
webMethods Adapter Runtime User’s Guide

Version 10.2

April 2018

This document applies to webMethods Adapter Runtime Version 10.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or its
affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: ADAPTER-ART-UG-102-20180417

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

webMethods Adapter Runtime User’s Guide Version 10.2 3

Table of Contents

About this Guide..7
Document Conventions.. 7
Online Information.. 8

Overview of the Adapter Runtime... 9
What Is the Adapter Runtime?...10
Package Management..12

User-Defined Package Dependency Requirements and Guidelines.................................13
Adapter Connections.. 14

Connection Pools.. 14
Run-Time Behavior of Connection Pools...14

Built-In Services for Connections.. 15
Run-Time Connection Allocation for Adapter Services... 15

Dynamically Selecting a Connection Node.. 15
Adapter Services.. 16
Adapter Polling Notifications...16
Adapter Listeners and Listener Notifications..17

Synchronous and Asynchronous Listener Notifications.. 17
Single-Threaded and Multi-Threaded Listeners.. 18

Event Publishing Support for Adapter Notifications... 18
Creating an Event Type Definition.. 19
Copying the Event Type Definition..20
Enabling the Publishing of Events.. 20
Disabling the Publishing of Events..21

Transaction Support..21
Controlling Pagination...22

Transaction Management..23
Overview... 24
Implicit Transactions... 24

Implicit Transaction Usage Cases...25
One Local Transaction... 25
Three XAResource Transactions... 26
One Local Transaction and One XAResource Transaction....................................... 26

Explicit Transactions... 26
Explicit Transaction Usage Cases...27

Two Local Transactions..28
Two XAResource Transactions.. 29
One XAResource Transaction and Two Nested Local Transactions..........................30
One XAResource Transaction and One Nested Local and XAResource
Transaction... 31

M
Table of Contents

webMethods Adapter Runtime User’s Guide Version 10.2 4

Built-In Services for Transaction Management.. 31
pub.art.transaction:commitTransaction.. 32
pub.art.transaction:rollbackTransaction... 32
pub.art.transaction:setTransactionTimeout..33
pub.art.transaction:startTransaction...34

Changing the Integration Server Transaction Timeout Interval.. 35

The Adapter Runtime in a Clustered Environment.. 37
What is Clustering?.. 38

Clustering Considerations and Requirements...38
Requirements for Each Integration Server in a Cluster... 38

Replicating Packages to Integration Servers.. 40
Considerations when Configuring Connections with Connection Pooling Enabled........... 40
Disabling the Redirection of Administrative Services..40

Polling Notification Support in a Cluster...41
Considerations for Polling Notifications Executing via Scheduled Tasks.......................... 41
Configuring Polling Notifications in Standby or Distributed Mode on Integration Server
8.2.. 42

Standby Mode and Distributed Mode.. 42
Configuration Settings.. 42

Global Settings..43
Adapter-Specific Settings.. 43
Notification-Specific Settings...44

Clock Synchronization..45
Configuring Adapter Notification Schedules in a Clustered Environment...................46

Adapter Listener Support in a Cluster..46
Listener States in a Cluster...47

Multi-Node Listener States...47
Single-Node Listener States.. 48
Enabling, Disabling, and Suspending Listeners in a Cluster..................................... 49

Enabling Listeners in a Cluster...50
Disabling Listeners in a Cluster.. 50
Suspending Listeners in a Cluster..50

Adapter Runtime Logging and Exception Handling.. 53
Overview... 54
Adapter Runtime Message Logging... 54
Configuring Server Logging Levels for the Adapter Runtime...55
Adapter Runtime Exception Handling.. 56

Adapter Runtime Built-In Services Reference.. 57
Summary of Adapter Runtime Built-In Services...58

pub.art:listRegisteredAdapters...60
pub.art.connection:disableConnection...61
pub.art.connection:enableConnection... 61
pub.art.connection:getConnectionStatistics...61

M
Table of Contents

webMethods Adapter Runtime User’s Guide Version 10.2 5

pub.art.connection:listAdapterConnections... 62
pub.art.connection:queryConnectionState...63
pub.art.connection:getInterruptedThreadStatus.. 64
pub.art.listener:disableListener.. 64
pub.art.listener:enableListener...65
pub.art.listener:listAdapterListeners...65
pub.art.listener:queryListenerState.. 66
pub.art.listener:resumeListener... 67
pub.art.listener:setListenerNodeConnection..67
pub.art.listener:suspendListener..68
pub.art.notification:disableListenerNotification...68
pub.art.notification:disablePollingNotification...68
pub.art.notification:disablePublishEvents.. 69
pub.art.notification:enableListenerNotification... 69
pub.art.notification:enablePollingNotification... 69
pub.art.notification:enablePublishEvents... 70
pub.art.notification:listAdapterListenerNotifications... 70
pub.art.notification:listAdapterPollingNotifications... 71
pub.art.notification:queryListenerNotificationState...72
pub.art.notification:queryPollingNotificationState...72
pub.art.notification:resumePollingNotification.. 73
pub.art.notification:setListenerNotificationNodeListener..74
pub.art.notification:setPollingNotificationNodeConnection...74
pub.art.notification:suspendPollingNotification.. 75
pub.art.service:listAdapterServices..75
pub.art.service:setAdapterServiceNodeConnection.. 76
pub.art.transaction:commitTransaction.. 76
pub.art.transaction:rollbackTransaction... 77
pub.art.transaction:setTransactionTimeout..78
pub.art.transaction:startTransaction...78

Adapter Runtime Configuration Parameter Appendix... 81
Overview... 82

watt.art.analysis... 82
watt.adk.adapterService.disable.errorlogging..82
watt.art.adapterService.disable.errorlogging..82
watt.art.clusteredPollingNotification.keepAliveExpireTimeout... 82
watt.art.clusteredPollingNotification.keepAliveInterval...83
watt.art.concurrent.ConnectionPool...83
watt.art.connection.nodeVersion..83
watt.art.deploy.listener.disable.waitTime..83
watt.art.notification.eventBus.retries.. 83
watt.art.notification.eventBus.retryInterval... 84
watt.art.notifications.disableImplicitUpdate.. 84
watt.art.page.size...84

M
Table of Contents

webMethods Adapter Runtime User’s Guide Version 10.2 6

watt.art.synchronousNotification.selectExecuteUser... 84
watt.art.service.pipeline.hidden..84
watt.art.tmgr.timeout.. 84
watt.art.wmConnectionPool.pingRetryInterval... 85
watt.art.wmConnectionPool.pingSafeInterval.. 85
watt.pkg.art.pollingnotification.scheduler... 85
watt.pkg.art.pollingnotification.scheduler.adapters.. 86
watt.pkg.art.scheduler.notificationtask.display... 86
watt.art.connection.byPassConnValidation.. 86
watt.server.jca.connectionPool.createConnection.interrupt.waitTime................................86
watt.server.jca.connectionPool.threadInterrupter.sleepTime... 87
watt.server.jca.connectionPool.threadInterrupt.waitTime...87

M
Odd Header

webMethods Adapter Runtime User’s Guide Version 10.2 7

About this Guide

This guide describes how to use the Adapter Runtime. It contains information for
administrators and application developers who work with webMethods adapters.

To use this guide effectively, you should be familiar with:

Terminology and basic operations of your operating system

The setup and operations of webMethods Integration Server

How to perform basic tasks with Software AG Designer

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

M
Even Header

webMethods Adapter Runtime User’s Guide Version 10.2 8

Convention Description

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 9

1 Overview of the Adapter Runtime

■ What Is the Adapter Runtime? .. 10

■ Package Management ... 12

■ Adapter Connections .. 14

■ Adapter Services .. 16

■ Adapter Polling Notifications .. 16

■ Adapter Listeners and Listener Notifications ... 17

■ Event Publishing Support for Adapter Notifications ... 18

■ Transaction Support ... 21

■ Controlling Pagination .. 22

M
Even Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 10

What Is the Adapter Runtime?
The Adapter Runtime provides a common framework for webMethods adapters version
6 and later to use webMethods Integration Server’s functionality, making Integration
Server the run-time environment for the adapters. The Adapter Runtime functionality
is delivered as the WmART package, which is automatically installed with Integration
Server. The WmART package provides logging, transaction management and error
handling for adapter connections, services, notifications, and listeners.

The following diagram shows at a high level how an adapter uses WmART to interact
with the back end.

M
Odd Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 11

M
Even Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 12

Package Management
Each webMethods adapter is provided as a separate package that has a dependency
on the WmART package. When you create connections, adapter services, listeners, and
notifications for an adapter, you must define them in user-defined packages rather than
in the adapter package. The user-defined packages, in turn, have a dependency on the
adapter package.

You manage the WmART package, the adapter package and user-defined packages as
you would manage any package on Integration Server.

When Integration Server starts, it automatically loads or reloads the WmART package
first, the adapter package next, and the user-defined packages last.The WmART package
is automatically installed when you install Integration Server. You should not need to
manually reload the WmART package.

The following diagram shows the various package dependencies.

M
Odd Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 13

User-Defined Package Dependency Requirements and Guidelines
This section contains a list of dependency requirements and guidelines for user-defined
packages. For instructions for seing package dependencies, see webMethods Service
Development Help.

When working with user-defined packages, keep in mind the following:

When you create user-defined packages, use the package management functionality
provided in Software AG Designer and set the user-defined packages to have a
dependency on the adapter package. That way, when the adapter package loads or
reloads, the user-defined packages load automatically.

Keep connections for different adapters in separate packages so that you do not
create interdependencies between adapters. If a package contains connections for
two different adapters, and you reload one of the adapter packages, the connections
for both adapters will reload automatically.

M
Even Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 14

If the connections and adapter services of an adapter are defined in different
packages:

A package that contains the connections must have a dependency on the adapter
package.

Packages that contain adapter services must have a dependency on their
associated connection package.

Integration Server will not allow you to enable a package if it has a dependency on
another package that is disabled. Before you can enable your package, you must
enable all packages on which your package depends.

Integration Server will allow you to disable a package even if another package that
is enabled has a dependency on it. Therefore, you must manually disable any user-
defined packages that have a dependency on the adapter package before you disable
the adapter package.

You can give connections, adapter services, and notifications the same name
provided that they are in different folders and packages.

Adapter Connections
You create one or more adapter connections at design time to use in integrations. The
number of connections you create depends on your integration needs. When an adapter
connection is created, the WmART package creates a connection object. An adapter
connection enables Integration Server to connect to the back end at run time. You must
configure an adapter connection before you can create adapter services or notifications.

Connection Pools
Integration Server includes a connection management service that dynamically manages
connections and connection pools based on configuration seings that you specify for
the connection. By default, connection pooling is enabled for all adapter connections.

A connection pool is a collection of connections with the same set of aributes.
Integration Server maintains connection pools in memory. Connection pools improve
performance by enabling adapter services to reuse open connections instead of opening
new connections.

Run-Time Behavior of Connection Pools
When you enable a connection, Integration Server initializes the connection pool,
creating the number of connection instances you specified in the Minimum Pool Size
parameter of the connection. Whenever an adapter service needs a connection,
Integration Server provides a connection from the pool. If no connections are available
in the pool, and the maximum pool size has not been reached, the server creates one
or more new connections (according to the number specified in Pool Increment Size),
and adds them to the connection pool. If the pool is full (as specified in Maximum Pool

M
Odd Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 15

Size), the requesting service will wait for Integration Server to obtain a connection, up to
the length of time specified in the Block Timeout parameter, until a connection becomes
available. Periodically, Integration Server inspects the pool and removes inactive
connections that have exceeded the expiration period that you specified in Expire Timeout.
For information about configuring connections, see the installation and user’s guide for
the individual adapter.

Built-In Services for Connections
Integration Server provides built-in services that enable you to programmatically control
connections. You can use them to enable and disable a connection, and to return usage
statistics, the current state (enabled or disabled), and error status for a connection. These
services are located in the WmART package, in the pub.art.connection folder.

Additionally, the pub.art.service:setAdapterServiceNodeConnection and
pub.art.notification:setPollingNotificationNodeConnection services allow you to change the
connection associated with an adapter service or polling notification respectively at
design time.

Run-Time Connection Allocation for Adapter Services
When an adapter service is invoked, either directly or from a flow service, the Adapter
Runtime provides a connection object to the adapter service. This section describes how
connections are retrieved and managed and how to dynamically control the type of
connection used for each service invocation.

At run time, all connection activity for adapter services is performed inside a
transaction context that holds references to connections used while the context is
open. This is true regardless of whether the referenced connections are transacted.
There is an implicit transaction context that begins at the invocation of a top-level
flow service (such as an HTTP invocation of an Integration Server service) and
continues until that top-level service exits. Additional contexts can be created using the
pub.art.transaction:startTransaction service and ended using pub.art.transaction:commitTransaction
or pub.art.transaction:rollbackTransaction. For more information about using these services, see
"Adapter Runtime Built-In Services Reference" on page 57.

When the Adapter Runtime retrieves a connection from a connection pool for use by
an adapter service, a reference to that connection is placed in the transaction context,
and the connection is not returned to the pool until the transaction context is closed.
If another adapter service call is made within the transaction context, Integration
Server will first determine whether a connection from the required connection pool
and partition is in the context; if so, Integration Server will use the connection from
the transaction context to the adapter service instead of requesting another from the
connection pool.

