
webMethods Adapter Development Kit Installation
and User’s Guide

Version 9.12

October 2021

This document applies to webMethods Adapter Development Kit 9.12 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2008-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: ADAPTER-WMK-IUG-912-20220323

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..7
Document Conventions...8
Online Information and Support...9
Data Protection...10

1 Overview...11
What is the Adapter Development Kit?..12
Points of Integration...13
Development Time Tasks and Support...14
Design Time Tasks..19
The Runtime Conceptual Model..19

2 Installing and Uninstalling the Sample Adapter..21
Overview...22
Requirements..22
The Integration Server Home Directory..22
Installing Sample Adapter..22
Uninstalling Sample Adapter...23

3 The Adapter Definition...25
Overview...26
Creating an Adapter Package...27
Adapter Definition Classes...28
Adapter Definition Implementation Classes (Example MyAdapter).......................................29
Creating a WmAdapter Implementation Class..29
Creating Resource Bundles...34
Deploying the adapter...40
Package Management..49

4 Connections..55
Overview...56
Adapter Connection Classes...58
Adapter Connection Implementation Classes...60
Creating a WmManagedConnection Implementation Class...61
Creating a WmManagedConnectionFactory Implementation Class..61
Updating the Resource Bundle...66
Registering Connection Factories in the Adapter..67
Connection Class Interactions..67
Configuring and Testing Connection Nodes..71

5 Adapter Services..75
Overview...76

webMethods Adapter Development Kit Installation and User’s Guide 9.12 iii

Adapter Service Classes...76
Metadata Model for Adapter Services..78
Adapter Service Template Interactions...98
Adapter Service Implementation...102
Configuring and Testing Adapter Service Nodes..119

6 Polling Notifications..121
Overview...122
Polling Notification Classes..123
Polling Notification Callbacks..125
Metadata Model for Polling Notifications..125
Polling Notification Interactions..126
Polling Notification Implementation...129
Configuring and Testing Polling Notification Nodes...138
Cluster Support for Polling Notifications...143

7 Listener Notifications...149
Overview...150
Listener Classes...151
Asynchronous Listener Notification Classes..153
Synchronous Listener Notification Classes..154
Listener and Listener Notification Interactions...156
Listener Implementation...159
Listener Notification Implementation...167
Configuring and Testing Listener Nodes and Listener Notification Nodes..........................178

8 Runtime Activities..183
Overview...184
Retry and Recovery Architecture...184
Runtime Connection Allocation for Adapter Services..187

9 Usage Scenarios...195
How to register an adapter with the Integration Server?...196
How to create an adapter connection implementation?...209
How to create an adapter service implementation?..216
How to create a polling notification implementation?...253
How to create an adapter listener implementation?...278

A Alternative Approaches to Metadata..307
Overview...308
Implementing Metadata Parameters Using External Classes..308
An Alternative Approach to Organizing Resource Domains..308
Using Resource Bundles with Resource Domain Values..325

B Integration Server Transaction Support...329
Overview...330
Simple Transactions...331

iv webMethods Adapter Development Kit Installation and User’s Guide 9.12

Table of Contents

More Complex Transactions...331
Implicit Transaction Usage Cases...332
Explicit Transaction Usage Cases...333
Built-In Services For Explicit Transactions...337
Transaction Error Situations...340
Specifying Transaction Support in Connections..341

C Using the Services for Managing Namespace Nodes...343
Overview...344
Connection Services...392
Adapter Service Services...402
Listener Services...410
Listener Notification Services...418
Polling Notification Services...430

D Using the Sample Adapter...441
Overview...442
The Sample Server..442
Banking Services, Queries and Alerts...444
Prerequisites for Code Compilation..445
Phase 1: Creating an Adapter Definition..446
Phase 2: Adding a Connection..449
Phase 3: Adding Adapter Services...454
Phase 4: Adding Polling Notifications..461
Phase 5: Adding Listener Notifications...470

webMethods Adapter Development Kit Installation and User’s Guide 9.12 v

Table of Contents

vi webMethods Adapter Development Kit Installation and User’s Guide 9.12

Table of Contents

About this Guide

■ Document Conventions .. 8

■ Online Information and Support ... 9

■ Data Protection ... 10

webMethods Adapter Development Kit Installation and User’s Guide 9.12 7

This guide describes how to install, upgrade, and uninstall Adapter Development Kit, as well as
how to configure and use it. This guide contains information for application developers whowant
to create adapters that interact with webMethods Integration Server.

