameter as
jms.path.petidand the corresponding value as jms.header.h1, then if the request contains the
header value h1, the value h1 is replaced by the path parameter petid.

Enhancements to Variable Framework Support

Until API Gateway version 10.5, the variable framework was supported in API Mashup, Request
Transformation, Response Transformation, Conditional Error Processing, and Custom Extension
policies.

In API Gateway version 10.7 the existing variable framework is enhanced to support the following
use cases:

Simple aliases can be accessed across all stages using variable framework. For example:
${simpleAlias}.

The existing custom and system context variables are now accessible using variable framework.
As part of variable framework, the custom context variables that were defined using ctxVar
IS service are merged into custom variables. The syntax for accessing the system context
variables or custom context variables using variable framework is similar to the custom
variables. Example : ${variableName}. For details on how the system and custom context
variables were declared in API Gateway version 10.5, see “Conditional Routing” on page 240.

Note:
As like the earlier versions ofAPIGateway, you can also define and access the custom-context
variable or custom-variable using the ctxVar IS Service. For details, see “TheAPI for Context
Variables” on page 340.

Both system context variables and custom variables (that includes custom context variables)
are accessible across all policy parameters that support variables.

webMethods API Gateway User's Guide 10.11 181

4 Policies

Transport
The policies in this stage specify the protocol to be used for an incoming request and the content
type for a REST request during communication between API Gateway and an application. The
policies included in this stage are:

Enable HTTP/HTTPS

Enable JMS/AMQP

Set Media Type

Enable HTTP/HTTPS

This policy specifies the protocol to use for an incoming request to the API on API Gateway. If
you have a native API that requires clients to communicate with the server using the HTTP and
HTTPS protocols, you can use the Enable HTTP or HTTPS policy. This policy allows you to bridge
the transport protocols between the client and API Gateway.

For example, you have a native API that is exposed over HTTPS and an API that receives requests
over HTTP. If you want to expose the API to the consumers of API Gateway through HTTP, then
you configure the incoming protocol as HTTP.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the protocol (HTTPorHTTPS), SOAP format (for a SOAP-based
API) to be used to accept and process the requests.

Protocol

Select one of the following:

HTTP. API Gateway accepts requests that are sent using the HTTP
protocol. This is selected by default.

HTTPS. APIGateway accepts requests that are sent using theHTTPS
protocol.

For SOAP-based APIs.SOAP Version

Specifies the SOAP version of the requests which the API Gateway
accepts from the client.

Select one of the following:

SOAP 1.1. This is selected by default. API Gateway accepts requests
that are in the SOAP 1.1 format.

SOAP 1.2. API Gateway accepts requests that are in the SOAP 1.2
format.

182 webMethods API Gateway User's Guide 10.11

4 Policies

Enable JMS/AMQP

Java Message Service (JMS) is a standard Java API for communicating with message oriented
middleware and enables loosely coupled communication between two or more homogenous
systems. It provides reliable and asynchronous form of communication.

Advanced Message Queuing Protocol(AMQP) is an open standard application layer protocol for
delivering messages. AMQP can queue and route messages in a reliable and secured way. AMQP
provides a standardmessaging protocol that stands across all platforms and a description on how
a message should be constructed. It doesn't provide an API on how the message should be sent.
AMQP being language agnostic is useful in the message oriented middleware to achieve
interoperability in asynchronous way among heterogenous systems.

When you want to expose a REST or SOAP API over JMS with broker native protocol or JMS with
AMQP protocol add and configure the Enable JMS/AMQP policy in API Gateway, thereby
allowing them to communicate through the messaging Queue or Topic.

For example, you can use this policy to expose your API over JMS/AMQP and hence enable your
client to communicate through the messaging queue or topic.

JMS with Message broker native protocol support

For example, if your Message broker is using ActiveMQ and if you are relying on the default
Active MQ TCP protocol, then essentially it is JMS on open wire protocol because open wire
is the native protocol of ActiveMQMessage broker.

JMS with AMQP protocol support

For example, if you want to use JMS with AMQP with any message broker which supports
AMQP 1.0 to achieve interoperability in asynchronousway among heterogenous systems. API
Gateway supports AMQP 1.0 using Apache qpid JMS client.

Note:
The following are not supported if the Enable JMS/AMQP policy is added:

Threat protection policies
API Gateway SOAP to REST transformation feature

Use case 1: Expose a SOAP API over JMS with a message broker native protocol

This describes the high level workflow for the scenario where you want to expose a SOAP API
over JMS with a message broker native protocol.

1. Create an alias to a JNDI Provider. For a detailed procedure, see webMethods API Gateway
Administration.

2. ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

webMethods API Gateway User's Guide 10.11 183

4 Policies

3. Create a WS (Web Service) JMS Provider endpoint alias and configure the Alias, Description,
Type (Provider), Transport Type (JMS) fields and JMS Transport Properties. For a detailed
procedure, see webMethods API Gateway Administration.

4. A WS (Web Service) endpoint trigger is created when you configure WS (Web Service) JMS
Provider endpoint alias. This trigger consists of the input source details like Queue name or
Topic name. You can update the WS (Web Service) endpoint trigger, as required. For detailed
procedures, see webMethods API Gateway Administration.

5. Select the required API.

6. Click Edit.

7. In the API Details section click Policies.

8. Enforce the Enable JMS/AMQP policy with the following properties configured.

a. Specify the name of the JMS provider endpoint alias that specifies the trigger which listens
to the source queue or topic for the input message.

b. Specify the SOAP version of the requests which the API Gateway accepts from the client.

For details on the Enable JMS/AMQP policy, see “Using Enable JMS/AMQP for a SOAP
API” on page 188.

9. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows any java
client to communicate with the API asynchronously.

Use case 2: Expose a SOAP API over JMS with AMQP protocol

This describes the high level workflow for the scenario where you want to expose a SOAP API
over JMS with AMQP protocol.

1. Configure API Gateway to use JMS with AMQP protocol.

Configure JNDI settings and JMS settings as per the client you are using to achieve JMS over
AMQP protocol support.

Note:
For a sample procedure on configuringAPI Gateway to use JMSwithAMQPprotocol using
Apache qpid libraries, see “Configuring API Gateway for JMS with AMQP Protocol” on
page 186

2. Select the required API.

3. Click Edit.

4. In the API Details section click Policies.

5. Enforce the Enable JMS/AMQP policy with the following properties configured.

184 webMethods API Gateway User's Guide 10.11

4 Policies

a. Specify the name of the JMS provider endpoint connection alias that specifies the trigger
which listens to the source queue or topic for the input message.

b. Specify the SOAP version of the requests which the API Gateway accepts from the client.

For details on the Enable JMS/AMQP policy, see “Using Enable JMS/AMQP for a SOAP
API” on page 188.

6. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows all the
clients such as Python, Ruby, Java, and Dotnet to communicate with the API asynchronously.

Use case 3: Expose a REST API over JMS with a message broker native protocol

This describes the high level workflow for the scenario where you want to expose a REST API
over JMS with a message broker native protocol.

1. Create an alias to a JNDI Provider. For a detailed procedure, see webMethods API Gateway
Administration.

2. ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

3. Select the required API.

4. Click Edit.

5. In the API Details section click Policies.

6. Enforce the Enable JMS/AMQP policy with the following properties configured.

a. Specify the name of the JMS provider endpoint alias that contains the configuration
information needed to establish a connection to a specific JMS provider.

b. Specify the input source name which API Gateway starts listening to when the API is
activated.

c. Specify the type of source type Queue or Topic, which the API Gateway listens for the
request message.

d. Specify the selector, a criteria for the API Gateway tp listen to a message containing the
specified criteria

For details on theEnable JMS/AMQPpolicy, see “Using Enable JMS/AMQP for a RESTAPI” on
page 189.

7. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows any java
client to communicate with the API asynchronously.

webMethods API Gateway User's Guide 10.11 185

4 Policies

Use case 4: Expose a REST API over JMS with AMQP protocol

This describes the high level workflow for the scenario where you want to expose a REST API
over JMS with AMQP protocol.

1. Configure API Gateway to use JMS with AMQP protocol.

Configure JNDI settings and JMS settings as per the client you are using to achieve JMS over
AMQP protocol support.

Note:
For a sample procedure on configuringAPI Gateway to use JMSwithAMQPprotocol using
Apache qpid libraries, see “Configuring API Gateway for JMS with AMQP Protocol” on
page 186.

2. Select the required API.

3. Click Edit.

4. In the API Details section click Policies.

5. Enforce the Enable JMS/AMQP policy with the following properties configured.

a. Specify the name of the JMS provider endpoint alias that contains the configuration
information needed to establish a connection to a specific JMS provider.

b. Specify the input source name which API Gateway starts listening to when the API is
activated.

c. Specify the type of source type Queue or Topic, which the API Gateway listens for the
request message.

d. Specify the selector, a criteria for the API Gateway tp listen to a message containing the
specified criteria

For details on theEnable JMS/AMQPpolicy, see “Using Enable JMS/AMQP for a RESTAPI” on
page 189.

6. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows all the
clients such as Python, Ruby, Java, and Dotnet to communicate with the API asynchronously.

Configuring API Gateway for JMS with AMQP Protocol

Before configuring AMQP in API Gateway, ensure your message broker supports AMQP 1.0

For using JMSwithAMQPprotocol inAPIGateway you have to configure the appropriate settings
for the provider URL and the connection factory lookup name required for API Gateway to
communicate using JMS with AMQP protocol.

To configure API Gateway to use JMS with AMQP protocol

186 webMethods API Gateway User's Guide 10.11

4 Policies

1. Create a properties file that contains the information for the JNDI lookup name and
connectionfactory details.

2. Configure JNDI settings as per the client you are using to achieve JMS over AMQP protocol
support.

For a detailed procedure, see webMethods API Gateway Administration.

3. Configure JMS settings as per the client you are using to achieve JMS over AMQP protocol
support.

For a detailed procedure, see webMethods API Gateway Administration.

To configure API Gateway for JMS with AMQP protocol using Apache qpid libraries

1. Create a properties file that contains the information for the JNDI lookup name and
connectionfactory details.

A sample properties file, for example amqp.properties, would look like
Set the InitialContextFactory class to use
java.naming.factory.initial = org.apache.qpid.jms.jndi.JmsInitialContextFactory
Define the required ConnectionFactory instances
connectionfactory.<JNDI-lookup-name> = <URI>
connectionfactory.qpidConnectionFactory = amqp://<hostname>:<port#>

2. Navigate to > Administration.

3. Select General > Messaging.

4. Configure the JNDI provider alias as follows:

a. Click Add JNDI provider alias in the JNDI provider alias definitions section.

b. Provide the following information:

JNDI Alias Name. Provide a name that you want to assign to this JNDI provider.

Description. Provide a brief description for this JNDI alias.

Predefined JNDI Templates. Select the predefined JNDI template depending on the
provider you may want to use.

For example, if youwant to use the JMSwithAMQPprotocol, selectQpid AMQP (0-x).

Initial Context Factory. The JNDI provider uses the initial context as the starting point
for resolving names for naming and directory operations. This value gets pre-populated
depending on the predefined JNDI template selected. For example, if you have selected
Qpid AMQP (0-x) as the predefined JNDI template the Initial context factory field
would display org.apache.qpid.jms.jndi.JmsInitialContextFactory.

webMethods API Gateway User's Guide 10.11 187

4 Policies

Provider URL. Provide the file path location of the properties file that contains the
context factory details. For example, C:\amqp.properties

c. Click Add.

The JNDI provider alias is created and listed in the JNDI Provider alias definitions table.

5. Configure the JMS settings as follows:

a. Click Add JMS connection alias in the JMS connection alias definitions section.

b. Provide the following information in the General Settings section:

Connection Alias Name. Provide a name for the connection alias. Each connection
alias represents a connection factory to a specific JMS provider.

Description. Provide a brief description for the connection alias.

c. Provide the following information in the Connection Protocol Settings section:

JNDI Provider Alias Name. The alias to the JNDI provider that you want this JMS
connection alias to use to look up administered objects. Select the JNDI Provider alias
name created in the earlier step.

Connection Factory Lookup Name. The lookup name for the connection factory that
you want to use to create a connection to the JMS provider specified in this JMS
connection alias. Provide the value qpidConnectionFactory.

d. Click Add.

The JMS Connection alias is created and listed in the JMS Connection Alias Definitions
table.

e. Enable the JMS connection alias by clicking toggle button to enable it.

The JNDI provider alias and the JMS connection alias are now set up andAPIGateway is configured
to use JMS with AMQP protocol.

Using Enable JMS/AMQP for a SOAP API

This policy is used to expose a SOAP API over JMS/AMQP. A SOAP API can be exposed as
HTTP/HTTPS or JMS/AMQP as the policies Enable HTTP/HTTPS and Enable JMS/AMQP are
mutually exclusive.

If you are using JMS with Message Broker native protocol support ensure that following actions
are performed before using the Enable JMS/AMQP policy:

Create an alias to a JNDI Provider. For a detailed procedure, see webMethods API Gateway
Administration.

188 webMethods API Gateway User's Guide 10.11

4 Policies

ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

Create a WS (Web Service) JMS Provider endpoint alias and configure the Alias, Description,
Type (Provider), Transport Type (JMS) fields and JMS Transport Properties. For a detailed
procedure, see webMethods API Gateway Administration.

Configure a WS (Web Service) endpoint trigger. For detailed procedures, see webMethods API
Gateway Administration.

If you are using JMS with AMQP protocol support, ensure the following before using the Enable
JMS/AMQP policy:

You have configured API Gateway for JMS with AMQP. For details, see “Configuring API
Gateway for JMS with AMQP Protocol” on page 186

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the name of the JMS provider endpoint alias.JMS Provider Endpoint
Alias

The provider endpoint alias specifies the trigger which listens to the
source queue or topic for the input message.

Specifies the SOAP version of the requests which the API Gateway
accepts from the client.

SOAP Version

Select one of the following:

SOAP 1.1. This is selected by default. APIGateway accepts requests
that are in the SOAP 1.1 format.

SOAP 1.2. API Gateway accepts requests that are in the SOAP 1.2
format.

Using Enable JMS/AMQP for a REST API

This policy is used to expose a REST API over JMS/AMQP. A REST API can be exposed as both
HTTP/HTTPS and JMS/AMQP at the same time.

If you are using JMS with Message broker native protocol support ensure that following actions
are performed before using the Enable JMS/AMQP policy:

Create an alias to a JNDI Provider. For a detailed procedure, see webMethods API Gateway
Administration.

ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

webMethods API Gateway User's Guide 10.11 189

4 Policies

If you are using JMS with AMQP protocol support, ensure the following before using the Enable
JMS/AMQP policy:

You have configured API Gateway for JMS with AMQP. For details, see “Configuring API
Gateway for JMS with AMQP Protocol” on page 186

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the name of the connection alias.Connection Alias Name

Each connection alias contains the configuration information needed to
establish a connection to a specific JMS provider.

Add JMS/AMQP source details. Click to add the JMS/AMQP source details and provide the
required information.

Specifies the input source name which API Gateway starts listening to
when the API is activated.

Input Source Name

Specifies the type of source to which the API Gateway listens for the
request message.

Input Source Type

Select one of the following source type:

QUEUE. Indicates that API Gateway listens to the specified queue
for the request message.

TOPIC. Indicates that the API Gateway listens to the specified topic
for the request message.

Note:
Provides support only for non-durable topic.

Specifies the criteria for the API Gateway to listen to a message
containing the specified criteria.

Selector

For example, operation = GET

If you have multiple selectors it follows the OR condition.

If there are no selectors the message that comes in is listened to without
any condition.

Note:
Message selectors are only applicable for headers, properties and not
for payload.

Specifies the resource of the API.Resource

Specifies the routing method used.HTTP Method

190 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Available routing methods: GET, POST, PUT, and DELETE.

Optional. Specifies the content type of the JMS/AMQP message body.Content Type

Examples for content types: application/json, application/xml

Note:
Alternatively, you can use the SetMedia Type policy to set the default
content type instead of setting it here.

Set Media Type

This policy specifies the content type for a REST request. If the content type header is missing in
a client request sent to an API, API Gateway adds the content type specified here before sending
the request to the native API.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the default content type for REST request received from a client
.

Default Content-Type

Specifies the default accept header for REST request received from a
client.

Default Accept Header

As both these properties support variable framework, you can use the available variables to specify
the content type and accept header. For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Identify and Access
The policies in this stage provide different ways of identifying and authorizing the application,
and provide the required access rights for the application. The policies included in this stage are:

Inbound Auth - Message

Authorize User

Identify & Authorize

Custom Extension

The Inbound authentication policies are used to authenticate the application by specifying
user-based SPN or host-based SPN for a Kerberos token, using the basic credentials for the HTTP
basic authentication or through various token assertions or through the XML security actions.

webMethods API Gateway User's Guide 10.11 191

4 Policies

The Authorize User policy authorizes the application against a list of users and a list of groups
registered in API Gateway.

The Identify &Authorize policy is used to identify the application, authenticate the request based
on policy configured and authorizes it against all applications registered in API Gateway.

Custom Extension policies allow you to handle requirements that might not be provided by the
out-of-the-box policies. You can add these custom extensions into API Gateway policy stages. To
learn more about Custom Extension, see “Custom Policy Extension” on page 604.

Note:
FromAPI Gateway 10.3, the Identification andAuthentication policies aremerged into one and
you would not be able to do identification alone for Basic Authentication. You must provide
the right credentials for a successful invoke.

Inbound Auth - Message

An API Provider can use this policy to enforce authentication on the API. When this policy is
configured for an API, API Gateway expects the clients to pass the authentication credentials
through the payload message that will be added to the request and sent to the native API. API
Gateway supports awide range of authentication schemes, such asX.509Certificate,WSSUsername,
SAML, and Kerberos, in addition to signing and encryption, at the message-level.

Note:
Message-level authentication can be used to secure inbound communication of only SOAPAPIs.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the type of binding assertion required for the message
transfer between the recipient and the initiator.

Binding Assertion

Require Encryption. Specifies that a request's XML element, which is represented by an XPath
expression or by parts of a SOAP request such as the SOAP body or the SOAP headers, be
encrypted.

Click + Add encrypted part to add the required properties. This
allows you to encrypt parts of a SOAP request such as the SOAP
body or the SOAP headers.

Encrypted Parts

Provide the following information:

Entire SOAP Body. Specifies encryption of the entire SOAP
body.

All SOAP Attachments. Specifies encryption of all the SOAP
attachments.

In the SOAP Header section, provide the following information:

192 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Header Name. Specifies the name for the SOAP header field.

Header Namespace. Specifies the namespace of the SOAP
header to be encrypted.

You can add more SOAP headers by clicking .

Click + Add encrypted element to add the required properties.
Select this option to encrypt the entire element, which is represented
by an XPath expression.

Encrypted Elements

Provide the following information:

XPath. Specifies the XPath expression in the API request.

In the Namespace section, provide the following information:

Namespace Prefix. Specifies the namespace prefix of the
element to be encrypted.

Namespace URI. Specifies the generated XPath element.

You can addmore namespace prefixes andURIs by clicking .

Require Signature. Specifies that a request's XML element, which is represented by an XPath
expression or by parts of a SOAP request such as the SOAP body or the SOAP headers, be signed.

Click + Add require signature to add the required properties. Select
this option to sign the entire element represented by an XPath
expression.

Signed Elements

Provide the following information:

XPath. Specifies the XPath expression in the API request.

For the Namespace section, provide the following information:

Namespace Prefix. Specifies the namespace prefix of the
element to be signed.

Namespace URI. Specifies the generated XPath element.

You can addmore namespace prefixes andURIs by clicking .

Click + Add signed part to add the required properties. Select this
option to sign parts of a SOAP request such as the SOAP body or
the SOAP headers.

Signed Parts

Provide the following information:

webMethods API Gateway User's Guide 10.11 193

4 Policies

DescriptionProperty

Entire SOAP Body. Specifies signing of the entire SOAP body.

All SOAP Attachments. Specifies signing of all the SOAP
attachments.

For the SOAP Header section, provide the following information:

Header Name. Specifies the name for the SOAP header field.

Header Namespace. Specifies the Namespace of the SOAP
header to be signed.

You can addmore namespace prefixes andURIs by clicking .

Validate SAML Audience URIs. Validates the audience restriction in the conditions section of
the SAML assertion. It verifies whether any of the valid audience URI within a valid condition
element in SAMLassertionmatcheswith any of the configuredURI. If two conditions are available,
then one of the audience URIs in the first condition, and one of the audience URIs in the second
condition must match with any of the configured URIs in this policy for the SOAP API.

This property is used in the following scenarios:

When the native API is enforced with the SAML policy, and the service provider wants to
delegate audience restriction validation to API Gateway.

When Require SAML Token assertion is defined for the SOAP API in API Gateway.

Specifies the SAML audience URI.URI

Select one of the following options:Match Criteria

Allow Sublevels. Any one of the audience URI in the incoming
SAML assertion either has to be an exact match or it can have
sub paths to the configured URI. For example, if
http://yahoo.com is configured as the URI and the Allow
Sublevels option is selected, the audience URI has
http://yahoo.com/mygroup and condition is matched because
the main URI matches with the configured URI
(http://yahoo.com). The extra path mygroup is a sublevel path.

Exact match. Any one of the audience URI in the incoming
SAML assertion is verified for the exact match with the
configuredURI. For example, if http://yahoo.com is configured
as theURI and the Exact match option is selected, the audience
URImust be configuredwith http://yahoo.com in order tomatch
the condition. This is selected by default.

194 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Formore information on audienceURI, see conditions and audience
restriction sections in the SAML specification available in the https://
docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf location.

Select the type of token assertion required to authenticate the client.Token Assertions

Select any of the following:

Require X.509 Certificate. Mandates that there should be awss
x.509 token in the incoming SOAP request.

Require WSS Username token. Mandates that there should
be a WSS username token in the incoming SOAP request. Uses
WS-Security authentication to validate user names and
passwords that are transmitted in the SOAPmessage header for
the WSS Username token.

Kerberos Token Authentication. Mandates that there should
be aKerberos token in the incoming SOAP request. Authenticates
the client based on the Kerberos token. API Gateway extracts
the Kerberos token from the SOAP body and validates the token
with the KDCusing SPN credentials configured by the provider
for the API. If the Kerberos token sent by the client is valid, API
Gateway forwards the request to the native service and the
response to the client.

Service Principal Name. Specifies a valid SPN,which is the
name type to use while authenticating an incoming client
principal name. The specified value is used by the client or
the server to obtain a service ticket from the KDC server.

Note:
API Gateway supports the username format for Service
Principal Names (SPNs). This format represents the
principal name as a named user defined in LDAP used
for authentication to the KDC.

Service Principal Password. Specifies a valid password of
the Service Principal Name user or the Service Principal
Name host.

Require SAML Token. Mandates that there should be a SAML
token in the incoming SOAP request. Uses a Security Assertion
Markup Language (SAML) assertion token to validate
applications. Provide the following information:

SAML Version. Specifies the supported SAML version.
Available values are SAML 1.0, SAML 2.0

webMethods API Gateway User's Guide 10.11 195

4 Policies

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

DescriptionProperty

SAML Subject Configuration. Select one of the following:

Bearer of Token. Select the bearer method when the
client wants a security token to be issuedwithout a proof
of possession.

Holder of Key - Symmetric. Select the Holder of Key
(Symmetric) method when either the client or the server
has to generate security tokens such as X509 tokens. A
symmetric key is established using the security token.
You can use this token to sign and encrypt parts and
elements.

Holder of Key - Public. Select theHolder of Key (Public)
methodwhen both the client and the server have security
token such as X509 certificates. In this method, the client
uses its private key to sign and the recipient’s (API
Gateway) public key to encrypt.

WS-Trust Version. Specifies the WS-Trust version to be
used. Available values are WS-Trust 1.0, WS-Trust 1.3

Encrypt Signature. Select Yes to encrypt the signature.

Issuer Address. Specifies the SAML issuer address.

Metadata Reference Address. Specifies the address from
where the metadata reference document is obtained.

Algorithm Suite. Specifies the applicable algorithm suite.

Key. Specifies the Key type of the security token template.

Value. Specifies a value for the request token.

You can add more values for the key-value pair by clicking

.

Custom Token Assertion. Type a search string, select a custom
token assertion name to authenticate the client, and click

to add. You can add more custom token assertions
in a similar way.

Click the Custom Token Assertion arrow to see a list of all
custom token assertions available in API Gateway.

Click to delete the custom token assertion added.

196 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Specifies that the time stamps be included in the request header.
API Gateway checks the time stamp value against the current time

Require Timestamp

to ensure that the request is not an oldmessage. This serves to protect
your system against attempts at message tampering, such as replay
attacks.

Authorize User

This policy authorizes incoming requests against a list of users, a list of groups, or users who
belong to LDAP groups registered in API Gateway.

Note:
LDAP groups cannot be authorized using the List of Groups configuration option. To authorize
a user who belongs to an LDAP group, you must first create a team containing one or more
LDAP groups and then authorize the user using List of Teams configuration option in this
policy.

Use this policy in conjunction with an authentication policy (for example, Require HTTP Basic
Authentication, Require WSS Username Token).

The table lists the parameters of this policy and how they are applied to authorize the incoming
requests.

DescriptionProperty

Authorizes applications against a list of users registered in API
Gateway.

List of Users

Type a search string, select a user, and click to add. You
can add one or more users.

Click to delete the user added.

Authorizes applications against a list of groups registered in API
Gateway.

List of Groups

Type a search string, select a group, and click to add.
You can add one or more groups.

Click to delete the group added.

Authorizes applications against a list of teams registered in API
Gateway.

List of Teams

webMethods API Gateway User's Guide 10.11 197

4 Policies

DescriptionProperty

Type a search string, select a team, and click to add. You
can add one or more teams.

Click to delete a team.

Identify & Authorize

This policy identifies and validates the authorization of the applications to access the APIs. The
application are identified using a set of identification types such as API key, hostname address,
and HTTP basic authentication and so on based on the configuration. API Gateway can identify
and authorize the application based on the following Application Lookup condition:

Registered applications. Identifies the application and validates the identified application
against the registered applications. On successful validation, API Gateway allows access to
the API. The application that are associated with the API are called as registered application.

Global applications. Identifies the application and validates the identified application against
the global applications. On successful validation, API Gateway allows access to the API. All
the active applications that are available in API Gateway are called as global application.

Global applications and DefaultApplication. Verifies the identity of the application against
the global applications and on identification failure the API Gateway allows access to the API
as default application.

Note:
If Allow anonymous is selected and even if the Application Lookup condition does not meet,
API Gateway allows access to the API.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the condition operator for the identification and
authentication types.

Condition

Select any of the following condition operators:

AND. Applies all the identification and authentication types.

OR. Applies one of the selected identification and authentication
types.

Note:
Even though this policy provides the option of choosing an AND
or OR operation between the different identification and

198 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

authentication types, the operation across the different policies
in the IAM stage is always AND.

Specifies whether to allow all users to access the API without
restriction.

Allow anonymous

When you add a security policy and configure Allow anonymous,
all requests are allowed to pass through to the native API, but the
successfully identified requests are grouped under the respective
identified application, and all unidentified requests are grouped
under a common application named asDefaultApplication
(sys:defaultApplication). While you allow all requests to pass through
you can perform all application-specific actions, such as, viewing
the runtime events for a particular application, monitor the service
level agreement for a few applications and send an alert email based
on some criteria like request count or availability, and throttle the
requests from a particular application and not allow the request
from that application if the number of requests reach the configured
hard limit within configured period of time.

Identification Type. Specifies the identification type. You can select any of the following.

Note:
For the purpose ofmonetization,when you add anAPI to a package, theAPI key authentication
mechanism is automatically added to the IAM policy at API level. If the API already contains
an IAM policy that has two or more authentication mechanisms with the AND condition, the
condition will be switched to OR. This is done to ensure that the monetization is supported
for consumers who access the API using only the API key.

Specifies using the API key to identify and validate the client's API
key to verify the client's identity in the registered list of applications
for the specified API.

API Key

Select one of the Application Lookup condition:

Registered applications. Identifies the client's API key against
the API key of all the applications registered to the API. On
successful identification, API Gateway allows access to the API.

Global applications. Identifies the client's API key against the
API key of all the applications available in API Gateway. On
successful identification, API Gateway allows access to the API.

Global applications and DefaultApplication. Identifies the
client's API key against all the applications available in API
Gateway. Even though, if no global application is identified, API
Gateway allows access to the API as default application.

webMethods API Gateway User's Guide 10.11 199

4 Policies

DescriptionProperty

When this option is selected, you can use the API key as:

Header parameter to consume an API. For example,
x-Gateway-APIKey:a4b5d569-2450-11e3-b3fc-b5a70ab4288a

Query parameter to invoke an API resource. For example,
http://pie-3HKYMH2:5555/gateway/PetstoreAPI/1.0.3/store/
inventory?APIKey=faab7ac6-97a4-4228-908d-f1930faba470

Specifies using host name address to identify the client, extract the
client's hostname from the HTTP request header and verify the
client's identity in the specified list of applications in API Gateway.

Hostname Address

Select one of the Application Lookup condition:

Registered applications. Identifies the client's hostname against
the hostname identifier of all the applications registered to the
API. On successful identification, API Gateway allows access to
the API.

Global applications. Identifies the client's hostname against the
hostname identifier of all the applications available in API
Gateway. On successful identification, API Gateway allows
access to the API.

Global applications and DefaultApplication. Identifies the
client's hostname against the hostname identifier of all the
applications available in API Gateway. If no global application
is identified, then API Gateway allows access to the API as
default application.

Note:
If the client request has X-Forwarded-For header, then API
Gateway resolves the hostname from the IP address present in
the X-Forwarded-For header. Else, API Gateway resolves the
hostname from the client's IP address.

Specifies using Authorization Header in the request to identify and
authorize the client application against the list of applications with
the identifier username in API Gateway.

HTTP Basic Authentication

Provide the following information:

Select one of the Application Lookup condition:

Registered applications. Authenticates the user and
identifies the user against username identifier of all the
applications registered to the API. On successful

200 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

authentication and identification, APIGateway allows access
to the API.

Global applications. Authenticates the user and identifies
the user against username identifier of all the applications
available in the API Gateway. On successful authentication
and identification, API Gateway allows access to the API.

Global applications and DefaultApplication.

1. Authenticates the user and identifies the user against
username identifier of all the applications available in the
API Gateway.

2. On successful authentication and if no global application
is identified, then API Gateway allows access to the API
as default application.

3. In case if the authentication fails, thenAPI Gateway does
not allow access to the API.

If Global applications and DefaultApplication and Allow
anonymous are selected:

1. Authenticates the user and identifies the user against
username identifier of all the applications available in theAPI
Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway still
allows access to the API.

Trigger policy violation event on missing authorization
header. Creates a policy violation event for basic authentication
if Authorization Headers are missing.

Possible values:

true. Requests without authorization headers are logged as a
policy violation event.

false. Requests without authorization headers are not logged
as a policy violation event.

Specifies using the IP address range to identify the client, extract the
client's IP address from the HTTP request header, and verify the

IP Address Range

client's identity against the specified list of applications in API
Gateway.

webMethods API Gateway User's Guide 10.11 201

4 Policies

DescriptionProperty

Select one of the Application Lookup condition:

Registered applications. Identifies the client's IP address against
the IP address range identifier of all the applications registered
to the API. On successful identification, API Gateway allows
access to the API.

Global applications. Identifies the client's IP address against
the IP address range identifier of all the applications available in
API Gateway. On successful identification, API Gateway allows
access to the API.

Global applications and DefaultApplication. Identifies the
client's IP address against the IP address range identifier of all
the applications available in API Gateway. If no global
application is identified, then API Gateway allows access to the
API as default application.

Note:
If the client request has X-Forwarded-For header, then API
Gateway uses the IP address present in the X-Forwarded-For
header. Else, API Gateway uses the client's IP address for
identification.

Specifies using the JSONWeb Token (JWT) to identify the client,
extract the claims from the JWT and validate the client's claims, and

JWT

verify the client's identity against the specified list of applications
in API Gateway.

Select one of the Application Lookup condition:

Registered applications. Identifies the JWT against the claims
identifier of all the applications registered to the API. On
successful identification, API Gateway allows access to the API.

Global applications. Identifies the JWT against the claims
identifier of all the applications available in API Gateway. On
successful identification, API Gateway allows access to the API.

Global applications and DefaultApplication. Identifies the
JWT against the claims identifier of all the applications available
in API Gateway. If no global application is identified, then API
Gateway allows access to the API as default application.

Note:

You can use the claims in the JWT for further processing using
request transformation policy.
When a Policy violation event is logged in case of expired
JWT tokens, the application is associated as the identified

202 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty
application since the identification happens before the expiry
is checked.

Specifies using the Kerberos token to identify the client, extract the
client's credentials from the Kerberos token, and verify the client's
identity against the specified list of applications in API Gateway.

Kerberos Token

Note:
You have to enforce the Inbound Auth - Message policy with the
property, Kerberos Token Authentication, configured, so when
Identify & Authorize policy is executed, the user details fetched
are used to match with application's data to identify the
application.

Select one of the Application Lookup condition:

Registered applications. Authenticates the incomingKerberos
token and identifies the user against the username identifier of
all the applications registered to the API. On successful
authentication and identification, API Gateway allows access to
the API.

Global applications. Authenticates the incomingKerberos token
and identifies the user against the username identifier of all the
applications available in API Gateway. On successful
authentication and identification, API Gateway allows access to
the API.

Global applications and DefaultApplication.

1. Authenticates the incoming Kerberos token and identifies
the user against username identifier of all the applications
available in the API Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway does
not allow access to the API.

If Global applications and DefaultApplication and Allow
anonymous are selected:

1. Authenticates the incoming Kerberos token and identifies
the user against username identifier of all the applications
available in the API Gateway.

webMethods API Gateway User's Guide 10.11 203

4 Policies

DescriptionProperty

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway still
allows access to the API.

Note:
You can use the username for further processing using the request
transformation policy.

Specifies using the OAuth2 token to identify the client, extract the
access token from the HTTP request header, and verify the client's
identity against the specified list of applications in API Gateway.

OAuth2 Token

By default, OAuth2 token is identified against the registered
applications.

Note:

You can use the client id and other parameters for further
processing using the request transformation policy.
When a Policy violation event is logged in case of expired
Oauth2 tokens, the application that is associated turn in to
Unknown.

Specifies using the OpenID (ID) token to identify the client, extract
the client's credentials from the ID token, and verify the client's
identity against the specified list of applications in API Gateway.

OpenID Connect

Select one of the Application Lookup condition:

Registered applications. Identifies the client's identity resolved
as part of OpenID validation against all the applications
registered to theAPI. On successful identification, API Gateway
allows access to the API.

Global applications. Identifies the client's identity resolved as
part of OpenID validation against all the applications available
in API Gateway. On successful identification, API Gateway
allows access to the API.

Global applications and DefaultApplication. Identifies the
client's identity resolved as part of OpenID validation against
all the applications available in API Gateway. If no global
application is identified, then API Gateway allows access to the
API as default application.

Note:

204 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

You can use the client id and other parameters for further
processing using the request transformation policy.

Specifies using the SSL certificate to identify the client, extract the
client's identity certificate, and verify the client's identity

SSL Certificate

(certificate-based authentication) against the specified list of
applications in API Gateway. The client certificate that is used to
identify the client is supplied by the client to API Gateway during
the SSL handshake over the transport layer or is added in the header
of the request.

The certificate included in the customheader can be in the following
formats:

Base64 encodedPEMcertificatewith BEGINCERTIFICATE and
END CERTIFICATE delimiters

Non-Base64 encodedPEMcertificatewith BEGINCERTIFICATE
and END CERTIFICATE delimiters.

PEM certificate can be without BEGIN CERTIFICATE and END
CERTIFICATE delimiters if a single certificate is added.

URL encoded PEM certificate with BEGIN CERTIFICATE and
END CERTIFICATE delimiters.

URL encoded PEM certificate can be without the BEGIN
CERTIFICATE and END CERTIFICATE delimiters if a single
certificate is added.

If the transport protocol is HTTP then API Gateway checks for the
existence of a header and fetches the certificate from the certificate
header. If the certificate is coming from the customheader, thenAPI
Gateway does not check the validity of the certificate. API Gateway
identifies the application using the certificate. The certificate should
be validated by some external entity before sending it to API
Gateway in a custom header.

If the transport protocol is HTTPS then API Gateway first tries to
identify the application based on the certificate exposed by the client
during the SSL handshake. If there is no client certificate or the
identification based on the client certificate fails API Gateway tries
to identify based on the certificate provided in the header.

The header name is customizable and can be customized in the
extended settings property, customCertificateHeader, the default
value being X-Client-Cert.

Select one of the Application Lookup condition:

webMethods API Gateway User's Guide 10.11 205

4 Policies

DescriptionProperty

Registered applications. Identifies the client's certificate against
the client certificate identifier of all the applications registered to
theAPI. On successful identification, APIGateway allows access
to the API.

Global applications. Identifies the client's certificate against the
client certificate identifier of all the applications available in API
Gateway. On successful identification, API Gateway allows
access to the API.

Global applications and DefaultApplication. Identifies the
client's certificate against the client certificate identifier of all the
applications available in API Gateway. If no global application
is identified, then API Gateway allows access to the API as
default application.

This is applicable only for SOAP APIs.WS Security Username
Token

Specifies using the WS security username token to identify the
application, extract the client's credentials (username token and
password) from the WSSecurity SOAP message header, and verify
the client's identity against the specified list of applications in API
Gateway.

Note:
You have to enforce the Inbound Auth - Message policy with the
property, Require WSS Username token, configured, so when
Identify & Authorize policy is executed, the user details fetched
are used to match with application's data to identify the
application.

Select one of the Application Lookup condition:

Registered applications. Authenticates the client's WSS
username token and identifies the user against the username
identifier of all the applications registered to the API. On
successful authentication and identification,APIGateway allows
access to the API.

Global applications. Authenticates the client's WSS username
token and identifies the user against the username identifier of
all the applications available in API Gateway. On successful
authentication and identification, API Gateway allows access to
the API.

Global applications and DefaultApplication.

206 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

1. Authenticates the client'sWSS username token and identifies
the user against the username identifier of all the applications
available in the API Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway does
not allow access to the API.

If Global applications and DefaultApplication and Allow
anonymous are selected:

1. Authenticates the client'sWSS username token and identifies
the user against the username identifier of all the applications
available in the API Gateway.

2. On successful authentication and if no global application is
identified, then API Gateway allows access to the API as
default application.

3. In case if the authentication fails, then API Gateway still
allows access to the API.

Note:
You can use the username for further processing using the request
transformation policy.

This is applicable only for SOAP APIs.WS Security X.509
Certificate

Specifies using theWS security X.509 certificate to identify the client,
extract the client identity certificate from the WS-Security SOAP
message header, and verify the client's identity against the specified
list of applications inAPI Gateway.

Note:
You have to enforce the Inbound Auth - Message policy with the
property, Require X.509 Certificate, configured, so when Identify
& Authorize policy is executed, the user details fetched are used
to match with application's data to identify the application.

Select one of the Application Lookup condition:

Registered applications. Identifies the client's X.509 certificate
against the client certificate identifier of all the applications
registered to theAPI. On successful identification, API Gateway
allows access to the API.

webMethods API Gateway User's Guide 10.11 207

4 Policies

DescriptionProperty

Global applications. Identifies the client's X.509 certificate
against the client certificate identifier of all the applications
available in API Gateway. On successful identification, API
Gateway allows access to the API.

Global applications and DefaultApplication. Identifies the
client's X.509 certificate against the client certificate identifier of
all the applications available in API Gateway. If no global
application is identified, then API Gateway allows access to the
API as default application.

Specifies using the payload identifier to identify the client, extract
the custom authentication credentials supplied in the request

Payload Element

represented using the payload identifier, and verify the client's
identity against the specified list of applications in API Gateway.

Select one of the Application Lookup condition:

Registered applications. Identifies the client's payload
against the Payload Identifier of all the applications registered
to theAPI. On successful identification, APIGateway allows
access to the API.

Global applications. Identifies the client's payload against
the Payload Identifier of all the applications available in API
Gateway. On successful identification, API Gateway allows
access to the API.

Global applications and DefaultApplication. Identifies the
client's payload against the Payload Identifier of all the
applications available in API Gateway. If no global
application is identified, then API Gateway allows access to
the API as default application.

In the Payload identifier section, click Add payload identifier,
provide the following information, and click Add.

Expression type: Specifies the type of expression,which is used
for identification. You can select one the following expression
type:

XPath. This is not applicable to a GraphQL API. Provide the
following information:

Payload Expression. Specifies the payload expression
that the specified expression type in the request has to
be converted to. For example: /name/id

208 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload
expression to be validated.

Note:
You can add multiple namespace prefix and URI by
clicking .

JSONPath. Provide the JSONPath for the payload
identification. For example, $.name.id

Text. Provide the regular expression for the payload
identification. For example, any valid regular expression.

You can add multiple payload identifiers as required.

Note:
Only one payload identifier of each type is allowed. For example,
you can add a maximum of three payload identifiers, each being
of a different type.

Specifies using any header in the request to identify and authorize
the client application against the list of applications with the
identifier in API Gateway.

HTTP Headers

Provide the following information:

Select one of the Application Lookup condition:

Registered applications. Identifies the client's header
against the Header Key - Value pair identifier of all the
applications registered to the API. On successful
identification, API Gateway allows access to the API.

Global applications. Identifies the client's header against
the Header Key - Value pair identifier of all the applications
available in API Gateway. On successful identification, API
Gateway allows access to the API.

Global applications and DefaultApplication. Identifies the
client's header against the Header Key - Value pair identifier
of all the applications available in API Gateway. If no global
application is identified, then API Gateway allows access to
the API as default application.

webMethods API Gateway User's Guide 10.11 209

4 Policies

Request Processing
These policies are used to specify how the request message from an application has to be
transformed or pre-processed and configure the masking criteria for the data to be masked before
it is submitted to the native API. This is required to protect the data and accommodate differences
between themessage content that an application is capable of submitting and themessage content
that a native API expects. The policies included in this stage are:

Invoke webMethods IS

Request Transformation

Validate API Specification

Data Masking

Custom Extension

Custom Extension policies allow you to handle requirements that might not be provided by
the out-of-the-box policies. You can add these custom extensions into API Gateway policy
stages. To learn more about Custom Extension, see “Custom Policy Extension” on page 604.

Invoke webMethods IS

This policy pre-processes the requestmessages and transforms themessage into the format required
by the native API or performs some custom logic, before API Gateway sends the requests to the
native APIs.

For example, you might need to accommodate differences between the message content that a
client is capable of submitting and the message content that a native API expects. For example, if
the client submits an order record using a slightly different structure than the structure expected
by the native API, you can use this action to process the record submitted by the client to the
structure required by the native API.

If Comply to IS Spec parameter is configured as true, API Gateway invokes the IS Service with
IS specification in the path pub.apigateway.invokeISService.specifications:RequestSpec for Request
Processing

The following are the input and output parameters for REST, SOAP, and WebSocket APIs as
specified in the above IS specification. Input parameters can be used to access the existing values
of the request while output parameters can be used to modify/write the values to the request.

DescriptionParameter name

Headers in incoming request.headersInput
parameters

Data type: Document

Query parameters in incoming request (this is
applicable for REST API only).

query

210 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionParameter name

Data type: Document

Path parameter of the incoming request (this is
applicable for REST API only).

path

Data type: String

HTTP Method of the incoming request (this is
applicable for REST API only).

httpMethod

Data type: String

Payload of the incoming request.payload

Data type: String

The payload for binary content types like multi-part
/ form-data.

payloadObject

Data type: Object

The message context object of the request.MessageContext

Data type: Object

Name of the API invoked by the request.apiName

Data type: String

Version of the API invoked by the request.apiVersion

Data type: String

URL of the request.requestUrl

Data type: String

Contains IP information of the request.ipInfo

Data type: Document

Websocket related information of the request.websocketInfo

Data type: Document

Correlation ID of the request/response. This is unique
and same for a request and response.

correlationID

Data type: String

Custom transactional fields can be added to the
transactional events using this field. For more

customFieldsMap

webMethods API Gateway User's Guide 10.11 211

4 Policies

DescriptionParameter name

information, see Adding Custom Fields to
Transactional Events section.

Data type: Document

Authorization information of the request. For more
information, see Accessing authorization values
hidden after IAM policy section.

authorization

Data type: Document

Headers in incoming request.headersOutput
parameters

Data type: Document

Query parameters in incoming request (this is
applicable for REST API only).

query

Data type: Document

Path parameter of the incoming request (this is
applicable for REST API only).

path

Data type: String

HTTP Method of the incoming request (this is
applicable for REST API only).

httpMethod

Data type: String

Payload of the incoming request.payload

Data type: String

The payload for binary content types like multi-part
/ form-data.

payloadObject

Data type: Object

The message context object of the request.MessageContext

Data type: Object

Custom transactional fields can be added to the
transactional events using this field. For more

customFieldsMap

information, see Adding Custom Fields to
Transactional Events section.

Data type: Document

212 webMethods API Gateway User's Guide 10.11

4 Policies

By default the "query" pipeline variable is a key value pair, where the value is of type string. But,
if the incoming request contains multiple values for the same query parameter and if you want
to access those multiple values using webMethods IS Service, you have to ensure two things:

1. Make sure that you have checked the Repeat check box for query parameter in the Add
Resource Parameter section of the API details screen.

2. To access or transform multiple values of that query parameter, you have to insert string list
(instead of string) under the "query" pipeline variable in the webMethods IS Service.

Note:

For SOAP to REST APIS, the payload contains the transformed SOAP request.
Payload transformation does not happen automatically for content-type transformation.
When you change the content type, ensure to do payload transformation also as part of IS
Service. For example, if you change the content-type header from application/xml to
application/json using IS service, you must also change the respective payload from
application/xml to application/json
OnlyMethodTransformation happenswhen configured, but you have to take care of adding
payload during transformations involving method change like GET to POST, and so on.
When Comply to IS spec is true, you can change the values of headers, query, payload,
and so on, programatically using Message Context, as well as using the pipeline variables
given. SoftwareAG recommends younot to change those values directly inMessageContext,
as the values in output pipeline variables arewritten toMessage Context after the invocation
of IS Service.

If Comply to IS Spec parameter is set to false, API Gateway invokes the IS Service with the same
input and output parameters supported in 10.1 and the earlier versions:

proxy.name

JSONRESTContentString (REST only)

SOAPEnvelope (SOAP only)

EnvelopeString (SOAP only)

The table lists the properties that you can specify for this policy:

DescriptionProperty

Invoke webMethods Integration Server Service

Specifies the webMethods IS service to be invoked to pre-process the
request messages and the authentication mode for the IS service.

Add invoke webMethods
Integration Server service

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the request messages.

The webMethods IS service must be running on the same
Integration Server as API Gateway.

webMethods API Gateway User's Guide 10.11 213

4 Policies

DescriptionProperty

Note:
If an exception occurs when invoking the webMethods IS
service, by default APIGateway displays the status code as 500
and error message as Internal Server Error.

You can set custom status code and error message by setting
the following properties in the message context of the
webMethods IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code",
404);
context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the
user, identified by API Gateway, are used to authenticate and
invoke the IS service. You can also specify a particular user, you
want API Gateway to invoke the IS service.

Note:
It is the responsibility of the user who activates the API to
review the value configured in Run as User field to avoid
misuse of this configuration.

Comply to IS Spec. Mark this as true if you want the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:Software AG recommends users to configure the policy
with Comply to IS Spec as true, as you can read or change the

214 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

values of headers, and so on, without having to read from or
write to the message context.

Specifies thewebMethods IS service alias to be invoked to pre-process
the request messages.

webMethods IS Service
alias

Start typing the webMethods alias name, select the alias from the

type-ahead search results displayed and click to add one
or more aliases.

You can use the delete icon to delete the added aliases from the
list.

Adding Custom Fields to Transactional Events

This section explains you how to add custom fields to the transactional events.

1. Create webMethods IS service by specifying the
pub.apigateway.utils:customFieldInTransactionEventSpec as a specification reference.

2. In the webMethods IS service, set the required custom fields in the customFieldsMap output
variable.

3. Oncewhen customFieldsMap gets created, the customfieldswill be available in the transactional
events.

4. Invoke the API with the Invoke webMethods IS policy.

Note:
You can also add the customfields to the transactional events fromAPIGateway by configuring
the customTransactionFields.FIELD_NAME custom variable in the Custom Extension policy.
For more details, see “How Do I Define a Custom Variable?” on page 619.

Accessing authorization values hidden after IAM policy

By default, API Gateway removes all the authorization related information from client request
(for example authorization header) once the IAM policy is engaged. The information like
authorization header can be added back to the request sent to native API using "Outbound
Authentication" policy in the Routing stage. However, if the you want to extract the authorization
information at the request processing stage for sending the authorization values using a different
header to the native API for audit purposes, or performing some business logic in IS Service based
on the authorization values, then you can access the authorization values using the "authorization"
pipeline variable.

The following table lists the supported authorization values:

webMethods API Gateway User's Guide 10.11 215

4 Policies

DescriptionTypeName

clientId identified after the OAuth / JWT / OpenID token
is authenticated.

StringclientId

Name of the user identified after the IAM policy.StringuserName

Issuer identified from the JWT token.Stringissuer

Value of the incoming "authorization" header sent by client.StringauthHeader

Note:
If the authorization header has bearer tokens (such as
OAuth,OpenID, or JWT), then the "authHeader" pipeline
variable will be empty. For such cases, Software AG
recommends to use the "incomingToken" pipeline
variable.

Value of the token in case the incoming authorization
header contains a bearer token.

StringincomingToken

Audience identified from the incoming JWT token.Stringaudience

API Key sent from client.StringapiKey

Contains the claims present in the JWT token. You can
provide the claim name to access the claim value.

Document

(Key-value pair)

claims

Client certificates used for SSL connectivity.Object Listcertificates

Note:
All the above mentioned authorization values except certificates can be accessed using
authorization pipeline variable.

Accessing client certificates used for SSL connectivity

You can now access the client certificates used for SSL Connectivity in the Invoke webMethods
IS Service (comply to IS Spec = true) using pipeline authorization > certificates.

Since certificates are not string data type, you need to write JAVA code to convert the pipeline
variable certificates into accessible certificate format (Java X509Certificate) and you can read the
values using the methods supported by X509Certificate.

The below sample code converts the pipeline variable certificates to X509Certificate:
import java.security.cert.X509Certificate;
IDataCursor cursor = pipeline.getCursor();
IData authIData = IDataUtil.getIData(cursor, "authorization");
IDataCursor authCursor = authIData.getCursor();
X509Certificate[] certificates = (X509Certificate[])
IDataUtil.getObjectArray(authCursor, "certificates");

216 webMethods API Gateway User's Guide 10.11

4 Policies

https://docs.oracle.com/javase/7/docs/api/java/security/cert/X509Certificate.html

The following watt parameters control the certification verification

watt.net.ssl.client.hostnameverification

WhenAPIGateway server acts as aHTTPS client, this parameter specifieswhetherAPIGateway
should restrict outbound HTTPS connections only when a valid hostname is found in the
server’s certificate. If you set this parameter to true, API Gateway verifies if the hostname is
present in the server’s certificate. If this verification fails, an error is logged and the connection
is aborted. If you set this parameter to false, API Gateway skips the hostname verification. By
default, this parameter is set to false.

watt.security.ssl.ignoreExpiredChains

This parameter specifies whether API Gateway server ignores expired CA certificates in a
certificate chain it receives from an Internet resource (that is, aweb server, anotherAPIGateway
server). If you set this parameter to true, API Gateway, ignores the expired CA certificates.
However, API Gateway allows SSL connection to be established, even if the certificate is
expired. Note that this is less secure than denying connections when a certificate is expired. If
you set this parameter to false, API Gateway does not ignore the expired CA certificates and
a connection cannot be established, if a certificate is expired. By default, this parameter is set
to false.

watt.security.ssl.client.ignoreEmptyAuthoritiesList

When API Gateway acts as a client, this parameter specifies if API Gateway sends a certificate
chain, after a remote SSL server returns an empty list of trusted authorities. If you set this
parameter to true, API Gateway ignores the empty trusted authorities list and sends its chain
anyway. If you set this parameter to false, API Gateway requires presentation of trusted
certificates before sending out its certificate chain. By default, this parameter is set to false.

Request Transformation

This policy enables you to configure several transformations on the request messages from clients
into a format required by the native API before it is submitted to the native API.

The transformations include Header, Query Parameter, Path Parameter transformation, HTTP
Method transformation, Payload transformation, andAdvanced transformation. You can configure
conditions according to which the transformations are executed.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Conditions are used to specify when the policy has to be executed. You
can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the requests that comply with all the
configured conditions.

webMethods API Gateway User's Guide 10.11 217

4 Policies

DescriptionProperty

OR. This is selected by default. API Gateway transforms the requests
that comply with any one configured condition.

Click Add Condition and provide the following information and click

.

Variable: Specifies the variable type with a syntax.

Operator: Specifies the operator to use to relate variable and the
value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Not Contains

Exists

Not Exists

Range

Greater Than

Less Than

Value: Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 171.

Transformation Configuration: Specifies various transformations to be configured.

Specifies the Header, Query or path transformation to be configured for
incoming requests.

Header/Query/Path
Transformation for
REST API

You can add ormodify header, query or path transformation parameters
by providing the following information:and

Header
Transformation for
SOAP API

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

218 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

You can add multiple variables and corresponding values by clicking

.

You can remove any header, query, or path transformation parameters
by typing the plain value or value with a syntax.

Note:
Software AG recommends you not to modify the headers
${request.headers.Content-Length} and
${request.headers.Content-Encoding} asAPIGateway adds the right
values for these headers before sending the response back to client.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 171.

Note:
Payload transformationdoes not happen automatically for content-type
transformation. When you change the content type, ensure that you
dopayload transformation. For example, if you change the content-type
header from application/xml to application/json, youmust also change
the respective payload from application/xml to application/json.

Specifies the method transformation to be configured for incoming
requests.

Method
transformation for
REST API

Select any of the HTTP Method listed:

GET

POST

PUT

DELETE

HEAD

CUSTOM

Note:
When CUSTOM is selected, the HTTP method in incoming request is
sent to the native service.When othermethods are selected, the selected
method is used in the request sent to the native service.

Note:
OnlyMethodTransformation happenswhen configured, but you have
to take care of adding payload during transformations involving
method change like GET to POST, and so on.

webMethods API Gateway User's Guide 10.11 219

4 Policies

DescriptionProperty

Specifies the payload transformation to be configured for incoming
requests.

Payload
Transformation

Provide the following information:

Payload Type. Specifies the content-type of payload, to which you
want to transform. The Payload field renders the respective payload
editor based on the selected content-type.

Payload. Specifies the payload transformation that needs to be
applied for the incoming requests.

As this property supports variable framework, you can make use of
the available variables to transform the request messages.

For example, consider the native API accepting two integer values
value1 and value2, and you want to pass these two values from API
Gateway to the native API, you can configure the payload field as
follows:
{
"value1" : 12,
"value2" : 34
}

You can also configure the payload field using one or more variables
by using variable framework. Let us see another syntax. For example,
for the same native API seen in the previous example, if your client
sends both the values through headers val1 and val2, and you want
to add it to payload for the native API to recognize the input, you
can do so by configuring the payload field as follows:
{
"value1" :${request.headers.val1},
"value2" :${request.headers.val2}
}

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If your payload content-type is different from the incoming
payload's content-type, you need to transform the content-type of
the header using Header Transformation.

Click + Add xslt document to add an xslt document and provide
the following information:

XSLT file. Specifies the XSLT file used to transform the request
messages as required.

220 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Click Browse to browse and select a file.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can add more XSLT features and xslt documents by clicking

.

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Click + Add xslt transformation alias and provide the following
information:

XSLT Transformation alias. Specifies the XSLT transformation
alias

When the incoming request is in JSON, you can use a XSLTfile similar
to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="fakeroot">
<xsl:element name="fakenode">

<!-- Apply your transformation rules based on the
request from the Client-->
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

When the incoming request is in XML, you can use a XSLT file similar
to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="soapenv:Envelope">
<xsl:element name="soapenv:Body">

<!-- Apply your transformation rules based on the
request from the Client-->
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

webMethods API Gateway User's Guide 10.11 221

4 Policies

DescriptionProperty

Specifies the advanced transformation to be configured for incoming
requests.

Advanced
Transformation

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to be
invoked to process the request messages.

You can add multiple services by clicking .

Note:
The webMethods IS service must be running on the same
Integration Server as API Gateway.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the user,
identified by API Gateway, are used to authenticate and invoke the
IS service. You can also specify a particular user, you want API
Gateway to use to invoke the IS service.

Comply to IS Spec. Mark this as true if you want the input and the
output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS service
alias to be invoked to pre-process the request messages.

Transformation Metadata: Specifies the metadata for transformation of the incoming requests.
For example, the namespaces configured in this section can be usedwhen you provide the syntax
for XPath ${request.payload.xpath} For example: ${request.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for transformation.Namespace

Provide the following information:

Namespace Prefix. The namespace prefix of the payload expression
to be validated.

For example, specify the namespace prefix as SOAP_ENV.

Namespace URI. The namespace URI of the payload expression to
be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declaration defines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

222 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Note:
You can add multiple namespace prefixes and URIs by clicking

.

Validate API Specification

This policy validates the incoming request against API's various specifications such as schema,
queryparameters, pathparameters, cookie parameters, content-types, andHTTPHeaders referenced
in their corresponding formats as follows:

The schema is available as part of the API definition. The schema for SOAP API are imported
through WSDL and for REST APIs it can be through swagger, RAML or can be uploaded by
the user when an API is created from scratch.

The query parameters, path parameters, cookie parameters, and content- types are available
as part of the API definition.

The HTTP Headers are specified in the Validate API Specification policy page.

The request sent to the API by an application must conformwith the structure or format expected
by the API. The incoming requests are validated against the API specifications in this policy to
conform to the structure or format expected by the API.

Various API specifications validated are:

Schema:

Schema validation for REST API and SOAP API:

The incoming requests are validated against the schema provided in the API definition. The
schema defines the elements and attributes and specifies the data types of these elements to
ensure that only appropriate data is allowed through to the API.

For a REST API, the schema can be added inline or uploaded in the Components section on
the API Details page. For details on how to add the schema inline or upload, see “Creating a
REST API” on page 53.

The schema type for validation is selected based on:

The Content-Type header when the policy is added in the Request processing stage.

The Accept header when the policy is added in the Response processing stage.

If the header or payload is missing the schema validation is skipped.

The table lists the default Content type/Accept header and schema validation type mapping.

webMethods API Gateway User's Guide 10.11 223

4 Policies

Schema validation typeContent-type/Accept

JSON schemaapplication/json

application/json/badgerfish

XML schemaapplication/xml

text/xml

text/html

Regular expressiontext/plain

For a SOAP API, the WSDL and the referenced schema must be provided in a zip format. The
JSON schema validation is supported for the operations that are exposed as REST.

Note:
If schema mapping is not found for a content-type of the request in the API, the behavior
is as follows:

If schema mapping is not available in a REST API or SOAP-to-REST transformed API,
the validation is skipped.
If application/json is mapped to XML schema in the API definition, then the JSON
content in the request is validated against XML schema to provide a backward
compatibility support for APIs migrated from the 10.1 version.
If only XML schemamappings exist for any of the content-types, the payload is converted
into XML and validated against all the XML schemas. If the payload is valid against
one of the schemas, the validation is successful.
If the payload is not XML convertible, the validation is not performed and the request
is allowed to reach the native API.

Schema validation for GraphQL API:

The incoming query or mutation payloads are validated against the GraphQL schema type
system.

Query Parameters:

This is applicable only to a REST API. The incoming requests are validated against the query
parameters specified in the API definition.

Path Parameters:

This is applicable only to a REST API. The incoming requests are validated against the path
parameters specified in the API definition.

Content-types:

This is not applicable to a GraphQL API. The incoming requests are validated against the
content-types specified in the API definition.

Note:

224 webMethods API Gateway User's Guide 10.11

4 Policies

When Content-type validation is selected for a SOAP API, the validation fails in case of
SOAP to REST scenarios and displays an error with 500 status code instead of 400 as
displayed in the other scenarios.

Cookie Parameters:

This is not applicable to a GraphQL API. The incoming requests are validated against the cookie
parameters specified in the API definition.

HTTP Headers:

This is not applicable to a GraphQL API. The incoming requests are validated against the HTTP
Headers specified in this policy to conform to the HTTP headers expected by the API. If the
HTTP Headers are not specified in this policy, API Gateway uses the Headers defined in the
API specification.

The runtime invocations that fail the specification validation are considered as policy violations.
You can view such policy violation events in the dashboard.

The table lists the API specification properties, you can specify for this policy, to be validated:

DescriptionProperty

Validates the request payload against the appropriate schema.Schema

Provide the following additional features for XML schema validation:

This is not applicable to a GraphQL API.

Feature name. Specifies the name of the feature for XML parsing
when performing XML schema validation.

Select the required feature names from the list:

GENERATE_SYNTHETIC_ANNOTATIONS

ID_IDREF_CHECKING

IDENTITY_CONSTRAINT_CHECKING

IGNORE_XSL_TYPE

NAMESPACE_GROWTH

NORMALIZE_DATA

ROOT_ELEMENT_DECL

ROOT_TYPE_DEF

SIGMA_AUGMENT_PSVI

SCHEMA_DV_FACTORY

SCHEMA_ELEMENT_DEFAULT

webMethods API Gateway User's Guide 10.11 225

4 Policies

DescriptionProperty

SCHEMA_LOCATION

SCHEMA_NONS_LOCATION

SCHEMA_VALIDATOR

TOLERATE_DUPLICATES

ENPARSED_ENTITY_CHECKING

VALIDATE_ANNOTATIONS

XML_SCHEMA_FULL_CHECKING

XMLSCHEMA_VALIDATION

For details about XMLparsing features, see http://xerces.apache.org/
xerces2-j/features.html and for details about the exact constants, see
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/
xerces/parsers/XML11Configuration.html.

Feature value. Specifies whether the feature value is True or False.

Schema validation for GraphQL API:

The incoming query or mutation payloads are validated against the
GraphQL schema type system.

This is applicable only to a REST API. Validates the query parameters in
the incoming request against the query parameters defined in that
request's API Specification.

Query Parameters

This is applicable only to a REST API. Validates the path parameters in the
incoming request against the path parameters defined in that request's
API Specification.

Path Parameters

This is not applicable to a GraphQL API. Validates the cookie parameters
in the incoming request against the cookie parameters defined in that
request's API Specification.

Cookie Parameters

This is not applicable to a GraphQL API. Validates the content-types in the
incoming request against the content-types defined in that request's API
Specification.

Content-types

This is not applicable to a GraphQL API. Validates the HTTP header
parameters in the incoming request against the HTTP headers defined
in that request's API Specification.

HTTP Headers

Provide the following information:

Condition. Specifies the logical operator to use to validate multiple
HTTP headers in the incoming API requests.

226 webMethods API Gateway User's Guide 10.11

4 Policies

http://xerces.apache.org/xerces2-j/features.html
http://xerces.apache.org/xerces2-j/features.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/XML11Configuration.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/XML11Configuration.html

DescriptionProperty

Available values are:

AND. API Gateway accepts only the requests that contain all
configured HTTP headers.

OR. This is selected by default. API Gateway accepts requests
that contain at least one configured HTTP header.

HTTP Header Key. Specifies a key that must be passed through the
HTTP header of the incoming API requests.

Header Value. Optional. Specifies the corresponding key value that
could be passed through the HTTP header of the incoming API
requests. As this property supports variable framework, you can
make use of the available variables to specify the header value. For
details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 171.

You can add more HTTP headers by clicking .

Data Masking

Data masking is a technique whereby sensitive data is obscured in some way to render it safe and
to protect the actual data while having a functional substitute for occasions when the real data is
not required.

This policy is used to mask sensitive data at the application level. At the application level you
must have an Identify and Access policy configured to identify the application for which the
masking is applied. If no application is specified then it will be applied for all the other requests.
Fields can be masked or filtered in the request messages received. You can configure the masking
criteria as required for the XPath, JSONPath, and Regex expressions based on the content-type.
This policy can also be applied at the API scope level.

The table lists the content-type and masking criteria mapping.

Masking CriteriaContent-type

XPathapplication/xml

text/xml

text/html

JSONPathapplication/json

application/json/badgerfish

Regextext/plain

webMethods API Gateway User's Guide 10.11 227

4 Policies

The table lists themasking criteria properties that you can configure tomask the data in the request
messages received:

DescriptionProperty

Optional. Specifies the applications for which the masking criterion has
to be applied.

Consumer
Applications

Start typing the application name, select the application from the

type-ahead search results displayed, and click to add one or
more applications.

For example: If there is a DataMasking(DM1) criteria created for
application1 a second DataMasking(DM2) for application2 and a third
DataMasking(DM3) with out any application, then for a request that
comes from consumer1 themasking criteria DM1 is applied, for a request
that comes from consumer2 DM2 is applied. If a request comes with out
any application or from any other application except application1 and
application2 DM3 is applied.

You can use the delete icon to delete the added applications from the
list.

XPath: Specifies the masking criteria for XPath expressions in the request messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

You can add multiple masking criteria.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the XPath
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myxpath} and the corresponding mask value as

228 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

${request.headers.var1} , and if the incoming request header myxpath
is configured with value //ns:cardNumber, then the card number
derived from the payload is masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated

Note:
You can add multiple namespace prefix and URI by clicking .

JSONPath: This is applicable only for REST API. Specifies the masking criteria for JSONPath
expressions in the request messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the
JSONPath is applied on the payload using the value that is resolved
from the variable given.

For example, if you provide a query expression as
${request.headers.myjsonpath} and the corresponding mask value
as ${request.headers.var1} , and if the incoming request header
myjsonpath is configured with value $.cardNumber, then the card
number derived from the payload is masked with the header value
in var1 .

webMethods API Gateway User's Guide 10.11 229

4 Policies

DescriptionProperty

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Regex: Specifies the masking criteria for regular expressions in the request messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the regex
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myregex} and the corresponding mask value as
${request.headers.var1} , then the regex is applied using the value
configured in the request header myregex and the derived value is
masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

Note:
For REST enabled SOAP services

Use JSONPath. To mask the incoming request of application/json
content-type.
Use XPath of transformed SOAP request. To mask native service
request.

Select this option to apply masking criteria for request payload in the
following scenarios:

Apply for payload

incoming request from the client.

outgoing request to the native service.

230 webMethods API Gateway User's Guide 10.11

4 Policies

Routing
The policies in this stage enforce routing of requests to target APIs based on the rules you can
define to route the requests andmanage their respective redirections according to the initial request
path. The policies included in this stage are:

Content-based Routing

Conditional Routing

Dynamic Routing

Load Balancer Routing

Straight Through Routing

Custom HTTP Header

Outbound Auth - Transport

Outbound Auth - Message

JMS/AMQP Routing

JMS/AMQP Properties

Custom Extension

Custom Extension policies allow you to handle requirements that might not be provided by
the out-of-the-box policies. You can add these custom extensions into API Gateway policy
stages. To learn more about Custom Extension, see “Custom Policy Extension” on page 604.

In cases where the internal server is protected by a firewall, the endpoint in the routing policy that
is applied should be configured as apigateway://registrationPort-aliasname/relative path of the API.
Here the registration port alias name is the alias name configured for the external registration port
to communicate with the internal port.

Content-based Routing

If you have a native API that is hosted at two or more endpoints, you can use the content-based
routing protocol to route specific types of messages to specific endpoints. You can route messages
to different endpoints based on specific values that appear in the request message. You might use
this capability, for example, to determinewhich operation the consuming application has requested,
and route requests for complex operations to an endpoint on a fast machine. For example, if your
entry protocol is HTTP or HTTPS, you can select the Content-based routing. The requests are
routed according to the content-based routing rules you create. Youmay specify how to authenticate
requests.

Note:
As the content-based routing policy's capabilities can also be configured using conditional
routing policy, the content-based routing policy will be deprecated in future releases and the

webMethods API Gateway User's Guide 10.11 231

4 Policies

configurationswill bemigrated to conditional routing policy. Hence, SoftwareAG recommends
to use conditional routing policy over content-based routing policy.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Default Route To: Specifies the URLs of two or more native services in a pool to which the
requests are routed.

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the API Gateway instance are also included in
the list.

If you choose a service registry, API Gateway sends a request to
the service registry to discover the IP address and port at which
the native service is running. API Gateway replaces the service
registry alias in the Endpoint URI with the IP address and port
returned by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport}variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable for REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

232 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then

webMethods API Gateway User's Guide 10.11 233

4 Policies

DescriptionProperty

API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL Configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any keystore,
the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

234 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by nativeAPIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value for the path parameter. The alias
specified in Path Parameter is substituted with this value when
invoking the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you canmake use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service registry) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var1 retrieved from the
request header substitutes the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Rule: Defines the routing decisions based on one of the following routing options. Click Add
Rule and provide the following information.

Specifies using the payload identifier to identify the client, extract
the custom authentication credentials supplied in the request

Payload Identifier

represented using the payload identifier, and verify the client's
identity.

In the Payload identifier section, click Add payload identifier,
provide the following information, and click Add.

webMethods API Gateway User's Guide 10.11 235

4 Policies

DescriptionProperty

Expression type. Specifies the type of expression, which is
used for identification. You can select one the following
expression type:

XPath. Provide the following information:

Payload Expression. Specifies the payload expression
that the specified XPath expression type in the request
has to be converted to. For example: /name/id

Namespace Prefix. The namespace prefix of the
payload expression to be validated.

Namespace URI. The namespace URI of the payload
expression to be validated.

Note:
You can add multiple namespace prefix and URI by
clicking .

JSONPath. Provide thePayload Expression that specifies
the payload expression that the specified JSONPath
expression type in the request has to be converted to. For
example: $.name.id

Text. Provide the Payload Expression that specifies the
payload expression that the specified Text expression type
in the request has to be converted to. For example: any valid
regular expression.

You can add multiple payload identifiers as required.

Note:
Only one payload identifier of each type is allowed. For example,
you can add amaximum of three payload identifiers, each being
of a different type.

Route To. Specifies the Endpoint URI of native APIs in a pool to which the requests are routed.

Specifies the URI of the native API endpoint to route the request
to.

Endpoint URI

You can use service registries in a similar manner as described in
the main Endpoint URI above.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

236 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport}variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable for REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

This is applicable for SOAP-based APIs.Soap Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

webMethods API Gateway User's Guide 10.11 237

4 Policies

DescriptionProperty

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

238 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

Configures keystore, key alias, and truststore for securing
connections to native APIs.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias configured in API
Gateway. This value (along with the value of Client Certificate
Alias) is used for performing SSL client authentication.

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Truststore Alias. Specifies the alias for the truststore that
contains the list of CA certificates that API Gateway uses to
validate the trust relationship with the native API.

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native
APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value for the path parameter. The alias
specified in Path Parameter is substituted with this value when
invoking the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you canmake use
of the available variables as path parameters.

webMethods API Gateway User's Guide 10.11 239

4 Policies

DescriptionProperty

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Conditional Routing

If you have a native API that is hosted at two or more endpoints, you can use the condition-based
protocol to route specific types ofmessages to specific endpoints. The requests are routed according
to the condition-based routing rules you create. For example, if your entry protocol is HTTP or
HTTPS, you can select conditional routing specifying HTTP or HTTPS. A routing rule specifies
where requests should be routed to, and the criteria to use to route. You may also specify how to
authenticate requests.

Note:
The context-based routing policy is renamed and it's capabilities are included in conditional
routing policy. You can use this policy to configure to route the requests conditionally based
on variable types.

The following table provides the existing options of routing till API Gateway version 10.5 and
their corresponding variable syntax to choose the same option in API Gateway version 10.7.

10.7 Transformation
Condition Operator

10.7 Transformation
Variable

10.5 Condition
Operator

10.5 Conditional Variable

Equals${request.application.id}Consumer

Lesser than${date}BeforeDate

Greater thanAfter

Lesser than${time}BeforeTime

Greater thanAfter

Predefined System Context Variables

Equals${user}Equal toUser

Not equals${inboundHttpMethod}Not equal toInbound HTTP Method

${routingMethod}Routing Method

${inboundContentType}Inbound Content Type

240 webMethods API Gateway User's Guide 10.11

4 Policies

10.7 Transformation
Condition Operator

10.7 Transformation
Variable

10.5 Condition
Operator

10.5 Conditional Variable

${inboundAccept}Inbound Accept

${inboundProtocol}Inbound Protocol

${inboundRequestURI}Inbound Request URI

${inboundIPInbound IP

${gatewayHostname}Gateway Hostname

${gatewayIP}Gateway IP

${operationName}Operation Name

Custom Context Variables

Equals${var1}Equal tomx:var1

Not Equals${request.headers.KEY}Not equal toPROTOCOL_HEADERS[KEY]

Lesser than${soapHeaders[INDEX}Lesser thanSOAP_HEADERS[INDEX]

Greater thanGreater than

Range${inboundIP}-IPV4

Range${inboundIP}-IPV6

The table lists the properties that you can specify for this policy:

DescriptionProperty

Route To. Specifies the URLs of two or more native services in a pool to which the requests are
routed.

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that have

Endpoint URI

been added to the API Gateway instance are also included in the
list.

If you choose a service registry, API Gateway sends a request to the
service registry to discover the IP address and port at which the
native service is running. API Gateway replaces the service registry
alias in the Endpoint URI with the IP address and port returned by
the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

webMethods API Gateway User's Guide 10.11 241

4 Policies

DescriptionProperty

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save theAPI or policy
to associate ${alias} syntax with the endpoint alias.

This is applicable to REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM.API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

242 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in theConnection timeoutfield in the routing protocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

webMethods API Gateway User's Guide 10.11 243

4 Policies

DescriptionProperty

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL Configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any keystore,
the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery
Endpoint Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you

244 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you can make use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Rule. Defines the routing decisions based on one of the following routing options.

Provide a name for the rule.Name

Specifies the condition operator to be used.Condition Operator

Select one of the following operators:

OR. Specifies that one of the set conditions should be applied.

AND. Specifies all the set conditions should be applied.

Specify the context variables for processing client requests.Add Condition

Variable: Specifies the variable type.

Operator: Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Not Contains

Exists

Not Exists

Range

Greater Than

webMethods API Gateway User's Guide 10.11 245

4 Policies

DescriptionProperty

Less Than

Value: Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Route To. Specifies the endpoint URI of native services in a pool towhich the requests are routed.

Specifies the URI of the native API endpoint to route the request to.
You can use service registries in a similar manner as described in
the main Endpoint URI above.

Endpoint URI

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save theAPI or policy
to associate ${alias} syntax with the endpoint alias.

This is applicable for REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

This is applicable for SOAP-based APIs.Soap Optimization Method

Specifies values to enable SSL authentication for SOAP APIs.

Select one of the following options:

246 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in theConnection timeoutfield in the routing protocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step

webMethods API Gateway User's Guide 10.11 247

4 Policies

DescriptionProperty

of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

Configures keystore, key alias, and truststore for securing
connections to native APIs.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias configured in API
Gateway. This value (along with the value of Client Certificate
Alias) is used for performing SSL client authentication.

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Truststore Alias. Specifies the alias for the truststore that
contains the list of CA certificates that API Gateway uses to
validate the trust relationship with the native API.

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native
APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery
Endpoint Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

248 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you can make use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Dynamic Routing

This policy enables API Gateway to support dynamic routing of virtual aliases based on policy
configuration. The configured policies are enforced on the request sent to anAPI and these requests
are forwarded to the dynamic endpoint based on specific criteria that you specify.

Note:
As the dynamic routing policy's capabilities can also be configured using conditional routing
policy, the dynamic routing policy will be deprecated in future releases and the configurations
will be migrated to conditional routing policy. Hence, Software AG recommends to use
conditional routing policy over dynamic routing policy. In future version,when dynamic routing
is migrated to conditional routing policy ${sys:dyn_Endpoint} will be replaced with
${dynamicEndpoint} system variable.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Route To. Specifies the URLs of two or more native services in a pool to which the requests are
routed.

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the API Gateway instance are also included in
the list.

If you choose a service registry, API Gateway sends a request to
the service registry to discover the IP address and port at which the

webMethods API Gateway User's Guide 10.11 249

4 Policies

DescriptionProperty

native service is running. APIGateway replaces the service registry
alias in the Endpoint URI with the IP address and port returned
by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable to REST-based APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

250 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in theConnection timeoutfield in the routingprotocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

webMethods API Gateway User's Guide 10.11 251

4 Policies

DescriptionProperty

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL Configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any keystore,
the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

252 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you can make use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Rule. Defines the routing decisions based on one of the following routing options.

Defines the dynamic URL based on the HTTP header value sent by
the client or the context variable value.

Route Using

Select one of the following:

Header: Select and specify the Name required. This header
name is configured by the API provider and is used to decide
the routing decisions at theAPI level. The requestmessagemust
be routed to the dynamicURL generated from theHTTP header
value.

Context: The API providers must provide IS service in the
policy, InvokewebMethods Integration Server. IS servicewould
perform custommanipulations and set the value for the Context
Variable ROUTING_ENDPOINT. API Gateway takes this
ROUTING_ENDPOINTvalue as the native endpoint value and
performs the routing.

Name. This field is displayed only when you select Header as
the routing method. Type a name for the Routing header. API
Gateway expects this header name in the incoming request that
invokes the API.

Specifies the endpoint URI of native services in a pool to which the
requests are routed.

Route To

Provide the following information:

webMethods API Gateway User's Guide 10.11 253

4 Policies

DescriptionProperty

Endpoint URI . Specifies the URI of the native API endpoint to
route the request to. You can use service registries in a similar
manner as described in the main Endpoint URI above.

As this property supports variable framework, you can make
use of the available variables. For example, you can configure
the endpoint URI using hard codedURL, simple alias, endpoint
alias, and variable syntax or any of these combination. If you
define the endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable
syntax is used to define the native port based on the request.

You can also use the system-defined alias ${sys:dyn-Endpoint}.
When you use the system-defined alias, the variables are
replaced at runtime by the Header value or the Context value,
selected as the Route To option.

Consider the following URL with the system-defined alias:

http://HOSTNAME:5555/rest/com/
softwareag/mediator/samples/dynamicRouting/
validateDynamicURI/${sys:dyn-Endpoint}

Now, if the incoming request hasHeader value as resource, the
${sys:dyn-Endpoint} alias in theURL is replaced by theHeader
value and the effective URL is

http://HOSTNAME:5555/rest/com/
softwareag/mediator/samples/dynamicRouting/validateDynamicURI/
resource.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If you use endpoint alias, make sure the endpoint alias is
created before you define it in the policy. For example, if you
define ${alias} syntax in the policy before creating the alias
as endpoint alias, API Gateway considers ${alias} as custom
variable or simple alias and tries to resolve against those. So
in that case, after creating endpoint alias you have to edit and
save the API or policy to associate ${alias} syntax with the
endpoint alias.