Dynamically Selecting a Connection Node
Each connection node should be used to access a single physical resource. In some
integration environments, similar functionality is available on multiple physical

M
Even Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 16

resources. In these cases, a single adapter service node may be used to access those
resources by dynamically specifying which connection node to use for a particular
service invocation.

You can run a service using a connection other than the default connection that
was associated with the service when the service node was created. To override the
default, you must code your flow to pass a value through the pipeline into a service's
$connectionName field.

Alternatively, you can use the configured connection for an adapter service, but at
run time override the user credentials defined in the connection. To override the user
credentials, you must code your flow service to pass values through the pipeline into the
adapter service's user name and password fields.

Adapter Services
An adapter service defines an operation that the adapter will perform on an adapter
resource. Adapter services operate like Integration Server flow services or Java services.
You call adapter services within flow or Java services, and you can audit them from the
Integration Server's audit system.

Adapter services have input and output signatures. An input signature describes the
data that the service expects to find in the flow service pipeline at run time. An output
signature describes the data that the service expects to add to the pipeline when it has
successfully executed. You can view an adapter service node's signature on the Input/
Output tab of the Adapter Service Editor in Software AG Designer.

Adapter services are based on templates provided with each adapter. Each template
represents a specific technique for doing work on a resource, such as using the a
template to retrieve specified information from a database.

An adapter service template contains all the code necessary for interacting with the
resource but without the data specifications. You provide these specifications when you
create a new adapter service in Designer. Before configuring an adapter service, you
must assign it a connection that you created earlier.

Adapter Polling Notifications
A polling notification is a facility that enables an adapter to initiate activity on
Integration Server, based on events that occur in the adapter resource. A polling
notification monitors an adapter resource for changes (such as an insert, update, or
delete operation) so that the appropriate flow or Java services can react to the data, such
as sending an invoice or publishing an invoice to Integration Server.

You create a polling notification node using Designer. You assign to the notification an
adapter connection node that you created earlier.

Polling notifications cannot be directly invoked from a flow service (or from Designer).
Instead, the server invokes a polling notification automatically, based on a fixed time

M
Odd Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 17

interval. When a polling notification determines that a specified event has occurred in
the adapter resource, it produces a document describing the event. These documents
are automatically published to Integration Server (or webMethods Broker) as they are
generated by the notification. The processing of the published document is based on
triggers that are configured to invoke flow services when the given document type is
published. For more information on Integration Server publishable documents, see
Publish-Subscribe Developer’s Guide.

Adapter Listeners and Listener Notifications
Listeners and listener notifications work together to create a much more powerful model
for detecting and processing events in the adapter resource than is possible with polling
notifications.

With a listener notification, the responsibility for monitoring the adapter resource and
processing any events is divided between a listener and its notification(s). A listener
object is instantiated and is given a connection when you enable the associated node.
The listener object remains active with the same connection to monitor the resource
activity until it is disabled (either explicitly or by disabling the containing package, the
adapter, the connection, or Integration Server). When the listener detects a publishable
event in the resource, it passes an object back to the server. The server will interrogate a
configured list of listener notifications associated with the listener node until it finds a
listener notification node that can process the event. The listener notification processes
the event either asynchronously or synchronously.

Synchronous and Asynchronous Listener Notifications
When you create an asynchronous listener notification, the adapter creates a publishable
document type. At run time, when the listener detects an event in the back end, it
invokes the asynchronous notification. The asynchronous notification then publishes a
document, which has the structure defined by the publishable document type, in either
of the following ways:

to webMethods Broker when Integration Server is connected to Broker.

to Software AG Universal Messaging when Integration Server is connected to
Universal Messaging.

to Software AG Digital Event Services using IS_DES_CONNECTION alias.

to a JMS queue or topic when Integration Server is connected to a JMS provider.

locally to Integration Server when Integration Server is not connected to Broker or to
a JMS provider.

Adapter users can process the document's data any way they want to. For example,
they can create an Integration Server trigger that receives the document and executes an
Integration Server flow service or a Java service.

M
Even Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 18

At run time, a synchronous listener notification invokes a specified IS service, and
potentially receives a reply from the service and delivers the results back to the adapter
resource. The listener notification waits until the service has finished processing before
it begins to process the next message from the adapter resource. A synchronous listener
notification does not publish a document.

Synchronous listener notifications do not support session handling. When a
synchronous listener notification calls a service that needs information contained in the
session data, that service can fail. However, note that the same service may appear to
work for an asynchronous listener notification. This is because asynchronous listener
notifications themselves do not execute a service. Instead, an Integration Server trigger,
which supports session handling, is used to receive the document and execute an
Integration Server flow service or a Java service.

Single-Threaded and Multi-Threaded Listeners
Beginning with Integration Server 9.5, Adapter Runtime based adapters support single-
threaded listeners and multi-threaded listeners, based on the number of threads that a
listener uses to process messages coming from the back end. Multi-threaded listeners
improve performance by streamlining message processing.

With a single-threaded listener, the adapter processes incoming events from the back
end one after the other in the order in which they arrive. The thread executes the most
suitable notification for each event.

With a multi-threaded listener, the adapter uses a new thread for each event coming
from the back end and processes the messages concurrently, which boosts performance.
Therefore, if you have a long-running flow service for processing a message, subsequent
messages do not have to wait for the first message to be processed.

Multi-threaded listeners rely on the Integration Server thread pool to concurrently read
and process messages. When you enable a multi-threaded listener, for each incoming
event from the back end an idle thread from the thread pool is allocated to execute the
listener notification. When the maximum number of threads is reached, as specified in
the Thread Count parameter when configuring a listener, new events have to wait and are
processed only when threads become available.

With a multi-threaded listener, if the thread executing the notification uses a connection
providing transaction support, the thread is responsible for commiing or rolling back
the transaction. In this case, each thread uses a separate connection.

Event Publishing Support for Adapter Notifications
Beginning with Integration Server 9.5, adapter polling and listener notifications can
send events to an event bus. The event bus functionality is implemented by Software AG
Universal Messaging using the JMS protocol. Publishing events to the event bus is not
enabled by default.

M
Odd Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 19

For more information about how to implement an Event Routing (EDA) system with
webMethods products, see Implementing Event-Driven Architecture with Software AG
Products.

The following table lists the tasks required to use event publishing for adapter
notifications.

Task Use This Tool

1. Configure a polling or listener notification.
For information about configuring a polling
or listener notification, see the notifications
chapter in the installation and user’s guide for
the adapter.

Designer

2. Create an event type definition. For
information about creating an event type
definition, see "Creating an Event Type
Definition" on page 19.

Designer

3. Copy the event type definition to the Event
Type Store. For information about copying the
event type definition, see "Copying the Event
Type Definition" on page 20.

Designer

4. Enable the notification. For information about
enabling notifications, see the notifications
chapter in the installation and user’s guide for
the adapter.

Integration Server
Administrator

5. Enable the publishing of events for the
notification. For information about enabling
the publishing of events, see "Enabling the
Publishing of Events" on page 20.

Integration Server
Administrator

Creating an Event Type Definition
You create event types using the Events Development perspective in Designer. For more
information about working with event types, see webMethods BPM Process Development
Help .

Important: The event type definition must have the same name as the adapter
notification.

M
Even Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 20

To create an event type definition

1. In the Project Explorer view in Designer, right-click the project in which you want
to create the event type and select New > Event Type. The New Event Type wizard
appears displaying the project name.

2. Specify values for the following fields:

Field Description

Folder Optional. The folder where the new event will be stored.
If you do not enter a name, the event type will be stored
directly in the Event Types folder.

Name The name of the event type.

3. Select Start with Integration Server Document Type.

4. In the Document Type field, browse to the publishable document of the adapter
notification for which you want to create an event type definition.

5. Click Finish.

Copying the Event Type Definition
After you create an event type definition in Designer, you must manually copy it to the
Event Type Store. The namespace of the event type in the Event Type Store must be the
same as the namespace of the associated adapter notification.

For example, if you configured an adapter notification named Notification1 in Folder1 of
Package1, and then you created an event type named Notification1, you must copy the
event type to C:\SoftwareAG\common\EventTypeStore\Package1\Folder1.

The default path to the Event Type Store is C:\SoftwareAG\common\EventTypeStore.
For more information about the Event Type Store, see Implementing Event-Driven
Architecture with Software AG Products.

Enabling the Publishing of Events
You enable the publishing of events for an adapter notification either in Integration
Server Administrator or using the pub.art.notification:enablePublishEvents service.

To enable the publishing of events in Integration Server Administrator

1. In Integration Server Administrator, go to Adapters > Adapter Name > Notifications.

2. In the Publish Events column, click No for the notification for which you want to
enable the feature. Integration Server Administrator displays Yes in the Publish
Events column.

M
Odd Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 21

Adapter Runtime uses the properties wa.art.notification.eventBus.retries and
wa.art.notification.eventBus.retryInterval to verify that the event type definition is
copied to the Event Type Store. Publishing of events is not enabled if the Adapter
Runtime does not find the event type definition in the Event Type Store. Instead,
Integration Server Administrator displays an error message.

Disabling the Publishing of Events
You disable the publishing of events for an adapter notification either in Integration
Server Administrator or using the pub.art.notification:disablePublishEvents service.

To disable the publishing of events

1. In Integration Server Administrator, go to Adapters > Adapter Name > Notifications.

2. In the Publish Events column, click Yes for the notification for which you want to
disable the feature. Integration Server Administrator displays No in the Publish Events
column.

Transaction Support
Integration Server considers a transaction to be one or more interactions with one or
more resources that are treated as a single logical unit of work. The interactions within
a transaction are either all commied or all rolled back. For example, if a transaction
includes multiple database inserts, and one or more inserts fail, all inserts are rolled
back.

Integration Server supports the following kinds of transactions:

A local transaction, which is a transaction to a resource's local transaction mechanism

An XAResource transaction, which is a transaction to a resource's XAResource
transaction mechanism

Integration Server can automatically manage both kinds of transactions, without
requiring the adapter user to do anything. Integration Server uses the container-
managed (implicit) transaction management approach as defined by the JCA standard
and also performs some additional connection management. This is because adapter
services use connections to create transactions. However, there are cases where the
adapter user needs to explicitly control the transactional units of work.

To support transactions, Integration Server relies on a built-in transaction manager. The
transaction manager is responsible for beginning and ending transactions, maintaining
a transaction context, enlisting newly connected resources into existing transactions, and
ensuring that local and XAResource transactions are not combined in illegal ways.

For more information about transactions, see "Transaction Management" on page 23.

M
Even Header

Overview of the Adapter Runtime

webMethods Adapter Runtime User’s Guide Version 10.2 22

Controlling Pagination
When using the adapter on Integration Server 8.2 and later, you can control the number
of items that are displayed on the adapter Connections screen and Notifications screen.
By default, 10 items are displayed per page. Click Next and Previous to move through the
pages, or click a page number to go directly to a page.

To change the number of items displayed per page, set the wa.art.page.size property
and specify a different number of items. For example, to display 50 items per page,
specify:
watt.art.page.size=50

For information about working with extended configuration seings, see webMethods
Integration Server Administrator’s Guide.

M
Odd Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 23

2 Transaction Management

■ Overview ... 24

■ Implicit Transactions ... 24

■ Explicit Transactions .. 26

■ Built-In Services for Transaction Management .. 31

■ Changing the Integration Server Transaction Timeout Interval ... 35

M
Even Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 24

Overview
Integration Server considers a transaction to be one or more interactions with one or
more resources that are treated as a single logical unit of work. The interactions within
a transaction are either all commied or all rolled back. For example, if a transaction
includes multiple database inserts, and one or more inserts fail, all inserts are rolled
back.

Integration Server supports the following kinds of transactions:

A local transaction (LOCAL_TRANSACTION), which is a transaction to a resource's
local transaction mechanism.

An XAResource transaction (XA_TRANSACTION), which is a transaction to a
resource's XAResource transaction mechanism.

Integration Server can automatically manage both kinds of transactions, without
requiring the adapter user to do anything. Integration Server uses a container-managed
(implicit) transaction management approach based on the Connector Architecture
standard, and also performs some additional connection management because adapter
services use connections to create transactions. For more information about implicit
transactions, see "Implicit Transactions" on page 24.

However, there are cases where you need to explicitly control the transactional units
of work. For more information about explicitly managing transactions, see "Explicit
Transactions" on page 26.

To support transactions, Integration Server relies on a transaction manager. The
transaction manager is responsible for beginning and ending transactions, maintaining
a transaction context, enlisting newly connected resources into existing transactions, and
ensuring that local and XAResource transactions are not combined in illegal ways.

The transaction manager only manages operations performed by adapter services, a
transacted JMS trigger, or a built-in JMS service that uses a transacted JMS connection
alias. Since the transaction manager cannot manage operations performed by any
other service, a commit or rollback is not applicable for operations performed by those
services.

Important: You cannot step or trace a flow that contains a transacted adapter service.

Implicit Transactions
With implicit transactions, Integration Server automatically manages both local and
XAResource transactions without requiring you to explicitly do anything. Integration
Server starts and completes the implicit transaction.