To use this guide effectively, you should be familiar with:

Terminology and basic operations of your operating system

How to perform basic tasks with Integration Server and Software AG Designer

This version of the webMethods Adapter Development Kit Installation and User’s Guide contains the
most up to date information about the Adapter Development Kit. This version obsoletes, replaces,
and supersedes all previous versions.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

8 webMethods Adapter Development Kit Installation and User’s Guide 9.12

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 9

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

10 webMethods Adapter Development Kit Installation and User’s Guide 9.12

1 Overview

■ What is the Adapter Development Kit? ... 12

■ Points of Integration .. 13

■ Development Time Tasks and Support ... 14

■ Design Time Tasks ... 19

■ The Runtime Conceptual Model ... 19

webMethods Adapter Development Kit Installation and User’s Guide 9.12 11

What is the Adapter Development Kit?

TheAdapterDevelopmentKit (ADK) is a set of publicApplication Programming Interfaces (APIs)
that you can extend to create custom adapters that interact with webMethods Integration Server.
The ADK abstracts adapters from Integration Server, thus ensuring that ADK created adapters
continue to run with future versions of Integration Server.

Like any Integration Server based adapter, your adapter links your backend system with
heterogeneous systems outside your organization through Integration Server, regardless of the
technology at either end, and without requiring changes to the existing security infrastructure.
An adapter that you create is secure and scalable because it is an add-on, system level software
component that you plug into an Integration Server. The adapters use the Integration Server
application services to connect to backend systems.

The ADK provides:

An architecture for creating adapters based on Java EE Connector Architecture (JCA).

This architecture supports the JCA Common Client Interface (CCI) and extends it to provide
additional functionality. It includes a standard set of system level contracts between an
Integration Server and the backend system to which the adapter connects. These contracts
handle aspects of integration such as connections, adapter services, notifications, and system
message logging.

An example adapter package named WmSampleAdapter (Sample Adapter).

You can use Sample Adapter as a model for developing your own adapters. The Sample
Adapter enables you to exchange data with a simulated adapter resource provided with the
example adapter. Configure this adapter to perform a banking application.All of the underlying
SampleAdapter class files are located in the Integration Server_directory \
instances\<instance_name>\packages\WmSampleAdapterdirectory. Formore information about
how the Sample Adapter was developed, and how you can configure and use the adapter, see
“Using the Sample Adapter” on page 441.

A set of auxiliary Java services that you can use to:

1. Replicate namespace nodes programatically.

2. Change the nodes' metadata when deploying the adapter to a different Integration Server.

Online API Reference Javadoc files that provide detailed descriptions and usage information
about all public APIs provided in the WmART package.

The WmART package contains the components of the adapter run time as well as the ADK
classes you extend to create the adapter implementation.

To create an adapter, you need access towebMethods Integration Server (IS), SoftwareAGDesigner,
a Java 1.8 compiler, and any Java editor.

12 webMethods Adapter Development Kit Installation and User’s Guide 9.12

1 Overview

Points of Integration

Before you build an adapter, determine which "point of integration" is most appropriate for
integrating your backend system. When determining this, consider factors such as the type and
volume of information you need to move between systems, and the number of systems you need
to integrate. The major "point of integration" types include the following:

Data-Level Integration
An Enterprise Information System (EIS) that is integrated at the data level moves data between
data stores. That is, the data stores in your EIS are involved in processing or storing transaction
data received from outside the EIS.

For example:

You might need to expose a catalog and pricing database to customers to enable them to
transact with it.

In addition to the catalog and pricing database, you need to reference or update data located
in another database to process a customer transaction. After you extract data from an
EIS-to-Integration Server purchase order (such as item, quantity, and price), you:

Process that data using another database (perhaps you subtract the quantity ordered from
the quantity in inventory, which is located in another database)

Store the result (the updated quantity in inventory) in that other database.