254 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

HTTP Method. This applicable to REST-based APIs. Specifies
the available routingmethods:GET,POST,PUT,DELETE, and
CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selected method is used in the request sent to the
native service.

HTTP Connection Timeout (seconds). Specifies the time
interval (in seconds) after which a connection attempt times
out.

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then theConnection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global
level.

2. If you specify a value 0 for the Connection timeout field
in routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of anAPI. TheReadTimeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeoutfield in the routing protocol processing
step at the API level or specify a value 0 at an alias level,
then API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses
the default value of 30 seconds.

Read Timeout (seconds). Specifies the time interval (in
seconds) after which a socket read attempt times out.

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in
the Endpoint alias section takes precedence over the timeout
values defined at the API level and the global level.

webMethods API Gateway User's Guide 10.11 255

4 Policies

DescriptionProperty

2. If you specify a value 0 for theRead timeout field in routing
endpoint alias, then API Gateway uses the value specified
in theRead Timeoutfield in the routing protocol processing
step of an API. The Read Timeout value specified at an API
level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Read timeout field in the routing protocol processing step
at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.readTimeout property.

4. If youdonot specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

SSL Configuration. Configures keystore, key alias, and
truststore for securing connections to native APIs. Provide the
following information:

Keystore Alias. Specifies the keystore alias configured in
API Gateway. This value (along with the value of Client
Certificate Alias) is used for performing SSL client
authentication.

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Key Alias. Specifies the alias for the private key, whichmust
be stored in the keystore specified by the keystore alias.

Truststore Alias. Specifies the alias for the truststore that
contains the list of CA certificates that API Gateway uses to
validate the trust relationship with the native API.

If you do not configure any truststore alias, it implies that
API Gateway does not validate the certificates provided by
native APIs.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

256 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

Load Balancer Routing

If you have an API that is hosted at two or more endpoints, you can use the load balancing option
to distribute requests among the endpoints. Requests are distributed across multiple endpoints.
The requests are routed based on the round-robin strategy. The load for a service is balanced by
directing requests to two or more services in a pool, until the optimum level is achieved. The
application routes requests to services in the pool sequentially, starting from the first to the last
service without considering the individual performance of the services. After the requests have
been forwarded to all the services in the pool, the first service is chosen for the next loop of
forwarding.

If the entry protocol is HTTP or HTTPS, you can select the Load Balancer routing.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Route To. Specifies the URLs of two or more native services in a pool to which the requests are
routed.

Specifies the URI of the native API endpoint to route the request
to in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the API Gateway instance are also included in
the list.

If you choose a service registry, API Gateway sends a request to
the service registry to discover the IP address and port at which
the native service is running. API Gateway replaces the service
registry alias in the Endpoint URI with the IP address and port
returned by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the

webMethods API Gateway User's Guide 10.11 257

4 Policies

DescriptionProperty

endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport}variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

This is applicable to REST APIs.HTTP Method

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

This is applicable for SOAP-based APIs.SOAP Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

258 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

webMethods API Gateway User's Guide 10.11 259

4 Policies

DescriptionProperty

A numeric timeout value (in seconds). The default value is 30.Suspend duration
(seconds)

This property specifies the time, in seconds, forwhichAPIGateway
temporarily suspends an endpoint, whenever Read time-out or
Connection time-out occurs for the endpoint, and routes the request
to the next configured endpoint in this time interval.

For example: If you have 3 endpoints configured endpoint #1,
endpoint #2, and endpoint #3, the suspend duration is configured
as 60 seconds for endpoint #2, and there is a Read Timeout or
ConnectionTimeout for endpoint #2, thenAPIGateway temporarily
suspends endpoint #2 for 60 seconds. In this time interval API
Gateway skips endpoint #2 while routing the requests to the
configured endpoints.

Request 1 -> endpoint #1

Request 2 -> endpoint #3 (endpoint #2 is suspended for 60 seconds
and hence the request is sent to endpoint #3

Request 3 -> endpoint #1

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL Configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the above keystore alias.

Key Alias

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gatewaydoes not validate the certificates provided by nativeAPIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

260 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you canmake use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Failover behavior during load balancing

When an endpoint that is configured in Load balancer routing returns any of these exceptions -
ConnectException, MalformedURLException, NoRouteToHostException, ProtocolException,
SocketTimeoutException,UnknownHostException,UnknownServiceException - thenAPIGateway
treats the endpoint to be inactive and routes to the next endpoint as per the round-robin strategy.
In this case, the endpoint is suspended for the durationmentioned in the suspendDurationparameter
(default is 30s), which indicates the duration to suspend the endpoint without repeatedly trying
to reach it.

In this way API Gateway tries to invoke all the endpoints configured in the load balance routing.
If all endpoints return downtime error, API Gateway returns a Service is down error.

If an endpoint returns an exception other than the Downtime exception then that exception is sent
to the client and the remaining endpoints are not invoked.

You can control the behavior of consideringDowntime exceptions only for load balancing through
the extended property pg.lb.failoverOnDowntimeErrorOnly, which you can set through
Administration > General > Extended settings page. The default value of this property is true.
If you set the value to false all failures from the endpoint are treated as downtime and load
balancing takes place.

Straight Through Routing

webMethods API Gateway User's Guide 10.11 261

4 Policies

When you select the Straight Through routing protocol, the API routes the requests directly to the
native service endpoint you specify. If your entry protocol is HTTP or HTTPS, you can select the
Straight Through routing policy.

The table lists the properties that you can specify for this policy:

ValueProperty

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the API Gateway instance are also included in
the list.

If you choose a service registry, API Gateway sends a request to
the service registry to discover the IP address and port at which the
native service is running. APIGateway replaces the service registry
alias in the Endpoint URI with the IP address and port returned
by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

As this property supports variable framework, you can make use
of the available variables. For example, you can configure the
endpoint URI using hard coded URL, simple alias, endpoint alias,
and variable syntax or any of these combination. If you define the
endpoint URI as
http://${myAliasHost}:${request.headers.nativeport}/${sys:resource-path},
where the ${myAliasHost} variable syntax is used to define the
simple alias and the ${request.headers.nativeport} variable syntax
is used to define the native port based on the request.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

For a REST API, the ${sys:resource-path} alias in the Endpoint
URI is replaced by the resources and query parameters of the native
service.

For aGraphQLAPI, the ${sys:query_string} alias in theEndpoint
URI is replaced by the query string of the native service.

Note:
If you use endpoint alias, make sure the endpoint alias is created
before you define it in the policy. For example, if you define
${alias} syntax in the policy before creating the alias as endpoint
alias, APIGateway considers ${alias} as customvariable or simple
alias and tries to resolve against those. So in that case, after
creating endpoint alias you have to edit and save the API or
policy to associate ${alias} syntax with the endpoint alias.

262 webMethods API Gateway User's Guide 10.11

4 Policies

ValueProperty

This is applicable to REST-based APIs.HTTP Method

Specifies the available routingmethods:GET, POST,PUT,DELETE,
and CUSTOM (default).

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

This is applicable for SOAP-based APIs.Soap Optimization Method

Specifies the optimization methods that API Gateway can use to
parse SOAP requests to the native API.

Select one of the following options:

MTOM. API Gateway uses the Message Transmission
Optimization Mechanism (MTOM) to parse SOAP requests to
the API.

SwA. API Gateway uses the SOAP with Attachment (SwA)
technique to parse SOAP requests to the API.

None. API Gateway does not use any optimization method to
parse the SOAP requests to the API. This is selected by default.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in theConnection timeoutfield in the routingprotocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

webMethods API Gateway User's Guide 10.11 263

4 Policies

ValueProperty

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then API Gateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

This is applicable for SOAP-based APIs.Pass WS-Security Headers

Selecting this indicates that API Gateway should pass the
WS-Security headers of the incoming requests to the native API.

SSL configuration. Configures keystore, key alias, and truststore for securing connections to
native APIs.

Specifies the keystore alias configured in API Gateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore Alias

Lists all available keystores. If you have not configured any keystore,
the list is empty.

264 webMethods API Gateway User's Guide 10.11

4 Policies

ValueProperty

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Specifies the alias for the truststore that contains the list of CA
certificates that API Gateway uses to validate the trust relationship
with the native API.

Truststore Alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native APIs.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to API Gateway.

Value: Specifies a value with a syntax. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must enter {serviceName} asParameter and the name of the service
as Value.

As the Value field supports variable framework, you can make use
of the available variables as path parameters.

For example, if you provide a parameter as {serviceName}(in
Service discovery path while you define a service register) and
the corresponding values for the path parameter as
${request.header.var1}, the value in var 1 retrieved from the
request header will substitute the service name.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Custom HTTP Header

You can use this policy to route requests based on the custom HTTP headers specified for the
outgoing message to the native service.

The table lists the properties that you can specify for this policy:

webMethods API Gateway User's Guide 10.11 265

4 Policies

DescriptionProperty

Specifies the HTTP header key in the requests.HTTP Header Key

Specifies the Header value contained in the requests. As this
property supports variable framework, you can use the available
variables to specify the header value.

Header Value

For example, if you provide a header value as
${request.header.token1}, the header value in token1 is sent in the
outgoing message to authenticate the backend services .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171

You can add multiple entries for the Header key-value pair by clicking .

Outbound Auth - Transport

When the native API is protected and expects the authentication credentials to be passed through
transport headers, you can use this policy to provide the credentials that will be added to the
request and sent to the native API. API Gateway supports awide range of authentication schemes,
such as Basic Authentication, Kerberos, NTLM, and OAuth, at the transport-level.

Note:
Transport-level authentication can be used to secure inbound communication of both the SOAP
APIs and the REST APIs.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Select one of the following schemes for outbound authentication at
the transport level:

Authentication scheme

Basic. Uses basic HTTP authentication details to authenticate
the client.

Kerberos. Uses Kerberos credentials for authentication.

NTLM. Uses NTLM configuration for authentication.

OAuth2. Uses OAuth token details to authenticate the client.

JWT. Uses JSON web token details to authenticate the client.

Anonymous. Authenticates the client without any credentials.

Alias. Uses the configured alias name for authentication.

266 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Select one of the following modes to authenticate the client:Authenticate using

Custom credentials. Uses the values specified in the policy to
obtain the required token to access the native API.

Delegate incoming credentials. Uses the values specified in
the policy by the API providers to select whether to delegate
the incoming token or act as a normal client.

Incoming HTTP Basic Auth credentials. Uses the incoming
user credentials to retrieve the authentication token to access
the native API.

Incoming kerberos credentials. Uses the incoming kerberos
credentials to access the native API.

Incoming OAuth token. Uses the incoming OAuth2 token to
access the native API.

Incoming JWT. Uses the incoming JSONWeb Token (JWT) to
access the native API.

Transparent. Enables NTLM handshake between client and
native API. API Gateway does not perform any authentication
before passing the incoming requests to native API. It simply
passes the incoming credentials to native API. The NTLM
authentication happens at the native API.

Uses the HTTP authentication details to authenticate the client.Basic

APIGateway supports the followingmodes ofHTTP authentication:

Custom credentials

Incoming HTTP Basic Auth credentials

Provide the following credentials:

User Name. Specifies the user name.

Password. Specifies the password of the user.

Domain . Specifies the domain in which the user resides.

Uses the Kerberos credentials to authenticate the client.Kerberos

API Gateway supports the following modes of Kerberos
authentication:

Custom credentials

Delegate incoming credentials

webMethods API Gateway User's Guide 10.11 267

4 Policies

DescriptionProperty

Incoming HTTP basic auth credentials

Incoming kerberos credentials

Provide the following credentials:

Client principal. Provide a valid client LDAP user name.

Client password. Provide a valid password of the client LDAP
user.

Service principal. Provide a valid SPN. The specified value is
used by the client to obtain a service ticket from theKDC server.

Service Principal Name Form. The SPN type to use while
authenticating an incoming client principal name. Select any of
the following:

User name. Specifies the username form.

Hostbased. Specifies the host form.

Uses the NTLM credentials to authenticate the client.NTLM

API Gateway supports the following modes of NTLM
authentication:

Custom credentials

Incoming HTTP basic auth credentials

Transparent

Provide the following credentials:

User Name. Specifies the user name.

Password. Specifies the password of the user.

Domain . Specifies the domain in which the user resides.

Uses the OAuth2 token to authenticate the client.OAuth2

API Gateway supports the following modes of NTLM
authentication:

Custom credentials

Incoming OAuth token

OAuth2 token. Specifies the client's OAuth2 token.

Uses the JSONWeb Token (JWT) to authenticate the client.JWT

268 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

If the native API is enforced to use JWT for authenticating the client,
thenAPIGateway enforces the need for a valid JWT in the outbound
request while accessing the native API.

API Gateway supports the Incoming JWT mode of JWT
authentication.

Uses the configured alias to authenticate the client. Provide the
name of the configured alias.

Alias

When you configure an API with an inbound authentication policy, and a client sends a request
with credentials, API Gateway uses the credentials for the inbound authentication.When sending
the request to native server, API Gateway removes the already authenticated credentials when
no outbound authentication policy is configured.

If as an API provider youwant to use the same credentials for authentication at both API Gateway
and native server, you should configure the outbound authentication policy to pass the incoming
credentials to the native service. If you do not configure an outbound authentication policy, API
Gateway removes the incoming credentials, as it is meant for API Gateway authentication only.

However, when both the inbound authentication policy and outbound authentication policy are
not configured, API Gateway just acts as a proxy and forwards the credentials to the native service.
Since the credentials are not meant for API Gateway (as no inbound auth policy is configured),
API Gateway forwards the credentials to native service (unless there are different settings
configured in outbound authentication policy, for example, custom credentials or Anonymous).

Outbound Auth - Message

When the native API is protected and expects the authentication credentials to be passed through
payload message, you can use this policy to provide the credentials that is added to the request
and sent to the native API. API Gateway supports a wide range of authentication schemes, such
asWSSUsername, SAML, andKerberos, in addition to signing and encryption at themessage-level.

Note:
Message-level authentication can be used to secure outbound communication of only SOAP
APIs.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Select one of the following schemes for outbound authentication at
the message level:

Authentication scheme

WSS username. Uses WSS credentials authenticate the client.

SAML. Uses SAML issuer configuration details for
authentication.

webMethods API Gateway User's Guide 10.11 269

4 Policies

DescriptionProperty

Kerberos. Uses Kerberos credentials for authentication.

None. Authenticates the client without any authentication
schemes.

Alias. Uses the configured alias name for authentication.

Remove WSS headers. Uses the WSS headers for
authentication.

Select one of the following modes to authenticate the client:Authenticate using

Custom credentials. Uses the values specified in the policy to
obtain the required token to access the native service.

Incoming HTTP Basic Auth credentials. Uses the incoming
user credentials to retrieve the authentication token to access
the native API

Delegate incoming credentials. Uses the values specified in
the policy by the API providers to select whether to delegate
the incoming token or act as a normal client.

Uses the WSS credentials to authenticate the client.WSS username

Provide the following credentials:

User Name. Specifies the user name.

Password. Specifies the password of the user.

Uses the Kerberos credentials to authenticate the client.Kerberos

Provide the following information:

Client principal. Provide a valid client LDAP user name.

Client password. Provide a valid password of the client LDAP
user.

Service principal. Provide a valid SPN. The specified value is
used by the client to obtain a service ticket from theKDC server.

Service Principal Name Form. The SPN type to use while
authenticating an incoming client principal name. Select any of
the following:

User name. Specifies the username form.

Hostbased. Specifies the host form.

Provide the SAML issuer that is configured.SAML

270 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Uses the signing configuration details to authenticate the client.Signing Configurations

Provide the following information:

Keystore Alias. Specifies a user-specified text identifier for an
APIGateway keystore. The alias points to a repository of private
keys and their associated certificates.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Uses the encryption configuration details to authenticate the client.Encryption Configurations

Provide the following information:

Truststore alias. Specifies the alias for the truststore. The
truststore contains the trusted root certificate for the CA that
signed theAPIGateway certificate associatedwith the key alias.

Certificate alias. Provide a text identifier for the certificate
associated with the truststore alias. API Gateway populates the
certificate alias list with the certificate aliases from the selected
truststore alias.

Uses the configured alias to authenticate the client. Provide the
name of the configured alias.

Alias

Specify a stage, if you want the configuration to be applicable to a
specific stage.

Stage

When you configure an API with an inbound authentication policy, and a client sends a request
with credentials, API Gateway uses the credentials for the inbound authentication.When sending
the request to native server, API Gateway removes the already authenticated credentials when
no outbound authentication policy is configured.

If as an API provider youwant to use the same credentials for authentication at both API Gateway
and native server, you should configure the outbound authentication policy to pass the incoming
credentials to the native service. If you do not configure an outbound authentication policy, API
Gateway removes the incoming credentials, as it is meant for API Gateway authentication only.

However, when both the inbound authentication policy and outbound authentication policy are
not configured, API Gateway just acts as a proxy and forwards the credentials to the native service.
Since the credentials are not meant for API Gateway (as no inbound auth policy is configured),
API Gateway forwards the credentials to native service (unless there are different settings
configured in outbound authentication policy, for example, custom credentials or Anonymous).

JMS/AMQP Policies

To configure API Gateway for JMS with Message broker native protocol support or JMS with
AMQP protocol you need to:

webMethods API Gateway User's Guide 10.11 271

4 Policies

Create one or more JNDI provider aliases to specify where API Gateway can look up when it
needs to create a connection to JMS provider or specify a destination for sending or receiving
messages.

Create one ormore connection aliases that encapsulate the properties that API Gateway needs
to create a connection with the JMS provider.

JMS/AMQP Routing

You can use this policy when you want to specify a JMS queue or topic to which API Gateway
submits the request, and the destination where the response should be routed to where API
Gateway waits to listen to the response from the native API.

For example, you can use this policy when you have a native API that is exposed over AMQP or
JMS and that requires clients to communicate with the server using other protocols. This policy
allows you to bridge protocols between the client and the native API.

You can apply the JMS/AMQP routing policy to both REST and SOAPAPIS. The following sections
explain their usage.

Use case 1: Using the JMS/AMQP routing policy (JMS with a message broker native
protocol) for a SOAP API

This describes the high level workflow for the scenario where you use the JMS/AMQP routing
policy (JMS with a message broker native protocol) for a SOAP API.

1. Create an alias to a JNDI Provider For a detailed procedure, see webMethods API Gateway
Administration.

2. ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

3. Create a WS (Web Service) JMS Provider endpoint alias and configure the Alias, Description,
Type (Provider), Transport Type (JMS) fields and JMS Transport Properties. For a detailed
procedure, see webMethods API Gateway Administration.

4. A WS (Web Service) endpoint trigger is created when you configure WS (Web Service) JMS
Provider endpoint alias. This trigger consists of the input source details like Queue name or
Topic name. You can update the WS (Web Service) endpoint trigger, as required. For detailed
procedures, see webMethods API Gateway Administration.

5. Select the required API.

6. Click Edit.

7. In the API Details section click Policies.

8. Enforce the JMS/AMQP SOAP Routing policy with the following properties configured.

a. Specify the connection URL for connecting to the JMS provider.

b. Specify a queue name where a reply to the message must be sent.

272 webMethods API Gateway User's Guide 10.11

4 Policies

c. Provide a priority of this JMS message.

d. Provide expiration time of the JMS message.

e. Specify the message delivery mode for the request message.

For details on the JMS/AMQP SOAP Routing policy, see “ JMS/AMQP SOAP Routing” on
page 275.

9. Click Save.

The enforced policy JMS/AMQP SOAP Routing with the required configuration now allows
any java client to communicate with the API asynchronously.

Use case 2: Using the JMS/AMQP routing policy (JMS with AMQP protocol) for a
SOAP API

This describes the high level workflow for the scenario where you use the JMS/AMQP routing
policy (JMS with AMQP protocol) for a SOAP API.

1. Configure API Gateway to use JMS with AMQP protocol.

Configure JNDI settings and JMS settings as per the client you are using to achieve JMS over
AMQP protocol support.

Note:
For a sample procedure on configuringAPI Gateway to use JMSwithAMQPprotocol using
Apache qpid libraries, see “Configuring API Gateway for JMS with AMQP Protocol” on
page 186

2. Select the required API.

3. Click Edit.

4. In the API Details section click Policies.

5. Enforce the JMS/AMQP SOAP Routing policy with the following properties configured.

a. Specify the connection URL for connecting to the JMS provider.

b. Specify a queue name where a reply to the message must be sent.

c. Provide a priority for this AMQP message.

d. Provide expiration time of the AMQP message.

e. Specify the message delivery mode for the request message.

For details on the JMS/AMQP SOAP Routing policy, see “ JMS/AMQP SOAP Routing” on
page 275.

6. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows all the
clients such as Python, Ruby, Java, and Dotnet to communicate with the API asynchronously.

webMethods API Gateway User's Guide 10.11 273

4 Policies

Use case 3: Using the JMS/AMQP routing policy (JMS with a message broker native
protocol) for a REST API

This describes the high level workflow for the scenario where you use the JMS/AMQP routing
policy (JMS with a message broker native protocol) for a REST API.

1. Create an alias to a JNDI Provider For a detailed procedure, see webMethods API Gateway
Administration.

2. ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

3. Select the required API.

4. Click Edit.

5. In the API Details section click Policies.

6. Enforce the JMS/AMQP REST Routing policy with the following properties configured.

a. Specify the connection alias that contains the configuration information needed to establish
a connection to a specific JMS provider.

b. Specify the destination to which the request message is sent.

c. Specify the destination type to which the request message is sent.

d. Specify the destination to which the response message is sent.

e. Specify the type of destination, queue or topic, to which the response message is sent.

f. Provide expiration time of the JMS message.

g. Provide the time for which API Gateway listens for the response message.

h. Specify the message delivery mode for the request message.

For details on the JMS/AMQP REST Routing policy, see “JMS/AMQP REST Routing” on
page 278.

7. Click Save.

The enforced policy JMS/AMQP REST Routing with the required configuration now allows
any java client to communicate with the API asynchronously.

Use case 4: Using the JMS/AMQP routing policy (JMS with AMQP protocol) for a
REST API

This describes the high level workflow for the scenario where you use the JMS/AMQP routing
policy (JMS with AMQP protocol) for a REST API.

1. Configure API Gateway to use JMS with AMQP protocol.

274 webMethods API Gateway User's Guide 10.11

4 Policies

Configure JNDI settings and JMS settings as per the client you are using to achieve JMS over
AMQP protocol support.

Note:
For a sample procedure on configuringAPI Gateway to use JMSwithAMQPprotocol using
Apache qpid libraries, see “Configuring API Gateway for JMS with AMQP Protocol” on
page 186.

2. Select the required API.

3. Click Edit.

4. In the API Details section click Policies.

5. Enforce the JMS/AMQP REST Routing policy with the following properties configured.

a. Specify the connection alias that contains the configuration information needed to establish
a connection to a specific JMS provider.

b. Specify the destination to which the request message is sent.

c. Specify the destination type to which the request message is sent.

d. Specify the destination to which the response message is sent.

e. Specify the type of destination, queue or topic, to which the response message is sent.

f. Provide expiration time of the AMQP message.

g. Provide the time for which API Gateway listens for the response message.

h. Specify the message delivery mode for the request message.

For details on the JMS/AMQP REST Routing policy, see “JMS/AMQP REST Routing” on
page 278.

6. Click Save.

The enforced policy Enable JMS/AMQP with the required configuration now allows all the
clients such as Python, Ruby, Java, and Dotnet to communicate with the API asynchronously.

JMS/AMQP SOAP Routing

If you are using JMS with Message broker native protocol support ensure that following actions
are performed before using the Enable JMS/AMQP policy:

Create an alias to a JNDI Provider For a detailed procedure, see webMethods API Gateway
Administration.

ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

webMethods API Gateway User's Guide 10.11 275

4 Policies

Create a WS (Web Service) JMS Provider endpoint alias and configure the Alias, Description,
Type (Provider), Transport Type (JMS) fields and JMS Transport Properties. For a detailed
procedure, see webMethods API Gateway Administration.

Configure a WS (Web Service) endpoint trigger. For detailed procedures, see webMethods API
Gateway Administration.

If you are using JMS with AMQP protocol support, ensure the following before using the Enable
JMS/AMQP policy:

You have configured API Gateway for JMS with AMQP. For details, see “Configuring API
Gateway for JMS with AMQP Protocol” on page 186

The table lists the properties that you can specify for this policy:

DescriptionProperty

Provide a connection alias for connecting to the JMS provider (for example, an
Integration Server alias or a JNDI URL). The connection URL contains various

Connection
URL

elements that construct the destination and other connection specific parameters.
The structure of the connection URL is:
<protocol>:<lookupVariant>:<destination>?<parameters>where

protocol. Specify the name of the transport protocol. The default value is JMS.

lookupVariant. Specify the destination type such as queue or topic. The default
value is queue.

destination. Specify the destination name of the JMS Provider. For dynamic
queue the destination name is: dynamicQueues/<Queue name>

Parameters

wm-wsendpointalias. Specify the JMS consumer endpoint alias. This
parameter is required for API Gateway to look up the JMS consumer alias
and send the request to the specified queue.

jndiInitialContextFactory. Specify the initial context factory for the JNDI
look up. For example:
org.apache.activemq.jndi.ActiveMQInitialContextFactory forActiveMQ

jndiConnectionFactoryName. Specify the connection factory look up name.
For example:

ConnectionFactory forActiveMQ if you are using the JMSwith broker
native protocol.

qpidConnectionFactory for ActiveMQ if you are using the JMS with
AMQP protocol.

jndiURL. Specify the Provider URL for the Active MQ to connect to API
Gateway. For example:

276 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

tcp://vmmeddemo03:61616 for ActiveMQ if you are using the JMSwith
broker native protocol.

The file path location of the properties file, for example, Install
directory\IntegrationServer\lib\jars\amqp.properties if you are
using JMS with AMQP protocol.

targetService. Specify the API Gateway API name. This parameter is
required if you are sending the request to another API in API Gateway
that uses JMS as the entry protocol.

Sample: With consumer endpoint alias
jms:queue:dynamicQueues/MyTestQueue?
wm-wsendpointalias=JMSConsumerEndpointAlias&target
Service=EchoS_VS_JMS_IN

Sample: With JNDI lookup parameters
jms:queue:dynamicQueues/MyTestQueue?
jndiConnectionFactoryName=ConnectionFactory
&jndiInitialContextFactory=org.apache.
activemq.jndi.ActiveMQInitialContextFactory
&targetService=EchoS_VS_JMS_IN

Sample: With JNDI lookup parameters for AMQP protocol
jms:queue:dynamicQueues/MyTestQueue?
jndiConnectionFactoryName=qpidConnectionFactory
&jndiInitialContextFactory=org.apache.qpid.jms.
jndi.JmsInitialContextFactory
&targetService=EchoS_VS_JMS_IN

Specify a queue name where a reply to the message must be sent.Reply To
Destination

Type an integer that represents the priority of this JMS or AMQP message with
respect to othermessages that are in the same queue. The priority value determines

Priority

the order in which the messages are routed. The lowest priority value is 0 and
the highest priority value is 9. Themessages with this priority value are executed
first.

Priority values 0 through 9.

The default priority for a JMS or AMQP message is 0.

Provide a numeric value that specifies the expiration time (inmilliseconds) of the
JMS or AMQP message.

Time to Live
(ms)

If the time-to-live is specified as zero, expiration is set to zero which indicates the
message does not expire.

The default value is 0.

webMethods API Gateway User's Guide 10.11 277

4 Policies

DescriptionProperty

The message delivery mode for the request message. This is the delivery mode
that web service clients must specify in the JMS or AMQP message that serves
as the request message for the web service. The available options are:

Delivery Mode

Non-persistent. Indicates that the request message is not persistent. The
message might be lost if the JMS provider fails.

Persistent. Indicates that the request message should be persistent. The
message is not lost if the JMS provider fails.

JMS/AMQP REST Routing

If you are using JMS with Message broker native protocol support ensure that following actions
are performed before using the Enable JMS/AMQP policy:

Create an alias to a JNDI Provider For a detailed procedure, see webMethods API Gateway
Administration.

ConfigureAPIGateway to use a JMS connection alias to establish an active connection between
API Gateway and the JMS provider. For a detailed procedure, see webMethods API Gateway
Administration.

If you are using JMS with AMQP protocol support, ensure the following before using the Enable
JMS/AMQP policy:

You have configured API Gateway for JMS with AMQP. For details, see “Configuring API
Gateway for JMS with AMQP Protocol” on page 186

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specifies the name of the connection alias.Connection Alias
Name

Each connection alias contains the configuration information needed to
establish a connection to a specific JMS provider.

Specify the name of the destination to, which the request message is sent.Destination Name

As this property supports variable framework, you can use the available
variables to specify the destination name.

For example, you can provide a destination name as
${request.header.var1}. The destination name used in var1 is where the
Queue or Topic that is created in Universal Messaging stores the events.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 171.

Specify the destination type to which the request message is sent.Destination Type

278 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Specify the name of the destination to, which the responsemessage is sent.Reply To Name

As this property supports variable framework, you can use the available
variables to specify the destination name.

For example, you can provide a destination name as
${request.header.dest1}. The destination nameused in dest1 is theQueue
or Topic that is created dynamically in Universal Messaging.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 171.

Specifies the type of destination to which the response message is sent.Reply To Type

Select one of the following source type:

QUEUE. Indicates that the response message is sent to a particular
queue.

TOPIC. Indicates that the responsemessage is sent to a particular topic.

Provide a numeric value that specifies the expiration time (inmilliseconds)
of the JMS or AMQP message. If the time-to-live is specified as zero,
expiration is set to zero which indicates the message does not expire.

Time to Live (ms)

The default value is 0.

Defines the time inmilliseconds forwhichAPIGateway listens to the Reply
To Queue or Topic for the response message.

Time to Wait (ms)

The message delivery mode for the request message. This is the delivery
mode that web service clients must specify in the JMS or AMQP message

Delivery Mode

that serves as the requestmessage for theweb service. The available options
are:

Non-persistent. Indicates that the request message is not persistent.
The message might be lost if the JMS provider fails.

Persistent. Indicates that the request message should be persistent.
The message is not lost if the JMS provider fails.

JMS/AMQP Properties

The JMS/AMQPProperties policy can be configured to setAMQPor JMSProperties, a few standard
AMQP or JMS Headers, and HTTP Transport Headers in the outgoing JMS message that is being
sent from the proxy API to the native API.

AMQP or JMS headers are part of the JMS message that are used by both clients and providers.
They are used to identify a message and to route the message to the applicable JMS Providers or
consumers.

webMethods API Gateway User's Guide 10.11 279

4 Policies

You can add HTTP Headers such as API Key, Authorization header, and so on. This is useful
when the native API is configured with the Enable AMQP/JMS policy and the proxy API wants
to pass the security headers over to that native API.

Every JMSmessage includes JMS/AMQPproperties that are always passed fromprovider to client.
The purpose of the properties is to convey extra information to the client outside the normal content
of themessage body. Additionally, JMS/AMQPproperty values are set exclusively by the consumer
application. When a client receives a message, the properties are in read-only mode. If a client
tries to modify any of the properties, a MessageNotWriteableException occurs.

The properties are standard Java name or value pairs. The property names must conform to the
message selector syntax specifications defined in the message interface. Property fields are most
often used for message selection and filtering. By using a property field, a message consumer can
interrogate the property field and perform message filtering and selection. When this action is
configured for a proxy API, API Gateway uses the JMS or AMQP properties to authenticate client
requests before submitting to the native APIs. JMS or AMQP headers can also be set using
properties, however, JMS or AMQP properties take precedence over headers.

The JMS/AMQPproperties section has separate policies that you can configure for REST and SOAP
APIs. They are as follows:

JMS/AMQP REST Properties

JMS/AMQP SOAP Properties

The table lists the properties that you can specify for this policy:

DescriptionProperty

Specify the JMS property key.JMS Property Key

Specify the JMS property value for the specified key.JMS Property Value

As both these properties support variable framework, you can use the available variables to specify
the JMS property key and value.

For example, if you provide a property key as ${request.header.token1} and the corresponding
property value as ${request.header.token2}, then the value in token1 and token2 passes security
headers to the native API.

For details about the variables available in API Gateway, see “Variables Available in API
Gateway” on page 171.

Predefined JMS Properties

DescriptionPropertyProperty
categories

If the jms.messageType is set to
TextMessage, the SOAP envelope in the

Run-time
settings

jms.deliveryMode

jms.priority

280 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionPropertyProperty
categories

request is sent as a textmessage to the JMS
queue instead of byte stream.jms.timeToLive

jms.messageType

The following headers are not applicable.
If they are added an error responsewould
be sent at runtime:

Standard JMS
headers

JMSType

JMSCorrelationID

JMSXGroupID JMSMessageID

JMSXGroupSeq JMSExpiration

JMSRedelivered

JMSTimestamp

JMSDeliveryMode

JMSPriority

JMSReplyTo

JMSDestination

Application
specific
properties

SOAPJMS_requestURI

SOAPJMS_bindingVersion

SOAPJMS_soapAction

SOAPJMS_targetService

SOAPJMS_contentType

Mapping AMQP messages to JMS

Header

DescriptionField name

When receiving a message, the durable field of header MUST be
mapped to the JMSDeliveryMode header of theMessage. If the durable

durable

field of header is set to false or is not set then the JMSDeliveryMode
MUST be taken to be NONPERSISTENT. When the durable field of
header is set to true the JMSDeliveryMode of the Message MUST be
taken to be PERSISTENT.

This field is mapped to the JMSPriorityheader of the Message. JMS
Priority is specified as being of type int despite the valid values only

priority

webMethods API Gateway User's Guide 10.11 281

4 Policies

DescriptionField name

being 0-9. AMQP allows for the priority field of header to be any
valid ubyte value.When receiving amessage with the priority field
of header greater than 9, the JMSPriorityMUST be set to 9. If the
priorityfield of header is unset then the JMSPriorityMUSTbe taken
to be DEFAULT_PRIORITY that is, the value 4).

This field defines the number of milliseconds for which a given
message is considered live. There is no direct equivalent for the ttl
field of header in the JMS specification.

ttl

If and only if the absolute-expiry-time field of properties is not
set,JMSExpiration SHOULD be based on the ttl field of header if
set, by summing it with the current time in milliseconds since the
Unix Epoch

This field does not have a direct equivalent within the JMS
specification, although JMSRedelivered is related, and so vendor
property JMS_AMQP_FIRST_ACQUIRER SHOULD be used.

first acquirer

This field ismapped to the JMS-defined JMSXDeliveryCountproperty
and JMSRedelivered header of the Message as follows.

delivery-count

AMQP uses the delivery-count field of header to track previously
failed delivery attempts for amessage, with the first delivery attempt
having a value of zero, and soon.

JMSXDeliveryCount is defined as a Java int count of delivery attempts,
set by the provider on receive, where the first delivery attempt has
value 1, the second has value 2 and so on.

The value of JMSXDeliveryCount property is thus equal to
delivery-count + 1.

The JMSRedelivered header MUST be considered to be true if and
only if the delivery-count field of header has a value greater than 0.

Properties

DescriptionField name

This field is equivalent to the JMSMessageID header of theMessage.message-id

The JMSMessageID value is a Java Stringwhere as the message-id
field of properties is defined as being of type providing message-id,
that is message-id-ulong, message-id-uuid, message-id-binary or
message-id-string.

The JMS client libraryMUSTprefix ID: to the value of the message-id
field of properties before returning it as the JMSMessageID value.

282 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionField name

This field is mapped to the JMS-defined JMSXUserID property of the
Message.

user-id

JMSXUserID is specified as being of type String, while the user-id
field of properties field is specified as type binary. To maintain
end-to-end fidelity for this property implementations SHOULD
convert between AMQP binary and Java String by using the UTF-8
Unicode[UNICODE63] character encoding.

This field is mapped to the JMSDestination header of the Message.to

JMSDestination is defined as being of the JMS Destination type,
while the to field of properties requires an address-string.

If the to field of properties was not set on a received message, the
JMSDestination header value SHOULD be derived from the
Destination to which the receiving consumer was established.

This field is mapped to the JMSType header of the Message.subject

This field is mapped to the JMSReplyTo header of the Message.reply-to

JMSReplyTo is defined as being of the JMSDestination type, while the
reply-to field of properties requires an address-string.

This field ismapped to the JMSCorrelationID header of theMessage.correlation-id

The JMSCorrelationID value is a Java Stringwhere as the
correlation-id field of properties is defined as being of type
providing message-id, that is message-id-ulong, message-id-uuid,
message-id-binary or message-id-string.

Where the correlation-idfield of properties for the receivedmessage
is of type message-id-string and the booleanmessage annotation
with symbol key of x-opt-app-correlation-id is either not set or is
false, then the correlation-idfield of propertiesMUSTbe formatted
as a JMSMessageID, that is the client library MUST prefix ID: to the
value before returning it as the JMSCorrelationID value.

This field does not have an equivalent within the JMS specification,
and so the vendor property JMSAMQPCONTENTTYPESHOULD
be used.

content-type

This field does not have an equivalent within the JMS specification,
and so the vendor property
JMSAMQPCONTENTENCODINGSHOULD be used.

content-encoding

This field is mapped to the JMSExpiration head of the Message.absolute-expiry-time

If the absolute-expiry-time field of properties is set, then
JMSExpirationMUST have the equivalent Java long value,

webMethods API Gateway User's Guide 10.11 283

4 Policies

DescriptionField name

representing the time at which the message expires, in milliseconds
since theUnix Epoch. If the absolute-expiry-timefield of properties
is not set then JMSExpiration SHOULD be based on the ttl field of
header instead if set.

This field is mapped to the JMSTimestamp header of the Message.creation-time

If the creation-time field of properties is not set, then JMSTimestamp
MUST have the value zero. If the creation-time field of properties
field is set, then JMSTimestampMUST have the equivalent Java long
value, representing the time atwhich themessagewas sent or created,
in milliseconds since the Unix Epoch.

This field is mapped to the JMS-defined JMSXGroupID property of the
Message.

group-id

This field is mapped to the JMS-defined JMSXGroupSeq property of
the Message.

group-sequence

As the group-sequence field of properties is an uint and JMSXGroupSeq

is an int, group-sequence values in the range 231 to 232-1 inclusive
MUST be mapped to JMSXGroupSeq values in the range −231 to -1
inclusive.

This field does not have an equivalent within the JMS specification,
and so the vendor property JMS_AMQP_REPLY_TO_GROUP_ID
MUST be used.

reply-to-group-id

For more information on AMQP properties and JMS to AMQP mapping properties, see https://
www.oasis-open.org/committees/download.php/56418/amqp-bindmap-jms-v1.0-wd06.pdf.

Traffic Monitoring
The policies in this stage provide ways to enable logging request and response payload, enable
monitoring run-time performance conditions for APIs and applications, enforce limits for the
number of service invocations during a specified time interval and send alerts to a specified
destination when the performance conditions are violated, and enable caching of the results of
API invocations depending on the caching criteria defined. The policies included in this stage are:

Log Invocation

Monitor Performance

Monitor SLA

Traffic Optimization

Service Result Cache

284 webMethods API Gateway User's Guide 10.11

4 Policies

https://www.oasis-open.org/committees/download.php/56418/amqp-bindmap-jms-v1.0-wd06.pdf
https://www.oasis-open.org/committees/download.php/56418/amqp-bindmap-jms-v1.0-wd06.pdf

Log Invocation

This policy enables logging requests or responses to a specified destination. This action also logs
other information about the requests or responses, such as the API name, operation name, the
Integration Server user, a timestamp, and the response time.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Logs all request headers.Store Request Headers

Logs all request payloads.Store Request Payload

Logs all response headers.Store Response Headers

Logs all response payloads.Store Response Payload

Compresses the logged payload data.Compress Payload Data

For details about payload compression and how to uncompress
a payload, see “Uncompressing a payload” on page 287.

Specifies how frequently to log the payload.Log Generation Frequency

Select one of the following options:

Always. Logs all requests and responses.

On Failure. Logs only the failed requests and responses.

On Success. Logs only the successful responses and
requests.

Specifies the destination where to log the payload.Destination

Select the required options:

API Gateway

API Portal

Audit Log

Audit log destination can be configured as DB or File in the
Administration > Destinations screen. Software AG
recommends to use DBwhen you choose Audit Log as the
destination to log transactions throughLog Invocation policy.

If you choose File, warnings appear in the log file since a few
of the transaction log fields are not compatible with Audit
log file destination such as BLOB types. For more

webMethods API Gateway User's Guide 10.11 285

4 Policies

DescriptionProperty

information, see Configure Audit Logging section in
webMethods Audit Logging Guide.

CentraSite

Note:
This option is applicable only for theAPIs published from
CentraSite to API Gateway.

Digital Events

Elasticsearch

Email (you can add multiple email addresses by clicking

).

Note:
If an email alias is available, you can type the email alias
in the Email Address field with the following syntax,
${emailaliasname}. For example, if test is the email alias,
then type ${test}.

JDBC

Local Log: You can select the severity of the messages to be
logged (logging level) from the Log Level drop-down list.
The available log levels are ERROR, INFO, and WARN.

Note:

Set the Integration Server Administrator's logging
level for API Gateway to match the logging levels
specified for the run-time actions (go to Settings >
Logging > Server Logger). For example, if a Log
Invocation action is set to the logging level of Error,
you must also set Integration Server Administrator's
logging level for API Gateway to Error. If the action's
logging level is set to a low level (Warning-level or
Information level), but Integration Server
Administrator's logging level for API Gateway is set
to a higher level (Error-level), then only the
higher-level messages are written to the log file.
Entries posted to the local log are identified by a
product code of YAI and suffixed with the initial
alphabet of the logging level selected. For example,
for an error level, the entry appears as
[YAI.0900.0002E].

286 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

SNMP

List of destinations configured using the Custom
destinations section. For details on publishing to custom
destinations, see webMethods API Gateway Administration.

Uncompressing a payload

Payload compression helps you to optimize the storage by reducing the size of the actual payload.
It improves the performance while rendering the analytics information in the dashboard.

The request and response payload of the API Gateway API and native API is compressed in the
encoded form.

To generate the data and uncompress the payload.

1. Ensure you have an API enforced with a Log invocation policy with the property Compress
payload data selected.

See the following examplewhere anAPI is enforcedwith a Log invocationpolicywithCompress
payload data selected.

2. Invoke the same API using an external REST client such as Postman or SoapUI to see the API
transaction.

webMethods API Gateway User's Guide 10.11 287

4 Policies

TransactionalEvent is generated every time an API invocation happens.

3. Click Analytics of the same API in API Gateway UI.

This displays the different types of events generated in the dashboard. For details about
analytics, see “Analytics Dashboards” on page 456.

4. Select Runtime events and click to expand your transaction.

5. Click JSON or Table and copy the encoded string (value) of the request or response payload
that you want to uncompress.

6. Pass the copied string as an input to the following Java program.

public static String uncompressString(String zippedBase64Str) throws IOException
{

String unCompressedPayload = null;
byte[] bytes = Base64.getDecoder().decode(zippedBase64Str);
GZIPInputStream zi = null;
try{
zi = new GZIPInputStream(new ByteArrayInputStream(bytes));
unCompressedPayload = IOUtils.toString(zi);
}finally{
IOUtils.closeQuietly(zi);
}
return unCompressedPayload;
}

288 webMethods API Gateway User's Guide 10.11

4 Policies

See the following example, where an encoded string from the request payload is passed as an
input to the Java program.

The Java output contains the uncompressed payload.

Note:
This code snippet is applicable only for the payload compressed by the log invocation policy.

You can also query the data using theREST endpoints from the swagger fileAPIGatewaySearch.json
and uncompress the payload with the same code snippet.

For details about the REST endpoints, see “API Gateway Search” on page 577.

webMethods API Gateway User's Guide 10.11 289

4 Policies

Monitor Performance

This policy monitors a set of run-time performance conditions for an API, and sends alerts when
the performance conditions are violated. However, this policy monitors run-time performance at
the API level. Parameters like success count, fault count and total request count are immediate
monitoring parameters and the evaluation happens immediately after the limit is breached. The
rest of the parameters are Aggregatedmonitoring parameters whose evaluation happens once the
configured interval is over. If there is a breach in any of the parameters, an event notification (
Monitor event) is sent to the configureddestination. In a single policy,multiple action configurations
behave as AND condition. The OR condition can be achieved by configuring multiple policies.

The table lists the properties that you can specify for this policy:

ValueProperty

Action Configuration. Specifies the type of action to be configured.

Specifies the name of the metric to be monitored.Name

You can select one of the available metrics:

Availability. Indicates whether the native API is available to the
clients as specified in the current interval. API Gateway calculates
the availability of the nativeAPI based on the alert interval specified
and it is calculated from the instant the API activation takes place.
The availability of the API is calculated as = (time for which the

290 webMethods API Gateway User's Guide 10.11

4 Policies

ValueProperty

native API is up / total interval of time) x 100. This value is
measured in %.

For example, if you set Availability as less than 90, then whenever
the availability of the native API falls below 90%, in the specified
time interval, API Gateway generates an alert. Suppose, the alert
interval is set as 1 minute (60 seconds) and if there are 7 API
invocations at various times in that 1 minute with a combination
of up and down as shown in the table, the availability is calculated
as follows:

Up timeService
status

Invocation time
(the second at
which the API is
invoked)

Request
#

5 (from start to now)Up51

10 (between 1 and 2)Up152

15 (between 2 and 3)Down303

0 (since last state is
Down)

Down404

0Up455

5 (between 5 and 6)Down506

0Up557

5 (remaining 5 seconds
considered as Up inline
with last state)

40 (Availability is 67%)Total

As the availability of the native API calculated is 66.67% and falls
below 90%, API Gateway generates an alert. The API is considered
to be down for the ongoing request when API Gateway receives a
connection related error from the native API in the outbound call.
If the API does not respond with an HTTP response, then it is
considered as down.

Average Response Time. Indicates the average time in
milliseconds taken by the service to complete all invocations in the
current interval. The average is calculated from the instant the API
activation takes place for the configured interval.

webMethods API Gateway User's Guide 10.11 291

4 Policies

ValueProperty

For example, if you set an alert for Average response time greater
than 30 ms with an interval of 1 minute then on API activation, the
monitoring interval starts and the average of the response time of
all runtime invocations for this API in 1minute is calculated. If this
is greater than 30 ms, then a monitor event is generated. If this is
configured under Monitor Performance, then all the runtime
invokes are taken into account.

Fault Count. Indicates the number of faults returned in the current
interval. The HTTP status codes greater than or equal to 400,
returned from API Gateway are considered as fault request
transactions. This includes the downtime errors as well.

Maximum Response Time. Indicates the maximum time in
milliseconds to respond to a request in the current interval.

Minimum Response Time. Indicates the minimum time in
milliseconds to respond to a request in the current interval.

Success Count. Indicates the number of successful requests in
the current interval.

Total Request Count. Indicates the total number of requests
(successful and unsuccessful) in the current interval.

Specifies the operator applicable to the metric selected.Operator

Select one of the available operator:Greater Than, Less Than,Equals
To.

Specifies the alert value for which the monitoring is applied.Value

Specifies the destination where the alert is to be logged.Destination

Select the required options:

API Gateway

API Portal

CentraSite

Note:
This option is applicable only for the APIs published from
CentraSite to API Gateway.

Digital Events

Elasticsearch

292 webMethods API Gateway User's Guide 10.11

4 Policies

ValueProperty

Email (you can add multiple email addresses by clicking

).

Note:
If an email alias is available, you can type the email alias in the
Email Address field with the following syntax,
${emailaliasname}. For example, if test is the email alias, then
type ${test}.

JDBC

Local Log: You can select the severity of themessages to be logged
(logging level) from the Log Level drop-down list. The available
log levels are ERROR, INFO, and WARN.

Note:

Set the Integration Server Administrator's logging level for
API Gateway to match the logging levels specified for the
run-time actions (go to Settings > Logging > Server
Logger). For example, if a Log Invocation action is set to the
logging level of Error, you must also set Integration Server
Administrator's logging level for API Gateway to Error. If
the action's logging level is set to a low level (Warning-level
or Information level), but Integration Server Administrator's
logging level for API Gateway is set to a higher level
(Error-level), then only the higher-levelmessages arewritten
to the log file.
Entries posted to the local log are identified by a product
code of YAI and suffixed with the initial alphabet of the
logging level selected. For example, for an error level, the
entry appears as [YAI.0900.0002E].

SNMP

List of destinations configured using the Custom destinations
section. For details on publishing to custom destinations, see
webMethods API Gateway Administration.

Specifies the time period in which to monitor performance before
sending an alert if a condition is violated.

Alert Interval

The timer starts once theAPI is activated and resets after the configured
time interval. If an API is deactivated the interval gets reset, and on
API activation the time interval starts afresh.

Specifies the unit of measurement of the Alert Interval configured, to
monitor performance, before sending an alert. For example:

Unit

webMethods API Gateway User's Guide 10.11 293

4 Policies

ValueProperty

Minutes

Hours

Days

CalendarWeek. The time interval starts on the first day of theweek
and ends on the last day of the week. By default, the start day of
the week is set to Monday.

For example:

If an API is activated on a Wednesday and Alert Interval is set
to 1, the time interval ends on Sunday, that is, 5 days.

If an API is activated on a Wednesday and Alert Interval is set
to 2, the time interval still ends on Sunday, but the period is
two calendar weeks, that is 12 days.

You can change the start day of theweek using the extended setting
startDayOfTheWeek in the Administration > General > Extended
settings section. Restart the API Gateway server for the changes
to take effect.

Calendar Month. The time interval starts on the first day of the
month and ends on the last day of the month.

For example:

If anAPI is activated in themonth of August andAlert Interval
is set to 1, the time interval ends on the last day of August.

If anAPI is activated in themonth of August andAlert Interval
is set to 2, the time interval ends in two calendar months, that
is on the last day of September.

Specifies how frequently to issue alerts for the counter-based metrics
(Total Request Count, Success Count, Fault Count).

Alert Frequency

Select one of the options:

Only Once. Triggers an alert only the first time one of the specified
conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text to be included in the alert.Alert Message

Monitor SLA

294 webMethods API Gateway User's Guide 10.11

4 Policies

This policy monitors a set of run-time performance conditions for an API, and sends alerts to a
specified destination when the performance conditions are violated. This policy enables you to
monitor run-time performance for one or more specified applications. You can configure this
policy to define a Service Level Agreement (SLA), which is a set of conditions that defines the
level of performance that an application should expect from an API. You can use this policy to
identify whether the API threshold rules are met or exceeded. For example, you might define an
agreement with a particular application that sends an alert to the application if responses are not
sent within a certainmaximum response time. You can configure SLAs for eachAPI or application
combination.

Parameters like success count, fault count and total request count are immediate monitoring
parameters and the evaluation happens immediately after the limit is breached. The rest of the
parameters areAggregatedmonitoring parameterswhose evaluation happens once the configured
interval is over. If there is a breach in any of the parameters, an event notification (Monitor event)
is sent to the configured destination. In a single policy, multiple action configurations behave as
AND condition. The OR condition can be achieved by configuring multiple policies.

The table lists the properties that you can specify for this policy:

ValueProperty

Action Configuration. Specifies the type of action to be configured.

Specifies the name of the metric to be monitored.Name

You can select one of the available metrics:

Availability. Indicates whether the native API is available to the
clients as specified in the current interval. API Gateway calculates
the availability of the native API based on the alert interval specified
and it is calculated from the instant the API activation takes place.
The availability of the API is calculated as = (time for which the
native API is up / total interval of time) x 100. This value ismeasured
in %.

For example, if you set Availability as less than 90, then whenever
the availability of the native API falls below 90%, in the specified
time interval, API Gateway generates an alert. Suppose, the alert
interval is set as 1 minute (60 seconds) and if there are 7 API
invocations at various times in that 1 minute with a combination of
up and down as shown in the table, the availability is calculated as
follows:

Up timeService
status

Invocation time
(the second at
which the API is
invoked)

Request
#

5 (from start to now)Up51

webMethods API Gateway User's Guide 10.11 295

4 Policies

ValueProperty

Up timeService
status

Invocation time
(the second at
which the API is
invoked)

Request
#

10 (between 1 and 2)Up152

15 (between 2 and 3)Down303

0 (since last state is
Down)

Down404

0Up455

5 (between 5 and 6)Down506

0Up557

5 (remaining 5 seconds
considered as Up inline
with last state)

40 (Availability is 67%)Total

As the availability of the native API calculated is 66.67% and falls
below 90%, API Gateway generates an alert. The API is considered
to be down for the ongoing request when API Gateway receives a
connection related error from the native API in the outbound call.
If the API does not respond with an HTTP response, then it is
considered as down.

Average Response Time. Indicates the average time taken by the
service to complete all invocations in the current interval. The
average is calculated from the instant the API activation takes place
for the configured interval.

For example, if you set an alert for Average response time greater
than 30 ms with an interval of 1 minute then on API activation, the
monitoring interval starts and the average of the response time of
all runtime invocations for this API in 1 minute is calculated. If this
is greater than 30 ms, then a monitor event is generated. If this is
configured under Monitor SLA policy with an option to configure
applications so that application specific SLAmonitoring can be done,
then the monitoring for the average response time is done only for
the specified application.

Fault Count. Indicates the number of faults returned in the current
interval. TheHTTP status codes greater than or equal to 400, returned

296 webMethods API Gateway User's Guide 10.11

4 Policies

ValueProperty

fromAPIGateway are considered as fault request transactions. This
includes the downtime errors as well.

Maximum Response Time. Indicates themaximum time to respond
to a request in the current interval.

Minimum Response Time. Indicates theminimum time to respond
to a request in the current interval.

Success Count. Indicates the number of successful requests in the
current interval.

Total Request Count. Indicates the total number of requests
(successful and unsuccessful) in the current interval.

Specifies the operator applicable to the metric selected.Operator

Select one of the available operator: Greater Than, Less Than, Equals
To.

Specifies the alert value for which the monitoring is applied.Value

Specifies the destination where the alert is to be logged.Destination

Select the required options:

API Gateway

API Portal

CentraSite

Note:
This option is applicable only for the APIs published from
CentraSite to API Gateway.

Digital Events

Elasticsearch

Email (you can add multiple email addresses by clicking

).

Note:
If an email alias is available, you can type the email alias in the
Email Addressfieldwith the following syntax, ${emailaliasname}.
For example, if test is the email alias, then type ${test}.

JDBC

webMethods API Gateway User's Guide 10.11 297

4 Policies

ValueProperty

Local Log: You can select the severity of the messages to be logged
(logging level) from the Log Level drop-down list. The available
log levels are ERROR, INFO, and WARN.

Note:

Set the Integration Server Administrator's logging level for
API Gateway to match the logging levels specified for the
run-time actions (go toSettings >Logging >Server Logger).
For example, if a Log Invocation action is set to the logging
level of Error, you must also set Integration Server
Administrator's logging level for API Gateway to Error. If
the action's logging level is set to a low level (Warning-level
or Information level), but Integration Server Administrator's
logging level for API Gateway is set to a higher level
(Error-level), then only the higher-level messages are written
to the log file.
Entries posted to the local log are identified by a product code
of YAI and suffixed with the initial alphabet of the logging
level selected. For example, for an error level, the entry
appears as [YAI.0900.0002E].

SNMP

List of destinations configured using the Custom destinations
section. For details on publishing to custom destinations, see
webMethods API Gateway Administration.

Specifies the time period (in minutes) in which to monitor performance
before sending an alert if a condition is violated.

Alert Interval

The timer starts once theAPI is activated and resets after the configured
time interval. If and API is deactivated the interval gets reset and on
API activation its starts afresh.

Specifies the unit of measurement of the Alert Interval configured, to
monitor performance, before sending an alert. For example:

Unit

Minutes

Hours

Days

CalendarWeek. The time interval starts on the first day of the week
and ends on the last day of the week. By default, the start day of the
week is set to Monday.

For example:

298 webMethods API Gateway User's Guide 10.11

4 Policies

ValueProperty

If an API is activated on a Wednesday and Alert Interval is set
to 1, the time interval ends on Sunday, that is, 5 days.

If an API is activated on a Wednesday and Alert Interval is set
to 2, the time interval still ends on Sunday, but the period is two
calendar weeks, that is 12 days.

You can change the start day of the week using the extended setting
startDayOfTheWeek in the Administration > General > Extended
settings section. Restart the API Gateway server for the changes to
take effect.

Calendar Month. The time interval starts on the first day of the
month and ends on the last day of the month.

For example:

If an API is activated in the month of August and Alert Interval
is set to 1, the time interval ends on the last day of August.

If an API is activated in the month of August and Alert Interval
is set to 2, the time interval ends in two calendar months, that is
on the last day of September.

Specifies how frequently to issue alerts for the counter-based metrics
(Total Request Count, Success Count, Fault Count).

Alert Frequency

Select one of the options:

Only Once. Triggers an alert only the first time one of the specified
conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text to be included in the alert.Alert Message

Specifies the application towhich this Service Level Agreement applies.Consumer Applications

You can type a search term tomatch an application and click
to add it.

You can add multiple applications or delete an added application by
clicking .

Traffic Optimization

webMethods API Gateway User's Guide 10.11 299

4 Policies

This policy limits the number of API invocations during a specified time interval, and sends alerts
to a specified destination when the performance conditions are violated. You can use this policy
to avoid overloading the back-end services and their infrastructure, to limit specific clients in terms
of resource usage, and so on.

The TrafficOptimization policy generates two types of eventswhen the specified limit is breached,
policy violation event andmonitor event. The policy violation event is for indicating the violations
that occur for an API. If there are 100 violations, then 100 policy violation events are generated.
The monitor event triggered by this policy is controlled by the alert frequency configuration
specified in the policy.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Limit Configuration

Specifies the name of throttling rule to be applied. For example, Total
Request Count.

Rule name

Specifies the operator that connects the rule to the value specified.Operator

Select the operator: Greater Than. For example, in this case the
throttling rule is applied when the Total Request Count is greater
than (exceeds the limit specified for) the value specified in the Value
field.

Specifies the value of the request count beyond which the policy is
violated.

Value

When multiple requests are made at the same time, it might be
possible that this limit applied to trigger an alert is not strictly adhered
to. There is no loss observed in the invocation counts data, but there
might be aminor delay in aggregating the count. The invocation count
gets incremented, onlywhenAPIGateway receives the response from
the native API. For example, if you have set the limit at 5 with an
interval alert of 1 minute and if you invoke 5 requests in parallel, out
of which for 1 of the request the native API delays sending the
response to API Gateway. In such cases, the invocation count would
still be 4 as the native API is yet to send the response to API Gateway.
There is a minor delay in aggregating the count due to native API
response delay. Hence, API Gateway allows additional invocation.
However, when the invocation count exceeds 5 an alert is triggered.

Specifies the destination to log the alerts.Destination

Select the required options:

API Gateway

API Portal

300 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

CentraSite

Note:
This option is applicable only for the APIs published from
CentraSite to API Gateway.

Digital Events

Elasticsearch

Email (you can add multiple email addresses by clicking

).

Note:
If an email alias is available, you can type the email alias in the
Email Address field with the following syntax,
${emailaliasname}. For example, if test is the email alias, then
type ${test}.

JDBC

Local Log: You can select the severity of themessages to be logged
(logging level) from the Log Level drop-down list. The available
log levels are ERROR, INFO, and WARN.

Note:

Set the Integration ServerAdministrator's logging level for
API Gateway to match the logging levels specified for the
run-time actions (go to Settings > Logging > Server
Logger). For example, if a Log Invocation action is set to
the logging level of Error, you must also set Integration
Server Administrator's logging level for API Gateway to
Error. If the action's logging level is set to a low level
(Warning-level or Information level), but Integration Server
Administrator's logging level for API Gateway is set to a
higher level (Error-level), then only the higher-level
messages are written to the log file.
Entries posted to the local log are identified by a product
code of YAI and suffixed with the initial alphabet of the
logging level selected. For example, for an error level, the
entry appears as [YAI.0900.0002E].

SNMP

List of destinations configured using the Custom destinations
section. For details on publishing to custom destinations, see
webMethods API Gateway Administration.

webMethods API Gateway User's Guide 10.11 301

4 Policies

DescriptionProperty

Specifies the interval of time for the limit to be reached.Alert Interval

The timer starts once the first API is activated and resets after the
configured time interval. If an API is deactivated the interval gets
reset, and on API activation the time interval starts afresh.

Specifies the unit of measurement of the Alert Interval configured,
to monitor performance, before sending an alert. For example:

Unit

Minutes

Hours

Days

Calendar Week. The time interval starts on the first day of the
week and ends on the last day of the week. By default, the start
day of the week is set to Monday.

For example:

If an API is activated on a Wednesday and Alert Interval is
set to 1, the time interval ends on Sunday, that is, 5 days.

If an API is activated on a Wednesday and Alert Interval is
set to 2, the time interval still ends on Sunday, but the period
is two calendar weeks, that is 12 days.

You can change the start day of the week using the extended
setting startDayOfTheWeek in the Administration > General >
Extended settings section. Restart the API Gateway server for
the changes to take effect.

Calendar Month. The time interval starts on the first day of the
month and ends on the last day of the month.

For example:

If an API is activated in the month of August and Alert
Interval is set to 1, the time interval ends on the last day of
August.

If an API is activated in the month of August and Alert
Interval is set to 2, the time interval ends in two calendar
months, that is on the last day of September.

Specifies the frequency at which the alerts are issued and themonitor
events are logged.

Alert Frequency

Specify one of the options:

302 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Only Once. Triggers an alert every time the specified condition
is violated and logs amonitor event for the alert interval specified.

Every Time. Triggers an alert every time the specified condition
is violated and logsmultiplemonitor events based on the number
of API invocations.

Specifies the text message to be included in the alert.Alert Message

Specifies the application to which this policy applies.Consumer Applications

You can type a search term to match an application and click

to add it.

You can add multiple applications or delete an added application by
clicking .

Service Result Cache

This policy enables caching of the results of API invocations depending on the caching criteria
defined. You can define the elements for which the API responses are to be cached based on the
criteria such as HTTP Header, XPath, Query parameters, and so on. You can also limit the values
to store in the cache using awhitelist. For the elements that are stored in the cache, you can specify
other parameters such as Time to Live and Maximum Response Payload Size.

Caching the results of an API request increases the throughput of the API call and improves the
scalability of the API.

The cache criteria applicable for a SOAP-based API request are HTTP Header and XPATH. The
cache criteria applicable for a REST-based API request are HTTP Header and Query parameters.
The caching works only for GET methods for REST APIs.

Note:
If there are no values set for any of the criteria, then, by default, all the SOAP requests and GET
requests for the Rest API are based on the URL.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Cache Criteria. Specifies the criteria that APIGateway uses to determine the request component,
that is, the actual payload based on which the results of the API invocation are cached.

Uses the HTTP header in the API request. You can use this criterion for
APIs that accept payloads only in HTTP format.

HTTP Header

Header Name. Specifies the HTTP header name.

webMethods API Gateway User's Guide 10.11 303

4 Policies

DescriptionProperty

Cache responses only for these values. API Gateway caches the API
responses only for requests whose cache criteria match with those set
for the action, and whose criteria evaluation results in any one of the

values in this list. You can add multiple entries by clicking .

Note:
If this field is empty, all the values that satisfy the criterion are cached.

You can use this criterion for REST-based API requests. Specifies the
names and values of the query parameters to filter the incoming requests
and cache the results based on the names and values specified.

Query Parameters

Parameter Name. Specifies the parameter name.

Cache responses only for these values. API Gateway caches the API
responses only for requests whose cache criteria match those set for the
action, and whose criteria evaluation results in any one of the values in

this list. You can add multiple entries by clicking .

You can use this criterion for SOAP-based API requests whose payload
is a SOAP envelope. Uses the XPath expression in the API request.

XPath

Name Space. Specifies the namespace of the XPath expression.

Prefix. Specifies the prefix for the namespace.

URI. Specifies the namespace URI.

You can add multiple entries by clicking .

XPath Expression. Specifies the XPath expression in the API request.

Cache responses only for these values. API Gateway caches the API
responses only for requests whose cache criteria match those set for the
action, and whose criteria evaluation results in any one of the values in

this list. You can add multiple entries by clicking .

Note:
If this field is empty, all the values that satisfy the criteria are cached.

Specifies the lifespan of the elements in the cache after which the
elements are considered to be out-of-date.

Time to Live (e.g., 5d
4h 1m)

The time is specified in terms of days, hours, andminutes; for example,
5d 4h 1m.

304 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

If you do not specify any value, the Time to Live is considered to be
unlimited (does not expire). If you set the value to 0d 0h 0m, the API
results are not cached.

The default time format is minutes if the input is a number.

Specifies the maximum payload size for the API in kilo bytes.Maximum Response
Payload Size (in KB)

The value -1 stands for unlimited payload size.

Example of enforcing caching criteria:

ValuesXPATHQuery
parameters

HTTP HeaderCache
criteria

h1, h2Header1C1

Header2C2

q1, q2query1C3

In the example, there are twoHTTP headers and one query parameter as cache criteria. The HTTP
HeaderHeader2 has no values specified. Hence, all the incoming requests with the HTTPHeader
Header2 are cached.

When there are multiple cache criteria, the following behaviour is observed in the cache result:

If the incoming request R1matches criteria C1, then the result is cached. APIGateway responds
to any further incoming request R1 that matches criteria C1 from the cache.

If the incoming request R1 matches criteria C1 and C2, then the result is cached as a new
request.

If you configuremultiple cache criteria, and if one ormore cache criteria match, then the result
is cached. The criteria are matched with the cached results while caching the request, and it
follows the AND condition among the matched criteria.

Response Processing
These policies are used to specify how the response message from the API has to be transformed
or pre-processed and configure themasking criteria for the data to bemasked before it is submitted
to the application. This is required to protect the data and accommodate differences between the
message content that an API is capable of submitting and the message content that an application
expects. The policies included in this stage are:

Invoke webMethods IS

Response Transformation

Validate API Specification

webMethods API Gateway User's Guide 10.11 305

4 Policies

CORS

Data Masking

Custom Extension

Custom Extension policies allow you to handle requirements that might not be provided by
the out-of-the-box policies. You can add these custom extensions into API Gateway policy
stages. To learn more about Custom Extension, see “Custom Policy Extension” on page 604.

Invoke webMethods IS

This policy processes the nativeAPI’s responsemessages into the format required by the application,
before API Gateway returns the responses to the application.

If Comply to IS Spec parameter is configured as true, API Gateway invokes the IS Service with
IS specification in the path pub.apigateway.invokeISService.specifications:ResponseSpec (for
Response Processing)

The following are the input and output parameters for REST, SOAP, and WebSocket APIs as
specified in the above IS Specification. Input parameters can be used to access the existing values
of the response while output parameters can be used to modify/write the values to the response.

DescriptionParameter name

Headers in response.headersInput
parameters

Data type: Document

Payload of the response.payload

Data type: String

The payload for binary content types like multi-part
/ form-data.

payloadObject

Data type: Object

Status code of the response.statusCode

Data type: String

Status message of the response.statusMessage

Data type: String

The message context object of the response.MessageContext

Data type: Object

Name of the API invoked by the response.apiName

Data type: String

306 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionParameter name

URL of the response.requestUrl

Data type: String

Contains IP information of the response.ipInfo

Data type: Document

Websocket related information of the response.websocketInfo

Data type: Document

Correlation ID of the request/response. This is unique
and same for a request and response.

correlationID

Data type: String

Custom transactional fields can be added to the
transactional events using this field. For more

customFieldsMap

information, see Adding Custom Fields to
Transactional Events section.

Data type: Document

Headers in response.headersOutput
parameters

Data type: Document

Payload of the response.payload

Data type: String

The payload for binary content types like multi-part
/ form-data.

payloadObject

Data type: Object

Status code of the response.statusCode

Data type: String

Status message of the response.statusMessage

Data type: String

The message context object of the response.MessageContext

Data type: Object

Custom transactional fields can be added to the
transactional events using this field. For more

customFieldsMap

information, see Adding Custom Fields to
Transactional Events section.

webMethods API Gateway User's Guide 10.11 307

4 Policies

DescriptionParameter name

Data type: Document

Note:

For SOAP to REST APIS, the payload contains the transformed JSON response.
Payload transformation does not happen automatically for content-type transformation.
When you change the content type, ensure to do payload transformation also as part of IS
Service.
When Comply to IS spec is true, you can change the values of headers, query, payload,
and so on, programatically using Message Context, as well as using the pipeline variables
given. SoftwareAG recommends younot to change those values directly inMessageContext,
as the values in output pipeline variables arewritten toMessage Context after the invocation
of IS Service.

If Comply to IS Spec parameter is set to false, API Gateway invokes the IS Service with the same
input and output parameters supported in 10.1 and the earlier versions::

proxy.name

JSONRESTContentString (REST only)

SOAPEnvelope (SOAP only)

EnvelopeString (SOAP only)

The table lists the properties that you can specify for this policy:

DescriptionProperty

Invoke webMethods Integration Server Service

Specifies the webMethods IS service to be invoked to process the
response messages and the authentication mode for the IS service.

Add invoke webMethods
Integration Server service

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the response messages.

The webMethods IS service must be running on the same
Integration Server as API Gateway

Note:
If an exception occurs when invoking the webMethods IS
service, by default APIGateway displays the status code as 500
and error message as Internal Server Error.

You can set custom status code and error message by setting
the following properties in the message context of the
webMethods IS service:

308 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty
service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code",
404);
context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the
user, identified by API Gateway, are used to authenticate and
invoke the IS service. You can also specify a particular user, you
want API Gateway to invoke the IS service.

Note:
It is the responsibility of the user who activates the API to
review the value configured in Run as User field to avoid
misuse of this configuration.

Comply to IS Spec. Mark this as true if you want the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:Software AG recommends users to configure the policy
with Comply to IS Spec as true, as you can read or change the
values of headers, and so on, without having to read from or
write to the message context.

Specifies the webMethods IS service alias used to invoke the
webMethods IS service to pre-process the response messages.

webMethods IS Service
alias

webMethods API Gateway User's Guide 10.11 309

4 Policies

DescriptionProperty

Start typing the webMethods alias name, select the alias from the

type-ahead search results displayed and click to add one
or more aliases.

You can use the delete icon to delete the added aliases from the
list.

Adding Custom Fields to Transactional Events

This section explains you how to add custom fields to the transactional events.

1. Create webMethods IS service by specifying the
pub.apigateway.utils:customFieldInTransactionEventSpec as a specification reference.

2. In the webMethods IS service, set the required custom fields in the customFieldsMap output
variable.

3. Oncewhen customFieldsMap gets created, the customfieldswill be available in the transactional
events.

4. Invoke the API with the Invoke webMethods IS policy.

Note:
You can also add the customfields to the transactional events fromAPIGateway by configuring
the customTransactionFields.FIELD_NAME custom variable in the Custom Extension policy.
For more details, see “How Do I Define a Custom Variable?” on page 619.

Response Transformation

This policy specifies the properties required to transform response messages from native APIs
into a format required by the client.

The transformations includeHeader transformation, Status transformation, Payload transformation,
andAdvanced transformation. You can configure conditions according towhich the transformations
are executed

The table lists the properties that you can specify for this policy:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

310 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

AND. API Gateway transforms the responses that comply
with all the configured conditions

OR. This is selected by default. API Gateway transforms the
responses that comply with any one configured condition.

ClickAdd Condition and provide the following information and

click .

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Not Contains

Exists

Not Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Transformation Configuration. Specifies various transformations to be configured.

Specifies the header, query or path transformation to be
configured for the responses received from the native API.

HeaderTransformation

You can add or modify header, query or path transformation
parameters by providing the following information:

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

webMethods API Gateway User's Guide 10.11 311

4 Policies

DescriptionProperty

You can add multiple variables and corresponding values by

clicking .

You can remove any header, query, or path transformation
parameters by typing the plain value or value with a syntax.

Note:
Software AG recommends you not to modify the headers
${response.headers.Content-Length} and
${response.headers.Content-Encoding} asAPIGateway adds
the right values for these headers before sending the response
back to client.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
Payload transformation does not happen automatically for
content-type transformation. When you change the content
type, ensure to do payload transformation. For example, if you
change the content-type header from application/xml to
application/json, youmust also change the respective payload
from application/xml to application/json.

Specifies the status transformation to be configured for the
responses received from the native API.

Status transformation

Provide the following information:

Code. Specifies the status code that is sent in the response to
the client.

For example if you want to transform status code as 201,
provide 201 in the Code field.

Message. Specifies the Status message that is sent in the
response to the client.

As both these properties support variable framework, you
can make use of the available variables to transform the
response code and message.

For example You have submitted successfully can be used to
transform the original OK status message.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

312 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Specifies the payload transformation to be configured for the
responses received from the native API.

Payload Transformation

Provide the following information:

Payload Type. Specifies the content-type of payload, towhich
you want to transform. The Payload field renders the
respective payload editor based on the selected content-type.

Payload. Specifies the transformation that needs to be applied
for the response.

As this property supports variable framework, you canmake
use of the available variables to transform the response
messages.

For example, consider the client accepting two integer values
value1 and value2, and you want to pass these two values
fromAPIGateway to the client, you can configure the payload
field as follows:
{
"value1" : 12,
"value2" : 34
}

You can also configure the payload field using one or more
variables by using variable framework. Let us see another
syntax. For example, for the same API seen in the previous
example, if your native sends both the values through headers
val1 and val2, and youwant to add it to payload for the client
to recognize the input, you can do so by configuring the
payload field as follows:
{
"value1" :${response.headers.val1},
"value2" :${response.headers.val2}
}

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If your payload content-type is different from the incoming
payload's content-type, you need to transform the
content-type of the header using Header Transformation.

Click + Add xslt document to add an xslt document and
provide the following information:

webMethods API Gateway User's Guide 10.11 313

4 Policies

DescriptionProperty

XSLT file. Specifies the XSLT file used to transform the
response messages as required.

Click Browse to browse and select a file.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can add more XSLT features and xslt documents by

clicking .

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Click + Add xslt transformation alias and provide the
following information:

XSLT Transformation alias. Specifies the XSLT
transformation alias

When you receive the response in JSON, you can use a XSLT
file similar to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="fakeroot">
<xsl:element name="fakenode">

<!-- Apply your transformation rules based
on the response received from the native API-->
</xsl:element>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

When you receive the response in XML, you can use a XSLT
file similar to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="soapenv:Envelope">
<xsl:element name="soapenv:Body">

<!-- Apply your transformation rules based
on the response received from the native API-->
</xsl:element>

314 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty
</xsl:element>

</xsl:template>
</xsl:stylesheet>

Specifies the advanced transformation to be configured for the
responses received from the native API..

Advanced Transformation

Provide the following information:

webMethods IS Service. Specify thewebMethods IS service
to be invoked to process the response messages.

You can add multiple services by clicking .

Note:
The webMethods IS service must be running on the same
Integration Server as API Gateway.

Run as User. Specifies the authentication mode to invoke
the IS service. If this field is left blank the incoming credentials
of the user, identified by API Gateway, are used to
authenticate and invoke the IS service. You can also specify
a particular user, you want API Gateway to use to run the IS
service.

Comply to IS Spec. Mark this as true if you want the input
and the output parameters to comply to the IS Spec present
in pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS
service alias to be invoked to pre-process the request
messages.

Transformation Metadata. Specifies the metadata for transformation of the responses received
from the native API. For example, the namespaces configured in this section can be used when
you provide the syntax for XPath ${response.payload.xpath} For example:
${response.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for
transformation.

Namespace

Provide the following information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

For example, specify the namespace prefix as SOAP_ENV.

webMethods API Gateway User's Guide 10.11 315

4 Policies

DescriptionProperty

Namespace URI. The namespace URI of the payload
expression to be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declarationdefines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can addmultiple namespace prefix andURI by clicking

.

Validate API Specification

This policy validates the responses against API's various specifications such as schema,
content-types, and HTTP Headers referenced in their corresponding formats as follows:

The schema is available as part of the API definition. The schema for SOAP API are imported
through WSDL and for REST APIs it can be through swagger, RAML or can be uploaded by
the user when an API is created from scratch.

The content- types are available as part of the API definition. FOR SOAP APIs these are
imported through WSDL and for REST APIs it can be through swagger, RAML or can be
uploaded by the user.

The HTTP Headers are specified in the Validate API Specification policy page.

The response sent to theAPI by an applicationmust conformwith the structure or format expected
by the API. The responses from the native API are validated against the API specifications in this
policy to conform to the structure or format expected by the API.

Various API specifications validated are:

Schema:

The responses from the native API are validated against the schema provided in the API
definition. The schema defines the elements and attributes and specifies the data types of these
elements to ensure that only appropriate data is allowed through to the API. For a REST API,
the schema can be added inline or uploaded in the Components section on the API Details
page. For details on how to add the schema inline or upload, see “Creating a REST API” on
page 53.

The schema type for validation is selected based on:

The Content-Type header when the policy is added in the Request processing stage.

The Accept header when the policy is added in the Response processing stage.

If the header or payload is missing the schema validation is skipped.

316 webMethods API Gateway User's Guide 10.11

4 Policies

The table lists the default Content type/Accept header and schema validation type mapping.

Schema validation typeContent-type/Accept

JSON schemaapplication/json

application/json/badgerfish

XML schemaapplication/xml

text/xml

text/html

Regular expressiontext/plain

For a SOAP API, the WSDL and the referenced schema must be provided in a zip format. The
JSON schema validation is supported for the operations that are exposed as REST.

Content-types:

The responses from the native API are validated against the content-types specified in the API
definition.

HTTP Headers:

The responses from the native API are validated against the HTTP Headers specified in this
policy to conform to the HTTP headers expected by the API. If the HTTP Headers are not
specified in this policy, API Gateway uses the Headers defined in the API specification.

The run-time invocations that fail the specification validation are considered as policy violations.
Such policy violation events that are generated can be viewed in the dashboard.

The table lists the API specification properties, you can specify for this policy, to be validated:

DescriptionProperty

Validates the response payload against the appropriate schema.Schema

Provide the following additional features for XML schema validation:

Feature name. Specifies the name of the feature for XML parsing
when performing XML schema validation.

Select the required feature names from the list:

GENERATE_SYNTHETIC_ANNOTATIONS

ID_IDREF_CHECKING

IDENTITY_CONSTRAINT_CHECKING

IGNORE_XSL_TYPE

webMethods API Gateway User's Guide 10.11 317

4 Policies

DescriptionProperty

NAMESPACE_GROWTH

NORMALIZE_DATA

ROOT_ELEMENT_DECL

ROOT_TYPE_DEF

SIGMA_AUGMENT_PSVI

SCHEMA_DV_FACTORY

SCHEMA_ELEMENT_DEFAULT

SCHEMA_LOCATION

SCHEMA_NONS_LOCATION

SCHEMA_VALIDATOR

TOLERATE_DUPLICATES

ENPARSED_ENTITY_CHECKING

VALIDATE_ANNOTATIONS

XML_SCHEMA_FULL_CHECKING

XMLSCHEMA_VALIDATION

For details about XMLparsing features, see http://xerces.apache.org/
xerces2-j/features.html and for details about the exact constants, see
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/
xerces/parsers/XML11Configuration.html.