An implicit transaction context, which the transaction manager uses to define a unit of
work, starts when an adapter service is encountered in a flow execution. The connection

M
Odd Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 25

required by the adapter service is registered with the newly created context and used
by the adapter service. If another adapter service is encountered, the transaction context
is searched to see if the connection is already registered. If the connection is already
registered, the adapter service uses this connection. If the connection is not registered, a
new connection instance is retrieved and registered with the transaction.

Note that if the top level flow invokes another flow, adapter services in the child flow
use the same transaction context. When the top level flow completes, the transaction is
completed and is either commied or rolled back, depending on the status (success or
failure) of the top level flow.

A single implicit transaction context can contain any number of XA_TRANSACTION
connections but no more than one LOCAL_TRANSACTION connection. If you choose
to provide dynamic user credentials at run time, all the adapter services using the
LOCAL_TRANSACTION connection within a single transaction must use the same
user credentials. For example, if you have two adapter services, s1 and s2, configured
using the LOCAL_TRANSACTION connection c1 in a single transaction context,
both s1 ands2 must either use the same dynamic credentials at run time or the default
configured credentials provided at design time. For more information about providing
dynamic user credentials for a service's associated connection, see “Changing the User
Credentials of a Service's Associated Connection at Run Time”.

For more information about designing and using flows, see webMethods Service
Development Help.

Implicit Transaction Usage Cases
Manging a flow implicitly requires any of the following:

One local transaction, interacting with one resource. For an example, see "One Local
Transaction" on page 25.

One or more XAResource transactions. Each transaction can interact with one or
more resources. For an example, see "Three XAResource Transactions" on page
26.

One or more XAResource transactions and one local transaction. For an example, see
"One Local Transaction and One XAResource Transaction" on page 26.

If a flow contains multiple local transactions, you must explicitly control the
transactional units of work, as described in "Explicit Transaction Usage Cases" on page
27.

One Local Transaction
In this example, a flow with two adapter services interacts with the same local
transaction resource. The flow performs two inserts into two tables of a database:
BEGIN FLOW
INVOKE insertDatabase1TableA // Local Transaction Resource1
INVOKE insertDatabase1TableB // Local Transaction Resource1
END FLOW

M
Even Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 26

Integration Server starts the transaction when insertDatabase1TableA is invoked. It
opens a connection to the resource, enlists it in the transaction, and performs the insert
into TableA. When insertDatabase1TableB is invoked, Integration Server reuses the same
connection to insert data into TableB. When the request is complete, Integration Server
closes the connection and commits the transaction.

The following flow is illegal because it tries to interact with two local transaction
resources as follows:
BEGIN FLOW
INVOKE insertDatabase1TableA // Service for Resource1
INVOKE insertDatabase2TableA // Service for Resource2
END FLOW

Three XAResource Transactions
The following flow is valid because a flow can contain any number of XAResource
transactions.
BEGIN FLOW
INVOKE insertDatabase1TableA // XAResource Transaction Resource1
INVOKE insertDatabase2TableA // XAResource Transaction Resource2
INVOKE insertDatabase3TableA // XAResource Transaction Resource3
END FLOW

One Local Transaction and One XAResource Transaction
Continuing with the previous case, notice this additional insert to a different database
that accepts XAResource transactions as follows:
BEGIN FLOW
INVOKE insertDatabase1TableA // Local Transaction Resource1
INVOKE insertDatabase1TableB // Local Transaction Resource1
INVOKE insertDatabase2TableA // XAResource Transaction Resource1
END FLOW

When Integration Server invokes insertDatabase2TableA, a transaction is already in
progress with the first database enlisted. It then establishes a second connection (to
Database2), enlists the new connection in the XAResource transaction, and performs the
insert to tableA.

When the request is complete, Integration Server closes both connections and the
Transaction Manager performs a local commit for the non-XAResource and then a two-
phase commit for the XAResource enlisted in the transaction.

Explicit Transactions
You use explicit transactions when you need to manually control the transactional units
of work. To do this, you use built-in services in your flow services.

An explicit transaction context starts when the pub.art.transaction:startTransaction
service is executed. The transaction context is completed when either the
pub.art.transaction:commitTransaction or pub.art.transaction:rollbackTransaction service is executed.

M
Odd Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 27

For information about the services, see "Built-In Services for Transaction Management"
on page 31.

When you define an explicit transaction, it is nested within the implicit transactions
that are controlled by the transaction manager. You can have more than one explicit
transaction defined within an implicit transaction. You can also nest explicit transactions
within each other.

As with implicit transactions, a single explicit transaction context can contain
any number of XA_TRANSACTION connections but no more than one
LOCAL_TRANSACTION connection. If you choose to provide dynamic user credentials
at run time, all the adapter services using the LOCAL_TRANSACTION connection
within a single transaction must use the same user credentials. For example, if you
have two adapter services, s1 and s2, configured using the LOCAL_TRANSACTION
connection c1 in a single transaction context, both s1 and s2 must either use the same
dynamic credentials at run time or the default configured credentials provided at design
time. For more information about providing dynamic user credentials for a service's
associated connection, see “Changing the User Credentials of a Service's Associated
Connection at Run Time”.

A new explicit transaction context can be started within a transaction context, provided
that you ensure that the transactions within the transaction context are completed in
the reverse order they were started. The last transaction to start should be the first
transaction to complete, and so forth.

The following example shows a valid construct.
pub.art.transaction:startTransaction
 pub.art.transaction:startTransaction
 pub.art.transaction:startTransaction
 pub.art.transaction:commitTransaction
 pub.art.transaction:commitTransaction
pub.art.transaction:commitTransaction

The following example shows an invalid construct.
pub.art.transaction:startTransaction
 pub.art.transaction:startTransaction
pub.art.transaction:commitTransaction
 pub.art.transaction:commitTransaction

Note: With explicit transactions, you must be sure to call either a commitTransaction
or rollbackTransaction for each startTransaction. Otherwise, you will have
dangling transactions that will require you to reboot Integration Server.

For more information about designing and using flows, see webMethods Service
Development Help.

Explicit Transaction Usage Cases
To include multiple local transactions in a single flow, you must explicitly start and end
each transaction except the first one.

M
Even Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 28

Depending on what the flow needs to accomplish, you may explicitly start and end
XAResource transactions as well. This way, you can create a flow that includes multiple
local transactions and multiple XAResource transactions.

For example, the following flow includes a local transaction nested within another local
transaction:
BEGIN FLOW // start transaction 1
.
.
.
 INVOKE startTransaction(2) // start transaction 2
 .
 .
 .
 INVOKE commitTransaction(2) // commit transaction 2
END FLOW // commit transaction 1

A nested transaction must adhere to the same rules that apply to container-manager
transactions. That is, a nested transaction can contain one of the following:

One local transaction, interacting with one resource

One or more XAResource transactions, where each transaction can interact with one
or more resources

One or more XAResource transactions and one local transaction

Following are some examples of explicit transactions.

Two Local Transactions
To make this flow work properly, explicitly start and commit the nested local
transaction, using the startTransaction and commitTransaction services as follows:
BEGIN FLOW // start transaction 1
INVOKE interactWithResourceA // service for transaction 1
 INVOKE startTransaction(2) // start transaction 2
 INVOKE interactWithResourceB // service for transaction 2
 INVOKE commitTransaction(2) // commit transaction 2
END FLOW // commit transaction 1

The flow executes as follows:

1. When interactWithResourceA is invoked, Integration Server starts transaction 1 and
enlists ResourceA.

2. Transaction 2 executes as follows:

a. When startTransaction(2) is invoked, Integration Server starts a new, nested
transaction.

b. When interactWithResourceB is invoked, ResourceB is enlisted in transaction 2.

c. When commitTransaction(2) is invoked, the connection to ResourceB is closed,
and transaction 2 is commied. At this point, only the work done on ResourceB is
commied; transaction 1 is still open, and the work done with ResourceA is not
yet commied.

M
Odd Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 29

3. When the flow ends, Integration Server closes the connection for transaction 1 and
commits its work to ResourceA.

Note: Each transaction is a separate unit of work. Transaction 1 could be rolled back
(or the commit could fail), while transaction 2 remains commied (or vice
versa).

Alternatively, to achieve the same result, you can explicitly start transaction 1 before the
adapter service is invoked, and explicitly commit it as follows:
BEGIN FLOW
INVOKE startTransaction(1) // start transaction 1
INVOKE interactWithResourceA // service for transaction 1
INVOKE startTransaction(2) // start transaction 2
INVOKE interactWithResourceB // service for transaction 2
INVOKE commitTransaction(2) // commit transaction 2
INVOKE commitTransaction(1) // commit transaction 1
END FLOW

Two XAResource Transactions
The following flow includes two XAResource transactions: one that interacts with
ResourceA, and a nested transaction that interacts with ResourceB and ResourceC.
BEGIN FLOW // start transaction 1
INVOKE interactWithResourceA // service for transaction 1
 INVOKE startTransaction(2) // start transaction 2
 INVOKE interactWithResourceB // service for transaction 2
 INVOKE interactWithResourceC // service for transaction 2
 INVOKE commitTransaction(2) // commit transaction 2
END FLOW // commit transaction 1

The flow executes as follows:

1. When interactWithResourceA is invoked, Integration Server starts transaction 1 and
enlists ResourceA.

2. Transaction 2 executes as follows:

a. When startTransaction(2) is invoked, Integration Server starts a new, nested
transaction.

b. When interactWithResourceB and interactWithResourceC are invoked, both
resources are enlisted in transaction 2.

c. When commitTransaction(2) is invoked, the connections to ResourceB and
ResourceC are closed, and transaction 2 is commied. At this point, only the
work done on ResourceB and ResourceC is commied; transaction 1 is still open,
and the work done with ResourceA is not yet commied.

3. When the flow ends, Integration Server closes the connection for transaction 1 and
commits its work to ResourceA.

M
Even Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 30

One XAResource Transaction and Two Nested Local Transactions
The following flow includes three transactions: one XAResource transaction that
interacts with two resources, and two nested local transactions that interact with one
resource each.
BEGIN FLOW // start XAResource transaction 1
INVOKE interactWithXAResourceA // service for XAResource transaction 1
INVOKE interactWithXAResourceB // service for XAResource transaction 2
 INVOKE startTransaction(2) // start local transaction 1
 INVOKE interactWithLocalResourceA // service for local transaction 1
 INVOKE commitTransaction(2) // commit local transaction 1
 INVOKE startTransaction(3) // start local transaction 2
 INVOKE interactWithLocalResourceB // service for local transaction 2
 INVOKE commitTransaction(3) // commit local transaction 2
END FLOW // commit XAResource transaction 1

The flow executes as follows:

1. When interactWithXAResourceA is invoked, Integration Server starts transaction 1
and enlists XAResourceA.

2. When interactWithXAResourceB is invoked, Integration Server enlists XAResourceB
in transaction 1.

3. Transaction 2 is executed as follows:

a. When startTransaction(2) is invoked, Integration Server starts a new, nested
transaction.

b. When interactWithLocalResourceA is invoked, LocalResourceA is enlisted in
transaction 2.

c. When commitTransaction(2) is invoked, the connection to LocalResourceA is
closed, and transaction 2 is commied. At this point, only the work done on
LocalResourceA is commied; transaction 1 is still open, and the work done with
XAResourceA and XAResourceB is not yet commied.

4. Transaction 3 is executed as follows:

a. When startTransaction(3) is invoked, Integration Server starts a new, nested
transaction.

b. When interactWithLocalResourceB is invoked, LocalResourceB is enlisted in
transaction 3.

c. When commitTransaction(3) is invoked, the connection to LocalResourceB is
closed, and transaction 3 is commied. At this point, only the work done on
LocalResourceA and LocalResourceB is commied; transaction 1 is still open,
and the work done with XAResourceA and XAResourceB is not yet commied.

5. When the flow ends, Integration Server closes the connection for transaction 1 and
commits its work to XAResourceA and XAResourceB.

M
Odd Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 31

One XAResource Transaction and One Nested Local and XAResource
Transaction
The following flow includes two transactions: one XAResource transaction that interacts
with two resources, and one nested transaction that interacts with one local resource and
one XAResource.
BEGIN FLOW // start XAResource transaction 1
INVOKE interactWithXAResourceA // service for XAResource transaction 1
INVOKE interactWithXAResourceB // service for XAResource transaction 2
 INVOKE startTransaction(2) // start transaction 2
 INVOKE interactWithLocalResourceA // service for transaction 2
 INVOKE interactWithXAResourceC // service for transaction 2
 INVOKE interactWithLocalResourceA // service for transaction 2
 INVOKE commitTransaction(2) // commit transaction 2
END FLOW // commit XAResource transaction 1

The flow executes as follows:

1. When interactWithResourceA is invoked, Integration Server starts an XAResource
transaction 1 and enlists ResourceA.

2. When interactWithResourceB is invoked, Integration Server enlists ResourceB in
transaction 1.

3. Transaction 2 is executed as follows:

a. When startTransaction(2) is invoked, Integration Server starts a new, nested
transaction.

b. When interactWithLocalResourceA is invoked, LocalResourceA is enlisted in
transaction 2.

c. When interactWithXAResourceC is invoked, XAResourceC is enlisted in
transaction 2.

d. When interactWithLocalResourceA is invoked, LocalResourceA is enlisted in
transaction 2.

e. When commitTransaction(2) is invoked, the connection to both resources of
transaction 2 is closed, and transaction 2 is commied. At this point, only the
work done on LocalResourceA and XAResourceC is commied; transaction 1 is
still open, and the work done with XAResourceA and XAResourceB is not yet
commied.

