§ software

webMethods SWIFTNet Module
Installation and User’s Guide

Version 6.0.1 SP1

August 2006

webMethods

This document applies to webMethods SWIFTNet Module Version 6.0.1 SP1 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2006 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America, and/or their
licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG’s licensing conditions and terms. These terms are part of the product
documentation, located at_http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third Party Products." This document is part of the product documentation, located at_

http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: ESTD-SWIFTNET-IUG-601-SP1-20121011

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

Contents

Contents

ADOUL ThiS GUIE. e 7
DocuUmENt CONVENLIONSo oottt e e e e e e e e et e e e 7
Additional Informationo 8

Chapter 1. CONCEPIS . ..ottt 9
What IS SWIFTNEL? o 10
What Is the webMethods SWIFTNet Module? e 11

Client Module Functionality o 11
Server Module Functionalityoo e 12
SNL Request and Response Primitives SUPpOrt 12
webMethods SWIFTNet Module Packagesot 13
webMethods SWIFTNet Module Architecturet e 14
SWIFTNet Module Real-time Mode i 15
Real-time INtErACE . ..o 15
Real-time FileACto 16
SWIFTNet Module Store and Forward Mode oo 17
Store and Forward INTErACEo 19
Store and Forward FileACto 20
Retrieving Messages and Files fromaQueueo 21
Fetchinga File froma QUeUEo e 25
Server Module Processing of SNL Primitives i 25

Chapter 2. Installing the webMethods SWIFTNet Module 27
OVBIVIBW . ettt et et et e e e e e e e e e e e e 28
REGUITEMENTIS . .t 28

Supported Platforms and Operating SYstemst 28
Required webMethods Components i 29
SWIFTNet Module ReQUIFEMENLSot 29
Hardware REQUIFEMENTS e e 29
Installing the webMethods SWIFTNet Moduleo s 30
Step 1: Install webMethods SWIFTNet Modulet 30
Step 2: Configure the SWIFTNet Moduleo 32
Step 3: Define the Trading Networks Information 32
Applying the webMethods SWIFTNet Module Service Pack1 oot 32
Uninstall the webMethods SWIFTNet Module e 36

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 3

Contents

Chapter 3. Configuring the webMethods SWIFTNetModule 39
OVBIVIBW . o e e sttt et e e e e e e e e 40
Configuring the SWIFTAIlliance Gateway SErverouirie i 40
Preparing the Server Module to Receive and Respond to Requests 41

Step 1: InstallaRemote API Clientt e 41
Step 2: Edit the webMethods Environment ConfigurationFile 41
Step 3: Edit the webMethods SNL Configuration Filet 42
Step 4: Configure Trading Networks e 43
Preparing the Client Module to Send Requests and Receive Responses 46
Step 1: Install a Remote API Clientot e e 46
Step 2: Edit the webMethods Environment ConfigurationFile 46
Step 3: Invoke wm.swiftnet.client.Services:SWArgUMENESooveiennene, 47
Invoking the Remote File Handler i e 47

Chapter 4. Defining Trading Networks Information 49
OVBIVIBW . . e ettt ettt e e e e e e e 50
Defining Trading Partner Profiles 50

Why Are Trading Partner Profiles Important?cc i, 50
Defining Your Enterprise Profile 50
Defining Trading Partner Profiles 51
Defining TN Document Types and AHTbULESt e 51
Importing the Sample TN Document Attributes o 52
Importing the Sample TN Document TYPeS v it 52
Creating TN DOCUMENE TYPBS .« o o oottt e ettt et e ettt et e e e 53
Defining Processing RUIESo e 55
Importing the Sample Processing Rules ... 55
Creating Processing RUIES e 56

Chapter 5. webMethods SWIFTNet Module Servicesccoiiiiinn.. 59
Services and the SNL Request and Response Primitives, 60
Services QUICK REfEreNCE 61
WMSWIFTNetClient Packagec.vv o i 64

wm.swiftnet.client.initprintRemoteErrors 64
wm.swiftnet.client.init:shutdown 65
wm.swiftnet.clientinit:startup 65
wm.swiftnet.client.services:createContextRequUeSEo it 65
wm.swiftnet.client.services:destroyContextRequestt 66
wm.swiftnet.client.services:exchangeFileRequestc i, 66
wm.swiftnet.client.services:exchangeRequest 67
wm.swiftnet.client.services:exchangeSnFRequest i, 67
wm.swiftnet.client.services:fetchFileRequestcc i, 68
wm.swiftnet.client.services:getFileStatusRequest i i 68

4 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Contents

wm.swiftnet.client.servicesinitRequest 69
wm.swiftnet.client.services:pullSnFRequest o 69
wm.swiftnet.client.services:sendRequest 70
wm.swiftnet.client.services:sendSynchronousRequest i, 70
wm.swiftnet.client.services:SignEncryptRequeStt e 71
wm.swiftnet.client.ServiceS: SWAIGUMENESottt e 71
wm.swiftnet.client.services:swCall 72
wm.swiftnet.client.services:termRequest 72
wm.swiftnet.client.services:verifyDecryptRequest 73
wm.swiftnet.client.services:waitRequest 73
wm.swiftnet.client.uti-formatXML 74
WIMSWIFTNeServer Packageuurit e 75
wm.swiftnet.server.init:printRemoteErrors 75
wm.swiftnet.server.init:shutdown 75

WM. SWiftnet.ServerinitiStartup e 76
wm.swiftnet.server.property:getCommonProperties ... 76
wm.swiftnet.server.property:getProperYot e 7
wm.swiftnet.server.property:listProperties e 77
wm.swiftnet.server.property:reloadProperties 77
wm.swiftnet.server.services:handleRequestt 78
wm.swiftnet.client.services:swCall 78
wm.swiftnet.server.utilformatXML e 79
AppendiX A, SamPleS ... 81
OV IV IBW . e ottt ettt 82
webMethods SWIFTNet Module Sample Packages ... 82
Preparing the SWIFTNet Server Module to Use Sample Servicesccovvveeinn... 82
Preparing the SWIFTNet Client Module to Use Sample Servicescoovvvveenn... 83
Edit the SWIFTNet Client Module SNL Configuration File 83
Import the Sample TN DOCUMENE TYPES . ..o vttt 84
Import the Sample Processing Rules 85
Sample Services QUICK Reference 85
WmSWIFTNetClientSample Package e 88
wm.swiftnet.client.sample.fileAct:swExchangeFile il 88
wm.swiftnet.client.sample.fileAct:swExchangeFileSnF 89
wm.swiftnet.client.sample.fileAct:swGetFileStatus 90
wm.swiftnet.client.sample.interAct:swExchangeRequestt 91
wm.swiftnet.client.sample.interAct:swExchangeRequestSnf 92
wm.swiftnet.client.sample.property:getCommonProperties 93
wm.swiftnet.client.sample.property:getProperty 93
wm.swiftnet.client.sample.property:listProperties ... 94
wm.swiftnet.client.sample.property:reloadProperties ... 94
wm.swiftnet.client.sample.SnF:SWACqUIreSNFQUEUEt 94
wm.swiftnet.client.sample.SnF:swFetchFile i 95
wm.swiftnet.client.sample.SnF:swPullMessageOrFileSnF it 96

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 5

Contents

wm.swiftnet.client.sample.SnF:swReleaseSnFQueue 97
WmSWIFTNetServerSample Package e 98
wm.swiftnet.server.sample.fileAct:processFileEventRequest ..., 98
wm.swiftnet.server.sample fileAct:processFileRequesto it 99
wm.swiftnet.server.sample.interAct:processHandleRequest 99
wm.swiftnet.server.sample.SnF:processHandleSnFRequesto 99
wm.swiftnet.server.sample.SnF:processSnFFileRequest oo, 100
wm.swiftnet.server.sample.SnF:processSnFHandleRequest 100
Setting Up Aliases for Remote Integration SErVersovvrie i iinens 101

6 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

About This Guide

About This Guide

This guide describes how to install, configure, and use the webMethods SWIFTNet
Module, which supports synchronous communication of SWIFT messages and files
between client and server applications.

To use this guide effectively, you should:

B Have a basic knowledge of SWIFT and SWIFT terminology. For more information, go
to_http://www.swift.com.

B Have installed all necessary SWIFT software. You must work with SWIFT to
determine the appropriate software needs for your company.

B Have installed the webMethods Integration Server and the webMethods Trading
Networks (server side and console side) software. For more information about
installing the non-SWIFT components, see the webMethods Installation Guide.

B Be familiar with the webMethods Integration Server, the Server Administrator, and
the webMethods Developer and understand the concepts and procedures described
in the webMethods Integration Server Administrator’s Guide and the webMethods
Developer User’s Guide.

B Be familiar with Trading Networks Console and understand the concepts and
procedures described in the various webMethods Trading Networks guides.

Document Conventions

Convention Description
Bold Identifies elements on a screen.
Italic Identifies variable information that you must supply or change

based on your specific situation or environment. Identifies
terms the first time they are defined in text. Also identifies
service input and output variables.

Narrow font Identifies storage locations for services on the webMethods
Integration Server using the convention folder.subfolder.service.

Typewriter Identifies characters and values that you must type exactly or
font messages that the system displays on the console.

UPPERCASE Identifies keyboard keys. Keys that you must press
simultaneously are joined with the “+” symbol.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 7

http://www.swift.com

About This Guide

Convention Description

\ Directory paths use the “\” directory delimiter unless the
subject is UNIX-specific.

[] Optional keywords or values are enclosed in []. Do not type
the [] symbols in your own code.

Additional Information

The webMethods Advantage Web site at http://advantage.webmethods.com provides you
with important sources of information about your webMethods Integration Platform:

B Troubleshooting Information. The webMethods Knowledge Base provides
troubleshooting information for various webMethods components.

B Documentation Feedback. To provide documentation feedback to webMethods,
complete the Documentation Feedback Form on the webMethods Bookshelf.

B Additional Documentation. All of the webMethods documentation is available on the
webMethods Bookshelf.

8 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

http://advantage.webmethods.com/cgi-bin/advantage/main.jsp?w=0&s=3232716887&targChanId=-536883032&all=1
http://advantage.webmethods.com
http://advantage.webmethods.com/cgi-bin/advantage/main.jsp?w=0&s=3232716999&targChanId=-536883238
http://advantage.webmethods.com/cgi-bin/advantage/main.jsp?w=0&s=3232716887&targChanId=-536879873
http://advantage.webmethods.com/cgi-bin/advantage/main.jsp?w=0&s=3232716887&targChanId=-536879873

webMethsids.

Concepts
B What IS SWIFTNEL? ..o 10
B What Is the webMethods SWIFTNet Module? i 1
B webMethods SWIFTNet Module Packages, 13
B webMethods SWIFTNet Module Architecture, 14
B SWIFTNet Module Real-time Mode oo 15
B SWIFTNet Module Store and Forward Mode 17
B Server Module Processing of SNL PHimitives, 25

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 9

CHAPTER 1 Concepts

What Is SWIFTNet?

SWIFTNet is SWIFT's advanced IP-based messaging solution, which provides an alternate
method of transferring information to SWIFT. It consists of a portfolio of products and
services enabling the secure and reliable communication of financial information and
transactional data.

SWIFTNet Link offers SWIFT users a single-window access to all SWIFTNet services. Its
functionality includes transport, formatting, security and service management. Messages
and files exchanged between parties consist of SWIFTNetLink (SNL) primitives. An SNL
primitive is a pair of XML documents that is passed between an application program and
the SNL software on your SWIFTAlliance Gateway (SAG) server. Each primitive
document pair represents the invocation of a SWIFTNet processing function and includes
an ‘in” document and a corresponding ‘out’ document. These documents are either 1) the
input for a function call to SWIFTNet, or 2) the SWIFTNet output of a function call.

SWIFTNet includes three messaging services:

B SWIFTNet InterAct. Allows the interactive (real-time) and store-and-forward exchange
of messages between parties. It provides secure communication facilities for
transferring messages. As the foundational messaging service of SWIFTNet, the
InterAct Services include not only the InterAct Request/Response primitives, but also
all of the supporting SWIFTNet infrastructure.

B SWIFTNet FileAct. Allows the exchange of files in an automated way, supporting both
interactive (real-time) and store-and-forward modes. It provides secure
communication facilities for transferring files. FileAct is oriented toward transferring
data larger than the InterAct payload can accommodate.

B SWIFTNet Browse. Enables secure browser-based access to service providers” web
servers. This service provides direct access to the secure messaging features of
SWIFTNet InterAct and SWIFTNet FileAct. (This set of services is not currently
supported by the webMethods SWIFTNet Module.)

For more information about SWIFT and SWIFINet, see the documentation provided by
SWIFT or go to http://www.swift.com.

10 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

http://www.swift.com

What Is the webMethods SWIFTNet Module?

What Is the webMethods SWIFTNet Module?

The webMethods SWIFTNet Module supports communication of SWIFT messages and
files between client and server modules. A client module is the one that sends a request
and receives a response. A server module is the one that receives a request and sends a
response.

& Important! Because client and server modules cannot co-exist in the same process, if you
want to use both the client and server module services, you must install the webMethods
SWIFTNet Module on two different Integration Servers. You must use only the
WmSWIFTNetClient packages on one of the Integration Servers and only the
WmSWIFTNetServer packages on the other Integration Server.

The SWIFTNet Module provides client-side and server-side support for the following
messaging services and capabilities:

B InterAct Services
B FileAct Services

Both InterAct and FileAct services can work either in real-time mode or in store-and-
forward mode. In real-time mode, both the requestor and the responder must be online at
the same time. And in store-and-forward mode, the requestor and the responder need not
be online at the same time.

SNL has only two functions: SwCall() and SwCallback(). SwCall() is used by the client
module to access server module through the SWIFINet. SwCallback() is used by server
module to respond to clients through SWIFTNet.

As mentioned earlier, InterAct and FileAct services are implemented as a set of SNL
primitives that are exchanged between the client or server module program and the SNL
software on your SAG server. Along with its packages, the SWIFTNet Module provides
two DLLs, WmSWIFTNetClient.dll and WmSWIFTNetServer.dll, that invoke the
functionality of the SNL libraries to transfer the SNL primitives between the client and
server modules.

For more information about the packages in this module, see “webMethods SWIFTNet
Module Packages” on page 13.

Client Module Functionality

The WmSWIFTNetClient.dll invokes functionality for a client module, which sends a
request to and receives a response from a server module in real-time or store-and-forward
mode. When using the module with a client module, you can do the following:

B Send an InterAct request message and receive a response in real-time or store-and-
forward mode.

B Put a file using FileAct service in real-time or store-and-forward mode.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 11

CHAPTER 1 Concepts

B Get a file using FileAct service in real-time mode only.
B Pull messages from a queue in store-and-forward mode only.

B Fetch a file from SnF queue in store-and-forward mode only.

Server Module Functionality

The WmSWIFTNetServer.dll invokes functionality for a server module, which receives a
request from and sends a response to a client module. When using the module with a
server module, you can do the following:

B Receive an InterAct request message and send a response in real-time or store-and-
forward mode.

B Accept a put file request from the client module in real-time mode only.
B Accept a get file request from the client module in real-time mode only.
B Receive the pushed messages from the SnF queue in store-and-forward mode only.

For more information about the architecture of the module, see “webMethods SWIFTNet
Module Architecture” on page 14.

SNL Request and Response Primitives Support

The webMethods SWIFTNet Module supports all of the SNL request and response
primitives involved in communication between the client module, the server module, and
SWIFTNet. For a complete list of the supported primitives, see “Services and the SNL
Request and Response Primitives” on page 60.

12 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

webMethods SWIFTNet Module Packages

webMethods SWIFTNet Module Packages

The webMethods SWIFTNet Module contains the following packages, which contain
webMethods services and related files, that you install on the webMethods Integration
Server.

Important! Because client and server modules cannot co-exist in the same process, if you
want to use both the client and server module services, you must install the webMethods
SWIFTNet Module on two different Integration Servers. You must use only the
WmSWIFTNetClient packages on one of the Integration Servers and only the
WmSWIFTNetServer packages on the other Integration Server.

Package Description

WmSWIFTNetClient Contains the FileAct and InterAct services that support
SWIFTNet Module client-side functionality.

WmSWIFTNetClientSample Contains sample services and implementation of the
SWIFTNet Module client-side functionality.

WmSWIFTNetServer Contains the FileAct and InterAct services that support
SWIFTNet Module server-side functionality.

WmSWIFTNetServerSample Contains sample services and implementation of the
SWIFTNet Module server-side functionality.

For detailed information about the contents of the these packages, see Chapter 5,
“webMethods SWIFTNet Module Services” and Appendix A, “Samples” on page 81.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 13

CHAPTER 1 Concepts

webMethods SWIFTNet Module Architecture

The following diagram illustrates the components involved in transferring messages and
files using the webMethods SWIFTNet Module. See the table below the diagram for

additional information.