Feature value. Specifies whether the feature value is True or False.

Validates the content-types in the incoming response against the
content-types defined in that response's API Specification.

Content-types

Validates the HTTP header parameters in the incoming response against
the HTTP headers defined in that response's API Specification.

HTTP Headers

Provide the following information:

Condition: Specifies the logical operator to use to validate multiple
HTTP headers in the incoming API responses.

Available values are:

AND. API Gateway accepts only the responses that contain all
configured HTTP headers.

318 webMethods API Gateway User's Guide 10.11

4 Policies

http://xerces.apache.org/xerces2-j/features.html
http://xerces.apache.org/xerces2-j/features.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/XML11Configuration.html
https://xerces.apache.org/xerces2-j/javadocs/xerces2/org/apache/xerces/parsers/XML11Configuration.html

DescriptionProperty

OR. This is selected by default. API Gateway accepts responses
that contain at least one configured HTTP header.

HTTP Header Key. Specifies a key that must be passed through the
HTTP header of the incoming API responses.

Header Value. Optional. Specifies the corresponding key value that
could be passed through the HTTP header of the incoming API
responses. As this property supports variable framework, you can
make use of the available variables to specify the header value.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

You can add more HTTP headers by clicking .

CORS

The Cross-Origin Resource Sharing (CORS) mechanism supports secure cross-domain requests
and data transfers between browsers and web servers. The CORS standard works by adding new
HTTP headers that allow servers to describe the set of origins that are permitted to read that
information.

This policy provides CORS support that uses additional HTTP headers to let a client or an
application gain permission to access selected resources. An application or a client makes a
cross-origin HTTP request when it requests a resource from a different domain, protocol, or port
than the one from which the current request originated.

If you want to apply this policy in API Gateway at API level, make sure you have set the
watt.server.cors.enabled property to false.

Note:
Both the Integration Server CORS policy and API Gateway CORS policy cannot coexist. When
you enforce theCORSpolicy at Integration Server level, CORS enforcment is done for all requests.
The preflight requests are handled by the Integration Server before even it reaches API Gateway.

This policy is applicable for REST, SOAP, and ODATA APIs.

The table lists the CORS response specifications, you can specify for this policy:

DescriptionProperty

Specifies the origin from which the responses originating are allowed.Allowed Origins

syntax for the origin: scheme://host:port

You can add multiple origins by clicking .

webMethods API Gateway User's Guide 10.11 319

4 Policies

DescriptionProperty

You can also provide Regular expressions for allowed origins.

Allowed origins can also be specified in the Advanced section under
Applications. Allowed origins of applications registered with this API
are also allowed to access this API.

Specifies the Headers that are allowed in the request.Allow Headers

You can add multiple headers that are to be allowed by clicking .

Specifies the headers that be exposed to the user on request failure.Expose Headers

You can add multiple headers that are to be allowed by clicking .

Specifies whether API Gateway includes the
Access-Control-Allow-Credentials header.

Allow Credentials

Specifies the methods that are allowed in the request.Allowed Methods

Specify one or more of the following: GET, POST, PUT, DELETE, and
PATCH.

Specifies the age for which the preflight response is valid.Max Age

AcorrespondingHTTPheader is set for all the values above as per the specification. For additional
information, see https://www.w3.org/TR/cors/.

API Gateway handles CORS preflight request and CORS request differently. To knowmore about
the work flow of CORS preflight and CORS request refer the respective flowchart.

CORS Preflight Request

ACORSpreflight request is aHTTP request that a browser sends before the original CORS request
to check whether the API Gateway server will permit the actual CORS request. CORS preflight
request uses OPTIONS method and includes these headers as part of the request sent from the
browser to API Gateway:

1. Origin

2. Access-Control-Request-Method

3. Access-Control-Request-Headers

The following flow chart explains the flowof the CORSpreflight request received inAPIGateway:

320 webMethods API Gateway User's Guide 10.11

4 Policies

https://www.w3.org/TR/cors/

The following table shows the various use cases of the CORS preflight request originating from
browser and how API Gateway responds to each CORS preflight requests:

webMethods API Gateway User's Guide 10.11 321

4 Policies

API Gateway sends the
respective response to
browser

ConfiguredCORSPolicy inAPI
Gateway

CORS Preflight request
headers from browser

#

Sends 403 Specified
Origin is not allowed

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test.com

Access-Control-Request-Method
: POST

1

status, as the Origin
header (http://test.com)Access-Control-Allow-Methods

: POST,GET,PUT
Access-Control-Request-Headers
: test1,test2

from the browser does not
match with the
Access-Control-Allow-Origin

Access-Control-Allow-Headers :
test1,test2

(http://test2.com)
configured in the CORS
policy.

Sends 405 Method Not
Allowed status, as the

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test2.com

Access-Control-Request-Method
: DELETE

2

Access-Control-Request-Method
header (DELETE) fromAccess-Control-Allow-Methods

: POST,GET,PUT
Access-Control-Request-Headers
: test1,test2

the browser does not
match with the
Access-Control-Allow-Methods

Access-Control-Allow-Headers :
test1,test2

(POST,GET,PUT)
configured in the CORS
policy.

Sends 403 Header Not
Supported, as the

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test2.com

Access-Control-Request-Method
: POST

3

Access-Control-Request-Headers
header (test3) from theAccess-Control-Allow-Methods

: POST,GET,PUT
Access-Control-Request-Headers
: test3

browser does not match
with the
Access-Control-Allow-Headers

Access-Control-Allow-Headers :
test1,test2

(test1,test2) configured in
the CORS policy.

Sends 200OK status with
the following headers:

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test2.com

Access-Control-Request-Method
: POST

4

Access-Control-Allow-Methods
: POST

Access-Control-Allow-Origin
: http://test2.com

Access-Control-Request-Headers
: test1 Access-Control-Allow-Headers :

test1, test2
Access-Control-Allow-Methods
: POST,GET,PUT

Access-Control-Max-Age: 100 Access-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Credentials
: true Access-Control-Max-Age:

100

322 webMethods API Gateway User's Guide 10.11

4 Policies

API Gateway sends the
respective response to
browser

ConfiguredCORSPolicy inAPI
Gateway

CORS Preflight request
headers from browser

#

Access-Control-Expose-Headers
: header1,header2 Access-Control-Allow-Credentials

: true

Since the origin,methods,
and headers from the
browser matches with
configured CORS policy
in API Gateway.

Sends 200OK status with
the following headers:

Access-Control-Allow-Origin :
http://test1.com

Origin: http://test2.com

Access-Control-Request-Method
: POST

5

Access-Control-Allow-Methods
: POST

Access-Control-Allow-Origin
: http://test2.com

Access-Control-Request-Headers
: test1 Access-Control-Allow-Headers :

test1, test2
Access-Control-Allow-Methods
: POST,GET,PUT

Access-Control-Max-Age: 100 Access-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Credentials
: true Access-Control-Max-Age:

100
Access-Control-Expose-Headers
: header1,header2 Access-Control-Allow-Credentials

: true
In addition, if you have specified
the Javascript origins in the
application as http://test2.com

Even though the origin
header from the browser
does not match with
configured CORS policy,
it matches with the
configured javascript
origins in the application.

CORS Request

A CORS request is a HTTP request that includes an Origin header. When API Gateway receives
the CORS request, the Origin header in the CORS request is verified against the
Access-Control-Allow-Origin configured in the CORS policy, if it matches then API Gateway allows
to access the resources.

The following flow chart explains the flow of the CORS request received in API Gateway:

webMethods API Gateway User's Guide 10.11 323

4 Policies

The following table shows the various use cases of the CORS request originating from browser
and how API Gateway responds to each CORS requests:

API Gateway sends the
respective response to
browser

Configured CORS Policy in
API Gateway

CORS Request headers
from browser

#

Sends 403 Specified Origin is
not allowed status, as the

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test.com1

Origin header (http://test.com)
Access-Control-Allow-Methods
: POST,GET,PUT

from the browser does not
match with the

Access-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Origin
(http://test2.com) configured
in the CORS policy.

Access-Control-Max-Age: 100

Access-Control-Allow-Credentials
: true

Access-Control-Expose-Headers
: header1,header2

Sends 200 OK status with the
following headers:

Access-Control-Allow-Origin :
http://test2.com

Origin: http://test2.com2

324 webMethods API Gateway User's Guide 10.11

4 Policies

API Gateway sends the
respective response to
browser

ConfiguredCORSPolicy inAPI
Gateway

CORS Request headers
from browser

#

Access-Control-Allow-Methods
: POST,GET,PUT

Access-Control-Allow-Origin
:

http://test2.comAccess-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Credentials
: trueAccess-Control-Max-Age: 100

Access-Control-Allow-Credentials
: true

Access-Control-Expose-Headers
: header1,header2

Since the Origin header
(http://test2.com) from the

Access-Control-Expose-Headers
: header1,header2

browser matches with the
Access-Control-Allow-Origin
(http://test2.com) configured
CORS policy in API Gateway.

Sends 200 OK status with the
following headers:

Access-Control-Allow-Origin :
http://test1.com

Origin: http://test2.com

Access-Control-Request-Method
: POST

3

Access-Control-Allow-Methods
: POST

Access-Control-Allow-Origin
: http://test2.com

Access-Control-Request-Headers
: test1 Access-Control-Allow-Headers

: test1, test2
Access-Control-Allow-Methods
: POST,GET,PUT

Access-Control-Max-Age: 100 Access-Control-Allow-Headers
: test1,test2

Access-Control-Allow-Credentials
: true Access-Control-Max-Age:

100
Access-Control-Expose-Headers
: header1,header2 Access-Control-Allow-Credentials

: true
In addition, if you have specified
the Javascript origins in the
application as http://test2.com

Even though the origin header
from the browser does not
match with configured CORS
policy, it matches with the
configured javascript origins
in the application.

Note:

If native service supports CORSmechanism and if you have not configured the CORSpolicy
in API Gateway, then API Gateway goes to pass-through security mode and forwards the
CORS request to the native service.

webMethods API Gateway User's Guide 10.11 325

4 Policies

If native service supports CORS mechanism and if you have also configured the CORS
policy in API Gateway, then API Gateway takes precedence in handling the CORS request.

Data Masking

Data masking is a technique whereby sensitive data is obscured in some way to render it safe and
to protect the actual data while having a functional substitute for occasions when the real data is
not required.

This policy is used to mask sensitive data at the application level. At the application level you
must have an Identify and Access policy configured to identify the application for which the
masking is applied. If no application is specified then it will be applied for all the other responses.
Fields can bemasked or filtered in the responsemessages to be sent. You can configure themasking
criteria as required for the XPath, JSONPath, and Regex expressions based on the content-types.
This policy can also be applied at the API scope level.

The table lists the content-type and masking criteria mapping.

Masking CriteriaContent-type

XPathapplication/xml

text/xml

text/html

JSONPathapplication/json

application/json/badgerfish

Regextext/plain

The table lists the masking criteria properties that you can configure to mask the data in the
response messages:

DescriptionProperty

Optional. Specifies the applications for which the masking criterion has
to be applied.

Consumer
Applications

Start typing the application name, select the application from the

type-ahead search results displayed, and click to add one or
more applications.

For example: If there is a DataMasking(DM1) criteria created for
application1 a second DataMasking(DM2) for application2 and a third
DataMasking(DM3) with out any application, then for a request that
comes from consumer1 themasking criteria DM1 is applied, for a request
that comes from consumer2 DM2 is applied. If a request comes with out

326 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

any application or from any other application except application1 and
application2 DM3 is applied.

You can use the delete icon to delete the added applications from
the list.

XPath: Specifies the masking criteria for XPath expressions in the response messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

You can add multiple masking criteria.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the XPath
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myxpath} and the corresponding mask value as
${request.headers.var1} , and if the incoming request header myxpath
is configured with value //ns:cardNumber, then the card number
derived from the payload is masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated

Note:

webMethods API Gateway User's Guide 10.11 327

4 Policies

DescriptionProperty

You can add multiple namespace prefix and URI by clicking .

JSONPath. This is applicable only for REST API. Specifies the masking criteria for JSONPath
expressions in the response messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the
JSONPath is applied on the payload using the value that is resolved
from the variable given.

For example, if you provide a query expression as
${request.headers.myjsonpath} and the corresponding mask value
as ${request.headers.var1} , and if the incoming request header
myjsonpath is configured with value $.cardNumber, then the card
number derived from the payload is masked with the header value
in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Regex. Specifies the masking criteria for regular expressions in the response messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

328 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the regex
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myregex} and the corresponding mask value as
${request.headers.var1} , then the regex is applied using the value
configured in the request header myregex and the derived value is
masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

When you select this option the transactional log for the response is
masked on top of response sent to the client.

Select this option to apply masking criteria for response payload in the
following scenarios:

Apply for payload

response received from the native service.

response sent to the client.

Note:
When you select this option it automatically masks the data in the
transactional log.

Error Handling
The policy in this stage enables you to specify the error conditions, lets you determine how these
error conditions are to be processed. You can also mask the data while processing the error
conditions. The policies included in this stage are:

Conditional Error Processing

Data Masking

Custom Extension

Custom Extension policies allow you to handle requirements that might not be provided by
the out-of-the-box policies. You can add these custom extensions into API Gateway policy
stages. To learn more about Custom Extension, see “Custom Policy Extension” on page 604.

webMethods API Gateway User's Guide 10.11 329

4 Policies

Conditional Error Processing

Error Handling is the process of passing an exception message issued as a result of a run-time
error to take any necessary actions. This policy returns a custom error message (and the native
provider's service fault content) to the application when the API Gateway or native provider
returns a service fault. You can configure conditional error processing and use variables to create
custom error messages.

The table lists the properties that you can specify for this policy:

DescriptionProperty

Conditions are used to specify when the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the error responses that comply
with all the configured conditions

OR. This is selected by default. API Gateway transforms the
error responses that complywith any one configured condition.

Click Add Condition and provide the following information and

click .

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and the
value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Not Contains

Exists

Not Exists

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

330 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Pre-Processing. Specifies how the error response is to be processed before this policy processes
it.

Specify thewebMethods IS service to pre-process the errormessage.Invoke webMethods
Integration Server Service

Provide the following information

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the error messages.

You can add multiple entries for webMethods IS service by

clicking .

Run as User. Specifies the authentication mode to invoke the
IS service. If this field is left blank the incoming credentials of
the user, identified by API Gateway, are used to authenticate
and invoke the IS service. You can also specify a particular user,
you want API Gateway to use to run the IS service.

Comply to IS Spec. Mark this as true if youwant the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Start typing the webMethods
alias name and select the alias from the type-ahead search results
displayed to add one or more aliases.

Provide the XSLT file and feature you want to use to transform the
service error response.

XSLT Transformation

Click Browse to select the XSLT file and upload it.

Provide the following information for the XSLT feature:

Feature Name. Specifies the name of the XSLT feature.

Feature Value. Specifies the value for the feature.

You can addmultiple entries for feature name and value by clicking

.

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

webMethods API Gateway User's Guide 10.11 331

4 Policies

DescriptionProperty

Transformation Configuration. Specifies various transformations to be configured.

Customizes the list of headers in the error response that is sent to
the client.

Header Transformation

You can add or modify header parameters by providing the
following information:

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

You can addmultiple variables and corresponding values by clicking

.

You can remove any header by typing the plain value or value with
a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Specifies the status transformation to be configured for the error
responses.

Status Transformation

Provide the following information:

Code. Specifies the status code that is sent in the response to the
client.

For example if youwant to transform status code as 403, provide
403 in the Code field.

Message. Specifies the Status message that is sent in the
response to the client.

For example The data you are looking for is not found can be used
to transform the original 404 Not Found status message.

Defines a custom variable name to a complex variable expression
or constant value. This can be particularly useful when you want

Define custom variables

to use this complex expression multiple times in the error payload
transformation or when you want to use a short notation for a
complex variable expression.

Provide the following information:

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

332 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

For example if you provide a variable as id and the corresponding
value as ${response.payload.jsonPath[$.id]}, this creates a custom
variable that can be used in failure message transformation.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Failure Message. Specifies the custom failure message format that API Gateway should send to
the application.

Specifies the payload transformation to be configured for the error
responses.

Failure Messages

Click text and specify the payload to use to transform the error
response messages as required.

Click json and specify the payload to use to transform the error
response messages as required.

Click xml and specify the payload to use to transform the error
response messages as required.

As this property supports variable framework, to transform the
error response messages you can make use of the available
variables in addition to the custom variables defined in this
policy. For details about the variables available in API Gateway,
see “Variables Available in API Gateway” on page 171.

Note:
For a SOAP API, select the type text and provide the failure
message to be included in the faultstring of the SOAP
response.

Failure message in type json, xml are not used for the SOAP
response.

Click Send Native Provider Fault Message to send the native
failure message to the application without applying payload
transformation.

Note:
This field is not applicable for APIs when they participate in
API mashups.

Post-Processing. Specifies how the error response sent by the native service is to be processed
before sending the same to the application.

Specify the webMethods IS Service for post-processing the error
message.

Invoke webMethods
Integration Server Service

webMethods API Gateway User's Guide 10.11 333

4 Policies

DescriptionProperty

Provide the following information

webMethods IS Service. Specify the webMethods IS service to
be invoked to post-process the error messages.

You can add multiple entries for webMethods IS service by

clicking .

Run as User. Specifies the authentication mode to invoke the
IS service. If this field is left blank the incoming credentials of
the user, identified by API Gateway, are used to authenticate
and invoke the IS service. You can also specify a particular user,
you want API Gateway to use to run the IS service.

Comply to IS Spec. Mark this as true if youwant the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Start typing the webMethods
alias name and select the alias from the type-ahead search results
displayed to add one or more aliases.

Provide the XSLT file that you want to use to transform the service
error response.

XSLT Transformation

Provide the following information for the XSLT feature:

Feature Name. Specifies the name of the XSLT feature.

Feature Value. Specifies the value for the feature.

You can add multiple entries for feature names and values by

clicking .

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Transformation Metadata. Specifies the metadata for transformation of the error responses
received from the native API. For example, the namespaces configured in this section can be used
when you provide the syntax for XPath ${response.payload.xpath} For example:
${response.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for
transformation. This is applicable only for XML transformation.

Namespace

Provide the following information:

334 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

For example, specify the namespace prefix as SOAP_ENV.

Namespace URI. The namespaceURI of the payload expression
to be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declaration defines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can addmultiple namespace prefixes andURIs by clicking

.

Data Masking

Data masking is a technique whereby sensitive data is obscured in some way to render it safe and
to protect the actual data while having a functional substitute for occasions when the real data is
not required.

This policy is used to mask sensitive data in the custom error messages being processed and sent
to the application. Fields can be masked or filtered in the error messages. You can configure the
masking criteria as required for the XPath, JPath, and Regex expressions. This policy can also be
applied at the API scope level.

The table lists themasking criteria properties that you can configure tomask the data in the request
messages received:

DescriptionProperty

Specifies the applications for which the masking criterion has to be
applied.

Consumer
Applications

Start typing the application name, select the application from the

type-ahead search results displayed, and click to add one or
more applications.

You can use the delete icon to delete the added applications from
the list.

XPath. Specifies the masking criteria for XPath expressions in the error messages.

webMethods API Gateway User's Guide 10.11 335

4 Policies

DescriptionProperty

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

You can add multiple masking criteria.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the XPath
is applied on the payload using the value that is resolved from the
variable given.

For example, if you provide a query expression as
${request.headers.myxpath} and the corresponding mask value as
${request.headers.var1} , and if the incoming request header myxpath
is configured with value //ns:cardNumber, then the card number
derived from the payload is masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated

Note:
You can add multiple namespace prefix and URI by clicking .

JSONPath. This is applicable only for REST API. Specifies the masking criteria for JSONPath
expressions in the error messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

336 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionProperty

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the
JSONPath is applied on the payload using the value that is resolved
from the variable given.

For example, if you provide a query expression as
${request.headers.myjsonpath} and the corresponding mask value
as ${request.headers.var1} , and if the incoming request header
myjsonpath is configured with value $.cardNumber, then the card
number derived from the payload is masked with the header value
in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Regex. Specifies the masking criteria for regular expressions in the error messages.

Click Add masking criteria and provide the following information and
click Add:

Masking Criteria

Query expression. Specify the query expression that has to be
masked or filtered.

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Selecting Mask replaces the value with the
given value (the default value being ********). Selecting Filter removes
the field completely.

Mask Value. Appears only if you have selected the Masking Type
as Mask. Provide a mask value.

As Query expression and Mask Value properties support variable
framework, you can use the available variables.

In case of query expression, if you provide variable syntax, the regex
is applied on the payload using the value that is resolved from the
variable given.

webMethods API Gateway User's Guide 10.11 337

4 Policies

DescriptionProperty

For example, if you provide a query expression as
${request.headers.myregex} and the corresponding mask value as
${request.headers.var1} , then the regex is applied using the value
configured in the request header myregex and the derived value is
masked with the header value in var1 .

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

When you select this option the transactional log for the response is
masked on top of response sent to the client.

Select this option to apply masking criteria for payload.Apply for payload

When you select this option the payload in the response sent to the client
is masked.

Note:
When you select this option it automatically masks the data in the
transactional log.

System Context Variables
APIGateway provides predefined system context variables and you can declare your own custom
context variables. Any context variable state defined during the inbound request processing steps
is available during the outbound response processing steps. To set, get, or remove the predefined
context variables, use “The API for Context Variables” on page 340 provided in API Gateway.

The table lists the predefined system context variables that you can configure in the conditional
routing policy through the API Gateway user interface.

DescriptionSystem Context Variable Name

The identified API Gateway user for the current request.User

The HTTP method used by the client to send the request.Inbound HTTP method

For example, GET, POST, PUT, DELETE, and PATCH.

The HTTP method used by the routing policy when you select
CUSTOM as the HTTP method.

Routing method

If you do not define this context variable, then themethod used
is from the Inbound HTTP method.

Content type of the request.Inbound content type

338 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionSystem Context Variable Name

Accept header in the incoming request from the client.Inbound accept

The protocol of the request.Inbound protocol

For example, HTTP or HTTPS.

A partial reference to an API (for HTTP and HTTPS only). The
protocol, host and port are not part of the value.

Inbound request URI

For example, if the API is invoked: http://host:port/gateway/API
then the expected value of this variablewould be /gateway/API.

For a RESTAPI, theURL also includes query string parameters.
For example, if the following API is invoked:
http://host:port/gateway/cars?vin=1234 the expected value of
this variable would be /gateway/cars?vin1234.

The Client IP address used to send the request.Inbound IP

API Gateway host name.Gateway hostname

API Gateway IP address.Gateway IP

Operation name for SOAP APIs.Operation name

It is empty for REST API.

Retrieves the native endpoint in the incoming request from the
client.

Native Endpoint

The table lists the predefined context variables that you can set or get in API Gateway using an IS
service. For details, see “The API for Context Variables” on page 340.

DescriptionContext Variable Name

The name of the consumer application accessing the API.CONSUMER_APPLICATION

The number of service faults for the interval.INTERVAL_FAULT_COUNT

The number of success counts for a given API.INTERVAL_SUCCESS_COUNT

The total number of counts for a given service.INTERVAL_TOTAL_COUNT

The average amount of time it took the service to complete all
invocations in the current interval. This is measured from the

AVG_SUCCESS_TIME

moment API Gateway receives the request until the moment it
returns the response to the caller.

Note:
By default, average response time does not include metrics
for failed invocations.

webMethods API Gateway User's Guide 10.11 339

4 Policies

DescriptionContext Variable Name

Minimum Response Time.FASTEST_SUCCESS_INVOKE

Note:
Bydefault,MinimumResponseTimedoes not includemetrics
for failed invocations.

Maximum Response Time.SLOWEST_SUCCESS_INVOKE

Note:
By default, Maximum Response Time does not include
metrics for failed invocations.

Contains an array of the SOAP header elements in the request.SOAP_HEADERS

Contains a map of key-value pairs in the request, where the
values are provided as strings.

PROTOCOL_HEADERS

The name of the service.SERVICE_NAME

The reason returned by the native provider in the case where
it produced a SOAP fault. This will not contain API Gateway

NATIVE_PROVIDER_ERROR

errors such as security policy enforcement errors. This variable
only contains the reason text wrapped in a SOAP fault.

Note:
When you use this variable in Conditional Error Processing
message that you specify in the Response Processing step,
note the following: if a request is denied due to security policy
enforcement, the fault handler variable $ERROR_MESSAGE
would contain a native service provider error message or
other error messages that result from enforced security
assertions. However, $NATIVE_PROVIDER_ERROR is null
in this case.

API Gateway takes the ROUTING_ENDPOINT value from the
message context and replaces the ${sys:dyn-Endpoint} variable

ROUTING_ENDPOINT

in the Route Through field of dynamic routing policy
configuration.

The API for Context Variables
API Gateway provides an IS service that you can use to:

Set, get, declare, and remove custom context variables.

Set and get the predefined system context variables. (It is not allowed to declare or remove
the predefined system context variables.)

340 webMethods API Gateway User's Guide 10.11

4 Policies

API Gateway provides the following JAVA services, which are defined in the class
ISMediatorRuntimeFacade.java:

pub.apigateway.ctxvar:getContextVariable

pub.apigateway.ctxvar:setContextVariable

pub.apigateway.ctxvar:declareContextVariable

pub.apigateway.ctxvar:removeContextVariable

pub.apigateway.ctxvar:getContextVariable

Use this JAVA service to retrieve a context variable’s value and assign it to a pipeline variable. All
parameter names are case-sensitive.

ExamplesDescriptionData
Type

Pipeline
Type

Parameter

N/AThis object is inserted into the
pipeline by API Gateway.

Object refinMessageContext

For system context variable,
use just the variable name to

Context variable name (system
or custom).

StringinvarName

get its value. For example,
PROTOCOL_HEADERS.

For custom context variable,
use the prefix "mx:" with the
variable name to get its value.
For example, mx:CUSTOM_VAR

Java.io.serializable value.
(Usually a string).

Object refoutserValue

The table lists the predefined system context variables and its syntax used to get system context
variables using pub.apigateway.ctxvar:getContextVariable.

Set or Get SupportedctxVar IS Service SyntaxSystem Context Variable
Name

Supports getUSERUser

Supports getINBOUND_HTTP_METHODInbound HTTP method

Supports getROUTING_METHODRouting method

Supports getMESSAGE_TYPEInbound content type

Supports getBUILDER_TYPEInbound accept

Supports getINBOUND_PROTOCOLInbound protocol

webMethods API Gateway User's Guide 10.11 341

4 Policies

Set or Get SupportedctxVar IS Service SyntaxSystem Context Variable
Name

Supports getINBOUND_REQUEST_URIInbound request URI

Supports getINBOUND_IPInbound IP

Supports getMEDIATOR_HOSTNAMEGateway hostname

Supports getMEDIATOR_IPGateway IP

Supports getOPERATIONOperation name

Supports getNATIVE_ENDPOINTNative Endpoint

Note:
This variable returns native
endpoint value, only after Routing
policy gets executed.

Supports set and getPROTOCOL_HEADERS[xxx]Protocol headers

Supports set and getSOAP_HEADERS[xxx]SOAP headers

Notes on getting and setting the PROTOCOL_HEADERS

All context variable values are typed as either string or int except for the predefined context
variables, PROTOCOL_HEADERS, which is of the type IData. You can set or get value for
PROTOCOL_HEADERS in one of the following ways:

set or get the entire structure.

To set the entire structure, you must:

Set the varName parameter in pub.apigateway.ctxvar:setContextVariable to
PROTOCOL_HEADERS.

Use the method ISMediatorRuntimeFacade.setContextVariableValue().

To get the entire structure, you must:

Set the varName parameter in pub.apigateway.ctxvar:getContextVariable to
PROTOCOL_HEADERS.

Use the method ISMediatorRuntimeFacade.getContextVariableValue().

If the varName is set to PROTOCOL_HEADERS, you get or set the entire IData structure
containing all of the transport headers. The key is the transport header name (for example,
Content-Type) and the value is a String. The IData object for PROTOCOL_HEADERS contains
a set of string values where each IData string key matches the header name in the transport
headers map. The set of possible keys includes the HTTP v1.1 set of headers as well as any
custom key-value pairs you might have defined.

342 webMethods API Gateway User's Guide 10.11

4 Policies

Alternatively, you can set the varName parameter to address a specific element in the array.
For example, setting it to PROTOCOL_HEADERS[Content-Type] would apply to the
Content-Type transport header.

set or get a nested value.

Set a nested value in one of the following ways:

Set the varName parameter in pub.apigateway.ctxvar:setContextVariable to
PROTOCOL_HEADERS[arrayElement], where [arrayElement] refers to a specific element. For
example, PROTOCOL_HEADERS[Content-Type] (to indicate the first array element in the set).

Alternatively, use themethod ISMediatorRuntimeFacade.setContextVariableValue(). Use
this method only if you are writing a JAVA service and you want to access it through the
JAVA source code.

Get a nested value in one of the following ways:

Set the varName parameter in pub.apigateway.ctxvar:getContextVariable to
PROTOCOL_HEADERS[arrayElement], where [arrayElement] refers to a specific element. For
example, PROTOCOL_HEADERS[Content-Type] (to indicate the first array element in the set).

Alternatively, use themethod ISMediatorRuntimeFacade.getContextVariableValue(). Use
this method only if you are writing a JAVA service and you want to access it through the
JAVA source code.

You can set or get a nested value inside PROTOCOL_HEADERS through an additional
keyName. In this case, the object reference is not an IData object. For PROTOCOL_HEADERS,
the keyNamemust match the transport header name in a case-sensitive manner (for example,
PROTOCOL_HEADERS[Content-Type] or PROTOCOL_HEADERS[Authorization]). In this case, the
Serializable value will be a string.

pub.apigateway.ctxvar:setContextVariable

Use this JAVA service to set a value on a context variable. The pipeline variable containing the
context variable value should be an object reference that implements java.io.Serializable. All
parameter names are case-sensitive.

ExamplesDescriptionData TypePipeline
Type

Parameter

N/AThis object is inserted into
the pipeline by API
Gateway.

Object refinMessageContext

PROTOCOL_HEADERSContext variable name
(predefined or custom).

StringinvarName

mx:CUSTOM_VAR

Java.io.serializable value.
(Usually a string).

Object refinserValue

webMethods API Gateway User's Guide 10.11 343

4 Policies

pub.apigateway.ctxvar:declareContextVariable

Use this JAVA service to declare a custom context variable. All custom-defined context variables
must be declared in a custom namespace that is identified by using the prefix mx (for example,
mx:CUSTOM_VARIABLE). All parameter names are case-sensitive.

Note:
It is not legal to use this service to declare the predefined context variables; you can only declare
custom variables.

DescriptionData TypePipeline
Type

Parameter

The document type defining the context variable object. Use
the ctxVar Document Type provided in the JAVA service

Object refinctxVar

pub.apigateway.ctxvar:ctxVar and map it to this input
variable. Define the name (for example,
mx:CUSTOM_VARIABLE), the schema_type (string or int),
and isReadOnly (true or false).

The set Context variable document type.Object refoutctxVar

javax.xml.namespace.QName value. The QName of the
variable.

Object refoutvarNameQ

Note the following:

After declaring the context variable, you can use the setContext variable to set a value on the
context variable.

You do not need to declare the following kinds of context variables:

The predefined context variables provided by API Gateway. If you attempt to declare an
existing predefined context variable, an error will occur.

Any custom context variable that you define in a routing rule that you create in the
conditional routing step.

Any custom context variables that you explicitly declare in source code using the API will
have a declaration scope of SESSION.

Any custom context variable's state that is defined during the inbound request processing
steps will still be available during the outbound response processing steps.

All context variable values are typed as either string or int (excluding the
PROTOCOL_HEADERS variables, which are of the type IData).

Valid names should be upper case (by convention) and must be a valid JAVA Identifier. In
general, use alpha-numerics, $ or _ symbols to construct these context names. Names with
punctuation,whitespace or other characterswill be considered invalid andwill fail deployment.

344 webMethods API Gateway User's Guide 10.11

4 Policies

All custom context variables must be declared in a custom namespace that is identified by
using an mx prefix (for example, mx:CUSTOM_VARIABLE).

To reference a custom context variable in a flat string, you need to prepend a $ symbol to the
context variable name to indicate that variable’s value should be referenced. Think of this
usage as being similar to the & address operation for C variables.

An expression that references a custom context variable might look like this:

$mx:TAXID=1234 or $mx:ORDER_SYSTEM_NAME="Pluto"

Notice that the values of the data type “int” are not enclosed in quotation marks, while the
values of the data type “string” are. The quotation marks are only needed if a context variable
expression (as opposed to a reference) is defined.

Referencing an undefined context variable does not result in an error.

Once a variable has been declared it cannot be declared again.

pub.apigateway.ctxvar:removeContextVariable

Use this JAVA service to remove a custom context variable from a request or response session. All
parameter names are case-sensitive.

Note:
Keep the following points in mind:

It is not legal to use this service to remove any predefined context variables; you can only
remove custom variables.
Attempting to remove a non-existent context variable will not result in an error.

ExamplesDescriptionData TypePipeline
Type

Parameter

N/AThis object is inserted into the
pipeline by API Gateway.

Object refinMessageContext

mx:CUSTOM_VARCustom context variable name.StringinvarName

Sample Flow Service: Getting a Context Variable Value

This flow service sets the value of a custom context variable to be used in a response.

This flow service declares a pipeline variable named customName, which is set to the value
mx:COMP_TEST.

This flow service will retrieve the context variable for customName and create an element for its
context variable value in the response message return to the consumer.

Step 1. Declaring customName

webMethods API Gateway User's Guide 10.11 345

4 Policies

You can define the customName variable value to be mx:COMP_TEST so you can use this variable to
lookup the custom variable name that was seeded in the previous example.

Step 2. Setting customName to mx:COMP_TEST

346 webMethods API Gateway User's Guide 10.11

4 Policies

Clicking on the customName pipeline variable displays the name.

Step 3. Displaying the value of customName

webMethods API Gateway User's Guide 10.11 347

4 Policies

The call to pub.mediator.ctxvar:getContextVariable retrieves the value of the custom context
variable from the context variable map.

Step 4. Calling meditor.ctxvar:getContextVariable

348 webMethods API Gateway User's Guide 10.11

4 Policies

This is just a sample JAVA service that takes the context variable and creates a top-level element
in the response message using the same name and value.

Step 5. Sample service using the context variable

webMethods API Gateway User's Guide 10.11 349

4 Policies

Sample Flow Service: Setting a Context Variable Value

This flow service sets the value of a custom context variable to be used in a response.

This flow service declares a pipeline variable named customName, which is set to the value
mx:COMP_TEST.

This flow service retrieves the context variable for customName and create an element for its context
variable value in the response message return to the consumer.

Step 1. Declaring customName

350 webMethods API Gateway User's Guide 10.11

4 Policies

You define the customName variable value to be mx:COMP_TEST so you can use this variable to lookup
the custom variable name that was seeded in the previous example.

Step 2. Setting customName to mx:COMP_TEST

webMethods API Gateway User's Guide 10.11 351

4 Policies

Clicking on the customName pipeline variable displays the name.

Step 3. Displaying the value of customName

352 webMethods API Gateway User's Guide 10.11

4 Policies

The call to pub.mediator.ctxvar:getContextVariable retrieves the value of the custom context
variable from the context variable map.

Step 4. Calling meditor.ctxvar:getContextVariable

webMethods API Gateway User's Guide 10.11 353

4 Policies

This is just a sample JAVA service that takes the context variable and creates a top-level element
in the response message using the same name and value.

Step 5. Sample service using the context variable

354 webMethods API Gateway User's Guide 10.11

4 Policies

Managing Global Policies

Important:
API Gateway's Standard Edition License does not support the functionality of Global Policies.
You can create and manage global policies only using the Advanced Edition License.

Global policies are a set of policies that are associated globally to all APIs or the selected set of
APIs. Global policies are supported for SOAP and REST APIs but not supported for GraphQL
API.

By associating policies globally to all APIs or the selected set of APIs, the administrator can ensure
that a set of policies is applied to the selected APIs by default. The administrator can, for example,
define a global policy that attaches aWS-Security (WSS) authentication to all SOAPAPI endpoints
within a specific IP range. In this case, any client request from the specific IP range automatically
inherits the security configuration defined in the global policy for SOAP APIs.

webMethods API Gateway User's Guide 10.11 355

4 Policies

Global Policy Matrix

This table lists the stage-specific policies that can be configured as global policy for different types
of APIs at the global level.

Note:
The Policy configuration page displays only the policies that are common to one or more API
types selected in the global policy filter.

PoliciesStages

Transport Enable HTTP/HTTPS - This policy can be enforced for all types of API. But the
SOAP versions 1.1 and 1.2 are applicable only for SOAP-based APIs. The SOAP
1.1 and SOAP 1.2 sub types are not available in UI when the REST and ODATA
APIs are selected.

Note:
Software AG recommends to create a separate policy for each API type.

Set Media Type - This policy is applicable only for a REST request and the policy
name is not listed in Policy configuration page when the SOAP and ODATA
APIs are selected.

Enable JMS/AMQP - This policy is applicable only for SOAPAPIs and the policy
name is not listed in Policy configuration page when the REST and ODATA
APIs are selected.

Identity &
Access

Authorize User, Identify &Authorize - These policies can be enforced to anyAPI
Type.

Inbound Auth - Message - This policy is applicable only for SOAP-based APIs
and the policy name is not listed in Policy configuration page when the REST
and ODATA APIs are selected.

Request
Processing

InvokewebMethods IS, ValidateAPI Specification, DataMasking - These policies
can be enforced to any API Type.

Request Transformation - This policy is applicable only for SOAP andRESTAPIs.
and not for ODATA services. When all three API types are selected, Request
Transformation policy cannot be applied at the global level.

Routing CustomHTTP Header, Outbound Auth - Transport, Outbound Auth - Message.
The Routing stage policies can be applied at a global level for all types of API.

Traffic
Monitoring

Log Invocation, Monitor Performance, Monitor SLA, Traffic Optimization, and
Service Result Cache. The Traffic Monitoring stage policies can be applied at a
global level for all types of API.

Response
Processing

InvokewebMethods IS, ValidateAPI Specification, DataMasking - These policies
can be enforced to any API Type.

356 webMethods API Gateway User's Guide 10.11

4 Policies

PoliciesStages

Response Transformation - This policy can be enforced only for SOAP and REST
APIs and the policy name is not listed in Policy configuration page when
ODATA API type is selected.

CORS - This policy can be enforced only for REST and ODATA APIs and the
policy name is not listed in Policy configuration page when SOAP-based API
is selected.

Conditional Error Processing and Data Masking. The Error handling stage policies
can be applied at a global level for all types of API.

Error
handling

Creating a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

To create a global policy you must perform the following high-level steps:

1. Create a new global policy: During this step, you specify the basic details of the global policy.

2. Optionally refine the scope of the policy: During this step, you can specify additional criteria
to narrow the set of APIs to which the global policy applies.

3. Configure the policies: During this step, you associate one ormore policies, and assign values
to each of the associated policy's properties.

4. Activate the policy: During this step, you put the new global policy into effect.

To create a global policy

1. Click Policies in the title navigation bar.

2. Click the Global policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. In the Policies page, click the Create global policy button.

If you do not see the Create global policy button, it is probably because you do not have the
API Gateway Administrator role to create a global policy in API Gateway.

This opens the Create global policy page with the default Policy details tab.

4. In the Basic information section, provide the required information as follows:

webMethods API Gateway User's Guide 10.11 357

4 Policies

DescriptionField

Name of the global policy.Name

Description of the global policy.Description

You can save the global policy by clicking Save at this stage and add the filters and policy
configuration at a later time.

5. Click Continue to filters >.

Alternatively, you can click Filters in the left navigation panel.

6. To filter APIs by API type, select one or more API types.

Available API types are REST, SOAP, and OData. The global policy would apply to the APIs
specified by the filter.

7. This is applicable to REST APIs. To filter APIs by HTTP methods, select one or more HTTP
methods.

Available HTTP methods are GET, POST, PUT, DELETE, PATCH, and HEAD. The global
policy would apply to the APIs that have the methods specified by the filter.

For details about the HTTPmethods, see “ Refining the Scope of a Global Policy” on page 361.

8. To filter APIs by attributes:

a. Select an attribute

Available attributes are API name, API description, API version, API tag,
Resource/Operation tag, Method tag.

b. Select a comparison operator.

c. Specify the match string.

d. Click + Add.

You can add multiple criteria by clicking the + Add button and repeating the above steps.

e. Select the logical conjunction (AND) or disjunction (OR) operation to apply whenmultiple
criteria are specified for the global policy. The default value is AND.

The global policy would apply to the APIs that match the attributes specified in the filter. For
details about attributes, see “ Refining the Scope of a Global Policy” on page 361.

Example: To apply the global policy to APIs that match the criteria API name that contains
pet and API tag that contains a, you can configure a filter as follows:

358 webMethods API Gateway User's Guide 10.11

4 Policies

9. To add multiple attribute filter groups, as required, click the +Add button. and specify the
logical conjunction (AND) or disjunction (OR) operation to apply between filter groups. The
global policy would apply to the APIs that match the filter groups specified in the filter.

Example: To apply the global policy to APIs that match criteria API name that contains pet
and API tag that contains a in filter group 1 and API version that equals 1 in filter group 2,
you can configure a filter as follows:

You can save the global policy by clicking Save at this stage and configure policies at a later
time.

10. Click Continue to policy configuration >.

Alternatively, you can click the Policy configration tab.

11. In the Policy configuration section, you can select the policies and configure the properties for
each policy that you want API Gateway to enforce when it applies this global policy.

webMethods API Gateway User's Guide 10.11 359

4 Policies

For details, see “ Associating Policies to a Global Policy” on page 364 and “ Configuring
Properties for a Global Policy” on page 365.

12. Click Save.

The global policy is created and displays the policy details page.

You can now activate the global policy. For details, see “ Activating a Global Policy” on page 368.

Modifying the Scope of a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

Scope refers to the set of properties that determine a selected set of APIs for the enforcement of
the policy. For a global policy, scope is determined by the policy's property API type in the Policy
details tab.

DescriptionAPI Type

Global policy is applied on all REST APIs in API Gateway.REST

Global policy is applied on all SOAP APIs in API Gateway.SOAP

Global policy is applied on all OData APIs in API Gateway.ODATA

To modify the scope of a global policy

1. Click Policies in the title navigation bar.

2. Click the Global policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The global policy details page appears.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to modify the scope of a global policy in API Gateway.

5. In the Filters section, specify the following:

a. In the API type section, select the API types (REST, SOAP, ODATA, or all) to which you
want to apply the policy.

360 webMethods API Gateway User's Guide 10.11

4 Policies

b. Optional. In the Filter using attributes section, specify additional selection criteria to narrow
the set of APIs to which this policy will be applied. For details, see “ Refining the Scope of
a Global Policy” on page 361.

6. Click Save.

Refining the Scope of a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

If you want to further restrict the set of APIs to which the global policy is applied, you can specify
additional selection criteria in the Filter section of the API details page. Using the Filter section,
you can filter APIs by Name, Description, Version attributes, HTTP Methods (applicable only for
REST APIs), API tag (applicable for all selected API types), Resource/Operation tag (applicable
for REST and SOAP APIs) and Method tag (applicable for a REST API). For details about the API
types and their components forwhich you can add a tag, see “Adding Tags to anAPI” on page 133.
If you specify no filter criteria, API Gateway applies the global policy to all the selected APIs.

If the specified attribute does not apply for the selected API type, it is not evaluated for that API
type alone. For example, if you specify Resource/Operation tag = secure and select all API types,
REST, SOAP, and ODATA, then while evaluating the condition for each API, the expression
evaluates only for SOAP and REST API and does not evaluate the filter for OData API.

Filtering by Name, Description, Version and Tag attributes

You can filter APIs based on their Name, Description, Version, API tag, Resource/Operation tag
and Method tag attributes using any of the following comparison operators:

DescriptionComparison Operators

SelectsAPIswhoseName,Description, Version or Tag valuematches
a given string of characters. For example, use this operator to apply

Equals

a policy only to REST APIs with the Name or Description value 4G
Mobile Store.

Selects APIs whose Name, Description, Version or Tag value does
notmatch a given string of characters. For example, use this operator

Not Equals

to apply a policy only to all RESTAPIs except thosewith theName,
Description, or Tag value Mobile.

Selects APIswhoseName, Description or Tag value includes a given
string of characters anywhere within the attribute's value. For

Contains

example, use this operator to apply a policy to REST APIs that had
the word Mobile anywhere in their Name, Description, or Tag
attribute.

Selects APIs whose Name, Description, or Tag value begins with a
given string. For example, use this operator to apply a policy only

Starts with

to REST APIs whose Name, Description, or Tag begins with the
characters 4G.

webMethods API Gateway User's Guide 10.11 361

4 Policies

DescriptionComparison Operators

Selects APIs whose Name, Description, or Tag value ends with a
given string. For example, use this operator to apply a policy only

Ends with

to RESTAPIs whoseName, Description, or Tag value endswith the
characters Store.

When specifying match strings for the comparison operators described above, keep the following
points in mind:

Match strings are not case-sensitive. If you define a filter for names that start with ABC it select
names starting with abc and Abc.

Wildcard characters are not supported. That is, you cannot use characters such as * or % to
represent any sequence of characters. These characters, if present in the match string, are simply
treated as literal characters that are to be matched.

Filtering by HTTP Methods (Applicable only for REST APIs)

You can optionally restrict a policy to specific HTTP methods of the REST APIs by specifying
the options GET, POST, PUT, DELETE, PATCH, and HEAD.

DescriptionHTTP Methods

Policy applies only to HTTP GET requests for any resource in
the API. For example, use this option to apply a policy to
resources of a REST API during an incoming GET request.

GET

Policy applies only to HTTP POST requests for any resource
in the API. For example, use this option to apply a policy to
resources of a REST API during an incoming POST request.

POST

Policy applies only to HTTP PUT requests for any resource in
the API. For example, use this option to apply a policy to
resources of a REST API during an incoming PUT request.

PUT

Policy applies only toHTTPDELETE requests for any resource
in the API. For example, use this option to apply a policy to
resources of a RESTAPI during an incoming DELETE request.

DELETE

Policy applies only to HTTP PATCH requests for any resource
in the API. For example, use this option to apply a policy to
resources of a REST API during an incoming PATCH request.

PATCH

Policy applies only to HTTP HEAD requests for any resource
in the API. For example, use this option to apply a policy to
resources of a REST API during an incoming HEAD request.

HEAD

To refine the scope of a global policy

362 webMethods API Gateway User's Guide 10.11

4 Policies

1. Click Policies in the title navigation bar.

2. Click the Global policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The global policy details page appears.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to refine the scope of a global policy in API Gateway.

5. Click Filters.

6. To filter by API types, select the API types by which you want to filter APIs.

7. Applicable only for REST APIs. To filter by HTTP methods, in the Filter using HTTP methods
section, select the HTTPmethods by which youwant to filter APIs with appropriate incoming
requests.

8. To filter by Name, Description, Version, or Tags perform the following steps in the Filter using
attributes section:

a. Select an attribute to filter the APIs to which you want to apply the global policy.

Available attributes: API name, API description, API version, API tag,
Resource/Operation tag, Method tag.

b. Select the comparison operator.

c. Specify the match string in the third field.

d. To specify additional criteria, click the Add button and repeat the above steps.

e. Select the logical conjunction (AND) or disjunction (OR) operation to apply whenmultiple
criteria are specified for the global policy. The default value is AND.

You can add multiple attribute filter groups by clicking the +Add button. You can also specify
the logical conjunction (AND) or disjunction (OR) operation to apply between filter groups.

9. Click Save to save the updated policy.

webMethods API Gateway User's Guide 10.11 363

4 Policies

Associating Policies to a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

The Policy Configuration tab on the Global Policy details page specifies the policy stages and the
list of policies (applicable for each stage) that you want API Gateway to execute when it enforces
the global policy.

Whenmodifying the list of policies for a global policy, API Gateway validates the policies to ensure
that there are no policy conflicts.

To modify the list of policies of a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to modify the list of policies of a global policy in API Gateway.

5. Select the policy's Policy Configuration tab.

The policy information is provided in the following sections:

Policy catalog - Transport, Identify and Access, Request Processing, Routing, Traffic
Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the expanded list of policies, select the policies that youwant API Gateway to execute when
it applies this global policy. To select a policy, click the Add (+) icon next to the policy name.
The selected policies are displayed in the Infographic section.

When you select the policies for the global policy, keep the following points in mind:

364 webMethods API Gateway User's Guide 10.11

4 Policies

The policies shown in the Policy catalog section are determined by the API types that you
have specified on the Filters section of the Global Policy Details page.

If you do not see a policy that you need, that policy is probably not compatible with the
API type that you selected in the Filters section.

If necessary, you can click the Policy Details tab and change your API type selection.

Use the x icon in any individual policy to remove that particular policy from the Infographic
section.

8. To configure the properties for any new policies that youmight have added to the Infographic
section in the preceding steps or to make any necessary updates to the properties for existing
policies in the global policy, see “ Configuring Properties for a Global Policy” on page 365.

9. Click Save.

10. Click to view the complete list of policies in the updated policy.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Configuring Properties for a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

The Policy Configuration tab on the Global Policy details page specifies the list of policies that
are applicable for each policy stage in the Policy catalog section. Each policy in the Infographic
section has properties that you must set to configure the policy's enforcement behavior.

To configure the properties for a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to configure the properties of a global policy in API Gateway.

webMethods API Gateway User's Guide 10.11 365

4 Policies

5. Select the policy's Policy Configuration tab.

The policy information is provided in the following sections:

Policy catalog - Transport, Identify and Access, Request Processing, Routing, Traffic
Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine or set.

b. In the Policy properties section, set the values for the policy's properties as necessary.

Note:
Required properties are marked with an asterisk.

8. Click Open in full-screen to view the policy's properties in full screen mode.

The Open in full-screen link is located in the upper right-hand corner of the Policy
Configuration tab. Set the properties of the displayed policy, and then click OK.

To exit out of full screen mode, click the Minimize icon.

9. Click Save.

10. Click to view the complete list of policies in the updated policy.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Viewing List of Global Policies and Policy Details

The Global Policies tab displays a list of all globally available policies in API Gateway. Global
policies are listed alphabetically by name.

In addition to viewing the list of policies, you can also examine the details of a policy, create a
copy of the template, activate, and delete a global policy in the Global Policies tab.

To view the policy list and properties of a global policy

366 webMethods API Gateway User's Guide 10.11

4 Policies

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

The Global Policies tab provides the following information about each policy:

DescriptionColumn

Name of the global policy.Name

The description for the global policy.Description

You can also perform the following operations on a global policy:

Activate a policy to begin enforcing runtime behaviors.

Deactivate a policy to suspend enforcement of runtime behaviors.

Create a new copy of the policy.

Delete a policy to remove it from API Gateway.

3. Select the required policy whose details you want to examine.

The Global Policy details page appears. The policy details are displayed in the following tabs:

Policy Details: This tab contains a summary of basic information such as name, description,
scope of the policy as towhen the policywill apply, applicable APIs, and other information.

Policy Configuration: This tab contains the policy stages, applied policies, as well as the
configuration details of individual policies.

Modifying Global Policy Details
You must have the API Gateway's manage global policies functional privilege assigned.

You use the Global Policy details page to examine and modify the properties of a policy.

When modifying the details of a global policy, keep the following points in mind:

You will not be allowed to save the policy unless all of its properties have been set.

On successful modification of the policy details for an active global policy, the policy changes
apply with immediate effect in all the active APIs that are applicable for this global policy.

You will not be allowed to remove an individual policy (for example, Identify & Authorize)
from the active global policy, if the global policy is already applied to an active API, and if the
Identify&Authorize is a dependent policy for another policy (for example, TrafficOptimization)
that is applied for the API.

webMethods API Gateway User's Guide 10.11 367

4 Policies

If modification of the policy details for an active global policy fails, API Gateway issues an
error message with details of the incompatible or conflicting policies.

To modify the properties of a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears. The policy details are displayed in the following tabs:

Policy Details: This tab contains a summary of basic information such as name, description,
scope of the policy as towhen the policywill apply, applicable APIs, and other information.

Policy Configuration: This tab contains the policy stages, applied policies, as well as the
configuration details of individual policies.

4. Click Edit.

If you do not see the Edit button, it is probably because you do not have the API Gateway
Administrator role to modify the properties of a global policy in API Gateway.

5. On the Policy Details tab, modify the basic properties, selection criteria, and the applicable
APIs as necessary.

6. On thePolicy Configuration tab,modify the policy list and the policy's configuration properties
as necessary.

7. When you have completed the required modifications in the Global Policy details page, click
Save to save the updated policy.

8. Click Overview to view the complete list of policies in the updated policy.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Activating a Global Policy
You must have the API Gateway's activate global policies functional privilege assigned.

Global policies are not enforced until they are activated.

When you activate a global policy, be aware that:

368 webMethods API Gateway User's Guide 10.11

4 Policies

When a global policy becomes active, API Gateway begins enforcing it immediately in all the
applicable APIs that are currently in theActive state. You can suspend enforcement of a policy
by switching it to the Inactive state as described in “Deactivating aGlobal Policy” on page 369.

Activation of a global policy fails if there is a conflict in the effective policy validation in at
least one of the active APIs that are applicable for this policy. API Gateway reports the conflict,
and the global policy can only be activated when the conflict is resolved.

To determine whether a global policy is active or inactive, examine the policy's Active indicator
on thePolicies >Global Policies tab. The icon in theActive column indicates the policy's activation
state as follows:

DescriptionIcon

Policy is active.

Policy is inactive.

The activation state of a policy is also reported in the Global Policy Details page.

To activate a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears.

4. Click Activate.

If you do not see the Activate button, it is probably because you do not have the API Gateway
Administrator role to activate a global policy, or the policy is already in an Active state in API
Gateway.

Deactivating a Global Policy
You must have the API Gateway's activate global policies functional privilege assigned.

Deactivating a global policy causes API Gateway to suppress enforcement of the policy.

You usually deactivate a policy to suspend enforcement of a particular policy (temporarily or
permanently).

webMethods API Gateway User's Guide 10.11 369

4 Policies

To deactivate a policy, you change the policy to the Inactive state. At a later time, you can begin
enforcing a global policy by switching it to the Active state as described in “ Activating a Global
Policy” on page 368.

When you deactivate a global policy, be aware that:

Deactivation of a global policy fails if there is a conflict in the effective policy validation in at
least one of the active APIs that are applicable for this policy. API Gateway reports the conflict,
and the global policy can only be activated when the conflict is resolved.

To determine whether a global policy is active or inactive, examine the policy's Active indicator
on thePolicies >Global Policies tab. The icon in theActive column indicates the policy's activation
state as follows:

DescriptionIcon

Policy is active.

Policy is inactive.

The deactivation state of a policy is also reported in the Global Policy Details page.

To deactivate a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Select the required policy.

The Global Policy details page appears.

4. Click Deactivate.

If you do not see theDeactivate button, it is probably because you do not have theAPIGateway
Administrator role to deactivate a global policy, or the policy is already in an Inactive state
in API Gateway.

Deleting a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

You delete a global policy to remove it from API Gateway permanently.

To delete a global policy, the following conditions must be satisfied:

370 webMethods API Gateway User's Guide 10.11

4 Policies

The policy must not be in-progress.

The policy must be inactive.

To delete a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

3. Click the Delete () icon for the required policy.

If you do not see the Delete button, it is probably because you do not have the API Gateway
Administrator role to delete a global policy, or the policy is in an Active state in API Gateway.

4. Click Yes in the confirmation dialog.

Copying a Global Policy
You must have the API Gateway's manage global policies functional privilege assigned.

A global policy can become quite complex, especially if it includesmany policies. Instead of creating
a new policy from scratch, it is sometimes easier to copy an existing policy that is similar to the
one you need and edit the copy.

When you create a copy of a global policy, be aware that:

When API Gateway creates a copy of a policy, the new copy of the policy is identical to the
original one.

Like all new policies, the copied policy is marked as Inactive.

There is no expressed relationship between the copy and the original policy (that is, API
Gateway does not establish any type of association between the two policies).

In general, a copied policy is no different from a policy that you create from scratch.

To copy a global policy

1. Click Policies in the title navigation bar.

2. Click the Global Policies tab.

A list of all available global policies appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of policies you want to display in a page.

webMethods API Gateway User's Guide 10.11 371

4 Policies

3. Click the Copy icon for the required policy.

If you do not see the Copy button, it is probably because you do not have the API Gateway
Administrator role to create the copy of a global policy in API Gateway.

4. In the Copy of Global Policy dialog box, provide the required information for each of the
displayed data fields:

DescriptionField

Name of the global policy.Name

API Gateway automatically adds the name of the existing
global policy to the Name field. You can change the name
of the policy to suit your needs. But you cannot leave this
field empty.

The description for the global policy.Description

5. Click Copy to save the new policy.

6. Modify the new policy as necessary and then save it.

Activate the new policy when you are ready to put it into effect.

Exporting Global Policies
You must have the API Gateway's export assets functional privilege assigned.

Note:
Formore information about exporting and importing global policies, see “Overview”onpage 446.

To export the global policies

1. Click Policies in the title navigation bar.

2. Select Global Policies.

3. Click to export a single policy.

Alternatively, you can select multiple APIs to be exported simultaneously by clicking the
checkboxes adjacent to the names of the API.

Click and select Export from the drop-down list.

The browser prompts you to either open or save the export archive.

372 webMethods API Gateway User's Guide 10.11

4 Policies

4. Select the appropriate option and click OK.

Managing API-level Policies

The API-level policies apply to all APIs at the API level within an instance of API Gateway.

A policy at an API-level provides run-time governance capabilities to an API. The policy can be
used to identify and authenticate consumers, validate digital signatures, capture performance
measurements, and so on. Policies have one or more properties, which you can configure in a
policy when you apply it to an API. For example, a policy that identifies consumers specifies one
or more identifiers to identify the consumers who are trying to access the API.

The API level policies are categorized in the following stages:

Threat protection - These policies can be viewed on the API details page of an API but can be
managed only through the Policies > Global threat protection section and cannot be managed
from the API details page.

Transport

Identify & Access

Request Processing

Routing

Traffic Monitoring

Response Processing

Error Handling

Assigning a Policy to an API

Ensure that the API is in Edit mode before you start assigning a policy to the API.

To assign a policy to an API

1. Click APIs in the title navigation bar.

2. Select the required API.

3. Click the Policies tab.

4. Select the policy stage and the required policy.

The policy is displayed in the infographic with its properties displayed in properties section.

5. Provide the properties for the selected policy.

webMethods API Gateway User's Guide 10.11 373

4 Policies

6. Click Save.

The policy is assigned to the API.

Viewing API Policy Details

The Policies tab on the API details page specifies the set of policies that are applied for that
particular API.

TheAPI can have a set of policies that are configured globally through a policy, or directly through
a policy template or a scope-level policy.

The global policy in an API details page has each of its policies differentiated using a specific icon
from the rest of the policies that are defined at the API-level and scope-level. The icon in the policy
indicates the Identify & Authorize policy's enforcement level within an API:

DescriptionIcon

Policy is applied from a global policy. This policy is
applicable across all resources / methods / operations of all
APIs.

Policy is applied from a policy template or at the API
definition. This policy is applicable across all resources /
methods / operations of that particular API.

Policy is applied for theAPI's scope. This policy is applicable
across a set of resources / methods / operations of that
particular API.

Policy is applied through an active package definition. This
policy is applicable across all resources / methods /
operations of that particular API.

Unlike the policy defined at API-level or scope-level, the policy defined as part of a global policy
cannot be edited or deleted through the details page of an API.

To view the policy details of an API

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

3. Click the Policies tab.

374 webMethods API Gateway User's Guide 10.11

4 Policies

The Infographic view displays policies configured for the API.

When this API is associated with one or more plans through active packages, a list of the
Identify & Authorize policies and Threat Protection policies that are inherited from the
corresponding plans and enforced on the API also appears. The inherited policies are

differentiated using the package icon. The Identify & Authorize policy, always, has the
Identification Type set to API Key.

4. Click .

A list of all available policies enforced on the API appears.

Modifying API Policy Details

Ensure that the API is in Edit mode before you modify a policy that is assigned to the API.

To modify the policy details of an API

1. Click APIs in the title navigation bar.

2. Select the required API.

3. Click the Policies tab.

4. Select the policy stage, and the required policy.

The Infographic view displays policies configured for the API.

5. You can do one of the following:

Addmore policies to theAPI. Select the policy stage and add the required policy. Configure
the properties for the newly added policy as required.

Modify the already configured policy. Select the required policy andmodify the properties
as required.

Delete policies from the API. To remove a policy, click the x icon.

6. Click Save.

Managing Scope-level Policies

You can define policies at the API-level or scope-level for an API. API-level policies are processed
for all incoming requests to the API. Scope-level policies are processed only for incoming requests
that apply to a specific scope in the API. Any policy you specify at the API-level is overridden by
the policy defined at the scope-level if the policies are the same. In contrast, the API-level policies
will not affect the scope-level policies. But if there are policies applied at the global-level (through

webMethods API Gateway User's Guide 10.11 375

4 Policies

a global policy) for the API, then those policies will override every other policy configured at the
API-level.

The scope-level policies for anAPI provide a granular enforcement of policies at the resource-level,
method-level, or both for the REST API, or at the operation-level for the SOAP API.

Note:
Scope-level policies are not supported for OData APIs.

An API can have zero or more scope-level policies. When you define the scope-level policies for
an API, keep the following points in minds:

For a policy (for example, Identify & Authorize) that can appear only once in an API, if the
same policy is already applied through the API details page, API Gateway prompts you with
a warning message that the scope-level policy takes precedence over the API-level policy, and
is enforced on the API at run-time.

For a policy (for example, Monitor SLA) that can appear multiple times in an API, if the same
policy is already applied to the API through a global policy, API Gateway prompts you with
a warning message that the global policy takes precedence over the scope-level policy, and is
enforced on the API at run-time.

If a resource ormethod or operation has the same policy (for example, RequireHTTP /HTTPs)
applied through different scopes, API Gateway prompts you with an error message and sets
the focus to the conflicting policies. You must remove the required policy from the individual
scope(s) to resolve the conflicts.

API Gateway supports scope-level policies only for the following stages:

Identify and Access: All policies in this stage are supported.

Request Processing: Only Data Masking policy in this stage is supported.

Traffic Monitoring: All policies in this stage are supported.

Response Processing: Only Data Masking policy in this stage is supported.

Error Handling: Only Data Masking policy in this stage is supported.

For information on the usage scenarios of policies configured for the scopes of anAPI, see “Example:
Usage Scenarios of API Scopes” on page 126.

Creating a Scope-level Policy
You create a policy for the API scope, to enforce the specific set of policies on a collection of
resources, methods, or both, or operations that are associated to the scope. An API can have zero
or more scope-level policies.

To create a scope-level policy

1. Click APIs in the title navigation bar.

376 webMethods API Gateway User's Guide 10.11

4 Policies

This displays a list of APIs available in API Gateway.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Policies tab.

This displays a list of scopes and policies available in the API.

5. In the API Scope box, select the scope for that you want to create a policy.

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the expanded list of policies, select the policies that you want to associate with this scope.
To select a policy, click the Add (+) icon next to the policy name. The selected policies are
displayed in the Infographic section.

When you select the policies for the scope-level policy, keep in mind that the policies shown
in the Policy catalog section are determined by the type of the displayed API. If you do not
see a policy that you need, that policy is probably not compatible with this API.

Use the Delete (X) icon in any individual policy to remove that particular policy from the
Infographic section.

8. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine or set.

b. In the Policy properties section, set the values for the policy's properties as necessary.

Note:
Required properties are marked with an asterisk.

9. Click Open in full-screen to view the policy's properties in full-screen mode.

The Open in full-screen link is located in the upper right-corner of the Policies tab.

10. Set the properties of the displayed policy, and then click OK.

To exit out of full-screen mode, click the Minimize icon.

11. Click Save to create the new scope-level policy.

webMethods API Gateway User's Guide 10.11 377

4 Policies

Click to view the complete list of policies in the updated API. Activate the API,
if it is not active, to put it into effect.

Viewing List of Scope-level Policies and Policy Details
The Infographic section displays the list of policies that are associated to a selected scope in the
API's Policies tab.

To view the scope-level policies and properties of a policy

1. Click APIs in the title navigation bar.

This displays a list of APIs available in API Gateway.

2. Click the name of the required API.

This opens the API details page.

3. Click the Policies tab.

This displays a list of scopes and policies available in the API.

4. In the API Scope box, select the scope whose policy details you want to examine.

5. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine.

b. In the Policy properties section, examine the values for the policy's properties as required.

6. Click Open in full-screen to view the policy's properties in full-screen mode.

The Open in full-screen link is located in the upper right-corner of the Policies tab. Examine
the properties of the displayed policy, and then click OK.

To exit out of full-screen mode, click the Minimize icon.

7. Click to view the complete list of policies in the updated API.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

378 webMethods API Gateway User's Guide 10.11

4 Policies

Modifying Scope-level Policy Details
The API can have a set of policies that are configured globally through a global policy, or directly
through a policy template, or a set of individual policies at the API-level or scope-level.

To customize the policy configurations at the scope-level, you need to apply the policies that are
available for the API's scope, and then configure the properties of the individual policies to suit
the needs of runtime behavior of that particular API.

You use the Policies tab to examine and modify the properties of a policy at the scope-level.

To modify the properties of a scope-level policy

1. Click APIs in the title navigation bar.

This displays a list of APIs available in API Gateway.

2. Click the name of the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Policies tab.

This displays a list of scopes and policies available in the API.

5. In the API Scope box, select the scope whose policy details you want to modify.

6. On the Infographic section, modify the policy list and the policy's configuration properties as
necessary.

Use the Delete (X) icon in any individual policy to remove that particular policy from the
Infographic section.

7. Click Open in full-screen to view the policy's properties in full-screen mode.

The Open in full-screen link is located in the upper right-corner of the Policies tab.

8. Modify the properties of the displayed policy, and then click OK.

To exit full-screen mode, click the Minimize icon.

9. When you have completed the required modifications for the scope-level policy, click Save
to save the updated scope-level policy.

webMethods API Gateway User's Guide 10.11 379

4 Policies

Click to view the complete list of policies in the updated API. Activate the API,
if it is not active, to put it into effect.

Deleting a Scope-level Policy
You delete a policy at the scope-level to remove the association between the policy and a scope.

When deleting a scope-level policy in the API details page, keep the following points in mind:

When a scope is deleted from the API details, API Gateway removes the policies that were
associated with the deleted scope.

To delete a scope-level policy

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

This opens the API details page.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Policies tab.

A list of scopes and policies available with the API appears.

5. In the API Scope box, select the scope whose policy you want to remove.

6. On the Infographic section, click the x icon in any individual policy to remove that particular
policy from the scope.

7. When you have removed the policy, click Save to save the updated scope-level policy.

Click to view the complete list of policies in the updated API. Activate the API,
if it is not active, to put it into effect.

Managing Policy Templates

Important:
API Gateway's Standard Edition License does not support policy templates. You can create and
manage policy templates only using the Advanced Edition License.

380 webMethods API Gateway User's Guide 10.11

4 Policies

Policy templates are a set of policies that can be associated directly with an individual API. The
direct association of the policy template with an API provides the flexibility to alter the policy's
configurations to suit the individual API requirements.

To apply a policy template to an API, modify the details page of the API, and apply the selected
policy template.

Creating a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

To create a policy template you must perform the following high-level steps:

1. Create a new policy template: During this step, you specify the basic details of the policy
template.

2. Configure the policies: During this step, you associate one ormore policies with the template,
and assign values to each of the associated policy's properties.

To create a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. In the Policies page, click the Create Policy Template button.

This opens the Create Policy Template page with the default Policy Details tab.

4. In the Basic Information section, provide the required information for each of the displayed
data fields:

DescriptionField

Name of the policy template.Name

Description of the policy template.Description

5. Click Continue to policy configuration.

6. In thePolicy Configuration tab, select the policies and configure the properties for each policy
that you want API Gateway to execute when it applies this policy template. For details, see
“Associating Policies with a Policy Template” on page 382 and “ Configuring Properties for a
Policy Template” on page 383.

webMethods API Gateway User's Guide 10.11 381

4 Policies

7. Click Save.

Associating Policies with a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

ThePolicy Configuration tab on the Policy Template details page specifies the set of policy stages
and the list of policies (applicable for each stage).

To modify the list of policies of a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Select the required template.

The Policy Template details page appears.

4. Click Edit.

5. Click the Policy Configuration tab.

The policy template information is provided in the following sections:

Policy catalog - Transport, Identify and Access, Request Processing, Routing, Traffic
Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

7. In the expanded list of policies, select the policies that youwant API Gateway to execute when
it applies this policy template. To select a policy, click the Add (+) icon next to the policy name.
The selected policies are displayed in the Infographic section.

Use the Delete (X) icon in any individual policy to remove that particular policy from the
Infographic section.

8. To configure the properties for any new policies that youmight have added to the Infographic
section in the preceding steps or to make any necessary updates to the properties for existing
policies in the policy template, see “ Configuring Properties for a Policy Template” on page 383.

382 webMethods API Gateway User's Guide 10.11

4 Policies

9. When the list of policies is complete and you have configured all of the properties for the
policies correctly, click Save to save the updated policy template.

10. Click to view the complete list of policies in the updated policy template.

TheOverview button is located in the lower right-corner of the Infographic section. In addition,
you can view the configured properties for the individual policies.

To exit the overview, click the Close icon.

Configuring Properties for a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

The Policy Configuration tab on the Policy Template details page specifies the list of policies that
are applicable for each policy stage in the Policy catalog section. Each policy in the Infographic
section has properties that you must set to configure the policy's enforcement behavior.

To configure the properties for a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Select the required template.

The Policy Template details page appears.

4. Click Edit.

5. Click the Policy Configuration tab.

The policy template information is provided in the following sections:

Policy catalog - Transport, Identify and Access, Request Processing, Routing, Traffic
Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

6. In the Policy catalog section, click the chevron to expand the required policy stage.

This displays a list of policies that are classified under the particular stage.

webMethods API Gateway User's Guide 10.11 383

4 Policies

7. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine or set.

b. In the Policy catalog section, set the properties as necessary.

Note:
Required properties are marked with an asterisk.

8. Click Open in full-screen to view the policy's properties in full screen mode.

The Open in full-screen link is located in the upper right-hand corner of the Policy
Configuration tab. Set the properties of the displayed policy, and then click OK.

To exit full screen mode, click the Minimize icon.

9. After you configure the properties for all of the policies in the Infographic section, click Save
to save the updated policy template.

10. Click to view the complete list of policies in the updated policy template.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Viewing List of Policy Templates and Template Details

The Policy Templates tab displays a list of all available policy templates in API Gateway. Policy
templates are listed alphabetically by name.

In addition to viewing the list of policy templates, you can also examine the details of a template,
create a copy of the template, and delete a policy template in the Policy Templates tab.

To view the policy template list and properties of a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page. This tab
provides the following information about each template:

DescriptionColumn

Name of the policy template.Name

384 webMethods API Gateway User's Guide 10.11

4 Policies

DescriptionColumn

The description for the policy template.Description

You can also perform the following operations on a policy template:

Create a new copy of the policy template.

Delete a policy template to remove it from API Gateway.

3. Select the required policy template.

The Policy Template details page appears. The policy template details are displayed in the
following tabs:

Policy Details: This tab contains a summary of basic information such as the name and
description of the policy template.

Policy Configuration: This tab contains the policy stages, applied policies, as well as the
configuration details of individual policies.

Modifying Policy Template Details
You must have the API Gateway's manage policy templates functional privilege assigned.

You use the Policy Template details page to examine andmodify the properties of a policy template.

To modify the properties of a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Select the required template.

The Policy Template details page appears. The policy template details are displayed in the
following tabs:

Policy Details: This tab contains a summary of basic information such as name and
description of the policy template.

Policy Configuration: This tab contains the policy stages, applied policies, as well as the
configuration details of individual policies.

4. Click Edit.

5. On the Policy Details tab, modify the basic properties of the policy as necessary.

webMethods API Gateway User's Guide 10.11 385

4 Policies

6. On thePolicy Configuration tab,modify the policy list and the policy's configuration properties
as necessary.

7. When you have completed the required modifications on the Policy Template details page,
click Save to save the updated policy template.

If update of a policy template fails, API Gateway displays a pop-up style error message.

8. Click Overview to view the complete list of policies in the updated policy template.

The Overview button is located in the lower right-corner of the Infographic section.

To exit the overview, click the Close icon.

Deleting a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

You delete a policy template to remove it from API Gateway permanently.

To delete a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Click the Delete () icon for the required template.

4. Click Yes in the confirmation dialog.

Copying a Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

A policy template can become quite complex, especially if it includes many policies. Instead of
creating a new policy template from scratch, it is sometimes easier to copy an existing template
that is similar to the one you need and edit the copy.

When you create a copy of a policy template, be aware that:

When API Gateway creates a copy of a policy template, the new copy of the policy template
is identical to the original one.

There is no expressed relationship between the copy and the original policy (that is, API
Gateway does not establish any type of association between the two policy templates).

386 webMethods API Gateway User's Guide 10.11

4 Policies

In general, a copied policy template is no different from a policy template that you create from
scratch.

To copy a policy template

1. Click Policies in the title navigation bar.

2. Click the Policy Templates tab.

A list of all available policy templates appears. Use the Show drop-down list at the bottom of
the page to set the maximum number of templates you want to display in a page.

3. Click the Copy icon for the required template.

4. In the Copy of Policy Template dialog box, provide the required information for each of the
displayed data fields:

DescriptionField

Name of the policy template.Name

API Gateway automatically adds the name of the existing
policy template to theName field. You can change the name
of the template to suit your needs. But you cannot leave this
field empty.

The description for the policy template.Description

5. Click Copy to save the new policy template.

6. Modify the new policy template as necessary and then save it.

Applying a Policy Template on the API Details Page
You must have the API Gateway's manage APIs functional privilege assigned.

The Policies tab on the API details page specifies the set of policies that API Gatewaywill execute
when an application requests access to that particular API.

The API can have a set of policies that are applied through a global policy, through a policy
template, through a scope-level policy, and through API-level policies.

To customize the policy configurations for an API using a policy template, you need to apply the
template (containing a set of policies), and then configure the properties of the individual policies
to suit the runtime requirements for that API.

To apply a policy template on the API details page

webMethods API Gateway User's Guide 10.11 387

4 Policies

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

3. Click Edit.

4. Click the Policies tab.

The API's policy information is provided in the following sections:

Policy stages - Threat Protection, Transport, Identify and Access, Request Processing,
Routing, Traffic Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

5. Click Apply template located in the lower right-corner of the Infographic section.

This opens the Apply template dialog box.

6. In the Template chooser, select one or more policy templates that you want to apply to the
API.

You can choose to display the details of an individual policy template by clicking the Info icon.
This option populates the list of policies that are defined in the particular template.

7. Select one or more policy templates that you want API Gateway to execute at run-time.

8. Click Next.

You must have at least one template selected to use the Next button.

9. In theApply Templates to APIwizard, review the list of policies and the configuration details
of the associated policies.

If necessary, you can clickPrevious to return to the Template chooserwizard and change
your template selections.

If at any time you wish to abandon all your changes and return to the Policies tab, click
Cancel.

10. Click Apply.

If you have one or more policy conflicts, API Gateway displays the conflicting/incompatible
policies with a Conflict icon. You can choose to resolve the policy conflicts and do a Apply,
or simply continue to Apply with conflicts.

388 webMethods API Gateway User's Guide 10.11

4 Policies

If you choose the continuewith conflicts, API Gateway sets the focus on the conflicting policies
with Conflict () icon displayed next to the policy names in the Infographic section and the
corresponding policy stages.

API Gateway will redirect you to the Policies tab. The newly applied policy template
comprising a set of policies and the policy properties is displayed in the Infographic section.

11. After you apply the required policy templates, click Save to save the updated API.

Post-requisites:

Activate the API when you are ready to put it into effect.

Modifying a Policy Template on the API Details Page
You must have the API Gateway's manage policy templates functional privilege assigned.

The Policies tab on the API details page specifies the set of policies that API Gateway executes
when an application requests access to that particular API.

The API can have a set of policies that are applied through a global policy, through a policy
template, through a scope-level policy, and through API-level policies.

To modify the details of a policy template on the API details page

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

3. Click Edit.

If the API is active, API Gateway displays a warning message to let you know that the API is
active.

4. Click the Policies tab.

The API's policy information is provided in the following sections:

Policy catalog - Threat Protection, Transport, Identify and Access, Request Processing,
Routing, Traffic Monitoring, Response Processing, Error Handling

Infographic - List of applied policies

Policy properties - Collection of policy properties

5. In the Infographic section, do the following for each policy in the list:

a. Select the policy whose properties you want to examine or set.

webMethods API Gateway User's Guide 10.11 389

4 Policies

b. In the Policy properties section, set the properties as necessary.

Note:
Required properties are marked with an asterisk.

c. Use the Delete (X) icon in any individual policy to remove that particular policy from the
Infographic section.

6. Click Open in full-screen to view policy properties in full screen mode.

The Open in full-screen button is located in the upper right-hand corner of the Policy
Configuration tab.

7. Set the properties of the displayed policy, and then click OK.

To exit full screen mode, click the Minimize icon.

8. Click Save to save the updated API.

Activate the API, if it is not active, to put it into effect.

Saving Policy Definition of an API as Policy Template
You must have the API Gateway's manage policy templates functional privilege assigned.

The Policies tab on the API details page specifies the set of policies that API Gatewaywill execute
when an application requests access to that particular API.

The API can have a set of policies that are applied through a global policy, through a policy
template, through a scope-level policy, and through API-level policies.

You can save the current policy definition of an API as a new policy template. At a later time, you
can reuse this policy template in otherAPIs. Formore information, see “Applying a Policy Template
on the API Details Page” on page 387.

To save policy definition as policy template

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

2. Select the required API.

3. Click the Policies tab.

The API's policy information is provided in the following sections:

Policy catalog - Threat Protection, Transport, Identify and Access, Request Processing,
Routing, Traffic Monitoring, Response Processing, Error Handling

390 webMethods API Gateway User's Guide 10.11

4 Policies

Infographic - List of applied policies

Policy properties - Collection of policy properties

4. Click Save as template located in the lower right-hand corner of the Infographic section.

5. In theSave as template dialog box, provide the required information for each of the displayed
data fields:

DescriptionField

Name of the policy template.Name

Description of the policy template.Description

6. Click Save.

Supported Alias and Policy Combinations

API Gateway provides a set of aliases whose runtime-specific environment variables can be used
in configuring the policy routing endpoints, routing rules, endpoint connection properties, and
outbound authentication tokens. The types of aliases whose properties you can use for the policy
configurations are:

Simple alias

Endpoint alias

HTTP transport security alias

SOAP message security alias

webMethods IS Service alias

XSLT Transformation alias

Not all policies support the full set of aliases that are available in API Gateway. Some aliases are
applicable only with certain policies and for certain policy parameters. For example, a Simple alias
applies to the routing and traffic monitoring policies, whereas an Endpoint alias applies only to
the routing policies. When you define a Straight Through Routing policy with a simple alias, the
alias property is defined using the EndpointURI field.When you define the same Straight Through
Routing policy with an endpoint alias, the alias property is defined using a set of fields - Endpoint
URI, SOAP Optimization Method, HTTP Connection Timeout, Read Timeout, Pass WS-Security
Headers, and Keystore Alias.