4. When the flow ends, Integration Server closes the connection for transaction 1 and
commits its work to XAResourceA and XAResourceB.

Built-In Services for Transaction Management
Use the following built-in services to manage explicit transactions and set the transaction
timeout interval for implicit and explicit transactions.

M
Even Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 32

pub.art.transaction:commitTransaction
Commits an explicit transaction.

Input Parameters

commitTransactionInput Document List Information for each commit request.

 Key Description

 transactionName String The name of an explicit
transaction that you want to commit.
The transactionName must have
been previously used in a call to
pub.art.transaction:startTransaction.

This value must be mapped
from the most recent
pub.art.transaction:startTransaction that has
not previously been commied or
rolled back.

Output Parameters

None.

Usage Notes

This service must be used in conjunction with the pub.art.transaction:startTransaction
service. If the transactionName parameter was not provided in a prior call to
pub.art.transaction:startTransaction, a run-time error will be returned.

pub.art.transaction:rollbackTransaction
Rolls back an explicit transaction.

Input Parameters

rollbackTransactionInput Document List Information for each rollback request.

 Key Description

M
Odd Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 33

 transactionName String The name of an explicit
transaction that you want to roll
back. The transactionName must
have been previously used in a call
to pub.art.transaction:startTransaction.

This value must be mapped
from the most recent
pub.art.transaction:startTransaction that
has not previously been commied
or rolled back.

Output Parameters

None.

Usage Notes

This service must be used in conjunction with the pub.art.transaction:startTransaction
service. If the given transactionName parameter was not provided in a prior call to
pub.art.transaction:startTransaction, a run-time error will be returned.

pub.art.transaction:setTransactionTimeout
Manually sets a transaction timeout interval for implicit and explicit transactions.

Input Parameters

timeoutSeconds Integer The number of seconds that the implicit or explicit
transaction stays open before the transaction manager marks it
for rollback.

Output Parameters

None.

Usage Notes

This service is available only if your adapter supports built-in transaction management
services, which you can confirm by checking the user guide for the adapter.

When you use this service, you are temporarily overriding the Integration Server
transaction timeout interval.

You must call this service within a flow before the start of any implicit or explicit
transactions. Implicit transactions start when you call an adapter service in a flow.
Explicit transactions start when you call the pub.art.transaction:startTransaction service.

M
Even Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 34

If the execution of a transaction takes longer than the transaction timeout interval, all
transacted operations are rolled back.

This service only overrides the transaction timeout interval for the flow service in which
you call it.

pub.art.transaction:startTransaction
Starts an explicit transaction.

Input Parameters

startTransactionInput Document List Information for each start transaction
request.

 Key Description

 transactionName String Optional. Specifies the
name of the transaction to be
started. If you leave this parameter
blank, Integration Server will
generate a name for you. In
most implementations it is not
necessary to provide your own
transaction name.

Output Parameters

startTransactionOutput Document List Information for each start transaction
request.

 Key Description

 transactionName String The name of the transaction
the service just started.

Usage Notes

This service is available only if your adapter supports built-in transaction management
services, which you can confirm by checking the user guide for the adapter.

This service is intended for use with the pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction service. The transactionName value returned by a

M
Odd Header

Transaction Management

webMethods Adapter Runtime User’s Guide Version 10.2 35

call to this service can be provided to pub.art.transaction:commitTransaction (to commit the
transaction) or pub.art.transaction:rollbackTransaction (to roll back the transaction).

Changing the Integration Server Transaction Timeout Interval
The Integration Server default transaction timeout is no timeout (NO_TIMEOUT).
To change the server's transaction timeout interval, add the wa.art.tmgr.timeout
parameter to the server.cnf file.

The wa.art.tmgr.timeout transaction timeout parameter does not halt the execution of a
flow. It is the maximum number of seconds that a transaction can remain open and still
be considered valid. For example, if your current transaction has a timeout value of 60
seconds and your flow takes 120 seconds to complete, the transaction manager will roll
back all registered operations regardless of the execution status.

For more information about modifying the server.cnf file, see webMethods Integration
Server Administrator’s Guide.

To change the server's transaction timeout level

1. Shut down Integration Server.

2. Open the server.cnf file in a text editor.

3. Add the following parameter to the server.cnf file:
watt.art.tmgr.timeout=TransactionTimeout

where TransactionTimeout is the number of seconds before transaction timeout.

4. Restart Integration Server.

M
Even Header

webMethods Adapter Runtime User’s Guide Version 10.2 36

M
Odd Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 37

3 The Adapter Runtime in a Clustered Environment

■ What is Clustering? .. 38

■ Polling Notification Support in a Cluster .. 41

■ Adapter Listener Support in a Cluster ... 46

M
Even Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 38

What is Clustering?
Clustering is an advanced feature of the webMethods product suite that substantially
extends the reliability, availability, and scalability of webMethods Integration Server.
Clustering accomplishes this by providing the infrastructure and tools to deploy
multiple Integration Servers as if they were a single virtual server and to deliver
applications that leverage that architecture. Because this activity is transparent to the
client, clustering makes multiple servers look and behave as one.

Integration Server 8.2 SP2 and higher supports the caching and clustering functionality
provided by Terracoa. Caching and clustering are configured at the Integration Server
level and adapters use the caching mechanism that is enabled on Integration Server.
Adapters do not explicitly implement any clustering or caching beyond what is already
provided by Integration Server.

With clustering you get the following benefits:

Load balancing. This feature, provided automatically when you set up a clustered
environment, allows you to spread the workload over several servers, thus
improving performance and scalability.

Failover support. Clustering enables you to avoid a single point of failure. If a server
cannot handle a request or becomes unavailable, the request is automatically
redirected to another server in the cluster.

Note: Integration Server clustering redirects HTTP and HTTPS requests, but
does not redirect FTP or SMTP requests.

Scalability. You can increase your capacity even further by adding new machines
running Integration Server to the cluster.

For details on Integration Server clustering, see webMethods Integration Server Clustering
Guide.

Clustering Considerations and Requirements

Note: The following sections assume that you have already configured the
Integration Server cluster. For details about webMethods clustering, see the
webMethods Integration Server Clustering Guide.

The following considerations and requirements apply to Adapter Runtime based
adapters in a clustered environment.

Requirements for Each Integration Server in a Cluster
The following table describes the requirements of each Integration Server in a given
cluster.

M
Odd Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 39

All Integration
Servers in a given
cluster must have
identical...

For example...

Integration
Server versions

One Integration Server in the cluster cannot be version 9.0
and another Integration Server in the cluster be version 9.5.

Adapter
packages

All adapter packages on one Integration Server should be
replicated to all other Integration Servers in the cluster.

Adapter versions All Integration Servers in the cluster must have the same
version of an adapter, with the same fixes (updates and
service packs) applied.

Adapter
connections

If you configure a connection to the back end, this connection
must appear on all servers in the cluster so that any
Integration Server in the cluster can handle a given request
identically.

If you plan to use connection pools in a clustered
environment, see "Considerations when Configuring
Connections with Connection Pooling Enabled" on page
40.

Adapter services If you configure a specific adapter service, this service must
appear on all servers in the cluster so that any Integration
Server in the cluster can handle the request identically.

If you allow different Integration Servers to contain different
services, you might not derive the full benefits of clustering.
For example, if a client requests a service that resides on only
one server, and that server is unavailable, the request cannot
be successfully redirected to another server.

Adapter
notifications

If you configure a specific adapter notification, this
notification must appear on all servers in the cluster.

For more information about adapter notifications in a cluster,
see "Polling Notification Support in a Cluster" on page 41
and "Adapter Listener Support in a Cluster" on page 46.

M
Even Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 40

Replicating Packages to Integration Servers
Every Integration Server in the cluster should contain an identical set of packages
that you define using a specific adapter. You should replicate the adapter services, the
connections they use, and the adapter notifications.

To ensure consistency, Software AG recommends creating all packages on one server
and replicating them to the other servers. If you allow different servers to contain
different services, you might not derive the full benefits of clustering. For example, if a
client requests a service that resides in only one server, and that server is unavailable,
the request cannot be successfully redirected to another server.

For more information about replicating packages, see webMethods Integration Server
Administrator’s Guide.

Considerations when Configuring Connections with Connection
Pooling Enabled
When you configure a connection that uses connection pools in a clustered environment,
be sure that you do not exceed the total number of connections that can be opened
simultaneously to the back end.

For example, if you have a cluster of two Integration Servers with a connection
configured to a back end resource that supports a maximum of 100 connections opened
simultaneously, the total number of connections possible at one time must not exceed
100. This means that you cannot configure a connection with an initial pool size of 100
and replicate the connection to both servers because there could be possibly a total of
200 connections opened simultaneously to the back end.

In another example, consider a connection configured with an initial pool size of 10 and
a maximum pool size of 100. If you replicate this connection across a cluster with two
Integration Servers, it is possible for the connection pool size on both servers to exceed
the maximum number of connections that can be open at one time.

For more information about connection pools, see webMethods Integration Server
Administrator’s Guide.

Disabling the Redirection of Administrative Services
An Integration Server instance that cannot handle a client's service request can
automatically redirect the request to another server in the cluster. However, adapters
use certain predefined administrative services that you should not allow to be
redirected. These services are used internally when you configure the adapter. If you
allow these services to be redirected, your configuration specifications might be saved
on multiple servers, which is an undesirable result. For example, if you create two
adapter services for an adapter, one might be stored on one server, while the other one

M
Odd Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 41

might be stored on another server. Remember that all adapter services must reside on all
Integration Servers in the cluster.

To disable the redirection of administrative services

1. Shut down Integration Server.

2. Open the following file:

Integration Server_directory\config\redir.cnf

3. Add the following line to the file:
<value name="wm.art">false</value>

4. Save the file and restart Integration Server.

Polling Notification Support in a Cluster
The Adapter Runtime enables the coordinated execution of polling notifications within
an Integration Server cluster. It provides the ability to enable multiple instances of
the same polling notification in your cluster, and to coordinate their schedules and
execution. This provides enhanced quality of service by allowing configurations
for automated failover between notifications and distributed processing of polling
notifications.

Important: Adapters support enabling the same polling notification on multiple
Integration Server instances connecting to the same back end to achieve
automated failover, only when the multiple Integration Servers share the
same ISInternal database. If you aempt to use the same polling notification
on multiple Integration Servers pointing to the same back end but using
separate ISInternal databases, you may encounter abnormal results.

Beginning with Integration Server 9.0, adapters use Integration Server Scheduler to
support polling notifications. On enabling a polling notification, a new Integration
Server scheduled task is created, which polls the back end resource at the given interval.
Do not manually edit or change scheduled tasks. Each polling notification creates an
Integration Server scheduled task. When a notification is disabled, the scheduled task in
Integration Server is removed.

Considerations for Polling Notifications Executing via Scheduled
Tasks
With polling notifications executing via scheduled tasks, ensure that:

Each notification is present in all cluster nodes at all times.

The Overlap function for the polling notifications is disabled.

Polling notifications names do not exceed 400 characters.

M
Even Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 42

The value of the Integration Server wa.server.scheduler.threadThrole property
should not be lower than the number of total polling notifications and scheduled
tasks. By default the value is 75% of the total threads.

The IS Internal functional alias (specified on the Seings > JDBC Pools screen) is
configured with a database.

Note: You can make scheduled notification tasks visible in the Server
> Scheduler page in Integration Server Administrator by seing
watt.pkg.art.scheduler.notificationtask.display=true

If the parameter is not shown, add it.

Configuring this property is required only for debugging or for editing the
polling notification schedule interval.

Configuring Polling Notifications in Standby or Distributed Mode on
Integration Server 8.2
When using an adapter on Integration Server 8.2, you can configure a polling
notification to run in either Standby or Distributed mode. You can also configure
additional seings for clustered polling notifications.

Standby Mode and Distributed Mode
In Standby mode, a particular instance of a polling notification will execute the
notification according to its configured schedule. When you start the cluster, the
polling notification that executes the first scheduled run is considered to be the primary
notification. This instance will continue to execute the scheduled run as long as it is
enabled and fully functional. If at any time this notification becomes disabled, another
notification in the cluster will assume control. The notification that assumes control is
arbitrary. After a notification has control, it will continue to execute the schedule for as
long as it is enabled and fully functional.

In Distributed mode, any instance of the polling notification can execute the currently
scheduled run. The notification that executes the current scheduled run is arbitrary.
If a notification does not complete executing within the amount of time specified in
the Max Process Time field, the system considers that notification to be “dead”. Another
enabled instance in the cluster will recognize this situation and will aempt to execute
the scheduled run. For details about Max Process Time, see "Notification-Specific Seings"
on page 44.

Configuration Settings
Cluster coordination is controlled by a number of configuration seings to control
polling notification behavior and tune failure detection using timeouts. All seings that
pertain to clustered polling notifications are ignored or disabled until you include the
server in a cluster.