SWIFTNet Module Architecture

As indicated in the diagram, the components listed in the following table comprise and
support the SWIFTNet Module.

Component

Description

Integration Server

webMethods Integration Server is the underlying server of the
webMethods Fabric. You use the web-based user interface,
Server Administrator, to manage, configure, and administer all
aspects of the Integration Server, such as users, security,
packages, and services.

For more information, see the webMethods Integration Server
Administrator’s Guide.

Trading Networks

webMethods Trading Networks enables your enterprise to link
with other financial institutions and marketplaces to form a
business-to-business trading network. In this instance, Trading
Networks enables the webMethods SWIFTNet Module to
exchange messages and files with your SWIFTAlliance Gateway
(SAG) server.

For more information about Trading Networks, see the
webMethods Trading Networks — Getting Started with Trading
Networks and the webMethods Trading Networks—Building Your
Trading Network guides.

14

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

SWIFTNet Module Real-time Mode

Component

Description

RA

The Remote API (RA) client enables the SWIFTNet Module to
communicate with your SAG server and SNL through your
Remote API Host Adapter (RAHA). You must install an RA
client on the same machine as the Integration Server.

To obtain an RA client, contact SWIFT.

RAHA

Your RAHA enables your SAG server to exchange messages and
files with the Remote API (RA) client on your Integration Server.
You must install an Remote API Host Adapter (RAHA) on the
same machine as the SAG server.

To obtain an RAHA, contact SWIFT.

SAG Server/SNL

Your SWIFTAlliance Gateway (SAG) server, on which you install
your SWIFTNetLink (SNL) software, must be configured to
exchange messages and files with SWIFTNet. You also will use
this configuration information to configure the SWIFTNet
Module and your RA client.

SWIFTNet Module Real-time Mode

Real-time InterAct message services are typically used when the receiver and the sender
are online at the same time of message or file transmission. When real-time mode is used,
the response comes from the server module at the Responder’s site, which interprets the
message sent.

Real-time InterAct

InterAct Services assure secure communication of Request/Response business messages
between application-level clients and servers on SWIFTNet. It is cost-effective and ideal
for online enquiry or reporting systems.

The sequence of the InterAct Request/Response session is as follows:

1
2

The Requestor’s client module sends a Request.

The client Request is passed to SWIFTNet network, which processes the Request and
sends it to the Responder’s server module.

The Responder’s server module receives the Request and sends the Response.

SWIFTNet processes the Response received from the Responder’s server module and
sends it to the Requestor’s client module.

The Requestor’s client module receives the Response.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 15

CHAPTER 1 Concepts

Real-time FileAct

Real-time FileAct Services offer a secure transfer of financial files between organizations
on SWIFTNet. XML based FileAct primitives are used to transfer the files and maintain
the status of the file transfers. FileAct services provide the following functionality:

B PutFile. To send a file to another SWIFTNet user.
B Get File. To receive a file from another SWIFTNet user.

B Subscribe to Transfer Events. To receive progressive transfer status on an event-by-event
basis.

B Receive Transfer Events. To respond to the terms of a subscription that is set up by the
Subscribe Event primitive at the sending or receiving side of a transfer.

The following diagram illustrates the real-time InterAct/FileAct service. See the table
below the diagram for additional information.

Real-time InterAct / FileAct Services

Sw:InitRequest

Sw:InitResponse

SwSec:CreateContextRequest

SwSec:CreateContextResponse

Swint:ExchangeRequest/

Swint:HandleRequest/
Sw:ExchangeFileRequest

Sw:HandleFileRequest

Swint:ExchangeResponse/ Swint:HandleResponse/
Sw:ExchangeFileResponse Sw:HandleFileResponse

SwsSec:DestroyContextRequest n

Sw:TermResponse

Requestor Responder

16 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

SWIFTNet Module Store and Forward Mode

Step Description

The Requestor’s client sends the Sw:InitRequest primitive to initialize the SNL
client process.

The Requestor’s client makes a SwCall() with SwSec:CreateContextRequest as
primitive to initialize the security context.

If it is an InterAct service, the client makes a request using the
Swint:ExchangeRequest primitive.
If this is a FileAct service, the client makes a request using the
Sw:ExchangeFileRequest primitive.

The Requestor’s client side SNL passes the InterAct or FileAct request to the
Responder’s server side SNL via SWIFTNet.

The Responder’s server side SNL extracts the request from SWIFTNet and
invokes the server through SwCallback() using the
Swint:HandleRequest/Sw:HandleFileRequest as primitive. The Responder’s
server sends a response back to the client.

[6 | The client destroys the created security context.

The client triggers the termination with the SNL.

SWIFTNet Module Store and Forward Mode

In store-and-forward (SnF) mode, the messages and files are stored centrally within
SWIFTNet in a queue. These messages and files are delivered from the queue to the
receiver at a later time. Therefore, the Requestor and the Responder need not be online at
the same time. A notification is sent to the Requestor in the event of non-delivery.

The SnF queues contain the messages and files that were sent by the Requestor to be
delivered to the specified Responder. These queues also contain the delivery notifications
generated by SWIFTNet SnF.

Messages and files can be routed into queues with the same flexibility as a message that is
routed to a server process when real-time mode is used. Message Reception Registry
function (MRR) specifies the message routing details. Queues are defined and configured
by the Responder’s organization. The Requestor decides in which queue a message or file
will be put after it is sent by the Responder. The Responder will not know in which queue
the message will be put.

In store-and-forward mode, the response comes from the SWIFTNet SnF queue and does
not contain any feedback from the Responder. When real-time mode is used, the response
comes from the server module on the Responder’s side, which interprets the message
sent.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 17

CHAPTER 1 Concepts

Only the messages or files that are flagged for store-and-forward delivery mode are put in
in a queue. Flagging can be done within the RequestControl for store-and-forward
delivery mode for SWIFTNet InterAct and for SWIFTNet FileAct.

SWIFTNet Store and Forward Overview

h, N N
Requestor Responder
h N
A Client
(Pull)
s s] T
N v —H
L L
el
SWIFTNet
Steps Description
1&2 Requestor’s client sends messages or files to the SnF queue. The SnF queue
stores the messages or files received, and sends a response to the Requestor’s
client.
3&4 Responder’s client acquires the SnF queue in pull mode to pull the messages,
and pulls the messages from the SnF queue.
5&6 Responder’s client acquires the SnF queue in push mode. The Responder’s
server receives the pushed messages from the SnF queue and sends an
acknowledgement.

The following diagram illustrates the store-and-forward flow on the Requestor’s side for
an InterAct send or FileAct put session.

18

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

SWIFTNet Module Store and Forward Mode

Requestor’s Side Store-and-Forward Flow (InterAct send or put session)

b N
Sw:InitRequest 1 - N
>
€
SwSec:CreateContextRequest
R e .
7
. Swint:HandleRequest/
Swint:ExchangeRequest/ ! ,
= Sw:ExchangeFileRequest I Sv-HandleFileRequest > o)
» z =
0 Swint:HandleResponse/ L
Sw;HandleFileResponse ;
()

Requestor

Store and Forward InterAct

Store-and-forward InterAct services are used to send and receive messages when the
Sender and the Receiver are not online at the same time. The Sender must indicate that the
message is to be stored using SnF, and also indicate which queue will be used for storing
any delivery notifications that will be generated by SWIFTNet SnF. If the file delivery fails,
the failed delivery notification indicating the reason why the file was not delivered will be
put in the queue of the Sender, as specified in the RequestControl.

Client processes on the Requestor’s side initiate Requests and related functions. They pass
a SWIFTNet primitive parameter to SNL representing the function to be performed.

A typical InterAct exchange request looks like this.

<?xml version="1.0"7?>
<Swlnt:ExchangeRequest>
<SwSec:AuthorisationContext>
<SwSec:UserDN>cn=abc,0=xxxx,o0=swi ft</SwSec:UserDN>
</SwSec:AuthorisationContext>
<Swint:Request>
<Swint:RequestControl>
<Swilnt:RequestCrypto>TRUE</Swint:RequestCrypto>
<Swint:DeliveryCtrl>
<Swint:DeliveryMode>SnF</Swint:DeliveryMode>

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 19

CHAPTER 1 Concepts

<Swint:NotifQueue>xxxx_generic!x</Swint:NotifQueue>
<Sw:DeliveryNotif>TRUE</Sw:DeliveryNotif>
</Swint:DeliveryCtril>
</Swint:RequestControl>
<Swlnt:RequestHeader>
<Swlnt:Requestor>0=xxxx, o=swift</Swint:Requestor>
<Swlnt:Responder>o0=xxxx, o=swift</Swint:Responder>
<Swint:Service>swift.generic.iast!x</Swint:Service>
</Swint:RequestHeader>
<Swint:RequestPayload>This is for SnF Queue</Swint:RequestPayload>
<SwSec:Crypto>
<SwSec:CryptoControl>
<SwSec:MemberRef>RequestPayload</SwSec:MemberRef>
<SwSec:SignDN>cn=abc, 0=xxxx,0=swift</SwSec:SignDN>
</SwSec:CryptoControl>
</SwSec:Crypto>
</Swint:Request>
</Swint:ExchangeRequest>

If the instruction to trigger store-and-forward is not contained in the Swint:DeliveryCtrl
element for an SnF service request, then SWIFTNet will reject the message. The
SwSec:UserDN within the SwSec:AuthorisationContext must have the RBAC role
"SnFRequestor" with the queue, as specified in the Swint:NotifQueue as qualifier.

The queue in Swint:NotifQueue is used to store failed delivery notifications. It must
belong to the same institution as in the Swint:Requestor. When the message is stored,
SWIFINet will indicate this in the Response.

Store and Forward FileAct

Store-and-forward FileAct services can only be used to send a file to a receiver and cannot
be used to request a file.

A store-and-forward FileAct request looks similar to a real-time FileAct request message.
The Sender must indicate that the file is to be stored using SnF, and also indicate the
queue that will be used for storing any delivery notifications generated by SWIFTNet SnF.
When the file delivery fails, the failed delivery notification indicating the reason why the
file was not delivered will be put in the queue of the Sender, as specified in the
RequestControl.

The following example shows an Sw:ExchangeFileRequest:

<Sw:ExchangeFileRequest>
<SwSec:AuthorisationContext>
<SwSec:UserDN>cn=abc,0=xxxx,o=swi ft</SwSec:UserDN>
</SwSec:AuthorisationContext>
<Sw:FileRequest>
<Sw:FileRequestControl>
<Swint:RequestCrypto>FALSE</Swint:RequestCrypto>
<Swint:DeliveryCtrl>
<Swint:DeliveryMode>SnF</Swint:DeliveryMode>

20

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

SWIFTNet Module Store and Forward Mode

<Swint:NotifQueue>xxxx_generic!x</Swint:NotifQueue>
</Swint:DeliveryCtrl>
</Sw:FileRequestControl>
<Sw:FileRequestHeader>
<Swlnt:Requestor>0=xxxx, o=swift</Swint:Requestor>
<Swlnt:Responder>0=xxxx, o=swift</Swlnt:Responder>
<Swint:Service>swift.generic.fast!x</Swint:Service>
</Sw:FileRequestHeader>
<Sw:FileOpRequest>
<Sw:PutFileRequest>
<Sw:TransferDescription>atlog.txt</Sw:TransferDescription>
<Sw:PhysicalName>C:\atlog.txt</Sw:PhysicalName>
</Sw:PutFileRequest>
</Sw:FileOpRequest>
</Sw:FileRequest>
</Sw:ExchangeFileRequest>

Retrieving Messages and Files from a Queue

Messages and files can be retrieved from a queue using the pull or push modes.

Pull Mode

When the pull mode is used, the client process initiates the delivery of a message. It
performs an SwCall() with an Sw:PullSnFRequest as the input primitive. The
Sw:PullSnFResponse contains the message pulled from the queue.

The following diagram illustrates the store-and-forward InterAct pull session. See the
table below the diagram for additional information.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 21

CHAPTER 1 Concepts

Store and Forward InterAct Pull Session

_— Sw:InitRequest >
T T
SwSec:CreateContextRequest
€
Sw:AcquireSnFRequest >
R
Sw:PullSnFRequest
> —p L Remove
- <----- (IC) :I Messages
Sw:PullSnFRequest D
4 > 2‘ —> % Remove
"""""""""""" 0 <---- [:l Messages
L
Sw:PullSnFRequest =
> —_—> Remove
------------------------ <4---- (% :I Messages
Sw:AckSnFRequest
Sw:ReleaseSnFRequest n >
SwSec:DestroyContextRequest
Sw:TermRequest
>

Step Description

The client sends the Sw:InitRequest to start the delivery of messages and files
from a SnF queue. Then the client opens the desired security context using the
SwSec:CreateContextRequest primitive.

The client sends a request to acquire the queue. After receiving the response,
the client starts the delivery of messages from the queue by issuing the
Sw:PullSnFRequest.

The first Sw:PullSnFRequest does not carry an acknowledgement, but all
subsequent requests must acknowledge the message delivered in the previous
pull request and avoid the same message being delivered again.

H

Messages are removed from the queue.

H

22 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

SWIFTNet Module Store and Forward Mod

e

Step Description

The client sends Sw:AckSnFRequest (Sw:ExchangeSnFRequest) along with the
acknowledgement of the last delivered message as input primitive when it
wants to stop the delivery of messages.

[6 | The client destroys the created security context and triggers the termination
with the SNL.
Push Mode

When push mode is used, the initiative to deliver a message resides with SWIFTNet SnF.
The message is pushed from SWIFTNet SnF and is received by the server module on
SWIFTNet Link. In this server a regular SwCallback() is invoked. The input primitive is
the message from the queue within an Swint:HandleRequest or Sw:HandleFileRequest.
The server module ensures that the message is stored safely, and then responds with an
acknowledgement. This acknowledgement indicates to SWIFTNet SnF how the message
was received.

The following diagram illustrates the store-and-forward InterAct Push session. See the
table below the diagram for additional information.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

23

CHAPTER 1 Concepts

Store and Forward InterAct Push Session

Sw:HandlelnitRequest

Sw:AcquireSnFRequest
SwintHandleRequest | O - - - - - ---------ss g mmmmm s >
O]
Swint:HandleRequest(1)
-
Swint:HandleResponse .
——————————————————— » Remove
SwintHandleRequest(2) =+ ¥ """ Tt T E s T A E s S " T SwintHandleRequesi(2) > Messages
- _4 ______ > Remove
_____ Messages
Swint:HandleRequest(3)
Swint:HandleRequest(3)
Sw:ReleaseSnFRequest
————————————— > Remove
Messages
Step Description
The server process opens the required security context with

Sw:HandlelnitRequest and SwSec:CreateContextRequest. The server gets
ready to start processing the incoming requests.

The client process starts, sends the Sw:InitRequest, opens the desired security
context, acquires the queue in pull mode, and starts the delivery of messages
from the queue.

H

The server receives a Swint:HandleRequest request.

The server sends an acknowledgement in Swint:HandleResponse.

HH

24

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Server Module Processing of SNL Primitives

Step Description

Messages are removed from the queue.

[6 | The client releases the queue.

Fetching a File from a Queue

If a FileAct message is received in either pull mode or push mode, a client process must
fetch a file. A file is always fetched in a client process when the SWIFTNet SnF has
delivered an Sw:NotifyFileRequestHandle to indicate the presence of a file to be fetched.
In push mode, Sw:NotifyFileRequestHandle is delivered within Sw:HandleFileRequest,
and in pull mode, Sw:NotifyFileRequestHandle is delivered within Sw:PullSnFResponse.

The Sw:FetchFileRequest simply copies the structure received in the
Sw:FileRequestHandle pushed (or pulled). The Response to this Request is the
TransferRef that is used to identify the file transfer from SWIFITNet SnF to the Receiver.
For a pull session, no other message will be delivered for that queue until the file has been
fetched and a delivery acknowledgement has been sent.

A Important! When a file is fetched from the queue, the file will remain within SWIFTNet SnF
until an explicit acknowledgement has been sent by a client process.

Server Module Processing of SNL Primitives

The following diagram illustrates how the SNL primitives are processed by the server
module when a client module sends a request. See the table below the diagram for
additional information.

webMethods SWIFTNet Server Module Processing

SNL
Primitive —> — >
Request < b <
z
L§L tn:receive n
()]
SNL
Primitive
Response
I 4

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 25

CHAPTER 1 Concepts

Step Description

The Requestor’s client module sends a request to the server via SWIFTNet.

The Responder’s SAG server receives the SNL primitive request and invokes
the wm.swiftnet.server.services:handleRequest service in the Integration Server on
which the server module is installed.

HH

The handleRequest service of the server module then invokes the wm.tn:receive
service of the Trading Networks.

H

Trading Networks uses the TN document types that you create to recognize
the incoming request, saves the request to the Trading Networks database,
and invokes one of the processing rules you created and associated with the
request’s TN document type.