The following table identifies the policies and policy parameters that each alias type supports:

Simple Alias

webMethods API Gateway User's Guide 10.11 391

4 Policies

Policy Parameter NamePolicy Name

In the Straight Through Routing definition:Straight Through
Routing

Endpoint URI

In the default and custom Route To rule definitions:Content-based Routing

Endpoint URI

In the default and custom Route To rule definitions:Conditional Routing

Endpoint URI

In the Route To rule definition:Load Balancer Routing

Endpoint URI

In the default and custom Route To rule definitions:Dynamic Routing

Endpoint URI

In the Email Destination section:Log Invocation

Email Address

In the Email Destination section:Monitor Performance

Email Address

In the Email Destination section:Monitor SLA

Email Address

In the Email Destination section:Traffic Optimization

Email Address

Endpoint Alias

Policy Parameter NamePolicy Name

In the Straight Through Routing definition:Straight Through
Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

392 webMethods API Gateway User's Guide 10.11

4 Policies

Policy Parameter NamePolicy Name

Key Alias

In the default and custom Route To rule definitions:Content-based Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

Key Alias

In the default and custom Route To rule definitions:Conditional Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

Key Alias

In the Route To rule definition:Load Balancer Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

Key Alias

In the default and custom Route To rule definitions:Dynamic Routing

Endpoint URI

SOAP Optimization Method (Applicable only for SOAP APIs)

webMethods API Gateway User's Guide 10.11 393

4 Policies

Policy Parameter NamePolicy Name

HTTP Connection Timeout

Read Timeout

Pass WS-Security Headers (Applicable only for SOAP APIs)

Keystore Alias

Key Alias

HTTP Transport Security Alias

Policy Parameter NamePolicy Name

In the Authentication scheme:Outbound Auth -
Transport

Alias

SOAPMessage Security Alias (Applicable only for SOAP APIs)

Policy Parameter NamePolicy Name

In the Authentication scheme:Outbound Auth -
Message

Alias

webMethods IS Service Alias

Policy Parameter NamePolicy Name

webMethods IS Service AliasInvoke webMethods IS
(Request Processing)

webMethods IS Service AliasInvoke webMethods IS
(Response Processing)

XSLT Transformation Alias

Policy Parameter NamePolicy Name

Transformation ConfigurationRequest Transformation
(Request Processing)

Payload Transformation

XSLT Transformation alias

Transformation ConfigurationResponse
Transformation
(Response Processing) Payload Transformation

394 webMethods API Gateway User's Guide 10.11

4 Policies

Policy Parameter NamePolicy Name

XSLT Transformation alias

webMethods API Gateway User's Guide 10.11 395

4 Policies

396 webMethods API Gateway User's Guide 10.11

4 Policies

5 Aliases

■ Overview .. 398

■ Creating a Simple Alias .. 398

■ Creating an Endpoint Alias ... 399

■ Creating an HTTP Transport Security Alias .. 402

■ Creating a SOAP Message Security Alias ... 406

■ Creating a webMethods Integration Server Service Alias .. 409

■ Creating an XSLT Transformation Alias .. 410

webMethods API Gateway User's Guide 10.11 397

Overview

An alias in API Gateway holds environment-specific property values that can be used in policy
routing configuration. The aliases can be referred to in routing endpoints, routing rules, endpoint
connection properties, and outbound authentication tokens instead of providing a real value. The
corresponding alias value is substituted in place of an alias name during run-time. Thus the same
alias can be referred to in multiple policies and the change in a particular alias would affect all the
policy properties inwhich it is being referred.When anAPI is exported and imported to a different
environment, you can update the alias values specific to the environment instead of updating the
policy with environment specific values.

Not all policies support the full set of aliases that are available in API Gateway. Some aliases are
applicable onlywith certain policies and for certain policy parameters. For details, see “Supported
Alias and Policy Combinations” on page 391.

You can create six types of alias:

Simple alias

Endpoint alias

HTTP transport security alias

SOAP message security alias

webMethods IS Service alias

XSLT Transformation alias

Creating a Simple Alias

You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

A simple alias holds simple key property values. The name of the alias can be used in the
configuration of the properties of a routing policy or an email destination for the Log Invocation,
Monitor SLA, Monitor Performance, and Traffic Optimization policies.

To create a simple alias

1. Expand the menu options icon , in the title bar, and select Aliases.

2. Click Create alias.

3. In the Basic information section, provide the following information:

398 webMethods API Gateway User's Guide 10.11

5 Aliases

DescriptionField

Name of the alias.Name

Select Simple alias.Type

Description of the alias.Description

4. Click Technical information and specify a value in the Default value field.

Note:
You can specify multiple email addresses, if you are creating an email alias, for example,
abc@gmail.com, test@gmail.com, and so on.

5. Specify a stage, if you want the alias to be applicable to a specific stage.

6. Click Save.

Note:
If you want to configure this alias in the routing policies, you can follow the syntax
${aliasname}. For example, if you want to route it to an endpoint
http/mydevenv.com:7000/api, you can create a simple alias with the name mystage and its
value being http/mydevenv.com:7000. The endpoint URL can be specified in the properties
as ${mystage}/api.

Creating an Endpoint Alias

You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

An endpoint alias stores the endpoint value along with additional properties such as connection
timeout, read timeout, whether to pass security headers or not, keystore alias, key alias, and so
on.

To create an endpoint alias

1. Expand the menu options icon , in the title bar, and select Aliases.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

webMethods API Gateway User's Guide 10.11 399

5 Aliases

DescriptionField

Select Endpoint alias.Type

Description of the alias.Description

4. Click Technical information and provide the following information:

DescriptionField

This is applicable only for a SOAP API.Optimization technique

Specify the optimization technique for the SOAP request received.
Select any one of the following:

None. This is the default value. API Gateway does not use
any optimization method to parse the SOAP requests to the
API.

MTOM. Indicates thatAPIGateway expects to receive a request
with a Message Transmission Optimization Mechanism
(MTOM) attachment and forwards the attachment to the native
service.

SWA. Indicates that API Gateway expects to receive a SOAP
with Attachment (SWA) request and forwards the attachment
to the native service.

Passes the security header.Pass WS-Security
Headers

Specify the default URI or components of the URI such as service
name.

Endpoint URI

Specify the time interval (in seconds) after which a connection
attempt times out.

Connection timeout

The precedence of the Connection Timeout configuration is as
follows:

a. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global
level.

b. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then API Gateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value

400 webMethods API Gateway User's Guide 10.11

5 Aliases

DescriptionField

specified at an API level takes precedence over the global
configuration.

c. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
API Gateway uses the value specified in this
pg.endpoint.connectionTimeout property.

d. If you do not specify any value for
pg.endpoint.connectionTimeout, then API Gateway uses the
default value of 30 seconds.

Specify the time interval (in seconds) after which a socket read
attempt times out.

Read timeout

The precedence of the Read Timeout configuration is as follows:

a. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout
values defined at the API level and the global level.

b. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then API Gateway uses the value specified in
the Read Timeout field in the routing protocol processing
step of an API. The Read Timeout value specified at an API
level takes precedence over the global configuration.

c. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the
API level or specify a value 0 at an alias level, then API
Gateway uses the value specified in this
pg.endpoint.readTimeout property.

d. If you do not specify any value for pg.endpoint.readTimeout,
then API Gateway uses the default value of 30 seconds.

Specifies the keystore alias configured inAPIGateway. This value
(along with the value of Client Certificate Alias) is used for
performing SSL client authentication.

Keystore alias

Lists all available keystores. If you have not configured any
keystore, the list is empty.

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key alias

webMethods API Gateway User's Guide 10.11 401

5 Aliases

DescriptionField

Specifies the alias for the truststore that contains the list of CA
certificates that APIGateway uses to validate the trust relationship
with the native API.

Truststore alias

If you do not configure any truststore alias, it implies that API
Gateway does not validate the certificates provided by native
APIs.

Specify a stage, if you want the alias to be applicable to a specific
stage.

Stage

5. Click Save.

Creating an HTTP Transport Security Alias

You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

An HTTP Transport security alias contains transport level security information required while
accessing the native API. Transport level security that are supported in API Gateway outbound
are as follows:

HTTP Basic authentication

OAuth2 authentication

NTLM authentication

Kerberos authentication

JWT authentication

To create an HTTP transport secure alias

1. Expand the menu options icon , in the title bar, and select Aliases.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select HTTP transport security alias.Type

402 webMethods API Gateway User's Guide 10.11

5 Aliases

DescriptionField

Description of the alias.Description

4. Click Technical information and provide the following information:

DescriptionField

Specify the type of authentication you want to use while
communicating with the native API.

Authentication scheme

Select one of the following:

Basic. Uses basic authentication (user name and password).

Kerberos. Uses Kerberos authentication.

NTLM. Uses NTLM authentication.

OAuth2. Uses OAuth2 authentication.

JWT. Uses JWT authentication.

For the Authentication type Basic, authenticate using the following:

Specifies the values provided in the policy required to access the
native API.

Custom credentials

Provide the following information:

Username. Specify a username to access the native API.

Password. Specify a password to access the native API.

Domain. Specify a domain to access the native API.

No properties required. Considers the incoming HTTP basic
authentication credentials.

Incoming HTTP basic auth
credentials

For Authentication type Kerberos, authenticate using any of the following:

Specifies the values provided in the policy required to obtain
the Kerberos token to access the native API.

Custom credentials

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAPuser.

Service principal. A valid Service Principal Name (SPN).
The specified value is used by the client to obtain a service
ticket from the KDC server.

webMethods API Gateway User's Guide 10.11 403

5 Aliases

DescriptionField

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Select one of the
following:

Username. Represents the principal name as a named
user defined in LDAPused for authentication to theKDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

Specifies the values provided in the policy required by the API
providers to select whether to delegate the incoming Kerberos
token or act as a normal client.

Delegate incoming
credentials

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAPuser.

Service principal. A valid Service Principal Name (SPN).
The specified value is used by the client to obtain a service
ticket from the KDC server.

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Select one of the
following:

Username. Represents the principal name as a named
user defined in LDAPused for authentication to theKDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

Specifies the incomingHTTP basic authentication credentials in
the transport header of the incoming request for client principal
and client password.

Incoming HTTP basic auth
credentials

Provide the following information:

Service principal. A valid Service Principal Name (SPN).
The specified value is used by the client to obtain a service
ticket from the KDC server.

404 webMethods API Gateway User's Guide 10.11

5 Aliases

DescriptionField

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Available values are:

Username. Represents the principal name as a named
user defined in LDAPused for authentication to theKDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

No properties required. Considers the incoming kerberos
credentials.

Incoming kerberos
credentials

For Authentication type NTLM, authenticate using any of the following:

Specifies the credentials that are required for the NTLM
handshake.

Custom credentials

Provide the following information:

Username. Name of a consumer who is available in the
Integration Server on which API Gateway is running.

Password. A valid password of the consumer.

Domain. The domain used by the server to authenticate the
consumer.

No properties required. Considers the incoming HTTP basic
authentication credentials.

Incoming HTTP basic auth
credentials

No properties required.Transparent

For the Authentication type OAuth2, authenticate using any of the following:

Specifies the OAuth2 token value that would be added as bearer
token in the transport header while accessing the native API.

Custom credentials

Considers the incoming OAuth token to access the native API.Incoming OAuth token

For Authentication type JWT, authenticate using any of the following:

Considers the incoming JSON web token to access the native
API.

Incoming JWT

5. Specify a stage, if you want the alias to be applicable to a specific stage.

6. Click Save.

webMethods API Gateway User's Guide 10.11 405

5 Aliases

Creating a SOAP Message Security Alias

You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

A SOAP message security alias contains message level security information that is requires to
access the native API. If the native service is enforced with any WS security policy, API Gateway
enforces those policies in the outbound request while accessing the native API using the
configuration parameters specified in the alias.

To create SOAP message secure alias

1. Expand the menu options icon , in the title bar, and select Aliases.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select SOAP message secure alias.Type

Description of the alias.Description

4. Click Technical information and provide the following information:

DescriptionField

Specify the type of authentication scheme you want to use to
authenticate the client.

Authentication scheme

Available values are:

None. Does not use any authentication types to authenticate
the client.

WSS Username. Generates aWSSusername token and sends
it in the soap header to the native API.

Kerberos. Fetches a Kerberos token and sends it to the native
API.

SAML. Fetches a SAML token and sends it to the native API.

For Authentication scheme None. Does not require any properties.

406 webMethods API Gateway User's Guide 10.11

5 Aliases

DescriptionField

For Authentication type WSS Username, authenticate using any of the following:

Specifies the values provided in the policy to be used to obtain
the WSS username token to access the native API.

Custom credentials

Provide the following information:

Username. Specifies a username used to generate the WSS
username token.

Password. Specifies the password used to generate the WSS
username token.

For Authentication type Kerberos, authenticate using any of the following:

Uses the Basic authentication credentials coming in the transport
header of the incoming request for client principal and client
password.

Custom Credentials

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAP user.

Service principal. A valid Service Principal Name (SPN). The
specified value is used by the client to obtain a service ticket
from the KDC server.

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Select one of the
following:

Username. Represents the principal name as a named
user defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

Specifies the values provided in the policy to be used by the API
providers to select whether to delegate the incoming Kerberos
token or act as a normal client.

Delegate incoming
credentials

Provide the following information:

Client principal. A valid client LDAP user name.

Client password. A valid password of the client LDAP user.

webMethods API Gateway User's Guide 10.11 407

5 Aliases

DescriptionField

Service principal. A valid Service Principal Name (SPN). The
specified value is used by the client to obtain a service ticket
from the KDC server.

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Available values are:

Username. Represents the principal name as a named
user defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

Specifies the incoming HTTP basic authentication credentials to
access the native API.

Incoming HTTP basic
auth credentials

Provide the following information:

Service principal nameform. Specifies the format in which
you want to specify the principal name of the service that is
registered with the principal database. Select one of the
following:

Username. Represents the principal name as a named
user defined in LDAP used for authentication to the KDC.

Hostbased. Represents the principal name using the
service name and the host name, where host name is the
host computer.

For Authentication type SAML

Specifies the SAML issuer configuration that is used by the API
Gateway to fetch the SAML token which is then added in the
SOAP header and sent to the native API.

SAML issuer
configuration

This field is visible and required only if you have configured a
SAML issuer inAdministration >Security >SAML issuer section.

Signing configurations

Specify the keystore that needs to be used by API Gateway while
sending the request to the native API. A keystore is a repository
of private key and its corresponding public certificate.

Keystore alias

The key alias is the private key that is used sign the request sent
to the native API.

Key alias

Encryption configurations

408 webMethods API Gateway User's Guide 10.11

5 Aliases

DescriptionField

Select the truststore to be used by API Gateway when sending
the request to the native API. Truststore is a repository that holds
all the trusted public certificates.

Truststore alias

Select the certificate from the truststore that is used to encrypt the
request that is sent to the native API.

Certificate alias

Specify a stage, if you want the alias to be applicable to a specific
stage.

Stage

5. Click Save.

Creating a webMethods Integration Server Service Alias

You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

A webMethods Integration Server service alias holds the IS service value. The name of the alias
can be used to invoke the Invoke webMethods IS policy for request and response processing.

To create a webMethods IS service alias

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select webMethods IS Service alias.Type

Description of the alias.Description

4. Click Technical information and provide the following information:

DescriptionField

Specify the IS service name.Service name

Note:

webMethods API Gateway User's Guide 10.11 409

5 Aliases

DescriptionField

The IS service must be available in the
Integration Server, to which the aliases are
deployed.

Select . Comply to IS Spec, if you want the input
and the output parameters to comply to the IS
Spec specified.

Comply to IS Spec

(pub.apigateway.invokeISService
.specifications)

Specify a stage, if you want the alias to be
applicable to a specific stage.

Stage

5. Click Save.

Creating an XSLT Transformation Alias

You must have the API Gateway's manage aliases functional privilege assigned to perform this
task.

An XSLT transformation alias holds a list of XSLT style sheets. The name of the alias can be used
in the XSLT Transformation policies for request and response processing.

To create a transformation alias

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Create alias.

3. In the Basic information section, provide the following information:

DescriptionField

Name of the alias.Name

Select XSLT Transformation alias.Type

Description of the alias.Description

4. Click Technical information and browse and select an XSLT style sheet in the Select
transformation file field.

5. Specify a stage, if you want the alias to be applicable to a specific stage.

6. Click Save.

410 webMethods API Gateway User's Guide 10.11

5 Aliases

6 Applications

■ Overview .. 412

■ Creating an Application .. 413

■ Viewing List of Applications and Subscriptions .. 422

■ Regenerating API Access Key ... 422

■ Modifying Application Details ... 423

■ Registering an API with Consumer Applications from API Details Page 424

■ Suspending an Application ... 424

■ Activating a Suspended Application ... 425

webMethods API Gateway User's Guide 10.11 411

Overview

An application defines the precise identifiers by which messages from a particular application is
recognized at run time. The identifiers can be, for example, user name in HTTP headers, a range
of IP addresses, such that API Gateway can identify or authenticate the applications that are
requesting an API.

The ability of API Gateway to relate a message to a specific application enables it to:

Control access to an API at run time (that is, allow only authorized applications to invoke an
API).

Monitor an API for violations of a Service-Level Agreement (SLA) for a specified application.

Indicate the application to which a logged transaction event belongs.

An application has the following attributes for specifying the identifiers:

IP address, which specifies one or more IP addresses that identify requests from a particular
application. Example: 192.168.0.10

This attribute is queried when the Identify & Authorize policy is configured to identify
applications using IP address.

Claims set, which specifies one or more claims that identify requests from a particular
application. The claims are a set of name-value pairs that provide sufficient information about
the application. Example: sub = Administrator.

This attribute is queried when the Identify & Authorize policy is configured to identify
applications using a JWT token or an OpenID token.

Client certificate, which specifies the X.509 certificates that identify requests from a particular
application.

This attribute is queried when the Identify & Authorize policy is configured to identify the
applications by a client certificate.

Identification token, which specifies the host names, user names or other distinguishing strings
that identify requests from a particular application.

This attribute is queried when the Identify & Authorize policy action is configured to identify
applications by host name, token, HTTP user name, and WSS user name.

You can configure various authentication strategies to authenticate an incoming request to the
application. You can create multiple strategies authorized by an API for an application. These
strategies provide multiple authentication mechanisms or multiple authorization servers for a
single authentication scheme. For example, in case of OAuth authentication scheme, youwant the
application to support both OKTA and PINGFederate or OKTA with multiple tenants. This can
be configured as OAuth strategy for the application.

If you have the Manage Application functional privilege assigned, you can create and manage
applications, and register applications with the APIs.

412 webMethods API Gateway User's Guide 10.11

6 Applications

These are the high level stages of managing and using an application:

1. API developers request the API Gateway administrators to create an application for access as
per the required identification criteria.

2. API Gateway provider or administrator validates the request and creates a new application,
there by provisioning the application specific access tokens (API access key and OAuth
credentials).

3. API Developer, upon finding a suitable API, sends a request to API Gateway for consumption
by providing the application details.

4. After validating the request, APIGateway provider or administrator associates the application
with the API. Keys are generated for applications and not for every API that the application
consumes.

Note:
The approval process, if any, is handled by the requesting application and not handled by
API Gateway.

5. The API developer can then use the application with the proper identifier (such as the access
key or identifier) to access the API.

API key expiration date

An API Gateway application has an optional expiration date for its API key. When the API access
key expires, the application cannot be identified. The API Gateway Administrator can configure
the apiKeyExpirationPeriod parameter from the General > Extended settings page. If the
expiration date is not specified, then the API key never expires.

Suspended Applications

You can suspend applications so as to disable the identification of requests temporarily. If a
suspended application is identified while processing a request the request is rejected with HTTP
403 (Forbidden) error. The response body has the following content:
Application has been identified but it is currently suspended. Please contact
the API Gateway administrator for further details.

You can resume the suspended applications to enable the identification again.

Creating an Application

You must have the API Gateway's manage applications functional privilege assigned to perform
this task.

You can create an application from the Applications page.

To create an application

1. Click Applications in the title navigation bar.

webMethods API Gateway User's Guide 10.11 413

6 Applications

2. Click Create application.

3. Provide the following information in the Basic information section:

DescriptionField

Type a name for the application.Name

Version of the application. By default it is 1.0 but can be
modified to a required value.

Version

This field is visible when the enableTeamWork is set to true
in theAdministration >General >Extended Settings section.

Team

Team to which the application must be assigned to. You can
select more than one team.

To remove a team, click the icon next to the team.

Type a description of the application.Description

This field is visible when Approval configuration for Create
application is enabled in the Administration > General >
Approval Configuration > Create application section.

Requestor comment

4. Click Continue to Identifiers >.

Alternatively, you can click Identifiers in the left navigation panel.

You can save the application by clicking Save at this stage and add the Identifiers and APIs
at a later time.

5. Provide the following information in the Identifiers section:

DescriptionField

Provide the IP address range or range of trusted IPv4 or IPv6
addresses that identify requests from a particular application.

IP address range

You can add more range options by clicking +Add and adding
the required information.

Specifies the third-party partner's identity.Partner identifier

The specified partner can access the APIs if business-to-business
communication between trading partners is enabled and where
partners can invoke the exposed APIs to exchange information.

For example, if you have enabled business-to-business
communication between trading partners using APIs, partners

414 webMethods API Gateway User's Guide 10.11

6 Applications

DescriptionField

can invoke the exposed APIs to exchange information. These
APIs are available by associating Trading Networks with API
Gateway. A partner can access theAPIs that appear in the Partner
Profiles and associated Partner Groups page. Once APIs are
added as part of Partner, respective application is created in API
Gatewaywith namepartnerName Application and appropriate
Partner ID.

Formore details on information on enabling business-to-business
communication between trading partners and required
configuration, see webMethods Trading Networks Administrator’s
Guide

Note:
No identification or enforcement of application happens in
API Gateway using this identifier.

Click Browse and select the client certificate or certificate chain
to be uploaded. The client certificate specifies the X.509
certificates that requests from a particular application.

Client certificates

Note:
APIGateway supports .cer and .pem certificates for identifying
consumer applications.

You can add multiple certificates by clicking +Add.

Provide a set of claims for the JWT and OpenID clients.Claims

Aclaim is a unique identifying information that identify requests
fromaparticular consumer application. The claim set is identified
by a unique Name and is defined as a name-value pair that
consists of a Claim name and a Claim value.

You can add more claims and claims sets by clicking +Add and
adding the required information.

Specify the HTTP header key to identify the requests from an
application.

Header key

Specify the HTTP header value to identify the requests from an
application.

Header value

You can add multiple header key and value by clicking +Add

Select one of the options to identify requests from a particular
application and provide the required value:

Other identifiers

webMethods API Gateway User's Guide 10.11 415

6 Applications

DescriptionField

Hostname. The host name to identify requests from an
application.

Payload identifier.The payload identifier to identify requests
from an application.

Team. The team to identify requests from an application. A
team can contain one or more groups or LDAP groups the
application can be identified against a user belonging to any
of these groups by the specified team.

Token. The token to identify requests from an application.

Username. The username credential to identify requests
from an application.

WS-Security username. The WSS username to identify
requests from an application.

6. Click Continue to APIs >

Alternatively you can click APIs in the left navigation panel.

You can save the application by clicking Save at this stage and add the APIs at a later time.

7. Type a keyword to find the required API and click + to add the API.

Adding an API to the application enables the application to access the API. An API developer
while invoking the API at runtime, has to provide the access token or identification token for
API Gateway to identify the application.

8. Type the required Requestor comment.

9. Click Continue to Advanced >

Alternatively you can click Advanced in the left navigation panel.

You can save the application by clicking Save at this stage and add the APIs at a later time.

10. Specify the origin fromwhich the responses originating are allowedduring response processing
for the application.

Note:
You cannot provide Regular expressions for allowed origins.

11. Click +Add to add the origin.

You can add multiple origins using .

416 webMethods API Gateway User's Guide 10.11

6 Applications

12. Click Continue to Authentication >

Alternatively you can click Authentication in the left navigation panel.

You can save the application by clickingSave at this stage and add theAuthentication strategy
at a later time.

13. Click Create strategy.

A strategy is a way to authenticate the incoming request and providesmultiple authentication
mechanisms or multiple authorization servers for a single authentication scheme. You can
create multiple strategies authorized by an API for an application.

14. Select one of the Authentication schemes:

OAUTH2. Provide the following information:

DescriptionField

Provide the name for the strategy.Name

Provide a description to describe the strategy.Description

Specify the authentication server.Authentication server

The available values are local, which is the default server or
any other configured external authorization server.

Provide a value or URI, the intended recipient of the
authorization server scope.

Audience

The application that receives the token verifies that the
audience value is correct and rejects any tokens intended for
a different audience.

Enable the toggle button to generate the client dynamically in
the authorization server andprovide the following information:

Generate Credentials

Type. Select one of the client types:

Confidential. A confidential client is an application
that is capable of keeping a client password confidential
to the world. This client password is assigned to the
client app by the authorization server. This password
is used to identify the client to the authorization server,
to avoid fraud. An example of a confidential client
could be aweb app,where no one but the administrator
can get access to the server, and see the client password.

Public. A public client is an application that is not
capable of keeping a client password confidential. For
instance, a mobile phone application or a desktop

webMethods API Gateway User's Guide 10.11 417

6 Applications

DescriptionField

application that has the client password embedded
inside it. Such an application could get cracked, and
this could reveal the password. The same is true for a
JavaScript application running in the users browser.
The user could use a JavaScript debugger to look into
the application, and see the client password.

Application type. Specify the application type.

WEB. A web application is an application running on
a web server. In reality, a web application typically
consists of both a browser part and a server part. The
client password could be stored on the server. The
password would thus be confidential.

USER_AGENT. A user agent application is for instance
a JavaScript application running in a browser. The
browser is the user agent. A user agent applicationmay
be stored on a web server, but the application is only
running in the user agent once downloaded.

NATIVE. A native application is for instance a desktop
application or a mobile phone application. Native
applications are typically installed on the users
computer or device (phone, tablet etc.). Thus, the client
password will be stored on the users computer or
device too.

Token lifetime. Specify the token lifetime in seconds for
which the token is active

Token refresh limit. Specify the number of times you can
use the refresh token to get a new access token.

Redirect URIs. Specify the URIs that the authorization
server can use to redirect the resource owner's browser
during the grant process. You can add multiple URIs by
clicking +Add.

Grant type. Specify the grant type to be used to generate
the credentials. Available options can be
authorization_code, password, client_credentials,
refresh_token, and implicit, which are dynamically
populated from the authorization server. For example, if
the authorization server does not support client credentials,
the option is not available in the options list.

Scopes. Select the scopes that are to mapped for the
authentication strategy.

418 webMethods API Gateway User's Guide 10.11

6 Applications

DescriptionField

Note:
in API Gateway 10.2, the scopes are automatically
created when you associate an API to an application.
From API Gateway 10.3 onwards you have to select
scopes from the authorization server that have to be
associated with the strategy.

Specify the Client identifier for a client application available
in the authorization server that identifies the client application

Client id

in the authorization server to map the client to the API
Gateway application.

This is required if you have a client application available in the
authorization server and do not want to dynamically create a client.

JWT. Provide the following information:

DescriptionField

Provide the name for the strategy.Name

Provide a description to describe the strategy.Description

Specify the authentication server.Authentication server

The possible values are local, which is the default server or
any other configured external authorization server.

Provide a value or URI, the intended recipient of the
authorization server scope.

Audience

The application that receives the token verifies that the
audience value is correct and rejects any tokens intended for
a different audience.

Select if the authorization server is returning a JWT with
HMAC algorithm and provide the shared secret value to
validate the JWT.

HMAC algorithm

OPENID. Provide the following information:

DescriptionField

Provide the name for the strategy.Name

Provide a description to describe the strategy.Description

Specify the authentication server.Authentication server

webMethods API Gateway User's Guide 10.11 419

6 Applications

DescriptionField

The available values are local, which is the default server or
any other configured external authorization server.

Provide a value or URI, the intended recipient of the
authorization server scope.

Audience

The application that receives the token verifies that the
audience value is correct and rejects any tokens intended for
a different audience.

Enable the toggle button to generate the credentials required
to identify the client application and provide the following
information:

Generate Credentials

Type. Select the client type, Public or Confidential

Confidential. A confidential client is an application
that is capable of keeping a client password confidential
to the world. This client password is assigned to the
client app by the authorization server. This password
is used to identify the client to the authorization server,
to avoid fraud. An example of a confidential client
could be aweb app,where no one but the administrator
can get access to the server, and see the client password.

Public. A public client is an application that is not
capable of keeping a client password confidential. For
instance, a mobile phone application or a desktop
application that has the client password embedded
inside it. Such an application could get cracked, and
this could reveal the password. The same is true for a
JavaScript application running in the users browser.
The user could use a JavaScript debugger to look into
the application, and see the client password.

Application type. Specify the application type.

WEB. A web application is an application running on
a web server. In reality, a web application typically
consists of both a browser part and a server part. The
client password could be stored on the server. The
password would thus be confidential.

USER_AGENT. A user agent application is for instance
a JavaScript application running in a browser. The
browser is the user agent. A user agent applicationmay
be stored on a web server, but the application is only
running in the user agent once downloaded.

420 webMethods API Gateway User's Guide 10.11

6 Applications

DescriptionField

NATIVE. A native application is for instance a desktop
application or a mobile phone application. Native
applications are typically installed on the users
computer or device (phone, tablet etc.). Thus, the client
password will be stored on the users computer or
device too.

Token lifetime. Specify the token lifetime in seconds for
which the token is active.

Token refresh limit. Specify the time in seconds forwhich
the token refresh is applicable.

Redirect URIs. Specify the URIs that the authorization
server can use to redirect the resource owner's browser
during the grant process. You can add multiple URIs by
clicking +Add.

Grant type. Specify the grant type to be used to generate
the credentials. Available options areAuthorization code,
Implicit, Resource owner, Client credentials.

Scopes. Select the scopes that are to be associated to the
generated client.

Note:
In API Gateway 10.2, the scopes are automatically
created when you associate an API to an application.
From API Gateway 10.3 onwards you have to select
scopes from the authorization server that have to be
associated with the strategy.

Specify the Client identifier that identifies the client application
in the authorization server to map the client to the API
Gateway application.

Client id

This is required if you do not choose to generate credentials
to identify the client application.

15. Click Add.

The strategy is configured and listed in the Strategies table.

Note:
API Gateway allows you to generate a new Client ID and Client Secret for an existing
strategy. However, once the credentials are generated for a strategy, it can no longer be
removed. The Generate credentials toggle is disabled in the UI when you update a strategy.

webMethods API Gateway User's Guide 10.11 421

6 Applications

16. Click Save.

The application creation request is sent for approval. If you are one of the approvers, then the
application creation request is automatically approved, the application is created, and listed
in the Manage applications page.

Viewing List of Applications and Subscriptions

You can view the list of applications and subscriptions in the Manage applications page from
where you can create, delete, and select an application to view its details.

To view the application list and application and subscription details

1. Click Applications in the title navigation bar.

A list of all registered applications and subscriptions appear.

denotes application.

denotes subscription.

2. Select an application.

The application details page displays the following information: basic information that contains
details such as name, description, owner, and creation time, identifiers, access tokens, APIs
registered for the application, advanced configurations, and authentication strategies configured
for the application.

Application credentials, such as, API Keys or OAuth client secrets are visible only to the
application owner. All other users can only see an encrypted value. Since API Portal and API
Gateway do not support a central user management, API Gateway users cannot see the
application credentials of the application requested through API Portal.

3. Select a subscription.

You can view the applications and the associated package, plan, used quota, start time, end
time, and the remaining period of the subscription.

Note:
You cannot create a subscription from this page. To create a subscription, use the subscription
API. For details about creating subscriptions using a REST API, see“Subscription
Management” on page 584. You can also create a subscription from the API Portal.

Regenerating API Access Key

You must have the API Gateway's manage applications functional privilege assigned to perform
this task.

422 webMethods API Gateway User's Guide 10.11

6 Applications

You can regenerate an API access key in the Application details page from where you can view
application details.

Only the API owner can view the API access key field. This field is masked in the identification
profile for all other users. An administrator can renew or revoke the API access key but cannot
view it.

To regenerate an API key

1. Click Applications in the title navigation bar.

A list of all registered applications is displayed.

2. Select an application.

The application details page displays the basic information, identifiers, access tokens, API key,
APIs registered and strategies configured for that application.

3. Click .

The API access key is regenerated and the new API access key appears in the API access key
field.

Modifying Application Details

You can modify the details of an application as required from the application details page.

To modify application details

1. Click Applications in the title navigation bar.

A list of registered applications is displayed.

2. Select an application.

3. Click Edit in the application details page.

4. Modify the required fields in the Basic information section.

5. Click Identifiers.

6. Modify the required fields in the Identifiers section.

7. Click APIs.

8. Add or delete the APIs that are registered.

webMethods API Gateway User's Guide 10.11 423

6 Applications

9. Modify the strategies or create a new strategy.

10. Modify the required values.

11. Click Save.

Registering an API with Consumer Applications from API Details
Page

Consumer applications created in API Gateway can be associated with APIs from the API details
page.

To register APIs with consumer applications

1. Click APIs in the title navigation bar.

A list of APIs is displayed.

2. Select an API.

3. Click Edit in the API details page.

4. Click Application tab in the API details page.

5. Type characters in the search field and click the Search icon.

This field displays the only list of applications that are assigned to the teams that you are a
part of.

6. Select the required applications and click +.

You can add more applications in a similar way.

7. Click Save.

Suspending an Application

Youmust have the API Gateway's manage applications functional privilege assigned or youmust
be the owner of the application to perform this task.

You can suspend an application from the Applications details page.

To suspend an application

1. Click Applications in the title navigation bar.

424 webMethods API Gateway User's Guide 10.11

6 Applications

A list of all the available applications are displayed.

2. Click the toggle button (Active state), in the action column for the respective application,
to suspend the application.

Alternatively, you can click Suspend in the application details page.

3. Click Yes in the confirmation dialog box.

The application is suspended. The toggle button in the Applications page changes to
(suspended state) and the option in the application details page changes to Suspend.

Activating a Suspended Application

Youmust have the API Gateway's manage applications functional privilege assigned or youmust
be the owner of the application to perform this task.

You can activate a suspended application, from the Applications details page, which enables the
identification again.

To activate a suspended application

1. Click Applications in the title navigation bar.

A list of all the available applications are displayed.

2. Click the toggle button (suspended state), in the action column for the respective
application, to activate the application.

Alternatively, you can click Activate in the application details page.

3. Click Yes in the confirmation dialog box.

The application resumes. The toggle button in the Applications page changes to (active
state) and the option in the application details page changes to Suspend.

webMethods API Gateway User's Guide 10.11 425

6 Applications

426 webMethods API Gateway User's Guide 10.11

6 Applications

7 API Packages and Plans

■ Overview .. 428

■ Creating a Package .. 429

■ Creating a Plan ... 432

■ Activating a Package .. 438

■ Publishing a Package ... 439

■ Viewing List of Packages and Package Details .. 440

■ Viewing List of Plans and Plan Details ... 440

■ Viewing a List of Subscriptions ... 440

■ Modifying a Package .. 441

■ Deleting a Package .. 442

■ Modifying a Plan ... 442

■ Deleting a Plan ... 444

webMethods API Gateway User's Guide 10.11 427

Overview

Once you create and configure your APIs in API Gateway, you can create a monetization strategy
for your APIs. API Gateway allows you to create packages and plans. As an API provider or API
productmanager, you can configure the packages and plans as per your organization requirements
to monetize your APIs.

For the purpose of monetization, when you add an API to a package, the API key authentication
mechanism is automatically added to the IAM policy at API level. If the API already contains an
IAMpolicy that has two ormore authenticationmechanismswith theAND condition, the condition
will be switched to OR. This is done to ensure that the monetization is supported for consumers
who access the API using only the API key.

The general flow to monetize APIs is as follows:

In a typical API Monetization solution, you have the following components:

API Gateway - You can create APIs, packages and plans and host them in API Gateway. In
addition you can enforce quota and rate limits and monitor the API usage.

Note:
If the intent is not monetization, and if the need is just to rate-limit the API consumption,
apply the Traffic optimization policy. . For information about the policy, see “Traffic
Optimization” on page 299.

Billing solution - You can translate the APIs, Packages, and Plans are into billable products.
You can perform customer information and billing related activities here, based on the usage
quota.

428 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

API Portal - Here consumers find and subscribe to the API packages and plans.

You can create an end-to-end monetization experience by integrating these components.

Note:
With API Gateway 10.11, you can create subscription by using the Subscription REST API. For
more details about this API, see “Subscription Management” on page 584.

API Gateway does not support billing solution. However, it provides the following extensions,
which you can use to integrate with a billing system.

APIs to create, read, update, delete the APIs, packages, plans, and subscriptions.

Extensible model that enables extending meta data for packages, plans, and subscriptions to
store additional (billing or consumer related) data.

Auditing and lifecycle - Provides support to track the changes to assets. You can use the Search
API to retrieve the audit data or you can configure the audit data to be pushed to different
destinations as and when there is a change. For more details about Search API, see “API
Gateway Search” on page 577. For more details about custom destination, seewebMethods API
Gateway Administration.

Monitoring and notifications - API Gateway monitors the usage and transactions. APIs are
available to retrieve the monitoring and transactions data or you can configure API Gateway
to push this data to different destinations. Alerts can be configured to be sent to different
destinations for different metrics. To learn more, see “Transaction Data” on page 582.

Usage metrics - API Gateway provides APIs to retrieve the usage information per API or a
subscription. You can use this data to determine the quota usage and for billing purposes.

Note:
To view usage metrics, you must either add log invocation policy to each API or use global
policy to generate transaction events.

On the API Gateway to API Portal integration, API Gateway provides support for publishing
APIs, packages and plans to API Portal and also provides support for creating subscriptions from
the API Portal. Additionally, API Gateway pushes API transactions to API Portal.

Creating a Package

You must have the API Gateway's manage packages and plans functional privilege assigned to
perform this task.

AnAPI Package refers to a logical grouping ofmultipleAPIs from a singleAPI provider. A package
can contain one or more APIs and an API can belong tomore than one package. You can subscribe
to a package from the API Portal or using the SubscriptionAPIs. To learnmore about Subscription
APIs, see “Subscription Management” on page 584.

You can create an API Package from the Manage packages and plans page.

To create an API Package

webMethods API Gateway User's Guide 10.11 429

7 API Packages and Plans

1. Click Packages in the title navigation bar.

2. Click Create in the Manage packages and plans section.

3. Select Package.

4. Click Create.

5. Provide the following information in the Basic information section:

DescriptionField

Name of the API package.Name

Version assigned for the API package.Version

Team to which the applicationmust be assigned to. You can select

more than one team. To remove a team, click the icon next to
the team.

Team

A brief description for the API package.Description

An icon that is displayed for the API package.Icon

Click Browse and select the required image to be displayed as the
icon for the API package. The icon size should not be more than
100 KB.

You can save the API package at this point and add the plans at a later time. The above fields
are basic fields, provided by API Gateway.

6. Click Additional information to create custom fields for your package.

You can use these fields to extendmeta data for Packages to store additional (billing/consumer
related) data. For example, you can create an additional field calledCategory,which determines
the category of a package. You can add drop-down values like gold, silver, and bronze. So you
can now categorize packages as gold package, silver package, and so on.

430 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

7. Click Add field to create a new custom field.

8. (Optional) Click Add to add multiple custom fields.

9. Provide the following information:

DescriptionField

Name of the custom field.Name

Value for the custom field.Field Value

A brief description for the custom field.Description

10. Click Save.

11. Click Plans in the left navigation pane.

12. Select the plans that are to be associated with the API package.

You can save the API package at this point and add APIs at a later time.

13. Click Continue to add APIs.

Alternatively, click APIs in the left navigation pane.

For the purpose ofmonetization,when you add anAPI to a package, theAPI key authentication
mechanism is automatically added to the IAM policy at API level. If the API already contains
an IAM policy that has two or more authentication mechanisms with the AND condition, the
condition will be switched to OR. This is done to ensure that the monetization is supported
for consumers who access the API using only the API key.

webMethods API Gateway User's Guide 10.11 431

7 API Packages and Plans

14. Type characters in the search box and click the search icon to search for the required APIs.

A list of APIs that contain the characters specified in the search box appears.

15. Select the required APIs to be associated with the Package and click + to add them.

You can delete the APIs from the package by clicking the Delete icon adjacent to the API in
the API list.

16. Click Save.

Creating a Plan

You must have the API Gateway's manage packages and plans functional privilege assigned to
perform this task.

An API Plan is the contract proposal presented to consumers who are about to subscribe to APIs.
Plans are offered as tiered offerings with varying availability guarantees, SLAs or cost structures
associated with them. An API package can be associated with multiple plans at a time. This helps
the API providers in providing tiered access to their APIs to allow different service levels and
pricing plans. Though you can edit or delete a plan that has subscribers, Software AG recommends
you not to do so.

You can create packages and plans, associate a planwith a package, associate APIswith a package,
view the list of packages, package details, and APIs and plans associated with the package in the
API Gateway user interface.

You can create a plan from the Manage packages and plans page.

To create a plan

1. Click Packages in the title navigation bar.

2. Click Create in the Manage packages and plans section.

3. Select Plan.

4. Click Create.

5. Provide the following information in the Basic information section:

DescriptionField

Name of the plan.Name

Version assigned for the plan.Version

432 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

DescriptionField

Team towhich the applicationmust be assigned to. You can select

more than one team. To remove a team, click the icon next to
the team.

Team

A brief description for the plan.Description

An icon that is displayed for the plan.Icon

Click Browse and select the required image to be displayed as the
icon for the plan. The icon size should not be more than 100 KB.

You can save the API package at this point and add the plans at a later time. The above fields
are basic fields, provided byAPIGateway. You can add additional information in theAdditional
information section.

6. Click Additional information to create custom fields for your plan.

You can use these fields to extendmeta data for Packages to store additional (billing/consumer
related) data. For example, you can have a field called plan type. This field can have drop-down
values called prepaid and postpaid. You can categorize all the plans as either prepaid or
postpaid plans.

7. Click Add field to create a new custom field.

8. (Optional) Click Add to add multiple custom fields.

9. Provide the following information:

webMethods API Gateway User's Guide 10.11 433

7 API Packages and Plans

DescriptionField

Name of the custom field.Name

Value for the custom field.Field Value

A brief description for the custom field.Description

10. Click Save.

11. Click Pricing in the left navigation pane.

12. Provide the following information in the Pricing section:

DescriptionField

Specifies the cost for the plan.Cost

Specifies the terms of conditions for the pricing.Terms

Specifies the license information.License

You can save the plan at this point and provide traffic optimization configurations at a later
time.

13. Click Continue to Quality of Service.

Alternatively, click Rate limits in the left navigation pane.

Note:
If the intent is not monetization, and if the need is just to rate-limit the API consumption,
apply the Traffic optimization policy. . For information about the policy, see “Traffic
Optimization” on page 299.

14. Click + Add Rule.

15. Provide the following information in the Create Rule section:

DescriptionField

Specifies the maximum number of requests handled.Maximum request count

Value provided should be an integer.

Specifies the value for the interval forwhich themaximum request
count is handled.

Interval

Value provided should be an integer.

434 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

DescriptionField

Specifies the unit ofmeasurement of the time interval. For example:Interval unit

Minutes

Hours

Days

Calendar Week. The plan starts on the first day of the week
and ends on the last day of the week. By default, the start day
of the week is set to Monday.

For example:

If you subscribe to a package on aWednesday and Interval
is set to 1, the validity of the plan ends on Sunday, that is,
5 days.

If you subscribe to a package on aWednesday and Interval
is set to 2, the validity of the plan still ends on Sunday, but
the validity of the plan is two calendar weeks, that is 12
days.

You can change the start day of the week using the extended
setting startDayOfTheWeek in the Administration > General
> Extended settings section. Restart the API Gateway server
for the changes to take effect.

CalendarMonth. Starts on the first day of themonth and ends
on the last day of the month.

For example:

If you subscribe to a package in the month of August and
Interval is set to 1, the validity of the plan ends on the last
day of August.

If you subscribe to a package in the month of August and
Interval is set to 2, the validity of the plan ends in two
calendar months, that is on the last day of September.

Specifies how frequently to send alerts toAPIGatewaydestination
when the Rate limits condition is violated.

Alert frequency

Select one of the options:

Only Once. Triggers an alert only the first time one of the
specified conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

webMethods API Gateway User's Guide 10.11 435

7 API Packages and Plans

DescriptionField

Specifies the text that appears when the rule is violated.Violation message

16. Click Ok.

This creates the rule and displays it in the Configured rules table. Click + Add rule to add
more rules. You can edit or delete the rules by clicking the Edit and the Delete icons
respectively.

At a later time, when this plan is applied to an API through a package, the rules that you
configured for this plan are enforced on the applied API.

17. Click Quota and provide the following information in the Quota settings section.

DescriptionField

Specifies the maximum number of requests handled.Maximum request quota

Value provided should be an integer.

When selected, it specifies that the access to the API is blocked
when there is a rule violation. Also, a notification is sent to API
Gateway destination depending on the Alert frequency.

Block on breach

By default, this option is not selected.

Specifies the value for the interval forwhich themaximum request
quota is handled.

Interval

Value provided should be an integer.

Specifies the unit ofmeasurement of the time interval. For example:Interval unit

Minutes

Hours

Days

Calendar Week. The plan starts on the first day of the week
and ends on the last day of the week. By default, the start day
of the week is set to Monday.

For example:

If you subscribe to a package on aWednesday and Interval
is set to 1, the validity of the plan ends on Sunday, that is,
5 days.

If you subscribe to a package on aWednesday and Interval
is set to 2, the validity of the plan still ends on Sunday, but

436 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

DescriptionField

the validity of the plan is two calendar weeks, that is 12
days.

You can change the start day of the week using the extended
setting startDayOfTheWeek in the Administration > General
> Extended settings section. Restart the API Gateway server
for the changes to take effect.

CalendarMonth. Starts on the first day of themonth and ends
on the last day of the month.

For example:

If you subscribe to a package in the month of August and
Interval is set to 1, the validity of the plan ends on the last
day of August.

If you subscribe to a package in the month of August and
Interval is set to 2, the validity of the plan ends in two
calendar months, that is on the last day of September.

Specifies how frequently to send alerts toAPIGatewaydestination
when the Quota condition is violated.

Alert frequency

Select one of the options:

Only Once. Triggers an alert only the first time one of the
specified conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text that displays when the policy is violated.Violation message

Specifies whether notifications are to be sent on rule violations.Notification settings

Enable the toggle button to enable the notifications and provide
the following information:

Notify after (in %). Provide a value which is a number. A
notification is sent to the configured email IDs once the total
request count reaches the%value as provided in themaximum
quota value.

Violation message. Provide the content of the mail that is
sent to the configured email Ids once the quota request count
reaches the limit specified.

Email Ids. Provide an email Id of the recipient to which
notifications have to be sent once the quota request count

webMethods API Gateway User's Guide 10.11 437

7 API Packages and Plans

DescriptionField

reaches the limit specified. Click to add multiple
recipients.

Note:
The SMTP settings under Administrator settings >
Destinations has to be provided for an email to be sent.

Send Digital Events

Custom destination. Select customdestinations towhich the
notification must be sent. You can select multiple custom
destinations. The custom destinations displayed in this field
are populated from the customdestinations, configured in the
Administration > Destinations > Custom destinationspage.

Important:
Incase of a server crash or restart, the quota status is determined by the value set in the
pgmen.quotaSurvival.addLostIntervals property and works as follows:

If the property is set to false, remaining time in quota is retained even after a restart or
crash. For example, If quota is of 60 minutes and 7 minutes was used before the server
crash or restart, then quota remaining time of 53 minutes is retained after server crash
or restart, if the property is set to false.
If the property is set to true, and if the sumof time between server shutdown and restart
and quota elapsed time does not exceed the interval of the subscription, the quota usage
value is retained. In this case the remaining quota time is calculated as {current interval
cycle - (elapsed time + (start time - shutdown time))}. For example, if the current
subscription duration is 1 month and if the server starts on the 10th day of the cycle and
restarts on the 12th day of the cycle, the remaining quota time is calculated as {30 - (10
+ (12-10))} = 18 days.
If the property is set to true, and if the sumof time between server shutdown and restart
and quota elapsed time exceeds the interval of the subscription, a new interval is created.
Quota usage value is not retained in this case.

18. Click Save.

The plan is created and listed in the list of plans.

Activating a Package

You must have the API Gateway's activate/deactivate packages assigned to perform this task.

You can activate a package so that a consumer can try out APIs in the package with the package
level token. When the consumer requests a token from API Portal, the request is processed in API
Gateway and a token is sent back to API Portal. This token is visible to the consumer on the Access
Token page. The consumer can test the APIs in the package with this token on the API Try out
page.

438 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

To activate a package

1. Click Packages in the title navigation bar.

A list of all packages appears with their status as Inactive or Active.

2. Click the activation toggle button for the package.

The package is now activated.

Alternatively you can click Activate on the Packages details page to activate the package.

Publishing a Package

You must have the API Gateway's publish to API Portal functional privilege assigned to perform
this task.

You can publish a package to the configured destination, for exampleAPI Portal. Once the package
is published, the APIs associated with the package are available to consumers. The package level
token is applicable to all APIs associated with the package. The consumers do not have to request
an access token for individual APIs to consume them.

Ensure the following before publishing a package:

A destination is configured.

The package is active.

The package has at least one plan and API associated with it.

The APIs associated with the package is published to the destination.

To publish a package

1. Click Packages in the title navigation bar.

A list of all packages appears.

2. Click the Publish icon for the package that has to be published.

3. Select the communities to which the package needs to be published.

By default, a package is published to the Public Community of API Portal.

Note:
The list of communities displayed are those that are common to which the APIs associated
with this package are already published to.

4. Click Publish.

webMethods API Gateway User's Guide 10.11 439

7 API Packages and Plans

A success messages is displayed when the package is successfully published. The package is
now published to the destination, for example API Portal, that is configured and is available
on API Portal to consumers.

You can unpublish a package once it is published by clicking the Unpublish icon for the required
package.

Viewing List of Packages and Package Details

You can view the list of packages in the Packages section of the Manage packages and plans page
from where you can create, delete, and select a package to view its details.

To view the package list and package details

1. Click Packages in the title navigation bar.

A list of all packages appears. You can perform various operations like activating a package,
publishing or unpublishing a package, and deleting a package.

2. Select a package.

The basic information, and the associated plans and APIs for the selected package appears in
the package details page.

Viewing List of Plans and Plan Details

You can view the list of plans in the Plans section of the Manage packages and plans page from
where you can create, delete, and select a plan to view its details.

To view the plan list and plan details

1. Click Packages in the title navigation bar.

2. Click Plans.

A list of all plans appears. You can delete a plan by clicking the Delete icon for the respective
plan.

3. Select a plan.

The basic information, the pricing, and Quality of service associated with the selected plan
appears in the plan details page.

Viewing a List of Subscriptions

In the Manage packages and plans page, the Subscriptions tab lists the applications and the
associated package name, plan, used quota, start time, end time, and the remaining period of the

440 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

subscription. The Subscriptions tab lists only the packages and plans that are subscribed from
API Portal.

In the Subscription tab, you can also search for the subscriptions by name, package name, and
plan name.

Modifying a Package

You must have the API Gateway's manage packages and plans assigned to perform this task.

You can modify the basic information, include or exclude plans and APIs of the package. You can
modify a package when it is either in active or inactive state. If you modify a package when it is
in the active state, the following points are applicable:

If you remove an API from the package, subscribers cannot leverage the service of that API.

If you add an API to a package, subscribers can leverage the service of the API without
performing any setup.

If a package's plan has active subscribers, you cannot remove that plan from the package.

To modify a package

1. Click Packages in the title navigation bar.

A list of all packages appears.

2. Select a package.

The basic information, and the associated plans and APIs for the selected package appear on
the package details page.

3. Click Edit.

The package details appear.

Note:
The Edit option is available only if the package is in inactive state.

4. You can modify the information related to the package, as required, in the Basic information
section.

5. Click Plans in case you want to modify the plans associated with the package.

A list of plans associated with the package and list of available plans appears.

6. You can do the following:

Add more plans to the package by selecting plans listed in the available plans list.

webMethods API Gateway User's Guide 10.11 441

7 API Packages and Plans

Delete the plans from the package by clearing the check box of the plan associated with
the package.

7. Click APIs in case you want to modify the APIs associated with the package.

A list of APIs associated with the package and a search box to search for APIs that need to be
added to the package appear.

8. You can do one of the following:

Add more APIs to the package. You can search for APIs using the search box and click +
adjacent to the API to add it

Delete the APIs from the package by clicking the Delete icon adjacent to the API in the
APIs list.

9. Click Save.

This saves the modified package.

Deleting a Package

You must have the API Gateway's manage packages and plans assigned to perform this task.

You can delete a package from the Package list that appears on the Manage packages and plans
page. You can not delete a package if it is in active state. You have to deactivate it before deleting
it.

To delete a package

1. Click Packages in the title navigation bar.

A list of all packages appears.

2. Click the Delete icon for the package that has to be deleted.

3. Click Yes in the confirmation dialog.

Modifying a Plan

You must have the API Gateway's manage packages and plans functional privilege assigned to
perform this task.

You can modify a plan to change the pricing details and Quality of service associated with the
plan. You can modify a plan when the package associated with the plan is active or inactive. If
you modify a plan when it is in the active state, the following points are applicable:

442 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

The quota usage data is not reset for the existing customers. However, you can explicitly reset
or modify the quota usage. If you modify the quota usage, a new cycle is initiated for all the
subscribers.

If you modify the Rate limits or pricing, it does not impact the quota usage.

To modify a plan

1. Click Packages in the title navigation bar.

A list of all packages appears.

2. Click Plans.

A list of all plans appears.

3. Select a plan.

The plan details page displays the basic information, pricing details, and theQuality of service
associated with the plan.

4. Click Edit.

The plan details appear with fields that you can edit.

5. You can modify the information related to the plan, as required, in the Basic information
section.

6. Click Pricing in case you want to modify the pricing model associated with the plan.

7. Modify the pricing plan as required.

8. Click Rate limits if you want to modify the rules associated with the plan.

A list of rules associated with the plan appears.

9. You can do one of the following:

Add more rules to the plan. Click Add rule to create and add rules to the plan.

Modify the already configured rule. Click theEdit icon for the rule listed in theConfigured
rules list and modify the details as required.

Delete rules from the plan. Click the Delete icon adjacent to the rule in the Configured
rules list.

10. Click Quota settings if you want to modify the quota settings for the plan.

11. Modify the quota settings as required.

webMethods API Gateway User's Guide 10.11 443

7 API Packages and Plans

12. Click Save.

This saves the modified plan.

Deleting a Plan

You must have the API Gateway's manage packages and plans functional privilege assigned to
perform this task.

You can delete a plan from the Plans list that appears in the Plans section of the Manage packages
and plans page. You can delete a plan only if it is not associated with a package. You have to
disassociate the plan with the package before deleting it.

To delete a plan

1. Click Packages in the title navigation bar.

2. Click Plans.

A list of plans appears.

3. Click the Delete icon for the plan that has to be deleted.

4. Click Yes in the confirmation dialog.

444 webMethods API Gateway User's Guide 10.11

7 API Packages and Plans

8 Export and Import Assets and Configurations

■ Overview .. 446

■ Importing Asset and Configuration Archives .. 451

■ Troubleshooting Tips: Import and Export Assets .. 453

webMethods API Gateway User's Guide 10.11 445

Overview

API Gateway supports the import and export of the assets that you create or configure in API
Gateway. You can import archives of APIs, global policies, and other related assets that you have
exported and re-create them in API Gateway. This enables you to easily export and archive the
assets; and when required, import them to a different instance of API Gateway or redeploy them
on the same instance.

Each artifact in an archive is associated with a universally unique identifier (UUID) that is unique
across all API Gateway installations. When importing an archive, the UUID helps in determining
whether the corresponding artifact is already available inAPIGateway. You can configurewhether
youwant to overwrite the existing artifact or keep the available artifact during the import process.

Note:
During export or import of assets, ensure that the master password is identical across stages
and on different instances of API Gateway.

Considerations while importing assets:

The APIs, applications, policies, and aliases you import become visible in API Gateway
immediately.

Active APIs are replaced during import with the updated API and the API level policies.

The updatedAPIs and updatedAPI level policies do not become effective for ongoing requests.

Active APIs are replaced during deployment with zero downtime without breaking ongoing
requests.

Imported applications become effective immediately, even the ongoing requests are affected.

Imported aliases and global policies do not affect the ongoing requests.

You can not define multiple aliases with the same name in API Gateway as overwriting of
aliases based on their names during import is not supported. Aliases, like other assets, are
identified based on their UUID. Hence, if you want to overwrite an alias by importing, then
ensure that the alias being imported has the same UUID as the one in the target instance.

You can not update ports through the import process when:

the ports are enabled in the target instance.

the port has the same alias as in the target instance.

the port has the same port ID as in the target instance.

Note:

Do not attempt to modify and import an archive file because import of modified archive
files is not supported.
You can export archives from an earlier version to a later version of API Gateway. However,
you can not import from a later version to an earlier version. For example, you can not
import an 10.5 asset into a 10.3 API Gateway.

446 webMethods API Gateway User's Guide 10.11

8 Export and Import Assets and Configurations

You can also export and import assets using the API Gateway REST APIs. For more information,
see “API Gateway Archive” on page 569.

When you export an asset, the dependent assets are also exported. If any of the exported assets
contain secure strings, the user credential information (passwords) associated with the assets is
also exported. When you import this exported asset, API Gateway enforces conditions to check
the order of import and the dependency evaluation between assets, and the dependent assets
alongwith the user credential data are imported. For example, if you import an API, API Gateway
checks and ensures that all associated policies and aliases are imported alongwith any passwords,
if present, before importing the API.

The Overwrite option available for all the assets allows you to decide whether the asset should
be imported if an existing version of the asset already exists in the target instance. In scenarios
where you select to overwrite the asset in the target instance, API Gateway also checks for any
associated passwords and applies the overwrite accordingly. There is no separate overwrite option
for the passwords during import. The passworduses the overwrite option of the asset it is associated
with. For example, if you are importing an alias with a password, the overwrite option provided
for the alias is applied for the password as well. If set to true, the password is overwritten if it is
already exists in the system.

Functional Privileges

The Export or Import assets and Purge and Archive events category on the Functional
privileges page has the available import and export privileges. You must assign the following
functional privileges for the required permissions:

Import assets: To import assets previously exported assets from a local system.

Export assets: To export assets and save them on a local system.

Accessing the Export and Import commands in the API Gateway user interface

The export command is either a button with the label Export, or the icon. You can export
multiple items within lists, such as APIs in the API page, by using the export command in the list
menu.

You can import assets using the user menu () > Import command.

Assets that can be exported and imported

Assets that can be exported and importedPath to Page/Tab

APIsAPIs

Global denial of servicePolicies > Threat protection

Denial of service by IP

Rules

webMethods API Gateway User's Guide 10.11 447

8 Export and Import Assets and Configurations

Assets that can be exported and importedPath to Page/Tab

Mobile device and apps

Alert settings

Global policiesPolicies > Global policies

Policy templatesPolicies > Policy templates

ApplicationsApplications

PackagesPackages > Packages

PlansPackages > Plans

User menu () >
Administration > General

Load balancer

Extended settings

API fault

Approval configuration

Outbound proxy

URL Aliases

Custom content-types

Cache configuration

Log level configuration

Callback processor settings

Messaging

Web services

User menu () >
Administration > General >
Messaging

JNDI Provider Alias

JMS Connection Alias

User menu () >
Administration > Security

Keystore/Truststore

Ports

SAML issuer

Custom assertions

Kerberos

JWT/OAuth/OpenID

448 webMethods API Gateway User's Guide 10.11

8 Export and Import Assets and Configurations

Assets that can be exported and importedPath to Page/Tab

Providers

User menu () >
Administration >Destinations

API Gateway

API Portal (both the Event configurations and
Communication configurations are exported)

Transaction logger

Elasticsearch (properties on both tabs—Elasticsearch
communication and Events—are exported)

Email (properties on both tabs—Email configuration and
Templates—are exported)

SNMP (properties on both tabs—SNMP communication and
Events—are exported)

Custom destinations

User menu () >
Administration > System
settings

Configurations

SAML SSO

Note:
A change in the SAML SSO configuration from the API
Gateway user interface forces the logged in user to log out.
However, importing an SAML SSO does not.

User menu () >
Administration > Service
registries

Service registry

User menu () >
Administration > Aliases

Aliases

User menu () > User
management

Users

Groups

Teams

Global team assignments

Account settings

Password restrictions

Password expiry settings

webMethods API Gateway User's Guide 10.11 449

8 Export and Import Assets and Configurations

Assets that can be exported and importedPath to Page/Tab

Account locking settings

LDAP configuration

For more information about how to export APIs and Global policies, see the following:

“Exporting APIs” on page 135

“Exporting Global Policies” on page 372

Dependencies

Some API Gateway assets use other assets. For example, APIs uses policies, aliases, and other
assets. As the configuration of an asset is incomplete without the assets it uses, the export features
includes the assets that are used by the asset that you export.

Note:
The association of a user to a group is not exported. After importing a user archive, you must
manually link the new users to the required groups.

The following table shows the asset dependencies of each type of asset:

Dependencies (Optional)Dependencies (Required)Asset

Applications, Application
registrations

Policies, AliasesAPIs

—APIs, Application registrationsApplications

—APIs, Plans, Policies,
Subscriptions

Packages

—PoliciesPlans

ApplicationsPackages, PlansSubscriptions

Group—Teams

—TeamsApproval configurations

—Keystore, TruststoreConfiguration > Keystore

Trust store—Email destination

User—Group

—JNDI provider aliasJMS connection alias

—GroupLDAP configuration

User—Password expiry settings

450 webMethods API Gateway User's Guide 10.11

8 Export and Import Assets and Configurations

Dependencies (Optional)Dependencies (Required)Asset

—Keystore, TruststorePort (https)

—Keystore, TruststoreService Registry

—Teams, JMS, JNDI, JMS Trigger,
Keystore, Truststore

Web service endpoint alias

---Keystore, Truststore, AliasesCustom destinations

Importing Asset and Configuration Archives

Importing an exported archive enables you to import the required assets to a different instance of
API Gateway or redeploy them on the same instance.

To import the exported files

1. Expand the menu options icon , in the title bar, and select Import.

2. Provide the following information:

DescriptionParameter

Click Browse to select a file or ZIP format file.Select archive file

Select an overwrite option:Overwrite

None. If you do not want to overwrite matching objects
that exist on the server. Import fails for the object in the
archive if a matching object or asset already exists on the
server.

All. If youwant to overwrite anymatching asset that exists
on the server. If a match is not found, then a new asset is
created.

Custom. If youwant to select specific types of assets to be
overwritten on the server if amatch is found. If amatching
asset exists on the server for an asset type that is not
selected in theCustom overwrite list, the import operation
fails.

If a duplicate asset is found for any asset type that is not
selected in the Custom overwrite list, the import fails.

Note:

webMethods API Gateway User's Guide 10.11 451

8 Export and Import Assets and Configurations

DescriptionParameter

Some assets types have dependencies on other asset types.
For example, APIs have a dependency on policies, aliases,
and applications. Some of the dependencies are required,
while others are optional. The required dependencies are
always included in the archive when you export the asset.
You should consider your requirements and select the assets
that need to be overwritten in the Custom list.

Select the option Fix missing versions to fix the API version
history.

API version history

On selecting this option, the API versions are newly linked
according to the system version of the APIs.

Note:
API Gateway supports backward compatibility for API Gateway 10.1 version or higher
when importing the archives of APIs. In addition, the compatibility of archives across API
Gateway fix levels is also maintained. For example, you can import the archives created
from lower fix levels of API Gateway into higher fix levels.

The import of an archive created from a higher fix level of API Gateway into a lower fix
level can be rejected if the higher fix level's configurations are not supported by the lower
fix level.

3. Click Import.

The Import report displays the following information:

DescriptionParameter

The asset type.Type

The number of successful imports for each artifact
type.

Successful

The number of unsuccessful imports for each artifact
type.

Unsuccessful

The number of instances replaced for each artifact
type.

Replaced

The number ofwarnings displayedduring the import
of each artifact type. API Gateway displays warning

Warning

messages when the import is successful but some
additional information is required.

To download the detail report, click Download the detail report here >. The detail report
displays the following information about the imported artifact:

452 webMethods API Gateway User's Guide 10.11

8 Export and Import Assets and Configurations

DescriptionParameter

The name of the imported artifact.Name

The artifact type.Type

The status of the imported artifact. The available
values are:

Status

Success

Replaced

Warning

Failure

The reason if the import fails or if a warning occurs.Explanation

If you want to take a backup of an API that you want to overwrite during import, you can set the
parameter enableImportBackup as true under Administration > General > Extended Settings
section. For more information about this extended setting, see webMethods API Gateway
Administration.

If an API import fails, one of the reasons might be that a configuration that is required by the API
is not set up correctly on API Gateway. If something happens unexpectedly while the import is
in progress, API Gateway discontinues the import and restores the existing API. This is necessary
as parts of the existing API such as policies may already have been overwritten.

Troubleshooting Tips: Import and Export Assets

I see error when I search API using the POST/rest/apigateway/search REST API.

When I search API using the POST/rest/apigateway/search REST API in a clustered environment,
I see the following error message in the server log:

019-05-14 12:37:29CEST [YAI.0300.0014I] [default][node1.kirsa.pl] Errorwhile retrievingDocuments
for Index gateway_default, Type apis. Cause: org.apache.http.ContentTooLongException: entity
content is too long [105063337] for the configured buffer limit [104857600]

This might be due to insufficient response payload size.

Resolution:

Increase the response payload size by setting the pg.gateway.elasticsearch.client.http.response.size
property value to a higher value in the config.properties file at the SAG_Install_Directory\
IntegrationServer\instances\default\packages\WmAPIGateway\config\resources\elasticsearch
location and restart the API Gateway for the settings to take effect.

webMethods API Gateway User's Guide 10.11 453

8 Export and Import Assets and Configurations

454 webMethods API Gateway User's Guide 10.11

8 Export and Import Assets and Configurations

9 API Gateway Analytics

■ Analytics Dashboards ... 456

■ Runtime Events and Metrics Data Model ... 467

webMethods API Gateway User's Guide 10.11 455

Analytics Dashboards

The analytics dashboards display a variety of charts to provide an overview of API Gateway
performance and its API usage. The data for these dashboards come from the API Gateway
destination store. In API Gateway there are two types of dashboards. Each of these dashboards
has various filters that can be applied as per the required metrics to be monitored.

API Gateway dashboard. Displays API Gateway-wide analytics such as Summary of APIs,
API usage, API trends, the top performing API and the non-performing API analytics, audit

logs, applications and package related event information. Click > Analytics to access API
Gateway-wide analytics.

API-specific dashboard. Displays API specific analytics such as API invocation trends by
response time, success and failure rates, API performance, consumer or application traffic for
a specific API. This can be accessed from the API details page.

Custom dashboards. Displays API Gateway-wide analytics or API specific analytics as

configured. Click > Analytics to access API Gateway-wide analytics. A custom dashboard
is a collection of visualizations. You can add the visualizations as per your requirement and
compile the visualizations as a custom dashboard.

The dashboard viewdepends on the events andmetrics generated inAPIGateway and their types.
An event is a kind of notification or alert generated by the API Gateway Metrics and Event
Notificationmodule. Various types of event are generated based on the behavior of the transactions
in the system. Events generated by API Gateway are real time events made persistent in the store
and sent to configured destinations.

These are the types of events generated in API Gateway:

Transactional event : Provides a summary of each runtime transaction in the system. It is
generated when a Log Invocation policy is included for the API. For example, if an API has
the policy attached to it, then for every invoke the system generates a transaction event. API
Gateway provides a system global policy, Transaction logging, which are pre-configured in
the product. This policy is, by default, deactivated. The transaction logging policy has standard
filters and a log invocation policy that logs request or response payloads to a specified
destination.

Error event: Provides details of an error that occurred during an API invoke. This event is
generated whenever there is an error in the system during a runtime service invocation. This
is configured as part of destination configuration.

Monitoring event: Provides a summary of event details along with the breach information
when there is a threshold breach in any of the configured parameters. Monitoring could be
done based on various parameters such as Total Request Count, Total Success Count, Response
Time, and Availability. Monitoring can be done at the consumer application level too so that
each consumer can be tracked individually. These events are generated when a Monitor
Performance and Monitor SLA Policy is included for the API. In addition, the Traffic
Optimization policy generates these events for every API invocation only when there is a

456 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

breach in the parameters configured in the policy or once per alert interval based on the alert
frequency configured in the policy.

Policy violation event: Provides a summary of the policy violations that occurred in the system.
When a policy attached to an API is violated, the system generates the policy violation event
for alerting the provider. The Identity and Access, Authorization, and Schema Validation
policies generate these events. This is configured as part of destination configuration. In
addition, the Traffic Optimization policy generates these events for every API invocation only
when there is a breach in the parameters configured in the policy.

Lifecycle event: Provides a summary of the life cycle of the API Gateway instance. Whenever
the instance is started or stopped, a life cycle notification is generated. This is configured as
part of destination configuration.

Threat protection event: Provides a summary of the threat protection filter and rule violations.
When a filter or rule is violated, the system generates the threat protection violation event. For
more information see “Configuring Alert Settings” on page 170.

Note:
Internationalization is not supported in API Gateway dashboards.

API Gateway Dashboard
The dashboard displays the API Gateway-wide analytics based on the metrics monitored. Click

> Analytics to access API Gateway-wide analytics.

To filter the API Gateway-wide analytics, select the time interval using the options:

Quick select. Specify the time interval. Click Apply to filter the analytics based on the time
interval.

Commonly used. Select a commonly used time interval, and the filter is applied automatically.
To view the API Gateway-wide analytics between a time interval, clickCustom range > From
Date > To Date > Apply.

Recently used. Select a recently used time interval, and the filter is applied automatically.

When you log in and view the analytics, the last used time interval is saved for each dashboard.
When you view the dashboard again, the last used time interval for that dashboard is applied.
The last used time interval is valid for the current session only.

You can click on the specific event in the list under Legend to view the specific event in any of the
widgets. You can view additional details for an event by hovering the cursor over a particular
color in the graphical representations.

In the Applications dashboard, you can filter the data using the filter for Applications in the
specified time interval. The Applications drop-down list displays all the applications. When you
select an application, its data is displayed. By default, the data displayed is for all the applications.

webMethods API Gateway User's Guide 10.11 457

9 API Gateway Analytics

In the Packages dashboard, you can filter the data using the filter for Packages in the specified
time interval. The Packages drop-down list displays all the packages. When you select a package,
its data are displayed. By default, the data displayed is for all the packages.

In the Audit logs dashboard, you can filter the data using the filter for Audit logs in the specified
time interval. It displays the data of all the auditable events.

In the Cache statistics dashboard, you can filter the cache statistics data depending on the Node
name and Application type specified in the specified time interval.

In the Application logs dashboard, you can filter the application logs depending on the node,
origin of log and so on in the specified time interval. ClickDownload to download the aggregated
logs, the logs collected from different sources such as API Gateway server logs, API Gateway UI
logs, API Data Store logs, dashboard logs and platform logs. The downloaded logs would contain
the logs filtered as per the time interval filter applied.

In theAPI usage details dashboard, you can filter the data using the filter for the API invocations
in the specified time interval (in years). By default, the data displayed is for all theAPI invocations.
This dashboard is visible only when API Gateway uses a transaction-based licensingmodel when
each API invocation is considered as a transaction and API Gateway keeps a track of these
transactions.

Note:

The Summary, Trends, and Application analytics are visible only in API Gateway Full
Edition. Threat protection analytics is the only data visible in API Gateway Firewall Edition.
The threat protection analytics information is visible only if you select the Alert destination
as flow service in Policies > Threat protection > Alert settings section.
In Analytics dashboard, when you Add filter and refresh the page or open the link in a
new browser, the filter is not retained and the filter results are not displayed.

DescriptionMetricCategory

Displays a pie chart that lists different events
being monitored and each of these event
categories is depicted with different colors.

Overall eventsSummary

Displays the application activity in API Gateway
during the specified time.

Application activity

Displays the run time event details such as time
when the event was generated, API Name, the

Runtime events

application that generated the event, event type,
description of the alert generated due to the event,
status, and the source of event.

Displays the payload size of the request and
responses during data transfer in the specified
time.

Payload size

458 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionMetricCategory

This data is picked up from the transactional
event that is triggered when a log invocation
policy is applied to the API.

Displays a pie chart depicting package
performance during the specified time. The

Package performance

different colors in the pie chart depict different
packages this API belongs to.

Displays the trending of events generated by the
APIs across API Gateway over time.

Events over timeTrends

Displays the trending of APIs based on their
success rate in the performance metrics.

API trend by success

Displays the trending of APIs based on their
failure rate in the performance metrics.

API trend by failure

Displays a graph depicting the performance of
all theAPIs in the system based on the error event

Overall error trends

generated. Each of these event categories is
depicted with different colors.

Displays a pie chart that depicts the activity of
events per application beingmonitored and each

Events per applicationApplications

of these categories is depicted with different
colors.

Displays the number of violations per application
based on the events generated such asmonitoring,
SLA violation, and policy violations.

Violations per application

This bar chart displays the package that the
selected application has consumed (when an
application is chosen in the filter).

Activity rate of consumed
packages

Hover the cursor over the bar chart to see the
number of invocations to the package using the
specified application.

Displays the activity rate for all the APIs that are
consumed by the application during the specified
time.

Activity rate for consumed
APIs

Displays the run time event details such as API
Name, event type, date when the event was

Runtime events

created, the agent on which the event was
generated, description of the alert generated due
to the event, the source of event, and the
application that generated the event.

webMethods API Gateway User's Guide 10.11 459

9 API Gateway Analytics

DescriptionMetricCategory

Displays the number of package invocations
during the specified time.

Package invocationsPackages

Displays the trending subscriptions for the
package based on the number of invocations.

Trending subscription for
package

The different colors in the donut pie chart depict
the trending behavior of the different applications
in the package.

Displays the number of invocations for an API
for an application for the selected package over
the specified time interval.

Trending APIs in the
package

Displays the graphical representation of the
events based on the filter violations during the
specified time.

Threat protection filtersThreat
protection

Displays the graphical representation of the
events based on the rule violations during the
specified time.

Threat protection rules

Displays the threat protection event details such
as Time, filter name, rule name, resource path,
server host, and request time.

Threat protection events

Displays the time the event occurred.TimeAudit logs

Displays the name of the user who caused the
event.

User

Displays the current status of the transaction. The
available values are:

Status

SUCCESS

FAILURE

Displays the host name of the machine on which
the event occurred.

Source machine

Displays the type ofAPIGateway object onwhich
the event occurred. The available values are:

Object type

ACCESS_PROFILE_MANAGEMENT

ALIAS_MANAGEMENT

ANALYTICS_MANAGEMENT

API_MANAGEMENT

460 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionMetricCategory

APPLICATION_MANAGEMENT

APPROVALS_MANAGEMENT

GROUPS_MANAGEMENT

PACKAGE_MANAGEMENT

PLAN_MANAGEMENT

PROMOTION_MANAGEMENT

POLICY_MANAGEMENT

USER_MANAGEMENT

Displays the UUID that uniquely identifies the
object in the database.

Object

Displays the successmessage or errormessage as
a result of the event.

Message

Displays the IP address of the machine on which
the event occurred.

Client IP address

Displays the type of action for the event. The
available values are:

Action

LOGIN

LOGOUT

CREATE

UPDATE

DELETE

ACTIVATE

DEACTIVATE

Displays the content of data payload for the event.Payload

Displays the hit, miss, and eviction count for API
invocations across API Gateway.

Cache countsCache
statistics:

Displays the cache usage size and the free size as
a bar chart.

Cache usage statistics

Displays a table that lists the cumulative logs
collected across sources with details of each log

Application logs saved
search

Application
logs

webMethods API Gateway User's Guide 10.11 461

9 API Gateway Analytics

DescriptionMetricCategory

that is collected in the time interval specified in
the filter.

These are the details displayed in the form of a
table:

Time. Specifies the date and time when the
log was collected.

node. Specifies the node from which the log
is generated.

fileType. Specifies the file type to which the
logs belong. The following are the file types
to which a log can belong:

APIGatewayServerLogs

APIGatewayUILogs

PlatformLogs

OSGILogs

WrapperLogs

InternalDataStoreLogs

DashboardLogs

logLevel. Specifies the log level.

message. Displays the actualmessage for the
event for which the log was saved.

correlationId. Specifies the correlation id that
applies to the API Gateway server logs with
which you can identify a particular request.

You can expand each entry to view details of the
actual log in the tabular or a JSON format.

In addition you can create a filter to display the
logs based on their id, index, type, correlation id,
and so on. This helps in analyzing the events
effectively.

Displays the log data per source per log level for
the specified time interval.

Source vs log level

The data is displayed in the form of a pie chart.

462 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionMetricCategory

Hover the cursor over the piechart to view the
following details.

The inner section of the pie chart displays the
number of logs collected per file type. The
corresponding outer sectiondisplays the log levels
for the logs collected for that file type.

Displays the log levels available and shortcut
filters to filter the logs by log levels.

Log level tag cloud

Click on one of the log levels. You now see the
logs for the specified log level in the table under
Application logs saved search and the
distribution of the selected logs per sources that
produced them in the pie chart under Source vs
log level.

This bar chart displays the trending of API
invocations across API Gateway.

API Gateway invocation
usage

API usage
details

Hover the cursor over the bar chart to see the
number of API invocations for the currentmonth.

Displays the details of the number of API
invocations for each month.

API Gateway invocation
usage details

Displays the API invocation details for each API
such asAPIName, API usage for eachmonth and
year.

API usage details

Create your own visualizations and compile the visualizations as custom
dashboards. To create customdashboards, see “Creating customdashboards” on
page 465.

Custom
dashboards

You can export and import the assets (visualizations and dashboards) from
external Kibana to API Gateway custom dashboard, and API Gateway custom
dashboard to external Kibana. The export and import are possible between API
Gateway instances running on the same tenant. API Gateway does not support
importing the assets across different tenants.

Note:
You can import the assets created in Kibana 7.7.1 in to API Gateway.