M
Odd Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 43

Global Settings

The following seings are set in the server.cnf file and apply globally to all clustered
notifications for all adapters. The server uses the seings in an algorithm that determines
whether a polling notification instance should be considered “dead”. For more
information, see webMethods Integration Server Clustering Guide.

Global Setting Name Values and Description

watt.art.clusteredPollingNotification.
keepAliveInterval

The frequency, in milliseconds, with
which a secondary instance of a polling
notification will check to see if an
executing instance is still alive. If the
property is not set, the secondary
instance will change to the default
maxLockDuration value of "180000" for
the shared cache.

watt.art.clusteredPollingNotification.
keepAliveExpireTimeout

The amount of time, in milliseconds,
that an executing node can be late
before it is assumed to have failed. In
general, this seing should be equal to
the amount of drift anticipated on the
server clocks. If not set, the secondary
instance will change to the default
maxLockDuration value of "180000" for
the shared cache.

Adapter-Specific Settings

The adapter-specific seings apply to all the polling notifications in your adapter.

Within the configuration directory of the adapter's package, the clusterProperties.cnf file
provides seings that specify a callback scheme, and place limits on which coordination
modes can be applied to notification nodes for the adapter. The clusterProperties.cnf file
is an XML file in which seings may be provided globally for the adapter or specifically
to a particular notification template.

The following example includes all of the major constructs of a clusterProperties.cnf file.
<?xml version="1.0"?>
<clusterProps>
 <pollingNotifications>
 <callbackScheme>1</callbackScheme>
 <runtimeModeLimit>distribute</runtimeModeLimit>
 <template className="com.wm.adapter.wmarttest.notification.LatchedPollingNot
 ification">
 <callbackScheme>1</callbackScheme>
 <runtimeModeLimit>standby</runtimeModeLimit>
 </template>
 </pollingNotifications>

M
Even Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 44

 <listenerNotifications>
 <callbackScheme>1</callbackScheme>
 </listenerNotifications>
 <listeners>
 <runtimeModeLimit>standby</runtimeModeLimit>
 </listeners>
</clusterProps>

The <callbackScheme> seing controls how callback coordination is performed, while
<runtimeModeLimit> constrains the coordination mode seing that can be set for a
notification node. Valid values for these seings are included in the following tables.

Table 1. Values for callbackScheme Seng for Polling Noficaons

The following Coordination Modes are set:When
callbackScheme is
set to... Enable/Disable Startup/Shutdown Resume/Suspend

0 No coordination No coordination No coordination

1(default) Coordinated No coordination No coordination

2 No coordination Coordinated No coordination

3 Coordinated Coordinated No coordination

4 No coordination No coordination Coordinated

5 No coordination Coordinated Coordinated

6 Coordinated No coordination Coordinated

7 Coordinated Coordinated Coordinated

Notification-Specific Settings

The notification-specific seings enable you to configure certain scheduling aspects of
polling notifications on an individual basis.

Two new fields appear on the Polling Notification Schedule page: Coordination Mode and
Max Process Time. These fields become editable when you add your Integration Server to
a cluster.

The Coordination Mode field controls the coordination of the notification schedules
across the cluster. Depending on the value you assigned to the runtimeModeLimit
seing (see "Adapter-Specific Seings" on page 43), the adapter user can select
some combination of the following values in the Coordination Mode field as follows:

M
Odd Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 45

This runtimeModeLimit value... Displays these values in the Coordination Mode
field...

disable disable

standby disable and standby

distribute disable, standby, and distribute

The Max Process Time field enables other notifications to determine whether a
currently executing notification should be considered to be “dead”. If a notification
executes a scheduled run and it fails to complete before the Max Process Time, then
another notification instance will consider it dead; this other notification will assume
control and execute a scheduled run. The default value is equal to the value in
the wa.art.clusteredPollingNotification.keepAliveExpireTimeout seing in the
server.cnf file.

If the Max Process Time seing is not high enough, you may encounter a situation
in which a notification is executing normally, but another notification assumes it
is “dead”. When the original notification completes, it will recognize that it was
prematurely considered “dead”. In this case, the system logs an Illegal Overlap
exception with message ID [ART.116.3715]. If this exception occurs, increase your
Max Process Time seing.

When seing the value of Max Process Time, you should allow for “clock drift”. For
details, see "Clock Synchronization" on page 45.

If you want to update the schedule and seings of a notification in a cluster, all
notification instances in the cluster must be suspended or disabled for the changes to be
saved. If any notification instance in the cluster is enabled, the adapter will not save the
updates.

If all instances of a notification in the cluster do not have the same seings, the
notification that became active first will have precedence.

Clock Synchronization
To determine whether a notification has failed, notifications use the system clocks of
the machines that host the clustered Integration Servers. Synchronizing the clocks
of all machines in the cluster is critical for the proper execution of clustered polling
notifications.

However, in time these clocks might become un-synchronized. Therefore you
should anticipate the effect of “clock drift” when you establish values for the
keepAliveExpireTimeout server-specific seing and Max Process Time notification-specific
seing. Clock drift is the time difference between the clocks. As a guideline, add to the
keepAliveExpireTimeout and the Max Process Time seings two times the maximum clock
drift you anticipate.

M
Even Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 46

Configuring Adapter Notification Schedules in a Clustered Environment

To enable adapter polling notifications to execute in distributed or standby mode

1. In the cluster, shut down the Integration Server you are configuring.

2. Open the clusterProperties.cnf file for the adapter.

3. Change all <runtimeModeLimit> values to <distribute> or <standby>.

For an example of a sample clusterProperties.cnf file, see "Adapter-Specific Seings"
on page 43.

4. Save the file and restart Integration Server.

5. Start Integration Server.

6. Select Adapters > Adapter name.

7. From the navigation area, select Polling Notifications.

8. For each notification:

a. Disable the notification.

b. Click the Edit Schedule icon.

c. Set the Coordination Mode to Distributed or Standby, as appropriate for the
notification.

d. Enable the notification.

Important: To maintain duplicate detection and ordering, your polling notification
schedules must not run with the Overlap option selected. To access the
Overlap option, click the Edit Schedule icon.

After you configure a polling notification, you may propagate all the affected
components across your cluster. Changing the polling notification schedule from
Integration Server Administrator or changing the polling notification seings in
Software AG Designer will require you to propagate the polling notification across the
cluster. If you made changes to the seings in server.cnf or to the clusterProperties.cnf
file, you must also propagate the changes across the cluster.

Adapter Listener Support in a Cluster
Beginning with Integration Server 9.5, an adapter listener can be active either on
multiple nodes or on a single node in an Integration Server cluster.

If the adapter back end supports the non-duplication of messages to which multiple
clients are subscribed, the listener is multi-node. It is active on all nodes in the Integration
Server cluster. In this case, each node retrieves and processes a different message.

M
Odd Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 47

If the adapter back end does not support the non-duplication of messages to which
multiple clients are subscribed, the listener is single-node. It is active on a single node in
the cluster - the active or primary node - thus avoiding duplicate messages. If the active
node goes down, another node in the cluster becomes active, providing failover support.
The active node stores incoming events from the back end in the distributed (shared)
cache. In this way, message processing continues when the active node goes down.

Important: If message order is important when the adapter processes events from the
back end, use a combination of a single-threaded and single-node listener, or
a single-threaded and multi-node listener that is enabled on only one node
in the cluster. For information about how multi-threaded listeners work, see
"Single-Threaded and Multi-Threaded Listeners" on page 18.

You can enable, disable, or suspend a listener on a single node or on all nodes in
a cluster by changing the listener state on one of the nodes. For information about
changing listener states in a cluster, see "Enabling Listeners in a Cluster" on page 50
and "Disabling Listeners in a Cluster" on page 50.

Listener States in a Cluster
Both multi-node and single-node listeners have the following states in an Integration
Server cluster: enabled, disabled, and suspended. When you enable or disable a listener
on a node in the cluster, a listener thread is created or destroyed, respectively, in the
node.

Multi-Node Listener States
You can change the state of a multi-node listener on all nodes in an Integration Server
cluster from any node in the cluster. When a multi-node listener is enabled, disabled, or
suspended on all nodes in the cluster, the action that a particular node takes depends on:

the selected state change on all nodes

the listener state on the particular node, that is if the listener thread is running or not

For example, if a multi-node listener has already been suspended on node A, and then
on node B you disable the listener on all nodes in the cluster, node A takes no real
action. Node A only shows the state as disabled because the listener thread has already
stopped running.

The following table shows what change occurs in the state of a multi-node listener on
a particular node in the cluster when you enable, disable, or suspend the listener on all
nodes.

M
Even Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 48

Listener State
on a Particular
Node

Enable Listener on
All Nodes

Disable Listener on
All Nodes

Suspend Listener on All
Nodes

Enabled No action Disable Suspend

Disabled Enable No action No action

Suspended Enable Show as
disabled. No
action

No action

Single-Node Listener States
You can change the state of a single-node listener on all nodes in an Integration Server
cluster from any node in the cluster. When a single-node listener is enabled, disabled, or
suspended on all nodes in the cluster, the action that a particular node takes depends on:

the selected state change on all nodes

the listener state on the particular node, that is if the listener thread is running or not

whether the particular node is the active (primary) node

For example, if a single-node listener has already been suspended on node A, and then
on node B you enable the listener on all nodes in the cluster, node A can:

enable the listener, if node A becomes the active node in the cluster.

show the listener as enabled without creating a new thread, if another node has
already become the active one.

The following table shows what change occurs in the state of a single-node listener on
a particular node in the cluster when you enable, disable, or suspend the listener on all
nodes.

Listener State
on a Particular
Node

Enable Listener on All
Nodes

Disable Listener on All
Nodes

Suspend Listener on
All Nodes

Enabled No action Disable the
listener if this is
the active node

Show the listener
as disabled if this
is not the active
node. No action

Suspend the
listener if this is
the active node

Show the
listener as
suspended if
this is not the

M
Odd Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 49

Listener State
on a Particular
Node

Enable Listener on All
Nodes

Disable Listener on All
Nodes

Suspend Listener on
All Nodes

active node. No
action

Disabled Enable the
listener if the
node acquires
the lock on the
shared cache
and becomes the
active node

Show the listener
as enabled if
another node has
already become
the active node.
No action

No action No action

Suspended Enable the
listener if the
node acquires
the lock on the
shared cache
and becomes the
active node

Show the listener
as enabled if
another node
became the
active node. No
action

Show the listener
as disabled. No
action

No action

If a single-node listener is active on a particular node and you try to disable it, another
Integration Server node's listener will become active if that listener is in an enabled state.
If the listener is in a disabled state on all other Integration Server nodes, those nodes will
ignore the disable operation.

Enabling, Disabling, and Suspending Listeners in a Cluster
In an Integration Server cluster, you can enable, disable, and suspend adapter listeners
using Integration Server Administrator.

M
Even Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 50

For information about what happens in a particular node when you change the state of
a multi-node or a single-node listener on all nodes in the cluster, see "Listener States in a
Cluster" on page 47.

Enabling Listeners in a Cluster

To enable a multi-node or single-node listener in a cluster

1. In Integration Server Administrator, select Adapters > Adapter name.

2. In the Adapter menu, select Listeners. The Listeners screen appears.

3. Select Enabled from the drop-down list in the State field for the listener that you want
to enable. A dialog box appears prompting you to enable the listener.

4. Do one of the following:

Select Yes for all nodes to enable the listener on all nodes in the cluster.

Select Yes to enable the listener on the current node only.

Select Cancel to end the operation.

Disabling Listeners in a Cluster

To disable a multi-node or single-node listener in a cluster

1. In Integration Server Administrator, select Adapters > Adapter name.

2. In the Adapter menu, select Listeners. The Listeners screen appears.

3. Select Disabled from the drop-down list in the State field for the listener that you
want to disable. A dialog box appears prompting you to disable the listener.

4. Do one of the following:

Select Yes for all nodes to disable the listener on all nodes in the cluster.

Select Yes to disable the listener on the current node only.

Select Cancel to end the operation.

Suspending Listeners in a Cluster

To suspend a multi-node or single-node listener in a cluster

1. In Integration Server Administrator, select Adapters > Adapter name.

2. In the Adapter menu, select Listeners. The Listeners screen appears.

3. Select Suspended from the drop-down list in the State field for the listener that you
want to suspend. A dialog box appears prompting you to suspend the listener.

4. Do one of the following:

Select Yes for all nodes to suspend the listener on all nodes in the cluster.

M
Odd Header

The Adapter Runtime in a Clustered Environment

webMethods Adapter Runtime User’s Guide Version 10.2 51

Select Yes to suspend the listener on the current node only.

Select Cancel to end the operation.

M
Even Header

webMethods Adapter Runtime User’s Guide Version 10.2 52

M
Odd Header

Adapter Runtime Logging and Exception Handling

webMethods Adapter Runtime User’s Guide Version 10.2 53

4 Adapter Runtime Logging and Exception Handling

■ Overview ... 54

■ Adapter Runtime Message Logging .. 54

■ Configuring Server Logging Levels for the Adapter Runtime .. 55

■ Adapter Runtime Exception Handling .. 56

M
Even Header

Adapter Runtime Logging and Exception Handling

webMethods Adapter Runtime User’s Guide Version 10.2 54

Overview
The Adapter Runtime uses the Integration Server logging mechanism to log messages.
You can configure and view Integration Server logs to monitor and troubleshoot
the Adapter Runtime. For detailed information about logging in Integration Server,
including instructions for configuring and viewing the different kinds of logs supported
by the server, see webMethods Integration Server Administrator’s Guide and webMethods
Audit Logging Guide .