H

The processing rule processes the document as necessary and generates the
XML response.

H

The XML response is sent to the SAG server.

HH

The SAG server sends the response back to the Requestor’s client module via
SWIFTNet.

26 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

webMethsids.

Installing the webMethods SWIFTNet Module

L O = 28
B REqUITEMENES . 28
B nstalling the webMethods SWIFTNet Module i e, 30
B Applying the webMethods SWIFTNet Module Service Pack1 32
B Uninstall the webMethods SWIFTNetModulet 36

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 27

CHAPTER 2 Installing the webMethods SWIFTNet Module

Overview

a

Important! The information in this chapter might have been updated since the guide was
published. Go to the webMethods Advantage Web site at

http://advantage.webmethods.com for the latest version of the guide.

This chapter contains installation instructions that address two different scenarios:

B New installation: For a new installation of webMethods SWIFTNet Module, you need to
install the base product (webMethods SWIFTNet Module) and the service pack.
Options in the Installer enable you to select both at the same time. Follow the
instructions in “Installing the webMethods SWIFTNet Module” on page 30.

B Existing installation: If you already have the base product installed, you only need to
apply the service pack. Follow the instructions in “Applying the webMethods
SWIFTNet Module Service Pack 1” on page 32.

If you are installing the webMethods SWIFTNet Module with other webMethods
components such as webMethods Integration Server, see the webMethods Installation Guide
for instructions on installing those components.

Requirements

This section describes the system requirements that must be met before you can install the
webMethods SWIFTNet Module.

Supported Platforms and Operating Systems

The webMethods SWIFTNet Module supports the following platforms and uses the same
browsers and the same JVM versions as its host Integration Server:

B Microsoft Windows 2000 Professional
B Microsoft Windows 2003 Server

B Microsoft Windows XP Professional

Note: webMethods SWIFTNet Module supports Windows 2000 Professional platform only
on Integration Server 6.1 and not on Integration Server 6.5.

28

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

http://advantage.webmethods.com

Requirements

Required webMethods Components

The following table lists the webMethods components you must install before you install

the SWIFTNet Module:
Component Version
webMethods Integration Server 6.10r 6.5
webMethods Developer 6.10r 6.5
webMethods Trading Networks 6.1 0r 6.5

Note: Please download the webMethods components with the latest Service Packs from the

webMethods Advantage Web site at http://advantage.webmethods.com.

SWIFTNet Module Requirements

The following table lists the SWIFT software required to operate the SWIFTNet Module.

Software Release

SWIFTAlliance Gateway (SAG) 5.0.0 or later
SWIFTNet Link (SNL) 5.0.0 or later
Remote API Host Adapter (RAHA) 5.0.0 or later
Remote API Client (RA) 5.0.0 or later

Regardless of whether you are using the SWIFTNet Module for a client or server module,
you must install a Remote API (RA) client on the same machine where the Integration
Server is installed. Install a Remote API Host Adapter (RAHA) on the same machine as
the SAG server. Both the RA client and the RAHA are provided by SWIFT. For more
information, see your SWIFT documentation or go to http://www.swift.com.

Hardware Requirements

The webMethods SWIFTNet Module has no hardware requirements beyond those of its
host Integration Server.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 29

http://www.swift.com
http://advantage.webmethods.com

CHAPTER 2

Installing the webMethods SWIFTNet Module

Installing the webMethods SWIFTNet Module

a

Important! You must have administrator privileges on the webMethods Integration Server
to execute these procedures. If you do not have administrator privileges, have your
webMethods Integration Server administrator perform these procedures.

v

Note: This section is for new SWIFINet Module users. Follow the instructions provided in
this section to install the webMethods SWIFINet Module along with the Service Pack 1.
To install just the Service Pack 1 over an existing installation of the SWIFTNet Module, see
“Applying the webMethods SWIFI'Net Module Service Pack 1” on page 32.

This section provides only instructions that are specific to installing the webMethods
SWIFTNet Module. For complete instructions on using the webMethods Installer, see the
webMethods Installation Guide.

Perform the following steps to install and use the webMethods SWIFTNet Module.

Step Description

Install the webMethods SWIFTNet Module
Configure the webMethods SWIFTNet Module
Define the Trading Networks information

Step 1: Install webMethods SWIFTNet Module

Install the webMethods SWIFTNet Module on the same machine as the Integration Server.
The Installer will automatically install the SWIFINet Module in the Integration Server
installation directory.

Important! Because client and server modules cannot co-exist in the same process, if you
want to use both the client and server module services, you must install the webMethods
SWIFTNet Module on two different Integration Servers. You must use only the
WmSWIFTNetClient packages on one Integration Server and only the
WmSWIFTNetServer packages on the other Integration Server.

Install the SWIFTNet Module

1 Download the latest webMethods Installer from the webMethods Advantage Web site
at http://advantage.webmethods.com.

2 If you are going to install the webMethods SWIFTNet Module on an already installed
Integration Server, shut down the Integration Server.

30

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

http://advantage.webmethods.com

Installing the webMethods SWIFTNet Module

3 Start the Installer.

4 Choose the webMethods platform on which to install the webMethods SWIFTNet
Module. If you are going to install the webMethods SWIFTNet Module on an existing
Integration Server, select the platform that matches the release of that Integration
Server. For example, if you are going to install the webMethods SWIFTNet Module on
a 6.5 Integration Server, select the 6.5 platform.

5 Specify the webMethods SWIFTNet Module installation directory as the webMethods
6.5 installation directory (by default, webMethodsb6).

6 Inthe component selection list, navigate to eStandards » SWIFTNet Module 6.0.1 and
select one of the following components to install:

a SWIFTNet Client to install the client component along with the Service Pack 1.
b SWIFTNet Server to install the server component along with the Service Pack 1.
Each component includes the following selections:
® Documentation (Optional). Contains the documentation for this package.
m Program Files (Required). Contains the program files for this package.

m Samples (Recommended). Contains the services that demonstrate how to use
the SWIFTNet Module services.

In addition, select any required webMethods components you have not installed. For
a list of required components, see “Required webMethods Components” on page 29.

7 Click Next until you see the installation complete message.

8 Click Close.

Important! Before starting the Integration Server on which you have installed the SWIFTNet
Module, you must first configure your SWIFTNet Module and then configure and start
your SWIFTAlliance Gateway (SAG). If at any time the SAG server restarts, you must
reload the WmSWIFTNetServer and WmSWIFTNetClient packages.

The webMethods SWIFTNet Module starts automatically when you start the webMethods
Integration Server.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 31

CHAPTER 2

Installing the webMethods SWIFTNet Module

Step 2: Configure the SWIFTNet Module

To configure the Server module and the Client module to exchange messages and files
over SWIFTNet using the SWIFTNet Module, edit the following files:

B Server module env.cnf
B Client module env.cnf
B Server module snl.cnf

For more information, see “Configuring the webMethods SWIFTNet Module” on page 39.

Step 3: Define the Trading Networks Information

You must perform the following procedures in Trading Networks to enable successful
interaction with your trading partners:

B Define your Enterprise profile

B Define your Trading Partner profiles
B Define TN document types

B Define processing rules

For details regarding defining profiles, TN document types, and processing rules in
Trading Networks, see “Defining Trading Networks Information” on page 49.

Applying the webMethods SWIFTNet Module Service Pack 1

If you have already installed the webMethods SWIFTNet Module and now would like to
update it with Service Pack 1, perform the following steps.

B 1o apply the webMethods SWIFTNet Module Service Pack 1 to the Server Module

Note: Follow this set of instructions only if you are installing the Service Pack 1 over an
existing installation of the SWIFTNet Module.

1 Take a backup of the following packages in the IntegrationServer\ packages directory:
® WmSWIFTNetServer
B WmSWIFTNetServerSamples

2 Back up the server.bat file present in the IntegrationServer\bin directory.

3 Back up the DLLs present in the IntegrationServer\lib directory, if any SAG DLLs are
copied to this directory.

32

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Applying the webMethods SWIFTNet Module Service Pack 1

4 Disable the following TN document types related to the server module defined in the
Trading Networks.

B Swint:HandleRequest
B Sw:HandleFileRequest
® Sw:HandleFileEventRequest

5 Delete the following processing rules related to the server module defined in the
Trading Networks.

B Process Swint:HandleRequest

B Process Sw:HandleFileRequest

B Process Sw:HandleFileEventRequest
6 Shut down the Integration Server.

7 Edit the server.bat file present in the IntegrationServer\bin directory to remove the
following environment variables:

ARCH=win32
GENLOG_DIR=C:\SWIFTAlliance\RA\Ral\log
GENUTIL_DIR=C:\SWIFTAlliance\RA\bin

OSA _DIR=C:\SWIFTAlliance\RA\Ral\log
OSA_INSTANCE=Ral
Path=C:\SWIFTAIliance\RA\bin;C:\SWIFTAlliance\RA\lib;
PKIEXECDIR=C:\SWIFTAIliance\RA
SLP_ENV=DEFAULT

SLP_FILE=server.slp

SNL_DOMAIN_NAME=Ral

SPK_DATA _DIR=C:\SWIFTAlliance\RA\data\pki
SWNET_BIN_PATH=C:\SWIFTAlliance\RA\Ral\bin
SWNET_CFG_PATH=C:\SWIFTAlliance\RA\Ral\cfg
SWNET_HOST=HOSTNAME
SWNET_HOME=C:\SWIFTAIliance\RA
SWNET_INST=Ral
SWNET_LOG_PATH=C:\SWIFTAlliance\RA\Ral\log
SWNET_SLP_PATH=C:\SWIFTAlliance\RA\data\
SWTRACE=C:\SWIFTAIliance\RA\Ral\log

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 33

CHAPTER 2

Installing the webMethods SWIFTNet Module

10

11

12
13

Delete the SAG DLLs in the IntegrationServer\lib directory, if any SAG DLLs are
present in this directory.

Install the SWIFTNet Module 6.0.1 SP1 using the webMethods Installer. In the
component selection list, navigate to eStandards » SWIFTNet Module 6.0.1 » SWIFTNet
Server. Select Service Pack 1 for installation. For the installation steps, see “Installing the
webMethods SWIFTNet Module” on page 30.

Edit the env.cnf file in IntegrationServer \ packages\ WmSWIFTNetServer\ config
directory to specify the correct install path of the RA Client. For details, see “Step 2:
Edit the webMethods Environment Configuration File” on page 41.

Edit the snl.cnf file in IntegrationServer\ packages\ WmSWIFINetServer\ config
directory. For details, see “Step 3: Edit the webMethods SNL Configuration File” on
page 42.

Start the Integration Server and use the webMethods SWIFTNet Module.

Import the TN document types and the processing rules in Trading Networks. For
more information, see “Defining Trading Networks Information” on page 49. When
you import the new document types, choose to overwrite the old document types of
the SWIFTNet Module.

To apply the webMethods SWIFTNet Module Service Pack 1 to the Client Module

Note: Follow this set of instructions only if you are installing the Service Pack 1 over an
existing installation of the SWIFTNet Module.

1

Take a backup of the following packages in the IntegrationServer\ packages directory:
B WmSWIFTNetClient

B WmSWIFTNetClientSamples

Back up the server.bat file in the IntegrationServer\bin directory.

Back up the DLLs present in the IntegrationServer\lib directory, if any SAG DLLs are
copied to this directory.

Shut down the Integration Server.

Edit the server.bat file in the IntegrationServer\bin directory to remove the following
environment variables:

ARCH=win32
GENLOG_DIR=C:\SWIFTAlliance\RA\Ral\log
GENUTIL_DIR=C:\SWIFTAlliance\RA\bin
OSA_DIR=C:\SWIFTAlliance\RA\Ral\log
OSA_INSTANCE=Ral

34

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Applying the webMethods SWIFTNet Module Service Pack 1

Path=C:\SWIFTAlliance\RA\bin;C:\SWIFTAlliance\RA\Ilib;
PKIEXECDIR=C:\SWIFTAIliance\RA
SLP_ENV=DEFAULT

SLP_FILE=server._slp

SNL_DOMAIN_NAME=Ral
SPK_DATA_DIR=C:\SWIFTAlliance\RA\data\pki
SWNET_BIN_PATH=C:\SWIFTAIl iance\RA\Ral\bin
SWNET_CFG_PATH=C:\SWIFTAlliance\RA\Ral\cfg
SWNET_HOST=HOSTNAME
SWNET_HOME=C:\SWIFTAIliance\RA
SWNET_INST=Ral
SWNET_LOG_PATH=C:\SWIFTAlliance\RA\Ral\log
SWNET_SLP_PATH=C:\SWIFTAI l iance\RA\data\
SWTRACE=C:\SWIFTAlliance\RA\Ral\log

Delete the SAG DLLs in the IntegrationServer\lib directory, if any SAG DLLs are
present in this directory.

Install the SWIFTNet Module 6.0.1 SP1 using the webMethods Installer. In the
component selection list, navigate to eStandards » SWIFTNet Module 6.0.1 » SWIFTNet
Client. Select Service Pack 1 for installation. For the installation steps, see “Installing the
webMethods SWIFTNet Module” on page 30.

Edit the env.cnf file in IntegrationServer \ packages\ WmSWIFTNetClient\ config
directory to specify the correct install path of the RA Client. For details, see “Step 2:
Edit the webMethods Environment Configuration File” on page 46.

Start the Integration Server and use the webMethods SWIFINet Module.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 35

CHAPTER 2

Installing the webMethods SWIFTNet Module

Uninstall the webMethods SWIFTNet Module

a

a

Important! This section provides only instructions that are specific to uninstalling the
webMethods SWIFTNet Module. For complete instructions on using the webMethods
Installer, see the webMethods Installation Guide.

Important! If you want to keep certain records or services that you use with the existing
webMethods SWIFTNet Module packages on your webMethods Integration Server, make
sure that you take a backup of the packages before performing the following procedure,
which will remove all components in the packages.

To uninstall the SWIFTNet Module from webMethods Integration Server
1 Shut down the Integration Server that hosts the webMethods SWIFTNet Module.

2 In the Add or Remove Programs window, select webMethods release installation_directory as
the program to uninstall, where release and installation_directory are the release and
installation directory of the Integration Server on which the webMethods SWIFTNet
Module is installed.

3 The webMethods Uninstaller starts. In the component selection list, navigate to
eStandards and select webMethods SWIFTNet Module as the program to uninstall.

4 The uninstaller removes all webMethods SWIFTNet Module related files that were
installed in the IntegrationServer\ packages directory. The uninstaller does not delete
the files that were created after you installed the webMethods SWIFTNet Module (for
example, the user-created or the configuration files), nor does it delete the directory
structure that contains these files.

5 If you do not want to save the files that are not deleted by the uninstaller, navigate to
the IntegrationServer\ packages directory and delete the related directory

To uninstall only the SWIFTNet Module Service Pack 1

Important! The following steps are valid only if you would like to uninstall only the Service
Pack 1 and revert back to your previous installed version of the SWIFTNet Module. If you
are a new user of SWIFTNet Module, and had directly installed the SWIFTNet Module
along with the Service Pack 1, do not try to uninstall just the Service Pack 1, you must
uninstall the entire the SWIFTNet Module. For more information on uninstalling the
entire SWIFTNet Module, see “To uninstall the SWIFTNet Module from webMethods
Integration Server” on page 36.

1 Shut down the Integration Server that hosts the webMethods SWIFI'Net Module.

2 In the Add or Remove Programs window, select webMethods release installation_directory as
the program to uninstall, where release and installation_directory are the release and

36

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Uninstall the webMethods SWIFTNet Module

installation directory of the Integration Server on which the webMethods SWIFTNet
Module Service Pack 1 is installed. The webMethods Uninstaller starts.

To uninstall the Service Pack 1 on the server module, in the component selection list,
navigate to eStandards and select webMethods SWIFTNet Module » webMethods SWIFTNet
Server » Service Pack 1 as the program to uninstall.

To uninstall the Service Pack 1 on the client module, in the component selection list,
navigate to eStandards and select webMethods SWIFTNet Module » webMethods SWIFTNet
Client » Service Pack 1 as the program to uninstall.

The uninstaller removes all webMethods SWIFTNet Module Service Pack 1 related
files that were installed in the IntegrationServer \ packages directory and reverts back to
the previous installed version of the SWIFTNet Module.

Re-apply all the available webMethods SWIFTNet Module fixes. The patch history in
the Integration Server may show that the fixes are already applied, but you need to re-
apply them.

B 7o uninstall portions of the SWIFTNet Module from webMethods Integration Server

1
2
3

Start the webMethods Integration Server and the Server Administrator.
In the Server Administrator, select Package » Management.

From the Package list, locate the following packages:

B WmSWIFTNetClient

B WmSWIFTNetClientSample

® WmSWIFINetServer

B WmSWIFINetServerSample

Select one of the following options for each of the desired packages:

B Select Delete to delete the package without keeping a backup copy.