API-specific Dashboard

You can view theAPI-specific dashboard by navigating to theAPI details page and clickAnalytics.

webMethods API Gateway User's Guide 10.11 463

9 API Gateway Analytics

Select the API-specific dashboard from the drop-down list. The dashboard displays the following
analytics based on the metrics monitored.

To filter the API-specific analytics, select the time interval using the options:

Quick select. Specify the time interval. Click Apply to filter the analytics based on the time
interval.

Commonly used. Select a commonly used time interval, and the filter is applied automatically.
To view the API-specific analytics between a time interval, click Custom range > From Date
> To Date > Apply.

Recently used. Select a recently used time interval, and the filter is applied automatically.

When you log in and view the analytics, the last used time interval is saved for each dashboard.
When you view the dashboard again, the last used time interval for that dashboard is applied.
The last used time interval is valid for the current session only.

For the specified time interval, you can also filter based on anAPI. TheAPI drop-down list displays
all the APIs. On selecting an API, the data displayed is for the selected API.

You can click on the specific event in the list under Legend to view the specific event in any of the
widgets. You can view additional details for an event by hovering the cursor over a particular
color in the graphical representations.

DescriptionMetric

Displays the trending of events generated by the selectedAPI
over time.

Events over time

Displays the number of times the API was invoked during
the specified time.

API invocations

Displays the number of successful API invocations and failed
API invocations during the specified time.

API invocations - Status wise

API invocations is the sum of successful API invocations and
failed API invocations.

Displays API invocation over period of time during the
specified time interval in the form of a line graph.

API invocation pattern

Displays information on how fast the native service responds
to the request received in the specified time based on the data
in the transactional event.

Native service performance

Displays the comparison between gatewayTime performance
and providerTime performance.

Gateway vs Provider time

Displays the trend based on the response codes received from
various events for the API during the specified time.

Response code trend

464 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionMetric

Displays the trending of the selected API based on the
response time from the performance metrics for that API.

API trend by response

Displays the trending of API based on its success rate as
compared to its failure rate in the performancemetrics for the
specified time.

Success vs Failure

Displays the run time event details for the selected API.
Displays information on the event type, date when the event

Runtime events

was created, the agent on which the event was generated,
description of the alert generated, the source of event, and the
application that generated the event.

Displays a bar graph showing the number of responses served
from cache and the number of responses fetched from the

Service result cache

native service at the operation level for the selectedAPI during
the specified time.

The Service result cache metric graphical representation is
not supported for GraphQL API.

Displays the method level invocations per operation for the
API during the specified time.

Method level invocations

You can hover the cursor over the stacked bar chart to view
the various methods invoked per operation or resource and
also the operations or resources for the selected API during
the specified time.

The Service result cache metric graphical representation is
not supported for GraphQL API.

Creating custom dashboards
Pre-requisites:

You must have the API Gateway's manage custom dashboards functional privilege assigned to
manage the custom dashboards in Global analytics.

The Custom dashboards has two options:

View. To view custom dashboards. You can select the custom dashboard that you want to
view from the drop-down list.

Build. To build custom dashboards. Here, you can create and add visualizations to build
custom dashboards.

Note:

webMethods API Gateway User's Guide 10.11 465

9 API Gateway Analytics

SoftwareAG recommends that you do notmodify any default visualizations. If youmodify
any default visualizations, an upgrade or restart of API Gateway server overwrites the
modifications.
Improper visualizations or long running queries in the visualizations can impact the
performance of the Elasticsearch.

You can create customdashboards for bothAPIGateway-wide analytics andAPI-specific analytics

from the > Analytics page. You can create the visualizations and dashboards in the Kibana
interface, and the dashboards are rendered in API Gateway user interface.

To create custom dashboards

1. Click > Analytics.

2. Click Custom dashboards > Build.

3. Build custom dashboard. For instructions, see Kibana documentation.

For API-specific custom dashboard, type apiId:"*" in the search box and then save the
dashboard. This filter creates a custom dashboard specific to API-specific analytics.

To view the customdashboard forAPIGateway-wide analytics, clickView and select the dashboard
from the drop-down list.

To view the customdashboard for API-specific analytics, clickAPIs >API name >Analytics. Select
the custom dashboard from the drop-down list.

Note:
Permalinks and under share option are available onUI but not in operation due to vulnerability.

Kibana Limitations

When using the Analytics dashboard, applying a Filter and subsequently refreshing the page
or opening the link in a new browser does not preserve the filter, resulting in the absence of
filter and results are not displayed.

Within the runtime events section, you have the option to improve an event's visibility by
selecting "Toggle column in table." This choice leads to the inclusion of the chosen field in the

466 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

runtime events column, rendering is visible. It is crucial to recognize that this customization
is fleeting and will reset after a server restart, causing the field to no longer appear.

Expanding and incorporating a field as a column in the transactional event table within
Analytics works as intended. However, when you download a CSV file, only the default
columns are included. This is a Kibana functionality.When the Download as CSV is submitted,
Kibana downloads the fields present on the original definition of the dashboard and the custom
fields added is not considered.

Runtime Events and Metrics Data Model

API Gateway generates runtime events and Key Performance Indicator (KPI) metrics for the
currently active APIs. The types of runtime events that API Gateway can generate are:

DescriptionEvents

A Lifecycle event is generated each time the API Gateway instance is
started or shut down.

Lifecycle

An Error event is generated each time an invocation of API results in an
error.

Error

A Policy Violation event is generated each time an invocation of API
violates a policy that was configured for the API.

Policy Violation

ATransaction event is generated each time anAPI is invoked (successfully
or unsuccessfully).

Transaction

A Monitor event is generated when a configured SLA parameter, such
as the average response time, fault count, availability, and so on, is
breached for the API.

Monitor

KPI metrics are used to monitor the run-time execution of APIs. Metrics include the maximum
response time, average response time, fault count, availability of APIs, and so on. If you include
runtimemonitoring policies, the policies will monitor the KPImetrics for APIs, and can send alerts
to various destinations when user-specified performance conditions for an API are violated. The
KPI metrics that API Gateway can generate are:

Reports on...Metric

The percentage of time that an API was available during the current
interval. A value of 100 indicates that the API was always available.

Availability

Only the time when the API is unavailable counts against this metric.
If invocations fail due to policy violations, this parameter could still
be as high as 100.

The average amount of time it took theAPI to complete all invocations
in the current interval. This is measured from the moment API

Average Response Time

Gateway receives the request until themoment it returns the response
to the client.

webMethods API Gateway User's Guide 10.11 467

9 API Gateway Analytics

Reports on...Metric

The number of failed invocations in the current interval.Fault Count

The maximum amount of time it took the API to complete an
invocation in the current interval.

Maximum Response Time

The minimum amount of time it took the API to complete an
invocation in the current interval.

Minimum Response Time

The number of successful API invocations in the current interval.Successful Request Count

The total number of requests for each API running in API Gateway
in the current interval.

Total Request Count

You can configure API Gateway to publish the runtime events and metrics data to different
destinations. The following sections describe the runtime events and metrics data model for each
of these destinations:

API Gateway

API Portal

Audit Log

CentraSite

Elasticsearch

Email

JDBC

Local Log

API Gateway
The runtime events and metrics payload is generated by API Gateway at run-time. The columns
that make up the events and metrics data model for API Gateway are listed below:

Transactional Events

DescriptionColumn

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

Example: pet1

468 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.20.248.33

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Indicates whether the event is generated for a callback request.callbackRequest

Possible values are:

true. This denotes that the event is generated for a callback
request.

false. This denotes that the event is generated for a normal
response.

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

correlationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The custom fields an API Provider can provide to log a new field
and value for a transaction event.

customFields

Example: {"customfield":"customvalue"}

The origin of error.errorOrigin

Example: Nativeservice

The type of event that occurred.eventType

Example: Transactional

webMethods API Gateway User's Guide 10.11 469

9 API Gateway Analytics

DescriptionColumn

List the external calls from API Gateway. These external calls can be
to a native service or service registry.

externalCalls

Example:
[{
"externalCallType":"SERVICE_REGISTRY_CALL",
"externalURL":"http://service.registry.com",
"callDuration":49,
"callStartTime":1562244570486,
"callEndTime":1562244570535,
"responseCode": "200"
},
{
"externalCallType":"NATIVE_SERVICE_CALL",
"externalURL":
"https://petstore.swagger.io/v2/store/inventory",
"callDuration":1285,
"callStartTime":1562244569252,
"callEndTime":1562244570537,
"responseCode":"200"
}]

Duration in milliseconds, to process a request by API Gateway. This
does not include native service processing duration.

gatewayTime

gatewayTime = totalTime - providerTime

Example: 20

The HTTP method used to invoke the API.httpMethod

Example: GET

The HTTP method used to invoke the native service.nativeHttpMethod

Example: GET

The native service request data.nativeReqPayload

Example:
{
"param1" : "value1",
"param2" : 10
}

Request header in the incoming request from the API Gateway to
native service.

nativeRequestHeaders

Example:
{
"Authorization":"**************",
"Accept": "*/*",

470 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn
"Authorization": "**************",
"Accept":"*/*",
"Cache-Control": "no-cache",
"User-Agent": "PostmanRuntime/7.13.0",
"Postman-Token":
"381424fa-e3b3-4058-8df9-4abf9d72c899",
"postmanHeader": "hello",
"accept-encoding": "gzip, deflate",
"Content-Type": "application/x-www-form-urlencoded"
}

The native service response data.nativeResPayload

Example:
{
"id":2,
"category":
{

"id":2,
"name":"string"

},
"name":"pysen",
"photoUrls":["string"],
"tags":
[{

"id":0,
"name":"string"

}],
"status":"available"
}

Response header in the outgoing response from the native service
to API Gateway.

nativeResponseHeaders

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods": "GET, POST, DELETE,
PUT",
"Connection":"close",
"Date": "Fri, 07 Jun 2019 12:44:13 GMT",
"Access-Control-Allow-Headers": "Content-Type,
api_key, Authorization",
"Content-Type": "application/json"
}

URL of the native service.nativeURL

Example: http://petstore.swagger.io/v2/pet/2

Name of the API operation that is invoked.operationName

webMethods API Gateway User's Guide 10.11 471

9 API Gateway Analytics

DescriptionColumn

Example:Using aCalculatorAPI, you canperformvarious operations
such as addition, subtraction, multiplication, and division.When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

This is applicable only for REST APIs. Query parameters present in
the incoming REST request.

queryParameters

Example: {"status":"available"}

The API request payload data.reqPayload

Example: RequestPayload

Request header in the incoming request from the client.requestHeaders

Example:
{
"Cache-Control":"max-age=0",
"Accept":"text/plain,application/json;
q=0.9,image/webp,image/apng,*/*;
q=0.8",
"Upgrade-Insecure-Requests":"1",
"Connection":"keep-alive",
"User-Agent":"Mozilla/5.0(Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML,like Gecko)
Chrome/65.0.3325.181Safari/537.36",
"Host":"mcdaso02:5555",
"Accept-Encoding":"gzip,deflate",
"Accept-Language":"en-US,en;q=0.9,ta;q=0.8",
"Content-Type":"application/x-www-form-urlencoded"
}

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 200

Response header in the outgoing response.responseHeaders

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods":"GET,POST, DELETE,
PUT",
"Connection":"close",
"Date":"Fri, 30 Mar 2018 08:25:45 GMT",
"Access-Control-Allow-Headers":"Content-Type,
api_key,Authorization",
"Content-Type":"application/xml"
}

472 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

The API Gateway server on which the transaction event occurred.
This column is currently not used. It appears asNULL or as an empty
string.

serverID

Example: SampleHost:80

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Source API Gateway's IP address.sourceGatewayNode

Example:10.0.75.1

Status of the API request.status

Possible values are: SUCCESS, FAILURE

The total combined size of request and response payloads in bytes.totalDataSize

Example: 100

Time in milliseconds required to invoke the API provider. This time
includes the overhead incurred byAPI Gateway. Overhead includes

totalTime

security overhead for encryption, decryption, and load-balance
retries.

Example: 120

Error Events

DescriptionColumn

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

webMethods API Gateway User's Guide 10.11 473

9 API Gateway Analytics

DescriptionColumn

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.20.248.33

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

correlationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

Message that describes the error that occurred.errorDesc

Example: Invocation for SampleAPI was rejected based on policy
violation, response code: 503

The type of event that occurred.eventType

Example: Error Event

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 200

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

474 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Source API Gateway's IP address.sourceGatewayNode

Example:10.0.75.1

Name of the client used to invoke the API.userAgent

Example: Postman

Monitoring Events

DescriptionColumn

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertDesc

Example: EnforcePolicy-HardLimit

The type of alert generated for the event.alertType

Possible values are: Monitor, sla

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.20.248.33

Name of the application associated with the API invocation.applicationName

webMethods API Gateway User's Guide 10.11 475

9 API Gateway Analytics

DescriptionColumn

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The source where the event occurred.eventSource

Example: API_Gateway_Instance

The type of event that occurred.eventType

Example: Monitor Event

The HTTP method used to invoke the API.httpMethod

Example: GET

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Details of events generated only from Microgateway. The details
include Microgateway Id, Source Gateway Host, Source Gateway
Port, Source Gateway Version, Microgateway pool.

sourceGatewayDetails

Lifecycle Events

DescriptionColumn

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

476 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

The type of event that occurred.eventType

Example: LifeCycle

Status of the API Gateway instance.gatewayStatus

Possible values are: STARTED or STOPPED

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Details of events generated only from Microgateway. The details
include Microgateway Id, Source Gateway Host, Source Gateway
Port, Source Gateway Version, Microgateway pool.

sourceGatewayDetails

Policy Violation Events

DescriptionColumn

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertDesc

Example: A violation was detected for policy
(Unknown-Policyuser): application could not be identified.
Anonymous access is not allowed for this service!

Name of the API Gateway policy that generated the alert message.alertSource

Example: Unknown-Policy

The type of alert generated for the event.alertType

Example: PolicyViolation

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

webMethods API Gateway User's Guide 10.11 477

9 API Gateway Analytics

DescriptionColumn

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.20.248.33

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The type of event that occurred.eventType

Example: Policy Violation Event

The HTTP method used to request the API access.httpMethod

Example: GET

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 200

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Source API Gateway's IP address.sourceGatewayNode

Example: 10.0.75.1

Name of the client used to invoke the API.userAgent

478 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Example: Postman

Performance Metrics

DescriptionColumn

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The percentage of time that an API was available during the current
interval. A value of 100 indicates that the API was always available.

availability

If invocations fail due to policy violations, this parameter could still
be as high as 100.

Example: 100

The average amount of time it took the API to complete each
invocation in the current interval. Response time is measured from

avgResponseTime

the moment API Gateway receives the request until the moment it
returns the response to the caller.

Example: 135

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The type of event that occurred.eventType

Example: Performance Metrics Event

The number of failed API invocations in the current interval.faultCount

Example: 10

The starting date and time fromwhich youwant to examinemetrics.intervalStart

Example: 1526294632172

The ending date and time until which you want to examine metrics.intervalStop

Example: 1526294632182

webMethods API Gateway User's Guide 10.11 479

9 API Gateway Analytics

DescriptionColumn

The maximum amount of time (in milliseconds) it took for the API
to complete an invocation in the current interval.

maxResponseTime

Example: 343

The minimum amount of time (in milliseconds) it took for the API
to complete an invocation in the current interval.

minResponseTime

Example: 10

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

The number of successful API invocations in the current interval.successCount

Example: 100

The total number of API invocations (successful and unsuccessful)
in the current interval.

totalCount

Example: 110

Threat Protection Events

DescriptionColumn

The unique identifier for an event.id

Example: 8e05267a-45c9-45f0-a3dd-8b2ee1e98ca2

A helpful action taken on the API for the alert.alertAction

Example: DENY

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The type of event that occurred.eventType

Example: Transactional

Name of the threat protection filter.filterName

Example: DoSFilter

If the API invocation failed, message that describes the error that
occurred.

message

480 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Example:Global Denial of Service limits were reached: Maximum
requests limit of 2 in 120 seconds has been exceeded.

Hostname of the machine from which the API access request was
submitted.

requestHost

Example: 10.60.34.152

Date and time the request was submitted.requestTime

Example: 1501671101509

The type of request that was received for the API.requestType

Example: ALL

The relative URI path of a resource that was used for API invocation.resourcePath

Example: invoke/pub.date/getCurrentDate

The API Gateway rule that triggered the event.ruleName

Example: GlobalDoSRule

The name or IP address of themachine onwhich the thread protection
server is running.

serverHost

Example: 10.60.34.83

The port number onwhich the thread protection server is configured
to listen for incoming requests.

serverPort

Example: 8911

API Portal
The runtime events and metrics payload generated by API Gateway at run-time is published to
the configured API Portal destination. The columns that make up the events and metrics data
model for API Portal are listed below:

Transactional Events

DescriptionColumn

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

webMethods API Gateway User's Guide 10.11 481

9 API Gateway Analytics

DescriptionColumn

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the consumer associated with the API
invocation.

consumerId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the consumer associated with the API invocation.consumerIp

Example: 10.1.1.211

Name of the consumer associated with the API invocation.consumerName

A consumer name is populated as unknown when API Gateway is
unable to identify the consumer using a security policy that is
configured for the API.

Example: SampleApplication

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

correlationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The customfields anAPI Provider can provide to log a newfield and
value for a transaction event.

customFieldsrequest

Example: {"customfield":"customvalue"}

The origin of error.errorOrigin

Example: Nativeserivce

The type of event that occurred.eventType

Example: Transactional

List the external calls from API Gateway. These external calls can be
to a native service or service registry.

externalCalls

Example:
[{
"externalCallType":"SERVICE_REGISTRY_CALL",
"externalURL":"http://service.registry.com",

482 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn
"callDuration":49,
"callStartTime":1562244570486,
"callEndTime":1562244570535,
"responseCode": "200"
},
{
"externalCallType":"NATIVE_SERVICE_CALL",
"externalURL":
"https://petstore.swagger.io/v2/store/inventory",
"callDuration":1285,
"callStartTime":1562244569252,
"callEndTime":1562244570537,
"responseCode":"200"
}]

Duration in milliseconds, to process a request by API Gateway. This
does not include native service processing duration.

gatewayTime

gatewayTime = totalTime - providerTime

Example: 20

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

Time in milliseconds required for API Gateway to invoke a native
provider and receive a response. This time includes the overhead

providerTime

incurred by API Gateway. Overhead includes the time it takes for a
provider to process a request and return a response, plus any network
latency to or from the provider. Subtracting total time from provider
time must give a rough indicator of the API Gateway overhead.

Example: 20

This is applicable only for REST APIs. Query parameters present in
the incoming REST request.

queryParameters

Example: {"status":"available"}

Request header in the incoming request from the client.requestHeaders

Example:
{
"Cache-Control":"max-age=0",
"Accept":"text/plain,application/json;
q=0.9,image/webp,image/apng,*/*;
q=0.8",
"Upgrade-Insecure-Requests":"1",

webMethods API Gateway User's Guide 10.11 483

9 API Gateway Analytics

DescriptionColumn
"Connection":"keep-alive",
"User-Agent":"Mozilla/5.0(Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181Safari/537.36",
"Host":"mcdaso02:5555",
"Accept-Encoding":"gzip,deflate",
"Accept-Language":"en-US,en;q=0.9,ta;q=0.8",
"Content-Type":"application/x-www-form-urlencoded"
}

The API response payload data.response

Example: <ResponsePayload>

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 200

Response header in the outgoing response.responseHeaders

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods":"GET,POST,DELETE,
PUT",
"Connection":"close",
"Date":"Fri, 30 Mar 2018 08:25:45 GMT",
"Access-Control-Allow-Headers":"Content-Type,api_key,
Authorization",
"Content-Type":"application/xml"
}

The HTTP method used to invoke the native service.nativeHttpMethod

Example: GET

Request header in the incoming request from the API Gateway to
native service.

nativeRequestHeaders

Example:
{
"Authorization":"**************",
"Accept": "*/*",
"Authorization": "**************",
"Accept":"*/*",
"Cache-Control": "no-cache",
"User-Agent": "PostmanRuntime/7.13.0",
"Postman-Token":
"381424fa-e3b3-4058-8df9-4abf9d72c899",
"postmanHeader": "hello",
"accept-encoding": "gzip, deflate",

484 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn
"Content-Type": "application/x-www-form-urlencoded"
}

The native service request data.nativeRequestPayload

Example:
{
"param1" : "value1",
"param2" : 10
}

The native service response data.nativeResonsePayload

Example:
{
"id":2,
"category":
{

"id":2,
"name":"string"

},
"name":"pysen",
"photoUrls":["string"],
"tags":
[{

"id":0,
"name":"string"

}],
"status":"available"
}

URL of the native service.nativeURL

Example: http://petstore.swagger.io/v2/pet/2

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Source API Gateway's IP address.sourceGatewayNode

Example: 10.0.75.1

Status of the API request.status

Possible values are: SUCCESS, FAILURE

Name of the API Gateway instance reporting the event.targetName

Example: API_Gateway_Instance

webMethods API Gateway User's Guide 10.11 485

9 API Gateway Analytics

DescriptionColumn

The total combined size of request and response payloads in bytes.totalDataSize

Example: 100

Time in milliseconds required to invoke the API provider. This time
includes the overhead incurred by API Gateway. Overhead includes
security overhead for encryption, decryption, and load-balance retries.

totalTime

Example: 120

Error Events

DescriptionColumn

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the consumer associated with the API
invocation.

consumerId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the consumer associated with the API invocation.consumerIp

Example: 10.20.248.33

Name of the consumer associated with the API invocation.consumerName

A consumer name is populated as unknown when API Gateway is
unable to identify the consumer using a security policy that is
configured for the API.

Example: SampleApplication

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

correlationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

486 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Message that describes the error that occurred.errorDesc

Service invocation for SampleAPI was rejected based on policy
violation, response code: 503

The type of event that occurred.eventType

Example: Error Event

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 503

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Name of the API Gateway instance reporting the event.targetName

Example: API_Gateway_Instance

Monitoring Events

DescriptionColumn

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertDesc

Example: EnforcePolicy-HardLimit

Name of the API Gateway policy that generated the alert message.alertSource

Example: Unknown-Policy

The type of alert generated for the event.alertType

Example: sla

The unique identifier for the API.apiId

webMethods API Gateway User's Guide 10.11 487

9 API Gateway Analytics

DescriptionColumn

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.20.248.33

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The type of event that occurred.eventType

Example: Monitor Event

The monitored attribute which has breached the configured SLA.monitorAttr

Example: AVGRESPONSETIME GT 1.0, SUCCESSCOUNT EQ 3,
REQUESTCOUNT GT 10

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

488 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Name of the API Gateway instance reporting the event.targetName

Example: API_Gateway_Instance

Lifecycle Events

DescriptionColumn

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

Status of the API Gateway instance.eventStatus

Possible values are: STARTED or STOPPED

eventDesc

The type of event that occurred.eventType

Example: LifeCycle

Name of the API Gateway instance reporting the event.targetName

Example: API_Gateway_Instance

Policy Violation Events

DescriptionColumn

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertDesc

Example: A violation was detected for policy
(Unknown-Policyuser): application could not be identified.
Anonymous access is not allowed for this service!

Name of the API Gateway policy that generated the alert message.alertSource

Example: Unknown-Policy

The type of alert generated for the event.alertType

Example: PolicyViolation

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

webMethods API Gateway User's Guide 10.11 489

9 API Gateway Analytics

DescriptionColumn

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the consumer associated with the API
invocation.

consumerId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the consumer associated with the API invocation.consumerIp

Example: 10.20.248.33

Name of the consumer associated with the API invocation.consumerName

A consumer name is populated as unknown when API Gateway is
unable to identify the consumer using a security policy that is
configured for the API.

Example: SampleApplication

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The type of event that occurred.eventType

Example: Policy Violation Event

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 200

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Name of the API Gateway instance reporting the event.targetName

490 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Example: API_Gateway_Instance

Performance Metrics

DescriptionColumn

The unique identifier for the API.apiId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The percentage of time that an API was available during the current
interval. A value of 100 indicates that the API was always available.

availability

If invocations fail due to policy violations, this parameter could still
be as high as 100.

Example: 100

The average amount of time it took the API to complete each
invocation in the current interval. Response time is measured from

avgResponseTime

the moment API Gateway receives the request until the moment it
returns the response to the caller.

Example: 135

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The type of event that occurred.eventType

Example: Performance Metrics Event

The number of failed API invocations in the current interval.faultCount

Example: 10

Includes failed API invocations.includeFaults

Possible values are: true, false

The starting date and time fromwhich youwant to examinemetrics.intervalStart

Example: 2015-08-26 04:13:35 PM

webMethods API Gateway User's Guide 10.11 491

9 API Gateway Analytics

DescriptionColumn

The ending date and time until which you want to examine metrics.intervalStop

Example: 2015-08-26 04:13:45 PM

The maximum amount of time (in milliseconds) it took for the API
to complete an invocation in the current interval.

maxResponseTime

Example: 343

The minimum amount of time (in milliseconds) it took for the API
to complete an invocation in the current interval.

minResponseTime

Example: 10

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

The number of successful API invocations in the current interval.successCount

Example: 100

Name of the API Gateway instance reporting the event.targetName

Example: API_Gateway_Instance

The total number of API invocations (successful and unsuccessful)
in the current interval.

totalCount

Example: 110

Audit Log
The runtime events and metrics payload generated by API Gateway at run-time is published to
the configured Audit Log destination. The columns that make up the events and metrics data
model for Audit Log are listed below:

Transactional Events

DescriptionColumn

The unique identifier for the API.API_ID

Example: ec1473cc-40a0-479e-9126-474a917c3c89

Name of the API in which the event occurred.API_NAME

492 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Example: SampleAPI

The system-assigned version identifier for the API.API_VERSION

Example: 1.0

Date and time when the event was written to the log.AUDITTIMESTAMP

Example: 2017-08-07 07:22:22

IP address of the consumer associated with the API invocation.CONSUMER_IP

Example: 10.60.37.42

Name of the consumer associated with the API invocation.CONSUMER_NAME

A consumer name is populated as unknown when API Gateway
is unable to identify the consumer using a policy that is configured
for the API.

Example: SampleApplication

The unique identifier for the current context information API
Gateway uses to connect related entries from different logs.

CONTEXTID

This column is currently not used. It appears as NULL or as an
empty string.

Example: 81546147-41a8-4998-8150-02ba67bb08c2

The unique identifier that is automatically generated for every
request coming to API Gateway and can be used to query the log.

CORRELATIONID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

The custom fields an API Provider can provide to log a new field
and value for a transaction event.

CUSTOMFIELDS

Example: {"customfield":"customvalue"}

The origin of error.ERROR_ORIGIN

Example: Nativeserivce

The primary key (PK) that uniquely identifies the event that
occurred.

EVENT_PK

Example: 1

List the external calls from API Gateway. These external calls can
be to a native service or service registry.

EXTERNAL_CALLS

Example:

webMethods API Gateway User's Guide 10.11 493

9 API Gateway Analytics

DescriptionColumn
[{
"externalCallType":"SERVICE_REGISTRY_CALL",
"externalURL":"http://service.registry.com",
"callDuration":49,
"callStartTime":1562244570486,
"callEndTime":1562244570535,
"responseCode": "200"
},
{
"externalCallType":"NATIVE_SERVICE_CALL",
"externalURL":
"https://petstore.swagger.io/v2/store/inventory",
"callDuration":1285,
"callStartTime":1562244569252,
"callEndTime":1562244570537,
"responseCode":"200"
}]

Date and time when the event was generated in API Gateway.INSERTTIMESTAMP

Example: 2017-08-07 07:22:22

The ID assigned to the message by the API provider.MSGID

This column is currently not used.

Example: 361dc2f8-a60b-fc21-8545-9b07fce1a479

The endpoint URL of the native API that is invoked.NATIVE_ENDPOINT

Example: http://petstore.swagger.io/v2/pet/55

The HTTP method used to invoke the native service.NATIVE_HTTP_METHOD

Example: GET

Request header in the incoming request from the API Gateway to
native service.

NATIVE_REQUEST_HEADERS

Example:
{
"Authorization":"**************",
"Accept": "*/*",
"Authorization": "**************",
"Accept":"*/*",
"Cache-Control": "no-cache",
"User-Agent": "PostmanRuntime/7.13.0",
"Postman-Token":
"381424fa-e3b3-4058-8df9-4abf9d72c899",
"postmanHeader": "hello",
"accept-encoding": "gzip, deflate",
"Content-Type":"application/x-www-form-urlencoded"
}

494 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

The native service request data.NATIVE_REQ_PAYLOAD

Example:
{
"param1" : "value1",
"param2" : 10
}

Response header in the outgoing response from the native service
to API Gateway.

NATIVE_RESPONSE_HEADERS

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods": "GET, POST, DELETE,
PUT",
"Connection":"close",
"Date": "Fri, 07 Jun 2019 12:44:13 GMT",
"Access-Control-Allow-Headers": "Content-Type,
api_key, Authorization",
"Content-Type": "application/json"
}

The native service response data.NATIVE_RES_PAYLOAD

Example:
{
"id":2,
"category":
{

"id":2,
"name":"string"

},
"name":"pysen",
"photoUrls":["string"],
"tags":
[{

"id":0,
"name":"string"

}],
"status":"available"
}

URL of the native service.NATIVE_URL

Example: http://petstore.swagger.io/v2/pet/2

Name of the API operation or resource that is invoked.OPERATION_NAME

Example: /pet/{petId}

webMethods API Gateway User's Guide 10.11 495

9 API Gateway Analytics

DescriptionColumn

Time inmilliseconds required for API Gateway to invoke a native
provider and receive a response. This time includes the overhead

PROVIDER_TIME

incurred by API Gateway. Overhead includes the time it takes for
a provider to process a request and return a response, plus any
network latency to or from the provider. Subtracting total time
from provider time must give a rough indicator of the API
Gateway overhead.

Example: 1336

This is applicable only for REST APIs. Query parameters present
in the incoming REST request.

QUERY_PARAMETERS

Example: {"status":"available"}

Request header in the incoming request from the client.REQUEST_HEADERS

Example:
{
"Cache-Control":"max-age=0",
"Accept":"text/plain,application/json;
q=0.9,image/webp,image/apng,*/*;
q=0.8",
"Upgrade-Insecure-Requests":"1",
"Connection":"keep-alive",
"User-Agent":"Mozilla/5.0(Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181Safari/537.36",
"Host":"mcdaso02:5555",
"Accept-Encoding":"gzip,deflate",
"Accept-Language":"en-US,en;q=0.9,ta;q=0.8",
"Content-Type":"application/x-www-form-urlencoded"
}

Response header in the outgoing response.RESPONSE_HEADERS

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods":"GET,POST,DELETE,
PUT",
"Connection":"close",
"Date":"Fri, 30 Mar 2018 08:25:45 GMT",
"Access-Control-Allow-Headers":"Content-Type,api_key,
Authorization",
"Content-Type":"application/xml"
}

Theunique identifier for the root context informationAPIGateway
uses to connect related entries from different logs.

ROOTCONTEXTID

496 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

This column is currently not used. It appears as NULL or as an
empty string.

Example: 81546147-41a8-4998-8150-02ba67bb08c2

TheAPI Gateway server onwhich the transaction event occurred.SERVERID

This column is currently not used. It appears as NULL or as an
empty string.

Example: SampleHost:80

Name of the service in which the event occurred.SERVICE_NAME

Example: Swagger_Petstore

A string the API Gateway server generates to uniquely identify
each session. This is either the IS session token or the automatically
generated GUID if the token is missing from themessage context.

SESSION_ID

Example: 6dfcd849198c4a7e96b4ff89bc2deaf5

Source API Gateway's IP address.SOURCE_GATEWAY_NODE

Example: 10.0.75.1

Status of the API request.STATUS

Possible values are: SUCCESS, FAILURE

Time in milliseconds required to invoke the API provider. This
time includes the overhead incurred by API Gateway. Overhead

TOTAL_TIME

includes security overhead for encryption, decryption, and
load-balance retries.

Example: 1042

CentraSite
The runtime events and metrics payload generated by API Gateway at run-time is published to
the configured CentraSite destination. The columns that make up the events and metrics data
model for CentraSite are listed below:

Transactional Events

DescriptionColumn

The system-assigned version identifier for the API.ApiUserVersion

webMethods API Gateway User's Guide 10.11 497

9 API Gateway Analytics

DescriptionColumn

Example: 1.0

Name of the consumer associated with the API invocation.Consumer

A consumer name is populated as unknown when API Gateway
is unable to identify the consumer using a policy that is configured
for the API.

Example: SampleApplication

The unique identifier for the consumer associated with the API
invocation.

ConsumerId

Example: be8b27d6-8f79-4c6e-b06c-a628d2ba30c3

IP address of the consumer associated with the API invocation.Consumer IP Address

Example: 10.60.20.169

The unique identifier that is automatically generated for every
request coming to API Gateway and can be used to query the log.

CorrelationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Date and time when the event was generated in API Gateway.Created Time

Example: 2017-08-09 01:27:45 AM

The custom fields an API Provider can provide to log a new field
and value for a transaction event.

CustomFields

Example: {"customfield":"customvalue"}

The origin of error.ErrorOrigin

Example: Nativeserivce

The type of event that occurred.Event Type

Example: Transaction Event

List the external calls from API Gateway. These external calls can
be to a native service or service registry.

External Calls

Example:
[{
"externalCallType":"SERVICE_REGISTRY_CALL",
"externalURL":"http://service.registry.com",
"callDuration":49,
"callStartTime":1562244570486,
"callEndTime":1562244570535,
"responseCode": "200"

498 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn
},
{
"externalCallType":"NATIVE_SERVICE_CALL",
"externalURL":
"https://petstore.swagger.io/v2/store/inventory",
"callDuration":1285,
"callStartTime":1562244569252,
"callEndTime":1562244570537,
"responseCode":"200"
}]

The HTTP method used to invoke the native service.Native HTTP Method

Example: GET

Request header in the incoming request from the API Gateway to
native service.

Native Request Headers

Example:
{
"Authorization":"**************",
"Accept": "*/*",
"Authorization": "**************",
"Accept":"*/*",
"Cache-Control": "no-cache",
"User-Agent": "PostmanRuntime/7.13.0",
"Postman-Token":
"381424fa-e3b3-4058-8df9-4abf9d72c899",
"postmanHeader": "hello",
"accept-encoding": "gzip, deflate",
"Content-Type": "application/x-www-form-urlencoded"
}

The native service request data.Native Req Payload

Example:
{
"param1" : "value1",
"param2" : 10
}

Response header in the outgoing response from the native service
to API Gateway.

Native Response Headers

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods": "GET, POST, DELETE,
PUT",
"Connection":"close",
"Date": "Fri, 07 Jun 2019 12:44:13 GMT",

webMethods API Gateway User's Guide 10.11 499

9 API Gateway Analytics

DescriptionColumn
"Access-Control-Allow-Headers": "Content-Type,
api_key, Authorization",
"Content-Type": "application/json"
}

The native service response data.Native Res Payload

Example:
{
"id":2,
"category":
{

"id":2,
"name":"string"

},
"name":"pysen",
"photoUrls":["string"],
"tags":
[{

"id":0,
"name":"string"

}],
"status":"available"
}

URL of the native service.Native URL

Example: http://petstore.swagger.io/v2/pet/2

The unique identifier for the partner that generated the audit
record.

PartnerId

Example: unknown

Time inmilliseconds required for API Gateway to invoke a native
provider and receive a response. This time includes the overhead

Provider Round Trip Time

incurred by API Gateway. Overhead includes the time it takes for
a provider to process a request and return a response, plus any
network latency to or from the provider. Subtracting total time
fromprovider timemust give a rough indicator of theAPIGateway
overhead.

Example: 1700

This is applicable only for REST APIs. Query parameters present
in the incoming REST request.

QueryParameters

Example: {"status":"available"}

Request header in the incoming request from the client.RequestHeaders

Example:

500 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn
{
"Cache-Control":"max-age=0",
"Accept":"text/plain,application/json;
q=0.9,image/webp,image/apng,*/*;
q=0.8",
"Upgrade-Insecure-Requests":"1",
"Connection":"keep-alive",
"User-Agent":"Mozilla/5.0(Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181Safari/537.36",
"Host":"mcdaso02:5555",
"Accept-Encoding":"gzip,deflate",
"Accept-Language":"en-US,en;q=0.9,ta;q=0.8",
"Content-Type":"application/x-www-form-urlencoded"
}

The API request payload data.RequestPayload

Example: <RequestPayload>

Response header in the outgoing response.ResponseHeaders

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods":"GET,POST,DELETE,
PUT",
"Connection":"close",
"Date":"Fri, 30 Mar 2018 08:25:45 GMT",
"Access-Control-Allow-Headers":"Content-Type,api_key,
Authorization",
"Content-Type":"application/xml"
}

The API response payload data.ResponsePayload

Example: <ResponsePayload>

Source API Gateway's IP address.Source Gateway Node

Example: 10.0.75.1

Time in milliseconds required to invoke the API provider. This
time includes the overhead incurred by API Gateway. Overhead

Total Round Trip time

includes security overhead for encryption, decryption, and
load-balance retries.

Example: 1707

Name of the API Gateway instance reporting the event.Gateway

Example: API_Gateway_Instance

webMethods API Gateway User's Guide 10.11 501

9 API Gateway Analytics

DescriptionColumn

Status of the API request.Request Status

Possible values are: SUCCESS, FAILURE

Error Events

DescriptionColumn

The system-assigned version identifier for the API.ApiUserVersion

Example: 1.0

Name of the consumer associated with the API invocation.Consumer

A consumer name is populated as unknown when API Gateway is
unable to identify the consumer using a policy that is configured for
the API.

Example: SampleApplication

The unique identifier for the consumer associated with the API
invocation.

ConsumerId

Example: be8b27d6-8f79-4c6e-b06c-a628d2ba30c3

IP address of the consumer associated with the API invocation.Consumer IP Address

Example: 10.60.20.169

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

CorrelationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Date and time when the event was generated in API Gateway.Created Time

Example: 2017-08-09 08:24:04 AM

The source where the error occurred.Error Source

Example: e1cc3c7b-495d-11e7-a5a6-88cf17308ba4

Message that describes the error that occurred.Error Description

Example: Resource / not found

The type of event that occurred.Event Type

Example: Error Event

Name of the API Gateway instance reporting the event.Gateway

502 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Example: API_Gateway_Instance

Monitoring Events

DescriptionColumn

Name of the policy that is enforced on the API.PolicyName

Example: Log Invocation

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

Alert Description

Example: MSLA_ALERT MESSAGE

Name of the API Gateway policy that generated the alert message.Alert Source

Example: Monitorpolicy, EnforcePolicy-HardLimit

The type of alert generated for the event.Alert Type

Possible values are: Monitor, Sla

Name of the API in which the event occurred.apiName

Example: pet1

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.20.248.33

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Date and time when the event was generated in API Gateway.creationDate

webMethods API Gateway User's Guide 10.11 503

9 API Gateway Analytics

DescriptionColumn

Example: 1501671101509

The monitored attribute which has breached the configured SLA.Monitored Attribute

Example: AVGRESPONSETIME GT 1.0, SUCCESSCOUNT EQ 3,
REQUESTCOUNT GT 10

The endpoint URL of the native API that is invoked.native_endpoint

Example: http://petstore.swagger.io/v2/pet/55

Name of the API operation that is invoked.operationName

Example: Using aCalculatorAPI, you can performvarious operations
such as addition, subtraction, multiplication, and division. When an
addition operation is invoked in API Gateway, then the operation
field name is populated as addInts.

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

sessionId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Name of the API Gateway instance reporting the event.targetName

Example: API_Gateway_Instance

Policy Violation Events

DescriptionColumn

The system-assigned version identifier for the API.ApiUserVersion

Example: 1.0

Name of the API Gateway policy that generated the alert message.Alert Source

Example: Unknown-Policy

The type of alert generated for the event.Alert Type

Example: PolicyViolation

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

Alert Description

Example: A violation of policy was detected : Unable to identify
the application for the request

504 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Name of the consumer associated with the API invocation.Consumer

A consumer name is populated as unknown when API Gateway is
unable to identify the consumer using a policy that is configured for
the API.

Example: unknown

The unique identifier for the consumer associated with the API
invocation.

ConsumerId

Example: unknown

IP address of the consumer associated with the API invocation.Consumer IP Address

Example: 10.60.37.118

Date and time when the event was generated in API Gateway.Created Time

Example: 2017-08-09 08:25:52 AM

The type of event that occurred.Event Type

Example: Policy Violation Event

Name of the API Gateway instance reporting the event.Gateway

Example: API_Gateway_Instance

Lifecycle Events

DescriptionColumn

Date and time when the event was generated in API Gateway.TimeStamp

Example: 2017-08-26 04:13:35 PM

Name of the API Gateway instance reporting the event.Target

Example: API_Gateway_Instance

Status of the API Gateway instance.LifeCycleStatus

Possible values are: STARTED or STOPPED

The alert notification message for the lifecycle event.LifeCycleAlertDescription

Example: Alert_Message

webMethods API Gateway User's Guide 10.11 505

9 API Gateway Analytics

Performance Metrics

DescriptionColumn

The average amount of time it took the API to complete each
invocation in the current interval. Response time is measured from

AVG_RESP_TIME

the moment API Gateway receives the request until the moment it
returns the response to the caller.

Example: 1376

The number of failed API invocations in the current interval.FAULT_COUNT

Example: 1

Includes failed API invocations.INCLUDE_FAULTS

Possible values are: true, false

The starting date and time fromwhich youwant to examinemetrics.INTERVAL_START

Example: 02 Aug 2017 10:51:31 GMT

The ending date and time until which you want to examine metrics.INTERVAL_STOP

Example: 02 Aug 2017 10:52:31 GMT

The maximum amount of time (in milliseconds) it took for the API
to complete an invocation in the current interval.

MAX_RESP_TIME

Example: 1401

The minimum amount of time (in milliseconds) it took for the API
to complete an invocation in the current interval.

MIN_RESP_TIME

Example: 1352

Name of the API operation that is invoked.OPERATION_NAME

Example: /pet/{petId}

The Universally Unique Identifier (UUID) for the service in which
the event occurred.

SERVICE_KEY

This column is currently not used by APIs created in API Gateway.
It is used to support the APIs that are migrated from CentraSite or
Mediator to API Gateway.

The number of successful API invocations in the current interval.SUCCESS_COUNT

Example: 1

Name of the API Gateway instance reporting the event.TARGET_NAME

506 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Example: API_Gateway_Instance

The total number of API invocations (successful and unsuccessful)
in the current interval.

totalCount

Example: 2

Elasticsearch
The runtime events and metrics payload generated by API Gateway at run-time is published to
the configured Elasticsearch destination. The columns that make up the events and metrics data
model for Elasticsearch are listed below:

Transactional Events

DescriptionColumn

The unique identifier for the API.apiId

Example: af70b2de-c9c5-4f40-94be-7d8622743e42

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.60.37.42

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Indicates whether the response is sent to the client from the cached
data present inAPIGateway through the Service result caching policy
or the response is received from Native service and sent to client.

cachedResponse

webMethods API Gateway User's Guide 10.11 507

9 API Gateway Analytics

DescriptionColumn

Possible values are: Cached, Not-Cached

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

correlationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The customfields anAPI Provider can provide to log a newfield and
value for a transaction event.

customFields

Example: {"customfield":"customvalue"}

The origin of error.errorOrigin

Example: Nativeserivce

The type of event that occurred.eventType

Example: Transactional

List the external calls from API Gateway. These external calls can be
to a native service or service registry.

externalCalls

Example:
[{
"externalCallType":"SERVICE_REGISTRY_CALL",
"externalURL":"http://service.registry.com",
"callDuration":49,
"callStartTime":1562244570486,
"callEndTime":1562244570535,
"responseCode": "200"
},
{
"externalCallType":"NATIVE_SERVICE_CALL",
"externalURL":
"https://petstore.swagger.io/v2/store/inventory",
"callDuration":1285,
"callStartTime":1562244569252,
"callEndTime":1562244570537,
"responseCode":"200"
}]

The HTTP method used to invoke the API.httpMethod

Example: GET

Indicates whether the event is generated for a callback request.isCallbackRequest

Possible values are:

508 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

true. This denotes that the event is generated for a callback
request.

false. This denotes that the event is generated for a normal
response.

This is applicable only for WebSocket APIs. This indicates the type
of a WebSocket message.

messageType

Possible values are: binary, text

The HTTP method used to invoke the native service.nativeHttpMethod

Example: GET

Request header in the incoming request from the API Gateway to
native service.

nativeRequestHeaders

Example:
{
"Authorization":"**************",
"Accept": "*/*",
"Authorization": "**************",
"Accept":"*/*",
"Cache-Control": "no-cache",
"User-Agent": "PostmanRuntime/7.13.0",
"Postman-Token":
"381424fa-e3b3-4058-8df9-4abf9d72c899",
"postmanHeader": "hello",
"accept-encoding": "gzip, deflate",
"Content-Type": "application/x-www-form-urlencoded"
}

The native service request data.nativeRequestPayload

Example:
{
"param1" : "value1",
"param2" : 10
}

Response header in the outgoing response from the native service to
API Gateway.

nativeResponseHeaders

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods": "GET, POST, DELETE,
PUT",
"Connection":"close",

webMethods API Gateway User's Guide 10.11 509

9 API Gateway Analytics

DescriptionColumn
"Date": "Fri, 07 Jun 2019 12:44:13 GMT",
"Access-Control-Allow-Headers": "Content-Type,
api_key, Authorization",
"Content-Type": "application/json"
}

The native service response data.nativeResponsePayload

Example:
{
"id":2,
"category":
{

"id":2,
"name":"string"

},
"name":"pysen",
"photoUrls":["string"],
"tags":
[{

"id":0,
"name":"string"

}],
"status":"available"
}

URL of the native service.nativeURL

Example: http://petstore.swagger.io/v2/pet/2

Name of the API operation that is invoked.operationName

Example: /pet/{petId}

This is applicable only forWebSocket APIs. The origin of the request.origin

Possible values are: client, server

The unique identifier for the API package.packageId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Name of the API package.packageName

Example: Travel Package

The unique identifier for the API plan.planId

Example: d0f84954-9732-11e5-b9f4-f159eafe47b2

Name of the API plan.planName

Example: Gold Plan

510 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Time in milliseconds required for API Gateway to invoke a native
provider and receive a response. This time includes the overhead

providerTime

incurred by API Gateway. Overhead includes the time it takes for a
provider to process a request and return a response, plus any network
latency to or from the provider. Subtracting total time from provider
time must give a rough indicator of the API Gateway overhead.

Example: 1367

This is applicable only for REST APIs. Query parameters present in
the incoming REST request.

queryParameteres

Example: {"status":"available"}

The API request payload data.reqPayload

Example: <RequestPayload>

Request header in the incoming request from the client.requestHeaders

Example:
{
"Cache-Control":"max-age=0",
"Accept":"text/plain,application/json;
q=0.9,image/webp,image/apng,*/*;
q=0.8",
"Upgrade-Insecure-Requests":"1",
"Connection":"keep-alive",
"User-Agent":"Mozilla/5.0(Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181Safari/537.36",
"Host":"mcdaso02:5555",
"Accept-Encoding":"gzip,deflate",
"Accept-Language":"en-US,en;q=0.9,ta;q=0.8",
"Content-Type":"application/x-www-form-urlencoded"
}

The API response payload data.resPayload

Example: <ResponsePayload>

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 404

Response header in the outgoing response.responseHeaders

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",

webMethods API Gateway User's Guide 10.11 511

9 API Gateway Analytics

DescriptionColumn
"Access-Control-Allow-Methods":"GET,POST,DELETE,
PUT",
"Connection":"close",
"Date":"Fri, 30 Mar 2018 08:25:45 GMT",
"Access-Control-Allow-Headers":"Content-Type,api_key,
Authorization",
"Content-Type":"application/xml"
}

The API Gateway server on which the transaction event occurred.serverID

This column is currently not used. It appears asNULL or as an empty
string.

Example: SampleHost:80

Details of events generated only from Microgateway. The details
include Microgateway Id, Source Gateway Host, Source Gateway
Port, Source Gateway Version, Microgateway pool.

sourceGatewayDetails

Source API Gateway's IP address.sourceGatewayNode

Example: 10.0.75.1

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Status of the API request.status

Possible values are: SUCCESS, FAILURE

The total combined size of request and response payloads in bytes.totalDataSize

Example: 51

Time in milliseconds required to invoke the API provider. This time
includes the overhead incurred by API Gateway. Overhead includes
security overhead for encryption, decryption, and load-balance retries.

totalTime

Example: 1401

Error Events

DescriptionColumn

The unique identifier for the API.apiId

Example: af70b2de-c9c5-4f40-94be-7d8622743e42

Name of the API in which the event occurred.apiName

512 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.60.37.42

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

correlationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

Message that describes the error that occurred.errorDesc

Example: Native service provider error. Code : 404

The source where the event occurred.eventSource

Example: API_Gateway_Instance

The type of event that occurred.eventType

Example: Error

The HTTP method used to invoke the API.httpMethod

Example: GET

Name of the API operation that is invoked.operationName

Example: /pet/{petId}

webMethods API Gateway User's Guide 10.11 513

9 API Gateway Analytics

DescriptionColumn

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 404

Details of events generated only from Microgateway. The details
include Microgateway Id, Source Gateway Host, Source Gateway
Port, Source Gateway Version, Microgateway pool.

sourceGatewayDetails

Source API Gateway's IP address.sourceGatewayNode

Example: 10.0.75.1

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Monitoring Events

DescriptionColumn

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertDesc

Example: EnforcePolicy-HardLimit

Name of the API Gateway policy that generated the alert message.alertSource

Example: Monitorpolicy

The type of alert generated for the event.alertType

Example: Monitor

The unique identifier for the API.apiId

Example: af70b2de-c9c5-4f40-94be-7d8622743e42

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

514 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

IP address of the application associated with the API invocation.applicationIp

Example: 10.60.37.42

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The source where the event occurred.eventSource

Example: API_Gateway_Instance

The type of event that occurred.eventType

Example: Monitor

The HTTP method used to request the API access.httpMethod

Example: GET

The monitored attribute which has breached the configured SLA.monitorAttr

Example: AVGRESPONSETIME GT 1.0, SUCCESSCOUNT EQ 3,
REQUESTCOUNT GT 10

Name of the API operation that is invoked.operationName

Example: /pet/{petId}

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 200

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Details of events generated only from Microgateway. The details
include Microgateway Id, Source Gateway Host, Source Gateway
Port, Source Gateway Version, Microgateway pool.

sourceGatewayDetails

webMethods API Gateway User's Guide 10.11 515

9 API Gateway Analytics

Policy Violation Events

DescriptionColumn

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertDesc

Example: A violation was detected for policy
(Unknown-Policyuser): application could not be identified.
Anonymous access is not allowed for this service!

Name of the API Gateway policy that generated the alert message.alertSource

Example: Unknown-Policy

The type of alert generated for the event.alertType

Example: PolicyViolation

The unique identifier for the API.apiId

Example: af70b2de-c9c5-4f40-94be-7d8622743e42

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: 9434e90d-65c3-4e37-8ccb-595b8df3e645

IP address of the application associated with the API invocation.applicationIp

Example: 10.60.37.42

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The source where the event occurred.eventSource

516 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

Example: API_Gateway_Instance

The type of event that occurred.eventType

Example: PolicyViolation

The HTTP method used to request the API access.httpMethod

Example: GET

Name of the API operation that is invoked.operationName

Example: /pet/{petId}

The HTTP response status code that indicates success or failure of
the requested operation.

responseCode

Example: 503

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Details of events generated only from Microgateway. The details
include Microgateway Id, Source Gateway Host, Source Gateway
Port, Source Gateway Version, Microgateway pool.

sourceGatewayDetails

Performance Metrics

DescriptionColumn

The unique identifier for the API.apiId

Example: af70b2de-c9c5-4f40-94be-7d8622743e42

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The percentage of time that an API was available during the current
interval. A value of 100 indicates that the API was always available.

availability

If invocations fail due to policy violations, this parameter could still
be as high as 100.

Example: 100.0

webMethods API Gateway User's Guide 10.11 517

9 API Gateway Analytics

DescriptionColumn

The average amount of time it took the API to complete each
invocation in the current interval. Response time is measured from

avgResponseTime

the moment API Gateway receives the request until the moment it
returns the response to the caller.

Example: 1376

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The type of event that occurred.eventType

Example: PerformanceData

The number of failed API invocations in the current interval.faultCount

Example: 1

Includes failed API invocations.includeFaults

Possible values are: true, false

The starting date and time fromwhich youwant to examinemetrics.intervalStart

Example: 02 Aug 2017 10:51:31 GMT

The ending date and time until which you want to examine metrics.intervalStop

Example: 02 Aug 2017 10:52:31 GMT

The maximum amount of time (in milliseconds) it took for the API
to complete an invocation in the current interval.

maxResponseTime

Example: 1401

The minimum amount of time (in milliseconds) it took for the API
to complete an invocation in the current interval.

minResponseTime

Example: 1352

Details of events generated only from Microgateway. The details
include Microgateway Id, Source Gateway Host, Source Gateway
Port, Source Gateway Version, Microgateway pool.

sourceGatewayDetails

Source of event generation.sourceGateway

Possible values: APIGateway or Microgateway.

Name of the API operation that is invoked.operationName

Example: /pet/{petId}

518 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

The number of successful API invocations in the current interval.successCount

Example: 1

The total number of API invocations (successful and unsuccessful)
in the current interval.

totalCount

Example: 2

Email
The runtime events and metrics payload generated by API Gateway at run-time is published to
the configured Email destination. The columns that make up the events and metrics data model
for Email are listed below:

Transactional Events

DescriptionColumn

Name of the API in which the event occurred.apiName

Example: SampleAPI

The unique identifier for the consumer associated with the API
invocation.

consumerId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Name of the consumer associated with the API invocation.consumerName

A consumer name is populated as unknown when API Gateway is
unable to identify the consumer using a security policy that is
configured for the API.

Example: SampleApplication

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

correlationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

Message that describes the date and time the API was invoked and
the application associated with the API invocation.

Description

Example: Invoked at 4/24/18 1:50 PM Consumer Name: Unknown
Consumer ID: Unknown

The origin of error.ErrorOrigin

webMethods API Gateway User's Guide 10.11 519

9 API Gateway Analytics

DescriptionColumn

Example: Nativeserivce

List the external calls from API Gateway. These external calls can be
to a native service or service registry.

External Calls

Example:
[{
"externalCallType":"SERVICE_REGISTRY_CALL",
"externalURL":"http://service.registry.com",
"callDuration":49,
"callStartTime":1562244570486,
"callEndTime":1562244570535,
"responseCode": "200"
},
{
"externalCallType":"NATIVE_SERVICE_CALL",
"externalURL":
"https://petstore.swagger.io/v2/store/inventory",
"callDuration":1285,
"callStartTime":1562244569252,
"callEndTime":1562244570537,
"responseCode":"200"
}]

The endpoint URL of the native API being invoked.Native Endpoint

Example: http://petstore.swagger.io/v2/pet/55

The HTTP method used to invoke the native service.Native HTTP Method

Example: GET

Request header in the incoming request from the API Gateway to
native service.

Native Request Headers

Example:
{
"Authorization":"**************",
"Accept": "*/*",
"Authorization": "**************",
"Accept":"*/*",
"Cache-Control": "no-cache",
"User-Agent": "PostmanRuntime/7.13.0",
"Postman-Token":
"381424fa-e3b3-4058-8df9-4abf9d72c899",
"postmanHeader": "hello",
"accept-encoding": "gzip, deflate",
"Content-Type": "application/x-www-form-urlencoded"
}

The native service request data.Native Request Payload

Example:

520 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn
{
"param1" : "value1",
"param2" : 10
}

Response header in the outgoing response from the native service to
API Gateway.

Native Response Headers

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods": "GET, POST, DELETE,
PUT",
"Connection":"close",
"Date": "Fri, 07 Jun 2019 12:44:13 GMT",
"Access-Control-Allow-Headers": "Content-Type,
api_key, Authorization",
"Content-Type": "application/json"
}

The native service response data.Native Response Payload

Example:
{
"id":2,
"category":
{

"id":2,
"name":"string"

},
"name":"pysen",
"photoUrls":["string"],
"tags":
[{

"id":0,
"name":"string"

}],
"status":"available"
}

URL of the native service.Native URL

Example: http://petstore.swagger.io/v2/pet/2

Name of the operation or resource that is being invoked on the API.Operation/Resource Name

Example: /pet/{petId}

Name of the runtime policy that is enforced on the API.Policy Action Name

Example: Log Invocation

webMethods API Gateway User's Guide 10.11 521

9 API Gateway Analytics

DescriptionColumn

Source API Gateway's IP address.Source Gateway Node

Example: 10.0.75.1

Status of the API invocation.Status

Possible values are: SUCCESS, FAILURE

The system-assigned version identifier for the API.Version

Example: 1.0

Monitoring Events

DescriptionColumn

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertDesc

Example: EnforcePolicy-HardLimit

The type of alert generated for the event.alertSource

Example: Monitor

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertType

Example: Test

Name of the host which serves the request.apiGWHostName

Example: SAG-HS09MG2

Name of the API in which the event occurred.apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Name of the application associated with the API invocation.applicationName

522 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

The monitored attribute which has breached the configured SLA.monitorAttr

Example: AVGRESPONSETIME GT 1.0, SUCCESSCOUNT EQ 3,
REQUESTCOUNT GT 10

The endpoint URL of the native API that is being invoked.Native Endpoint

Example: http://petstore.swagger.io/v2/pet/55

JDBC
The events and metrics payload generated by API Gateway at run-time is published to the
configured JDBC destination. The columns that make up the events and metrics data model for
JDBC are listed below:

API Gateway supports three types of database, Oracle, DB2 and MSSQL. Based on the database
selected, API Gateway publishes the events and metrics payload to the JDBC destination.

Transactional Events

MSSQLDB2OracleColumn Description

NVarchar(256)Varchar(256)Varchar(256)API_ID

The unique identifier for the API.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

NVarchar(256)Varchar(256)Varchar(256)API_NAME

Name of the API in which the event occurred.

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)API_VERSION

The system-assigned version identifier for the API.

Example: 1.0

NVarchar(256)Varchar(256)Varchar(256)APPLICATION_ID

webMethods API Gateway User's Guide 10.11 523

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

The unique identifier for the application associated
with the API invocation.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(64)Varchar(64)Varchar(64)APPLICATION_IP

IP address of the application associated with the API
invocation.

Example: 10.20.248.33

NVarchsar(128)Varchar(128)Varchar(128)APPLICATION_NAME

Name of the application associated with the API
invocation.

An application name is populated asunknownwhen
API Gateway is unable to identify the application
using a security policy that is configured for the API.

Example: SampleApplication

DATETIMETIMESTAMPTIMESTAMPAUDITTIMESTAMP

Date and time when the event was written to the log.

NVarchar(256)Varchar(256)Varchar(256)BINDING_NAME

Name of the binding that identifies a specific access
URI.

This column is currently not used. It appears asNULL
or as an empty string.

NVarchar(12)Varchar(12)Varchar(12)CACHED_RESPONSE

Indicates whether the response is sent to the client
from the cacheddata present inAPIGateway through
the Service result caching policy or the response is
received from Native service and sent to client.

Possible values are: Cached, Not-Cached

NVarchar(256)Varchar(256)Varchar(256)CONSUMER_ID

The unique identifier for the consumer associated
with the API invocation.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(64)Varchar(64)Varchar(64)CONSUMER_IP

524 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

IP address of the consumer associated with the API
invocation.

Example: 10.20.248.33

NVarchar(128)Varchar(128)Varchar(128)CONSUMER_NAME

Name of the consumer associated with the API
invocation.

A consumer name is populated as unknown when
APIGateway is unable to identify the consumer using
a policy that is configured for the API.

Example: SampleApplication

NCHAR(36)CHAR(36)CHAR(36)CONTEXTID

The unique identifier for the current context
information API Gateway uses to connect related
entries from different logs.

This column is currently not used. It appears asNULL
or as an empty string.

Example:81546147-41a8-4998-8150-02ba67bb08c2

NVarchar(256)Varchar(256)Varchar(256)CORRELATIONID

The unique identifier that is automatically generated
for every request coming to API Gateway and can be
used to query the log.

Example:
MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

IMAGEBLOBBLOBCUSTOM_FIELD

The customfields anAPI Provider can provide to log
a new field and value for a transaction event.

Example: {"customfield":"customvalue"}

NVarchar(256)Varchar(256)Varchar(256)ERROR_ORIGIN

The origin of error.

DATETIMETIMESTAMPTIMESTAMPEVENT_CREATE_TS

Date and time when the event was generated in API
Gateway.

webMethods API Gateway User's Guide 10.11 525

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

This is not the time the database performed its insert
(for example, this is calculated by theMediator policy
engine and not a database function).

EVENT_SOURCE

NVarchar(256)Varchar(256)Varchar(256)EVENT_TYPE

The type of event that occurred.

Example: Transactional

NVarchar(256)Varchar(256)Varchar(256)EVENT_USERNAME

Name of the user on API Gateway that invoked the
API.

IMAGEBLOBBLOBEXTERNAL_CALLS

List the external calls from API Gateway. These
external calls can be to a native service or service
registry.

Example:
[{
"externalCallType":
"SERVICE_REGISTRY_CALL",
"externalURL":
"http://service.registry.com",
"callDuration":49,
"callStartTime":1562244570486,
"callEndTime":1562244570535,
"responseCode": "200"
},
{
"externalCallType":
"NATIVE_SERVICE_CALL",
"externalURL":
"https://petstore.swagger.io/v2/store
/inventory",
"callDuration":1285,
"callStartTime":1562244569252,
"callEndTime":1562244570537,
"responseCode":"200"
}]

NVarchar(8)Varchar(8)Varchar(8)HTTP_METHOD

The HTTP method used to invoke the API.

Example: GET

DATETIMETIMESTAMPTIMESTAMPINSERTTIMESTAMP

526 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Date and time when the event was generated in API
Gateway.

NCHAR(36)CHAR(36)CHAR(36)MSGID

The ID assigned to the message by the API provider.

This column is currently not used.

NVarchar(4000)Varchar(4000)Varchar(4000)NATIVE_ENDPOINT

The endpoint URL of the native API that is invoked.

Example: http://petstore.swagger.io/v2/pet/55

Varchar(20)Varchar(20)Varchar2(20)NATIVE_HTTP_METHOD

The HTTP method used to invoke the native service.

Example: GET

IMAGEBLOBBLOBNATIVE_REQUEST_HEADERS

Request header in the incoming request from theAPI
Gateway to native service.

Example:
{
"Authorization":"**************",
"Accept": "*/*",
"Authorization": "**************",
"Accept":"*/*",
"Cache-Control": "no-cache",
"User-Agent": "PostmanRuntime/7.13.0",
"Postman-Token":
"381424fa-e3b3-4058-8df9-4abf9d7c899",
"postmanHeader": "hello",
"accept-encoding": "gzip, deflate",
"Content-Type":
"application/x-www-form-urlencoded"
}

Varchar(max)CLOBCLOBNATIVE_REQUEST_PAYLOAD

The native service request data.

Example:
{
"param1" : "value1",
"param2" : 10
}

IMAGEBLOBBLOBNATIVE_RESPONSE_HEADERS

webMethods API Gateway User's Guide 10.11 527

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Response header in the outgoing response from the
native service to API Gateway.

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods": "GET,
POST, DELETE, PUT",
"Connection":"close",
"Date":
"Fri, 07 Jun 2019 12:44:13 GMT",
"Access-Control-Allow-Headers":
"Content-Type, api_key,Authorization",
"Content-Type": "application/json"
}

Varchar(max)CLOBCLOBNATIVE_RESPONSE_PAYLOAD

The native service response data.

Example:
{
"id":2,
"category":
{

"id":2,
"name":"string"

},
"name":"pysen",
"photoUrls":["string"],
"tags":
[{

"id":0,
"name":"string"

}],
"status":"available"
}

Varchar(max)CLOBCLOBNATIVE_URL

URL of the native service.

Example: http://petstore.swagger.io/v2/pet/2

NVarchar(256)Varchar(256)Varchar(256)OPERATION_NAME

Name of the API operation or resource that is
invoked.

Example: /pet/{petId}

NVarchar(128)Varchar(128)Varchar(128)ORG_KEY

528 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

The Globally Unique Identifier (GUID) for an
organization.

This column is currently not used by APIs created in
API Gateway. It is used to support the APIs that are
migrated from CentraSite or Mediatorr to API
Gateway.

NVarchar(256)Varchar(256)Varchar(256)PACKAGE_ID

The unique identifier for the API package.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(256)Varchar(256)Varchar(256)PACKAGE_NAME

Name of the API package.

Example: Travel Package

NCHAR(36)CHAR(36)CHAR(36)PARENTCONTEXTID

The unique identifier for the parent context
information API Gateway uses to connect related
entries from different logs.

This column is currently not used. It appears asNULL
or as an empty string.

NVarchar(256)Varchar(256)Varchar(256)PARTNER_ID

The unique identifier for the partner that generated
the audit record.

This column is currently not used. It appears asNULL
or as an empty string.

NVarchar(256)Varchar(256)Varchar(256)PLAN_ID

The unique identifier for the API plan.

Example: d0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(256)Varchar(256)Varchar(256)PLAN_NAME

Name of the API plan.

Example: Gold Plan

INTEGERINTNUMERICPROVIDER_TIME

webMethods API Gateway User's Guide 10.11 529

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Time in milliseconds required for API Gateway to
invoke a native provider and receive a response. This
time includes the overhead incurred byAPIGateway.
Overhead includes the time it takes for a provider to
process a request and return a response, plus any
network latency to or from the provider. Subtracting
total time from provider time must give a rough
indicator of the API Gateway overhead.

Example: 1367

IMAGEBLOBBLOBQUERY_PARAMS

This is applicable only for REST APIs. Query
parameters present in the incoming REST request.

Example: {"status":"available"}

IMAGEBLOBBLOBREQUEST

The API request payload data.

Example: <RequestPayload>

IMAGEBLOBBLOBREQUEST_HEADERS

Request header in the incoming request from the
client.

IMAGEBLOBBLOBRESPONSE

The API response payload data.

Example: <ResponsePayload>

INTEGERINTNumericRESPONSE_CODE

TheHTTP response status code that indicates success
or failure of the requested operation.

Example: 200

IMAGEBLOBBLOBRESPONSE_HEADERS

Response header in the outgoing response.

NCHAR(36)CHAR(36)CHAR(36)ROOTCONTEXTID

The unique identifier for the root context information
API Gateway uses to connect related entries from
different logs.

530 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

This column is currently not used. It appears asNULL
or as an empty string.

Example:81546147-41a8-4998-8150-02ba67bb08c2

NVarchar(450)Varchar(450)Varchar(450)SERVERID

The API Gateway server on which the transaction
event occurred.

This column is currently not used. It appears asNULL
or as an empty string.

NVarchar(128)Varchar(128)Varchar(128)SERVICE_KEY

The Universally Unique Identifier (UUID) for the
service in which the event occurred.

This column is currently not used by APIs created in
API Gateway. It is used to support the APIs that are
migrated from CentraSite or Mediator to API
Gateway.

NVarchar(256)Varchar(256)Varchar(256)SERVICE_NAME

Name of the service in which the event occurred.

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)SERVICE_VERSION

The system-assigned version identifier for the service.

Example: 1.0

NVarchar(128)Varchar(128)Varchar(128)SESSION_ID

A string the API Gateway server generates to
uniquely identify each session. This is either the IS
session token or the automatically generated GUID
if the token is missing from the message context.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

Varchar(256)Varchar(256)Varchar2(256)SOURCE_GATEWAY_NODE

Source API Gateway's IP address.

Example: 10.0.75.1

NVarchar(128)Varchar(128)Varchar(128)STATUS

webMethods API Gateway User's Guide 10.11 531

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Status of the API request.

Possible values are: SUCCESS, FAILURE

NVarchar(32)Varchar(32)Varchar(32)TARGET_NAME

Name of the API Gateway instance reporting the
event.

Example: API_Gateway_Instance

INTEGERINTNUMERICTOTAL_DATA_SIZE

The total combined size of request and response
payloads in bytes.

Example: 100

INTEGERINTNUMERICTOTAL_TIME

Time in milliseconds required to invoke the API
provider. This time includes the overhead incurred
by API Gateway. Overhead includes security
overhead for encryption, decryption, and load-balance
retries.

Example: 120

NVarchar(256)Varchar(256)Varchar2(256)USER_AGENT

Name of the client used to invoke the API.

Example: Postman

Error Events

MSSQLDB2OracleColumn Description

NVarchar(256)Varchar(256)Varchar(256)API_ID

The unique identifier for the API.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

NVarchar(256)Varchar(256)Varchar(256)API_NAME

Name of the API in which the event occurred.

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)API_VERSION

532 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

The system-assigned version identifier for the API.

Example: 1.0

NVarchar(256)Varchar(256)Varchar(256)APPLICATION_ID

The unique identifier for the application associated
with the API invocation.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(64)Varchar(64)Varchar(64)APPLICATION_IP

IP address of the application associated with the API
invocation.

Example: 10.20.248.33

NVarchsar(128)Varchar(128)Varchar(128)APPLICATION_NAME

Name of the application associated with the API
invocation.

An application name is populated asunknownwhen
API Gateway is unable to identify the application
using a security policy that is configured for the API.

Example: SampleApplication

Varchar(256)Varchar(256)Varchar(256)BINDING_NAME

Name of the binding that identifies a specific access
URI.

This column is currently not used. It appears asNULL
or as an empty string.

NVarchar(256)Varchar(256)Varchar(256)CONSUMER_ID

The unique identifier for the consumer associated
with the API invocation.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(64)Varchar(64)Varchar(64)CONSUMER_IP

IP address of the consumer associated with the API
invocation.

Example: 10.20.248.33

NVarchar(128)Varchar(128)Varchar(128)CONSUMER_NAME

webMethods API Gateway User's Guide 10.11 533

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Name of the consumer associated with the API
invocation.

A consumer name is populated as unknown when
APIGateway is unable to identify the consumer using
a policy that is configured for the API.

Example: SampleApplication

Varchar(256)Varchar(256)Varchar2(256)CORRELATION_ID

The unique identifier that is automatically generated
for every request coming to API Gateway and can be
used to query the log.

Example:
MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

NVarchar(256)Varchar(256)Varchar(256)ERROR_SOURCE

The source where the error occurred.

Example: e1cc3c7b-495d-11e7-a5a6-88cf17308ba4

NVarchar(4000)Varchar(4000)Varchar(4000)ERROR_DESC

Message that describes the error that occurred.

Example: Resource / not found

DATETIMETIMESTAMPTIMESTAMPEVENT_CREATE_TS

Date and time when the event was generated in API
Gateway.

This is not the time the database performed its insert
(for example, this is calculated by theMediator policy
engine and not a database function).

NVarchar(80)Varchar(80)Varchar(80)EVENT_SOURCE

The source where the event occurred.

NVarchar(256)Varchar(256)Varchar(256)EVENT_TYPE

The type of event that occurred.

Example: Error Event

NVarchar(80)Varchar(80)Varchar(80)EVENT_USERNAME

534 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Name of the user on API Gateway that invoked the
API.

NVarchar(8)Varchar(8)Varchar(8)HTTP_METHOD

The HTTP method used to invoke the API.

Example: GET

NVarchar(4000)Varchar(4000)Varchar(4000)NATIVE_ENDPOINT

The endpoint URL of the native API that is invoked.

Example: http://petstore.swagger.io/v2/pet/55

NVarchar(256)Varchar(256)Varchar(256)OPERATION_NAME

Nameof theAPI operation or resource that is invoked.

Example: /pet/{petId}

NVarchar(128)Varchar(128)Varchar(128)ORG_KEY

The Globally Unique Identifier (GUID) for an
organization.

This column is currently not used by APIs created in
API Gateway. It is used to support the APIs that are
migrated from CentraSite or Mediator to API
Gateway.

INTEGERINTNumericRESPONSE_CODE

TheHTTP response status code that indicates success
or failure of the requested operation.

Example: 200

NVarchar(128)Varchar(128)Varchar(128)SERVICE_KEY

The Universally Unique Identifier (UUID) for the
service in which the event occurred.

This column is currently not used by APIs created in
API Gateway. It is used to support the APIs that are
migrated from CentraSite or Mediator to API
Gateway.

NVarchar(256)Varchar(256)Varchar(256)SERVICE_NAME

Name of the service in which the event occurred.

webMethods API Gateway User's Guide 10.11 535

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)SERVICE_VERSION

The system-assigned version identifier for the service.

Example: 1.0

NVarchar(128)Varchar(128)Varchar(128)SESSION_ID

Astring theAPIGateway server generates to uniquely
identify each session. This is either the IS session token
or the automatically generated GUID if the token is
missing from the message context.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(64)Varchar(64)Varchar(64)TARGET_NAME

Name of the API Gateway instance reporting the
event.

Example: API_Gateway_Instance

NVarchar(256)Varchar(256)Varchar2(256)USER_AGENT

Name of the client used to invoke the API.

Example: Postman

Monitoring Events

MSSQLDB2OracleColumn Description

NVarchar(256)Varchar(256)Varchar2(256)USER_AGENT

Name of the client used to invoke the API.

Example: Postman

NVarchar(256)Varchar(256)Varchar(256)ALERT_DESC

Text of the alert message sent to a configured
destination when the performance conditions are
violated. The alert message is specified in the policy
definition of an API.

Example: EnforcePolicy-HardLimit

NVarchar(256)Varchar(256)Varchar(256)ALERT_SOURCE

536 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Name of the API Gateway policy that generated the
alert message.

Example: MonitorPolicy

NVarchar(128)Varchar(128)Varchar(128)ALERT_TYPE

The type of alert generated for the event.

Possible values are: Monitor, SLA

NVarchar(256)Varchar(256)Varchar(256)API_ID

The unique identifier for the API.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

NVarchar(256)Varchar(256)Varchar(256)API_NAME

Name of the API in which the event occurred.

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)API_VERSION

The system-assigned version identifier for the API.

Example: 1.0

NVarchar(256)Varchar(256)Varchar(256)APPLICATION_ID

The unique identifier for the application associated
with the API invocation.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(64)Varchar(64)Varchar(64)APPLICATION_IP

IP address of the application associated with the API
invocation.

Example: 10.20.248.33

NVarchsar(128)Varchar(128)Varchar(128)APPLICATION_NAME

Name of the application associated with the API
invocation.

An application name is populated asunknownwhen
API Gateway is unable to identify the application
using a security policy that is configured for the API.

Example: SampleApplication

webMethods API Gateway User's Guide 10.11 537

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

NVarchar(256)Varchar(256)Varchar(256)BINDING_NAME

Name of the binding that identifies a specific access
URI.

This column is currently not used. It appears asNULL
or as an empty string.

NVarchar(256)Varchar(256)Varchar2(256)creationDate

Date and time when the event was generated in API
Gateway.

Example: 1501671101509

NVarchar(256)Varchar(256)Varchar(256)EVENT_TYPE

The type of event that occurred.

Example: Monitor Event

NVarchar(80)Varchar(80)Varchar(80)EVENT_USERNAME

Name of the user on API Gateway that invoked the
API.

NVarchar(256)Varchar(256)Varchar(256)MONITOR_ATTR

The monitored attribute which has breached the
configured SLA.

Example: AVGRESPONSETIME GT 1.0,
SUCCESSCOUNT EQ 3, REQUESTCOUNT GT 10

NVarchar(4000)Varchar(4000)Varchar(4000)NATIVE_ENDPOINT

The endpoint URL of the native API that is invoked.

Example: http://petstore.swagger.io/v2/pet/55

NVarchar(256)Varchar(256)Varchar(256)OPERATION_NAME

Name of the API operation or resource that is
invoked.

Example: /pet/{petId}

INTEGERINTNumericRESPONSE_CODE

TheHTTP response status code that indicates success
or failure of the requested operation.

Example: 200

538 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

NVarchar(128)Varchar(128)Varchar(128)SESSION_ID

A string the API Gateway server generates to
uniquely identify each session. This is either the IS
session token or the automatically generated GUID
if the token is missing from the message context.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(64)Varchar(64)Varchar(64)TARGET_NAME

Name of the API Gateway instance reporting the
event.

Example: API_Gateway_Instance

Policy Violation Events

MSSQLDB2OracleColumn Description

NVarchar(256)Varchar(256)Varchar(256)ALERT_DESC

Text of the alert message sent to a configured
destination when the performance conditions are
violated. The alert message is specified in the policy
definition of an API.

Example: EnforcePolicy-HardLimit

NVarchar(256)Varchar(256)Varchar(256)ALERT_SOURCE

Name of the API Gateway policy that generated the
alert message.

Example: PolicyViolationPolicy

NVarchar(128)Varchar(128)Varchar(128)ALERT_TYPE

The type of alert generated for the event.

Example: PolicyViolation

NVarchar(256)Varchar(256)Varchar(256)API_ID

The unique identifier for the API.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

NVarchar(256)Varchar(256)Varchar(256)API_NAME

webMethods API Gateway User's Guide 10.11 539

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Name of the API in which the event occurred.

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)API_VERSION

The system-assigned version identifier for the API.

Example: 1.0

NVarchar(256)Varchar(256)Varchar(256)APPLICATION_ID

The unique identifier for the application associated
with the API invocation.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(64)Varchar(64)Varchar(64)APPLICATION_IP

IP address of the application associated with the API
invocation.

Example: 10.20.248.33

NVarchsar(128)Varchar(128)Varchar(128)APPLICATION_NAME

Name of the application associated with the API
invocation.

An application name is populated as unknownwhen
API Gateway is unable to identify the application
using a security policy that is configured for the API.

Example: SampleApplication

NVarchar(256)Varchar(256)Varchar(256)BINDING_NAME

Name of the binding that identifies a specific access
URI.

This column is currently not used. It appears asNULL
or as an empty string.

NVarchar(256)Varchar(256)Varchar(256)CONSUMER_ID

Theunique identifier for the consumer associatedwith
the API invocation.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

NVarchar(32)Varchar(32)Varchar(32)CONSUMER_IP

540 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

IP address of the consumer associated with the API
invocation.

Example: 10.20.248.33

NVarchar(128)Varchar(128)Varchar(128)CONSUMER_NAME

Name of the consumer associated with the API
invocation.

A consumer name is populated as unknown when
APIGateway is unable to identify the consumer using
a policy that is configured for the API.

Example: SampleApplication

DATETIMETIMESTAMPTIMESTAMPEVENT_CREATE_TS

Date and time when the event was generated in API
Gateway.

This is not the time the database performed its insert
(for example, this is calculated by theMediator policy
engine and not a database function).

NVarchar(80)Varchar(80)Varchar(80)EVENT_SOURCE

The source where the event occurred.

NVarchar(256)Varchar(256)Varchar(256)EVENT_TYPE

The type of event that occurred.