Adapter Runtime Message Logging
Integration Server maintains several types of logging. However, the Adapter Runtime
logs messages only to the error, server, and service logs.

The following table lists the logging types supported by Integration Server for the
Adapter Runtime.

Logger Description

Error Provides stack trace information about all errors that occur in the
Adapter Runtime, including exceptions thrown by services.

Adapters automatically post fatal-level and error-level messages
to the Adapter Runtime error log.

Server Provides information about fatal-level through debug-level log
messages. Trace-level log messages appear as messages for an
individual adapter.

Service Provides information about adapter services. You can monitor
adapter services as you would audit any service in Integration
Server. The audit properties for an adapter service are available
in each adapter service template in the Properties panel.

The Adapter Runtime log messages appear in the following format, ART.mmmm .nnnn ,
where:

ART is the facility code indicating that the message is from the Adapter Runtime.

mmmm is the code for one of the following Integration Server log facilities:

Facility Information and errors related to...

0114 Adapter Runtime Adapter runtime facilities.

M
Odd Header

Adapter Runtime Logging and Exception Handling

webMethods Adapter Runtime User’s Guide Version 10.2 55

Facility Information and errors related to...

0115 Adapter Runtime
(Listener)

Adapter listeners that use adapter
connections to connect to adapter
resources.

0116 Adapter Runtime
(Notification)

Adapter notifications including
polling and listener notifications.

0117 Adapter Runtime
(Adapter Service)

Adapter services that define
operations that the adapter will
perform on adapter resources.

0118 Adapter Runtime
(Connection)

Adapter connections that
contain parameters that adapter
notifications and listeners use to
connect to an adapter resource.

0121 Adapter Runtime (SCC
Transaction Manager)

Adapter Runtime (JCA System
Contract Component Transaction
Manager).

0126 Adapter Runtime (SCC
Connection Manager)

Adapter Runtime (JCA System
Contract Component Connection
Manager).

nnnn represents the error’s minor code.

Configuring Server Logging Levels for the Adapter Runtime

To specify the amount and type of information to include in the server log for the Adapter Runtime

1. In Integration Server Administrator, go to Settings > Logging.

2. In the Logger List, select Server Logger > Edit Server Logger.

The Server Logger Configuration area lists Integration Server and products that are
installed on Integration Server, and the facilities for each of these. To see the Adapter
Runtime facilities and their current logging levels, expand the Integration Server
node.

By default, all products inherit the logging level of the Default node. Inherited values
are shown in gray text. When you explicitly change the logging level for a product or
facility, that level overrides the Default node level.

M
Even Header

Adapter Runtime Logging and Exception Handling

webMethods Adapter Runtime User’s Guide Version 10.2 56

3. In the Integration Server node, select the level of logging you want to use from the
Logging Level list for each Adapter Runtime facility.

For more information about logging levels, see webMethods Integration Server
Administrator’s Guide.

Important: Recording more information consumes more system resources.

4. Click Save Changes.

Adapter Runtime Exception Handling
The Adapter Runtime provides the following exception definitions:

AdapterException. All exceptions thrown by an adapter, excluding exceptions during
adapter service execution, belong to this exception type or to a child of this exception
type.

DetailedException. This type of exception is a child of AdapterException. It contains
detailed information about an exception.

AdapterConnectionException. This exception is thrown when an issue occurs while
establishing a connection to the back end or using a connection that has become
stale. When the system returns an AdapterConnectionException WmART resets the
connection pool.

All adapter services, notifications, and listeners use the connection pool. If an
AdapterConnectionException occurs when an adapter service, notification, or
listener tries to retrieve a connection from the connection pool, the Adapter Runtime
treats the exception as a fatal one. WmART resets the connection pool and throws a
DetailedSystemException.

DetailedServiceException. This type of exception provides detailed information about
any exceptions thrown during service execution.

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 57

A Adapter Runtime Built-In Services Reference

■ Summary of Adapter Runtime Built-In Services .. 58

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 58

Summary of Adapter Runtime Built-In Services
Use the built-in services in the WmART package to manage adapter components,
including connections, adapter services, listeners, and notifications.

The following services are available in the WmART package:

Element Description

pub.art:listRegisteredAdapters Returns the display name and adapter
type name of all registered adapters.

pub.art.connection:disableConnection Disables a connection node.

pub.art.connection:enableConnection Enables an existing connection node.

pub.art.connection:getConnectionStatistics Returns current usage statistics for a
connection node.

pub.art.connection:listAdapterConnections Lists connection nodes associated with a
specified adapter.

pub.art.connection:queryConnectionState Returns the current connection state
(enabled/disabled) and error status for a
connection node.

pub.art.connection:getInterruptedThreadStatus Returns the status of the threads which
are interrupted and not responding to
interrupt mechanism.

pub.art.listener:disableListener Disables a listener.

pub.art.listener:enableListener Enables an existing listener.

pub.art.listener:listAdapterListeners Lists listeners associated with a specified
adapter.

pub.art.listener:queryListenerState Returns the current state for a listener.

pub.art.listener:resumeListener Resumes a specified listener.

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 59

Element Description

pub.art.listener:setListenerNodeConnection Changes the connection node used by a
specified listener.

pub.art.listener:suspendListener Suspends a specified listener.

pub.art.notification:disableListenerNotification Disables a listener notification.

pub.art.notification:disablePollingNotification Disables a polling notification.

pub.art.notification:disablePublishEvents Disables the publishing of events for an
adapter notification.

pub.art.notification:enableListenerNotification Enables an existing listener notification.

pub.art.notification:enablePollingNotification Enables an existing polling notification.

pub.art.notification:enablePublishEvents Enables the publishing of events for an
adapter notification.

pub.art.notification:listAdapterListenerNotifications Lists the listener notifications associated
with a specified adapter.

pub.art.notification:listAdapterPollingNotifications Lists the polling notifications associated
with a specified adapter.

pub.art.notification:queryListenerNotificationState Returns the current state (enabled/
disabled) for a listener notification.

pub.art.notification:queryPollingNotificationState Returns the current state for a polling
notification.

pub.art.notification:resumePollingNotification Resumes a specified polling notification
node.

pub.art.notification:setListenerNotificationNodeListener Changes the listener used by a specified
listener notification.

pub.art.notification:setPollingNotificationNodeConnection Changes the connection node used by a
specified polling notification.

pub.art.notification:suspendPollingNotification Suspends a specified polling notification.

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 60

Element Description

pub.art.service:listAdapterServices Lists adapter services associated with a
specified adapter.

pub.art.service:setAdapterServiceNodeConnection Changes the connection node used by a
specified adapter service.

pub.art.transaction:commitTransaction Commits an explicit transaction.

pub.art.transaction:rollbackTransaction Rolls back an explicit transaction.

pub.art.transaction:setTransactionTimeout Manually sets a transaction timeout
interval for implicit and explicit
transactions.

pub.art.transaction:startTransaction Starts an explicit transaction.

pub.art:listRegisteredAdapters
Returns the display name and adapter type name of all registered adapters.

Input Parameters

None.

Output Parameters

registeredAdapterList Document List Information for each adapter registered with the
WmART package.

 Key Description

 adapterDisplayName String The localized name that
Integration Server Administrator
displays.

 adapterTypeName String The name of the adapter as
registered with the WmART package.
This value can be used as input
for the inventory services that take
adapterTypeName as input.

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 61

pub.art.connection:disableConnection
Disables a connection node.

Input Parameters

connectionAlias String Name of the connection node you want to disable.

Output Parameters

None.

pub.art.connection:enableConnection
Enables an existing connection node.

Input Parameters

connectionAlias String Name of the connection node you want to enable.

Output Parameters

None.

pub.art.connection:getConnectionStatistics
Returns current usage statistics for a connection node.

Input Parameters

aliasName String Name of the connection node for which you want usage
statistics returned.

Output Parameters

connectionStatistics Document List Information for each connection node.

 Key Description

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 62

 TotalConnections Integer Current number of connection
instances.

 BusyConnections Integer Number of connections currently
in use by services, notifications, and
listeners.

 FreeConnections Integer Total number of connections
created and available for use.

 TotalHits Integer Number of times this connection
node successfully provided connections
since the last reset.

 TotalMisses Integer Number of times this connection
node unsuccessfully provided
connections since the last reset (when the
request timed out).

pub.art.connection:listAdapterConnections
Lists connection nodes associated with a specified adapter.

Input Parameters

adapterTypeName String The name of the adapter as registered with the WmART
package.

Output Parameters

connectionDataList Document List Information for each connection node registered
with the specified adapter.

 Key Description

 connectionAlias String The name of the connection node.

 packageName String The name of the package in which
the connection node resides.

 connectionState String Current state of the connection node.
The state will have one of these values:

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 63

disabled - Connection node is disabled

enabled - Connection node is enabled.

shuttingdown - Connection node is in the
process of shuing down.

unknown - Connection node is registered
but has not yet established its state.

pub.art.connection:queryConnectionState
Checks the availability of the underlying resource (for example, database servers) at
frequent time intervals, and returns the current connection state (enabled/disabled,
shuingdown, pendingEnabled) and error status for a connection node.

Input Parameters

connectionAlias String Name of the connection node for which you want the
connection state and error status returned.

Output Parameters

connectionState String Current connection state (enabled/disabled,
shuingdown, pendingEnabled).

hasError Boolean Flag indicating if any error was detected on
connection. The values are:

true if an error was detected.

false if no error was detected.

lastErrorTime String The long value of the time stamp for the last error.

Usage Notes

You use the pub.art.connection:queryConnectionState service together
with the wa.art.wmConnectionPool.pingRetryInterval and
wa.art.wmConnectionPool.pingSafeInterval parameters to monitor the state of the
underlying resource.

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 64

pub.art.connection:getInterruptedThreadStatus
Returns the list of connection threads which are not responding even after being
interrupted by the connection pool interrupter.

Input Parameters

aliasName String Name of the connection node for which you want
to get the status of threads that are not responding to the
interrupt.

Output Parameter

None.

Usage Notes

We recommend your manual intervention for the server threads which gets hung
while creating or destroying the connections and also not responding to the interrupt
mechanism.

pub.art.listener:disableListener
Disables a listener.

Input Parameters

listenerName String Name of the listener you want to disable. The listener
should have a state of enabled or suspended.

forceDisable String Optional. Flag to disable the listener regardless of
whether it is still waiting for data from a back-end resource.
The string may have one of these values:

true to disable the listener.

false to keep the listener enabled.

Output Parameters

None.

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 65

pub.art.listener:enableListener
Enables an existing listener.

Input Parameters

listenerName String Name of the listener you want to enable.

Output Parameters

None.

Usage Notes

If you do not enable the connection resource associated with the listener, this service will
return without performing any action, and the listener will remain disabled. Therefore,
you should invoke pub.art.connection:enableConnection before calling this service to
confirm that the listener has been enabled.

pub.art.listener:listAdapterListeners
Lists listeners associated with a specified adapter.

Input Parameters

adapterTypeName String The name of the adapter as registered with the WmART
package.

Output Parameters

listenerDataList Document List Information for each listener registered with the
specified adapter.

 Key Description

 listenerNodeName String The name of the listener.

 packageName String The name of the package in which
the listener resides.

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 66

 listenerEnabled String Current state of the listener. The
state will have one of these values:

disabled if the listener is disabled.

enabled if the listener is enabled.

enablePending if the listener is in the
process of starting.

disablePending if the listener is in the
process of disabling.

suspended if the listener is suspended.

suspendPending if the listener is in the
process of suspending.

pub.art.listener:queryListenerState
Returns the current state for a listener.

Input Parameters

listenerName String Name of the listener for which you want the current
state returned.

Output Parameters

listenerState String Current state of the listener. The state will have one of
these values:

disabled if the listener is disabled.

enabled if the listener is enabled.

enablePending if the listener is in the process of starting.

disablePending if the listener is in the process of disabling.

suspended if the listener is suspended.

suspendPending if the listener is in the process of
suspending.

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 67

pub.art.listener:resumeListener
Resumes a specified listener.

Input Parameters

listenerName String The name of the suspended listener you want to resume.
The service returns an error if you specify an invalid listener.

Output Parameters

None.

Usage Notes

If the requested transition is not valid (for example, trying to resume a disabled listener
or a listener that is already resumed), the service ignores the request.

After you use this service, you can use pub.art.listener:queryListenerState to verify
pub.art.listener:resumeListener correctly changed the state of the listener.

pub.art.listener:setListenerNodeConnection
Changes the connection node used by a specified listener.

Input Parameters

listenerName String Name of the listener for which you want to change the
connection node.

connectionAlias String Name of the new connection node to use with the
listener.

Output Parameters

None.

Usage Notes

Calling this service for a listener that is disabled is permied.