B Select Safe Delete to remove the package and keep a backup copy. (Backup copies
are stored in the ServerDirectory\ replicate\salvage directory on the server.)

Refresh your Web browser. The selected packages are removed.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 37

CHAPTER 2 Installing the webMethods SWIFTNet Module

38 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

webMethsids.

Configuring the webMethods SWIFTNet Module

B OV BIVIBIW oot 40
B Configuring the SWIFTAlliance Gateway SEIVervvuvieeeeeenniiiinnn., 40
B Preparing the Server Module to Receive and Respond to Requests 41
B Preparing the Client Module to Send Requests and Receive Responses 46
B Invoking the Remote File Handlero 47

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 39

CHAPTER 3 Configuring the webMethods SWIFTNet Module

Overview

This chapter describes how to prepare your server module or your client module to
exchange messages and files over SWIFTNet using the SWIFINet Module.

Important! The following steps assume that you already have installed the webMethods
Integration Server, webMethods Trading Networks, and the webMethods SWIFTNet
Module. For steps to install the webMethods SWIFTNet Module, see Chapter 2,
“Installing the webMethods SWIFTNet Module”. For more information about what
SWIFT software you need, work with SWIFT to determine your software needs.

Configuring the SWIFTAlliance Gateway Server

To configure your SAG server to communicate with your RA client, SWIFTNet Module,
and Integration Server, complete the following steps:

B |nstall a Remote API Host Adapter (RAHA). Install an RAHA on the same machine as the
SAG server. Your RAHA enables your SAG server to exchange messages and files
with the RA client on the same machine as your Integration Server. To obtain an
appropriate RAHA, contact SWIFT.

B Configure Message Partners and Endpoints

Configure the server message partners for the server module, and the client message
partners for the client module.

For more information about completing these steps, see the SWIFTAlliance Gateway File
Transfer Interface Guide, the SWIFTAlliance Gateway Operations Guide, and the SWIFTAlliance
Gateway Remote API Operations Guide.

Important! If at any time the SAG server restarts, you must reload the WmSWIFTNetServer
and WmSWIFTNetClient packages.

40 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Preparing the Server Module to Receive and Respond to Requests

Preparing the Server Module to Receive and Respond to
Requests

To prepare your server module to receive and respond to requests using the SWIFTNet
Module, you must complete the following steps:

B “Step 1: Install a Remote API Client”

B “Step 2: Edit the webMethods Environment Configuration File”
B “Step 3: Edit the webMethods SNL Configuration File”
|

“Step 4: Configure Trading Networks”

Step 1: Install a Remote API Client

Install a Remote API (RA) client on the same machine as the Integration Server. The RA
client enables the SWIFTNet Module to communicate with your SAG server and SNL
through your Remote API Host Adapter (RAHA). To obtain an RA client, contact SWIFT.

Step 2: Edit the webMethods Environment Configuration File

Edit the Server environment configuration file, env.cnf, located in the

IntegrationServer\ packages\ WmSWIFTNetServer \ config directory. Set the environment
variables in the env.cnf file according to the properties of the RA client installation.
Following is an example of the contents of the env.cnf file:

SWNET_CFG_PATH=C:\\SWIFTAI I iance\\RA\\Ral\\cfg\\
SystemRoot=C:\\WINDOWS
SWNET_BIN_PATH=C:\\SWIFTAIliance\\RA\\Ilib
SWNET_HOME=C:\\SWIFTAl liance\\RA

Note: Use “\ \” as the path separator instead of “\”.

Set this parameter... To...

SWNET_CFG_PATH cfg folder of the RA instance in your system

SystemRoot point to the correct system root folder. The value of the
SystemRoot parameter depends on your operating system. Valid
values:

C:\WINNT for Windows 2000
C:\Windows for Windows 2003 or Windows XP

SWNET_BIN_PATH lib folder of the RA instance in your system
SWNET_HOME RA Home

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 41

CHAPTER 3 Configuring the webMethods SWIFTNet Module

Step 3: Edit the webMethods SNL Configuration File

When the Integration Server starts, the WmSWIFTNetServer package automatically
registers itself with the SNL libraries on your SAG server as the server module and
exchanges a series of pre-defined SNL primitives in sequence with your SNL libraries
using your RA client. The information in the

IntegrationServer\ packages\ WmSWIFTNetServer \ config \ snl.cnf file is required to
populate these primitives. Following is an example of the contents of the server snl.cnf
file:

Properties for FileAct/InterAct Server
SAGMessagePartner=[MessagePartner]
server_pki_profile=[username]
server_pki_password=

Sign=TRUE

Decrypt=FALSE

Authorisation=TRUE
encryptDN=cn=[encryptCN], o=[bic], o=swift
AllFileEvents=TRUE

FullFileStatus=TRUE
SwEventEP=File_Status Event EP
ReceptionFolder=C:/tmp/

SwTransferEP=

#allowable values are "Automatic® and “"Manual*®
cryptoMode=Automatic

For the SWIFTNet Module to exchange information with your SAG server, you must set
the parameters in this file using the information you used to configure your SAG server in
“Configuring the SWIFTAlliance Gateway Server” on page 40 and as indicated in the
following table.

Set this parameter... To...

SAGMessagePartner The “Server” message partner defined in your SAG server.

server_pki_profile The User name of the server PKI profile defined in your SAG
server.

server_pki_password — The password associated with the user name of the server PKI
profile defined in your SAG server. This is used to unlock the
Server PKI profile.

Sign, Decrypt,and ~ The value is used to populate the SwSec:CreateContextRequest
Authorisation primitive exchanged during server initialization. Valid values:
True and False.

encryptDN The Distinguished Name to be used for encryption operations.

AllFileEvents and The value is used to populate the Sw:SubscribeFileEventRequest
FullFileStatus primitive exchanged during server initialization. Valid values:
True and False.

42 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Preparing the Server Module to Receive and Respond to Requests

Set this parameter...

To...

SwEventEP

The file transfer event end point to which file transfer events are
are posted by your SAG server during FileAct operations. This
value is used to populate the Sw:SubscribeFileEventRequest
primitive exchanged during server initialization.

ReceptionFolder

The default folder to receive incoming files. When the
ReceptionFolder parameter is blank in the snl.cnf file, the default
value is

IntegrationServer\ packages\ WmSWIFTNetServer\ pub\ SWIFTN
etReceptionFolder.

If the specified folder does not exist, it is created.

Use “\\” or “/” as the path separator instead of “\”.

SwTransferEP

Default transfer endpoint of the remote file handler. If
SwTransferEP is specified, the value must match a remote file
handler endpoint running on the same machine as the
Integration Server. For information on invoking the remote file
handler, see “Invoking the Remote File Handler” on page 47.

cryptoMode

The value specifies whether your SAG server automatically
performs crypto operations. Valid values: Automatic and Manual

Important! In the server snl.cnf file, if the value of the ReceptionFolder parameter or
SwTransferEP parameter is changed, execute the wm.swiftnet.server.property:reloadProperties
service. If any of the other parameter values are changed, reload the WmSWIFTNetServer

package.

Step 4: Configure Trading Networks

To configure your Trading Networks, start the Integration Server on which you have
installed the SWIFTNet Module and complete the following steps:

Step Description

“Define Trading Partner Profiles”

“Define TN Document Types”

“Create Mapping Services”

“Define Processing Rules”

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 43

CHAPTER 3 Configuring the webMethods SWIFTNet Module

Define Trading Partner Profiles

In the webMethods Trading Networks Console, you define the trading partner profiles for
yourself and all financial institutions with whom you want to exchange messages and
files.

For more information about defining trading partner profiles for use with the SWIFTNet
Module, see Chapter 4, “Defining Trading Networks Information”.

Define TN Document Types

TN document types are definitions that tell webMethods Trading Networks how to
identify the incoming SNL request primitives, and specify the processing rule you want to
use to process the document. You must create a TN document type for each type of
request you will be handling.

webMethods SWIFTNet Module provides sample TN document types in the
IntegrationServer\ packages\ WmSWIFINetServerSample\ config\

ServerDocTypes.dat file. You can import these TN document types into Trading Networks
and then modify them or use them to create new TN document types.

For information about importing and creating TN document types, see Chapter 4,
“Defining Trading Networks Information”. For general information about using TN
document types, see the webMethods Trading Networks--Building Your Trading Network
guide.

Create Mapping Services

A mapping service defines what response to send back to the client module. You must
create a mapping service for each type of request you will be handling.

The webMethods SWIFTNet Module provides sample services in the
IntegrationServer\ packages\ WmSWIFTNetServerSample directory that you can use or on
which you can base new services.

Define Processing Rules

Processing rules enable you to process incoming requests. You assign a processing rule to
a particular TN document type so that when Trading Networks identifies a request, it
processes that request according to the settings in the processing rule, including which
processing service should be invoked. You must create a processing rule for each type of
request you will be handling.

44 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Preparing the Server Module to Receive and Respond to Requests

All the services executed by the processing rules you created must meet the following
requirements:

B The input/output signature must conform to the
wm.swiftnet.server.doc:SWIFTNetServerSideProcessingRule specification in the
WmSWIFTNetServer package. To do so, in Developer specify the
SWIFTNetServerSideProcessingRule service in the Specification Reference field on the
Input/Output tab of the service invoked by the processing rule as illustrated in the
following figure.

InputiOutput | Pipeline | Comments |

X e T <l

Specification Reference xp._f_m.s_\gx:'i_f_'t_net_.gg_awer.g:ﬂu;u::_S‘_l.-'}.ﬂFTNet%_arverSi_deErqgggsin_gRulg_..'.'...:,_

IFuptt Ot

[+ @ hizodoc (BizDocEnvelope) {Abz| xmiResponse

B The output must contain a string xmlResponse. This is the response to the incoming
request that the server module sends back to the client module.

The SWIFTNet Module provides sample processing rules in the

IntegrationServer\ packages\ WmSWIFTNetServerSample\ config\
ServerProcessingRules.dat file. You can import these processing rules into Trading
Networks and then modify them or use them to create new processing rules.

For information about importing and creating processing rules, see Chapter 4, “Defining
Trading Networks Information”. For general information about using processing rules,
see the webMethods Trading Networks--Building Your Trading Network guide.

You are now ready to receive requests and send responses.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 45

CHAPTER 3 Configuring the webMethods SWIFTNet Module

Preparing the Client Module to Send Requests and Receive

Responses

To prepare your client module to exchange messages and files over SWIFINet using the
webMethods SWIFTNet Module, you must complete the following steps:

B “Step 1: Install a Remote API Client”
B “Step 2: Edit the webMethods Environment Configuration File”

B “Step 3: Invoke wm.swiftnet.client.services:swArguments”

Step 1: Install a Remote API Client

Install a Remote API (RA) client on the same machine as the Integration Server. The RA
client enables the SWIFTNet Module to communicate with the SAG server and SNL
through the Remote API Host Adapter (RAHA). To obtain an RA client, contact SWIFT.

Step 2: Edit the webMethods Environment Configuration File

Edit the Client environment configuration file, env.cnf, located in the
IntegrationServer\ packages\ WmSWIFINetClient\ config directory. Set the environment
variables in the env.cnf file according to the properties of RA client installation.

SWNET_CFG_PATH=C:\\SWIFTAI I iance\\RA\\Ral\\cfg\\
SystemRoot=C:\\WINDOWS
SWNET_BIN_PATH=C:\\SWIFTAlliance\\RA\\Ilib
SWNET_HOME=C:\\SWIFTAI liance\\RA

Note: Use “\ \” as the path separator instead of “\”.

Set this parameter... To...

SWNET_CFG_PATH cfg folder of the RA instance in your system

SystemRoot The SystemRoot parameter should point to the correct system
root folder. The value of the SystemRoot parameter depends on
your operating system. Valid values:

C:\WINNT for Windows 2000
C:\Windows for Windows 2003 or Windows XP

SWNET_BIN_PATH lib folder of the RA instance in your system

SWNET_HOME RA Home

46

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Invoking the Remote File Handler

Step 3: Invoke wm.swiftnet.client.services:swArguments

Before exchanging any primitives with the SAG server using the SWIFTNet Module, the
client module must invoke the wm.swiftnet.client.services:swArguments service in the
WmSWIFTNetClient package at least once. The only parameter required to be passed to
this service is SAGMessagePartner, which is the message partner defined as the “Client” in
your SAG server during configuration. The format in which this argument must be passed
is illustrated in the wm.swiftnet.client.sample.fileAct:swExchangeFile service in the
WmSWIFTNetClientSample package.

Invoking the Remote File Handler

You must invoke the Remote File Handler to enable transfer of files residing in your
system.

B 7o run the Remote File Handler

1 Run the following command:
RA_Installation_Directory\RA\bin\swiftnet.bat init -S ra_instance

where ra_instance is the instance of the Remote API on your system. For example,
RAL
2 Start the swfa_handler with the command-line arguments as follows:

swfa_handler HostName:PortNumber:[ssl] TransferEndpoint [Process ID]

Here are some examples:

swfa_handler snlhost:48003:ssl MyUniqueEndpoint 23450
swfa_handler snlhost:48003 MyUniqueEndpoint 23450
swfa_handler snlhost:48003 MyUniqueEndpoint

Note: The swfa_handler is present in the RA_HOME\bin directory. snlhost is
the host where SAG/SNL is installed.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 47

CHAPTER 3 Configuring the webMethods SWIFTNet Module

48 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

webMethsids.

CHAPTER

Defining Trading Networks Information

B OV IV oot 50
B Defining Trading Partner Profiles o 50
B Defining TN Document Types and Attributescc i, 51
B Defining Processing RUIESttt 55

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 49

CHAPTER 4 Defining Trading Networks Information

Overview

Trading partner profiles help define how you and your trading partners exchange SWIFT
messages and files. TN document types enable webMethods Trading Networks to identify
a type of business document and specify what to extract from the business document.
Processing rules tell Integration Server how to process the incoming requests for server
applications.

This chapter provides you with information about defining trading partner profiles, TN
document types, and processing rules in webMethods Trading Networks.

Defining Trading Partner Profiles

A trading partner is any person or organization with whom you want to conduct business
electronically. In the webMethods SWIFTNet Module, a trading partner is defined by
several criteria that you specify in a trading partner profile, including company name and
identifying information, contact information, and preferred delivery methods.

In addition to specifying trading partner profiles for all of your trading partners, you must
specify a profile for your own organization.

Why Are Trading Partner Profiles Important?

Your trading partner profiles define how you exchange messages and files with your
partners. In fact, the concise definition of profiles and the configuration of processing
rules enable you to interact successfully with your trading partners.

For the SWIFTNet Module, you define a single trading partner profile for yourself (My
Enterprise). You also must define a trading partner profile for each trading partner with
whom you will be exchanging messages and files.

Defining Your Enterprise Profile

Before defining your trading partner profiles in Trading Networks and exchanging
messages and files, you first must define your enterprise (My Enterprise) profile by
completing the fields in the Profile Assistant in the Trading Networks Console.

For procedural information about defining your enterprise profile as well as descriptions
of all the fields you must complete when defining your enterprise profile, see the
webMethods Trading Networks--Building Your Trading Network guide.

50

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Defining TN Document Types and Attributes

Defining Trading Partner Profiles

Each trading partner with whom you want to exchange messages and files must have a
trading partner profile in Trading Networks. After you have defined your enterprise
profile, you are ready to define your trading partners’ profiles.

You define a trading partner profile by completing the fields in the Profile Assistant in the
Trading Networks Console.

For procedural information about defining a trading partner profile as well as
descriptions of the fields you must complete when defining a trading partner profile, see
the webMethods Trading Networks--Building Your Trading Network guide.

Defining TN Document Types and Attributes

TN document types are definitions that tell webMethods Trading Networks how to
identify the incoming SNL request primitives and specify the processing rule you want to
use to process the document. You must create a TN document type for each type of
request you need to handle.

When the webMethods SWIFTNet Module receives a request, it invokes a Trading
Networks service to recognize the incoming requests (SWIFTNet primitives) for server
applications using the TN document types that you created. When Trading Networks
recognizes the TN document type of the incoming request, Trading Networks extracts
specific pieces of information from the business document based on the attributes
specified in the TN document type.

The SWIFTNet Module provides sample TN document types in the

IntegrationServer \ packages\ WmSWIFI'NetServerSample\ config\ ServerDocTypes.dat
file. You can import the following TN document types into Trading Networks and then
modify them or create new TN document types:

B Sw:HandleFileRequest

B Swint:HandleRequest

B Sw:HandleFileEventRequest
B Sw:HandleSnFRequest

For more information about TN document types, see the webMethods Trading Networks--
Building Your Trading Network guide.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 51

CHAPTER 4 Defining Trading Networks Information

Importing the Sample TN Document Attributes

B Toimport the sample TN attributes

1

6

Start the Integration Server, Server Administrator, and Trading Networks Console, if
they are not already running.

In the Trading Networks Console, click File » Import.