Example: Policy Violation

NVarchar(80)Varchar(80)Varchar(80)EVENT_USERNAME

Name of the user on API Gateway that invoked the
API.

NVarchar(8)Varchar(8)Varchar(8)HTTP_METHOD

The HTTP method used to invoke the API.

Example: GET

NVarchar(4000)Varchar(4000)Varchar(4000)NATIVE_ENDPOINT

The endpoint URL of the native API that is invoked.

Example: http://petstore.swagger.io/v2/pet/55

webMethods API Gateway User's Guide 10.11 541

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

NVarchar(256)Varchar(256)Varchar(256)OPERATION_NAMEName of the API operation that
is invoked.

Example: /pet/{petId}

NVarchar(128)Varchar(128)Varchar(128)ORG_KEY

The Globally Unique Identifier (GUID) for an
organization.

This column is currently not used by APIs created in
API Gateway. It is used to support the APIs that are
migrated from CentraSite or Mediator to API
Gateway.

INTEGERINTNumericRESPONSE_CODE

TheHTTP response status code that indicates success
or failure of the requested operation.

Example: 200

NVarchar(128)Varchar(128)Varchar(128)SERVICE_KEY

The Universally Unique Identifier (UUID) for the
service in which the event occurred.

This column is currently not used by APIs created in
API Gateway. It is used to support the APIs that are
migrated from CentraSite or Mediator to API
Gateway.

NVarchar(256)Varchar(256)Varchar(256)SERVICE_NAME

Name of the service in which the event occurred.

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)SERVICE_VERSION

The system-assigned version identifier for the service.

Example: 1.0

NVarchar(128)Varchar(128)Varchar(128)SESSION_ID

Astring theAPIGateway server generates to uniquely
identify each session. This is either the IS session token
or the automatically generated GUID if the token is
missing from the message context.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

542 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

NVarchar(64)Varchar(64)Varchar(64)TARGET_NAME

Name of the API Gateway instance reporting the
event.

Example: API_Gateway_Instance

NVarchar(256)Varchar(256)Varchar2(256)USER_AGENT

Name of the client used to invoke the API.

Example: Postman

Performance Metrics

MSSQLDB2OracleColumn Description

NVarchar(256)Varchar(256)Varchar(256)API_ID

The unique identifier for the API.

Example: c0f84954-9732-11e5-b9f4-f159eafe47b1

NVarchar(256)Varchar(256)Varchar(256)API_NAME

Name of the API in which the event occurred.

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)API_VERSION

The system-assigned version identifier for the API.

Example: 1.0

INTEGERNUMBER (6,
2)

NUMBERAVAIL

The percentage of time that an API was available
during the current interval. A value of 100 indicates
that the API was always available. If invocations fail
due to policy violations, this parameter could still be
as high as 100.

Example: 100

INTEGERINTNUMBERAVG_RESP

The average amount of time it took the API to
complete each invocation in the current interval.
Response time is measured from the moment API

webMethods API Gateway User's Guide 10.11 543

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

Gateway receives the request until the moment it
returns the response to the caller.

Example: 1376

NVarchar(256)Varchar(256)Varchar(256)BINDING_NAME

Name of the binding that identifies a specific access
URI.

This column is currently not used. It appears asNULL
or as an empty string.

DATETIMETIMESTAMPTIMESTAMPEVENT_CREATE_TS

Date and time when the event was generated in API
Gateway.

This is not the time the database performed its insert
(for example, this is calculated by theMediator policy
engine and not a database function).

NVarchar(80)Varchar(80)Varchar(80)EVENT_SOURCE

The source where the event occurred.

NVarchar(256)Varchar(256)Varchar(256)EVENT_TYPE

The type of event that occurred.

Example: Performance Data

INTINTNUMBERFAULT_COUNT

Total number of error invocations for a specified API
withing the configured metrics interval.

Example: 1

NCHAR(1)CHAR(1)CHAR(1)INCLUDE_FAULTS

Includes failed API invocations.

Possible values are: true, false

DATETIMETIMESTAMPTIMESTAMP
(6)

INTERVAL_START

The starting date and time from which you want to
examine metrics.

Example: 1526294632172

544 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

DATETIMETIMESTAMPTIMESTAMP
(6)

INTERVAL_STOP

The ending date and time until which you want to
examine metrics.

Example: 1526294632182

NChar(1)Char(1)Char(1)LIVELY

Boolean. Availability of an the API at the end of the
current interval.

INTEGERINTNUMBERMAX_RESP

Themaximumamount of time (inmilliseconds) it took
for the API to complete an invocation in the current
interval.

Example: 1401

INTEGERINTNUMBERMIN_RESP

Theminimumamount of time (inmilliseconds) it took
for the API to complete an invocation in the current
interval.

Example: 1352

NVarchar(4000)Varchar(4000)Varchar(4000)NATIVE_ENDPOINT

The endpoint URL of the native API that is invoked.

Example: http://petstore.swagger.io/v2/pet/55

NVarchar(256)Varchar(256)Varchar(256)OPERATION_NAME

Name of theAPI operation or resource that is invoked.

Example: /pet/{petId}

NVarchar(128)Varchar(128)Varchar(128)ORG_KEY

The Globally Unique Identifier (GUID) for the
organization.

This column is currently not used by APIs created in
API Gateway. It is used to support the APIs that are
migrated fromCentraSite orMediator toAPIGateway.

NVarchar(128)Varchar(128)Varchar(128)SERVICE_KEY

webMethods API Gateway User's Guide 10.11 545

9 API Gateway Analytics

MSSQLDB2OracleColumn Description

The Universally Unique Identifier (UUID) for the
service in which the event occurred.

This column is currently not used by APIs created in
API Gateway. It is used to support the APIs that are
migrated fromCentraSite orMediator toAPIGateway.

NVarchar(256)Varchar(256)Varchar(256)SERVICE_NAME

Name of the service in which the event occurred.

Example: SampleAPI

NVarchar(256)Varchar(256)Varchar(256)SERVICE_VERSION

The system-assigned version identifier for the service.

Example: 1.0

INTEGERINTNUMBERSUCCESS_COUNT

The number of successful API invocations in the
current interval.

Example: 1

NVarchar(64)Varchar(64)Varchar(64)TARGET_NAME

Nameof theAPIGateway instance reporting the event.

Example: API_Gateway_Instance

INTEGERINTNUMBERTOTAL_COUNT

The total number of API invocations (successful and
unsuccessful) in the current interval.

Example: 2

NVarchar(256)Varchar(256)Varchar2(256)USER_AGENT

Name of the client used to invoke the API.

Example: Postman

Local Log
The runtime events and metrics payload generated by API Gateway at run-time is published to
the configured Local Log destination. The columns that make up the events and metrics data
model for Local Log are listed below:

546 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

Transactional Events

DescriptionColumn

Name of the API in which the event occurred.ApiName

Example: SampleAPI

The system-assigned version identifier for the API.ApiVersion

Example: 1.0.0

The unique identifier for the application associated with the API
invocation.

ApplicationID

Example: 7908eb44-d107-4670-929d-89111fc9347c

IP address of the application associated with the API invocation.ApplicationIP

Example: 10.60.37.42

Name of the application associated with the API invocation.ApplicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

The unique identifier that is automatically generated for every request
coming to API Gateway and can be used to query the log.

CorrelationID

Example: MED38e9cfa4-2348-408b-9462-124b2181c1a6:656

The customfields anAPI Provider can provide to log a newfield and
value for a transaction event.

CustomFields

Example: {"customfield":"customvalue"}

The origin of error.ErrorOrigin

Example: Nativeservice

The source where the event occurred.EventSource

Example: API_Gateway_Instance

The HTTP method used to invoke the native service.NativeHttpMethod

Example: GET

The native service request data.nativeRequestPayload

Example:

webMethods API Gateway User's Guide 10.11 547

9 API Gateway Analytics

DescriptionColumn
{
"param1" : "value1",
"param2" : 10
}

The native service response data.nativeResponsePayload

Example:
{
"id":2,
"category":
{

"id":2,
"name":"string"

},
"name":"pysen",
"photoUrls":["string"],
"tags":
[{

"id":0,
"name":"string"

}],
"status":"available"
}

URL of the native service.Native URL

Example: http://petstore.swagger.io/v2/pet/2

Name of the API operation or resource that is invoked.Operation/Resource name

Example: /pet

The unique identifier for the partner that generated the audit record.Partner ID

Example: unknown

SessionId

This is applicable only for REST APIs. Query parameters present in
the incoming REST request.

queryParams

Example: {"status":"available"}

Request header in the incoming request from the client.RequestHeaders

Example:
{
"Cache-Control":"max-age=0",
"Accept":"text/plain,application/json;
q=0.9,image/webp,image/apng,*/*;
q=0.8",
"Upgrade-Insecure-Requests":"1",

548 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

DescriptionColumn
"Connection":"keep-alive",
"User-Agent":"Mozilla/5.0(Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181Safari/537.36",
"Host":"mcdaso02:5555",
"Accept-Encoding":"gzip,deflate",
"Accept-Language":"en-US,en;q=0.9,ta;q=0.8",
"Content-Type":"application/x-www-form-urlencoded"
}

Response header in the outgoing response.ResponseHeaders

Example:
{
"Server":"Jetty(9.2.9.v20150224)",
"Access-Control-Allow-Origin":"*",
"Access-Control-Allow-Methods":"GET,POST,DELETE,
PUT",
"Connection":"close",
"Date":"Fri, 30 Mar 2018 08:25:45 GMT",
"Access-Control-Allow-Headers":"Content-Type,api_key,
Authorization",
"Content-Type":"application/xml"
}

A string the API Gateway server generates to uniquely identify each
session. This is either the IS session token or the automatically
generated GUID if the token is missing from the message context.

Session Id

Example: 81439d366e874bc79d9f81490e30e6e0

Source API Gateway's IP address.Source Gateway Node

Example: 10.0.75.1

The endpoint URL of the native API that is invoked.TargetEPR

Example: http://petstore.swagger.io/v2/pet/55

Monitoring Events

DescriptionColumn

Text of the alert message sent to a configured destination when the
performance conditions are violated. The alert message is specified
in the policy definition of an API.

alertDesc

Example: EnforcePolicy-HardLimit

Name of the API Gateway policy that generated the alert message.alertSource

webMethods API Gateway User's Guide 10.11 549

9 API Gateway Analytics

DescriptionColumn

Example: Unknown-Policy

Name of the API in which the event occurred.Example:apiName

Example: SampleAPI

The system-assigned version identifier for the API.apiVersion

Example: 1.0

The unique identifier for the application associated with the API
invocation.

applicationId

Example: c0f84954-9732-11e5-b9f4-f159eafe47b2

IP address of the application associated with the API invocation.applicationIp

Example: 10.20.248.33

Name of the application associated with the API invocation.applicationName

An application name is populated as unknown when API Gateway
is unable to identify the application using a security policy that is
configured for the API.

Example: SampleApplication

Date and time when the event was generated in API Gateway.creationDate

Example: 1501671101509

The type of event that occurred.eventType

Example: Policy Violation Event

The monitored attribute which has breached the configured SLA.monitorAttr

Example: AVGRESPONSETIME GT 1.0, SUCCESSCOUNT EQ 3,
REQUESTCOUNT GT 10

The endpoint URL of the native API that is invoked.Native Endpoint

Example: http://petstore.swagger.io/v2/pet/55

Name of the API operation or resource that is invoked.Operation/Resource name

Example: /pet

550 webMethods API Gateway User's Guide 10.11

9 API Gateway Analytics

10 Microgateway Management

■ Overview .. 552

webMethods API Gateway User's Guide 10.11 551

Overview

API Gateway enables you to monitor the Microgateways that are connected to it. You can view
the active APIs and detailed analytics for eachMicrogateway that is connected to theAPI Gateway.

The Microgateways management page displays all Microgateway groups that are connected to
the API Gateway. A Microgateway group enables you to group Microgateways that have some
common element, such as domain (finance or human resources) or type of APIs (external-facing
or internal use). For each Microgateway group, the Microgateways management page displays
the following information:

Name and Description of the Microgateway group.

The number of Microgateways that are part of the group.

The number of APIs that are available in that group.

You can perform the following operation on this page:

Click View details to view more information about a Microgateway group.

Click Analytics to view the Analytics tab of a Microgateway group. For information about
Microgateway Analytics, see “ Microgateway Group Analytics” on page 553.

Note:
For information about installing, configuring, and using Microgateways, see the webMethods
Microgateway User's Guide.

Microgateway Groups
AMicrogateway group is a collection of Microgateway instances that are grouped based on a
common domain or API type. The Microgateway groups page displays the available groups and
the Microgateways that are included in a particular group. The page displays the following
information for each Microgateway group:

Basic information section includes

Name of the group

Description

Number of APIs in the group

Microgateways section includes the following details of each Microgateway instance in the
group:

Host name

HTTP and HTTPS ports that the Microgateway uses to expose the APIs that are provision
on it

A description of the Microgateway

552 webMethods API Gateway User's Guide 10.11

10 Microgateway Management

The number of APIs available on the Microgateway

To add a Microgateway to the group, you have to add the following information to the custom-
settings.yml file:
microgatewayPool:

microgatewayPoolName: poolNameHere
microgatewayPoolDescription: poolDescriptionHere

Where poolNameHere is the name of the group and poolDescriptionHere is an optional description
of the group. If a poolNameHere is not provided, the Microgateway is added to the Default group.

Note:
Formore information about custom-settings.yml, see thewebMethodsMicrogatewayUser's Guide.

You can perform the following operations on this page:

Click to delete a Microgateway from API Gateway. You can also delete multiple
Microgateways. For information about deletingmultiple instances, see “DeletingMicrogateway
Instances” on page 554.

Click the Microgateway name to view more information about it.

Microgateway Group Analytics

TheMicrogateway groupAnalytics tab displays detailed analytics based on the data cumulatively
received from the Microgateways in a group. This tab displays the following information:

Overall events. Displays a pie chart that lists different events being monitored. Each of these
event categories is depicted with different colors.

Application Activity. Displays a pie chart to indicate activities based on applications. You can
view the number of APIs that are authorized with applications and the number of APIs that
are not authorized using any applications.

API Invocation. Displays a pie chart to indicate the number of invocations made to each API
present in the group.

Runtime events. Displays the run time event details such as time when the event was
generated, API Name, the application that generated the event, event type, description of the
alert generated due to the event, status, and the source of event.

Payload size. Displays the payload size of the request and responses during data transfer in
the specified time. This data is picked up from the transactional event that is triggered when
a log invocation policy is applied to the API.

You can perform the following operations on this page:

Apply filters. The Analytics tab provides filters that you can use to view selective data or
events. You can use the displayed duration filter and add a custom filter using the filter query
builder.

webMethods API Gateway User's Guide 10.11 553

10 Microgateway Management

To apply a duration filter, select the time interval from the drop-down list, and click Apply
filter to filter the analytics based on the time interval chosen. To specify a custom duration,
selectCustom from the drop-down list, select the requiredFrom Date andTo Date values,
and click Apply filter.

You can also add filters based on a filter query. To add a filter based on a filter query, click
Add a filter, select the desired field, operator and value, and click Save.

View specific events. Click on the specific event in the list under Legend to view the specific
event in any of thewidgets. You can view additional details for an event by hovering the cursor
over a particular color in the graphical representations.

Microgateway Details

The Microgateway details page provides information about a particular Microgateway.

The Microgateway Info tab includes two sections:

The Basic information section provides information about the Microgateway.

The APIs tab section provides the information of the APIs provisioned on that Microgateway.
Clicking an API opens the API details page. The active Microgateway endpoints of the API
are also displayed in the API details page.

Note:
All the Service Registries to which a Microgateway is publishing an API must be configured in
API Gateway.

You can perform the following operations on this page:

Click an API to view the API details.

Click Analytics to view detailed analytics based on the data received from an individual
Microgateway. The tab includes the following analytic graphs:

Overall events

Application activity

Runtime events

Payload size

Similar to the Microgateway Group Analytics tab, you can apply required filters and view
specific events. For more information about the widgets and instructions to view graphs, see
“ Microgateway Group Analytics” on page 553.

Deleting Microgateway Instances

When you stop aMicrogateway instance, the instance is deleted fromAPI Gateway automatically.
But, if a Microgateway stops abruptly, the corresponding instance remains stale in API Gateway.
You can remove such stale instances by deleting them.

554 webMethods API Gateway User's Guide 10.11

10 Microgateway Management

Important:
When deletingMicrogateways, ensure that they are not in Running status. Deleting an instance
removes it completely from API Gateway. For information on checking the status of a
Microgateway, see Creating API Gateway Asset Archives using the Command Line section in the
Microgateway User's Guide.

You can delete one Microgateway or multiple instances from a Microgateway group at the same
time.

Deleting a Microgateway

To delete a Microgateway

1. Click Microgateways in the title navigation bar.

2. Click the required Microgateway group.

The Microgateway group details appears.

3. From the Microgateways section, click next to the required Microgateway.

A warning message appears.

4. Click Yes to delete.

Deleting Multiple Microgateways

To delete multiple Microgateways

1. Click Microgateways in the title navigation bar.

2. Click the required Microgateway group.

The Microgateway group details appears.

3. From theMicrogateways section, select theMicrogateways that youwant to delete by selecting
the check boxes next to the required host names.

4. Click and select Delete from the drop-down list.

A warning message appears.

5. Click Yes to delete the selected Microgateways.

The selected Microgateways are deleted and the Delete Microgateways report appears.

webMethods API Gateway User's Guide 10.11 555

10 Microgateway Management

6. Click Download the delete report here to download the report.

The report displays the following details of the deleted Microgateways.

Host name

HTTP or HTTPS port name

Status

556 webMethods API Gateway User's Guide 10.11

10 Microgateway Management

11 REST APIs in API Gateway

■ API Gateway Administration ... 558

■ Alias Management .. 567

■ Application Management .. 568

■ API Gateway Archive .. 569

■ API Gateway Availability ... 570

■ Document Management ... 570

■ Data Center Management .. 571

■ Internal Service .. 572

■ Port Configuration .. 572

■ Policy Management .. 573

■ Promotion Management ... 576

■ Public Services ... 577

■ API Gateway Search .. 577

■ Server Information .. 580

■ Service Management ... 580

■ Transaction Data .. 582

■ User Management .. 583

■ Subscription Management .. 584

■ Backward compatibility support for REST APIs ... 585

webMethods API Gateway User's Guide 10.11 557

API Gateway Administration

API Gateway provides the capability to API definitions to administer various functions of the API
Gateway.

API Gateway provides the following REST API and the resources to manage API Gateway
configuration:

GET/rest/apigateway/quiescemode : Retrieves the quiesce mode setting in API Gateway.

PUT/rest/apigateway/quiescemode : Enables or disables the quiesce mode in API Gateway.
Quiesce mode has two block types - designtime and all. Quiesce mode for designtime blocks
all the design time API requests to API Gateway server and returns the 503 status code except
the GET HTTP method as well as few white-listed APIs like the search API and this API.
Quiesce mode for the block type all is an extension of Integration server's Quiesce mode with
the addition of flushing of API Gateway in-memory data such as performance metrics, license
metrics, and subscription quota to the configured data store. For details about quiesce mode,
see webMethods API Gateway Upgrade and Migration.

GET/rest/apigateway/rule : Retrieves list of all configured rules in API Gateway.

POST/rest/apigateway/rule : Creates a conditional rule inAPIGateway. TheAPI request body
must contain the payload for the rule.

GET/rest/apigateway/rule/{ruleId} : Retrieves the details of a configured rule in API Gateway.

PUT/rest/apigateway/rule/{ruleId} : Updates the details of a specified configured rule in API
Gateway. The API request body must contain the payload for the updated rule.

DELETE/rest/apigateway/rule/{ruleId} : Deletes the specified rule in API Gateway.

PUT/rest/apigateway/rule/{ruleId}/activate : Activate a rule. This request does not require any
request body.

PUT/rest/apigateway/rule/{ruleId}/deactivate : Deactivates a rule. This request does not require
any request body.

GET/rest/apigateway/is/truststore : Retrieves all available truststores from API Gateway.

POST/rest/apigateway/is/truststore : Creates a truststore in API Gateway.

GET/rest/apigateway/is/truststore/{truststoreName} : Retrieves an existing truststorematching
the given name from API Gateway.

POST/rest/apigateway/is/truststore/{truststoreName} : Updates an existing truststore in API
Gateway.

DELETE/rest/apigateway/is/truststore/{truststoreName} : Deletes an existing truststore inAPI
Gateway.

GET/rest/apigateway/licenseUsageDetails: Retrieves the detailed usage information for the
transaction based license. The retrieved information contains the maximum number of

558 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

invocations that is allowed for the current month, the total number of invocations used, and
the remaining number of invocations available for the month.

GET/rest/apigateway/is/proxyBypass : Retrieves a list of all host lists for which outbound
proxy servers are skipped. Note that the proxyBypass Id is always proxyBypass.

POST/rest/apigateway/is/proxyBypass : Updates the proxyBypassAddresses to bypass the
outbound proxy servers. The API request body must contain the payload. In the
proxyBypassAddresses field, type the fully qualified host and domain name of each server to
which you want the Integration Server to issue requests directly. Type the host name and the
domain name exactly as they appear in the URLs the server uses. To enter multiple names,
separate eachwith commas. You can use the asterisk (*) to identify several servers with similar
names. The asterisk matches any number of characters. For example, if you want to bypass
requestsmade to localhost, www.yahoo.com, home.microsoft.com, and all hostswhose names
begin with NYC, you would type: localhost,www.yahoo.com,home.microsoft.com,NYC*.*.

PUT/rest/apigateway/is/proxyBypass : Creates the proxyBypassAddresses to bypass the
outbound proxy servers.

GET/rest/apigateway/portalGateways : Retrieves API Portal configurations available in API
Gateway.

POST/rest/apigateway/portalGateways : Creates API Portal configuration in API Gateway.

GET/rest/apigateway/portalGateways/{portalGatewayId} : Retrieves an API Portal
configuration in API Gateway.

PUT/rest/apigateway/portalGateways/{portalGatewayId} : Updates the API Portal
configuration in API Gateway.

DELETE/rest/apigateway/portalGateways/{portalGatewayId} : Deletes the API Portal
configuration in API Gateway.

GET/rest/apigateway/portalGateways/communities: Retrieves the details about communities
in API Portal. AnAPI can be published fromAPI Gateway to any of the communities available
in API Portal.

GET/rest/apigateway/portalGateways/packages: Retrieves thedetails of the publishedpackages
that the API is part of.

GET/rest/apigateway/licenseNotificationCriteria : Retrieves the existing transaction based
license notification criteria as a response. Transaction based license notification criteria are like
a usage checkpoint and whenever usage reaches that checkpoint, a notification is generated.

POST/rest/apigateway/licenseNotificationCriteria : Creates the transaction based license
notification criteria to monitor the API Gateway usage. This notification criteria has the
permitted invocations per month defined in the license file. If you want to get notified when
usage reaches a limit before it breaches the license limit, then you have to add a notification
criteria by mentioning the usage point so that a notification is generated when usage reaches
the specified limit.

PUT/rest/apigateway/licenseNotificationCriteria : Updates the existing transaction based
license notification criteria in API Gateway.

webMethods API Gateway User's Guide 10.11 559

11 REST APIs in API Gateway

GET/rest/apigateway/licenseNotificationCriteria/{notificationCriteriaId} : Retrieves the
transaction based license notification criteria based on the specified ID.

DELETE/rest/apigateway/licenseNotificationCriteria/{notificationCriteriaId} : Deletes the
transaction based license notification criteria based on the specified ID.

GET/rest/apigateway/is/jmsTriggers : Retrieves a list of all JMS triggers in API Gateway.

PUT/rest/apigateway/is/jmsTriggers : Updates the JMS trigger in API Gateway.

GET/rest/apigateway/is/jmsTriggers/{jmsTriggerId} : Retrieves the specified JMS trigger in
API Gateway.

PUT/rest/apigateway/is/jmsTriggers/{jmsTriggerId}/enable : Enables the specified JMS trigger
in API Gateway.

PUT/rest/apigateway/is/jmsTriggers/{jmsTriggerId}/disable : Disables the specified JMS
trigger in API Gateway.

GET/rest/apigateway/is/jndi: Retrieves a list of all JNDI configurations in API Gateway.

POST/rest/apigateway/is/jndi: Creates a JNDI configuration inAPIGateway. TheAPI request
body must contain the payload for the JNDI configuration.

PUT/rest/apigateway/is/jndi: Updates the JNDI configuration in API Gateway.

GET/rest/apigateway/is/jndi/{jndiId}: Retrieves the specified JNDI configuration in API
Gateway.

DELETE/rest/apigateway/is/jndi/{jndiId}: Deletes the specified JNDI configuration in API
Gateway.

GET/rest/apigateway/is/jndi/{jndiId}/test: Tests the given JNDI configuration inAPIGateway.

GET/rest/apigateway/is/jndi/template: Retrieves a list of all JNDI templates in API Gateway.

GET/rest/apigateway/is/keystore : Retrieves all keystores available in API Gateway.

POST/rest/apigateway/is/keystore : Creates a keystore in API Gateway.

GET/rest/apigateway/is/keystore/{keyStoreName} : Retrieves the keystorematching the name
specified in API Gateway.

POST/rest/apigateway/is/keystore/{keyStoreName} : Updates an already existing keystore
in API Gateway.

DELETE/rest/apigateway/is/keystore/{keyStoreName} : Deletes the keystore matching the
name specified in API Gateway.

GET/rest/apigateway/is/kerberos : Retrieves the configured Kerberos settings from API
Gateway.

PUT/rest/apigateway/is/kerberos : Persists the configured Kerberos settings in API Gateway.

GET/rest/apigateway/apitransactions/archives : Retrieves the details of existing archive files
and response of this method would be the list of archive file names. You can select one of the

560 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

archive file names returned by this method and use the POST
/apitransactions/archives/{fileName} method to restore.

POST/rest/apigateway/apitransactions/archives : Archives the runtime events and metrics.
You can additionally scope the archive data using input parameter filters. Thismethod returns
the job id as the response which is used to know the status of the job.

POST/rest/apigateway/apitransactions/archives/{fileName} : Restores the runtime data of the
archive file that is specified. This method returns the job id as a response to track the status
further.

GET/rest/apigateway/approvals/{approvalId} : Retrieves an approval request based on the
approvalId.

DELETE/rest/apigateway/approvals/{approvalId} : Deletes an approval request based on the
approvalId.

GET/rest/apigateway/approvals : Retrieves all approval requests pending for the user.

PUT/rest/apigateway/approvals/{approvalId}/{action} : Creates an approval request for the
specified action.

GET/rest/apigateway/apitransactions/typedefinitions : Retrieves the list of runtime event
types. The available event types are transactionalEvents, monitorEvents, errorEvents,
performanceMetrics, threatProtectionEvents, lifecycleEvents, and policyViolationEvents. You
can use these eventType to scope the archive or purge operation.

GET/rest/apigateway/is/jmsConnections : Retrieves a list of all the JMS connections in API
Gateway.

POST/rest/apigateway/is/jmsConnections : Creates a JMS connection in API Gateway. The
API request body must contain the payload for the JMS connection.

PUT/rest/apigateway/is/jmsConnections : Updates the JMS connections in API Gateway.

GET/rest/apigateway/is/jmsConnections/{jmsConnId} : Retrieves the specified JMS connection
in API Gateway.

DELETE/rest/apigateway/is/jmsConnections/{jmsConnId} : Deletes the JMS connection based
on the JMS connection ID that is specified in the path.

PUT/rest/apigateway/is/jmsConnections/{jmsConnId}/enable : Enables the specified JMS
connection in API Gateway.

PUT/rest/apigateway/is/jmsConnections/{jmsConnId}/disable : Disables the specified JMS
connection in API Gateway.

GET/rest/apigateway/licenseNotifications : Retrieves the latest notification issued for a
transaction based license.

GET/rest/apigateway/approvalConfigurations: Retrieves a list of available approval
configurations in API Gateway.

webMethods API Gateway User's Guide 10.11 561

11 REST APIs in API Gateway

POST/rest/apigateway/approvalConfigurations: Creates an approval configuration in API
Gateway.

GET/rest/apigateway/approvalConfigurations/{id}: Retrieves the details of a specified approval
configuration in API Gateway.

PUT/rest/apigateway/approvalConfigurations/{id}: Updates the details of a specified approval
configuration in API Gateway.

DELETE/rest/apigateway/approvalConfigurations/{id}: Deletes the specified approval
configuration in API Gateway.

POST/rest/apigateway/migration: Triggers a migration action and immediately returns a 202
status code. The clean action clears the data from the API Data store, the reindex action
re-indexes the data from the source Elasticsearch to API Data store, and the transform action
transforms the re-indexed assets in the API Data store to be compatible with the current API
Gateway version. The clean action should be invoked on target API Gateway server prior to
invoking the reindex API for core indices. The current status of the action can be retrieved
using /migration/status API. A webhook event with the migration status also would be sent
to the subscribed webhook clients.

GET/rest/apigateway/migration/status: Retrieves the current status of the migration action
which is invoked in API Gateway.

GET/rest/apigateway/masterPassword: Retrieves the master password properties in API
Gateway.

PUT/rest/apigateway/masterPassword/setExpiry: Updates the expiry interval of the master
password in API Gateway.

PUT/rest/apigateway/masterPassword/update: Updates themaster password inAPIGateway.
On successful update, all the old passwords available will be encrypted using this newmaster
password.

PUT/rest/apigateway/masterPassword/reset: Resets themaster password to the default value
in API Gateway. This should be performed when the master password is lost and after a
successful reset, Software AG recommends to change the master password again to a secure
value.

GET/rest/apigateway/is/outboundproxy : Retrieves the list of all available outbound proxy
server aliases in API Gateway.

POST/rest/apigateway/is/outboundproxy : Creates the outbound proxy server alias in API
Gateway.

PUT/rest/apigateway/is/outboundproxy : Updates the outbound proxy server alias in API
Gateway.

DELETE/rest/apigateway/is/outboundproxy/{outboundproxyAlias} : Deletes the specified
outbound proxy server alias from API Gateway.

PUT/rest/apigateway/is/outboundproxy/{outboundproxyAlias}/enable: Enables an already
existing outbound proxy server alias in API Gateway.

562 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

PUT/rest/apigateway/is/outboundproxy/{outboundproxyAlias}/disable: Disables an already
existing outbound proxy server alias in API Gateway.

GET/rest/apigateway/is/license : Retrieves the license details from API Gateway.

PUT/rest/apigateway/is/license : Updates the license details in API Gateway.

GET/rest/apigateway/logAggregation/downloadLogs : Downloads logs from different
components used by API Gateway, server configurations, and thread dumps.

GET/rest/apigateway/webhooks : Retrieves the list of all webhooks in API Gateway.

POST/rest/apigateway/webhooks : Creates awebhook inAPIGateway. TheAPI request body
must contain the payload of the webhook that needs to be saved.

GET/rest/apigateway/webhooks/{id} : Retrieves the details of a webhook in API Gateway.

PUT/rest/apigateway/webhooks/{id} : Updates the details of a specific webhook in API
Gateway. The API request body must contain the payload of the webhook that needs to be
updated.

DELETE/rest/apigateway/webhooks/{id} : Deletes a webhook resource from API Gateway.

GET/rest/apigateway/apitransactions/jobs/{jobId} : Retrieves the status of a specific job. This
method returns the status and file name (in case of archive process) as a response.

GET/rest/apigateway/apitransactions/jobs : Retrieves a list of pending jobs. Every time you
initiate archive, restore or purge process you get the job id as a response. You can use the
specific job id to query the status of the initiated operation.

GET/rest/apigateway/configurations/loadBalancer: Retrieves information about the load
balancer configured.

PUT/rest/apigateway/configurations/loadBalancer: Updates the load balancer configuration
information.

GET/rest/apigateway/configurations/whiteListingIPs: Retrieves the details of thewhitelisting
IPs configuration in API Gateway.

PUT/rest/apigateway/configurations/whiteListingIPs: Updates the details of thewhitelisting
IPs configuration in API Gateway.

GET/rest/apigateway/configurations/settings: Retrieves the list of the extended settings watt
properties from API Gateway.

PUT/rest/apigateway/configurations/settings: Updates or creates a list of the extended settings
and watt properties in API Gateway.

GET/rest/apigateway/configurations/apiCallBackSettings: Retrieves theAPI callbackprocessor
settings from API Gateway.

PUT/rest/apigateway/configurations/apiCallBackSettings: Updates or creates API callback
processor settings in API Gateway. The user should have Manage general administration
configurations privilege to update the API callback processor settings.

webMethods API Gateway User's Guide 10.11 563

11 REST APIs in API Gateway

GET/rest/apigateway/configurations/errorProcessing: Retrieves the configured error template
and the value of the property sendNativeProviderFault, which enables the server to forward
the native error as it is.

PUT/rest/apigateway/configurations/errorProcessing: Updates the default error template
with any custom templates and the value of the property sendNativeProviderFault.

GET/rest/apigateway/configurations/keystore: Retrieves the details of the default keystore,
truststore and alias settings in API Gateway.

PUT/rest/apigateway/configurations/keystore: Updates the details of the default keystore,
truststore and alias configurations in API Gateway.

GET/rest/apigateway/configurations/gatewayDestinationConfig: Retrieves the details of the
API Gateway destination. API Gateway can publish events and performance metrics data. By
default, error events, lifecycle events, policy violation event, andperformance data are published
to API Gateway.

PUT/rest/apigateway/configurations/gatewayDestinationConfig: Updates the details of the
API Gateway destination in API Gateway.

GET/rest/apigateway/configurations/auditlogDestinationConfig: Retrieves the details of the
Audit Log destination in API Gateway. Audit log captures the API runtime invocations
performed in API Gateway. The audit log data is written to a file or a database based on the
configurations. Transactions events are written to the audit log only when the Audit Log is
selected as a destination in Log Invocation policy.

PUT/rest/apigateway/configurations/auditlogDestinationConfig: Updates the details of the
Audit Log destination in API Gateway.

GET/rest/apigateway/configurations/centraSiteDestinationCommunicationConfig : Retrieves
the communication details of the CentraSite destination in API Gateway. API Gateway can
publish events and metrics to the configured CentraSite destination.

PUT/rest/apigateway/configurations/centraSiteDestinationCommunicationConfig : Updates
the communication details of the CentraSite destination in API Gateway.

GET/rest/apigateway/configurations/centraSiteDestinationSNMPConfig : Retrieves the
SNMP details of the CentraSite destination in API Gateway. API Gateway can publish events
and metrics to the configured CentraSite destination.

PUT/rest/apigateway/configurations/centraSiteDestinationSNMPConfig : Updates the SNMP
details of the CentraSite destination in API Gateway.

GET/rest/apigateway/configurations/jdbcDestinationConfig: Retrieves details of theDatabase
destination in API Gateway. API Gateway can publish events and metrics to the configured
database.

PUT/rest/apigateway/configurations/jdbcDestinationConfig: Updates the details of the
database destination in API Gateway.

GET/rest/apigateway/configurations/desDestinationConfig: Retrieves details of the Digital
Events destination in API Gateway. Digital Event Services (DES) enables API Gateway to

564 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

communicate by exchanging digital events. Digital events are typed and serialized data
structures that are used to convey or record information about the execution of a runtime.

PUT/rest/apigateway/configurations/desDestinationConfig: Updates the details of theDigital
Events destination in API Gateway.

GET/rest/apigateway/configurations/elasticsearchDestinationConfig: Retrieves details of
the Elasticsearch destination in API Gateway. API Gateway can publish events and metrics to
the configured Elasticsearch destination.

PUT/rest/apigateway/configurations/elasticsearchDestinationConfig: Updates the details of
the Elasticsearch destination in API Gateway.

GET/rest/apigateway/configurations/snmpDestinationConfig: Retrieves details of the SNMP
destination in API Gateway. API Gateway can publish events and metrics to the configured
third party SNMP destination.

PUT/rest/apigateway/configurations/snmpDestinationConfig: Updates the details of the
SNMP destination in API Gateway.

GET/rest/apigateway/configurations/emailDestinationConfig: Retrieves details of the Email
destination in API Gateway. API Gateway can send alerts to the email ID specified either in
the Log Invocation,Monitor Performance,Monitor SLAor TrafficOptimization policies through
the configured Email destination.

PUT/rest/apigateway/configurations/emailDestinationConfig: Updates the details of the
Email destination in API Gateway.

GET/rest/apigateway/configurations/apiPortalDestinationConfig: Retrieves details of the
API Portal destination configuration. APIGateway can publish events and performancemetrics
data. By default, error events, lifecycle events, policy violation event, and performance data
are published to API Portal.

PUT/rest/apigateway/configurations/apiPortalDestinationConfig: Updates the details of the
API Portal destination in API Gateway.

GET/rest/apigateway/configurations/cache: Retrieves the cache configuration inAPIGateway.

PUT/rest/apigateway/configurations/cache: Updates the cache configuration inAPIGateway.

GET/rest/apigateway/configurations/customContentTypes: Retrieves the configured custom
content types in API Gateway. Custom content types can be defined for base types XML,JSON
and Text.These Custom types can be then used for payload processing in policies like Content
based routing,Identify and access and Conditional error processing.

PUT/rest/apigateway/configurations/customContentTypes: Updates the configured custom
content types in API Gateway. The response is a set of key/value pair where key indicates the
custom content type and value indicates the base type. The value can be application/xml or
application/json or text/xml.

GET/rest/apigateway/configurations/ldapConfig: Retrieves the LDAP configuration settings
configured in API Gateway.

webMethods API Gateway User's Guide 10.11 565

11 REST APIs in API Gateway

PUT/rest/apigateway/configurations/ldapConfig: Updates the LDAP configuration settings
configured in API Gateway.

GET/rest/apigateway/configurations/passwordRestrictions: Retrieves thepassword restrictions
settings configured in API Gateway.

PUT/rest/apigateway/configurations/passwordRestrictions: Saves the password restrictions
settings configured in API Gateway.

GET/rest/apigateway/configurations/passwordExpiry: Retrieves the password expiry settings
configured in API Gateway.

PUT/rest/apigateway/configurations/passwordExpiry: Saves the password expiry settings
configured in API Gateway.

GET/rest/apigateway/configurations/denyByIPForFailedAuthConfig: Retrieves the
configuration of global IP access setting for authentication based restrictions in API Gateway.

PUT/rest/apigateway/configurations/denyByIPForFailedAuthConfig: Saves the global IP
access setting for authentication based restriction settings in API Gateway.

GET/rest/apigateway/configurations/accountLockSettings: Retrieves the account lock settings
configured in API Gateway.

PUT/rest/apigateway/configurations/accountLockSettings: Saves the account lock expiry
settings configured in API Gateway.

GET/rest/apigateway/configurations/logConfig: Retrieves the log settings of various
components used by API Gateway.

PUT/rest/apigateway/configurations/logConfig: Updates the details of the log configuration
in API Gateway.

POST/rest/apigateway/assets/owner: Changes ownership of API Gateway assets.

POST/rest/apigateway/assets/team: Changes the team of API Gateway asset.

GET/rest/apigateway/urlaliases: Retrieves all URL Aliases or a URL Alias with a particular
ID in API Gateway (if the query parameter alias is provided).

POST/rest/apigateway/urlaliases: Creates a new URL alias in API Gateway.

PUT/rest/apigateway/urlaliases: Updates an existing URL alias in API Gateway.

DELETE/rest/apigateway/urlaliases: Deletes a URL alias in API Gateway.

GET/rest/apigateway/is/cluster : Retrieves the configured cluster settings from API Gateway.

PUT/rest/apigateway/is/cluster : Updates the cluster settings in API Gateway.

GET/rest/apigateway/is/webServiceEndpoints : Retrieves list of all Webservice endpoints in
API Gateway.

POST/rest/apigateway/is/webServiceEndpoints : Creates a Webservice endpoint in API
Gateway. The API request body must contain the payload for the Webservice endpoint.

566 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

PUT/rest/apigateway/is/webServiceEndpoints : Updates the Webservice endpoint in API
Gateway.

GET/rest/apigateway/is/webServiceEndpoints/{webServiceEndpointId} : Retrieves the
specified Webservice endpoint in API Gateway.

DELETE/rest/apigateway/is/webServiceEndpoints/{webServiceEndpointId} : Deletes the
specified Webservice endpoint in API Gateway.

GET/rest/apigateway/apitransactions: Retrieves the API transactions data. The data to be
downloaded is filtered based on the input parameters. The user should be part of
API-Gateway-Administrators group or should haveManage purge and restore runtime events
privilege to perform this operation.

DELETE/rest/apigateway/apitransactions: Purges the API transactions data and the data to
be purged is filtered based on the input parameters. Thismethod returns the job id as response
and the job id is used to track the job status.

GET/rest/apigateway/configurations/jsonWebToken: Retrieves the details of theAPIGateway
JSONWeb Token (JWT) configuration. API Gateway can generate a JWT itself or validate the
JWT generated by a trusted third party server. JWT is a JSON-based open standard (RFC 7519)
means of representing a set of information to be securely transmitted between two parties. A
set of information is the set of claims (claim set) represented by the JWT. A claim set consists
of zero or more claims represented by the name-value pairs, where the names are strings and
the values are arbitrary JSON values.

PUT/rest/apigateway/configurations/jsonWebToken: Updates the details of the JWT
configuration in API Gateway.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayAdministration.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/administration-service/AdministrationService.json.

Alias Management

API Gateway provides the capability to create aliases, retrieve alias information, update alias
properties as required, and delete the existing aliases using a REST API.

API Gateway provides the following REST API and the resources to manage aliases:

GET/rest/apigateway/alias: Retrieves the list of all aliases in API Gateway. You can also use
this to retrieve details for a particular alias by providing the aliasName.

POST/rest/apigateway/alias: Creates an alias in API Gateway.

GET/rest/apigateway/alias/{aliasId}: Retrieves the details of the specified alias inAPIGateway.

PUT/rest/apigateway/alias/{aliasId}: Updates the details of the specified alias inAPIGateway.

DELETE/rest/apigateway/alias/{aliasId}: Deletes the specified alias in API Gateway.

webMethods API Gateway User's Guide 10.11 567

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayAdministration.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayAdministration.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/administration-service/AdministrationService.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/administration-service/AdministrationService.json

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayAdministration.json.

.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/alias-management/AliasManagement.json.

Application Management

API Gateway provides the capability to create applications, retrieve application information,
update application properties as required, and delete the existing applications using a REST API.
You can use this REST API to register APIs to the application, modify details of the registered
APIs for the application, and unregister APIs from the application.

API Gateway provides the following REST API and the resources to manage applications:

GET/rest/apigateway/applications: Retrieves the list of available applications in API Gateway.
You can also use this to retrieve details for a particular application by providing the
applicationId.

POST/rest/apigateway/applications: Creates an application in API Gateway.

DELETE/rest/apigateway/applications: Deletes the specified application in API Gateway.

GET/rest/apigateway/applications/{applicationId}: Retrieves the details of the specified
application in API Gateway.

PUT/rest/apigateway/applications/{applicationId}: Updates the details of the specified
application in API Gateway.

PATCH/rest/apigateway/applications/{applicationId}: Suspends the specified application in
API Gateway.

GET/rest/apigateway/applications/{applicationId}/apis: Retrieves the list of registered APIs
for the specified application in API Gateway.

POST/rest/apigateway/applications/{applicationId}/apis: Registers APIs with the specified
application in API Gateway.

PUT/rest/apigateway/applications/{applicationId}/apis: Updates the details of the APIs that
are registered with the specified application in API Gateway.

DELETE/rest/apigateway/applications/{applicationId}/apis: UnregistersAPIs from the specified
application in API Gateway. You can also use this to unregister a particular API by providing
the apiIDs.

GET/rest/apigateway/strategies: Retrieves a list of all strategies in API Gateway.

POST/rest/apigateway/strategies: Creates a strategy in API Gateway. The API request body
must contain the payload for the strategy.

DELETE/rest/apigateway/strategies: Deletes the specified strategy in API Gateway.

568 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayAdministration.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayAdministration.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/alias-management/AliasManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/alias-management/AliasManagement.json

GET/rest/apigateway/strategies/{strategyId}: Retrieves the details of the specified strategy in
API Gateway.

PUT/rest/apigateway/strategies/{strategyId}: Updates the details of the specified strategy in
API Gateway.

PUT/rest/apigateway/strategies/{strategyId}/refreshCredentials: Refreshes the credentials of
the specified strategy in API Gateway.

GET/rest/apigateway/applications/{applicationId}/accessTokens: Retrieves a map of access
token endpoints for all the authorization servers configured in API Gateway.

POST/rest/apigateway/applications/{applicationId}/accessTokens: Regenerates the access
tokens of an application in API Gateway.

PUT/rest/apigateway/applications/{applicationId}/accessTokens: Updates the access tokens
of an application in API Gateway.

DELETE/rest/apigateway/applications/{applicationId}/accessTokens: Deletes the access tokens
from a specified application in API Gateway.

GET/rest/apigateway/applications/_search: Retrieves a list of available applications in API
Gateway based on the search query parameters.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayApplication.json.

For details on sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/application-management/ApplicationManagement.json.

API Gateway Archive

You can import already exported archives of APIs, global policies, and other related assets and
re-create them in API Gateway. Each artifact in an archive is associated with a universally unique
identifier (UUID) across all API Gateway installations. When importing an archive, the UUID
helps in determining whether the corresponding artifact is already available in API Gateway. In
such a situation, you can specify whether to overwrite an already existing artifact during the
import process.

API Gateway provides the following RESTAPI and the resources to export and import an archive:

GET /rest/apigateway/archive: Retrieves the archive, which is a ZIP file that contains the
selected assets and its dependent assets.

POST /rest/apigateway/archive: Imports the API Gateway archive aswell as exports the assets
as an archive.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayArchive.json.

webMethods API Gateway User's Guide 10.11 569

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayApplication.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayApplication.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/application-management/ApplicationManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/application-management/ApplicationManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayArchive.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayArchive.json

For details on sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/archive-service/ArchiveService.json.

API Gateway Availability

API Gateway provides the capability to monitor the health of API Gateway and report the overall
health of API Gateway. Each health check request displays a status field as the first entry. The
status can have the values green, yellow or red describing the overall status of the components to
check. This means that when any of the components signals a problem, then the status is set to
red.

API Gateway provides the following REST API and the resources to monitor the health of API
Gateway:

GET /gateway/availability/admin: Retrieves the availability and health status of the API
Gateway administration service (UI, Dashboards, Admin REST API).

GET /gateway/availability/engine: Retrieves the availability and health status of the Gateway
policy enforcement engine (ElasticSearch cluster, IS and Terracotta).

GET /gateway/availability/externalServices: Retrieves the availability of external services
accessed by API Gateway.

GET /gateway/availability/all: Retrieves the availability of the administration service of the
policy enforcement engine and of the external services accessed by API Gateway.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayAvailability.json.

Note:

To perform the following API Gateway Availability REST calls you must have the View
Administration Configuration privileges.

GET /gateway/availability/externalServices
GET /gateway/availability/all

To perform the following API Gateway Availability REST calls you must be a valid API
Gateway user.

GET /gateway/availability/admin
GET /gateway/availability/engine

You can use the existing health check request GET http://localhost:5555/rest/apigateway/health,
without any authentication being set, to retrieve the health of API Gateway that monitors the
availability and health status of Kubernetes and Docker containers . This returns a HTTP 200
response without additional data.

Document Management

API Gateway provides the capability to store and manage the documents associated with an API.

API Gateway provides the following REST API and the resources to manage the documents
associated with APIs:

570 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/archive-service/ArchiveService.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/archive-service/ArchiveService.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayAvailability.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayAvailability.json

GET/rest/apigateway/documents/{documentId}: Retrieves the requested document fromAPI
Gateway.

PUT/rest/apigateway/documents/{documentId}: Updates the requested document in API
Gateway.

DELETE/rest/apigateway/documents/{documentId}: Deletes the requested document from
API Gateway.

PATCH/rest/apigateway/documents/{documentId}: Patches the requested document in API
Gateway.

POST/rest/apigateway/documents: Creates and stores the documents in API Gateway.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayDocumentManagement.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/document-mangement-service/DocumentManagementService.json.

Data Center Management

A data center is a facility that shares IT operations and equipment to collect, store, process, and
disseminate data and applications in centralized locations. Data centers are an integral part of the
enterprise, designed to support business applications and provide services such as data storage,
management, backup, and recovery. Hence as part of disaster recovery plan, it is important to
deploy multiple data centers in API Gateway.

API Gateway provides the capability to configure data centers, activate data centers in different
deployment modes (such as active-active, hot standby, warm, and cold), and switch data centers
between different deployment modes.

API Gateway provides the following REST API and the resources to manage the data centers:

PUT/rest/apigateway/dataspace/listener: Configures the GRPC listener in the data center.

GET/rest/apigateway/dataspace/listener: Retrieves the GRPC listener configuration of the
associated data center.

PUT/rest/apigateway/dataspace/ring: Configures the data center and establishes the ring
configuration with the associated data centers.

GET/rest/apigateway/dataspace/ring: Retrieves the connectivity information of the associated
data centers in the ring configuration.

PATCH/rest/apigateway/dataspace/ring: Appends the data center configuration to the ring
in API Gateway.

PUT/rest/apigateway/dataspace/configure: Configures multiple data centers and establishes
the connection with the associated data centers.

PUT/rest/apigateway/dataspace/activate: Activates a data center configuration inAPIGateway.

webMethods API Gateway User's Guide 10.11 571

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayDocumentManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayDocumentManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/document-mangement-service/DocumentManagementService.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/document-mangement-service/DocumentManagementService.json

PUT/rest/apigateway/dataspace/activateAll: Activates multiple data center configuration in
API Gateway.

Use the following query parameters to activate data centers in the required mode:

PUT/rest/apigateway/dataspace/activateAll?mode=ACTIVE_RING: Activates all the data
centers in the active-active mode in API Gateway.

PUT/rest/apigateway/dataspace/activateAll?mode= STANDBY: Activates all the data
centers in the hot standby mode in API Gateway.

PUT/rest/apigateway/dataspace/activateAll?mode= STANDALONE: Switches the data
center from the active-active or hot standby mode to stand alone mode in API Gateway.

GET/rest/apigateway/dataspace: Retrieves the current configuration of the associated data
center in API Gateway.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayDataManagement.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/crossdc-management/cross-dc-management-postman-collection.json.

Internal Service

API Gateway provides internal APIs that work on identified applications that are identified based
on identifiers such as APi Key, OAuth token, IP address and so on.

API Gateway provides the following REST API and the resources to manage application
identification:

POST/{apigateway}/security/getJsonWebToken: Generates JSONWeb token with custom
claims supplied in the request.

POST/{apigateway}/security/exchangeIDToken: Generate an access token for the given ID
Token.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayInternalService.json.

Port Configuration

API Gateway provides the capability to manage port configurations. Each port is associated with
a specific type of protocol, HTTP or HTTPS. In addition to these port types, API Gateway also
supports the external port, the internal listener port, and the WebSocket listener port. You can
specify one or more HTTP or HTTPS ports on which the API Gateway Admin APIs and the
deployed APIs are available for consumption. By default, they are available on the primary HTTP
port.

API Gateway provides the following REST API and the resources to manage port configuration:

572 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayDataManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayDataManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/crossdc-management/cross-dc-management-postman-collection.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/crossdc-management/cross-dc-management-postman-collection.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayInternalService.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayInternalService.json

GET /rest/apigateway/ports: Retrieves all port configurations.

POST /rest/apigateway/ports: Creates new port configuration.

PUT /rest/apigateway/ports: Updates an existing port configuration.

DELETE /rest/apigateway/ports: Deletes a port configuration.

GET /rest/apigateway/ports/primary: Retrieves the definition of the primary port.

PUT /rest/apigateway/ports/primary: Sets the primary port to the specified existing port
configuration.

PUT /rest/apigateway/ports/enable: Enables the specified port configuration. Only enabled
ports can be contacted and can handle server requests.

PUT /rest/apigateway/ports/disable: Disables the specified port configuration. A disabled
port cannot be contacted.

GET /rest/apigateway/ports/{listenerKey}: Retrieves the API Gateway port configuration for
the specified listener key.

GET /rest/apigateway/ports/{listenerKey}/accessMode: Retrieves the access mode of the API
Gateway port configuration for the specified listener key.

POST /rest/apigateway/ports/{listenerKey}/accessMode: Creates an access mode type for the
API Gateway port configuration for the specified listener key. You can set the access mode for
a port to deny or allow.

PUT /rest/apigateway/ports/{listenerKey}/accessMode: Updates the access mode services of
the API Gateway port configuration for the specified listener key. If you want to restrict the
allow list, you have to add a PUT call after the POST call.

GET /rest/apigateway/ports/{listenerKey}/ipAccessMode: Retrieves the IP accessmode of the
API Gateway port configuration for the specified listener key.

POST /rest/apigateway/ports/{listenerKey}/ipAccessMode: Creates the IP access mode type
for the API Gateway port configuration for the specified listener key. You can set the IP access
mode for a port to deny or allow.

PUT /rest/apigateway/ports/{listenerKey}/ipAccessMode: Updates the IP access mode host
list of the API Gateway port configuration for the specified listener key. If you want to restrict
the allow list, you have to add a PUT call after the POST call.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayPortManagement.json.

Policy Management

API Gateway provides the capability to retrieve API Gateway policy related data such as policies,
parameters, policy stages, policy templates, binding assertion, token assertion and service result
cache. You can use this REST API to create, update or delete policies.

API Gateway provides the following REST API and the resources to manage policies:

webMethods API Gateway User's Guide 10.11 573

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayPortManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayPortManagement.json

GET/rest/apigateway/denialofservice/deniedIP: Retrieves the list of denied IPs (IPs that
violated the threat protection rules configured).

DELETE/rest/apigateway/denialofservice/deniedIP: Deletes the specified IP from the denied
IP list. Once the IP is removed from the list the request from that IP is processed.

GET/rest/apigateway/assertions: Retrieves a list of available assertions in API Gateway.

POST/rest/apigateway/assertions: Creates an assertion in API Gateway. Custom assertions
allow theAPI providers to extend and provide additional security policies that are not available
by default inAPIGateway. InWS-Security, customassertions are used for expressing individual
security requirements, constraints, or both. The individual policy assertions can be combined
to create security policies that ensure secure and reliable exchanges of SOAPmessages between
a client and a SOAP API.

GET/rest/apigateway/assertions/{assertionId}: Retrieves the specified assertion element.

PUT/rest/apigateway/assertions/{assertionId}: Updates the specified assertion.

DELETE/rest/apigateway/tokenAssertion/{assertionId}: Deletes the specified assertion.

GET/rest/apigateway/policyActionTemplates/{policyActionTemplateId}: Retrieves the
template details of the specified policy action.

GET/rest/apigateway/policyActionTemplates: Retrieves all the template detail for list of policy
actions. You can also use this to retrieve template details for a particular policy action by
providing the policy action template Id.

GET/rest/apigateway/policyStages: Retrieves the list of policy stages available inAPIGateway.
It also displays the list of policies associated with each stage.

GET/rest/apigateway/configurations/mobileApp: Retrieves the configuration details for the
mobile applications for which access has been denied. You can use API Gateway to disable
access for certain mobile application versions on a predefined set of mobile platforms. By
registering the required devices and applications and disabling access to these versions, you
ensure that all users use the latest versions of the applications and take advantage of the latest
security and functional updates.

PUT/rest/apigateway/configurations/mobileApp: Updates thedetails of themobile applications
configuration in API Gateway.

GET/rest/apigateway/policyActions: Retrieves the list of all policy actions fromAPI Gateway.
It can also be used to retrieve details for particular set of policy actions by specifying the policy
id, policy details for list of policies of a particular policy type.

POST/rest/apigateway/policyActions: Creates policy actions of different types inAPIGateway.
The result of this request is a policy action payload and is available in the response.

GET/rest/apigateway/policyActions/{policyActionId}: Retrieves the policy action details for
a specified policy action based on the id specified in API Gateway.

PUT/rest/apigateway/policyActions/{policyActionId}: Updates the policy action details for a
specified policy action based on the id specified in API Gateway.

574 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

DELETE/rest/apigateway/policyActions/{policyActionId}: Deletes the policy action based on
the id specified in API Gateway.

GET/rest/apigateway/policies: Retrieves the list of all policies from API Gateway. It can also
be used to retrieve details for particular set of policies by specifying the policy id, policy details
for list of policies of a particular policy type.

POST/rest/apigateway/policies: Creates policies of different types in API Gateway. You can
also use this to clone policies.

GET/rest/apigateway/policies/{policyId}: Retrieves the policy details for a specified policy in
API Gateway. If policy id is available then the policy details is sent in response.

PUT/rest/apigateway/policies/{policyId}: Updates the policy details for a specified policy in
API Gateway. For Global policy user should haveAPI Gateway administrator access to update
global policy.

DELETE/rest/apigateway/policies/{policyId}: Deletes the specified policy in API Gateway.
This request will automatically delete the associated policy action for this policy.

GET/rest/apigateway/policies/{policyId}/apis: Retrieves the list of applicable APIs for a global
policy. An API become applicable API for a global policy only if it satisfies the scope specified
in the global policy. By default it will return the basic API details of all the applicable APIs
either if the API is active or inactive for a global policy.

GET/rest/apigateway/policies/{policyId}/conflicts: Retrieves the conflicts for the specified
global policy.

PUT/rest/apigateway/policies/{policyId}/activate: Activates the specified global policy. This
request does not require any request body. This request tries to activate the global policy and
if any error occurs during activation it is reported as response or if the global policy is activated
then its policy details active flag set to true is sent as response. If the global policy has any
conflicts then it cannot be activated and the conflicts are manually resolved.

PUT/rest/apigateway/policies/{policyId}/deactivate: Deactivates the specified global policy.
This request does not require any request body. This request tries to deactivate the global
policy and if any error occurs during deactivation it is reported as response or if the global
policy deactivated the policy details of a global policy with active flag set to false is sent as
response. An active global policy cannot have conflicts with other active global policy and
hence the deactivation fails only when the conflict occurs between active global policy that is
specified and one or more applicable active APIs. This can happen when the applicable active
API policy action depends on one or more policy action from the specified global policy. If
you deactivate this policy, it would cause the active API to have an unstable state. Hence the
deactivation is reported as failed in this case.

PUT/rest/apigateway/policies/{policyId}/disable: Disables the Threat protection policy created
in API Gateway. This request does not require any request body. If the threat protection policy
is disabled successfully then the policy details of specified policy will be sent as response.

PUT/rest/apigateway/policies/{policyId}/enable: Enables the Threat protection policy created
in API Gateway. This request does not require any request body. If the threat protection policy
is enabled successfully then the policy details of specified policy is sent as response.

webMethods API Gateway User's Guide 10.11 575

11 REST APIs in API Gateway

PUT/rest/apigateway/policies/{policyId}/movedown: Moves down the execution order of the
Threat protection policy created in API Gateway.

PUT/rest/apigateway/policies/{policyId}/moveup: Moves up the execution order of the Threat
protection policy created in API Gateway.

GET/rest/apigateway/serviceResultCache/{apiId}: Retrieves the Service Result Cache size for
the specified API accessed using the API Id.

DELETE/rest/apigateway/serviceResultCache/{apiId}: Deletes the Service Result Cache for
the specified API accessed using the API Id.

GET/rest/apigateway/serviceResultCache: Retrieves the Service Result Cache size for the
specified API accessed using apiName and apiVersion.

DELETE/rest/apigateway/serviceResultCache: Deletes the ServiceResultCache for the specified
API accessed using apiName and apiVersion.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayPolicyManagement.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/policy-management/PolicyManagement.json.

Promotion Management

API Gateway provides supports staging and promotion of assets. Staging and promotion allows
you to promote all the assets across different stages.

APIGatewayprovides the followingRESTAPI and the resources tomanage staging andpromotion:

GET/rest/apigateway/promotion: Retrieves the promotions historywith each promotion entry
providing the details such as promotion name, promoted by whom, when it is promoted, and
the promoted assets status.

POST/rest/apigateway/promotion: Promote the API Gateway assets from the sourcemachine
to destination machine where the destination machine is configured as a stage.

GET/rest/apigateway/promotion/{promotionId}: Retrieves a promotionbasedon thepromotion
Id.

DELETE/rest/apigateway/promotion/{promotionId}: Deletes a promotion based on the
promotion Id.

GET/rest/apigateway/stages: Retrieves all the configured stages.

POST/rest/apigateway/stages: Configures a stage in the sourceAPIGatewaywhere promotion
is initiated.

GET/rest/apigateway/stages/{stageId}: Retrieves a particular stage object based on a stage Id.

PUT/rest/apigateway/stages/{stageId}: Updates a particular stage in the source API Gateway
where the promotion is initiated.

576 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayPolicyManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayPolicyManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/policy-management/PolicyManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/policy-management/PolicyManagement.json

DELETE/rest/apigateway/stages/{stageId}: Deletes a particular stage.

GET/rest/apigateway/rollback: Retrieves the list of possible rollbacks from the local (target)
API Gateway instance.

GET/rest/apigateway/rollback/{rolbackId}: Retrieves a rollback based on the rollback Id.

PUT/rest/apigateway/rollback/{rolbackId}: Rolls back the assets to the previous state, That is,
the state prior to promotion. Rollback should be initiated from the local API Gateway instance.

DELETE/rest/apigateway/rollback/{rolbackId}: Deletes the rollback.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayPromotionManagement.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/promotion-management/PromotionManagement.json.

Public Services

This API allows you to fetch a JWT from API Gateway and also fetch JSONWeb key URI of API
Gateway.

API Gateway provides the following REST API and the resources to manage public services:

GET/rest/pub/apigateway/jwt/getJsonWebToken: Retrieves JWT from API Gateway. To
obtain the JWT from API Gateway the client has to pass the basic authentication credentials.

GET/rest/pub/apigateway/jwt/certs: Retrieves all the public keys of API Gateway, which can
be used to validate the JWT generated by API Gateway.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayPublicServices.json.

API Gateway Search

The API Gateway search API allows you to execute a search query in API Gateway and retrieve
search results that match the search query.

Remember:
When your search involves a large number of records, the process consumes a considerable
memory space from the server, which in turn affects other business transactions.Hence, Software
AG recommends that you perform large search operations when you expect lesser business
transactions so that the regular business is not affected.

API Gateway provides the following REST API resources:

POST/rest/apigateway/search: Executes a search query inAPIGateway and returns the results
that match your query. You can perform search across the different objects such as APIs,
Applications, Aliases, Assertions, Policies, Administration Settings, Policy properties, Packages,

webMethods API Gateway User's Guide 10.11 577

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayPromotionManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayPromotionManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/promotion-management/PromotionManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/promotion-management/PromotionManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayPublicServices.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayPublicServices.json

Plans, Subscriptions, Users, User groups, Transactional events, Lifecycle events, Policy violation
events, Monitor events, Error events, Threat protection events, and Performance metrics.

To perform a search operation, specify the following in your REST request:

DescriptionREST Request
Section

Objects for which you want to perform the search operation. You can
specify one or more of the listed objects.

Types

Note:
When you specify Users and User Groups in the Types section to
return the list of users and user groups from Integration Server
respectively, you need not specify any search criteria.

Search Criteria. Youmust specify your search attribute and a keyword
(value of the attribute) or one of the following as your search criteria:

Scope

Time range - to retrieve results for a date range (from and to values),
from a specified date to current date, till a specified date, or since
the given amount of time (seconds, minutes, hours, days, weeks,
months, quarters, or years).

Value range - to retrieve results for a integer value range (from and
to values), from a given value to the maximum value, and from 0
to the given value.

You can specify multiple attributes in this section.

Note:
The search operation is performed based on the search criteria
specified in this section for all objects specified in the Types section.

One of the following:Condition

and - to return results that match all search criteria.

or - to return results that match any of the given criteria.

Fields to be returned in the response. You can specify only the required
fields, instead of viewing all fields in your response. That is, if you

Fields

want to view only the APINames and Versions that match your search
criteria, you can specify apiName and apiVersion in this section of your
REST request.

POST/rest/apigateway/search/_count: Retrieves the total number of records for the specified
scope and types.

To retrieve the count of records, you can specify the required types and scope similar to the
/search query. If you do not specify any search criteria in the Scope section, then the query
returns total number of assets for the objects specified in the Types section.

578 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

POST/rest/apigateway/search/_aggregations: Executes a search query and groups the results
for the specified scope and types.

To perform an aggregations search, specify the following in your REST request:

DescriptionREST Request
Section

Objects for which you want to perform the search operation. You can
specify one or more of the listed objects.

Types

Search Criteria. Youmust specify your search attribute and a keyword
(value of the attribute) or one of the following as your search criteria:

Scope

Time range - to retrieve results for a date range (from and to values),
from a specified date to current date, till a specified date, or since
the given amount of time (seconds, minutes, hours, days, weeks,
months, quarters, or years).

Value range - to retrieve results for a integer value range (from and
to values), from a given value to the maximum value, and from 0
to the given value.

One of the following:Condition

and - to return results that match all search criteria.

or - to return results that match any of the given criteria.

Values for the following:Aggregations

Name - Specify a name used to group the required results. For
example, you can specify Info by API, if you are grouping the
results by APIs.

Type - One of the following:

group - to group the results based on the given fields.

timeseries - to group results based on a given interval value.
The interval can be seconds, minutes, hours, days, weeks,
months, quarters, or years.

metrics - to find the average, minimum, maximum and sum of
given fields.

Fields - Fields to be considered for the aggregation. If the type is
group and there are multiple fields, separate the field names with
commas.

Formoredetails about theRESTAPI, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewaySearch.json.

webMethods API Gateway User's Guide 10.11 579

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewaySearch.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewaySearch.json

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/search-service/SearchService.json.

Note:
The number of transactions returned for a search is based on the value specified in the
defaultSearchSize extended setting. If your search result exceeds the value of this setting, then
you can navigate through your search results by specifying the range of records that you want
to view. For example, the value specified in the defaultSearchSize setting is 1000 and the count
of your search result is 5000, then only the first 1000 records are displayed. To view the
consequent records, you can specify the number of the record from which you want to view,
and the number of records that must be displayed. That is, to view the records from 1001 to
2000, you can specify the range as follows:

POST http://localhost:5555/rest/apigateway/search
{

"types": [
"TRANSACTION_EVENTS"],

"scope": [
{ "attributeName": "responseCode",

"keyword": "304"
},

],
"from": "1001"
“size”: “1000”

}

Server Information

API Gateway provides the capability to retrieve API Gateway server information.

APIGateway provides the followingRESTAPI and the resources to retrieve the server information:

GET/rest/apigateway/is/serverinfo: Retrieves API Gateway server information.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayServerInfoSwagger.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/server-information/ServerInformation.json.

Service Management

API Gateway provides the capability to retrieve and manage all APIs in API Gateway and the
related information such as applications associated, scopes, versions and so on.

API Gateway provides the following REST API and the resources to manage services:

GET/rest/apigateway/apis/{apiId}: Retrieves an API based on the apiId specified.

PUT/rest/apigateway/apis/{apiId}: Updates an API by importing a file, URL or inline based
on the apiId specified.

580 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/search-service/SearchService.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/search-service/SearchService.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayServerInfoSwagger.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayServerInfoSwagger.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/server-information/ServerInformation.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/server-information/ServerInformation.json

DELETE/rest/apigateway/apis/{apiId}: Deletes an API based on the apiId specified.

PUT/rest/apigateway/apis/{apiId}/activate: Activates an API so that the API is exposed to
consumers.

PUT/rest/apigateway/apis/{apiId}/deactivate: Deactivates anAPI so that theAPI is not exposed
to consumers.

PUT/rest/apigateway/apis/{apiId}/publish: Publishes API to the registered API Portal.

PUT/rest/apigateway/apis/{apiId}/unpublish: Unpublishes an API from the registered API
Portal.

PUT/rest/apigateway/apis/{apiId}/mock/enable: Enables you to mock an API by simulating
the native service.

PUT/rest/apigateway/apis/{apiId}/mock/disable: Disables the mocking capability to mock an
API.

PUT/rest/apigateway/apis/{apiId}/tracing/enable: Enables tracing for an API.

PUT/rest/apigateway/apis/{apiId}/tracing/disable: Disables the tracing capability to trace an
API.

POST/rest/apigateway/tracer/archive: Creates an archive of the tracer events.

POST/rest/apigateway/tracer/import: Imports the traced data from the archive. This API does
not import the events in to the storage. It simply reads the archive and returns all the events
and their tracing data in the archive.

GET/rest/apigateway/tracer/{correlationID}: Retrieves trace information for anAPI invocation
event specified by its correlationID.

GET/rest/apigateway/apis: Retrieves all APIs or subset of APIs based on the apiIds specified.

POST/rest/apigateway/apis: Creates an API as specified. You can create an API by importing
a file, URL, or from scratch.

DELETE/rest/apigateway/apis: Deletes APIs based on the apiIds specified.

GET/rest/apigateway/apis/{apiId}/applications: Retrieves the list of registered applications
of an API.

GET/rest/apigateway/apis/{apiId}/source: Retrieves the source file along with the root file
name that was used while creating an API.

GET/rest/apigateway/apis/{apiId}/globalPolicies: Retrieves the list of active global policies
applicable for the specified API.

GET/rest/apigateway/apis/{apiId}/versions: Retrieves all versions of the specified API.

POST/rest/apigateway/apis/{apiId}/versions: Creates a new version of an API and retains
applications if required.

GET/rest/apigateway/apis/{apiId}/scopes: Retrieves the scopes for the specified API.

webMethods API Gateway User's Guide 10.11 581

11 REST APIs in API Gateway

GET/rest/apigateway/apis/{apiId}/scopes/{scopeName}: Retrieves the scopes for the specified
API based on the scope name.

PUT/rest/apis/{apiId}/implementation: Updates the API in API Gateway after its
implementation by any API provider tool. This is used by API provider tools to update the
API after implementing from their end.

GET/rest/apis/{apiId}/providerspecification: Downloads the provider specification of REST
and SOAP based APIs. Provider specification is nothing but, the specification file (in swagger
or wsdl format) with out the concrete API Gateway endpoint and contains all resources,
methods, and operations irrespective of whether their exposure to consumer.

PUT/rest/apigateway/serviceRegistry/unpublish: Unpublishes one or more APIs from one
or more service registries.

GET/rest/apigateway/serviceRegistry/publish: Retrieves the service registry publish
information for the API.

PUT/rest/apigateway/serviceRegistry/publish: Publishes one ormore APIs from one ormore
service registries.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayServiceManagement.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/service-management/ServiceManagement.json.

Transaction Data

APIGateway provides the capability to query theAPI transactions. API Transactions are generated
(as events) every time an API invocation happens. API Transactions may contain the details about
the invocation such as request and response headers, request and response payloads, consumer
applications and so on. API Provider may choose to store these events to one or more destinations
by using Log Invocation Policy. API Gateway provides different destination options to the API
Provider (like API Gateway's own data store, relational databases, Elasticsearch, and so on) where
the events can be stored. By default, API Gateway is chosen as a storage destination for these
events. This REST API queries for the transactions data only from the API Gateway's default
datastore. There are multiple use cases where you can use this transactions data. For instance, you
can integrate this API with your billing system wherein this transactional data can be used to
compute the usage history of your API for different consumers formonetization usecases. In other
scenarios, the data extracted from this service can be used for custom report generation.

You can search for other events using the API Gateway Search API. For more details, see “API
Gateway Search” on page 577.

APIGateway provides the followingRESTAPI and the resources to retrieve the transaction events
data:

GET/rest/apigateway/transactionEvents/_search: Retrieves the transaction events for a given
API, Application, Plan or Package for a specific period of time. Multiple request parameters
of this method provide options to specify the request criteria to match the expected result and

582 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayServiceManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayServiceManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/service-management/ServiceManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/service-management/ServiceManagement.json

most of these input parameters support regular expression in their values. Along with the
mandatory parameters, fromDate and toDate, any one of the other filter criteria should be
passed in the request.

GET/rest/apigateway/transactionEvents/_count: Retrieves the number of transaction events
for a given API, Application, Plan or Package for a specific period of time. Multiple request
parameters of thismethod provide options to specify the request criteria tomatch the expected
result and most of these input parameters support regular expression in their values. Along
with the mandatory parameters , fromDate and toDate, any one of the other filter criteria
should be passed in the request.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayTransactionalEvent.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/transaction-data-service/TransactionDataService.json.

User Management

APIGateway provides the capability tomanageUsers, Groups andAccess profiles inAPIGateway.

API Gateway provides the following REST API and the resources to retrieve the User ACL list:

GET/rest/apigateway/accessProfiles: Retrieves a list of all access profiles in API Gateway.

POST/rest/apigateway/accessProfiles: Creates an access profile in API Gateway. The API
request body must contain the payload for the access profile.

GET/rest/apigateway/accessProfiles/{accessProfileId}: Retrieves the details of an access profile
in API Gateway.

PUT/rest/apigateway/accessProfiles/{accessProfileId}: Updates the details of a specified access
profile inAPIGateway. TheAPI request bodymust contain the payload for the updated access
profile.

DELETE/rest/apigateway/accessProfiles/{accessProfileId}: Deletes an access profile fromAPI
Gateway.

GET/rest/apigateway/groups: Retrieves list of all groups in API Gateway.

POST/rest/apigateway/groups: Creates a group in API Gateway. The API request body must
contain the payload for the group.

GET/rest/apigateway/groups/{groupId}: Retrieves the details of a group in API Gateway.

PUT/rest/apigateway/groups/{groupId}: Updates the details of a specified group in API
Gateway. The API request body must contain the payload for the updated group.

DELETE/rest/apigateway/groups/{groupId}: Deletes a group from API Gateway.

GET/rest/apigateway/users: Retrieves list of all users in API Gateway.

webMethods API Gateway User's Guide 10.11 583

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayTransactionalEvent.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayTransactionalEvent.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/transaction-data-service/TransactionDataService.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/transaction-data-service/TransactionDataService.json

POST/rest/apigateway/users: Creates an user in API Gateway. The API request body must
contain the payload for the user.

GET/rest/apigateway/users/{userId}: Retrieves the details of an user in API Gateway.

PUT/rest/apigateway/users/{userId}: Updates the details of a specified user in API Gateway.
The API request body must contain the payload for the updated user.

DELETE/rest/apigateway/users/{userId}: Deletes the a specified user in API Gateway.

POST/rest/apigateway/users/authenticate: Authenticates a user in API Gateway.

GET/rest/apigateway/installedLanguages: Retrieves list of installed language packs in API
Gateway.

GET/rest/apigateway/is/lockedAccounts: Retrieves the locked user accounts in API Gateway.

POST/rest/apigateway/is/lockedAccounts: Unlocks the locked user accounts byAPIGateway.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayUserManagementSwagger.json.

For details about sample payloads, import Postman collection from the following link in Postman
client: https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/
postmancollections/apis/user-management/UserManagement.json.

Subscription Management

You can manage subscriptions from the REST API provided by API Gateway. This API allows
you to create application, view applications, get the application details for a specific package and
plan, and so on. Alternatively, you can also use Developer Portal to manage subscriptions. To use
the subscription APIs, you must have the manage application permission.

API Gateway provides the following REST API and the resources to manage subscriptions:

POST/rest/apigateway/subscriptions. Creates a subscription and generates an audit log event.
The newly generated event is returned. If the approval is enabled, the application details are
returned without the API key. Once the request is approved, user can get subscription details
and can view the access key. If the approval is not enabled, then the response contains all the
application details, except for the API key. The API key is masked and only the requester can
view it.

PUT/rest/apigateway/subscriptions/{applicationId}. Updates the subscription details. You
can change the package and plan of a subscription. This API can be used only to update the
package and plan details.

GET/rest/apigateway/subscriptions. Retrieves the subscriptions created as applications. The
API key is masked for all the subscriptions.

GET/rest/apigateway/subscriptions/{applicationId}. Retrieves the details of a specific
application. You must provide the application ID as input parameter.

584 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayUserManagementSwagger.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayUserManagementSwagger.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/user-management/UserManagement.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/postmancollections/apis/user-management/UserManagement.json

GET/rest/apigateway/subscriptions?packageId={packageId}&planId={planId}. Retrieves the
application details for a specific combination of package and plan.

GET/rest/apigateway/subscriptions/usage. Retrieves the subscription usage details of all the
subscriptions for the current cycle of only the existing subscriptions.

GET/rest/apigateway/subscriptions/{applicationId}/usage. Retrieves the usage details for a
specific application. You must provide the application ID of the required application, as an
parameter.

GET/rest/apigateway/subscriptions/usage?name={applicationName}&
package={packageName}&plan={planName}&from={startingIndexOfSearchResult}&
size={numberOfRecordsToFetch}&count={boolean}

. Retrieves the usage details for a specific application's package and plan. The package name,
application name, and plan name are given as input parameters. The from, size, and, count
parameters are optional. If you provide the from and sum parameters, the values specified in
the from and number of records, specified in the size are fetched. If you set the count parameter
to true, the API returns number of records for specified query parameter.

DELETE/rest/apigateway/subscriptions/{applicationId}. Deletes an application. You must
provide the application ID of the application to be deleted.

For details about the REST API, see https://github.com/SoftwareAG/webmethods-api-gateway/
blob/10.11/apigatewayservices/APIGatewayApplication.json.

Backward compatibility support for REST APIs

All the RESTAPIs inAPIGateway are backward compatible. The backward compatibility handles
payload transformation from the previous version to the current version of API Gateway. If you
want to use version specific payload then use the corresponding endpoint. For example, if you
want to use the 10.1 payload to create an asset, then you have to use
http://hostname:port/rest/apigateway/v101/asset.

With the backward compatibility support, API Gateway exposes the following REST end points
with the version number mentioned.

http://hostname:port/rest/apigateway/v101/assetsspecificURI

Use this URI if you want to access the latest API Gateway with 10.1 version specific request
and response.

The following policies have conflicting behavior compared to earlier versions:

In 10.1 invokeESB templateKey is used to create Invoke webMethods IS policy that can be
used for both request and response transformation stage. From 10.2 version, the invokeESB
templateKey is changed to requestInvokeESB and responseInvokeESB for request and
response transformation stage respectively. Sowhen you send a payloadwith older version
(10.1), it is not possible to create the correct policy in latest version. To solve this, you have
to update the payload, and send the appropriate templateKey in 10.1 payload. For example
if you are creating invokewebMethods IS policy for request transformation, then you have
to specify requestInvokeESB templateKey instead of invokeESB templateKey.

webMethods API Gateway User's Guide 10.11 585

11 REST APIs in API Gateway

https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayApplication.json
https://github.com/SoftwareAG/webmethods-api-gateway/blob/10.11/apigatewayservices/APIGatewayApplication.json

In 10.1 xsltTransformation is used to create XSLT Transformation policy that can be used
for both request and response transformation stage. From 10.2 version, the
xsltTransformation templateKey is changed to requestTransformation and
responseTransformation for request and response transformation stage respectively. To
solve this, you have to update the payload, and send the appropriate templateKey in 10.1
payload. For example if you are creating XSLT Transformation policy for request
transformation, then you have to specify requestTransformation templateKey instead of
xsltTransformation templateKey.

http://hostname:port/rest/apigateway/v102/assetsspecificURI

Use this URI if you want to access the latest API Gateway with 10.2 version specific request
and response.

http://hostname:port/rest/apigateway/v103/assetsspecificURI

Use this URI if you want to access the latest API Gateway with 10.3 version specific request
and response.

http://hostname:port/rest/apigateway/v105/assetsspecificURI

Use this URI if you want to access the latest API Gateway with 10.5 version specific request
and response.

http://hostname:port/rest/apigateway/assetsspecificURI

When there is no version mentioned, the URI, by default, accesses the latest version specific
request and response.