Calling this service for a listener that is suspended changes the state of the listener to
disabled. The user must enable the listener before using it.

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 68

pub.art.listener:suspendListener
Suspends a specified listener.

Input Parameters

listenerName String The name of the listener you want to suspend. The
service returns an error if you specify an invalid listener.

Output Parameters

None.

Usage Notes

If the requested transition is not valid (for example, trying to suspend a disabled listener
or a listener that is already suspended), the service ignores the request.

After you use this service, you can use pub.art.listener:queryListenerState to verify
pub.art.listener:suspendListener correctly changed the state of the listener.

pub.art.notification:disableListenerNotification
Disables a listener notification.

Input Parameters

notificationName String The name of the listener notification you want to disable.

Output Parameters

None.

pub.art.notification:disablePollingNotification
Disables a polling notification.

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 69

Input Parameters

notificationName String The name of the polling notification you want to disable.
The polling notification should have a state of enabled or
suspended.

Output Parameters

None.

pub.art.notification:disablePublishEvents
Disables the publishing of events for an adapter notification.

Input Parameters

notificationName String The name of the notification for which you want to disable
the publishing of events.

Output Parameters

None.

pub.art.notification:enableListenerNotification
Enables an existing listener notification.

Input Parameters

notificationName String The name of the listener notification you want to enable.

Output Parameters

None.

pub.art.notification:enablePollingNotification
Enables an existing polling notification.

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 70

Input Parameters

notificationName String Name of the polling notification you want to enable.

Output Parameters

None.

Usage Notes

You must schedule the polling notification before you can run this service. See your
adapter user documentation for instructions to schedule the polling notification.

pub.art.notification:enablePublishEvents
Enables the publishing of events for an adapter notification.

Input Parameters

notificationName String The name of the notification for which you want to enable
the publishing of events.

Output Parameters

None.

pub.art.notification:listAdapterListenerNotifications
Lists the listener notifications associated with a specified adapter.

Input Parameters

adapterTypeName String The name of the adapter as registered with the WmART
package.

Output Parameters

notificationDataList Document List Information for each listener notification
registered with the specified adapter.

 Key Description

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 71

 notificationNodeName String The name of the listener
notification.

 packageName String The name of the package in
which the listener notification resides.

 notificationEnabled String The current state of the listener
notification. The state will have one of
these values:

no if the listener notification is
disabled.

yes if the listener notification is
enabled.

pub.art.notification:listAdapterPollingNotifications
Lists the polling notifications associated with a specified adapter.

Input Parameters

adapterTypeName String The name of the adapter as registered with the WmART
package.

Output Parameters

notificationDataList Document List Information for each polling notification
registered with the specified adapter.

 Key Description

 notificationNodeName String The name of the polling
notification.

 packageName String The name of the package in
which the polling notification resides.

 notificationEnabled String The current state of the polling
notification. The state will have one of
these values:

no if the polling notification is
disabled.

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 72

yes if the polling notification is
enabled.

pending if the polling notification is
in the process of shuing down.

suspended if the polling notification
is suspended.

pub.art.notification:queryListenerNotificationState
Returns the current state (enabled/disabled) for a listener notification.

Input Parameters

notificationName String The name of the listener notification for which you want
the current state (enabled/disabled) returned.

Output Parameters

notificationState String The current state (enabled/disabled) for the listener
notification.

pub.art.notification:queryPollingNotificationState
Returns the current state for a polling notification.

Input Parameters

notificationName String The name of the polling notification for which you want
the current state and schedule seings returned.

Output Parameters

notificationState String The current state (enabled, disabled, pending disable,
pending suspend, or suspended) for the polling notification.

scheduleSeings IData Object that contains the notification's schedule seings as
follows:

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 73

 Key Description

 notificationInterval Integer Polling frequency of the
notification.

 notificationOverlap Boolean Flags whether the
notification can overlap. The values
are:

true if the notification can overlap.

false if the notification cannot
overlap.

 notificationImmediate Boolean Flags whether the
notification can fire immediately. The
values are:

true if the notification can fire
immediately.

false if the notification cannot fire
immediately.

pub.art.notification:resumePollingNotification
Resumes a specified polling notification node.

Input Parameters

notificationName String The name of the polling notification you want to resume.
The service returns an error if you specify an invalid polling
notification.

Output Parameters

None.

Usage Notes

If the requested transition is not valid (for example, trying to resume a disabled polling
notification or a polling notification that is already resumed), the service ignores the
request.

After you use this service, you can use pub.art.notification:queryPollingNotificationState to
verify pub.art.notification:resumePollingNotification correctly changed the state of the polling
notification to enabled.

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 74

pub.art.notification:setListenerNotificationNodeListener
Changes the listener used by a specified listener notification.

Input Parameters

notificationName String Name of the listener notification for which you want to
change the listener.

listenerNode String Name of the new listener to use with the listener
notification.

Output Parameters

None.

Usage Notes

This service returns an error if the listener notification is enabled.

You can use this service for synchronous and asynchronous listener notifications.

pub.art.notification:setPollingNotificationNodeConnection
Changes the connection node used by a specified polling notification.

Input Parameters

notificationName String Name of the polling notification for which you want to
change the connection node.

connectionAlias String Name of the new connection node to use with the
polling notification.

Output Parameters

None.

Usage Notes

The polling notification must be in a disabled or suspended state before you call this
service. This service returns an error if the polling notification is enabled.

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 75

If you use this service on a suspended polling notification, the service changes the state
of the polling notification to disabled.

pub.art.notification:suspendPollingNotification
WmART. Suspends a specified polling notification.

Input Parameters

notificationName String The name of the polling notification you want to
suspend. The service returns an error if you specify an invalid
polling notification.

Output Parameters

None.

Usage Notes

If the requested transition is not valid (for example, trying to suspend a disabled polling
notification or a polling notification that is already suspended), the service ignores the
request.

After you use this service, you can use pub.art.notification:queryPollingNotificationState to
verify pub.art.notification:suspendPollingNotification correctly changed the state of the polling
notification to suspended.

pub.art.service:listAdapterServices
Lists adapter services associated with a specified adapter.

Input Parameters

adapterTypeName String The name of the adapter as registered with the WmART
package.

Output Parameters

serviceDataList Document List Information for each adapter service registered
with the specified adapter.

 Key Description

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 76

 serviceNodeName String The name of the adapter service.

 packageName String The name of the package in which
the adapter service resides.

pub.art.service:setAdapterServiceNodeConnection
Changes the connection node used by a specified adapter service.

Input Parameters

serviceName String Name of an existing adapter service for which you want
to change the connection node.

connectionAlias String Name of the new connection node to use with the
adapter service.

Output Parameters

None.

Usage Notes

The new connection node must be enabled before you call this service.

pub.art.transaction:commitTransaction
Commits an explicit transaction.

Input Parameters

commitTransactionInput Document List Information for each commit request.

 Key Description

 transactionName String The name of an explicit
transaction that you want to commit.
The transactionName must have
been previously used in a call to
pub.art.transaction:startTransaction.

This value must be mapped
from the most recent

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 77

pub.art.transaction:startTransaction that has
not previously been commied or
rolled back.

Output Parameters

None.

Usage Notes

This service is available only if your adapter supports built-in transaction management
services, which you can confirm by checking the user guide for the adapter.

This service must be used in conjunction with the pub.art.transaction:startTransaction
service. If the transactionName parameter was not provided in a prior call to
pub.art.transaction:startTransaction, a run-time error will be returned.

pub.art.transaction:rollbackTransaction
Rolls back an explicit transaction.

Input Parameters

rollbackTransactionInput Document List Information for each rollback request.

 Key Description

 transactionName String The name of an explicit
transaction that you want to roll
back. The transactionName must
have been previously used in a call
to pub.art.transaction:startTransaction.

This value must be mapped
from the most recent
pub.art.transaction:startTransaction that
has not previously been commied
or rolled back.

Output Parameters

None.

Usage Notes

This service is available only if your adapter supports built-in transaction management
services, which you can confirm by checking the adapter's user guide.

M
Even Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 78

This service must be used in conjunction with the pub.art.transaction:startTransaction
service. If the given transactionName parameter was not provided in a prior call to
pub.art.transaction:startTransaction, a run-time error will be returned.

pub.art.transaction:setTransactionTimeout
Manually sets a transaction timeout interval for implicit and explicit transactions.

Input Parameters

timeoutSeconds Integer The number of seconds that the implicit or explicit
transaction stays open before the transaction manager marks it
for rollback.

Output Parameters

None.

Usage Notes

This service is available only if your adapter supports built-in transaction management
services, which you can confirm by checking the user guide for the adapter.

When you use this service, you are temporarily overriding the Integration Server
transaction timeout interval.

You must call this service within a flow before the start of any implicit or explicit
transactions. Implicit transactions start when you call an adapter service in a flow.
Explicit transactions start when you call the pub.art.transaction:startTransaction service.

If the execution of a transaction takes longer than the transaction timeout interval, all
transacted operations are rolled back.

This service only overrides the transaction timeout interval for the flow service in which
you call it.

pub.art.transaction:startTransaction
Starts an explicit transaction.

Input Parameters

startTransactionInput Document List Information for each start transaction
request.

M
Odd Header

Adapter Runtime Built-In Services Reference

webMethods Adapter Runtime User’s Guide Version 10.2 79

 Key Description

 transactionName String Optional. Specifies the
name of the transaction to be
started. If you leave this parameter
blank, Integration Server will
generate a name for you. In
most implementations it is not
necessary to provide your own
transaction name.

Output Parameters

startTransactionOutput Document List Information for each start transaction
request.

 Key Description

 transactionName String The name of the transaction
the service just started.

Usage Notes

This service is available only if your adapter supports built-in transaction management
services, which you can confirm by checking the user guide for the adapter.

This service is intended for use with the pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction service. The transactionName value returned by a
call to this service can be provided to pub.art.transaction:commitTransaction (to commit the
transaction) or pub.art.transaction:rollbackTransaction (to roll back the transaction).

M
Even Header

webMethods Adapter Runtime User’s Guide Version 10.2 80

M
Odd Header

Adapter Runtime Configuration Parameter Appendix

webMethods Adapter Runtime User’s Guide Version 10.2 81

B Adapter Runtime Configuration Parameter Appendix

■ Overview ... 82

M
Even Header

Adapter Runtime Configuration Parameter Appendix

webMethods Adapter Runtime User’s Guide Version 10.2 82

Overview
This appendix contains a description of the Adapter Runtime parameters you
can specify in the server configuration file (server.cnf), which is located in the
Integration Server_directory\config directory. Typically you use the Seings > Extended
screen in Integration Server Administrator to update this file, but there might be times
when you need to edit the file directly using a text editor. If you edit the file directly, you
should first shut down Integration Server before updating the file. After you make the
changes, restart the server. If you are using the Seings > Extended screen to update the
server configuration file (server.cnf), a server restart is not required unless otherwise
specified. The server uses default values for the parameters. If a parameter has a default,
it is listed with the description of the parameter.

watt.art.analysis
Specifies whether or not to enable logging to analyze adapter listeners and their linked
notifications.

watt.adk.adapterService.disable.errorlogging
Specifies whether or not the Adapter Development Kit (ADK) creates an entry in the
error logs for exceptions in adapter services. When the parameter is set to true, ADK
does not create an entry in the error logs for exceptions in adapter services. When
the parameter is set to false, ADK creates an entry in the error logs for exceptions in
adapter services. The default is false.

watt.art.adapterService.disable.errorlogging
Specifies whether or not the Adapter Runtime creates an entry in the error logs for
exceptions in adapter services. When the parameter is set to true, Adapter Runtime
does not create an entry in the error logs for exceptions in adapter services. When
the parameter is set to false, Adapter Runtime creates an entry in the error logs for
exceptions in adapter services. The default is false.

watt.art.clusteredPollingNotification.keepAliveExpireTimeout
This parameter is not supported with Integration Server 9.0 and higher. Specifies the
amount of time, in milliseconds, that a node executing a clustered polling notification
can be late before it is assumed to have failed. In general, this seing should be equal to
the amount of drift anticipated on the server clocks. If not set, the secondary instance of
the polling notification will change to the default maxLockDuration value of 180000 for
the shared cache.

M
Odd Header

Adapter Runtime Configuration Parameter Appendix

webMethods Adapter Runtime User’s Guide Version 10.2 83

watt.art.clusteredPollingNotification.keepAliveInterval
This parameter is not supported with Integration Server 9.0 and higher. Specifies the
frequency, in milliseconds, with which a secondary instance of a clustered polling
notification will check to see if an executing instance is still alive. If you do not set the
parameter, the secondary instance of the polling notification will change to the default
maxLockDuration value of 180000 for the shared cache.

watt.art.concurrent.ConnectionPool
Specifies whether Adapter Runtime uses the concurrent connection pooling feature
to concurrently create and release connections from a connection pool. When the
parameter is set to true, Adapter Runtime can create and release multiple connections
from a connection pool at the same time. When the parameter is set to false, Adapter
Runtime can either create or release one connection at a time from a connection pool.
The default is false.

watt.art.connection.nodeVersion
Specifies whether the adapter connection stores the password in the passman store and
the password handle in the connection node. When the wa.art.connection.nodeVersion
parameter is set to 1, the password is embedded in the adapter connection. When the
parameter is set to 2, the password handle is stored in the adapter connection. The
default is 2. Software AG recommends using the default value. Every time you set a
new value for this parameter, you must restart Integration Server or reload the WmART
package.