To select the TN document attributes file, click 3.

Navigate to the IntegrationServer\ packages\ WmSWIFTNetServerSample\
config\ ServerAttributes.dat file, and click Open. The TN attributes are listed on the
Import Data screen.

Click W‘ to select the sample TN document attribute, SessionlD, and then click OK.
The TN document attribute is imported.

Now you can copy and modify the sample TN document attributes as necessary.

The TN document attributes are used in our sample implementation to differentiate
between real-time and Store-and-Forward services. For more information about TN
document attributes, see the webMethods Trading Networks--Building Your Trading Network
guide.

Importing the Sample TN Document Types

I 1o import the sample TN document types

1

Start the Integration Server, Server Administrator, and Trading Networks Console, if
they are not already running.

In the Trading Networks Console, click File » Import.

To select the TN document type file, click 8.

52

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Defining TN Document Types and Attributes

4 Navigate to the IntegrationServer\ packages\ WmSWIFI'NetServerSample\
config\ ServerDocTypes.dat file, and click Open. The TN document types are listed on
the Import Data screen.

&3 Import Data
criche PRI
Select File: | g

[| Force It [_| Overwrite Rules

L
= ocument T

Selected tems:

B& SwiHandleFileEvertRenguest @ 43
EE SwiHandleSnFRecuest |

Swint:HandleRequest P 4 ;
Dependencies:

OK || Cancel I

5 Click W| to select all of the TN document types and then click OK. The TN document
types are imported.

6 Now you can copy and modify these TN document types as necessary.

For more information about TN document types, see the webMethods Trading Networks--
Building Your Trading Network guide.

Creating TN Document Types

When you define an internal TN document type, you specify the root tag from within the
SNL primitive that the TN document type is to match.

B 1o create an internal TN document type

1 Start the Integration Server, Server Administrator, and Trading Networks Console, if
they are not already running.

2 Select View » Document Types.

3 Select Types » New » XML.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 53

CHAPTER 4 Defining Trading Networks Information

4 In the Document Type Details screen, in the Name field, type the name you want to give to
the internal TN document type.

5 In the Description field, type a description for the internal TN document type.

6 On the Identify tab, in the Root Tag field, type the value of the root tag of your internal
document. For example, HandleRequest.

The following figure illustrates the ldentify tab of the Document Type Details screen with
the necessary fields completed.

{8 Document Type Details E|

Hame: ?w_:ﬂgrquqfi_lgﬁ_qqqqgl | Last Modified: 2006-05-1017:38:30.351 Enahled:@

Description EW:Hand'leFiléRequesi

_Identify.i Extract | Hamespaces | Options |
File: @ : I.llientifying Queries:
u Queny: Value:
E |

Load a zample document to work with

0B [

Root Tag: HandleFilsRequest

DOCTYPE Identifier:|

Pipeline Matching:

Matrie Walue | @

| OK | | Cancel

Note: You can tell whether a TN document type is internal or external because an
external TN document type always has a pipeline matching variable of
processVersion. The TN document type in the preceding figure has no pipeline
matching variable, so it is an internal TN document type.

7 Click OK.

For more information about TN document types, see the webMethods Trading Networks--
Building Your Trading Network guide.

54 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Defining Processing Rules

Defining Processing Rules

Processing rules process the incoming requests (SNL primitives) for server applications
by invoking the mapping services that you create. The webMethods SWIFTNet Module
provides server sample processing rules in the IntegrationServer\ packages\
WmSWIFTNetServerSample\ config\ ServerProcessingRules.dat file. You can import the
following processing rules in this file using the Trading Networks Console and then
modify them or create new processing rules:

Process Sw:HandleFileRequest
Process Sw:HandleFileRequest SnF
Process Sw:HandleFileEventRequest
Process Swint:HandleRequest
Process Swint:HandleRequest SnF

Process Sw:HandleSnFRequest

Importing the Sample Processing Rules

P Toimport the processing rules

1

Start the Integration Server, Server Administrator, and Trading Networks Console, if
they are not already running.

In Trading Networks, select File » Import.

In the Import dialog box, click (3 to select the processing rule file.

Navigate to the IntegrationServer\ packages\ WmSWIFI'NetServerSample\ config\
ServerProcessingRules.dat file, and click Open. The processing rules are listed on the
Import Data screen.

Click w to select all of the processing rules and then click OK. The processing rules
are imported. If the default processing rule appears above these rules, disable the
default processing rule.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 55

CHAPTER 4 Defining Trading Networks Information

Creating Processing Rules

When you define a processing rule, you specify the service to be invoked to send the
appropriate response back to the client application.

1

To create a processing rule

Start the Integration Server, Server Administrator, and Trading Networks Console, if
they are not already running.

Select View » Processing Rules.
Select Rules » Add » Above/Below/Last.

In the Processing Rule Details screen, in the Name field, type the name you want to give
to the processing rule.

In the Description field, type a description for the processing rule.
On the Criteria tab, select the TN document type associated with the processing rule.

The following figure illustrates the main screen and the Criteria tab of the Processing
Rule Details screen with the necessary fields completed.

= Processing Rule Details

Hame: P.roc:ess.SW:.Handiél.’iiéReq_ues.t i i Ordinal: 3
[¥] Enabled
Deseription: jrvoked when Sw:HandleFileRequest document is received.]j
1=
Criteria I Extended Criteria | Action | Pre-Processing |
I~ Sender - 1 [Receiver — 1 Document Type —
) fny) sny 2 any
] Enterprize (EuroClear) o Enterprize (EuraClear] 1) Unknown
0 Unknican 0 Unknican ® Selected
) Selacted) Selacted SwwHandleFileRenuest @
5 5 I
Sy Sy
- Uzer Status — ~ Recognition Errors
- Ay] bday have errars
8] Specified () Has no errors
-y) Has errors
Last Modified: 2006-05-10 17:38:35.395
0K | | Cancel

56

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Defining Processing Rules

7 On the Action tab, select the Execute a Service check box and specify the service that you
want this processing rule to execute.

To function properly, the service you specify for a processing rule must meet the
following requirements:

B The input/output signature must conform to the specification
wm.swiftnet.server.doc: SWIFTNetServerSideProcessingRule in the WmSWIFTNetServer
package. To do so, in Developer specify the SWIFTNetServerSideProcessingRule service
in the Specification Reference field on the Input/Output tab of the mapping service, as
illustrated in the following figure:

Inputiouteut | Pipeline | Comments |

B X e T i

It | output =

[+ ﬁ hizdoc (BizDocEnvelope) {Abz| xmiResponse

B The output must contain a string xmlResponse. This is the response to the
incoming request that the server application sends back to the client application.

The SWIFTNet Module provides sample services in the
IntegrationServer\packages\ WmSWIFTNetServerSample directory that you can
use or on which you can base the new services.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 57

CHAPTER 4 Defining Trading Networks Information

8 Click OK.

The following figure illustrates the main screen and the Action tab of the Processing

Rule Details screen with the necessary fields completed.

Processing Rule Details

Hame: 'Proc:ess SwwHandleFileRequest

[V] Enabled

Ordinal:

Description: |rvoked when SwHandleFileRequest document is received.

E

Criteria | Extonded Criteria || Action | pre-processing |

| Enahle | Action | Execute & Service

| v [Execute a service |

i [Alert e-tmil g g Set Inputs| Edit Service| wm.swiftnet zerver zample filesct procezsFileRequest
|] |change user status i

| [|Deliver document by

| [0 |Respondwith) Asynchronous

[) Service Execution Task

Last Modified: 2006-05-1017:35:35.398

OK | | Cancel

58

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

webMethsids.

webMethods SWIFTNet Module Services

Services and the SNL Request and Response Primitivest 60
Services QUick Reference 61
WmSWIFTNetClient Package e 64
WmSWIFTNetServer Package ... 75

Important! Because client and server applications cannot co-exist in the same process, if you want
to use both the client and server application services, you must install the webMethods SWIFTNet
Module on two different Integration Servers. You must use only the WmSWIFTNetClient packages
on one Integration Server and only the WmSWIFTNetServer packages on the other Integration

Server.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

59

CHAPTER 5 webMethods SWIFTNet Module Services

Services and the SNL Request and Response Primitives

The webMethods SWIFTNet Module services make calls to the following SNL request and response primitives that
are involved in communication between the client module, the server module, and SWIFTNet:

Sw:ExchangeFileRequest
Sw:ExchangeSnFRequest
Sw:FetchFileRequest
Sw:HandleFileEventRequest
Sw:HandleFileRequest
Sw:HandlelnitRequest
Sw:HandleSnFRequest
Sw:InitRequest
Sw:PullSnFRequest
SwSec:CreateContextRequest
SwSec:DestroyContextRequest
Sw:SubscribeFileEventRequest
Sw:TermRequest
Swint:ExchangeRequest
Swint:HandleRequest
Swint:SendRequest
Swint:WaitRequest

Sw:ExchangeFileResponse
Sw:ExchangeSnFResponse
Sw:FetchFileResponse
Sw:HandleFileEventResponse
Sw:HandleFileResponse
Sw:HandlelnitResponse
Sw:HandleSnFResponse
Sw:lInitResponse
Sw:PullSnFResponse
SwSec:CreateContextResponse
SwSec:DestroyContextResponse
Sw:SubscribeFileEventResponse
Sw:TermResponse
Swint:ExchangeResponse
Swint:HandleResponse
Swint:SendResponse

Swint:WaitResponse

60

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Services Quick Reference

Services Quick Reference

The following table provides a list of all services, by package, that are available for use in webMethods SWIFTNet
Module.

Package and Service Name Description Page

WmSWIFTNetClient package

wm.swiftnet.client.init:printRemoteErrors Logs the standard output and standard 64
error from the client process connected
to the SAG server. Errors are logged to
the Integration Server console.

wm.swiftnet.client.init:shutdown Terminates the client process 65
connected to the SAG server.

wm.swiftnet.client.init:startup Starts a client process that connectsto 65
the SAG server.

wm.swiftnet.client.services:createContextRequest Sends SwSec:CreateContextRequestto 65
the SAG server over RA to create a
security context.

wm.swiftnet.client.services:destroyContextRequest Sends SwSec:DestroyContextRequest 66
to the SAG server over RA to destroy a
security context.

wm.swiftnet.client.services:exchangeFileRequest Sends Sw:ExchangeFileRequest to the 66
SAG server over RA to perform a
FileAct operation (a get file or a put
file).

wm.swiftnet.client.services:exchangeRequest Sends Swint:ExchangeRequest to the 67
SAG server over RA to send an
InterAct message.

wm.swiftnet.client.services:exchangeSnFRequest Sends Sw:ExchangeSnFRequest to the 67
SAG server over RA to send an SnF
message.

wm.swiftnet.client.services:fetchFileRequest Sends Sw:FetchFileRequest to the 68

SAG server over RA to fetch a file
from SnF queue.

wm.swiftnet.client.services:getFileStatusRequest Sends Sw:GetFileStatusRequest to the 68
SAG server over RA to get the status of
a file transfer.

wm.swiftnet.client.services:initRequest Sends Sw:InitRequest to the SAG 69
server over RA.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 61

CHAPTER 5 webMethods SWIFTNet Module Services

Package and Service Name Description Page

wm.swiftnet.client.services:pullSnFRequest Sends Sw:PullSnFRequest to the SAG 69
server over RA to pull an SnF message.

wm.swiftnet.client.services:sendRequest Sends Swint:SendRequest to the SAG 70
server over RA to send an
asynchronous InterAct message.

wm.swiftnet.client.services:sendSynchronousRequest Converts the request in an IS 70
Document to an XML string format
(primitive) and sends it to the SAG
server via swCall.

wm.swiftnet.client.services:signEncryptRequest Sends SwSec:SignEncryptRequest to 71
the SAG server over RA to sign and/or
encrypt payload.

wm.swiftnet.client.services:swArguments Initializes client application by sending 71

arguments to the SNL libraries.

wm.swiftnet.client.services:swCall Invokes the “SwcCall()” function inthe 72
SNL libraries to send a request
primitive to the SAG server

wm.swiftnet.client.services:termRequest Sends Sw:TermRequest to the SAG 72
server over RA to terminate a session.

wm.swiftnet.client.services:verifyDecryptRequest Sends SwSec: VerifyDecryptRequestto 73
the SAG server over RA to verify a
signed/encrypted message.

wm.swiftnet.client.services:waitRequest Sends Swint:WaitRequest to the SAG 73
server over RA to retrieve response
asynchronously.

wm.swiftnet.client.util:formatXML Formats an XML string by appending 74
the proper namespace after the root tag.

WmSWIFTNetServer package

wm.swiftnet.server.init:printRemoteErrors Logs the standard output and standard 75
error from the server process connected
to the SAG server. Errors are logged to
the Integration Server console.

wm.swiftnet.server.init:shutdown Terminates the server process 75
connected to the SAG server.

wm.swiftnet.server.init:startup Starts a server process that connectsto 76
the SAG server.

62 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Services Quick Reference

Package and Service Name

Description

Page

wm.swiftnet.server.property:getCommonProperties

wm.swiftnet.server.property:getProperty

wm.swiftnet.server.property:listProperties

wm.swiftnet.server.property:reloadProperties

wm.swiftnet.server.services:handleRequest

wm.swiftnet.server.services:swCall

wm.swiftnet.server.util:formatXML

Retrieves the most commonly used
properties from the
webMethods6\IntegrationServer\
packages\WmSWIFTNetServer\
config\snl.cnf file.

Retrieves the value of the specified
property from the
webMethods6\IntegrationServer\
packages\WmSWIFTNetServer\
config\snl.cnf file.

Retrieves all properties specified in the
webMethods6\IntegrationServer\
packages\WmSWIFTNetServer\
config\snl.cnf file.

Reloads all properties specified in the
webMethods6\IntegrationServer\
packages\WmSWIFTNetServer\
config\snl.cnf file.

Processes incoming requests from the
SAG server as a TN document type and
invokes the processing rule specified
by the user.

Invokes the “SwcCall()” function in the
SNL libraries to send a request
primitive to the SAG server.

Formats an XML string by appending
the proper namespace after the root tag.

76

77

77

77

78

78

79

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

63

CHAPTER 5 webMethods SWIFTNet Module Services

WmSWIFTNetClient Package

This package contains the elements (flow services, Java services, record descriptions, and wrapper services) that
support webMethods SWIFTNet Module client-side functionality. This package contains the following folders:

Folder Description

wm.swiftnet.client.doc This folder contains the NS records that represent the SNL primitives
exchanged for FileAct and InterAct operations.

wm.swiftnet.client.init This folder contains services that start and terminate the client process.

wm.swiftnet.client.services This folder contains services that exchange SNL primitives with the SAG

server over RA. The wm.swiftnet.client.services:swArguments service must be
invoked prior to invoking any other services in this folder. The services in
this folder can be invoked in a predefined sequence to perform FileAct and
InterAct realtime and SnF operations. In essence the services in this folder
are the building blocks to perform higher level FileAct and InterAct
operations.

wm.swiftnet.client.util This folder contains utility services.

wm.swiftnet.client.init:printRemoteErrors

This service logs the standard output and standard error from the client process that is connected to the Swift Alliance
Gateway (SAG) server. Errors are logged to the Integration Server console. This service should be used to trace an
error and should not be used otherwise.

Input Parameters

None.

Output Parameters

None.

64

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClient Package

wm.swiftnet.client.init:shutdown

This service is registered as a shutdown service for the WmSWIFTNetClient package. It terminates the client process
that is connected to the SWIFT Alliance Gateway (SAG) server.

Input Parameters

None.

Output Parameters

None.

wm.swiftnet.client.init:startup

This service starts a client process that connects to the Swift Alliance Gateway (SAG) server. This client process
connects to the SAG server whenever a request needs to be sent over SWIFTNet.

Input Parameters

None.

Output Parameters

None.

wm.swiftnet.client.services:createContextRequest

This service requests the SAG server to create a security context. The service sends the SwSec:CreateContextRequest
to the SAG server over RA and returns the SwSec:CreateContextResponse received from the SAG server.

Input Parameters

SwSecCreateContextRequest IData Request to create a security context.

Output Parameters

SwSecCreateContextResponse IData Response indicating success or failure of security context creation in the

SAG server.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 65

CHAPTER 5 webMethods SWIFTNet Module Services

wm.swiftnet.client.services:destroyContextRequest

This service requests the SAG server to destroy a security context. The service sends the
SwSec:DestroyContextRequest to the SAG server over RA and returns the SwSec:DestroyContextResponse received
from the SAG server.

Input Parameters

SwSecDestroyContextRequest IData Request to destroy a security context.

Output Parameters

SwSecDestroyContextResponse IData Response indicating success or failure of security context destruction in

the SAG server.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

wm.swiftnet.client.services:exchangeFileRequest

This service requests the SAG server to perform a FileAct operation (realtime get file or put file and SnF put file).
The information whether to put a file or get a file is specified in the Sw:ExchangeFileRequest primitive. The service
sends the Sw:ExchangeFileRequest to the SAG server over RA and returns the Sw:ExchangeFileResponse received
from the SAG server.