Note:
The archive REST endpoint to export assets does not give a version specific archive. It always
gives the archive with latest version regardless of the version specified in the REST endpoint.

586 webMethods API Gateway User's Guide 10.11

11 REST APIs in API Gateway

12 Remove User Data from API Gateway

■ Removing User Data .. 588

webMethods API Gateway User's Guide 10.11 587

Removing User Data

Data protection laws and regulations, such as the General Data Protection Regulation (GDPR)
might require specific handling of user data, even after a user profile is removed. Additionally,
employees or other clientswith user accounts onAPIGatewaymay request that any user identifying
information such as user name, email addresses, or client IP addresses be removed from API
Gateway. To comply with data protection requirements and user requests, in addition to deleting
the user account, you may need to complete activities such as deleting or masking the user data.

Note:
APIGateway can optionally capture the runtime transaction logs, which contain theAPI request
and response data (customer-defined) that flow through to the API Gateway. Though there are
options to purge or clean up these data, this section does not define procedure for the same as
the customer-defined data is out of the scope of this functionality.

Types of Data and their stores in API Gateway

Core data

This consists of APIs, policies, applications, aliases, packages, plans, administration
configurations, users, and groups. This is stored inAPIData Store and Integration Server store.

Runtime transactions

This consists of the transaction events,monitoring events, error events, policy violation events,
threat protection events, lifecycle events and performance metrics. This information can be
stored in API Data Store or external destinations.

Application logs

This consists of UI, server, Elasticsearch, Kibana, filebeat, and Platform logs . This is stored in
filesystem and API Data Store.

Audit logs

This is stored in API Data Store.

Tracer logs

This consists of the runtime transactions that are captured when you trace the API. This
information can be stored in API Data Store.

Handling Core Data

API Gateway strongly recommends the use of internal or technical user for policy configurations
like Authorize user, Invoke IS Service and Outbound Authentication that has user credentials.
This avoids the life cycle of actual or real user object from impacting the API Gateway
configurations.

588 webMethods API Gateway User's Guide 10.11

12 Remove User Data from API Gateway

In case, real users are used in policy configurations, then the API Provider or API Administrators
should take the responsibility of changing the configurations once the user is deleted from the
system.

Handling Application Logs

In API Gateway, as you increase the log level to Debug or Trace, there can bemessages that include
the userid. So when a user has to be deleted from the system, Administrators have to clean up this
data. The application logs are stored in file system till APIGateway version 10.2. FromAPIGateway
10.3, API Administrators have an option to persist the logs additionally in API Data Store.

The following is a sample query run to mask the user data in the application log stored either in
the API Data Store or an external data store.
curl -X POST -H 'Accept: application/json' -H 'Content-Type: application/json'
http://hostname:port/gateway_default_log/doc/_update_by_query -d ' {
"script": { "id": "findAndReplace", "params": {
"find": "user123", "replace": "******"} } }

hostname:port refers to the host name and port of the system where the API Data Store or the
external data store that contains the data resides.

The Find field contains the data or user information, such as username, id, that is to bemasked.

The fieldReplace contains the string that is used tomask the data mentioned in the Find field
and replaces the data with the string provided in the logs.

Logs are always persisted in a file system. You can perform a search and replace using text editing
tools. For example, you could search all server.log files for the id of the user to be deleted and
replace it with anonymous or blank string. Following logs need to be cleaned up.

Install Directory\Integration Server\instances\Instance_Name\logs\server.log. For details to
cleanup other Integration Server related logs, seewebMethods Integration Server Administrator’s
Guide.

Install Directory\Integration Server\instances\Instance_Name\logs\APIGateway.log.

Install Directory\InternalDataStore\logs.

Handling Audit Logs

If enabled, audit logswould have information about user actions. This contains user reference and
has to be cleaned up after user deletion. You can achieve the cleanup in the following ways:

As an Administrator, you can clean up the audit logs persisted in API Data Store by running
the following curl query to replace or mask the desired data.

The following is a sample query run to mask the user data in the Audit logs stored in the API
Data Store.
curl -X POST -H 'Accept: application/json' -H 'Content-Type: application/json'
http://hostname:port/gateway_default_audit_auditlogs/_update_by_query -d ' {
"script": { "id": "findAndReplace", "params": {
"find": "user123", "replace": "******"} } } '

webMethods API Gateway User's Guide 10.11 589

12 Remove User Data from API Gateway

hostname:port refers to the host name of the system where the API Data Store resides and
the corresponding port.

The Find field contains the data or user information, such as username, id, that is to be
masked.

The field Replace contains the string that is used to mask the data mentioned in the Find
field and replaces the data with the string provided in the logs.

As an Administrator, you can use the extended setting saveAuditlogsWithPayload to not store
the request payloads in the audit logs. Though this does not completely eliminate the user
information in audit logs it certainly minimizes the occurrences. Software AG recommends
you to use this property with caution as turning on this option might lead to less audit data
being captured.

Handling Tracer Logs

If you enable the tracer, the data that API Gateway captures might have user-specific information.
You can either mask or remove the user data from the server log trace span, mediator trace span,
and request response trace span indices. You can either mask full or partial text in the user data.

The following sample query is used to mask the user data in the server log trace span:
curl -X POST http(s)://elasticsearch_hostname:elasticsearch_port/
gateway_{tenant}_serverlogtracespans/_doc/_update_by_query?pretty -H 'Content-Type:
application/json' -d'
{
"script": {
"id": "findAndReplaceInTracerData",

"params": {
"find": "textToFind",
"replace": "textToReplace"

}
}

}'

The following sample query is used to mask the user data in the mediator trace span:
curl -X POST http(s)://elasticsearch_hostname:elasticsearch_port/
gateway_{tenant}_mediatortracespan/_doc/_update_by_query?pretty -H 'Content-Type:
application/json' -d'
{
"script": {
"id": "findAndReplaceInTracerData",

"params": {
"find": "textToFind",
"replace": "textToReplace"

}
}

}
'

The following sample query is used to mask the user data in the request response trace span:
curl -X POST http(s)://elasticsearch_hostname:elasticsearch_port/

590 webMethods API Gateway User's Guide 10.11

12 Remove User Data from API Gateway

gateway_{tenant}_requestresponsetracespans/_doc/_update_by_query?pretty -H
'Content-Type: application/json' -d'
{
"script": {
"id": "findAndReplaceInTracerData",

"params": {
"find": "textToFind",
"replace": "textToReplace"

}
}

}
'

The Find field contains the data or user information, such as username, id, that is to bemasked.

The fieldReplace contains the string that is used tomask the data mentioned in the Find field
and replaces the data with the string provided in the server log trace span, mediator trace
span, and request response trace span indices.

webMethods API Gateway User's Guide 10.11 591

12 Remove User Data from API Gateway

592 webMethods API Gateway User's Guide 10.11

12 Remove User Data from API Gateway

13 Usage Scenarios

■ Change Ownership of Assets ... 594

■ Custom Policy Extension .. 604

■ Team Support ... 626

■ API First Implementation .. 642

■ Gateway Endpoints .. 651

■ Secure API using OAuth2 with refresh token workflow .. 657

■ Request and Response Processing ... 665

■ Securing Access Token Calls with PKCE ... 696

■ Trace API .. 706

webMethods API Gateway User's Guide 10.11 593

Change Ownership of Assets

Assets such as APIs and applications in API Gateway have an option where the ownership of the
asset can be changed. Applications have confidential data like API key and client certificateswhich
only the owner can view. Therefore, if the owner of an asset has to take up a different responsibility
or leave the organization, no other user can view the secrets of the asset. The edit option available
on the asset details page, enables the transfer of ownership of the asset to another user, so that the
new owner of the asset can access or view the confidential data of the asset. API Gateway provides
an option to configure an approval process for the assets' ownership change. Approval and auditing
contribute to the governance of change ownership.

Before you begin

Ensure that you have:

API Gateway advanced edition version 10.5 or higher installed.

Basic understanding of API Gateway and its related components like the API Gateway user
interface.

Change owner/team privilege.

For details on functional privileges available, see “API Gateway Functional Privileges” on
page 24.

The change owner approval process configured and enabled if youwant to enforce an approval
process for ownership changes of assets.

For details on configuring the approval process, see “ How Do I Configure the Approval
Process for Ownership Change of Assets?” on page 602.

The figure depicts the workflow for changing ownership of assets.

594 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

How Do I Change the Ownership of an Application?
This use case explains how to change the ownership of an application. You can configure an
approval process for the change of ownership to take effect, if required.

The use case startswhen an application requires a change of owner and endswhen you successfully
change the application's ownership.

In this example, an application app1 is owned by user1. The ownership of app1 has to be changed
to user2 through an approval process.

Before you begin

Ensure that you have the change owner privilege.

To change the ownership of an application

1. Log on to API Gateway as a user with the change owner privilege.

2. Click Applications on the title navigation bar.

3. Click the required application app1.

The application details page appears. The owner of the application app1 is user1 as displayed
in the Basic information section.

webMethods API Gateway User's Guide 10.11 595

13 Usage Scenarios

4. Click .

5. Select user2 from the list and click .

The change approval process is initiated.

Note:
If the approval flow is not configured, the owner of the application changes to user2 and a
success message appears. Skip to step 8.

6. An approval request is sent to the approver.

7. The approver approves the request that resides in the Pending Requests section of the API
Gateway UI.

Note:

596 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

The approver can click Reject to reject the request for ownership change if the request is
invalid. A reject notification is sent to the requester and the ownership of app1 remains with
user1.

Click Change ownership request details to view the request details. The Request details
dialog box appears.

The approval notification is sent to the requester.

8. The owner of the application app1 is changed from user1 to user2.

How Do I Change the Ownership of an API?
This use case explains how to change the ownership of an API. You can configure an approval
process for the change of ownership to take effect, if required.

The use case starts when you have an API that requires a change of owner and ends when you
successfully change the API's ownership.

In this example, an API petstore is owned by user1. The ownership of petstore has to be changed to
user2 through an approval process.

webMethods API Gateway User's Guide 10.11 597

13 Usage Scenarios

Before you begin

Ensure that you have the change owner privilege.

To change the ownership of an API

1. Log on to API Gateway as a user with the change owner privilege.

2. Click APIs on the title navigation bar.

3. Click petstore.

The API details page appears. The owner of the API petstore is user1 as displayed in the Basic
information section.

4. Click change.

5. Select user2 from the list and click .

The change approval process is initiated.

Note:
If the approval flow is not configured, the owner of the API changes to user2 and a success
message appears. Skip to step 8.

6. An approval request is sent to the approver.

598 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

7. The approver approves the request that resides in the Pending Requests section of the API
Gateway UI.

Note:
The approver can click Reject to reject the request for ownership change if the request is
invalid. A reject notification is sent to the requester and the ownership of petstore remains
with user1.

Click Change ownership request details to view the request details. The Request details
dialog box appears.

The approval notification is sent to the requester.

8. The owner of the API petstore is changed from user1 to user2.

webMethods API Gateway User's Guide 10.11 599

13 Usage Scenarios

How Do I Change the Ownership of Multiple Assets?
It is convenient to change the asset ownership for multiple assets with a single REST request than
doing it separately for individual assets. This use case explains how to change the ownership of
multiple assets by sending a REST request. You can configure an approval process, if required,
for the change of ownership to take effect.

The use case starts whenmultiple assets require change of owner and endswhen you successfully
change the ownership of the assets to another user.

To change the ownership of multiple assets

1. Use the following REST request to change the asset ownership to a new user.
POST http://host:port/rest/apigateway/assets/owner
Content-Type: application/json
{

"assetType": "*", (API/APPLICATION)
"assetIds": ["*"],
"currentOwner": "user1",
"newOwner": "user2"

}

Provide the following information in the REST request:

assetType. Specifies the asset type for which you want to change the owner. Available
values are API, APPLICATION, or the wildcard *. The wildcard * specifies all the assets, APIs
and applications owned by the user specified in currentOwner.

assetIds. Specifies the ID of the assets specified in assetType.

Note:
This is optional. assetIds is not required if you specify currentOwner.

600 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

currentOwner. Specifies the user name of the owner of the assets specified in the assetType
field.

Note:
If both currentOwner and assetIds are specified, both are validated. For example, consider
user1 and user2 are owners of assetID1 and assetID2 respectively. In the request payload,
if you include assetID1 and assetID2 in the assetIds field and user1 in the currentOwner
field, then only assetID1 ownership changes.

newOwner. Specifies the user name of the user who would be the new owner of the assets
specified.

Example 1: If user1 owns two assets, an API petstore and application app1, and you want the
ownership to be transferred to user2, send a REST request as follows:
POST http://localhost:5555/rest/apigateway/assets/owner
Content-Type: application/json
{

"assetType": "*", (API/APPLICATION)
"currentOwner": "user1",
"newOwner": "user2"

}

This request transfers the ownership of all the assets owned by user1 to user2.

The change approval process is initiated.

Example 2: user1 owns three APIs, api1, api2, and api3 and 2 applications, app1 and app2. If
you want the ownership of api1, api2, and app1 to be transferred to user2, send a REST request
as follows:
POST http://localhost:5555/rest/apigateway/assets/owner
Content-Type: application/json
{

"assetType": "*", (API/APPLICATION)
"assetIds": ["apiID1, apiID2, appID1"],
"currentOwner": "user1",
"newOwner": "user2"

}

where apiID1, apiID2, and appID1 are asset IDs of api1, api2, and app1 respectively.

The change approval process is initiated.

Note:
If the approval flow is not configured, the ownership of the assets changes from user1 to
user2. Skip to step 4.

2. An approval request is sent to the approver.

The approval request contains information of all the assets whose ownership needs to change
and the new owners' name.

3. The approver approves the request in the Pending Requests section of the API Gateway UI.

The approval notification is sent to the requester.

webMethods API Gateway User's Guide 10.11 601

13 Usage Scenarios

4. The owner of the assets is changed from user1 to user2.

How Do I Configure the Approval Process for Ownership
Change of Assets?
If youwant to enforce an approval process, configure and enable the approval process for ownership
change of assets. The approver can approve or reject the request.

Before you begin

Ensure that you have Administrator privileges.

To configure the approval process for ownership changes of assets

1. On the title bar, expand the menu options icon and select Administration.

2. Select General > Change owner/teams.

3. Set the Enable toggle button to the on position .

4. Select the team of approvers from the Approvers list.

5. Select Anyone in the Approved by list.

This specifies that any user associated with the approvers' access profile specified in the
Approvers list can approve or reject the requests.

6. In the Configure approval initiate request mail template to be sent to the approver section,
provide the following information:

Select Send notification to send an email notification to the approver for the pending
approval.

Provide the text to display in the subject line and the body of the email.

602 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

Note:
The at sign (@) character acts as a place holder and API Gateway automatically generates
the values. For example, Hello @approver.name appears asHello Joe in the email sent, where
Joe is the approvers' login ID.

7. In the Configure request approved mail template to be sent to the requester section, provide
the following information:

Select Send notification to send an email notification to the approval requester.

Provide the text to display in the subject line and the body of the email.

Note:
The at sign (@) character acts as a place holder and API Gateway automatically generates
the values. For example, Approval of @event.type appears asApproval of Change ownership
in the email sent, where Change ownership is the event.type.

webMethods API Gateway User's Guide 10.11 603

13 Usage Scenarios

8. In theConfigure rejectionmail template to be sent to the requester section, provide the following
information:

Select Send notification to send an approval rejection notification to the requester.

Provide the text to display in the subject line and the body of the email.

Note:
The at sign (@) character acts as a place holder and API Gateway automatically generates
the values. For example, Rejection of @event.type appears as Rejection of change of ownership
of an asset in the email.

9. Click Save.

Custom Policy Extension

API Gateway provides a range of out-of-the-box policies to address common API management
requirements like security, transformation, validation, error processing, and so on. In addition,
API Gateway provides an option to add custom extensions or custom variables.

Custom Extensions

You can add these custom extensions into API Gateway policy stages to handle a requirement
that might not be handled by any of the existing policies. You can use custom extensions in
conjunctionwith the existing policies across stages. For example, if youwant to invoke a third-party
API or call an external endpoint during any stage of API processing, you can add custom logic in
the corresponding policy stage and use it as required.

API Gateway supports the following custom extension types:

External endpoint

Use this custom extension when you have an external endpoint exposed, which can be
configured and invoked during any stage in API processing.

604 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

For example, if a native API expects the request in a certain format and the client application
sends the request in a different format, you can add a custom extension tomodify the incoming
request to the required format before sending it to the native API.

webMethods IS service

Use this custom extension when you want to invoke the webMethods IS policy.

AWS Lambda

Use this custom extension to invoke an Amazon Web Services (AWS) Lambda function and
use the business logic built-in the Lambda function in any stage of API processing.

Messaging

Use this custom extension when you want to send some data to a queue or topic during any
stage inAPI processing and a system can read themessage from the queue or topic and process
it asynchronously.

Custom extensions are applicable to the REST, SOAP, and OData API types. Custom extensions
are supported at all levels such as, API, Scope, Global and can be added in any or all policy
enforcement stages except the transport policy and the traffic monitoring policy stages.

The figure depicts a sample workflow for custom extension support in the request and response
processing stages in API Gateway.

Custom Variables

You can configure custom variables under custom extension policy. You can assign a value or a
variable expression to a custom variable which can be used in other policy parameters. Custom
variable also provides option to set custom field to the transactional events. To set the custom
fields, you have to define customTransactionFields.FIELD_NAMEcustomvariable. It also provides
an option to configure namespaces for XPath expressions. To configure the namespaces you have
to define XpathNamespaces custom variable.

webMethods API Gateway User's Guide 10.11 605

13 Usage Scenarios

How Do I Invoke an API through HTTP or HTTPS using Custom
Extension?
This use case explains how to invoke a service through HTTP or HTTPS using custom extension.
The custom extension configured can be enforced in any of the policy stages and used during API
processing.

The use case starts when you have an API that has to be enforced with a custom extension and
ends when you successfully invoke the API with the custom extension enforced.

To invoke a service through HTTP or HTTPS using custom extension

1. Ensure you have the external endpoint URL to be invoked during API processing using a
custom extension.

2. Click APIs on the title navigation bar.

3. Click the required API.

The API details page appears.

4. Click Edit.

5. Select Policies.

6. Click Required Policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

Click to open the policy properties section in a full page.

7. Provide the following information in the Conditions section, as required:

606 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add .

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

8. Click Custom Action.

9. Select External endpoint in the custom extension Type field.

10. Provide the following information in the External Endpoint section, as required:

DescriptionProperty

Provide the external endpoint URI that you want to invoke.Endpoint URI

webMethods API Gateway User's Guide 10.11 607

13 Usage Scenarios

DescriptionProperty

Specify the method exposed by the API.Method

Available values are:PUT,POST,GET,DELETE,HEAD,CUSTOM.

Note:
If you selectCUSTOM, theHTTPmethod in the incoming request
is sent to the native API.

Specifies the required SSL configuration details of the external
endpoint.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias. For details on
Keystore configuration, see webMethods API Gateway
Administration.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Truststore Alias. Specifies the alias for the truststore. For details
on Truststore configuration, see webMethods API Gateway
Administration.

HTTP Connection Timeout (seconds). Specifies the time
interval (in seconds) after which a connection attempt to the
external endpoint URL times out.

Read Timeout (seconds). Specifies the time interval (in
seconds) after which a socket read attempt times out.

Specifies the path parameter you want to configure to your custom
extension.

Path Parameters

Provide the following information:

Path Parameter Name. Species the name of the path parameter
you want to configure in your custom extension. This path
parameter name should bepresent in the endpointURLenclosed
with {} to be replaced at runtime. For example, define external
URL as http://host/authors/{id}/books and provide id as
path parameter name with the value you need to populate at
runtime.

Path Parameter Value. Specifies the value for the path
parameter specified.

11. Configure the custom properties of the custom extension as required.

608 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

For details about the custom extension properties and their descriptions, see “CustomExtension
Properties” on page 622.

12. Click Save.

The API is saved with the added custom extension.

13. Invoke the API.

The applied custom extension invokes thementionedHTTP orHTTPS endpoint and processes
as configured.

How Do I Invoke an IS Service using a Custom Extension?
This use case explains how to invoke an IS service using custom extension in one of the policy
stages and enforce during API processing.

For example you may want to process the request messages and transform them into a format
required by the native API or perform some custom logic before API Gateway sends the requests
to the native API.

The use case starts when you have an API which has to be enforced with a messaging custom
extension and ends when you successfully invoke the API with the custom extension enforced.

To invoke an IS service using custom extension

1. Click APIs on the title navigation bar.

2. Click the required API.

The API details page appears.

3. Click Edit.

4. Select Policies.

5. Click Any policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

webMethods API Gateway User's Guide 10.11 609

13 Usage Scenarios

Click to open the policy properties section in a full page.

6. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add.

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

610 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

DescriptionProperty

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

7. Click Custom Action.

8. Select webMethods IS service in the custom extension Type field.

9. Provide the following information in the Invoke webMethods IS section, as required:

DescriptionProperty

Specify the webMethods IS service to be invoked to process the
messages.

webMethods IS Service

ThewebMethods IS servicemust be running on the same Integration
Server as API Gateway.

Note:
If an exception occurswhen invoking thewebMethods IS service,
by default APIGateway displays the status code as 500 and error
message as Internal Server Error.

You can set custom status code and error message by setting the
following properties in the message context of the webMethods
IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code", 404);

context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

webMethods API Gateway User's Guide 10.11 611

13 Usage Scenarios

DescriptionProperty

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Specifies the authentication mode to invoke the IS service.Run As User

If this field is left blank the incoming credentials of the user,
identified by API Gateway, are used to authenticate and invoke the
IS service. You can also specify a particular user, you want API
Gateway to invoke the IS service.

Select this property to mark it true, if you want the input and the
output parameters to comply to the IS Spec present in

Comply to IS Spec

pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Specifies the webMethods IS service alias to be invoked to process
the messages.

webMethods IS Service
Alias

Start typing the webMethods alias name, select the alias from the
type-ahead search results displayed, and click to add one or
more aliases.

10. Click Save.

The API is saved with the added custom extension.

11. Invoke the API.

The applied custom extension invokes the IS service and processes as configured.

How Do I Invoke an AWS Lambda Function using Custom
Extension?
This use case explains how to invoke an AWS Lambda function using custom extension. The
custom extension configured can be enforced in any of the policy stages and used during API
processing.

The use case starts when you have an API that has to be enforced with a custom extension and
ends when you successfully invoke the API with the custom extension enforced.

To invoke an AWS Lambda function using custom extension

1. Create a Lambda function and ensure it is active.

612 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

For details on how to create an AWS Lambda function, see https://docs.aws.amazon.com/
lambda/latest/dg/getting-started.html.

2. Configure AWS alias.

For details on how to configure an AWS alias, see webMethods API Gateway Administration.

3. Click APIs on the title navigation bar.

4. Click the required API.

The API details page appears.

5. Click Edit.

6. Select Policies.

7. Click Required Policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

Click to open the policy properties section in a full page.

8. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage

webMethods API Gateway User's Guide 10.11 613

13 Usage Scenarios

https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

DescriptionProperty

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add.

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

9. Click Custom Action.

10. Select AWS Lambda in the custom extension Type field.

11. Provide the following information in the AWS Lambda section, as required:

DescriptionProperty

Provide the AWS Lambda function name you want to invoke. As
this property supports variable framework, you canuse the available

Function Name

variables. For details about the variables available in API Gateway,
see “Variables Available in API Gateway” on page 171.

Specify the AWS invocation type, asynchronous or synchronous.Invocation Type

Available options are:

RequestResponse (synchronous type)

614 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

DescriptionProperty

Event (asynchronous type)

Provide the AWS alias configured for the AWS account.AWS Alias

Provide the following client configuration details and click .Client Configuration

Name. Start typing the client property name and select the
required property from the type-ahead search results displayed.

API Gateway supports the following properties that you can
configure: Socket timeout(ms), Connection timeout(ms), Request
timeout(ms), Connection expiration timeout(ms), Maximum
Connection idle time(ms), Client execution timeout(ms), Server
error retry count, Enable throttle retries, Maximum client retry
count, TCP send buffer size hints, TCP receive buffer size hints,
Enable gzip requests, Enable Expect-Continue, Enable host
prefix injection, Enable Keep-alive, Enable, Response metadata
caching, Response metadata cache size, and Signature
Algorithm.

Value. Provide a value for the client property specified.

You can configure multiple properties.

For details about the supported client properties, see the following
AWS documents:

https://docs.aws.amazon.com/sdk-for-java/v1/developer-
guide/section-client-configuration.html

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/
amazonaws/ClientConfiguration.html

12. Configure the custom properties of the custom extension as required.

For details about the custom extension properties and their descriptions, see “CustomExtension
Properties” on page 622.

13. Click Save.

The API is saved with the added custom extension.

14. Invoke the API.

The applied custom extension invokes the AWS lambda function and processes as configured.

webMethods API Gateway User's Guide 10.11 615

13 Usage Scenarios

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/section-client-configuration.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/section-client-configuration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html

How Do I Invoke an API Asynchronously through JMS/AMQP
using a Custom Extension?
This use case explains how to add messaging as a custom extension in one of the policy stages
and invoke a service asynchronously during API processing.

Youwant to use theAMQPmessaging setup to send somedata to a queue during request processing
using the configured custom extension. This data that is sent can then be read from a queue,
processed, and sent in an asynchronous way.

The use case starts when you have an API which has to be enforced with a messaging custom
extension and ends when you successfully invoke the API with the custom extension enforced.

To invoke an API asynchronously through JMS/AMQP using custom extension

1. Ensure you have a JMS/AMQP environment set up with the required connection alias
configured.

For details on setting up the JMS/AMQP setup, see webMethods API Gateway Administration.

2. Click APIs on the title navigation bar.

3. Click the required API.

The API details page appears.

4. Click Edit.

5. Select Policies.

6. Click Any policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

616 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

7. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add.

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

8. Click Custom Action.

9. Select Messaging in the custom extension Type field.

10. Provide the following information in the Messaging section, as required:

webMethods API Gateway User's Guide 10.11 617

13 Usage Scenarios

DescriptionProperty

Name of the connection alias you have configured.Connection Alias Name

You can configure the connection alias under Administration >
Messaging section. For details on how to configure the connection
alias, see webMethods API Gateway Administration.

Specify the destination to which the request message is sent.Destination Name

Specify the destination type to which the request message is sent.Destination Type

Specify the destination to which the response message is sent.Reply To Name

Specifies the destination type towhich the responsemessage is sent.Reply To Type

Select one of the following types:

QUEUE. Indicates that the response message is sent to a
particular queue.

TOPIC. Indicates that the responsemessage is sent to a particular
topic.

Provide a numeric value that specifies the expiration time (in
milliseconds) of the JMS or AMQP message.

Time to Live (ms)

If the time-to-live is specified as zero, expiration is set to zero, which
indicates that the message does not expire.

Defines the time in milliseconds for which API Gateway listens to
the Reply To Queue or Topic for the response message.

Time to Wait (ms)

The message delivery mode for the request message. This is the
delivery mode that web service clients must specify in the JMS or

Delivery Mode

AMQP message that serves as the request message for the web
service.

Select one of the following modes:

Non-Persistent. Indicates that the request message is not
persistent. The message might be lost if the JMS provider fails.

Persistent. Indicates that the request message should be
persistent. The message is not lost if the JMS provider fails.

618 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

11. Configure the custom properties of the custom extension as required.

For details on the custom extension properties and their description, see “Custom Extension
Properties” on page 622.

12. Click Save.

The API is saved with the added custom extension..

13. Invoke the API.

The applied custom extension calls the queue or topic that is configured.

How Do I Define a Custom Variable?
This use case explains how to define custom variable using custom extension. The defined custom
variable can be used in any of the subsequent policy stages during API processing.

The use case starts when you have to define a custom variable, which is not available in API
Gateway and ends when you successfully defined and accessed the variable in the subsequent
policy stages.

To define a custom variable using custom extension

1. Click APIs on the title navigation bar.

2. Click the required API.

The API details page appears.

3. Click Edit.

4. Select Policies.

5. Click Required Policy stage > Custom Extension.

This adds the custom extension policy where you can configure the required properties.

webMethods API Gateway User's Guide 10.11 619

13 Usage Scenarios

Click to open the policy properties section in a full page.

6. Provide the following information in the Conditions section, as required:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway executes this policy when all the
configured conditions comply in the respective policy stage.

OR. This is selected by default. API Gateway executes this
policy when any one of the configured conditions complies.

ClickAdd Condition andprovide the following information and
click Add.

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

620 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

DescriptionProperty

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

7. Click Custom Variable.

8. Provide the following information in the Define Custom Variables section, as required:

DescriptionProperty

Specify the custom variable with a syntax to be accessed across
subsequent stages and click Add.

Custom Variable

Variable. Specifies the custom variable with a syntax.

Value. Specifies a plain value or value with a syntax.

For example, if you want to use the client's request related
information like content-type header at response stage, you can
define the ${clientContentType} custom variable to store the
${request.headers.Content-Type} variable. The ${clientContetType}
custom variable can be accessed in any other policy across
subsequent stages such as response or error processing stage.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

9. Provide the following information in the Custom Extension Metadata section, as required.
This is applicable only for XML transformation:

DescriptionProperty

Provide the namespace prefix of the payload expression to be
validated.

Namespace Prefix

For example, specify the namespace prefix as SOAP_ENV.

Provide the namespaceURI of the payload expression to be validated.Namespace URI

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declaration defines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

webMethods API Gateway User's Guide 10.11 621

13 Usage Scenarios

DescriptionProperty

Note:
You can add multiple namespace prefixes and URIs by clicking
Add.

10. Click Save.

The API is saved with the added custom variables.

11. Invoke the API.

The custom variables are defined and can be accessed in the subsequent policy stages.

Custom Extension Properties
The table lists the properties that you can specify for a custom extension.

Request Processing Section

The table lists the custom extension properties you can configure in the Request processing section:

DescriptionProperty

Provide the request payload to be sent to the custom extension in one of
the following ways:

Payload

Type the request payload in the text box.

For details on the data objects and variables available in the Request
Processing section that you can use to configure, see “Data Objects
and Variables Available in API Gateway” on page 624.

Click and select one of the following and provide the required
information:

Inline Request. Type the required payload.

Load from Schema. Click Browse to upload a JSON or XML
schema file and click Save.

Provide the following information, if you want to configure the headers
you need to send to the custom extension. By default, no headers are sent
to the custom extension.

Headers

Select Use incoming headers to use the header content in the
incoming requests from the client.

Provide the Header Name and the Header Value in the incoming
client request that has to be processed.

622 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

DescriptionProperty

Provide the following information, if you want to configure query
parameters you need to send to the custom extension.

Query Parameters

Provide the Query Parameter Name and the Query Parameter
Value in the incoming client request that has to be processed.

For details on the data objects and variables available in the Request
Processing section that you can use to configure, see “Data Objects and
Variables Available in API Gateway” on page 624.

Response Processing section

The table lists the custom extension properties you can configure in the Response processing
section:

DescriptionProperty

Select to copy the entire response received from the external call out.Copy the entire
response

This response is used in the subsequent step by using ${request.payload}
or ${response.payload}.

Note:
Donot select this if you are usingAWSLambda custom extensionwith
invocation type as Event as there is no response returned.

Select to abort the API execution when the external callout encounters
any failures.

Abort API execution
in case of failure

If you do not select this option, API Gateway logs the failure and
continues with the processing.

Specify the following custom variables with a syntax to be accessed from
the response of the custom extension and click Add.

Transformation

Variable. Specifies the variable type with a syntax.

Value. Specifies a value with a syntax.

For example if you provide a variable as ${var} and the corresponding
value as ${response[customExtension].payload.jsonPath[$.id]}, this
transformation evaluates the JSONpath from the custompolicy response
payload to get the value of the attribute id. The evaluated value is
assigned to the variable var given in the Variable field. You can use the
${var} syntax in the subsequent policies that support variable framework.

For details about the data objects and variables available in the Response
Processing section that you can use to configure, see “Data Objects and
Variables Available in API Gateway” on page 624.

webMethods API Gateway User's Guide 10.11 623

13 Usage Scenarios

DescriptionProperty

This is used for XML transformation.Custom extension
metadata

Namespace Prefix. Provide the namespace prefix of the payload
expression to be validated.

Namespace URI. Provide the namespace URI of the payload
expression to be validated.

Custom Extension Metadata section

The table lists the customextension properties you can configure in theCustomExtensionMetadata
section. This is applicable only for XML transformation.

DescriptionProperty

Provide the namespace prefix of the payload expression to be validated.Namespace Prefix

Provide the namespace URI of the payload expression to be validated.Namespace URI

For details about the data objects and variables that you can use to configure, see “Data Objects
and Variables Available in API Gateway” on page 624.

Data Objects and Variables Available in API Gateway
The following table summarizes the data objects and variables that are available in API Gateway:

Possible valuesObject or Variable type

paramStage request

response

paramType payload or body

headers

query

path

httpMethod

statusCode

statusMessage

queryType xpath

jsonPath

624 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

Possible valuesObject or Variable type

regex

The following data objects are available in the request processing or response processing steps:

${paramStage.paramType}

You can use this syntax to access the following string variables: path, statusCode, statusMessage,
httpMethod. Examples: ${request.path}, ${response.statusCode}

${paramStage.paramType.paramName}

You can use this syntax to access map types, such as query, headers, and path. Example:
${request.query.var1}, ${response.header.Content-Type}, ${request.path.name}.

${paramStage.paramType.queryType[queryValue]}

You can use this syntax to query a paramType. Examples:

${request.payload.xpath[//ns:emp/ns:empName]}

Where "//ns:emp/ns:empName" is the XPath to be applied on the payload if contentType is
application/xml, text/xml, or text/html.

${response.payload.jsonPath[$.cardDetails.number]}

Where $.cardDetails.number is the jsonPath to be applied on payload if contentType is
application/json or application/json/badgerfish.

${request.payload.regex[[0-9]+]}

Where [0-9]+ is the regular expression to be applied on the payload if contentType is
text/plain.

Note:
While xpath and jsonPath are applicable only to payload, regEx can be used with both
payload and path.

${paramStage[stepName].paramType.paramName]}

You can use this syntax to access header or payload from the response of the custom extension
in the response processing step.

Example:

Variable: ${response.headers.id}

Value: ${response[customExtension].payload.jsonPath[$.id]}

This transformation adds a header to the response with name id and its value is derived from
the json payload that is sent from the external callout as per the json path.

You can define your own variables in the Transformation variables field in the response
processing step.

webMethods API Gateway User's Guide 10.11 625

13 Usage Scenarios

Examples: ${key}, ${value}. The custom transformation variables that you define are available
in subsequent steps.

Team Support

The Team support feature allows you to group the users who work in a project, or users with
similar roles, as a team. Using this feature, you can assign assets for each team and specify the
access level of team members based on the team members' project requirements.

This feature is helpful for organizations that have multiple teams, whowork on different projects.
Users can access only the assets that are assigned to them. For example, consider an organization
with different teams such as Development, Configuration Management, Product Analytics, and
Quality Assurance. Each of these teams needs access to different assets at different levels. That is,
developers would require APIs to develop applications and they require the necessary privileges
to manage APIs and applications. Similarly, analysts would want the necessary privileges to view
performance dashboards of assets. In such scenarios, you can group users based on their roles as
a team and assign them the necessary privileges based on their responsibility.

Prior to the 10.5 version, users were given the necessary privileges using Access Profiles. Starting
version 10.5, you can limit the access of your asset to the required teammembers and assign access
privileges using the Team support feature. A team can be defined as a group of users with a set
of defined responsibilities.

You can create teams from theUserManagement section of APIGateway by including the required
user groups and assigning them the required functional privilege. You can also assign a Team
administrator for each team, who can add or modify team members.

Users with theManage user administration privilege can create teams. When creating a team,
you can assign:

Team administrator. You can assign a user or a user group as team administrator. Team
administrators can add or remove users from a team. When you assign a user group as team
administrator, all users of the groups can modify team members. When team administrators,
who do not have the Manage user administration functional privilege log on to API Gateway,
they can view only the teams assigned to them in the Teams tab of the Administration page.

Functional privileges for the team members. The functional privileges assigned to a team
determines the accessibility of assets to the respective team members. For example, if you
assign all privileges under theAPIs, Policies, andApplications section, then the teammembers
can manage APIs and applications assigned to their teams and perform operations related to
policies.

Teammembers. You can assign user groups to the team. Teammembers can access the assets
assigned to their teams andperformoperations on the assets based on their functional privileges.

After you have created teams, you can assign assets to teams in one of the following ways:

Assign teamduring asset creation.When you create an asset, API Gateway provides an option
to select the teams for the asset. You can selectmore than one team for an asset. You canmodify
the teams assigned by following the Change ownership process explained in later part of this
article.

626 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

Using Global Team Assignment rule. This is a preferred method to assign teams when you
already have assets to which you want to assign teams to. You can create global assignment
rules that are applied to assets and assign teams to them. You can specify one ormore conditions
in a rule. When an asset satisfies the conditions specified in a rule, the asset is assigned to the
teams specified in the rule. When you create and activate a rule, the rule is applied to the
existing assets and teams are assigned accordingly.

The team, Default, is available in API Gateway when the feature is enabled and all API Gateway
users are added to this team by default. Assets, which are not assigned to any team, are assigned
to the Default team. Hence, all API Gateway users can view the assets that are part of the Default
team.However, users can perform actions on the assets based on the functional privileges assigned
to them.

The assets supported by this feature are: APIs, Applications, Packages, and Plans.

SoftwareAG recommends that you read the TeamSupport Considerations section to see the impact
of Team support on other features.

Creating Teams
This use case explains how to create teams by assigning the required functional privileges and
users to them.

This use case begins when you have identified the list of users who must given access to an asset
or a particular set of assets and end when you have created a team including the identified users.

In this example, a team with developers called DevTeam is created with the Dev user group as the
team members, User1 as the Team administrator, and all privileges under Manage API, Policies,
and Applications are assigned to the team.

Before you begin

Ensure that you have:

API Gateway Manage user administration privilege.

The user group, Dev is created. For information on how to create a user group, see “Adding a
Group” on page 22.

To create teams

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Teams.

3. Click Add Team.

The Create Team page appears.

4. Provide the name and description of the team in respective fields.

webMethods API Gateway User's Guide 10.11 627

13 Usage Scenarios

5. In the Team Administrators section, provide any or both of the following:

Login Id of the user who want to assign as a team administrator in the Login ID field.

Name of the API Gateway user group or the LDAP group that you want to assign as team
administrator in the Group name field.

You can search users or user groups based on the characters provided in the above fields.
Select the required user from the list displayed.

For the example consider in this use case, the team is named as DevTeam and the User1 is
specified as the team administrator.

6. Click Continue to assign functional privileges >.

The Functional privileges list appears.

7. Select the functional privileges to be assigned to the team members. For information on the
available functional privileges, see “API Gateway Functional Privileges” on page 640.

In this use case, you need to assign all privileges required tomanage theAPIs and applications
assigned to the team. So, select all functional privileges under the APIs, Policies, and
Applications section.

628 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

8. Click Continue to assign groups >.

The Find groups section appears.

9. In the Name field, provide the name of the user group that youwant to add as teammembers.

For this use case, select the Dev user group that has all developers.

10. Click Save.

The team DevTeam is created and appears in the list of teams.

webMethods API Gateway User's Guide 10.11 629

13 Usage Scenarios

You can now assign assets to the team.

How do I Assign Teams during Asset Creation?
This use case explains how to assign teams for an API Gateway asset.

The use case starts when you have an asset that you want to allow access only to a set of users in
your organization and ends when you have assigned teams to an asset.

This example provides the steps to assign the asset, DevAPI, that is being created to a team that
has all developers as team members.

Before you begin

Ensure that you have:

API Gateway Manage user administration privilege.

The team support feature enabled. For information on enabling the feature, see “Enabling
Teams Support” on page 639.

The team, DevTeam is created. For information on creating team, see “Creating Teams” on
page 627.

To assign teams during asset creation

1. Click APIs in the title navigation bar.

The Manage APIs page appears.

2. Click Create API. The Create API page appears.

3. Click Import from an File.

4. Click Browse to select the file using which you want to create the API.

5. Provide DevAPI in the Name field.

6. From the Team drop-down list, select the teams that you want to assign the asset to. For this
use case select the DevTeam.

630 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

The assigned teams appear in the Team field of Basic Information section in the API details
page. In this example, the asset, DevAPI, is assigned to DevTeam.

By default, all assets are assigned to the Administrators team in addition to the teams that you
have assigned during asset creation.

How do I Assign Teams Using Team Assignment Rule?
This use case explains how to assign teams to API Gateway assets using Team assignment rules.

Team assignment rules are used to assign teams to existing assets and the ones you create. You
can create a rule by specifying a set of required conditions. Assets are validated against the given
conditions and assigned to the configured teams. If you do not provide any conditions for a rule,
the rule is assigned to all assets in API Gateway when you activate the rule.

This section explains the steps to configure conditions and team names for creating a rule. Also,
it lists the steps to activate rule to apply the rule to assets.

webMethods API Gateway User's Guide 10.11 631

13 Usage Scenarios

In this example, consider a team of users who must be enabled to view all assets. To achieve this,
you can create a team calledViewAllAssets, and create a rule by selecting all assets and no conditions.
When no conditions are specified, the rule is applied to all assets. When you activate this rule, all
assets are assigned to the ViewAllAssets team.

The use case starts when you have a team and ends when you create a team assignment rule and
activate the rule. All assets are assigned to the specified team and the team members can view all
assets.

Before you begin

Ensure that you have:

API Gateway administrator privileges.

The team support feature enabled. For information on enabling the feature, see “Enabling
Teams Support” on page 639.

Ensure that the team, ViewAllAssets is created. For information on creating team, see “Creating
Teams” on page 627.

To assign teams using team assignment rule

1. Expand the menu options icon , in the title bar, and select User management.

2. Click Global team assignments.

3. Click Add global team assignment.

The Team assignment rule page appears.

4. Provide the name and description of the rule in corresponding fields.

In this example, ViewRule is provided in the Name field.

632 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

5. Click Continue to filters >.

6. Select any or all assets in the Asset type field to apply the rule to the selected asset types.

Available asset types are API, Application, Plan, and Packages.

7. Select any one of the following from the Logical operator field:

AND. To apply the rule only if an asset satisfies all conditions.

OR. To apply the rule when an asset satisfies any of the given condition.

8. To specify a condition based on the asset attributes, provide the following information, and
click Add:

DescriptionField

Specifies the asset attribute.Attribute

Available attributes: Name, Description, Tags.

The global team assignment rule supports only API level tags.

If you select multiple asset types, the tag filter is applicable to the API
type alone and is not applicable for the for other asset types during
filter evaluation.

Comparison operator to validate the attribute against the given value.Operator

Available operators:

Equals. Checks if the specified asset attribute is equal to the given
value.

Contains. Checks if asset contains the given value as a part of its
name, description, or tag.

Start with. Checks if asset name, description, or tag starts with the
given value.

Endswith. Checks if asset name, description, or tag ends with the
given value.

Value of the attribute.Value

For this use case, the rule has to be applied to all assets irrespective of their attributes. So, all
asset types are selected and no condition is specified.

webMethods API Gateway User's Guide 10.11 633

13 Usage Scenarios

9. Click Continue to assign teams >.

10. Provide the required team names in the Name field.

For this use case, select the ViewAllAssets team.

11. Click Save.

The rule appears in the Global team assignment page.

12. Click the toggle button , adjacent to the rule.

The rule is activated and applied across all existing assets. As per the rule, all assets are assigned
to the ViewAllAssets team.

634 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

13. Click APIs from the title bar and select DevAPI.

The API details page for the API appears.

Note that the API is assigned to the ViewAllAssets team as per the ViewAssetsRule.

How do I Modify Teams Assigned to an API?
This use case explains how to modify the list of teams associated with an API. You can configure
an approval process for the modification of teams assigned to an API, if required. You can only
assign the API to the teams that you are part of. However, you cannot remove the Administrators
team and the teams that are assigned to an API using global assignment rules.

The use case starts when you have an API that requires amodification in the list of teams assigned
to it and ends when you successfully make the change.

In this example, an API API is assigned to the Administrator team (by default). The API has to be
assigned to the API-Gateway-Providers team along with the existing team through an approval
process.

Before you begin

Ensure that you have the Change ownership or teams privilege.

The change owner approval process configured and enabled if youwant to enforce an approval
process for ownership changes of assets. For details about configuring the approval process,
see “HowDo IConfigure theApproval Process forOwnershipChange ofAssets?” on page 602.

To modify the teams of an API

1. Log on to API Gateway as a user with the Change ownership/teams privilege.

2. Click APIs on the title navigation bar.

webMethods API Gateway User's Guide 10.11 635

13 Usage Scenarios

3. Click API.

The API details page appears. The asset you have considered for example is not assigned to
any team. So, the default team Administrators is displayed in the Team field of the Basic
information section.

4. Click change.

5. Select the team that you want to assign and click . In this example, select the team
API-Gateway-Providers.

The change approval process is initiated.

636 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

Note:
If the approval flow is not configured, theAPI-Gateway-Providers team is added and a success
message appears. Skip to step 8.

6. An approval request is sent to the approver.

7. The approver approves the request that resides in the Pending Requests section of the API
Gateway UI.

Note:
The approver can click Reject to reject the request for ownership change if the request is
invalid. A reject notification is sent to the requester and the team remains unchanged.

Click Change ownership request details to view the request details. The Request details
dialog box appears.

The approval notification is sent to the requester.

8. The API-Gateway-Providers team is added.

How do I Change the Ownership of Multiple Teams?

You can change the owners ofmultiple teams in a single step. This use case explains how to change
the ownership of multiple teams by sending a REST request. You can configure an approval
process, if required, for the change of ownership to take effect.

The use case starts whenmultiple teams require change of owner and endswhen you successfully
change the ownership of the teams.

To change the ownership of multiple teams

1. Use the following REST request to change the asset ownership to a new user.

webMethods API Gateway User's Guide 10.11 637

13 Usage Scenarios

POST http://host:port/rest/apigateway/assets/team
Content-Type: application/json
{

"assetType": "*", (API/APPLICATION)
"assetIds": ["*"],
"currentTeams": "team1",
"newTeams": ["team2"]

}

Provide the following information in the REST request:

assetType. Specifies the asset type for which you want to assign new teams. Available
values are API, APPLICATION, or the wildcard *. The wildcard * specifies all the assets, APIs
and applications owned by the user specified in currentTeams.

assetIds. Specifies the ID of the assets specified in assetType.

Note:
This is optional. assetIds is not required if you specify currentOwner.

currentTeams. Specifies the current teams of the assets specified in the assetType field.

Note:
If both currentTeams and assetIds are specified, both are validated. For example, consider
user1 and user2 are owners of assetID1 and assetID2 respectively. In the request payload,
if you include assetID1 and assetID2 in the assetIds field and user1 in the currentTeams
field, then only assetID1 ownership changes.

newTeams. Specifies the teams to which you want to assign the specified assets.

Example: If all APIs assigned to theDevTeammust be assigned to two other teams, Team2 and
Team3, then send a REST request as follows:
POST http://localhost:5555/rest/apigateway/assets/team
Content-Type: application/json
{

"assetType": "*", (API/APPLICATION)
"currentTeams": "DevTeam",
"newTeams": ["Team2", "Team3"]

}

This request assigns the ownership all APIs of DevTeam to Team2 and Team3.

The change approval process is initiated.

2. An approval request is sent to the approver.

The approval request contains information of all the assets whose ownership needs to change
and the new owners' name.

3. The approver approves the request in the Pending Requests section of the API Gateway UI.

The approval notification is sent to the requester.

4. All APIs that are assigned to theDevTeam are now assigned to Team2 and Team3.

638 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

Enabling Teams Support

When you enable the Team feature, you can manage teams from the Teams tab under the User
management section of API Gateway.

If you do not enable this feature, you can still create teams, as explained in “Creating Teams” on
page 627, and assign functional privileges to users. However, you cannot assign required assets to
a set of users and restrict the access of assets to other users.

If you have enabled this feature, created teams, and assigned assets to teams, and then disable
this feature, then the team assignments that you had performed earlier become invalid. That is,
the assets are available to users based on their functional privileges and not based on the assigned
teams.

To enable teams

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > Extended settings.

3. Click Show and hide keys.

All configurable parameters appear.

4. Select the enableTeamWork from the parameter list.

The enableTeamWork field appears in the Extended Settings section.

5. Type true in the enableTeamWork field. By default, the value of the setting is set as false.

The feature is enabled.

Team Support Considerations

Visibility and Accessibility of Assets

As stated in previous sections, when an asset is assigned to one or more teams, only the members
of the assigned teams have access to the assets based on their functional privileges. This would
also be applicable in the global search field.When you search an asset using a keyword, the search
returns only the assets that are assigned to your teams.

Also, when you manage features for an asset like Polices, API Mashup, and Applications where
assets that do not belong to your team are involved, you can view those assets. However, you
cannot perform any action on the assets that do not belong to your team.

For example, consider an application assigned to your team is created with more than one API
and only one of those APIs is assigned to your team. In such cases, you can view the APIs that are
used to create the application; and you will have no access to the APIs that are not a part of your
teams.

webMethods API Gateway User's Guide 10.11 639

13 Usage Scenarios

Importing and Exporting Teams and Assets

Team members can import or export assets if they are assigned with the required functional
privileges.

When assets are exported, the respective team details are exported along with the assets;
members of the teams are not exported.

When assets are imported, the respective team is created if it is not present already; members
of the teams cannot be imported.

When team is exported, the users and groups that are part of team can be selected for export
if required.

When team is imported, the users and groups are imported along with the team.

Promoting Assets

Members of a team can promote assets from one source stage to one or more target stages if they
have the required functional privileges.

When assets (all except teams) are promoted, they are promoted alongwith their team details;
users are not promoted.

When teams are promoted, the users and groups of teams can be promoted if required.

API Gateway Functional Privileges
The following table lists the functional privileges and their description:

DescriptionFunctional Privilege

To select all the listed functional controls.Select all

To create and manage APIs.Manage APIs

To activate, deactivate, and manage APIs.Activate/ Deactivate APIs

To create, manage applications, and register applications
with the APIs.

Manage applications

To create and manage aliases.Manage aliases

To apply a global policy to all APIs or the selected set of
APIs.

Manage global policies

To activate, deactivate, and manage global policies.Activate/Deactivate global policies

To apply one or more policy templates to an API.Manage policy templates

640 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

DescriptionFunctional Privilege

To preventmalicious attacks on applications that typically
involve large, recursive payloads, and SQL injections.

Manage threat protection
configurations

To publish and unpublish APIs to service registry.Publish API to service registry

To create packages and plans, associate a plan with a
package, and associate APIs with a package. In addition,

Manage packages and plans

you can view the list of packages, package details, APIs,
and plans associated with the package.

To activate, deactivate, and manage packages.Activate/ Deactivate packages

To publish and unpublish assets to API Gateway.Publish to API Portal

To view administration configurations.View administration configurations

To create and manage administration configurations.Manage general administration
configurations

To create and manage security configurations.Manage security configurations

To execute service result cache API.Execute service result cache APIs

To publish events and performance metrics data to the
configured destinations.

Manage destination configurations

To create and manage system settings.Manage system settings

To create and manage users.Manage user administration

To create stages and manage promotions.Manage promotions

To create and manage service registries.Manage service registries

To change ownership of an asset or teams.Change ownership/ teams

To manage OAuth and OpenID scopes.Manage scope mapping

To import already exported APIs, application, policies,
aliases, or other assets and configurations using the Import

option in the Menu options ().

Import assets

To export assets to your local system.Export assets

To purge and restore events from the API Data Store by
setting the required date or duration in the API Gateway.

Manage purge and restore runtime
event

To manage the Microgateways connected to the API
Gateway instance.

Manage microgateways

webMethods API Gateway User's Guide 10.11 641

13 Usage Scenarios

DescriptionFunctional Privilege

To manage custom dashboards in Global Analytics. You
can not manage custom dashboards if you do not have
this privilege.

Manage custom dashboards

API First Implementation

APIs form the nerve center of software applications. So, it is very important for the providers to
be clear about what they would provide and for the consumers to be clear about what they want
to consume. Better understanding of APIs guarantee an excellent output. API First is all about the
establishment of a common agreement between the providers and consumers. Thus, this design
helps both the parties to be on the same page.

When adapting API First approach, API developers start the API development with the API
contract and work on the implementation part at a later stage. This approach of prioritizing the
API design over its implementation is beneficial to both, providers and consumers.

In conventional scenarios, providers expose APIs to their consumers only after the API is
implemented. Consumers test the API and let the providers know their feedback about the API.
Providers must then revisit the API to incorporate the feedback received from their consumers.
You can optimize this process by adapting API First design.

When followingAPI First approach, consumer does not have towait for the provider to implement
the API. Consumers can proceed with their application development using the exposed API. The
implementation status of API does not have an impact on consumers as they receive the designated
responses for their requests through themockedAPI. So, theAPI development and the application
development can take place at the same time.

Once the provider implements the API, the end-point is updated to divert the invocations to the
actual implementation instead of mocked response. The provider can then disable mocking.

The following diagram explains the flow of API development as per the API First design:

642 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

As per the API First design, providers expose their API to consumers when the development is
underway.

API First Design using API Gateway

Starting API Gateway 10.5, the application provides seamless support for API First approach for
your APIs.

UsingAPIGateway, you candefineAPI contract for theAPIs anddownloadprovider specification
for theAPIs that you create. As a provider, youwould notwant to expose all resources andmethods
of an API to consumers. The API Contract given to the consumer has only the part of API exposed
to the consumer whereas the provider specification contains the complete specification. This is
useful for providers to implement the API.

You can enablemocking and activate theAPI for consumption. Themocked version of API returns
respective responses for the consumer requests. This ensures the required end-user experience to
the consumers.

When the API is ready to be implemented, you can implement the API in Integration Server or
any other implementation server. If you are using Integration Server, you can add the required
Integration Server instance in API Gateway. You can add multiple Integration Server instances
and publish your API to the required instance. If you are using Integration Server, you can send
the API contract from API Gateway. Else, the API contract has to be retrieved from API Gateway.

After implementation, you can update the actual implementation end-point to API Gateway. This
step is mandatory to disable API mocking and divert the invocations to the actual end-point.

The following workflow shows the high-level workflow of API First implementation approach
using API Gateway:

webMethods API Gateway User's Guide 10.11 643

13 Usage Scenarios

API First Implementation using Integration Server
This use case explains the steps involved in adapting API First from Integration Server. When an
API created in API Gateway is implemented in Integration Server, then the API Contract is sent
from API Gateway to Integration Server.

The use case starts when you create an API in API Gateway and ends when you communicate the
API implementation endpoint to API Gateway.

In this example, the APIFirst API is created in API Gateway and implemented in the Integration
Server instance, IS1 that is configured in API Gateway.

Before you begin

Ensure that you have the Manage API privilege.

Configure the required Integration Server instances in API Gateway for implementing your
APIs. For details about configuring Integration Server instances, see webMethods API Gateway
Administration.

To adapt API First design using Integration Server

1. Log on to API Gateway.

2. Click APIs in the title navigation bar.

A list of all existing APIs appears.

3. Click Create API to create an API with required API documentation.

644 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

4. Click Policies and define required policies for the API.

5. Click Enable Mocking to mock and generate API mock responses.

This step enables the API to send responses to the requests received from consumers.

6. From the APIs page, click Publish for the APIFirst API.

The Publish API dialog box appears.

7. Select Integration Servers.

The list of configured Integration Server instances appears.

webMethods API Gateway User's Guide 10.11 645

13 Usage Scenarios

8. Select the IS1 instance from the list.

9. In the Package Name and Folder Name fields, provide the package name and folder name
of the IS instance in which the API must be implemented.

The API along with the API contract is published to Integration Server.

10. After implementing the API in Integration Server, invoke the REST end-point to communicate
API implemented endpoint to API Gateway:

PUT http://<API Gateway host>:<port>/rest/apigateway/apis/{apiId}/implementation
{
"maturityState": "string",
"nativeBaseURLs": [

"string"
]

}

You can provide required values for the parameters in the above command. For information
on parameters, see “List of Parameters used in API Implementation” on page 650.

Example:
PUT http://10.2.151.149:5555/rest/apigateway/apis/
94dfd243-dd54-4d7e-8ba5-396ffaf6fe4e/implementation
{
"nativeBaseURLs":["https://10.2.35.125:5556/ws/srvs:Calculator/
CalculatorHttpSoap11Endpoint",
"http://10.2.151.149:5555/ws/srvs:Calculator/CalculatorHttpSoap11Endpoint"],
"maturityStatus" : "Implemented"
}

For details about the REST API, see the swagger file APIGatewayServiceManagement.json,
located at SAG_Install_Directory/IntegrationServer/instances/default/packages/
WmAPIGateway/resources/apigatewayservices/APIGatewayServiceManagement.json. For
more information about Service Management, see “Service Management” on page 580.

As a result of the REST call, the mocking of the API is disabled and the consumers requests
are directed to the actual implementation.

Configuring Integration Server Instance for API Implementation

To implement an API to Integration Server, you must provide the details of the Integration Server
instances in API Gateway.

To configure an Integration Server instance

1. Expand the menu options icon , in the title bar, and select Administration.

2. Click External accounts.

646 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

3. Click Integration Servers.

The list of configured Integration server instances appears.

4. Click Add new Integration Server.

The options to add new Integration Server details appear.

5. Provide the following details:

DescriptionField

Name for the Integration Server instance being added.Name

Description for the configuration.Description

URL of the Integration Server.Integration Server URL

User credentials required to access the Integration Server
instance.

User name

Password required to access the Integration Server instance.Password

The text identifier for the Integration Server keystore file. The
keystore contains the private keys and certificates (including
the associated public keys) of Integration Server.

Keystore alias

The alias for a specific key in the specified keystore.Key alias

6. To validate the connectivity of the specified Integration Server instance, click Test.

The connection with the given server is tested and a success message appears.

7. Click Add.

webMethods API Gateway User's Guide 10.11 647

13 Usage Scenarios

The server details are saved.

API First Implementation using a Third-party Server
This use case explains the steps involved in adapting API First approach using a third-party
implementation server.

The use case starts when you create an API in API Gateway and ends when you communicate the
API implementation endpoint to API Gateway.

Before you begin

Ensure that you have the Manage API privilege in API Gateway.

Configure a third-party implementation server for implementing your APIs.

To adapt API First design using a third-party implementation server

1. Log on to API Gateway.

2. Click APIs in the title navigation bar.

A list of all existing APIs appears.

3. Click Create API to create an API with required API documentation.

4. Click Policies and define required policies for the API.

5. Click Enable Mocking to mock and generate API mock responses.

648 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

6. Using an external REST client such as Postman or SoapUI, run the below command to search
for the API in API Gateway for implementation:

POST http://<API Gateway host>:<port>/rest/apigateway/search
{
"types" : ["api"],
"scope" : [

{
"attributeName" : "maturityState",
"keyword" : "ToBeImplemented"

}
]

}

The maturityState parameter in the above command is used search for APIs based on their
maturity state. In this use case, you must search for APIs that are to be implemented. Hence,
you can provide the ToBeImplemented value for the parameter. This command returns the list
of APIs that are yet to be implemented.

7. Using theAPI Id of theAPI that youwant to implement, run the following command to retrieve
the API contract from API Gateway:

GET http://<host>:<port>/rest/apigateway/apis/{apiId}/
providerspecification?format=swagger

The value for the format parameter can be swagger, raml, or openapi for REST APIs; and wsdl
for SOAP APIs.

Note:
You can search for an API based on its maturity status in API Gateway using the following
command:

POST http://<API Gateway host>:<port>/rest/apigateway/search
{
"types" : ["api"],
"scope" : [

{
"attributeName" : "maturityState",
"keyword" : "ToBeImplemented"

}
]

}

8. Implement the API in the required implementation server.

9. After implementation, invoke the REST end-point to communicateAPI implemented endpoint
to API Gateway:

PUT http://<API Gateway host>:<port>/rest/apigateway/apis/{apiId}/implementation
{
"maturityState": "string",
"nativeBaseURLs": [

"string"
]

}

webMethods API Gateway User's Guide 10.11 649

13 Usage Scenarios

You can provide required values for the parameters in the above command. For information
on parameters, see “List of Parameters used in API Implementation” on page 650.

Example:
PUT http://10.2.151.149:5555/rest/apigateway/apis/
94dfd243-dd54-4d7e-8ba5-396ffaf6fe4e/implementation
{
"nativeBaseURLs":["https://10.2.35.125:5556/ws/srvs:Calculator/
CalculatorHttpSoap11Endpoint",
"http://10.2.151.149:5555/ws/srvs:Calculator/CalculatorHttpSoap11Endpoint"],
"maturityStatus" : "Implemented"
}

For details about the REST API, see the swagger file APIGatewayServiceManagement.json,
located at Install directory/IntegrationServer/instances/default/packages/
WmAPIGateway/resources/apigatewayservices/APIGatewayServiceManagement.json. For
more information about Service Management, see “Service Management” on page 580.

As an outcome of the REST call, the mocking of the API is disabled and API Gateway starts
requests for the actual implementation.

List of Parameters used in API Implementation
The following are some of the parameters used during API implementation:

PurposeParameter

Endpoint URLs of the native service. This parameter is mandatory to route the
requests to this implemented API. The existing endpoint values of the routing
policies of the API are replaced with the URLs given against this parameter.

nativeBaseURLs

You can providemultipleHTTP andHTTPSURLs for this parameter. TheURLs
that you provide for this parameter appears under the Native endpoint(s)
section in theTechnical informationpage ofAPIGateway. The first URL among
the list of URLs is used in the routing policies by this update call. If you want
to use any other URL in the routing policies, you can update the API policies
accordingly.

Indicates the maturity state of APIs. Use this parameter to search for an API
based on its maturity state and retrieve the API for implementation. Also, you
can use this to update the maturity state of an API after implementation.

maturityState

Typically, the value of this parameter would be the consecutive state defined
in the apiMaturityStatePossibleValues extended setting configuration.

For example,

If any of the following states are configured in the
apiMaturityStatePossibleValues setting : Design, Implementation, Testing,
Production; and current state of anAPI is Implementation, then youmust specify

650 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

PurposeParameter

Testing as the parameter value because that would be next stage as per the
configuration.

Gateway Endpoints

Gateway endpoint is the URL that is used to access an API through API Gateway. By default, API
Gateway provides a default gateway endpoint for all active APIs. The default gateway endpoint
is in the protocol://host:port/{defaultPrefix}/{apiName}/{apiVersion}/{resourcePath} format.

When there is a need to access theAPI using a different endpoint, you can define a customgateway
endpoint. In custom gateway endpoints, you can customize the portion of the URL between port
and resourcePath.

Custom gateway endpoints can be specific to an API or a global template can be defined through
global gateway endpoint.

How do I Define API-specific Gateway Endpoints?
This use case explains how to define custom gateway endpoints specific to an API. You can define
more than one custom gateway endpoint to an API. Custom gateway endpoints can be added for
all types of APIs such as REST, SOAP, OData, and WebSocket.

The use case starts when you want to define API specific gateway endpoint and ends when you
have created the API specific gateway endpoint.

Here are some points that you need to consider, when you define API specific gateway endpoint:

Custom gateway endpoints cannot be created for the APIs that have blank space or special
characters in API name or API version.

Gateway endpoint is case-sensitive.

Gateway endpoint cannot start with pre-defined prefixes such as rest or invoke .

URL path of one custom gateway endpoint cannot start with the URL path of the another
custom gateway endpoint or default gateway endpoint. For example, if any of the API has a
customendpointwithURLpath abc/custom, you cannot have another customgateway endpoint
withURL path abc/customendpoint. Similarly, if any of theAPI has a default gateway endpoint
gateway/myAPI/v1, you cannot have customendpointwithURLpath gateway/myAPI. However,
it is possible to have two valid custom gateway endpoints with URL paths abc/custom1 and
abc/custom2, because here one of the URL path is not the extension of another URL path.

In order to use the gateway endpoints feature, thewatt.server.url.alias.partialMatching property
needs to be true . By default, this property is set to true .

API Gateway internally creates the URL aliases, when you create a custom gateway endpoint.
These internal URL aliases are hidden from the API Gateway users, and are displayed only in

webMethods API Gateway User's Guide 10.11 651

13 Usage Scenarios

the Integration Server. SoftwareAG recommends that youdo notmodify anyURL alias through
Integration Server.

A gateway endpoint can use following variables, which are resolved dynamically:

${defaultPrefix} - resolves based on API type. For REST and OData the defaultPrefix is
gateway, SOAP the defaultPrefix is ws, and Websockets the defaultPrefix is websocket.

${apiName} - replaces with the API name value.

For example, when a gateway endpoint uses ${apiName} variable, and if you change the
API name, it automatically gets reflected in the gateway endpoint.

${apiVersion} - replaces with the API version value.

Note:
If you want to use a gateway endpoint across all versions of an API, Software AG
recommends you to use the ${apiVersion} variable so that the gateway endpoint becomes
unique across different versions.

Important:
At any given point, API Gateway does not allow you to provide the same gateway endpoint
for different APIs nor different versions of same API. Hence, make sure that you provide an
unique gateway endpoint, so that it does not match with any of the existing APIs' default or
custom gateway endpoints.

Before you begin

Ensure that you have:

Manage APIs functional privilege.

Activated the API.

To define API-specific gateway endpoints

1. Click APIs in the title navigation bar.

A list of all registered APIs appears.

Note:
You can manage the gateway endpoints of an API, directly from the view mode of the API
details screen.

2. Click the corresponding API for which you want to customize the gateway endpoint.

The API details page appears.

3. Click Technical information.

4. Click +Add custom gateway endpoint and provide the following information.

652 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

DescriptionField

Specifies the name for the custom gateway endpoint.Name

A gateway endpoint name must be unique within an API.

Specifies the custom gateway endpoint.URL

The gateway endpoint URL cannot include a space, nor can it include the
following special characters: # % ? ' " < \

5. Click Save.

The added custom gateway endpoint appears in the Gateway endpoint(s) field of the API
details page. In addition to the default gateway endpoint, you can access the API using this
custom gateway endpoint.

webMethods API Gateway User's Guide 10.11 653

13 Usage Scenarios

Note:
You can edit or delete the gateway endpoint from API details page either by clicking the

or icon corresponding to the gateway endpoint that you want to edit or delete.

How do I Define Global Gateway Endpoint?
This use case explains how to define global gateway endpoint. The global gateway endpoint creates
gateway endpoint template for all APIs. Each API inherits this global endpoint in addition to the
default and custom endpoints of an API.

The use case starts when you want to define global gateway endpoint and ends when you have
created the global gateway endpoint.

Global gateway endpoint is not supported for the APIs that have blank space or special characters
in API name or API version.

In order to generate a unique gateway endpoint for eachAPI version, the global gateway endpoint
template must use the following variables:

${apiName}

${apiVersion)

Before you begin

Ensure that you haveManage APIs functional privilege.

To define global gateway endpoint

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the Global gateway endpoint section, provide the global gateway endpoint that you want
to define across the APIs.

4. Click Save.

654 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

The added global gateway endpoint appears in the Gateway endpoint(s) field of the API
details page of all APIs. In addition to the default and API-specific gateway endpoints, you
can access your APIs using this global gateway endpoint.

How do I Edit Global Gateway Endpoint?

This use case explains you how to edit the global gateway endpoint. You can edit the global
gateway endpoint, when you want to change or update the existing global gateway endpoint
template for all the APIs.

The use case starts when you want to edit global gateway endpoint and ends when you have
updated the global gateway endpoint.

To edit global gateway endpoint

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the Global gateway endpoint section, update the value specified in the Global gateway
endpoint field.

webMethods API Gateway User's Guide 10.11 655

13 Usage Scenarios

4. Click Save.

The updated global gateway endpoint appears in the Gateway endpoint(s) field of the API
details page. All the APIs can be accessed using the updated global gateway endpoint.

Note:
You cannot access the APIs using the older global gateway endpoint.

How do I Delete Global Gateway Endpoint?

This use case explains you how to delete the global gateway endpoint. You can delete the global
gateway endpoint, when you do not want to access any of your APIs using the existing global
gateway endpoint template.

The use case starts when you want to delete global gateway endpoint and ends when you have
deleted the global gateway endpoint.

To delete global gateway endpoint

1. Expand the menu options icon , in the title bar, and select Administration.

2. Select General > URL aliases.

3. In the Global gateway endpoint section, delete the value specified in the Global gateway
endpoint field.

4. Click Save.

The global gateway endpoint is removed from the Gateway endpoint(s) field of the API
details page and you cannot access any of your APIs using global gateway endpoint.

Other Gateway Endpoint Usecases

Publishing APIs to API Portal

Just like publishing the default gateway endpoints, you can also publish the custom gateway
endpoints to API Portal. Published custom gateway endpoints can be accessed through the API
Portal interface.

Supporting Custom Prefix in CentraSite deployed APIs

When you virtualize a service in CentraSite, you can replace the default prefix of an invocation
alias with custom prefix. When you publish such services to API Gateway, the custom prefix that
was specified in CentraSite are supported in API Gateway by automatically adding the custom
gateway endpoint to the respective API.

656 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

Secure API using OAuth2 with refresh token workflow

Whenusing the authorization code grant type to get the access token, you need to get the permission
from the resource owners at least for the first time. In the subsequent attempts to get the access
token, if you do not want to get the permission from the resource owners, then you can use the
refresh token.

This use case explains how to secure the API usingOAuth2 authentication strategy. It also explains
the refresh token workflow in detail.

Configuring OAuth2 Authentication with Refresh Token
This use case explains how to secure the API using OAuth2 authentication strategy with
authorization_code and refresh_token grant types.

The use case starts when you create an API and endswhen you create an application strategywith
OAuth2 authentication scheme.

To configure OAuth2 Authentication with Refresh Token

1. Create an API.

For details about creating an API, see “Creating a REST API” on page 53.

2. Enable the OAuth2 token identification type in the Identify & Authorize policy.

For details about Identify & Authorize policy, see “ Identify & Authorize” on page 198.

webMethods API Gateway User's Guide 10.11 657

13 Usage Scenarios

3. Create OAuth scope in the local authorization server.

4. Map the OAuth scope to the API scope.

For details about mapping OAuth scope, see webMethods API Gateway Administration.

658 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

5. Create an application with OAuth2 authentication strategy.

a. Create a new application.

For details about creating an application, see “Creating an Application” on page 413.

b. Associate the application with the API that you have created.

c. Click the Authentication tab to create strategy with OAuth2 authentication.

webMethods API Gateway User's Guide 10.11 659

13 Usage Scenarios

d. Select the Authentication schemes as OAUTH2.

e. Specify the Authentication server as local.

f. Enable the Generate credentials toggle button to generate the client dynamically in the
authorization server and provide the following information:

a. Select the Application Type as Confidential. A confidential client is an application that
can keep a client password confidential to the world. This client password is assigned
to the client app by the authorization server. This password is used to identify the client
to the authorization server, to avoid fraud. An example of a confidential client could
be a web app, where no one but the administrator can get access to the server, and see
the client password.

b. Select the application profile from the Application profile drop-down menu. For
example, web.

c. Specify the duration in seconds forwhich the access token is active in theToken lifetime
(seconds).

d. Specify the number of times you can use the refresh token in the Token refresh limit
to get a new acceswws token.

660 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

Note:
To use refresh token unlimitedly, specify the limit as -1.

e. Specify the URIs that the authorization server can use to redirect the resource owner's
browser during the grant process. You can add multiple URIs by clicking +Add.

f. Specify the grant type to be used to generate the credentials. For this specific use case,
we have selected authorization_code, client_credentials, and refresh_token, which are
dynamically populated from the authorization server.

Note:
Make sure you have selected refresh_token grant_type, if you want to get the refresh
tokens.

g. Select the scopes that are to be mapped for the authentication strategy.

h. Click Add to save the strategy.

i. Click Save to save the application.

Refresh Token Process Flow
This use case explains the following workflow:

1. How to get the access token with resource owner permission?

2. How to get the access token without resource owner permission using refresh token in the
subsequent attempts?

How to get the access token with resource owner permission?

This use case starts when you get the authorization code and ends when you access then API.

To get access token using authorization code grant type (With resource owner permission).

1. Get authorization code.

a. Click the
http(s)://hostname:port/invoke/pub.apigateway.oauth2/authorize?response_type=code&redirect_uri=<
redirectURI>&client_id=<Client ID>.

Note:
Make sure you have replaced the <redirectURI> and <ClientID> in the above mentioned
URL. You can get the redirect URI and client ID from the Authentication tab of the
Application screen.

webMethods API Gateway User's Guide 10.11 661

13 Usage Scenarios

b. Click the Approve button.

c. Provide the credentials of your API Gateway instance.

You are re-directed to the redirect URI as per to the configuration. The below screenshot
is just a sample, you will be redirected to a different URL based on your configuration and
so the screenshot varies accordingly. If the given redirect URI is not a valid web page, you
may get a Page not found error, which is fine, because you can get the authorization code
value from the browser URL.

d. Make a note of the authorization code that is displayed in the address bar of the browser.
As highlighted in the above image's URL, you can see the authorization code in the code=
field of the URL.

2. Get Access Token.

a. Invoke the access token endpoint.

Request: POST http(s):// hostname:port /invoke/pub.apigateway.oauth2/getAccessToken

In the Authorization tab, select the authorization type as Basic Auth. Provide the client ID
as username and client secret as password. You can get the client ID and client secret in
the Authentication tab of the Application screen.

Sample request body

662 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

{
"redirect_uri":"http://test.com",
"scope":"email",
"grant_type":"authorization_code",
"code":"4b4b16c68f1c4b6fa7f26e0cb00b5daa"

}

Note:
You must replace the redirect_URI, scope, and code with appropriate values. For the
code field value, make sure you use the authorization code that you have noted down
in the previous step.

Sample response body
{

"scope": "TestRefreshtoken",
"access_token":

"c92b6227a19c46f1a6545bf370bb6ee6e30ff87957ef4b1aaa9577f7e86e4bd7",
"refresh_token":

"f78dd4fc5b8d4d799cf066427e828e26ce7e3723e4334416a7b9cd8a274e6947",
"token_type": "Bearer",
"expires_in": 3600

}

3. Access API using the REST API client.

In the Authorization tab, select the authorization type as Bearer Token and provide the access
token that you get from the response payload of the previous step.

How to get the access token without resource owner permission using refresh token
in the subsequent attempts?

This use case starts when you get the authorization code and ends when you access the API.

To get access token using refresh token (Without resource owner permission).

When the access token expires and if you need to access the same API, you need to get another
access token. If you have refresh token, you can get a new access token without getting the
permission from the resource owner.

1. Invoke the refresh token endpoint.

Request: POST http(s)://hostname:port/invoke/pub.oauth/refreshAccessToken

In the Authorization tab, select the authorization type as Basic Auth. Provide the client ID as
username and client secret as password. You can get the client ID and client secret in the
Authentication tab of the Application screen.

Sample request body
{

"grant_type":"refresh_token",
"refresh_token":"f78dd4fc5b8d4d799cf066427e828e26ce7e3723e4334416a7b9cd8a274e6947"

webMethods API Gateway User's Guide 10.11 663

13 Usage Scenarios

}

Note:
Make sure you have replaced the refresh token that you got from the Step 2 using “ How
to get the access token with resource owner permission?” on page 661 use case.

Sample response body
{

"grant_type": "refresh_token",
"refresh_token":

"f78dd4fc5b8d4d799cf066427e828e26ce7e3723e4334416a7b9cd8a274e6947",
"scope": "TestRefreshtoken ",
"access_token":

"c102bcaebecf451ca705bf54d26fae732ea9790a0ff64a87a010b3875b4b8da2",
"token_type": "Bearer",
"expires_in": 3600

}

2. Access API using the REST API client.

In the Authorization tab, select the authorization type as Bearer Token and provide the access
token that you get from the response payload of the previous step.

664 webMethods API Gateway User's Guide 10.11

13 Usage Scenarios

Request and Response Processing

Request and Response Transformation Policies
Transformation policy enables you to configure several transformations on the requests from the
clients into a format required by the native API, or to transform the response by the native API
into a format required by the client.

The transformations include Header, Query Parameter, Path Parameter transformation, HTTP
Method transformation, Payload transformation, and Advanced transformation. The
transformations are applied based on the configurations provided in the transformation policies.

When can you use transformation policies?

You can use transformation policies:

When the API Provider wants to read the contents of the request and response to do audit
logging, or trigger a notification based on the contents of the request.

When the API Provider wants to modify the request before forwarding the request to native
API as the native API wants to identify all incoming requests from API Gateway. In such case
the provider can configure the Request transformation policy to add a header to all requests
before they get routed to the native API.

Pre-Requisites

Install API Gateway advanced edition 10.2 or higher.

Basic understanding of API Gateway and policy enforcement.

Ensure that you have the Manage API privilege.

How do I transform a request using Request Transformation
Policy?
Use the Request Transformation policy to modify the contents of an incoming request such as
headers, payload, query parameters, path parameters, HTTP method using the configurations
given by the API Provider.

The request transformation workflow is as follows:

1. The API Provider configures the Request Transformation policy in the Request Processing
stage of API Gateway. The API provider configures the details about when and how to
transform the contents of an incoming request.

2. The client sends the request to API Gateway.

webMethods API Gateway User's Guide 10.11 665

3. API Gateway applies the transformations configured by the API Provider and transforms the
incoming request.

4. API Gateway sends the transformed request to the native API.

5. Native API processes the transformed request and sends the response to API Gateway.

6. API Gateway forwards the response to the client.

Consider a scenario where you have a legacy REST API (employeeApi) that does not adhere to
the REST API standards. For example, it accepts functional information such as employee name
through a header employeeName instead of accepting them through query or path parameters and
you want to modify the API to REST standards.

To configure request transformation policy:

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Select a Rest API from the list of APIs and click Edit.

3. Select Policies > Request Processing > Request Transformation.

The Request Transformation details page appears.

4. In the Condition section, select OR.

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set to AND operator. The configured transformation is applied
only when all the set conditions are satisfied.