When the value of the wa.art.connection.nodeVersion parameter is 2, during run time-
based deployment with webMethods Deployer you must perform variable substitution
for the password field to deploy the password to the target system.

watt.art.deploy.listener.disable.waitTime
Specifies the time interval in milliseconds for which the Adapter Runtime waits for the
listener to be disabled. The default time interval is 60000ms.

watt.art.notification.eventBus.retries
Specifies the number of retries to publish adapter polling and listener notifications to the
event bus. The default number of retries is 5.

M
Even Header

Adapter Runtime Configuration Parameter Appendix

webMethods Adapter Runtime User’s Guide Version 10.2 84

watt.art.notification.eventBus.retryInterval
Specifies the time interval in milliseconds between each retry. The default time interval
is 30000ms.

watt.art.notifications.disableImplicitUpdate
Specifies whether the Adapter Runtime updates an adapter listener with the list
of registered listener notifications when creating a new listener notification. When
the parameter is set to true, the adapter disables the implicit update of registered
notifications. When the parameter is set to false, the adapter does not disable the
implicit update of registered notifications. The default is false.

watt.art.page.size
Specifies the maximum number of items to be displayed on an adapter's Connections
screen, Listeners screen, and Notifications screen. The default is 10. For more
information about controlling pagination, see "Controlling Pagination" on page 22.

watt.art.synchronousNotification.selectExecuteUser
Specifies WmArt-based adapters that are to include a Run as User column on
the Listener Notifications screen. With this column in place, you can assign a
user to a notification. Then, when the listener notification invokes a service,
it runs as the specified user. You can specify one or more adapters. If you
specify multiple adapters, separate the names with semicolons (;), for example:
watt.art.synchronousNotification.selectExecuteUser=WmMQAdapter;WmSAP

watt.art.service.pipeline.hidden
Specifies whether the adapter service pipeline is logged in the Integration Server log file.
When the wa.art.service.pipeline.hidden parameter is set to true, the service pipeline
is not logged in the Integration Server log file. When the parameter is set to false, the
service pipeline is logged in the Integration Server log file. The default is false.

watt.art.tmgr.timeout
Specifies Integration Server’s transaction timeout interval in number of seconds. If you
do not set this parameter, Integration Server’s default transaction timeout is no timeout
(NO_TIMEOUT). The transaction timeout parameter does not halt the execution of a
flow service. It is the maximum number of seconds that a transaction can remain open
and still be considered valid. For example, if a current transaction has a timeout value of

M
Odd Header

Adapter Runtime Configuration Parameter Appendix

webMethods Adapter Runtime User’s Guide Version 10.2 85

60 seconds and a flow takes 120 seconds to complete, the transaction manager will roll
back all registered operations regardless of the execution status.

watt.art.wmConnectionPool.pingRetryInterval
Specifies the time interval of an Adapter Runtime ping to the underlying resource. The
default value is 120 seconds.

You use this parameter together with the wa.art.wmConnectionPool.pingSafeInterval
parameter and the pub.art.connection:queryConnectionState service to monitor the state of the
underlying resource at frequent intervals.

Note: The Adapter Runtime ping functionality uses database/back end credentials
(user id and password) to create a connection and then destroy it to check the
connectivity. Because creating and destroying a connection causes overhead,
the ping interval should not be very small.

watt.art.wmConnectionPool.pingSafeInterval
Specifies a safe time interval for an Adapter Runtime ping to the underlying resource.
The safe time interval is calculated based on the last connection provided by the
connection pool. The default value is 5 seconds.

You use this parameter together with the wa.art.wmConnectionPool.pingRetryInterval
parameter and the pub.art.connection:queryConnectionState service to monitor the state of the
underlying resource at frequent intervals.

Note: The Adapter Runtime ping functionality uses database/back end credentials
(user id and password) to create a connection and then destroy it to check the
connectivity. Because creating and destroying a connection causes overhead,
the ping interval should not be very small.

watt.pkg.art.pollingnotification.scheduler
This parameter is not supported with Integration Server 9.0 and higher. Specifies
whether Integration Server executes adapter polling notifications using scheduled tasks
or the shared cache. When this parameter is set to false (the default), Integration Server
uses the shared cache to execute polling notifications. When this parameter is set to
true, Integration Server uses scheduled tasks for the execution, scheduling, and cluster
coordination of adapter polling notifications. When a notification is enabled, Integration
Server creates a scheduled task that polls the back end resource at a specified interval.
When a notification is disabled, Integration Server deletes the scheduled task.

When the parameter is set to true, you must also:

Set the wa.pkg.art.pollingnotification.scheduler.adapters parameter to specify the
adapters that will use the scheduled task functionality.

M
Even Header

Adapter Runtime Configuration Parameter Appendix

webMethods Adapter Runtime User’s Guide Version 10.2 86

Decide whether to display the scheduled tasks for adapter polling
notifications in Integration Server Administrator, by seing the
wa.pkg.art.scheduler.notificationtask.display parameter.

For complete information about configuring adapter polling notifications, see the
adapter's documentation.

watt.pkg.art.pollingnotification.scheduler.adapters
This parameter is not supported with Integration Server 9.0 and higher.
Specifies package names of adapters whose polling notifications are to
execute using Integration Server scheduled tasks. To specify multiple package
names, separate each entry with a semicolon (;). For example, to have polling
notifications for webMethods Adapter for JDBC and webMethods Oracle
Applications Adapter execute as scheduled tasks, specify the following:
watt.pkg.art.pollingnotification.scheduler.adapters=WmJDBCAdapter;WmOAAdapter

This parameter has no effect unless the wa.pkg.art.pollingnotification.scheduler is set
to true. For complete information about configuring adapter polling notifications, see
the adapter's documentation.

watt.pkg.art.scheduler.notificationtask.display
Specifies whether scheduled adapter polling notification tasks are shown on the
Scheduler screen. When the parameter is set to true, the scheduled tasks are displayed.
When this parameter is set to false, the tasks are hidden. The default is true. For
complete information about configuring adapter polling notifications, see the adapter's
documentation.

watt.art.connection.byPassConnValidation
Specifies whether or not the Integration Server validates the WmART based adapter
connection parameters. When the parameter is set to true, the server does not validate
adapter connection parameters, and all currently enabled adapter connections are
maintained. Even if the backend resource is not available at restart, enabled connections
remain enabled. When this parameter is set to false, the server verifies all enabled
adapter connection parameters by trying to connect to its associated backend resource.

watt.server.jca.connectionPool.createConnection.interrupt.waitTime
Specifies the wait time interval in milliseconds, which elapses before Integration Server
interrupts a connection creation thread that is in a wait state. The parameter does not
require a default value.

M
Odd Header

Adapter Runtime Configuration Parameter Appendix

webMethods Adapter Runtime User’s Guide Version 10.2 87

watt.server.jca.connectionPool.threadInterrupter.sleepTime
Specifies the sleep time of the pool interrupter thread. The default value of the property
is set to 2000msec, which is the sleep time for the pool interrupter thread.

watt.server.jca.connectionPool.threadInterrupt.waitTime
Specifies the wait time, measured in milliseconds, that elapses beforeIntegration Server
Connection pool interrupts a connection creating thread or connection closing thread.
The pool interrupter thread will start monitoring the server threads, only if this property
is set. There is no default value. You must restart Integration Sever for changes to this
parameter to take effect.

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Overview of the Adapter Runtime
	What Is the Adapter Runtime?
	Package Management
	User-Defined Package Dependency Requirements and Guidelines

	Adapter Connections
	Connection Pools
	Run-Time Behavior of Connection Pools

	Built-In Services for Connections
	Run-Time Connection Allocation for Adapter Services
	Dynamically Selecting a Connection Node

	Adapter Services
	Adapter Polling Notifications
	Adapter Listeners and Listener Notifications
	Synchronous and Asynchronous Listener Notifications
	Single-Threaded and Multi-Threaded Listeners

	Event Publishing Support for Adapter Notifications
	Creating an Event Type Definition
	Copying the Event Type Definition
	Enabling the Publishing of Events
	Disabling the Publishing of Events

	Transaction Support
	Controlling Pagination

	Transaction Management
	Overview
	Implicit Transactions
	Implicit Transaction Usage Cases
	One Local Transaction
	Three XAResource Transactions
	One Local Transaction and One XAResource Transaction

	Explicit Transactions
	Explicit Transaction Usage Cases
	Two Local Transactions
	Two XAResource Transactions
	One XAResource Transaction and Two Nested Local Transactions
	One XAResource Transaction and One Nested Local and XAResource Transaction

	Built-In Services for Transaction Management
	pub.art.transaction:commitTransaction
	pub.art.transaction:rollbackTransaction
	pub.art.transaction:setTransactionTimeout
	pub.art.transaction:startTransaction

	Changing the Integration Server Transaction Timeout Interval

	The Adapter Runtime in a Clustered Environment
	What is Clustering?
	Clustering Considerations and Requirements
	Requirements for Each Integration Server in a Cluster

	Replicating Packages to Integration Servers
	Considerations when Configuring Connections with Connection Pooling Enabled
	Disabling the Redirection of Administrative Services

	Polling Notification Support in a Cluster
	Considerations for Polling Notifications Executing via Scheduled Tasks
	Configuring Polling Notifications in Standby or Distributed Mode on Integration Server 8.2
	Standby Mode and Distributed Mode
	Configuration Settings
	Global Settings
	Adapter-Specific Settings
	Notification-Specific Settings

	Clock Synchronization
	Configuring Adapter Notification Schedules in a Clustered Environment

	Adapter Listener Support in a Cluster
	Listener States in a Cluster
	Multi-Node Listener States
	Single-Node Listener States
	Enabling, Disabling, and Suspending Listeners in a Cluster
	Enabling Listeners in a Cluster
	Disabling Listeners in a Cluster
	Suspending Listeners in a Cluster

	Adapter Runtime Logging and Exception Handling
	Overview
	Adapter Runtime Message Logging
	Configuring Server Logging Levels for the Adapter Runtime
	Adapter Runtime Exception Handling

	Adapter Runtime Built-In Services Reference
	Summary of Adapter Runtime Built-In Services
	pub.art:listRegisteredAdapters
	pub.art.connection:disableConnection
	pub.art.connection:enableConnection
	pub.art.connection:getConnectionStatistics
	pub.art.connection:listAdapterConnections
	pub.art.connection:queryConnectionState
	pub.art.connection:getInterruptedThreadStatus
	pub.art.listener:disableListener
	pub.art.listener:enableListener
	pub.art.listener:listAdapterListeners
	pub.art.listener:queryListenerState
	pub.art.listener:resumeListener
	pub.art.listener:setListenerNodeConnection
	pub.art.listener:suspendListener
	pub.art.notification:disableListenerNotification
	pub.art.notification:disablePollingNotification
	pub.art.notification:disablePublishEvents
	pub.art.notification:enableListenerNotification
	pub.art.notification:enablePollingNotification
	pub.art.notification:enablePublishEvents
	pub.art.notification:listAdapterListenerNotifications
	pub.art.notification:listAdapterPollingNotifications
	pub.art.notification:queryListenerNotificationState
	pub.art.notification:queryPollingNotificationState
	pub.art.notification:resumePollingNotification
	pub.art.notification:setListenerNotificationNodeListener
	pub.art.notification:setPollingNotificationNodeConnection
	pub.art.notification:suspendPollingNotification
	pub.art.service:listAdapterServices
	pub.art.service:setAdapterServiceNodeConnection
	pub.art.transaction:commitTransaction
	pub.art.transaction:rollbackTransaction
	pub.art.transaction:setTransactionTimeout
	pub.art.transaction:startTransaction

	Adapter Runtime Configuration Parameter Appendix
	Overview
	watt.art.analysis
	watt.adk.adapterService.disable.errorlogging
	watt.art.adapterService.disable.errorlogging
	watt.art.clusteredPollingNotification.keepAliveExpireTimeout
	watt.art.clusteredPollingNotification.keepAliveInterval
	watt.art.concurrent.ConnectionPool
	watt.art.connection.nodeVersion
	watt.art.deploy.listener.disable.waitTime
	watt.art.notification.eventBus.retries
	watt.art.notification.eventBus.retryInterval
	watt.art.notifications.disableImplicitUpdate
	watt.art.page.size
	watt.art.synchronousNotification.selectExecuteUser
	watt.art.service.pipeline.hidden
	watt.art.tmgr.timeout
	watt.art.wmConnectionPool.pingRetryInterval
	watt.art.wmConnectionPool.pingSafeInterval
	watt.pkg.art.pollingnotification.scheduler
	watt.pkg.art.pollingnotification.scheduler.adapters
	watt.pkg.art.scheduler.notificationtask.display
	watt.art.connection.byPassConnValidation
	watt.server.jca.connectionPool.createConnection.interrupt.waitTime
	watt.server.jca.connectionPool.threadInterrupter.sleepTime
	watt.server.jca.connectionPool.threadInterrupt.waitTime