Input Parameters

SwExchangeFileRequest IData Request to perform a FileAct operation.

Output Parameters

SwExchangeFileResponse IData Response indicating success or failure of the FileAct operation.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

66 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClient Package

wm.swiftnet.client.services:exchangeRequest

This service requests the SAG server to send an InterAct message. The service sends the Swint:ExchangeRequest to
the SAG server over RA and returns the Swint:ExchangeResponse received from the SAG server.

Input Parameters

SwintExchangeRequest IData Request to exchange a synchronous request.

Output Parameters

SwintExchangeResponse IData Synchronous response received.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

wm.swiftnet.client.services:exchangeSnFRequest

This service requests the SAG server to send an SnF message. The service sends the Sw:ExchangeSnFRequest to the
SAG server over RA and returns the Sw:ExchangeSnFResponse received from the SAG server.

Input Parameters

SwExchangeSnFRequest IData Request related to SnF protocol. For example, acquire a queue.

Output Parameters

SwExchangeSnFResponse IData Response returned by SWIFTNet.
error String Whether an error occurred. Valid values: true and false.

errorXMLString String Optional. Error details received from the SAG server.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 67

CHAPTER 5 webMethods SWIFTNet Module Services

wm.swiftnet.client.services:fetchFileRequest

This service sends the Sw:FetchFileRequest to the SAG server over RA and returns the Sw:FetchFileResponse
received from the SAG server.

Input Parameters

SwFetchFileRequest IData Request to fetch a file from an SnF queue.

Output Parameters

SwFetchFileResponse IData Response returned by the SWIFTNet for a fetch file request.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

wm.swiftnet.client.services:getFileStatusRequest

This service sends the Sw:GetFileStatusRequest to the SAG server over RA and returns the
Sw:GetFileStatusResponse received from the SAG server.

Input Parameters

SwGetFileStatusRequest IData Request to get the status of a file transfer.

Output Parameters

SwGetFileStatusResponse IData File transfer status response.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

68 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClient Package

wm.swiftnet.client.services:initRequest

This service sends the Sw:InitRequest to the SAG server over RA and returns the Sw:InitResponse received from the
SAG server. This is the initialization primitive exchanged before any other primitives are exchanged.

Input Parameters

SwinitRequest IData Initialization request primitive.

Output Parameters

SwinitResponse IData Initialization primitive response.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

wm.swiftnet.client.services:pullSnFRequest

This service sends the Sw:PullSnFRequest to the SAG server over RA and returns the Sw:PullSnFResponse received
from the SAG server.

Input Parameters

SwPullSnFRequest IData Request to pull a message from SnF queue.

Output Parameters

SwPullSnFResponse IData Response returned by SWIFTNet for a pull request.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 69

CHAPTER 5 webMethods SWIFTNet Module Services

wm.swiftnet.client.services:sendRequest

This service sends the Swint:SendRequest to the SAG server over RA and returns the Swint:SendResponse received
from the SAG server. This is the asynchronous version of Swint:ExchangeRequest primitive.

Input Parameters

SwintSendRequest IData Asynchronous request primitive.

Output Parameters

SwintSendResponse IData Immediate response received from the SAG server, without waiting for the
actual response from SWIFTNet.

error String Whether an error occurred. Valid values: true and false.

errorXMLString String Optional. Error details received from the RA client.

wm.swiftnet.client.services:sendSynchronousRequest

This service formats the input request primitive into an XML string and then invokes the
wm.swiftnet.client.services:swCall service to send the request primitive to the SAG server over RA. The response XML
string received is then formatted into the appropriate response primitive.

Input Parameters

requestDocument IData Request primitive to be sent.
requestDocNSName String NS record name of request primitive.
responseDocNS Name String NS record name of response primitive.

Output Parameters

responseDocument IData Response primitive received.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the RA client.

70 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClient Package

wm.swiftnet.client.services:signEncryptRequest

This service sends the SwSec:SignEncryptRequest to the SAG server over RA and returns the
SwSec:SignEncryptResponse received from the SAG server.

Input Parameters

SwSecSignEncryptRequest IData Request sign and/or encrypt payload.

Output Parameters

SwSecSignEncryptResponse IData Response received from the SAG server.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

wm.swiftnet.client.services:swArguments

This service initializes the client application by invoking the SwArguments() function defined in the SNL libraries.
The service takes a String[] of arguments as input. The only mandatory parameter to be passed is the
SAGMessagePartner defined in the SAG server.

For example:
args[0] = “WmSWIFTNetClient”
args[1]

args[2] = “<message partner name defined in SAG>”

“-SagMessagePartner”

Input Parameters

args String Initialization arguments to be passed to the SNL libraries.

Output Parameters

None.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 71

CHAPTER 5 webMethods SWIFTNet Module Services

wm.swiftnet.client.services:swCall

This service invokes the SwCall() function in the SNL libraries to send a request primitive to the SAG server and
returns the response primitive received from the SAG server.

Input Parameters

xmIRequest String Request primitive to be sent to the SAG server.

Output Parameters

xmIResponse String Response received from the SAG server.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

wm.swiftnet.client.services:termRequest

This service sends the Sw:TermRequest to the SAG server over RA and returns the Sw:TermResponse received from
the SAG server.

Input Parameters

SwTermRequest IData Session termination request to the SAG server.

Output Parameters

SwTermResponse IData Session termination response from the SAG server.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

72 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClient Package

wm.swiftnet.client.services:verifyDecryptRequest

This service sends the SwSec:VerifyDecryptRequest to the SAG server over RA and returns the
SwSec:VerifyDecryptResponse received from the SAG server.

Input Parameters

SwSecVerifyDecryptRequest IData Request to verify a signed/encrypted message.

Output Parameters

SwSecVerifyDecryptResponse IData Message decryption response from the SAG server.
error String Whether an error occurred. Valid values: true and false.

errorXMLString String Optional. Error details received from the SAG server.

wm.swiftnet.client.services:waitRequest

This service sends the Swint:WaitRequest to the SAG server over RA and returns the Swint:WaitResponse received
from the SAG server. This is the primitive exchanged to retrieve a response asynchronously.

Input Parameters

SwintWaitRequest IData Request to retrieve response asynchronously.

Output Parameters

SwintWaitResponse IData Asynchronous response received.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 73

CHAPTER 5 webMethods SWIFTNet Module Services

wm.swiftnet.client.util:formatXML

This service formats an XML string by appending the following namespaces after the root tag. The namespaces are
“Sw”, “Swint”, “SwGbl” and “SwsSec”. If these namespaces are not appended to the root tag, the incoming XML
response primitives cannot be converted into IData objects in the Integration Server.

Input Parameters

xmlRequest String XML string to be formatted with namespaces.

Output Parameters

formattedXML String XML string with namespaces appended after the root tag.

74 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetServer Package

WmSWIFTNetServer Package

This package contains the elements (flow services, Java services, record descriptions, and wrapper services) that
support webMethods SWIFTNet Module server-side functionality. This package contains the following folders:

Folder Description

wm.swiftnet.server.doc This folder contains the NS records that represent the SNL primitives
exchanged for FileAct and InterAct operations.

wm.swiftnet.server.init This folder contains services that start and terminate the server process.

wm.swiftnet.server.property This folder contains services that load properties specified in the
IntegrationServer\packages\WmSWIFTNetServer\config\snl.cnf file.

wm.swiftnet.server.services This folder contains services to handle incoming requests.

wm.swiftnet.server.util This folder contains utility services.

wm.swiftnet.server.init:printRemoteErrors

This service logs the standard output and standard error from the server process connected to the Swift Alliance
Gateway (SAG) server. Errors are logged to the Integration Server console. This service should be used to trace an
error and should not be used otherwise.

Input Parameters

None.

Output Parameters

None.

wm.swiftnet.server.init:shutdown

This service is registered as a shutdown service for the WmSWIFTNetServer package. It terminates the server
process connected to the SWIFT Alliance Gateway (SAG) server.

Input Parameters

None.

Output Parameters

None.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 75

CHAPTER 5 webMethods SWIFTNet Module Services

wm.swiftnet.server.init:startup

This service starts a server process that connects to the Swift Alliance Gateway (SAG) server. The server process is
registered as the server application for the message partner specified in the IntegrationServer\
packages\WmSWIFTNetServer\config\snl.cnf file. The following primitives are exchanged with the SAG server on

startup in this order:
1 Sw:HandlelnitRequest

oo o1 BAWDN

Sw:HandlelnitResponse

Input Parameters

SwSec:CreateContextRequest
SwSec:CreateContextResponse
Sw:SubscribeFileEventRequest

Sw:SubscribeFileEventResponse

None.

Output Parameters

None.

wm.swiftnet.server.property:getCommonProperties

This service retrieves the most commonly used properties from the webMethods6\IntegrationServer\
packages\WmSWIFTNetServer\config\snl.cnf file.

Input Parameters

None.

Output Parameters

SAGMessagePartner

server_pki_profile

server_pki_password

Sign,Decrypt and
Authorization

String Must correspond to a “Server” type message partner defined in the SAG
server.

String User name of the profile defined in the SAG server.

String Password associated with the user name used to unlock the security
information in the SAG server.

String Values are used for populating SwSec:CreateContextRequest primitive
exchanged during server initialization. Valid values: True and False.

76

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetServer Package

encryptDN String Distinguished Name to be used for encryption operations.

cryptoMode String Specifies whether crypto operations are performed automatically by the
SAG server/SNL. Valid values: Automatic and Manual.

wm.swiftnet.server.property:getProperty

This service retrieves the value of the specified property from the
IntegrationServer\packages\WmSWIFTNetServer\config\snl.cnf file.

Input Parameters

propertyName String Property value to be retrieved.

Output Parameters

value String Value of the property.

wm.swiftnet.server.property:listProperties

This service retrieves all the properties specified in the
IntegrationServer\packages\WmSWIFTNetServer\config\snl.cnf file.

Input Parameters

None.

Output Parameters

properties IData All properties in the snl.cnf file.

wm.swiftnet.server.property:reloadProperties

This service reloads all the properties specified in the IntegrationServer\packages\
WmSWIFTNetServer\config\snl.cnf file. This could be useful if more properties are added or existing properties
have been changed and the changes need to be reflected in the Integration Server immediately.

Input Parameters

None.

Output Parameters

properties IData All properties reloaded from the snl.cnf file.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 77

CHAPTER 5 webMethods SWIFTNet Module Services

wm.swiftnet.server.services:handleRequest

This service is invoked by the SwCallBack function in WmSWIFTNetServer.dll when a request is received from the
SAG server. This service then recognizes the incoming request primitive as a TN document type and invokes the
processing rule specified by the user. The output of the service specified by the user for the processing rule must
contain the string variable xmIResponse which is then passed back to the SAG server as the response for the incoming
request.

Input Parameters

xmIRequest String Incoming request primitive.

SwSecUserDN String User DN returned by security context created in the SAG server at startup.

Output Parameters

xmIResponse String Outgoing response primitive.

wm.swiftnet.client.services:swCall

This service invokes the SwCall() function in the SNL libraries to send a request primitive to the SAG server. The
response primitive received from the SAG server is then output to the pipeline.

Input Parameters

xmlIRequest String Request primitive to be sent to the SAG server.

Output Parameters

xmIResponse String Response primitive received from the SAG server.
error String Whether an error occurred. Valid values: true and false.
errorXMLString String Optional. Error details received from the SAG server.

78

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetServer Package

wm.swiftnet.server.util:formatXML

This service formats an XML string by appending the following namespaces after the root tag. The namespaces are
“Sw”, “Swint”, “SwGbI” and “SwSec”. If these namespaces are not appended to the root tag, the incoming XML
response primitives cannot be converted into IData objects in the Integration Server.

Input Parameters

xmIRequest String Request primitive to be sent to the SAG server.

Output Parameters

formattedXML String XML string with namespaces appended after the root tag.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 79

CHAPTER 5 webMethods SWIFTNet Module Services

80 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

webMethsids.

Samples

APPENDIX

OVBIVIBW o o ettt e et e e e e 82
webMethods SWIFTNet Module Sample Packagesccovvviveeo.... 82
Preparing the SWIFTNet Server Module to Use Sample Services 82
Preparing the SWIFTNet Client Module to Use Sample Services 83
Sample Services Quick Referenceo 85
WmSWIFTNetClientSample Package 88
WmSWIFTNetServerSample Packageccvviiiiineii e, 98
Setting Up Aliases for Remote Integration Serverscciiiiinnn... 101

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 81

Appendix A Samples

Overview

The webMethods SWIFTNet Module includes sample services for the server module and the client module. This
appendix contains information on how to use these sample services.

webMethods SWIFTNet Module Sample Packages

The webMethods SWIFTNet Module contains the following sample packages, which contain webMethods sample
services and related files, that you install on the webMethods Integration Server.

Package Description

WmSWIFTNetClientSample Contains sample services, TN document types, processing rules, and
implementation of the SWIFTNet Module client-side functionality.

WmSWIFTNetServerSample Contains sample services, TN document types, processing rules, and
implementation of the SWIFTNet Module server-side functionality.

Preparing the SWIFTNet Server Module to Use Sample Services

To use the server sample services, ensure that you have completed the following procedures. For more information
regarding configuring the SWIFTNet Module, see “Configuring the webMethods SWIFTNet Module” on page 39.

Step Description

Edit the server module snl.cnf file present in the
IntegrationServer\packages\WmSWIFTNetServer\config directory. For more information, see “Step
3: Edit the webMethods SNL Configuration File” on page 42.

Import the server module sample TN document types from the
IntegrationServer\packages\WmSWIFTNetServerSample\config\ServerDocTypes.dat file. For more
information, see “Importing the Sample TN Document Types” on page 52.

packages\WmSWIFTNetServerSample\config\ServerProcessingRules.dat file. For more
information, see “Importing the Sample Processing Rules” on page 55.

Import the server module sample processing rules from the IntegrationServer\

Set up aliases for remote Integration Servers. For more information, see “Setting Up Aliases for
Remote Integration Servers” on page 101.

82 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Preparing the SWIFTNet Client Module to Use Sample Services

Preparing the SWIFTNet Client Module to Use Sample Services

Perform the following steps to use the client sample services. For more information regarding configuring the client
module, see “Preparing the Client Module to Send Requests and Receive Responses” on page 46.

Step Description

“Edit the SWIFTNet Client Module SNL Configuration File”
“Import the Sample TN Document Types”

“Import the Sample Processing Rules”

Edit the SWIFTNet Client Module SNL Configuration File

The parameters defined in the client module snl.cnf file are used by the sample services. The information required to
send SNL primitives to the server module is retrieved from the IntegrationServer\packages\
WmSWIFTNetClientSample\config\snl.cnf file. Following is an example of the contents of the client snl.cnf file:

Properties for FileAct and InterAct
SAGMessagePartner=[MessagePartner]
client_pki_profile=[username]
client_pki_password=
requestor=o=[bic], o=swift
responder=o=[bic], o=swift

service=

encryptDN=cn=[encryptCN], o=[bic], o=swift

Sign=TRUE

Decrypt=FALSE
Authorisation=TRUE
ReceptionFolder=C:/tmp/
SwTransferEP=
SwEventEP=File_Status_Event_EP

Set the parameters in this file as indicated in the following table.

Set this parameter... To...

SAGMessagePartner A “Client” message partner defined in the SAG server.

client_pki_profile The user name of a client PKI profile defined in the SAG server.

client_pki_password ~ The password associated with the user name of a client PKI profile defined in the SAG

server. This is used to unlock the security information in the SAG server.

requestor

The Distinguished Name of the Requestor.

responder

The Distinguished Name of the Responder.

service

The default SWIFTNet service to be used.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 83

Appendix A Samples

Set this parameter...

To...

encryptDN The Distinguished Name to be used for encryption operations.

Sign, Decrypt, and The value is used to populate the SwSec:CreateContextRequest primitive exchanged

Authorisation during server initialization. Valid values: True and False.

ReceptionFolder The name of the default folder to receive the incoming files. When the ReceptionFolder
parameter is blank in the snl.cnf file, the default value is
webMethods6\IntegrationServer\packages\
WmSWIFTNetClient\pub\SWIFTNetReceptionFolder.

If the specified folder does not exist, it will be created.
Note: Use “\” or “/” as the path separator instead of “\”

SwTransferEP Default transfer endpoint of the remote file handler. For more information, see “Invoking
the Remote File Handler” on page 47.

SwEventEP File transfer event end point where file transfer events associated with file transfers

carried out while fetching the files, should be sent. When SnF Pull or Push is used, to
send the file transfer events to the Integration Server of the sever module, the value
specified for the client SwEventEP parameter should be the same as the SwEventEP
parameter specified in the server module snl.cnf.