666 webMethods API Gateway User's Guide 10.11

Request and Response Processing

5. Click Add Condition to configure the conditions to evaluate the contents on the request.

a. Specify the Variable. Example, Content-Type.

b. Specify the Operator to use to relate variable and the value provided. Example, Equals.

c. Specify the Value. Example, application/json.

When you select the operator -Equals, the Condition checks if theVariable: Content-Type
is equal to the Value: application/json.

d. Click Add.

6. Select Transformation Configuration > Header/Query/Path transformation.

The Header/Query/Path transformation details page appears.

7. In Add/Modify section, add the variable and set its value.

Here, native API accepts employee name through header ${request.headers.employeeName}
and you want the native API to accept these values through the query parameter
${request.query.name} and expose this change to the client without exposing the query
parameter.

To achieve this, set the variable and the value parameters as follows:

a. Variable: ${request.headers.employeeName}

b. Value: ${request.query.name}

c. Click Add.

Note:
For details about the variables available in API Gateway, see “Variables Available in
API Gateway” on page 171.

8. In the Remove section, add ${request.query.name} to remove the query parameter from the
request so that it does not reach the native API.

9. Click Save.

This request transformation policy configuration allows the nativeAPI to accept the header values
through query parameters. The nativeAPI accepts the header values through the query parameters
by transforming the query parameters to header parameters and then removing the query parameter
from the incoming request.

Request Transformation Policy Properties

webMethods API Gateway User's Guide 10.11 667

Request and Response Processing

The table lists the properties that you can specify for the Request Transformation policy:

DescriptionProperty

Conditions are used to specify when the policy has to be executed. You
can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the requests that comply with all the
configured conditions.

OR. This is selected by default. API Gateway transforms the requests
that comply with any one configured condition.

Click Add Condition and provide the following information and click

.

Variable: Specifies the variable type with a syntax.

Operator: Specifies the operator to use to relate variable and the
value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value: Specifies a plain value or value with a syntax.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 171.

Transformation Configuration: Specifies various transformations to be configured.

Specifies the Header, Query or path transformation to be configured for
incoming requests.

Header/Query/Path
Transformation for
REST API

You can add ormodify header, query or path transformation parameters
by providing the following information:and

668 webMethods API Gateway User's Guide 10.11

Request and Response Processing

DescriptionProperty

Header
Transformation for
SOAP API

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

You can add multiple variables and corresponding values by clicking

.

You can remove any header, query, or path transformation parameters
by typing the plain value or value with a syntax.

Note:
Software AG recommends you not to modify the headers
${request.headers.Content-Length} and
${request.headers.Content-Encoding} asAPIGateway adds the right
values for these headers before sending the response back to client.

For details about the variables available in API Gateway, see “Variables
Available in API Gateway” on page 171.

Note:
Payload transformationdoes not happen automatically for content-type
transformation. When you change the content type, ensure that you
dopayload transformation. For example, if you change the content-type
header from application/xml to application/json, youmust also change
the respective payload from application/xml to application/json.

Specifies the method transformation to be configured for incoming
requests.

Method
transformation for
REST API

Select any of the HTTP Method listed:

GET

POST

PUT

DELETE

HEAD

CUSTOM

Note:
When CUSTOM is selected, the HTTP method in incoming request is
sent to the native service.When othermethods are selected, the selected
method is used in the request sent to the native service.

Note:

webMethods API Gateway User's Guide 10.11 669

Request and Response Processing

DescriptionProperty

OnlyMethodTransformation happenswhen configured, but you have
to take care of adding payload during transformations involving
method change like GET to POST, and so on.

Specifies the payload transformation to be configured for incoming
requests.

Payload
Transformation

Provide the following information:

Payload Type. Specifies the content-type of payload, to which you
want to transform. The Payload field renders the respective payload
editor based on the selected content-type.

Payload. Specifies the payload transformation that needs to be
applied for the incoming requests.

As this property supports variable framework, you can make use of
the available variables to transform the request messages.

For example, consider the native API accepting two integer values
value1 and value2, and you want to pass these two values from API
Gateway to the native API, you can configure the payload field as
follows:
{
"value1" : 12,
"value2" : 34
}

You can also configure the payload field using one or more variables
by using variable framework. Let us see another syntax. For example,
for the same native API seen in the previous example, if your client
sends both the values through headers val1 and val2, and you want
to add it to payload for the native API to recognize the input, you
can do so by configuring the payload field as follows:
{
"value1" :${request.headers.val1},
"value2" :${request.headers.val2}
}

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If your payload content-type is different from the incoming
payload's content-type, you need to transform the content-type of
the header using Header Transformation.

670 webMethods API Gateway User's Guide 10.11

Request and Response Processing

DescriptionProperty

Click + Add xslt document to add an xslt document and provide
the following information:

XSLT file. Specifies the XSLT file used to transform the request
messages as required.

Click Browse to browse and select a file.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can add more XSLT features and xslt documents by clicking

.

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Click + Add xslt transformation alias and provide the following
information:

XSLT Transformation alias. Specifies the XSLT transformation
alias

When the incoming request is in JSON, you can use a XSLTfile similar
to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="fakeroot">
<xsl:element name="fakenode">

<!-- Apply your transformation rules based on the
request from the Client-->
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

When the incoming request is in XML, you can use a XSLT file similar
to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="soapenv:Envelope">
<xsl:element name="soapenv:Body">

webMethods API Gateway User's Guide 10.11 671

Request and Response Processing

DescriptionProperty
<!-- Apply your transformation rules based on the

request from the Client-->
</xsl:element>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

Specifies the advanced transformation to be configured for incoming
requests.

Advanced
Transformation

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to be
invoked to process the request messages.

You can add multiple services by clicking .

For details about usage of Invoke webMethods IS policy in versions
10.2 and higher, see “Invoke webMethods IS Policy” on page 682.

Note:
The webMethods IS service must be running on the same
Integration Server as API Gateway.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the user,
identified by API Gateway, are used to authenticate and invoke the
IS service. You can also specify a particular user, you want API
Gateway to use to invoke the IS service.

Comply to IS Spec. Mark this as true if you want the input and the
output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS service
alias to be invoked to pre-process the request messages.

Transformation Metadata: Specifies the metadata for transformation of the incoming requests.
For example, the namespaces configured in this section can be usedwhen you provide the syntax
for XPath ${request.payload.xpath} For example: ${request.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for transformation.Namespace

Provide the following information:

Namespace Prefix. The namespace prefix of the payload expression
to be validated.

For example, specify the namespace prefix as SOAP_ENV.

672 webMethods API Gateway User's Guide 10.11

Request and Response Processing

DescriptionProperty

Namespace URI. The namespace URI of the payload expression to
be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declaration defines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can add multiple namespace prefixes and URIs by clicking

.

How do I transform a request and its response using
Transformation Policy?
Use the Response Transformation policy to modify the contents of an outgoing response such as
headers, payload, query parameters, path parameters, HTTP method using the configurations
given by the API Provider.

The response transformation workflow is as follows:

1. The API Provider configures the Response Transformation policy in the Response Processing
stage of API Gateway. The API provider configures the details about when and how to
transform contents of an outgoing response.

2. The client sends the request to API Gateway.

3. API Gateway forwards the request to native API.

4. Native API processes the request and sends response to API Gateway.

5. API Gateway applies the transformations configured by the API Provider and transforms the
outgoing response.

6. API Gateway forwards the transformed response to the client.

webMethods API Gateway User's Guide 10.11 673

Request and Response Processing

Consider a scenario, where a native API URL is moved permanently or temporarily, the native
API sends a 301 or 302 status code, and also sends the new address in the location header. However,
when API Gateway comes across the 301 or 302 status code, API Gateway reads the status code
and the location header, and redirects the request to new addressmentioned in the location header.
API Gateway, then sends the response from the new address to the client. This is how 3xx status
code is handled in API Gateway.

In this scenario, if you do not want API Gateway to do the redirection, instead youwant the clients
to receive the 3xx status code, and then do the redirection. This can be achieved by using the Status
Transformation policy in the Response Processing stage.

To achieve this transformation:

1. Change the native API to send an intermediate 2xx status code instead of 3xx status code, for
request from API Gateway.

For example, a demo service package contains a couple of REST services - source and
destination.

The REST service source ismoved to a new address and it sends a 301 status alongwith location
header. However, it sends 297 status code with the location header for requests from API
Gateway. The location header contains the address for destination, which is the new address
of the moved resource.

2. Configure the API in API Gateway with a Request Transformation policy to send a request
header requestOrigin with the value APIGateway. To configure the request transformation
policy, perform the following steps:

a. Click APIs in the title navigation bar.

A list of available APIs appears.

674 webMethods API Gateway User's Guide 10.11

Request and Response Processing

b. Select a Rest API from the list of APIs and click Edit.

c. Select Policies > Request Processing > Request Transformation.

The Request Transformation details page appears.

d. In the Condition section, select OR.

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set toANDoperator. The configured transformation is applied
only when all the set conditions are satisfied.

e. Click Add Condition to configure the conditions to evaluate the contents on the request.

f. Specify the Variable. Example, Content-Type.

g. Specify the Operator to use to relate variable and the value provided. Example, Equals.

h. Specify the Value. Example, application/json.

When you select the operator -Equals, the Condition checks if theVariable: Content-Type
is equal to the Value: application/json.

i. Click Add.

j. Select Transformation Configuration > Header/Query/Path transformation.

The Header/Query/Path transformation details page appears.

k. In Add/Modify section, add the variable and set its value.

Set the Variable and Value parameters as follows:

Variable: ${request.headers.requestOrigin}

Value: APIGateway

Note:
For details about the variables available in API Gateway, see “Variables Available in
API Gateway” on page 171.

l. Click Save.

This Request Transformation policy allows the API in API Gateway to send a request header
requestOrigin with the value APIGateway. This will help the native API identify the request
from API Gateway and send the response code 297.

webMethods API Gateway User's Guide 10.11 675

Request and Response Processing

3. Configure the API in API Gateway with the Status Transformation policy to transform the 297
status code to 301 status code. To configure the status transformation policy, perform the
following steps:

a. Click APIs in the title navigation bar.

A list of available APIs appears.

b. Select a Rest API from the list of APIs and click Edit.

c. Select Policies > Response Processing > Response Transformation .

The Response Transformation details page appears.

d. In the Condition section, select OR.

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set toANDoperator. The configured transformation is applied
only when all the set conditions are satisfied.

e. Click Add Condition to configure the conditions to evaluate the contents on the request.

f. Specify the Variable. Example, ${response.statusCode}.

Note:
For details about the variables available in API Gateway, see “Variables Available in
API Gateway” on page 171.

g. Specify the Operator to use to relate variable and the value provided. Example, Equals.

h. Specify the Value. Example, 297.

When you select the operator - Equals, the Condition checks if the Variable:
${response.statusCode} is equal to the Value: 297.

i. Click Add.

j. Select Transformation Configuration > Status transformation.

The Status transformation details page appears.

k. Specify the Code and Message values that you would like in the response.

Set the Code and Message parameters as follows:

Code: 301

676 webMethods API Gateway User's Guide 10.11

Request and Response Processing

Message: Moved Permanently

l. Click Save.

This transformation policy allows the clients to receive the 301 status code, and then redirect to
the new address mentioned in location header.

Response Transformation Policy Properties

The table lists the properties that you can specify for the Response Transformation policy:

DescriptionProperty

Conditions are used to specifywhen the policy has to be executed.
You can add multiple conditions with logical operators.

Condition

Available values are:

AND. API Gateway transforms the responses that comply
with all the configured conditions

OR. This is selected by default. API Gateway transforms the
responses that comply with any one configured condition.

ClickAdd Condition and provide the following information and

click .

Variable. Specifies the variable type with a syntax.

Operator. Specifies the operator to use to relate variable and
the value. You can select one of the following:

Equals

Equals ignore case

Not equals

Not equals ignore case

Contains

Exists

Range

Greater Than

Less Than

Value. Specifies a plain value or value with a syntax.

webMethods API Gateway User's Guide 10.11 677

Request and Response Processing

DescriptionProperty

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Transformation Configuration. Specifies various transformations to be configured.

Specifies the header, query or path transformation to be
configured for the responses received from the native API.

HeaderTransformation

You can add or modify header, query or path transformation
parameters by providing the following information:

Variable. Specifies the variable type with a syntax.

Value. Specifies a plain value or value with a syntax.

You can add multiple variables and corresponding values by

clicking .

You can remove any header, query, or path transformation
parameters by typing the plain value or value with a syntax.

Note:
Software AG recommends you not to modify the headers
${response.headers.Content-Length} and
${response.headers.Content-Encoding} asAPIGateway adds
the right values for these headers before sending the response
back to client.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
Payload transformation does not happen automatically for
content-type transformation. When you change the content
type, ensure to do payload transformation. For example, if you
change the content-type header from application/xml to
application/json, youmust also change the respective payload
from application/xml to application/json.

Specifies the status transformation to be configured for the
responses received from the native API.

Status transformation

Provide the following information:

Code. Specifies the status code that is sent in the response to
the client.

For example if you want to transform status code as 201,
provide 201 in the Code field.

678 webMethods API Gateway User's Guide 10.11

Request and Response Processing

DescriptionProperty

Message. Specifies the Status message that is sent in the
response to the client.

As both these properties support variable framework, you
can make use of the available variables to transform the
response code and message.

For example You have submitted successfully can be used to
transform the original OK status message.

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Specifies the payload transformation to be configured for the
responses received from the native API.

Payload Transformation

Provide the following information:

Payload Type. Specifies the content-type of payload, towhich
you want to transform. The Payload field renders the
respective payload editor based on the selected content-type.

Payload. Specifies the transformation that needs to be applied
for the response.

As this property supports variable framework, you canmake
use of the available variables to transform the response
messages.

For example, consider the client accepting two integer values
value1 and value2, and you want to pass these two values
fromAPIGateway to the client, you can configure the payload
field as follows:
{
"value1" : 12,
"value2" : 34
}

You can also configure the payload field using one or more
variables by using variable framework. Let us see another
syntax. For example, for the same API seen in the previous
example, if your native sends both the values through headers
val1 and val2, and youwant to add it to payload for the client
to recognize the input, you can do so by configuring the
payload field as follows:
{
"value1" :${response.headers.val1},
"value2" :${response.headers.val2}
}

webMethods API Gateway User's Guide 10.11 679

Request and Response Processing

DescriptionProperty

For details about the variables available in API Gateway, see
“Variables Available in API Gateway” on page 171.

Note:
If your payload content-type is different from the incoming
payload's content-type, you need to transform the
content-type of the header using Header Transformation.

Click + Add xslt document to add an xslt document and
provide the following information:

XSLT file. Specifies the XSLT file used to transform the
response messages as required.

Click Browse to browse and select a file.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can add more XSLT features and xslt documents by

clicking .

Note:
API Gateway supports XSLT 1.0 and XSLT 2.0.

Click + Add xslt transformation alias and provide the
following information:

XSLT Transformation alias. Specifies the XSLT
transformation alias

When you receive the response in JSON, you can use a XSLT
file similar to the below sample:
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="fakeroot">
<xsl:element name="fakenode">

<!-- Apply your transformation rules based
on the response received from the native API-->
</xsl:element>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

When you receive the response in XML, you can use a XSLT
file similar to the below sample:

680 webMethods API Gateway User's Guide 10.11

Request and Response Processing

DescriptionProperty
<?xml version="1.0" ?>
<xsl:stylesheet version="1.1"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

<xsl:output method="xml"/>
<xsl:template match="/" >
<xsl:element name="soapenv:Envelope">
<xsl:element name="soapenv:Body">

<!-- Apply your transformation rules based
on the response received from the native API-->
</xsl:element>
</xsl:element>

</xsl:template>
</xsl:stylesheet>

Specifies the advanced transformation to be configured for the
responses received from the native API..

Advanced Transformation

Provide the following information:

webMethods IS Service. Specify thewebMethods IS service
to be invoked to process the response messages.

You can add multiple services by clicking .

For details about usage of Invoke webMethods IS policy in
versions 10.2 and higher, see “Invoke webMethods IS
Policy” on page 682.

Note:
The webMethods IS service must be running on the same
Integration Server as API Gateway.

Run as User. Specifies the authentication mode to invoke
the IS service. If this field is left blank the incoming credentials
of the user, identified by API Gateway, are used to
authenticate and invoke the IS service. You can also specify
a particular user, you want API Gateway to use to run the IS
service.

Comply to IS Spec. Mark this as true if you want the input
and the output parameters to comply to the IS Spec present
in pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS
service alias to be invoked to pre-process the request
messages.

webMethods API Gateway User's Guide 10.11 681

Request and Response Processing

DescriptionProperty

Transformation Metadata. Specifies the metadata for transformation of the responses received
from the native API. For example, the namespaces configured in this section can be used when
you provide the syntax for XPath ${response.payload.xpath} For example:
${response.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for
transformation.

Namespace

Provide the following information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

For example, specify the namespace prefix as SOAP_ENV.

Namespace URI. The namespace URI of the payload
expression to be validated.

For example, specify the namespace URI as http://
schemas.xmlsoap.org/soap/envelope/. This declarationdefines
SOAP_ENV as an alias for the namespace:
http://schemas.xmlsoap.org/soap/envelope/.

Note:
You can addmultiple namespace prefix andURI by clicking

.

Invoke webMethods IS Policy
This policy pre-processes the requestmessages and transforms themessage into the format required
by the native API or performs some custom logic, before API Gateway sends the requests to the
native APIs.

For example, you might need to accommodate differences between the message content that a
client is capable of submitting and the message content that a native API expects. For example, if
the client submits an order record using a slightly different structure than the structure expected
by the native API, you can use this action to process the record submitted by the client to the
structure required by the native API.

This policy also processes the native API’s response messages into the format required by the
application, before API Gateway returns the responses to the application.

The transformations using Invoke webmethods IS policy include Header, Query Parameter, Path
Parameter transformation, HTTP Method transformation, Payload transformation, Status Code,
and Status Message.

682 webMethods API Gateway User's Guide 10.11

Request and Response Processing

When can you use Invoke webmethods IS policy?

You can use Invoke webmethods IS policy:

When as an API Provider wants to read the contents of the request and response to do audit
logging, or trigger a notification based on the contents of the request.

When the API Provider wants to modify the request before forwarding the request to native
API as the native API wants to identify all incoming requests from API Gateway. In such case
theAPI Provider can configure the Invokewebmethods IS policy to add a header to all requests
before they get routed to the native API.

When the API Provider wants to achieve complex use cases of transformation by writing an
Invoke IS Service.

When the API Provider wants to write some custom logic using Java code to do the
transformation.

How do I transform a request using Invoke webMethods IS policy?

Use the Invoke webMethods IS policy to modify the contents of an incoming request such as
headers, payload, query parameters, path parameters, HTTP method using the configurations
given by the API Provider.

The Invoke webMethods IS workflow is as follows:

1. The API Provider creates an IS Service in Integration Server in which API Gateway is running.
The API Provider configures the IS Service to transform the request contents as per their need.

2. TheAPI Provider configures the InvokewebMethods IS policy in the Request Processing stage
of API Gateway with the created IS Service.

3. The client sends the request to API Gateway.

4. API Gateway invokes the webMethods IS Service configured by the API Provider. The IS
Service transforms the request contents as defined by the API Provider.

5. API Gateway sends the transformed request to the native API.

6. Native API processes the transformed request and sends the response to API Gateway.

7. API Gateway forwards the response to the client.

webMethods API Gateway User's Guide 10.11 683

Request and Response Processing

To configure Invoke webMethods IS policy in the Request Processing stage:

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Select a Rest API from the list of APIs and click Edit.

3. Select Policies > Request Processing > Request Transformation.

The Request Transformation section appears.

4. In the Condition section, select OR.

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set to AND operator. The configured transformation is applied
only when all the set conditions are satisfied.

5. Click Add Condition to configure the conditions to evaluate the contents on the request.

a. Specify the Variable. Example, Content-Type.

b. Specify the Operator to use to relate variable and the value provided. Example, Equals.

c. Specify the Value. Example, application/json.

684 webMethods API Gateway User's Guide 10.11

Request and Response Processing

When you select the operator -Equals, the Condition checks if theVariable: Content-Type
is equal to the Value: application/json.

d. Click Add.

6. Select Transformation Configuration > Advanced Transformation.

The Advanced Transformation section appears.

7. In webMethods IS Service section, click + Add webmethods is service.

8. Provide the following information.

webMethods IS Service. Specify the webMethods IS service to be invoked to process the
request messages.

You can add multiple services by clicking .

Note:
The webMethods IS service must be running on the same Integration Server as API
Gateway.

Run as User. Specifies the authentication mode to invoke the IS service. If this field is left
blank the incoming credentials of the user, identified by API Gateway, is used to
authenticate and invoke the IS service. You can also specify a particular user, you want
API Gateway to use to invoke the IS service.

Comply to IS Spec. Mark this as true if you want the input and the output parameters
to comply to the IS Spec present in pub.apigateway.invokeISService.specifications folder
in wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS service alias to be invoked
to pre-process the request messages.

Note:
For details about the variables available in API Gateway, see “Invoke webMethods IS Policy
Properties for Request Processing” on page 685.

9. Click Save.

This Invoke webMethods IS policy modifies the contents of an incoming request based on the IS
Service invoked.

Invoke webMethods IS Policy Properties for Request Processing

If Comply to IS Spec parameter is configured as true, API Gateway invokes the IS Service with
IS specification in the path pub.apigateway.invokeISService.specifications:RequestSpec for Request
Processing

webMethods API Gateway User's Guide 10.11 685

Request and Response Processing

The following are the input and output parameters for REST, SOAP, and WebSocket APIs as
specified in the above IS Specification.

Output parametersInput parametersAPI type

REST headersheaders

query query

payloadpayload

path path

httpMethodhttpMethod

messageContext messageContext

apiName

requestUrl

correlationID (this is unique for
request and response)

SOAP headersheaders

payload payload

messageContextmessageContext

apiName payloadObject

payloadObject

requestUrl

correlationID (this is unique for
request and response)

WebSocket headersheaders

payload (this is applicablewhen the
message type is Text)

payload

messageContext
payloadObject (this is applicable
when the message type is Binary) payloadObject

messageContext

apiName

requestUrl

websocketInfo

686 webMethods API Gateway User's Guide 10.11

Request and Response Processing

Output parametersInput parametersAPI type

correlationID (this is unique for
request and response)

By default the "query" pipeline variable is a key value pair, where the value is of type string. But,
if the incoming request contains multiple values for the same query parameter and if you want
to access those multiple values using webMethods IS Service, you have to ensure two things:

1. Make sure that you have checked the Repeat check box for query parameter in the Add
Resource Parameter section of the API details screen.

2. To access or transform multiple values of that query parameter, you have to insert string list
(instead of string) under the "query" pipeline variable in the webMethods IS Service.

Note:

For SOAP to REST APIS, the payload contains the transformed SOAP request.
Payload transformation does not happen automatically for content-type transformation.
When you change the content type, ensure to do payload transformation also as part of IS
Service. For example, if you change the content-type header from application/xml to
application/json using IS service, you must also change the respective payload from
application/xml to application/json
OnlyMethodTransformation happenswhen configured, but you have to take care of adding
payload during transformations involving method change like GET to POST, and so on.
When Comply to IS spec is true, you can change the values of headers, query, payload,
and so on, programatically using Message Context, as well as using the pipeline variables
given. Software AG recommends you do not change those values directly in Message
Context, as the values in output pipeline variables are written to Message Context after the
invocation of IS Service.

If Comply to IS Spec parameter is set to false, API Gateway invokes the IS Service with the same
input and output parameters supported in 10.1 and the earlier versions:

proxy.name

JSONRESTContentString (REST only)

SOAPEnvelope (SOAP only)

EnvelopeString (SOAP only)

The table lists the properties that you can specify for this policy:

DescriptionProperty

Invoke webMethods Integration Server Service

Specifies the webMethods IS service to be invoked to pre-process the
request messages and the authentication mode for the IS service.

Add invoke webMethods
Integration Server service

Provide the following information:

webMethods API Gateway User's Guide 10.11 687

Request and Response Processing

DescriptionProperty

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the request messages.

The webMethods IS service must be running on the same
Integration Server as API Gateway .

Note:
If an exception occurs when invoking the webMethods IS
service, by default APIGateway displays the status code as 500
and error message as Internal Server Error.

You can set custom status code and error message by setting
the following properties in the message context of the
webMethods IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code",
404);
context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the
user, identified by API Gateway, are used to authenticate and
invoke the IS service. You can also specify a particular user, you
want API Gateway to invoke the IS service.

Note:
It is the responsibility of the user who activates the API to
review the value configured in Run as User field to avoid
misuse of this configuration.

Comply to IS Spec. Mark this as true if you want the input and
the output parameters to comply to the IS Spec present in

688 webMethods API Gateway User's Guide 10.11

Request and Response Processing

DescriptionProperty

pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:Software AG recommends users to configure the policy
with Comply to IS Spec as true, as you can read or change the
values of headers, and so on, without having to read from or
write to the message context.

Specifies thewebMethods IS service alias to be invoked to pre-process
the request messages.

webMethods IS Service
alias

Start typing the webMethods alias name, select the alias from the

type-ahead search results displayed and click to add one
or more aliases.

You can use the delete icon to delete the added aliases from the
list.

Adding Custom Fields to Transactional Events

This section explains you how to add custom fields to the transactional events.

1. Create webMethods IS service by specifying the
pub.apigateway.utils:customFieldInTransactionEventSpec as a specification reference.

2. In the webMethods IS service, set the required custom fields in the customFieldsMap output
variable.

3. Oncewhen customFieldsMap gets created, the customfieldswill be available in the transactional
events.

4. Invoke the API with the Invoke webMethods IS policy.

Note:
You can also add the customfields to the transactional events fromAPIGateway by configuring
the customTransactionFields.FIELD_NAME custom variable in the Custom Extension policy.
For more details, see “How Do I Define a Custom Variable?” on page 619.

How do I transform a response using Invoke webMethods IS policy?

Use the Invoke webMethods IS policy to modify the contents of an outgoing response such as
headers, payload, query parameters, path parameters, HTTP method using the configurations
given by the API Provider.

The Invoke webMethods IS workflow is as follows:

webMethods API Gateway User's Guide 10.11 689

Request and Response Processing

1. The API Provider creates an IS Service in Integration Server in which API Gateway is running.
The API Provider configures the IS Service to transform the response contents as per their
need.

2. The API Provider configures the Invoke webMethods IS policy in the Response Processing
stage of API Gateway with the created IS Service.

3. The client sends the request to API Gateway.

4. API Gateway forwards the request to native API.

5. Native API processes the request and sends the response to API Gateway.

6. API Gateway invokes the webMethods IS Service configured by the API Provider. The IS
Service transforms the response contents as defined by the API Provider.

7. API Gateway forwards the transformed response to the client

To configure Invoke webMethods IS policy in the Response Processing stage:

1. Click APIs in the title navigation bar.

A list of available APIs appears.

2. Select a Rest API from the list of APIs and click Edit.

3. Select Policies > Response Processing > Response Transformation.

The Response Transformation section appears.

4. In the Condition section, select OR.

690 webMethods API Gateway User's Guide 10.11

Request and Response Processing

The configured transformation is applied when at least one of the conditions is satisfied.

Note:
The condition can also be set to AND operator. The configured transformation is applied
only when all the set conditions are satisfied.

5. Click Add Condition to configure the conditions to evaluate the contents on the response.

a. Specify the Variable. Example, Content-Type.

b. Specify the Operator to use to relate variable and the value provided. Example, Equals.

c. Specify the Value. Example, application/json.

When you select the operator -Equals, the Condition checks if theVariable: Content-Type
is equal to the Value: application/json.

d. Click Add.

6. Select Transformation Configuration > Advanced Transformation.

The Advanced Transformation section appears.

7. In webMethods IS Service section, click + Add webmethods is service.

8. Provide the following information.

webMethods IS Service. Specify the webMethods IS service to be invoked to process the
request messages.

You can add multiple services by clicking .

Note:
The webMethods IS service must be running on the same Integration Server as API
Gateway.

Run as User. Specifies the authentication mode to invoke the IS service. If this field is left
blank the incoming credentials of the user, identified by API Gateway, are used to
authenticate and invoke the IS service. You can also specify a particular user, you want
API Gateway to use to invoke the IS service.

Comply to IS Spec. Mark this as true if you want the input and the output parameters
to comply to the IS Spec present in pub.apigateway.invokeISService.specifications folder
in wmAPIGateway package.

webMethods IS Service alias. Specifies the webMethods IS service alias to be invoked
to pre-process the request messages.

Note:

webMethods API Gateway User's Guide 10.11 691

Request and Response Processing

For details about the variables available in API Gateway, see “Invoke webMethods IS Policy
Properties for Response Processing” on page 692.

9. Click Save.

This Invoke webMethods IS policy modifies the contents of an outgoing response to the client
based on the IS Service invoked.

Invoke webMethods IS Policy Properties for Response Processing

If Comply to IS Spec parameter is configured as true, API Gateway invokes the IS Service with
IS specification in the path pub.apigateway.invokeISService.specifications:ResponseSpec (for
Response Processing)

The following are the input and output parameters for REST, SOAP, and WebSocket APIs as
specified in the above IS Specification.

Output parametersInput parametersAPI type

REST headersheaders

payload payload

messageContextmessageContext

statusCode statusCode

statusMessagestatusMessage

apiName

requestUrl

correlationID (this is
unique for request and
response)

SOAP headersheaders

payload payload

messageContextmessageContext

statusCode statusCode

statusMessagestatusMessage

apiName

payloadObject

requestUrl

692 webMethods API Gateway User's Guide 10.11

Request and Response Processing

Output parametersInput parametersAPI type

correlationID (this is
unique for request and
response)

WebSocket headersheaders

payload (this is
applicable when the
message type is Text)

payload

messageContext

payloadObjectpayloadObject (this is
applicable when the
message type is Binary)

messageContext

apiName

requestUrl

websocketInfo

correlationID (this is
unique for request and
response)

Note:

For SOAP to REST APIS, the payload contains the transformed JSON response.
Payload transformation does not happen automatically for content-type transformation.
When you change the content type, ensure to do payload transformation also as part of IS
Service.
When Comply to IS spec is true, you can change the values of headers, query, payload,
and so on, programatically using Message Context, as well as using the pipeline variables
given. Software AG recommends you do not change those values directly in Message
Context, as the values in output pipeline variables are written to Message Context after the
invocation of IS Service.

If Comply to IS Spec parameter is set to false, API Gateway invokes the IS Service with the same
input and output parameters supported in 10.1 and the earlier versions::

proxy.name

JSONRESTContentString (REST only)

SOAPEnvelope (SOAP only)

EnvelopeString (SOAP only)

The table lists the properties that you can specify for this policy:

webMethods API Gateway User's Guide 10.11 693

Request and Response Processing

DescriptionProperty

Invoke webMethods Integration Server Service

Specifies the webMethods IS service to be invoked to process the
response messages and the authentication mode for the IS service.

Add invoke webMethods
Integration Server service

Provide the following information:

webMethods IS Service. Specify the webMethods IS service to
be invoked to pre-process the response messages.

The webMethods IS service must be running on the same
Integration Server as API Gateway

Note:
If an exception occurs when invoking the webMethods IS
service, by default APIGateway displays the status code as 500
and error message as Internal Server Error.

You can set custom status code and error message by setting
the following properties in the message context of the
webMethods IS service:

service.exception.status.code
service.exception.status.message

The sample code is given below:
IDataCursor idc = pipeline.getCursor();
MessageContext context =
(MessageContext)IDataUtil.get(idc,"MessageContext");
if(context != null)
{
context.setProperty("service.exception.status.code",
404);
context.setProperty("service.exception.status.message",
"Object Not Found");
throw new ServiceException();
}

Note:
If ServiceException or FlowException occurs when invoking
webMethods IS Service, the message given in the exception is
displayed to the client. If any other exception occurs, a generic
error message is displayed to the client.

Run as User. Specifies the authentication mode to invoke the IS
service. If this field is left blank the incoming credentials of the
user, identified by API Gateway, are used to authenticate and
invoke the IS service. You can also specify a particular user, you
want API Gateway to invoke the IS service.

694 webMethods API Gateway User's Guide 10.11

Request and Response Processing

DescriptionProperty

Note:
It is the responsibility of the user who activates the API to
review the value configured in Run as User field to avoid
misuse of this configuration.

Comply to IS Spec. Mark this as true if you want the input and
the output parameters to comply to the IS Spec present in
pub.apigateway.invokeISService.specifications folder in
wmAPIGateway package.

Note:Software AG recommends users to configure the policy
with Comply to IS Spec as true, as you can read or change the
values of headers, and so on, without having to read from or
write to the message context.

Specifies the webMethods IS service alias used to invoke the
webMethods IS service to pre-process the response messages.

webMethods IS Service
alias

Start typing the webMethods alias name, select the alias from the

type-ahead search results displayed and click to add one
or more aliases.

You can use the delete icon to delete the added aliases from the
list.

Adding Custom Fields to Transactional Events

This section explains about how to add custom fields to the transactional events.

1. Create webMethods IS service by specifying the
pub.apigateway.utils:customFieldInTransactionEventSpec as a specification reference.

2. In the webMethods IS service, set the required custom fields in the customFieldsMap output
variable.

3. Oncewhen customFieldsMap gets created, the customfieldswill be available in the transactional
events.

4. Invoke the API with the Invoke webMethods IS policy.

Note:
You can also add the customfields to the transactional events fromAPIGateway by configuring
the customTransactionFields.FIELD_NAME custom variable in the Custom Extension policy.
For more details, see “How Do I Define a Custom Variable?” on page 619.

webMethods API Gateway User's Guide 10.11 695

Request and Response Processing

Securing Access Token Calls with PKCE

PKCE (Proof Key for Code Exchange - RFC 7636) is supported to enhance the security of theOAuth
2.0 authorization code grant. PKCE is applicable only for public OAuth clients that use the
authorization code grant, which are vulnerable to the Man In The Middle (MITM) attack. In such
cases, the client application should enforce PKCE by giving proof to the authorization server that
the authorization code belongs to the client application. Only then the authorization server issues
an access token for the client application. For more information about PKCE specification, see
https://datatracker.ietf.org/doc/html/rfc7636.

Note:

Use of PKCE is optional.
By default, API Gateway does not enforce PKCE. API Gateway provides backward
compatibility support for APIs migrated from the 10.1 version or higher.
When you import an application from older version of API Gateway, by default, API
Gateway uses the global PKCE setting.
API Gateway supports securing the get access token calls with PKCE, when API Gateway
acts as a local authorization server.
When an external authorization server is used, API Gateway is not involved or remains out
of scope with regards to how the consumer application retrieves a token from the external
authorization server or its security arrangements. In such scenarios, APIGateway is involved
only when validating the token before giving an application access to the API(s).

The PKCE flow works with these parameters:

Code Verifier. The code verifier should be a high-entropy cryptographic random string with
a minimum of 43 characters and a maximum of 128 characters.

Code Challenge. The code challenge is created by SHA256 hashing the code verifier and then
applying base64 URL encoding of the resulting hash. If the client cannot do the hashing and
encoding transformation, it can use the code challengemethod as plainwhere the code challenge
is same as code verifier.

Code ChallengeMethod. This is an optional parameter. If the client uses SHA256 hashing the
code challenge method value must be S256. If no hashing is done, then the code challenge
method value must be plain. When code challenge method is plain , the code challenge value
is the same as the code verifier. If the code challenge method value is not passed in the client
request then plain would be considered as default value.

When you enforce PKCE, the public OAuth client creates a secret called the code verifier. The
client also generates the code challenge for the corresponding code verifier. The PKCE flow is
explained as follows:

1. When the client invokes the authorization endpoint
(http(s)://hostname:port/invoke/pub.apigateway.oauth2/authorize) on the authorization server,
the client sends the code challenge and code challenge method to the authorization server.

2. The authorization server validates the request. If the request is valid, the authorization server
generates the authorization code and saves the supplied code challenge and code challenge
method in the OAuthPKCE cache.

696 webMethods API Gateway User's Guide 10.11

Request and Response Processing

https://datatracker.ietf.org/doc/html/rfc7636

3. The client invokes the token endpoint
(http(s)://hostname:port/invoke/pub.apigateway.oauth2/getAcessToken) on authorization
server to exchange the authorization code for an access token. The client also supplies the
additional input parameter code verifier.

4. Authorization server applies the code challenge method to the supplied code verifier and
generates the code challenge. If the generated code challenge value matches with the code
challenge value supplied to the authorization endpoint service (in step 1), then the token
endpoint service issues the access token to the client.

The following diagram summarizes the PKCE flow:

In API Gateway, you can enforce PKCE at the following levels:

Global level. Using a platform-level global setting, you can enforce PKCE for all the
applications. For more information about how to enforce PKCE at global level, see “ How do
I enforce PKCE globally? ” on page 698

Application level. On a need to have basis, you can also enforce PKCE for a specific application.
For more information about how to enforce PKCE at application level, see “ How do I enforce
PKCE at application level? ” on page 699

The flow chart explains when the API Gateway enforce and does not enforce the PKCE.

webMethods API Gateway User's Guide 10.11 697

Request and Response Processing

How do I enforce PKCE globally?
This section explains how to enforce PKCE globally in the local authorization server. When you
enforce PKCE at global level, then it is applied for all the public OAuth2.0 clients of local
authorization server.

To enforce the PKCE at global level

1. Expand the menu icon, in the title bar, and select Administration.

2. Select Security > JWT/OAuth/OpenID.

698 webMethods API Gateway User's Guide 10.11

Request and Response Processing

TheAuthorization servers section displays a list of available internal and external authorization
servers.

3. In the Internal authorization servers section, click local .

4. Expand the OAuth configuration section, select the Enforce PKCE checkbox.

5. Click the Update button.

Once you enforce PKCE, you get access token only on successful validation of code verifier.

How do I enforce PKCE at application level?
This section explains how to enforce PKCE at an application level in the local authorization server.
When you enforce PKCE at an application level, it is enforced only for that application.

To enforce PKCE at an application level

1. Create OAuth scope in the local authorization server.

webMethods API Gateway User's Guide 10.11 699

Request and Response Processing

2. Create a newapplication or update an existing applicationwithOAuth2 authentication strategy.

For details about creating an application, see “Creating an Application” on page 413.

3. Open the application and click the Authentication to create a strategy with OAuth2
authentication.

Make sure you have selected the following mandatory fields for this use case:

Select the Authentication schemes as OAUTH2.

Specify the Authentication server as local.

700 webMethods API Gateway User's Guide 10.11

Request and Response Processing

Select the Application Type as Public.

Specify the grant type to be used to generate the credentials. For this specific use case, you
must select authorization_code, which is dynamically populated from the authorization
server.

In the Enforce PKCE section, select one of the following:

DescriptionPKCE Settings

If you select this option, the local authorization server enforces PKCE
even if the PKCE is not enforced at the global level.

Enforced

If you select this option, the local authorization server does not enforce
PKCE even if the PKCE is enforced at the global level.

Not Enforced

If you select this option, the local authorization server enforces PKCE
based on the PKCE setting at the global level.

Use Global Setting
(Enforced)

Note:
The value inside the parenthesis depictswhether you have enforced
the PKCE at the global level or not.

For details about how to enforce PKCE at global level, see “ How do
I enforce PKCE globally? ” on page 698.

Note:
The application level PKCE enforcement takes precedence over the global level PKCE
enforcement.

Specify the postman https://oauth.pstmn.io/v1/callback URL as redirect URI.

Specify the OAuth scope that you have created for the local authorization server in Step
1.

4. Click Add to save the strategy.

5. Click Save to update and save the application.

Once you enforce PKCE, you get access token only on successful validation of code verifier.

How do I secure the access token by directly calling API
Gateway's REST APIs?
This section explains how to secure the get access token calls when you enforce the PKCE using
REST APIs.

Before you begin

Ensure that you have:

webMethods API Gateway User's Guide 10.11 701

Request and Response Processing

generated Code Challenge and Code Verifier using the JAR file. For details about how to
generate code challenge and code verifier, see “ How do I generate code verifier and code
challenge using JAR files? ” on page 706.

enforced PKCE either at global level or application level.

To secure the access token

1. Get authorization code.

a. Call the authorize endpoint using a REST client.
http(s)://hostname:port/invoke/pub.apigateway.oauth2/authorize?
response_type=code&redirect_uri=<redirectURI>&client_id=<Client
ID>&code_challenge=<Code_Challenge>&code_challenge_method=S256

Note:
Make sure you have replaced the redirectURI , ClientID, and Code_Challenge in the above
mentioned URL. You can get the redirect URI and client ID from the Authentication tab
of the Application screen.

b. Click the Approve button

c. Provide the credentials of API Gateway user to approve the request.

You are re-directed to the redirect URI as per the configuration in the application strategy.
The screenshot below is just a sample, you are redirected to a different URL based on your
configuration, so the screenshot varies accordingly. If the given redirect URI is not a valid
web page, you might get a Page not found error, which is fine, because we get the
authorization code value from the browser URL.

702 webMethods API Gateway User's Guide 10.11

Request and Response Processing

d. Make a note of the authorization code.

Note:
If the redirect URL screen is not able to display the authorization code, then you can
take it from the address bar of the browser. As highlighted in the above image's URL,
you can see the authorization code in the code=field of the URL.

2. Get access token.

a. Invoke the access token endpoint using a REST client.

Request: POST http(s)://hostname:port/invoke/pub.apigateway.oauth2/getAccessToken.

You need to pass authorization header using basic authentication with the client ID as
username and client secret as the password. You can get the client ID and client secret in
the Authentication tab of the Application screen in the API Gateway UI.

Sample request body
{

"redirect_uri":"http://test.com",
"scope":"email",
"grant_type":"authorization_code",
"code":"0025abe9f96d4901b61340344c29a576",

"code_verifier":"a4793f15479a4c5697f93b44d055ab6cbd16be50400a4591892f914b1a256da8",
"client_id":"374b1fae-4405-411b-85a0-6e1ab90923ba"

}

Note:
You must replace the redirect_URI, scope, code, and code_verifier with appropriate
values. For the code field, make sure you use the authorization code you noted down
in the step 1.d.

Sample response body
{

"access_token":
"b5b33bc9c57945f388010f8caf5fe9b6b14abef468d346e68e0cd374c0df60d7",

"token_type": "Bearer",
"expires_in": 3600

}

How do I test the access token with Authorization Code (With
PKCE) grant type using postman?
This section explains how to test the get access token calls using postman.

To test the access token

webMethods API Gateway User's Guide 10.11 703

Request and Response Processing

1. In the Postman, under the Authorization tab, select the authorization type as OAuth2.0 from
the TYPE drop-down menu.

a. In the Configure New Token section, select the grant type as Authorization Code (With
PKCE).

b. Type the redirect URL as https://oauth.pstmn.io/v1/callback in the Callback URL text
box .

c. Select the Authorize using browser check box

d. Type the authorization URL as
http(s)://hostname:port/invoke/pub.apigateway.oauth2/authorize in theAuth URL text
box

e. Type the http(s)://hostname:port/invoke/pub.apigateway.oauth2/getAccessToken in the
Access Token URL text box.

f. Type the client ID and client secret in theClient ID andClient Secret text boxes respectively.

Note:
You can get the client ID and client secret from theAuthentication tab of theApplication
screen.

704 webMethods API Gateway User's Guide 10.11

Request and Response Processing

g. Select the hashing method used to generate the code challenge from the Code Challenge
Method drop down menu.

h. Specify the OAuth scope that you have created for the local authorization server in Step 1
in the Scope text box.

i. Select the client authentication as Send client credentials in body .

j. Click the Get New Access Token button.

k. Click the Approve button.

The MANAGE ACCESS TOKENS pop-up window displays the access token.

How do I enforce PKCE selectively for each access token call?
You can enforce PKCE specific to each GET access token call. To perform this use case, you must
clear theEnforce PKCE check box in the Administration > Security > JWT/OAuth/OpenID screen.
When you disable the PKCE global option, by default PKCE is not verified. But if you send the
authorize request with the code challenge and code challenge method parameters, you get an
access token with PKCE verification.

webMethods API Gateway User's Guide 10.11 705

Request and Response Processing

How do I generate code verifier and code challenge using JAR
files?
If you want to secure the access token by directly calling REST APIs in API Gateway, you have to
generate the code verifier and code challenger using JAR files.

Before you begin

Ensure that you have JShell, which is available as part of JDK from JDK9.

To generate code verifier and code challenge

1. Invoke the JShell file in the Install_Dir\common\lib directorywith class path set to
wm-isclient.jar using the below command:

C:\> jshell -c c:\ Install_Dir\common\lib\wm-isclient.jar

2. Import the PKCE class file using the following command:

jshell> import com.softwareag.util.PKCE;

3. Create code verifier using the following command:

jshell> PKCE.createCodeVerifier();

The code verifier is generated as follows:

$2==>"95b4efde52b141d1bde8a7bfc23bdb244728fdd70d4a4be5b110866cfc218db7"

4. Create code challenger using the following command:

jshell> PKCE.createCodeChallenge("code_verifier","S256");

Note:
Replace the code_verifier parameter with the code verifier string that you generated in the
previous step.

The code challenge is generated using SHA 256 hashing method as follows:

$3==>"tMTWyt3W5QtaPIqNkqAHLTGZnN0aPopp2fsLrUFdAC0"

Trace API

With Trace API support, you can monitor the complete life cycle of the runtime requests within
API Gateway. This use case explains how to trace an API call in API Gateway. You can perform
tracing for any runtime requests. Inspecting the failed runtime requests help you to debug and
troubleshoot your API calls. You can trace REST, SOAP, and OData API calls only.

On enabling the tracer for an API, you can view the list of runtime requests that invoked the API.
For each request, you can view

706 webMethods API Gateway User's Guide 10.11

Request and Response Processing

the list of policies that were invoked in each stage

time taken to execute the stage and its corresponding policies

policy configured at the time of invocation

values that were passed as input before the execution of the policies and values that were
transformed at the end of the policy execution

conditions and transformations that were applied and performed at the time of invocation

server log captured at the time of invocation

Note:
Server logs are captured based on the log level settings enabled for runtime requests. To
capture detailed logs during tracing, set the log level to DEBUG or TRACE for all the required
stages in the Integration Server.

Important considerations when you trace an API:

When you create a new API version from an API for which tracing is enabled, by default
tracing is disabled in the newly versioned API.

When you import an API with the Overwrite option selected as All or Custom - API, and if
the API already exists after you import the API, by default the trace is disabled. You have to
enable trace explicitly.

When you promote an API with the option Overwrites assets except alias that already
exist on the selected target stages selected, by default after you promote the API to the
target instance, the trace is disabled. You have to enable trace explicitly.

API Gateway does not support tracing for threat protection policies and rules.

API Gateway does not support tracing for Microgateway groups.

The following policies are covered as part of trace API:

Transport

Enable HTTP/HTTPS

Set Media Type

Identify & Access

Authorize Users

Identify & Authorize

Custom Extension

Request Processing

Invoke webMethods IS

Request Transformation

webMethods API Gateway User's Guide 10.11 707

Request and Response Processing

Data Masking

Custom Extension

Routing

Straight Through Routing

Custom HTTP Header

Outbound Auth - Transport

Custom Extension

Response Processing

Invoke webMethods IS

Response Transformation

CORS

Data Masking

Custom Extension

Error Handling

Data Masking

Custom Extension

Note:
You can enable or disable tracing for an API by using the Service Management REST API. For
more details about this API, see “Service Management” on page 580.

How do I enable tracing?
This use case starts when you want to enable trace for an API and ends when you view the trace
details for that API.

Before you begin

Ensure that you have:

Manage APIs privilege.

Activated the API before you enable the tracer.

To enable tracing

1. Click APIs in the title navigation bar.

2. Click an API for which you want to enable the trace.

708 webMethods API Gateway User's Guide 10.11

Request and Response Processing

The API details page displays the basic information, technical information, resources and
methods, and specification for the selected API.

3. Click the Enable tracing button.

Once you have enabled the tracer, the API details page displays the warning message, This
API has tracing enabled. Tracing impacts performance and storage, hence disable
tracing when it is not needed.

4. Click the Tracer tab to view the trace details

The Trace API page displays theRuntime events,Policies applied, andEvent tracer details
sections.

Note:
When you enable tracer, API Gateway captures a large amount of data, whichmight impact
the performance and availability of the product. Hence Software AG strongly recommends
you to disable the tracer when not needed and employ data house keeping procedures. For
more information about Data housekeeping, see webMethods API Gateway Administration .

How do I filter the runtime request?
This use case starts when youwant to filter the client request based on its runtime events and ends
when you view the trace details of the filtered client request.

To filter the runtime event

1. Click the Tracer tab.

The Trace API page displays theRuntime events,Policies applied, andEvent tracer details
sections.

webMethods API Gateway User's Guide 10.11 709

Request and Response Processing

2. In the Runtime events section, click to filter the runtime events.

The Apply filter pop-up window displays.

3. To filter the runtime events, click and select the time interval using the options:

Quick select. Specify the time interval. Click Apply to filter the runtime events based on
the time interval.

Commonly used. Select a commonly used time interval, and the filter is applied
automatically. To view the runtime events between a time interval, click Custom range
> From Date > To Date > Apply.

710 webMethods API Gateway User's Guide 10.11

Request and Response Processing

The Runtime events section displays the list of runtime events based on the applied filter.

The runtime events are displayed using various legends to indicate the different types of
requests along with their status code.

The below table displays the legends and their description:

webMethods API Gateway User's Guide 10.11 711

Request and Response Processing

DescriptionLegends

Successful API calls

Failed API calls due to client-side errors

Failed API calls due to Server-side errors

Redirection calls

Informational calls

How do I view the trace details?
This use case starts when you want to view the stage-wise and policy-wise trace details about the
selected client request and ends when you view the trace details at the policy level.

Before you begin

Ensure that you have:

Manage APIs and Activate APIs privileges.

Invoked the API after you have enabled the tracer.

To view the trace details

1. In the Runtime events section, click the client request for which you want to view the trace
details.

The Trace API page refreshes and populates data in the Policies applied and Event tracer
details sections. By default, theEvent tracer details section displays theGeneral Information,
API request and response, andServer logs sections. Under theAPI request and response
section, you have the following sub-sections:

Request sent by client. Displays the request headers and request body sent by the client
to API Gateway.

Response sent to client. Displays the response headers and response body sent to the
client from API Gateway.

Request sent to native service . Displays the request headers and request body sent to
the native API from API Gateway.

712 webMethods API Gateway User's Guide 10.11

Request and Response Processing

Response sent by native service. Displays the response headers and response body sent
by the native API to API Gateway.

Note:
If the request and response body has streaming content, the tracer does not capture the
streaming content even if you have enabled the tracer.

webMethods API Gateway User's Guide 10.11 713

Request and Response Processing

2. In the Policies applied section, click the stage name for which you want to view the trace
details

The Trace API page refreshes the Event tracer details section with the stage_ name stage
execution status section displaying the status and response time of the stage and policies
that are enforced during API invocation.

Note:

In thePolicies applied section, if no policies is enforced in a stage during the invocation
then that stage is disabled. In this use case, Error Handling stage is disabled.
The Status column indicates that whether the corresponding policy is invoked or not.

If the Status column displays , it indicates the corresponding policy is
enforced successfully during invocation but it does notmean that the conditions specified
in the policy are matched. You can click the respective policy to know more details on
how the conditions were applied during invocation.

3. In the Policies applied section, click the policy name for which you want to view the trace
details

The Trace API page refreshes the Event tracer details sections with the policy_name policy
config/input/output section displaying the configuration details, values that were passed as
input before the enforcement of the policies and values that were transformed at the end of
the policy enforcement, conditions and transformations that were applied and performed at
the time of invocation, and payloads.

714 webMethods API Gateway User's Guide 10.11

Request and Response Processing

Note:
The template of the policy_name policy config/input/output section varies based on the
policy

webMethods API Gateway User's Guide 10.11 715

Request and Response Processing

How do I inspect failed runtime requests using tracer?
This use case startswhen youwant to inspect the failed runtime request and endswhen youdebug
and troubleshoot the failed API requests.

To inspect the failed runtime request

1. In the Runtime events section, click the client request for which you want to inspect the trace
details.

The Trace API page refreshes and populates data in the Policies applied and Event tracer
details sections. By default, theEvent tracer details section displays theGeneral Information,
API request and response, andServer logs sections. Under theAPI request and response
section, you have the following sub-sections:

Request sent by client . Displays the request headers and request body sent by the client
to API Gateway.

Response sent to client. Displays the response headers and response body sent to the
client from API Gateway.

Request sent to native service . Displays the request headers and request body sent to
the native API from API Gateway.

Response sent by native service. Displays the response headers and response body sent
by the native API to API Gateway.

Note:
If the request and response body has streaming content, the tracer does not capture the
streaming content even if you have enabled the tracer.

716 webMethods API Gateway User's Guide 10.11

Request and Response Processing

2. In the Policies applied section, click the stage name highlighted in red for which you want
to inspect the trace details.

The Trace API page refreshes the Event tracer details section with the stage_ name stage
execution status section displaying the status and response time of the stage and policies
that failed during API invocation.

webMethods API Gateway User's Guide 10.11 717

Request and Response Processing

Note:
In the Policies applied section, if no policies in a stage is enforced during the invocation
then that stage is disabled. In this use case, Response Processing stage is disabled and it
is not enforced as the API invocation fails in the Routing stage. The Error Handling stage
was enforced in order to handle the Routing stage failure.

3. In thePolicies applied section, click the policy name request highlighted in red for which you
want to inspect the trace details.

The Trace API page refreshes the Event tracer details sections with the policy_name policy
config/input/output section displaying the configuration details, values that are passed during
the enforcement of that policy, transformation conditions, and payloads. It also highlights the
exact location where the policy invocation failed along with the failure reason.

718 webMethods API Gateway User's Guide 10.11

Request and Response Processing

Note:
The template of the policy_name policy config/input/output section varies based on the
policy

webMethods API Gateway User's Guide 10.11 719

Request and Response Processing

How do I import runtime requests?
This use case starts when you want to import the client request from any other API Gateway
instance to your API Gateway instance and ends when you view the trace details for the imported
request.

Before you begin

Ensure that the imported request's API ID matches with the API ID to which you import the
request. The API type must also match with the API to which you import the archived request. If
the imported request's API ID or API type does not match with the existing API, API Gateway
rejects the import request.

To import the runtime request

1. Click the Tracer tab.

The Trace API page displays theRuntime events,Policies applied, andEvent tracer details
sections.

2. In the Runtime events section, click to import the archived runtime request.

The Import and view events pop-up window displays.

3. Browse the runtime request file that you want to import.

Note:
Make sure the file that you import does not exceed 50 MB.

4. Click the View button.

The imported request gets displayed in the Runtime events section.

720 webMethods API Gateway User's Guide 10.11

Request and Response Processing

How do I export or download runtime requests?
This use case starts when you want to export the client request from your API Gateway instance
to your local machine and ends when you import the request in another API Gateway instance.

To export the runtime request

1. Click the Tracer tab.

The Trace API page displays theRuntime events,Policies applied, andEvent tracer details
sections.

2. In the Runtime events section, select the runtime event that you want to export.

Note:
The Runtime events section lists only 20 runtime events per page. When you click Select
all per page check box, all the runtime events of the API do not get selected. Instead, the
20 runtime events that are listed in that particular page gets selected.

3. Click to export the runtime request.

The selected request is downloaded to your local machine in a predefined location.

How do I archive or purge the tracer details?
This use case starts when you want to archive or purge the tracer details and ends when you have
successfully archived or purged the tracer details.

webMethods API Gateway User's Guide 10.11 721

Request and Response Processing

To archive or purge the trace details

1. Expand the menu icon in the title bar and selectAdministration >Manage Data >Archive
and purge.

2. Select

the event type as Mediator trace span to archive or purge the stage-wise mediator details
captured when you enabled the tracer.

the event type as Server log trace span to archive or purge the server logs that were
captured when you enabled the tracer.

the event type as Request response trace span to archive or purge the requests and
response logs that were captured when you enabled the tracer.

Note:
Ensure that all the three event types mentioned are archived or purged, so that the tracer
does not impact the performance of API Gateway.

3. Click either the

Archive check box to archive the tracer data.

Purge check box to purge the tracer data.

4. Select one of the following options to archive the required data.

Select Range. Select a period during which you want the data to be archived.

722 webMethods API Gateway User's Guide 10.11

Request and Response Processing

To archive selected types of data from a particular date till the current date, select the
required date in the From date field.

To archive selected types of data from the beginning (events start date) till a particular
date, select the required date in the To date field.

API Gateway archives the selected type of data for the specified date range.

Select Duration. Type the maximum time after which you want the data to be archived.

API Gateway archives the selected types of data after the time specified in years, months,
days, hours, minutes, or seconds (1y, 1m, 1d, 1H, 1M, 1S).

5. Click the Submit button.

Based on your selection, API Gateway archives or purges the trace details.

How do I archive and purge the tracer details using REST API
Calls?
API Gateway provides the following REST API and the resources to archive and purge the trace
details:

To archive the trace details use the following REST API calls:

POST/rest/apigateway/
apitransactions?action=archive&eventType=serverLogTraceSpan&from=yyyy-MM-dd
HH:mm:ss&until=yyyy-MM-dd HH:mm:ss

This archives the server logs that were captured when you enabled the tracer for the specified
range.

POST/rest/apigateway/apitransactions/
archives?action=archive&eventType=serverLogTraceSpan&olderThan= 7d

This archives the server logs that were captured when you enabled the tracer for the specified
duration.

With this REST API call you can archive the server logs that were captured during the last 7
days. Similarly, you can archive the last months and years trace details by specifying the
olderThan as 2y for 2 years and 3M for 3 months. You can specify the number of days, years,
and months as per your need.

To purge the trace details use the following REST API calls:

DELETE/rest/apigateway/
apitransactions?action=purge&eventType=serverLogTraceSpan&from=yyyy-MM-dd
HH:mm:ss&until=yyyy-MM-dd HH:mm:ss

This deletes the server logs that were captured when you enabled the tracer for the specified
range.

webMethods API Gateway User's Guide 10.11 723

Request and Response Processing

DELETE/rest/apigateway/
apitransactions?action=purge&eventType=serverLogTraceSpan&olderThan= 7d

This deletes the server logs that were captured when you enabled the tracer for the specified
duration.

With this REST API call you can delete the server logs that were captured during the last 7
days. Similarly, you can delete the last months and years trace details by specifying the
olderThan as 2y for 2 years and 3M for 3 months. You can specify the number of days, years,
and months as per your need.

To archive and purge the trace details use the following REST API calls:

DELETE/rest/apigateway/
apitransactions?action=archiveAndPurge&eventType=serverLogTraceSpan&from= yyyy-MM-dd
HH:mm:ss&until=yyyy-MM-dd HH:mm:ss

This archives and deletes the server logs that were captured when you enabled the tracer for
the specified range.

DELETE/rest/apigateway/
apitransactions?action=archiveAndPurge&eventType=serverLogTraceSpan&olderThan= 7d

This archives and deletes the server logs that were captured when you enabled the tracer for
the specified duration.

With this REST API call you can archive and delete the server logs that were captured during
the last 7 days. Similarly, you can archive and delete the last months and years trace details
by specifying the olderThan as 2y for 2 years and 3M for 3 months. You can specify the number
of days, years, and months as per your need.

Note:
In all these REST API calls,

if you want to archive and purge the stage-wise mediator details, specify the eventType as
mediatorTraceSpan.
if you want to archive and purge the requests and response logs, specify the eventType as
requestResponseTraceSpan.

When you make these REST API calls, you can see the job ID in the response, which is used in the
following REST API call to retrieve the status of the job.

To view the status of archive or purge jobs:

You can view the status of archive or purge jobs using the following REST API call:

GET/rest/apigateway/apitransactions/jobs/JobID retrieves the status of the specified job ID.

Sample request:
GET/rest/apigateway/apitransactions/jobs/ca108bf0-34f3-4726-83a0-2eab4f8b947

Sample response payload:
{

724 webMethods API Gateway User's Guide 10.11

Request and Response Processing

"status": "Completed",
"action": "purge",
"jobId": "ca108bf0-34f3-4726-83a0-2eab4f8b9473",
"creationDate": "2021-08-16 09:07:35 GMT",
"totalDocuments": 4456,
"deletedDocuments": 4456

}

webMethods API Gateway User's Guide 10.11 725

Request and Response Processing

726 webMethods API Gateway User's Guide 10.11

Request and Response Processing

14 AppMesh Support in API Gateway

■ Overview of webMethods AppMesh ... 728

■ Configure API Gateway to Connect to a Service Mesh Environment 732

■ AppMesh Deployment .. 734

■ Undeploy AppMesh .. 737

■ Provisioning of API and Policy Updates ... 737

webMethods API Gateway User's Guide 10.11 727

Overview of webMethods AppMesh

Businesses are adopting microservices for agility and scalability. In managing the complexity of
distributed microservices environments, the microservices-based architecture might run into
operational challenges, such as service discovery, connectivity, security, and fault tolerance. This
is where a service mesh helps in providing critical capabilities that provide a solution for the
operational challenges you face. For example, the collaboration of services within a microservice
architecture requires the exchange of requests. In case a service is overloaded by requests, the
service mesh reroutes the requests to address the overload situation for optimizing the services
to work together.

As an application develops, new services are added; this complicates the communication network,
increases chances of failure, and adds to the complexity of finding where the problem occurred.
A service mesh makes handling the complex network easier as it captures the service-to-service
communication details. In a service mesh, the requests between the microservices are routed
through the proxies in its own infrastructure layer.

The figure below depicts the microservice environment on the left and the microservice with the
service mesh infrastructure on the right. The microservices have individual proxies deployed
alongside each service, in a separate container. The service-to-service communication is routed
through these proxies.

Since the servicemesh is built into the application, it helps in fast and easy communication amongst
the services with less downtime as the application grows in size.

Why AppMesh?

Though the service mesh helps in managing a complex landscape of microservices, there is a
limitation when it comes to application awareness. It is difficult to achieve application-level
enforcement on the requests before they reach themicroservices.webMethodsAppMeshprovides
the required solution of applying an application context to a service mesh or microservice
deployments.

webMethods AppMesh extends the service mesh platform by providing application awareness
through theAPIfy action on the microservices, where it provides an API face to the microservices.
This enables the reuse, governance, consumption, landscapemanagement capabilities, and drives
the API-led integration of microservices.

728 webMethods API Gateway User's Guide 10.11

14 AppMesh Support in API Gateway

The figure below depicts an AppMesh deployment, wherein a business context is added to the
service mesh through API Gateway. Each service is APIfied and has a Microgateway injected as a
sidecar.

Features and Benefits

AppMesh allows your organizations to manage microservices-led applications to:

Gainbetter control. Group andmanagemicroservices as business applications. Create,manage,
and deliver new applications quickly.

Govern applications centrally. Add context to your microservices and API landscape.

Deliver without disruption. Enhance your application without making changes to existing
services.

In detail, AppMesh provides several critical functions, which include:

Discovering services.

Creating, managing, and delivering new applications quickly.

Applying business rules to drive application-specific behavior.

Deep visibility into how the application is running and who is using it.

Istio-based AppMesh

Istio is an open source service mesh platform that provides a way to control how microservices
share datawith one another and is designed to run in a variety of environments; Kubernetes being
one of them. Istio support is added to a service by deploying an Envoy proxy that sits alongside
a service and routes requests to and from other proxies.

API Gateway provides the capability to discover services in a Kubernetes-based Istio deployment.
It allows to APIfy a service, and deploy it back to the Kubernetes environment. After deploying
the services back into the Kubernetes environment, you can provision theAPIs and service updates
from theAPIGateway user interface, through theMicrogateway injected as a sidecar for the service
in the Kubernetes pod.

webMethods API Gateway User's Guide 10.11 729

14 AppMesh Support in API Gateway

The APIs that AppMesh creates as a result of theAPIfy action are directly linked to and are hosted
by Microgateway, and are used to enforce the policies to the service-to-service communication,
which is called the East-West traffic.

The figure belowdepicts the Istio-basedAppMesh architecturewhere the communication between
the pods is through the envoy proxy and the Microgateway injected into the pod communicates
with the API Gateway.

Kubernetes-based AppMesh

You can deploy AppMesh in a Kubernetes environment even without a service mesh or Istio
deployment. API Gateway provides the capability to discover services,APIfy a service, and deploy
it back to the Kubernetes environment. On deploying the AppMesh, the Microgateway is injected
as a sidecar for the service in the Kubernetes pods. The Microgateway injected into the pod acts
as a proxy for the services for the inter-service communication. You can now provision the APIs
and service updates, from the API Gateway user interface, through the Microgateway injected as
a sidecar for the service in the Kubernetes pod.

The figure below depicts the Kubernetes-based AppMesh architecture without a service mesh
deployment. TheMicrogateway injected into the pod as a sidecar communicateswithAPIGateway
and any updates to the APIs or policies enforced on the services are provisioned through the
Microgateway into the Kubernetes pod.

730 webMethods API Gateway User's Guide 10.11

14 AppMesh Support in API Gateway

Supported Platforms

webMethods AppMesh supports the following platforms:

Istio on Azure Kubernetes

Istio on Kubernetes

Istio on Rancher

API Gateway supports Kubernetes versions 1.9 to 1.17.0, and Istio versions 1.5 and 1.6.

AppMesh Licensing

The API Gateway license is extended with the AppMesh feature.

You can configure the AppMesh feature license in the Administration > General > License >
Configuration section. For details about configuring API Gateway license, see webMethods API
Gateway Administration.

You can view the AppMesh license details in the Administration > General > License > Details
section. For details about viewing license details, see webMethods API Gateway Administration.

If the API Gateway license does not contain theAppMesh feature support, the following functions
are not available in an API Gateway instance:

AppMesh tab in the API Gateway user interface.

Service mesh configuration section under Administration > External accounts in the API
Gateway user interface.

webMethods API Gateway User's Guide 10.11 731

14 AppMesh Support in API Gateway

Configure API Gateway to Connect to a Service Mesh
Environment

To discover the services and deploy AppMesh, you must configure API Gateway to connect to
the service mesh environment where the services reside.

This configuration section is visible in the API Gateway user interface if you have the required
AppMesh license and theManage general administration configurations privileges.

Before you begin

Ensure that you have:

Manage general administration configurations privileges.

Valid AppMesh license.

Kubernetes client configuration file and its location to set up the connection between API
Gateway and the service mesh.

For details about Kubernetes in general and the Kubernetes client configuration file, see
Kubernetes documentation.

Valid namespaces in Kubernetes with or without the Istio service mesh environment setup.

Docker image for Microgateway pushed to a registry that is reachable by your Kubernetes
environment.

For details about how to create the Microgateway image, see “Creating a Microgateway
Image” on page 733.

To configure API Gateway to connect to a service mesh environment

1. Click and select Administration.

2. Click External accounts > Service mesh.

3. Click Browse, select and upload the required Kubernetes client configuration file.

On successful upload of the file, the cluster name and the cluster endpoint details appear in
the table.

API Gateway supports a single Kubernetes cluster and context. If multiple cluster or contexts
exist, AppMesh uses the context present in the current context field of the Kubernetes client
configuration file.

4. Provide the following details required for AppMesh configuration:

732 webMethods API Gateway User's Guide 10.11

14 AppMesh Support in API Gateway

DescriptionField

Optional. Specify the API Gateway URL of the API Gateway
instance.

API Gateway URL

This is required to set up the communication channel between
API Gateway and the Microgateway that is injected into the
Kubernetes pod.

If you do not configure the API Gateway URL, the default
value is picked up from the Load balancer URLs that are
configured under Administration > Load balancer in the
following precedence:

a. First of the HTTPS Load balancer URL, if configured.

b. First of the HTTP Load balancer URL, if configured.

c. Default host name with 5555 as the default port.

The username of the API Gateway instance.API Gateway username

The password of the API Gateway instance.API Gateway password

Specify the location of the Microgateway image to deploy
Microgateway as a sidecar in the Kubernetes pod.

Microgateway image

Specify the port the Microgateway listens on.Microgateway port

Specify theKubernetes namespace tomonitor usingAppMesh.Namespaces

You can add multiple namespaces.

If you do not provide any namespace, then the default
namespace default, that is present inKubernetes environment
is picked up.

5. Click Save configuration.

The service mesh environment is configured, and the communication between API Gateway
and the service mesh is enabled.

You can now proceed with discovery of services and deploying AppMesh.

Creating a Microgateway Image
The Microgateway image is required to deploy the Microgateway as a sidecar in the Kubernetes
pods. The Microgateway has to be present in the registry repository for it to be available for
deployment as a sidecar into a Kubernetes pod.

1. Run the following commands to build the required Microgateway image:

webMethods API Gateway User's Guide 10.11 733

14 AppMesh Support in API Gateway

./microgateway.sh createDockerFile --docker_dir . -p 9090
docker build -t your-repo:mcgw-app-mesh -f Microgateway_DockerFile
docker push your-repo:mcgw-app-mesh

The Microgateway image can now be used to inject Microgateway as a sidecar in the Kubernetes
pods while deploying AppMesh.

AppMesh Deployment

This section describes how microservices are discovered and deployed in AppMesh.

Before you begin

You must have a Kubernetes environment with or without service mesh configured, and an
AppMesh environment set up in API Gateway.

Stages in AppMesh deployment

1. “Service Discovery” on page 734

2. “APIfy” on page 735

3. “Update API Definition and Policies” on page 736

4. “Deploy AppMesh” on page 736

Service Discovery
AppMeshuses theKubernetes RESTAPI to search for services or deployments from theKubernetes
environment for the configured namespaces.

You can view all the discovered services in the API Gateway user interface in the AppMesh tab.

A list of microservices created in the Kubernetes environment as deployments, present in the
configured AppMesh namespaces appears.

To view the service details, click View details. The service details page displays the following
information:

ComponentsService Details

Basic information Service name. Name of the microservice.

Namespace. Name of the namespace added in themicroservice.

Internal endpoints. These are the native endpoints of the
microservice, which is present in the routing policy of the API,
that are only reachable within the cluster. These endpoints are
created in the Kubernetes environment as services.

External endpoints. These are the service endpoints that are
used by the external client to invoke an API.

734 webMethods API Gateway User's Guide 10.11

14 AppMesh Support in API Gateway

ComponentsService Details

Deployment details Deployment configuration. Provides the YAML deployment
configuration.

Deployment flow. Provides the microservice pod traffic details.

Provides the following service mesh proxy details:Service mesh sidecar

Virtual services that are associated with the service

Destination rules

Authorization policies

Envoy filters

Note:
Formore information about servicemesh proxy details, see https://
istio.io/latest/docs.

Microgateway sidecar API. Provides a link to the API details page.

Microgateway. Provides a link to Microgateway groups.

You can perform the following actions in the service details page:

APIfy

Deploy

Undeploy

APIfy
APIfy is the process of giving an API face to the Kubernetes service. APIfy creates an empty API
with the endpoint that API Gateway receives from the service.

Click APIfy to APIfy a microservice. An API is created for the microservice in API Gateway and
you can access it using the APIs tab or the API link in the Microgateway sidecar section of the
service details page.

The API created by default has a single resource with resource path (/) and the routing endpoint
is the first internal endpoint of the service.

Note:
Only one API can be created for a microservice.

webMethods API Gateway User's Guide 10.11 735

14 AppMesh Support in API Gateway

https://istio.io/latest/docs
https://istio.io/latest/docs

Update API Definition and Policies
The API created after you APIfy a microservice, may need updates to the API definition and API
policies (if any). You can update the API definition with the OpenAPI, Swagger, or RAML files.

To update the API definition and policies

1. Click APIs in the title navigation bar.

Note:
Alternatively, you can navigate to the API details page using the API link in the
Microgateway sidecar section of the service details page.

2. Select an API from the list of APIs.

3. Click and select Update.

The Update API window appears.

4. Update the API definition in one of the following ways:

By importing the API definition from a file.

By importing the API definition from a URL.

For more information about how to update APIs, see “Updating APIs” on page 101.

5. Click Update.

The updated API definitionmust match the API implemented by themicroservices. The REST
resources and the available REST operations are enforced by the injected Microgateway.

Service requests against undefined resources or operations are rejected.

Deploy AppMesh
After updating the API definition, the service is deployed and the policies that are assigned in
API Gateway are injected to the Kubernetes pod as a Microgateway sidecar.

Click Deploy to deploy AppMesh.

Note:
Before you deploy a service, you must APIfy it and the service must contain an API in API
Gateway.

After you deployAppMesh, you can view the injectedMicrogateway details in one of the following
ways:

736 webMethods API Gateway User's Guide 10.11

14 AppMesh Support in API Gateway

Using theMicrogateway link in theMicrogateway sidecar section of the service details page.

Using the Microgateways tab.

Note:

There is a downtime in the initial deployment, due to the Kubernetes service definition
update.
Services for deployments that have their target ports,which are referencedwith the container
ports, are not supported by AppMesh. As AppMesh injects an additional container to the
deployment, it causes an ambiguity in the referenced service target ports.

Undeploy AppMesh

The undeploy action removes the injected Microgateway from the microservice deployment, and
corrects the service definition to point to the microservice.

Click Undeploy to undeploy AppMesh.

Note:
There is a downtime in the undeployment, due to the Kubernetes service definition update.

Provisioning of API and Policy Updates

To provision theAPI definition and policy updates for aMicrogateway deployed in the Kubernetes
pod, you have to update the API and redeploy AppMesh.

To provision API and policy updates in the AppMesh environment

1. Click AppMesh.

A list of microservices in the Kubernetes environment present in the namespaces, configured
in the AppMesh configuration, and those that expose a nodePort and the corresponding
deployments appears.

2. Click View details to view the service details.

3. Open the corresponding API of the microservice.

4. Update the API definition of the API.

a. Update the API definition in one the following ways:

By importing the API definition from a file.

By importing the API definition from a URL.

For more information about how to update APIs, see “Updating APIs” on page 101.

b. Update the required API policies, if any.

webMethods API Gateway User's Guide 10.11 737

14 AppMesh Support in API Gateway

For more information about how to update policies, see “Managing API-level Policies” on
page 373.

5. Click AppMesh to view the microservices updated with the API definition and API policies.

6. Click View details to view the service details.

7. Click Deploy.

The service is redeployed and Microgateway is injected to the Kubernetes pod.

To allow redeployment updates to occur with zero downtime of the pods, the Kubernetes
out-of-the-box support through rolling updates is used. This ensures that the deployment does
not break the current requests, and no requests are dropped due to a pod failure.

The Kubernetes rolling updates strategy used in AppMesh redeployment has the following
parameters:

RollingUpdate. New pods are added gradually, and old pods are terminated gradually.

maxSurge. The number of pods that can be created above the desired amount of pods during
an update.

maxUnavailable. The number of pods that can be unavailable during the update process.

Sample Rolling Update strategy you must add in the deployment descriptor that allows for
maximum available pods is as follows:
strategy:

type: RollingUpdate
rollingUpdate:

maxUnavailable: 0
maxSurge: 1

738 webMethods API Gateway User's Guide 10.11

14 AppMesh Support in API Gateway

15 Accessibility Profile

■ Overview .. 740

webMethods API Gateway User's Guide 10.11 739

Overview

API Gateway supports Web Content Accessibility Guidelines (WCAG) through a separate UI
profile calledAccessibility profile. TheAccessibility profile is a read-only profilewith limited coverage
in terms of number of screens as well as the functionalities. Users can access API Gateway
accessibility profile using the following URL:
http://hostname:9071/apigatewayui/accessibility.jsp

Currently following screens are available with this profile:

API Gateway Login page

API List page

API Details page

740 webMethods API Gateway User's Guide 10.11

15 Accessibility Profile

	Table of Contents
	About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	1 webMethods API Gateway
	Introduction to webMethods API Gateway
	Searching Data in API Gateway
	Configuring the Number of APIs listed on a Page
	Using Help in API Gateway

	2 User Management
	Manage Users, Groups, and Teams
	Manage Your User Settings and Preferences

	3 APIs
	Creating APIs - Overview
	Creating an API by Importing an API from a File
	Creating an API by Importing an API from a URL
	Creating an API from Scratch
	API Mashups
	Viewing API List and API Details
	Filtering APIs
	Activating an API
	Deactivating an API
	Publishing APIs
	Unpublishing APIs
	Modifying API Details
	Updating APIs
	API Mocking
	Attaching Documents to an API
	SOAP to REST Transformation
	CentraSite Provided APIs
	Versioning APIs
	API Scopes
	Exposing a REST API to Applications
	Exposing a SOAP API and GraphQL API to Applications
	API Grouping
	API Tagging
	Exporting APIs
	Exporting Specifications
	Deleting APIs
	Example: Managing an API
	Troubleshooting Tips: APIs

	4 Policies
	Policies - Overview
	Policy Validation and Dependencies
	Managing Threat Protection Policies
	System-defined Stages and Policies
	Managing Global Policies
	Managing API-level Policies
	Managing Scope-level Policies
	Managing Policy Templates
	Supported Alias and Policy Combinations

	5 Aliases
	Overview
	Creating a Simple Alias
	Creating an Endpoint Alias
	Creating an HTTP Transport Security Alias
	Creating a SOAP Message Security Alias
	Creating a webMethods Integration Server Service Alias
	Creating an XSLT Transformation Alias

	6 Applications
	Overview
	Creating an Application
	Viewing List of Applications and Subscriptions
	Regenerating API Access Key
	Modifying Application Details
	Registering an API with Consumer Applications from API Details Page
	Suspending an Application
	Activating a Suspended Application

	7 API Packages and Plans
	Overview
	Creating a Package
	Creating a Plan
	Activating a Package
	Publishing a Package
	Viewing List of Packages and Package Details
	Viewing List of Plans and Plan Details
	Viewing a List of Subscriptions
	Modifying a Package
	Deleting a Package
	Modifying a Plan
	Deleting a Plan

	8 Export and Import Assets and Configurations
	Overview
	Importing Asset and Configuration Archives
	Troubleshooting Tips: Import and Export Assets

	9 API Gateway Analytics
	Analytics Dashboards
	Runtime Events and Metrics Data Model

	10 Microgateway Management
	Overview

	11 REST APIs in API Gateway
	API Gateway Administration
	Alias Management
	Application Management
	API Gateway Archive
	API Gateway Availability
	Document Management
	Data Center Management
	Internal Service
	Port Configuration
	Policy Management
	Promotion Management
	Public Services
	API Gateway Search
	Server Information
	Service Management
	Transaction Data
	User Management
	Subscription Management
	Backward compatibility support for REST APIs

	12 Remove User Data from API Gateway
	Removing User Data

	13 Usage Scenarios
	Change Ownership of Assets
	Custom Policy Extension
	Team Support
	API First Implementation
	Gateway Endpoints
	Secure API using OAuth2 with refresh token workflow
	Request and Response Processing
	Securing Access Token Calls with PKCE
	Trace API

	14 AppMesh Support in API Gateway
	Overview of webMethods AppMesh
	Configure API Gateway to Connect to a Service Mesh Environment
	AppMesh Deployment
	Undeploy AppMesh
	Provisioning of API and Policy Updates

	15 Accessibility Profile
	Overview