Important! In the client snl.cnf file, if the value of the SAGMessagePartner parameter is changed, reload the
WmSWIFTNetClient package. If any of the other parameter values are changed, execute the
wm.swiftnet.client.sample.property:reloadProperties service.

Import the Sample TN Document Types

To import the sample TN document types:

1 Start the Integration Server, Server Administrator, and Trading Networks Console, if they are not already

running.

2 Inthe Trading Networks Console, click File » Import.

3 Toselect the TN document type file, click 3.

4 Navigate to IntegrationServer\packages\WmSW!IFTNetClientSample\config\ClientDocTypes.dat, and click
Open. The TN document types are listed on the Import Data screen.

5 Click w to select all of the TN document types and then click OK. The TN document types are imported.

6 Now you can copy and modify the sample TN document type, Sw:PullSnFResponse, as necessary.

For more information about TN document types, see the webMethods Trading Networks--Building Your Trading

Network guide.

84

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Sample Services Quick Reference

Import the Sample Processing Rules

To import the processing rules:

1 Start the Integration Server, Server Administrator, and Trading Networks Console, if they are not already

running.

2 In Trading Networks, select File » Import.

3 Inthe Import dialog box, click (3 to select the processing rule file.

4 Navigate to IntegrationServer\packages\WmSWIFTNetClientSample\config\ClientProcessingRules.dat, and

click Open. The processing rules are listed on the Import Data screen.

5 Click w to select all of the processing rules and then click OK. The processing rules are imported.

6 Now you can copy and modify the sample processing rule, Process Sw:PullSnFResponse, as necessary.

Sample Services Quick Reference

The following table provides a list of all sample services, by package, that are available for use in webMethods

SWIFTNet Module.

Package and Service Name Description Page
WmSWIFTNetClientSample package
wm.swiftnet.client.sample.SnF:swAcquireSnFQueue Constructs and sends 94
Sw:ExchangeSnFRequest to
SWIFTNet to acquire an SnF queue in
push mode.
wm.swiftnet.client.sample.SnF:swFetchFile Constructs and sends 95
Sw:FetchFileRequest to SWIFTNet to
fetch a file from an SnF queue.
wm.swiftnet.client.sample.SnF:swPullMessageOrFileSnF Pulls and processes messages in the 96
SnF queue, based on message type.
wm.swiftnet.client.sample.SnF:swReleaseSnFQueue Constructs and sends 97
Sw:ExchangeSnFRequest to
SWIFTNet to release an SnF queue.
wm.swiftnet.client.sample.fileAct:swExchangeFile Constructs and sends 88
Sw:ExchangeFileRequest to
SWIFTNet for a real-time FileAct
service.
webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 85

Appendix A Samples

Package and Service Name Description Page

wm.swiftnet.client.sample.fileAct:swExchangeFileSnF Constructs and sends 89
Sw:ExchangeFileRequest to
SWIFTNet for an SnF FileAct service.

wm.swiftnet.client.sample.fileAct:swGetFileStatus Constructs and sends 90
Sw:GetFileStatusRequest to
SWIFTNet to obtain the status of a file
transfer.

wm.swiftnet.client.sample.interAct:swExchangeRequest Constructs and sends 91
Swint:ExchangeRequest (or
Swint:SendRequest) to SWIFTNet for
a real-time InterAct service.

wm.swiftnet.client.sample.interAct:swExchangeRequestSnF Constructs and sends 92
Swint:ExchangeRequest (or
Swint:SendRequest) to SWIFTNet for
an SnF InterAct service.

wm.swiftnet.client.sample.property:getCommonProperties Retrieves the most commonly used 93
properties from the
webMethods6\IntegrationServer\
packages\WmSWIFTNetClientSample
\config\snl.cnf file.

wm.swiftnet.client.sample.property:getProperty Retrieves the value of the specified 93
property from the
webMethods6\IntegrationServer\
packages\WmSWIFTNetClientSample
\config\snl.cnf file.

wm.swiftnet.client.sample.property:listProperties Retrieves all properties specified inthe 94
webMethods6\IntegrationServer\
packages\WmSWIFTNetClientSample
\config\snl.cnf file.

wm.swiftnet.client.sample.property:reloadProperties Reloads all properties specified in the 94
webMethods6\IntegrationServer\
packages\WmSWIFTNetClientSample
\config\snl.cnf file.

86 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Sample Services Quick Reference

Package and Service Name Description Page

WmSWIFTNetServerSample package

wm.swiftnet.server.sample.fileAct:processFileEventRequest ~ Constructs an XML response for a file 98
event request
(Sw:HandleFileEventRequest),
received from SWIFTNet.

wm.swiftnet.server.sample.fileAct:processFileRequest Constructs an XML response for areal- 99
time FileAct handle request
(Sw:HandleFileRequest), received
from SWIFTNet.

wm.swiftnet.server.sample.interAct:processHandleRequest Constructs an XML response for areal- 99
time InterAct handle request
(Swint:HandleRequest), received from
SWIFTNEet.

wm.swiftnet.server.sample.SnF:processHandleSnFRequest ~ Constructs an XML response for an 99
SnF delivery notification
(Sw:HandleSnFRequest), received
from SWIFTNet.

wm.swiftnet.server.sample.SnF:processSnFFileRequest Constructs an XML response for an 100
SnF FileAct handle request
(Sw:HandleFileRequest), received
from SWIFTNet.

wm.swiftnet.server.sample.SnF:processSnFHandleRequest ~ Constructs an XML response for an 100
SnF InterAct handle request
(Swint:HandleRequest), received from
SWIFTNet.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 87

Appendix A Samples

WmSWIFTNetClientSample Package

This package contains the elements for a sample implementation of the webMethods SWIFTNet Module client-side
functionality.

It provides sample services for sending SNL primitives to the server application and to the SnF queue. These services
call other services in the sequence required by SWIFTNet. You can use these services or use them as guides for
creating your own services. This package also provides sample mapping services that map a given set of inputs into
the XML primitive required by SWIFTNet.

This package contains the following folders:

Folder Description

wm.swiftnet.client.sample.fileAct This folder contains sample services that provide FileAct functionality.
wm.swiftnet.client.sample.interAct This folder contains sample services that provide InterAct functionality.
wm.swiftnet.client.sample.property This folder contains sample services that perform property-based functions.

wm.swiftnet.client.sample.SnF This folder contains sample services that provide Store and Forward
functionality.

wm.swiftnet.client.sample.fileAct:swExchangeFile

This service constructs an Sw:ExchangeFileRequest for a real-time FileAct service and sends the request to
SWIFTNet by invoking SwCall. The service waits for the response from SWIFTNet (Sw:ExchangeFileResponse).

Input Parameters

transferType String (get/put) Indicates whether it is a get file request or a put file request.

cryptoMode String (Automatic/Manual) Indicates the crypto mode for this request.

requestType String Optional. Indicates the request type (Swint:RequestType) specific to the
SWIFTNet service.

requestRef String Optional. Used to populate element Swint:RequestRef.

physicalName String Full path of the file to be transferred.

When the request is a get file request, if there is no value specified for this
parameter, then the path is constructed by appending the current date to the
default location specified on the ReceptionFolder parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file.

logicalName String Optional. A logical name of the transferred file.

transferDescription String Optional. Description of the transfer.

88

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClientSample Package

serviceName

clientPKIpassword

SwTransferEP

NRIndicator

Output Parameters

String Optional. SWIFTNet service to be used (for example, swift.generic.fa).

If there is no value specified for this parameter, then the default value (as set on
the service parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

String Optional. Password used to unlock the client PKI profile.

If there is no value specified for this parameter, then the default value (as set on
the client_pki_password parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

String Optional. Transfer end point when a remote file handler is used. A remote
file handler with this transfer point must be running on the client machine.

If there is no value specified for this parameter, then the default value (as set on
the SwTransferEP parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used. For more information about using a remote file handler, see “Invoking the
Remote File Handler” on page 47.

String (TRUE/FALSE) Indicates whether Non Repudiation is requested.

SwExchangeFileResponse

IData Response returned by SWIFTNet.

wm.swiftnet.client.sample.fileAct:swExchangeFileSnF

This service constructs an Sw:ExchangeFileRequest for SnF FileAct service and sends the request to SWIFTNet by
invoking SwCall. The service waits for the response from SWIFTNet (Sw:ExchangeFileResponse).

Input Parameters

cryptoMode
requestType

requestRef
physicalName
logicalName
transferDescription

notifQueue

String (Automatic/Manual) indicates the crypto mode for this request.

String Optional. Indicates the request type (Swint:RequestType) specific to the
SWIFTNet service.

String Optional. Used to populate element Swint:RequestRef.
String Full path of the file to be transferred.

String Optional. A logical name of the transferred file.

String Optional. Description of the transfer.

String Name of the SnF queue used to store delivery notification for this SnF
request.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 89

Appendix A Samples

serviceName String Optional. SWIFTNet service to be used (for example, swift.generic.fa).

If there is no value specified for this parameter, then the default value (as set on
the service parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

clientPKIpassword String Optional. Password used to unlock the client PKI profile.

If there is no value specified for this parameter, then the default value (as set on
the client_pki_password parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

SwTransferEP String Optional. Transfer end point when a remote file handler is used. A remote
file handler with this transfer point must be running on the client machine.

If there is no value specified for this parameter, then the default value (as set on
the SwTransferEP parameter in the webMethods6\IntegrationServer\packages\

WmSWIFTNetClientSample\config\snl.cnf file) is used. For more information

about using a remote file handler, see “Invoking the Remote File Handler” on

page 47.
NRIndicator String (TRUE/FALSE) Indicates whether Non Repudiation is requested.
Output Parameters
SwExchangeFileResponse IData Response returned by SWIFTNet.

wm.swiftnet.client.sample.fileAct:swGetFileStatus

This service constructs an Sw:GetFileStatusRequest to obtain the status of a file transfer and sends the request to
SWIFTNet by invoking SwCall. The service waits for the response from SWIFTNet (Sw:GetFileStatusResponse).

Input Parameters

cryptoMode String (Automatic/Manual) Indicates the crypto mode for this request.
transferRef String TransferRef of the file transfer.
fullFileStatus String (TRUE/FALSE) Indicates whether full file status is requested.

Output Parameters

SwGetFileStatusResponse IData Response returned by SWIFTNet.

90 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClientSample Package

wm.swiftnet.client.sample.interAct:swExchangeRequest

This service constructs an Swint:ExchangeRequest (or Swint:SendRequest) for a real-time InterAct service and sends
the request to SWIFTNet by invoking SwCall. The service waits for the response from SWIFTNet
(Swint:ExchangeResponse or SwintSendResponse).

Input Parameters

requestMode

cryptoMode
cryptoType

requestType

memberRef

payload

Swint:NRIndicator
SwSec:CryptoUserinfo
wait

waitAny

serviceName

clientPKIpassword

Output Parameters

String (Synchronous/Asynchronous) Indicates whether Synchronous request
mode is used. For a Synchronous request, Swint:ExchangeRequest is
constructed. For an Asynchronous request, Swint:SendRequest is constructed. In
case of an asynchronous request, the wait and waitAny parameters are used to
indicate whether to wait for the response from SWIFTNet.

String (Automatic/Manual) Indicates the crypto mode for this request.

String (none/sign/encrypt/signAndEncrypt) Indicates whether crypto algorithms
need to be applied to the request.

String Optional. Indicates the request type (Swint:RequestType) specific to the
SWIFTNet service.

String Elements that need to be signed in the crypto block. (For example,
RequestPayload.)

String Business payload (must comply with the rules specified by the specific
swift solutions used).

String (TRUE/FALSE) Indicates whether Non Repudiation is requested.
String Optional. Used to populate element SwSec:CryptoUserinfo block.
String (TRUE/FALSE) Indicates whether to wait for response.

String (TRUE/FALSE) Indicates the option to receive a particular response.
String Optional. SWIFTNet service to be used (for example, swift.generic.ia).

If there is no value specified for this parameter, then the default value (as set on
the service parameter in the
IntegrationServer\packages\WmSW!IFTNetClientSample\config\snl.cnf file) is
used.

String Optional. Password used to unlock the client PKI profile.

If there is no value specified for this parameter, then the default value (as set on
the client_pki_password parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

SwintExchangeResponse

IData Response returned by SWIFTNet.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

91

Appendix A Samples

wm.swiftnet.client.sample.interAct:swExchangeRequestSnf

This service constructs an Swint:ExchangeRequest (or Swint:SendRequest) for an SnF InterAct service and sends the
request to SWIFTNet by invoking SwCall. The service waits for the response from SWIFTNet
(Swint:ExchangeResponse or SwintSendResponse).

Input Parameters

requestMode String (Synchronous/Asynchronous) Indicates whether Synchronous request
mode is used or not. For Synchronous request, then Swint:ExchangeRequest is
constructed. For Asynchronous request, Swint:SendRequest is constructed. In
case of asynchronous request, the wait and waitAny parameters are used to
indicate whether to wait for the response from SWIFTNet.

cryptoMode String (Automatic/Manual) Indicates the crypto mode for this request.

cryptoType String (none/sign/encrypt/signAndEncrypt) Indicates whether crypto algorithms
need to be applied to the request.

requestType String Optional. Indicates the request type (Swint:RequestType) specific to the
SWIFTNet service.

memberRef String Elements that need to be signed in the crypto block. (for example,
RequestPayload).

payload String Business payload (must comply with the rules specified by the specific
SWIFT solutions used).

Swint:NRIndicator String (TRUE/FALSE) Indicates whether Non Repudiation is requested.

SwSec:CryptoUserinfo String Optional. Used to populate element SwSec:CryptoUserinfo block.

wait String (TRUE/FALSE) Indicates whether to wait for response.

waitAny String (TRUE/FALSE) Indicates the option to receive a particular response.

notifQueue String Name of the SnF queue used to store delivery notification for this SnF
request.

serviceName String Optional. SWIFTNet service to be used (for example,swift.generic.ia).

If there is no value specified for this parameter, then the default value (as set on
the service parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

clientPKIpassword String Optional. Password used to unlock the client PKI profile.

If there is no value specified for this parameter, then the default value (as set on
the client_pki_password parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

92 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClientSample Package

Output Parameters

SwintExchangeResponse IData Response returned by SWIFTNet.

wm.swiftnet.client.sample.property:getCommonProperties

This service retrieves the most commonly used properties from the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file.

Input Parameters

None.

Output Parameters

SAGMessagePartner String Must correspond to a “Client” type message partner defined in the SAG
server.

client_pki_profile String User name of the profile defined in the SAG server.

client_pki_password String Password associated with the user name used to unlock the security
information in the SAG server.

Sign,Decrypt and String Values are used for populating SwSec:CreateContextRequest primitive

Authorization exchanged during server initialization. Valid values: True and False.

encryptDN String Distinguished Name to be used for encryption operations.

requestor,responder String Values used to populate Swint:Requestor and Swint:Responder elements

in the SNL primitives.

service String Specifies the name of the default SWIFTNet service to be used when
interacting with SWIFTNet.

wm.swiftnet.client.sample.property:getProperty

This service retrieves the value of the specified property from the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file.

Input Parameters

propertyName String Property value to be retrieved.

Output Parameters

value String Value of the property.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 93

Appendix A Samples

wm.swiftnet.client.sample.property:listProperties

This service retrieves all the properties specified in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file.

Input Parameters

None.

Output Parameters

properties IData All properties in the snl.cnf file.

wm.swiftnet.client.sample.property:reloadProperties

This service reloads all the properties specified in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file. This service could be useful if more
properties are added or existing properties have been changed and the changes need to be reflected in the Integration
Server immediately.

Input Parameters

None.

Output Parameters

properties IData All properties reloaded from the client snl.cnf file.

wm.swiftnet.client.sample.SnF:swAcquireSnFQueue

This service constructs an Sw:ExchangeSnFRequest in order to acquire an SnF queue in push mode, and sends the
request to SWIFTNet by invoking SwCall. The service waits for the response from SWIFTNet
(Sw:ExchangeSnFResponse).

Input Parameters

cryptoMode String (Automatic/Manual) Indicates the crypto mode for this request.

gueue String Name of the SnF queue to be acquired.

Output Parameters

SwExchangeSnFResponse IData Response returned by SWIFTNet.

94

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClientSample Package

wm.swiftnet.client.sample.SnF:swFetchFile

This service constructs an Sw:FetchFileRequest to fetch a file from an SnF queue, and then sends the request to
SWIFTNet by invoking SwCall. The service waits for the response from SWIFTNet (Sw:FetchFileResponse).

Input Parameters

cryptoMode
Sw:FileRequestHandle

SwTransferEP

physicalName

SwEventEP

queue

String (Automatic/Manual) Indicates the crypto mode for this request.

IData Represents the XML block containing Sw:FileRequestHandle, which
contains the Sw:NotifyFileRequestHandle element (either pulled using
Sw:PullSnFRequest, or pushed from SWIFTNet if a queue is acquired in push
mode).

String Optional. Transfer end point when a remote file handler is used. A remote
file handler with this transfer point must be running on the client machine.

If there is no value specified for this parameter, then the default value (as set on
the SwTransferEP parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used. For more information about using a remote file handler, see “Invoking the
Remote File Handler” on page 47.

If no value is set on the SwTransferEP parameter in this service or in the client
module snl.cnf file
(IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf), the
fetched file is saved on the SAG server machine at the path specified on the
physicalName parameter. In this case, you must ensure that the path specified on
the physicalName parameter is present in the SAG server machine.

String Optional. Full path where the fetched file should be stored.

If there is no value specified for this parameter, then the path is constructed by
appending the current date to the default location specified on the
ReceptionFolder parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file.

String Optional. File Transfer Event End point where file transfer events
associated with file transfers carried out while fetching the files, should be sent.

If there is no value specified for this parameter, then the default value (as set on
the SwEventEP parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

The value specified for the SwEventEP parameter should be the same as is
specified in the server module snl.cnf
(IntegrationServer\packages\WmSWIFTNetServer\config\snl.cnf) file for the
file transfer events to get posted to the server module Integration Server

String Name of the SnF queue from which the file is fetched.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

95

Appendix A Samples

Output Parameters

SwFetchFileResponse IData Response returned by SWIFTNet.

wm.swiftnet.client.sample.SnF:swPullMessageOrFileSnF

This service processes messages in the SnF queue, based on message type. The service does several things:

1 It constructs an Sw:ExchangeSnFRequest to acquire an SnF queue in pull mode, and then sends the request to
SWIFTNet by invoking SwCall.

2 Onreceiving a successful acquire queue response from SWIFTNet (Sw:ExchangeSnFResponse), the service
sends Sw:PullSnFRequest to pull a message from the SnF queue. The pulled message is contained in
Sw:PullSnFResponse. The service processes the messages based on the type:

m |f the pulled message is an InterAct message, the service posts it to Trading Networks, and sends an
acknowledgement back to SWIFTNet.

m |f the pulled message is a FileAct message, the service constructs an Sw:FetchFileRequest and sends it to
SWIFTNet to fetch the file from the SnF queue. After the file transfer is complete, the service posts the
pulled message to Trading Networks, and sends an acknowledgement back to SWIFTNet. The SwEventEP
parameter in the client module snl.cnf file
(IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf) must be the same as in the server
module snl.cnf file (IntegrationServer\packages\WmSWIFTNetServer\config\snl.cnf) for the file transfer
events to get posted to the server Integration Server.

m If the pulled message is a delivery notification, the service posts it to Trading Networks, and sends an
acknowledgement back to SWIFTNet.

3 Step 2 is repeated until the SnF queue is empty.

Input Parameters

cryptoMode String (Automatic/Manual) Indicates the crypto mode for this request.
gueue String Name of the SnF queue from where to pull messages.
clientPKIPassword String Optional. Password used to unlock the client PKI profile.

If there is no value specified for this parameter, then the default value (as set on
the client_pki_password parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used.

96 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetClientSample Package

SwTransferEP String Optional. Transfer end point when a remote file handler is used. A remote
file handler with this transfer point must be running on the client machine.
Applicable if FileAct messages are anticipated.

If there is no value specified for this parameter, then the default value (as set on
the SwTransferEP parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file) is
used. For more information about using a remote file handler, see “Invoking the
Remote File Handler” on page 47.

If no value is set on the SwTransferEP parameter in this service or in the client
module snl.cnf file
(IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf), the
pulled file is saved on the SAG server machine at the path specified on the
physicalName parameter. In this case, you must ensure that the path specified on
the physicalName parameter is present in the SAG server machine.

physicalName String Optional. Full path where the pulled files should be stored. Applicable if
FileAct messages are anticipated.

If there is no value specified for this parameter, then the path is constructed by
appending the current date to the default location specified on the
ReceptionFolder parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file.

Output Parameters

SwPullSnFResponse IData Response returned by SWIFTNet for the last Sw:PullSnFRequest.
SwFetchFileResponse IData Response returned by SWIFTNet for the last Sw:FetchFileRequest.
SwAckSnFResponse IData Response returned by SWIFTNet for the last Sw:AckSnFRequest.

wm.swiftnet.client.sample.SnF:swReleaseSnFQueue

This service constructs an Sw:ExchangeSnFRequest in order to release an SnF queue, and then sends the request to
SWIFTNet by invoking SwCall. The service waits for the response from SWIFTNet (Sw:ExchangeSnFResponse).

Input Parameters

cryptoMode String (Automatic/Manual) Indicates the crypto mode for this request.

sessionld String SnF Session ID. Must match the id returned in the response at the time the
queue is acquired.

Output Parameters

SwExchangeSnFResponse IData Response returned by SWIFTNet.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 97

Appendix A Samples

WmSWIFTNetServerSample Package

This package contains the elements for a sample implementation of the webMethods SWIFTNet Module server-side
functionality.

It provides sample services for handling incoming SNL primitive requests that need to be processed and returned to
the client. These services call other services in the sequence required by SWIFTNet. You can use these services or use
them as guides for creating your own services. This package also provides sample mapping services that map a given
set of inputs into the XML primitive required by SWIFTNet.

This package contains the following folders:

Folder Description

wm.swiftnet.server.sample.fileAct This folder contains sample services that provide FileAct functionality.
wm.swiftnet.server.sample.interAct This folder contains sample services that provide InterAct functionality.

wm.swiftnet.server.sample.SnF This folder contains sample services that provide Store and Forward
functionality.

wm.swiftnet.server.sample.fileAct:processFileEventRequest

This service constructs an XML response for a file event request (Sw:HandleFileEventRequest), received from
SWIFTNet.

Input Parameters

bizdoc Object Document containing the SWIFTNet request
Sw:HandleFileEventRequest.

Output Parameters

xmIResponse String Response constructed (Sw:HandleFileEventResponse).

98

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

WmSWIFTNetServerSample Package

wm.swiftnet.server.sample.fileAct:processFileRequest

This service constructs an XML response for a real-time handle file request (Sw:HandleFileRequest), received from
SWIFTNEet.

Input Parameters

bizdoc Object Document containing the SWIFTNet request Sw:HandleFileRequest.

Output Parameters

xmIResponse String Response constructed (Sw:HandleFileResponse). Uses parameters
SwTransferEP and ReceptionFolder from the IntegrationServer\packages\
WmSWIFTNetServer\config\snl.cnf file to populate the SwTransferEP and
Sw:PhysicalFile (in case of put file request) elements, respectively.

wm.swiftnet.server.sample.interAct:processHandleRequest

This service constructs an XMLresponse for a real-time InterAct handle request (Swint:HandleRequest), received
from SWIFTNet.

Input Parameters

bizdoc Object Document containing the SWIFTNet request Swint:HandleRequest.

Output Parameters

xmIResponse String Response constructed (Swint:HandleResponse).

wm.swiftnet.server.sample.SnF:processHandleSnFRequest

This service constructs an XML response for an SnF delivery notification (Sw:HandleSnFRequest), received from
SWIFTNEet.

Input Parameters

bizdoc Object Document containing the SWIFTNet request Sw:HandleSnFRequest.

Output Parameters

xmIResponse String Response constructed (Sw:HandleSnFResponse). Contains the
acknowledgement for the notification.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 99

Appendix A Samples

wm.swiftnet.server.sample.SnF:processSnFFileRequest

This service constructs an XML response for an SnF handle file request (Sw:HandleFileRequest), received from
SWIFTNet. The server application sends an Sw:HandleFileResponse for the Sw:HandleFileRequest with an empty
Sw:NotifyFileResponse. This empty Sw:NotifyFileResponse indicates that the file will be fetched by a client process.
The service then remote-invokes the wm.swiftnet.client.sample.SnF:swFetchFile service on the SWIFTNet Client. A
remote server alias pointing to the SWIFTNet Client module with the name 'SwiftNetClient' must be created in order
to use this service. This file transfer is done by the remote file handler specified on the SwTransferEP parameter in
the IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file on the SWIFTNet Client installation.
For more information about using a remote file handler, see “Invoking the Remote File Handler” on page 47.

The swFetchFile service fetches the file waiting in the SnF queue, and then sends the acknowledgement after the file
transfer is complete. Keep in mind the following points for the swFetchFile service:

B The file is saved at the location specified on the ReceptionFolder parameter in the
IntegrationServer\packages\WmSWIFTNetClientSample\config\snl.cnf file.

B If no value is set for the SwTransferEP parameter in the client module snl.cnf file (IntegrationServer\packages\
WmSWIFTNetClientSample\config\snl.cnf), the fetched file is saved on the SAG server machine at the location
indicated in the ReceptionFolder parameter in the client module snl.cnf file. In this case, the user must ensure
that the path given in the ReceptionFolder parameter is present in the SAG server machine.

B The SwEventEP value in the client module snl.cnf file must be the same as in the server module snl.cnf file
(IntegrationServer\packages\WmSWIFTNetServerSample\config\snl.cnf) in order for the file transfer events to
be posted to the server Integration Server.

Input Parameters

bizdoc Object Document containing the SWIFTNet request Sw:HandleFileRequest.

Output Parameters

xmIResponse String Response constructed (Sw:HandleFileResponse).

wm.swiftnet.server.sample.SnF:processSnFHandleRequest

This service constructs an XML response for an SnF InterAct handle request (Swint:HandleRequest), received from
SWIFTNet.

Input Parameters

bizdoc Object Document containing the SWIFTNet request Swint:HandleRequest.

Output Parameters

xmIResponse String Response constructed (Swint:HandleResponse). Payload contains the
acknowledgment for the request.

100

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

Setting Up Aliases for Remote Integration Servers

Setting Up Aliases for Remote Integration Servers

You can set up aliases for remote servers. Communication through the alias is optimized, making transactions with
the remote server faster. In addition, using an alias is more convenient because it saves you from specifying
connection information each time you communicate with the remote server.

The alias grants access to a remote service by allowing the user to impersonate an authorized user on the remote
server. Therefore, to prevent unauthorized users from accessing services on remote servers, the alias also contains
access control information.

Use the following procedure to add an alias for a remote Integration Server.

1

2
3
4

Open the Integration Server Administrator if it is not already open.

In the Settings menu of the Navigation panel, click Remote Servers.

Click Create Remote Server Alias.

Set the Remote Server Alias Properties as follows:

Alias = SwiftNetClient

Host Name or IP Address = <Host Name or IP Address of the client Integration Server>
Port Number = <Port number of the client Integration Server>

User Name = <Username of the client Integration Server>

Password = <Password of the client Integration Server>

Execute ACL = Anonymous

For more information, see the webMethods Integration Server Administrator’s Guide.

webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1 101

Appendix A Samples

102 webMethods SWIFTNet Module Installation and User’s Guide Version 6.0.1 SP1

	Title Page
	Copyright & Document ID
	About This Guide
	Document Conventions
	Additional Information

	Ch. 1: Concepts
	What Is SWIFTNet?
	What Is the webMethods SWIFTNet Module?
	Client Module Functionality
	Server Module Functionality
	SNL Request and Response Primitives Support

	webMethods SWIFTNet Module Packages
	webMethods SWIFTNet Module Architecture
	SWIFTNet Module Real-time Mode
	Real-time InterAct
	Real-time FileAct

	SWIFTNet Module Store and Forward Mode
	Store and Forward InterAct
	Store and Forward FileAct
	Retrieving Messages and Files from a Queue
	Pull Mode
	Push Mode

	Fetching a File from a Queue

	Server Module Processing of SNL Primitives

	Ch. 2: Installing the webMethods SWIFTNet Module
	Overview
	Requirements
	Supported Platforms and Operating Systems
	Required webMethods Components
	SWIFTNet Module Requirements
	Hardware Requirements

	Installing the webMethods SWIFTNet Module
	Step 1: Install webMethods SWIFTNet Module
	Step 2: Configure the SWIFTNet Module
	Step 3: Define the Trading Networks Information

	Applying the webMethods SWIFTNet Module Service Pack 1
	Uninstall the webMethods SWIFTNet Module

	Ch. 3: Configuring the webMethods SWIFTNet Module
	Overview
	Configuring the SWIFTAlliance Gateway Server
	Preparing the Server Module to Receive and Respond to Requests
	Step 1: Install a Remote API Client
	Step 2: Edit the webMethods Environment Configuration File
	Step 3: Edit the webMethods SNL Configuration File
	Step 4: Configure Trading Networks
	Define Trading Partner Profiles
	Define TN Document Types
	Create Mapping Services
	Define Processing Rules

	Preparing the Client Module to Send Requests and Receive Responses
	Step 1: Install a Remote API Client
	Step 2: Edit the webMethods Environment Configuration File
	Step 3: Invoke wm.swiftnet.client.services:swArguments

	Invoking the Remote File Handler

	Ch. 4: Defining Trading Networks Information
	Overview
	Defining Trading Partner Profiles
	Why Are Trading Partner Profiles Important?
	Defining Your Enterprise Profile
	Defining Trading Partner Profiles

	Defining TN Document Types and Attributes
	Importing the Sample TN Document Attributes
	Importing the Sample TN Document Types
	Creating TN Document Types

	Defining Processing Rules
	Importing the Sample Processing Rules
	Creating Processing Rules

	Ch. 5: webMethods SWIFTNet Module Services
	Services and the SNL Request and Response Primitives
	Services Quick Reference
	WmSWIFTNetClient Package
	wm.swiftnet.client.init:printRemoteErrors
	wm.swiftnet.client.init:shutdown
	wm.swiftnet.client.init:startup
	wm.swiftnet.client.services:createContextRequest
	wm.swiftnet.client.services:destroyContextRequest
	wm.swiftnet.client.services:exchangeFileRequest
	wm.swiftnet.client.services:exchangeRequest
	wm.swiftnet.client.services:exchangeSnFRequest
	wm.swiftnet.client.services:fetchFileRequest
	wm.swiftnet.client.services:getFileStatusRequest
	wm.swiftnet.client.services:initRequest
	wm.swiftnet.client.services:pullSnFRequest
	wm.swiftnet.client.services:sendRequest
	wm.swiftnet.client.services:sendSynchronousRequest
	wm.swiftnet.client.services:signEncryptRequest
	wm.swiftnet.client.services:swArguments
	wm.swiftnet.client.services:swCall
	wm.swiftnet.client.services:termRequest
	wm.swiftnet.client.services:verifyDecryptRequest
	wm.swiftnet.client.services:waitRequest
	wm.swiftnet.client.util:formatXML

	WmSWIFTNetServer Package
	wm.swiftnet.server.init:printRemoteErrors
	wm.swiftnet.server.init:shutdown
	wm.swiftnet.server.init:startup
	wm.swiftnet.server.property:getCommonProperties
	wm.swiftnet.server.property:getProperty
	wm.swiftnet.server.property:listProperties
	wm.swiftnet.server.property:reloadProperties
	wm.swiftnet.server.services:handleRequest
	wm.swiftnet.client.services:swCall
	wm.swiftnet.server.util:formatXML

	Ap. A: Samples
	Overview
	webMethods SWIFTNet Module Sample Packages
	Preparing the SWIFTNet Server Module to Use Sample Services
	Preparing the SWIFTNet Client Module to Use Sample Services
	Edit the SWIFTNet Client Module SNL Configuration File
	Import the Sample TN Document Types
	Import the Sample Processing Rules

	Sample Services Quick Reference
	WmSWIFTNetClientSample Package
	wm.swiftnet.client.sample.fileAct:swExchangeFile
	wm.swiftnet.client.sample.fileAct:swExchangeFileSnF
	wm.swiftnet.client.sample.fileAct:swGetFileStatus
	wm.swiftnet.client.sample.interAct:swExchangeRequest
	wm.swiftnet.client.sample.interAct:swExchangeRequestSnf
	wm.swiftnet.client.sample.property:getCommonProperties
	wm.swiftnet.client.sample.property:getProperty
	wm.swiftnet.client.sample.property:listProperties
	wm.swiftnet.client.sample.property:reloadProperties
	wm.swiftnet.client.sample.SnF:swAcquireSnFQueue
	wm.swiftnet.client.sample.SnF:swFetchFile
	wm.swiftnet.client.sample.SnF:swPullMessageOrFileSnF
	wm.swiftnet.client.sample.SnF:swReleaseSnFQueue

	WmSWIFTNetServerSample Package
	wm.swiftnet.server.sample.fileAct:processFileEventRequest
	wm.swiftnet.server.sample.fileAct:processFileRequest
	wm.swiftnet.server.sample.interAct:processHandleRequest
	wm.swiftnet.server.sample.SnF:processHandleSnFRequest
	wm.swiftnet.server.sample.SnF:processSnFFileRequest
	wm.swiftnet.server.sample.SnF:processSnFHandleRequest

	Setting Up Aliases for Remote Integration Servers