Assuming that the catalog and pricing database has a JDBC driver, you can use the database as
your point of integration. That is, it would be the mechanism you use to build your adapter. You
might have several of your databases involved in an integration scheme.

Application Interface-Level Integration
An EIS that is integrated at the application interface level leverages the exposed interfaces of
custom or packaged applications, such as SAP, Siebel, and PeopleSoft applications. Such an
interface, which usually consists of a set of the application's APIs, enables applications outside of
your EIS to access business processes as well as simple information.

Method-Level Integration
An EIS that is integrated at the method level is similar to one that is integrated at the application
interface level. Using this point of integration, you can enable any application to access themethods
of any application in your EIS.

User Interface-Level Integration
An EIS that is integrated at the user interface level uses a more primitive, yet viable approach.
This approach, also known as "screen scraping", leverages legacy EIS user interfaces as a common

webMethods Adapter Development Kit Installation and User’s Guide 9.12 13

1 Overview

point of integration. For example,mainframe applications that do not provide database or business
process level access may be accessed through the user interface of the application.

Development Time Tasks and Support

At development time, you write the Java classes that define the adapter. To do this, you extend
the base classes provided by the ADK to produce an adapter definition class and template classes
for connections, adapter services, polling notifications, and listener notifications.

At development time, you must:

1. Create the Adapter Definition.

2. Define Connections and Connection Factories.

3. Define Adapter Service Templates.

4. Define Polling Notification Templates.

5. Define Listener Notification Templates.

6. Define Metadata.

Support for other development-time activities includes:

1. Transaction Support.

2. Exception Support.

3. Logging Support.

4. Internationalization Support

Create the Adapter Definition
An adapter definition is the framework of an adapter. An adapter definition is recognized as an
adapter by your Integration Server, but it lacks functionality. In later stages of development, you
add functionality by defining templates for adapter connections, adapter services, and optionally
for polling notifications and listener notifications.

In the adapter definition, you create services and methods that:

Describe the adapter to Integration Server.

Describe the adapter's resources to Integration Server, including its connection factories, adapter
service templates, polling notification templates, listener notification templates, and its default
resource bundle implementation class.

A resource bundle contains all display strings and messages used by the adapter at run time
and at design time. A resource bundle is specific to particular locale. If you plan to run your
adapter in multiple locales, include a resource bundle for each locale. Doing so enables you
to internationalize an adapter quickly, without having to change any code in the adapter. Each
adapter must provide at least a default resource bundle.

14 webMethods Adapter Development Kit Installation and User’s Guide 9.12

1 Overview

Initialize properties and resources associated with the adapter, and clean up the resources
when the adapter is disabled.

Load the adapter onto Integration Server when the adapter is enabled, and unload the adapter
when the adapter is disabled.

For more information about adapter definition, see “Overview” on page 26.

Define Connections and Connection Factories
A connection class functions as a connection to the resource with which the adapter must
communicate (known as the adapter resource). The ADK provides a connection management
service that dynamicallymanages connections and connection pools, based on rules that the users
of the adapter establish when they configure connections. To create connections, the connection
management service uses a connection factory class.

The users of the adapter create one or more connection namespace nodes, using the adapter's
administrative interface. The creation of namespace nodes is a design time activity. The users of
the adapter also create namespace nodes for the adapter service templates and notification
templates.

For more information about connections, see “Overview” on page 56.

Define Adapter Service Templates
An adapter service defines an operation that the adapter performs on a resource. You need to
implement one adapter service template class for each resource operation the adapter supports.

For example, you might create a service template that fetches rows from a database based on a
key field, and another service template that updates and inserts records into the database.

The users of the adapter define their run time adapter service nodes based on these templates.
Designer provides facilities for creating, configuring, and testing adapter service nodes.

For more information, see “Overview” on page 76.

Define Polling Notification Templates
A polling notification is a mechanism that notifies your application when an event occurs in your
adapter's resource. For example, your application might need to be notified when data is added,
updated, and deleted from the resource. You need to implement one polling notification template
class for each polling notification the adapter supports.

A polling notification periodically checks the resource at specified intervals for the occurrence of
events, and publishes a document each time an event occurs in the resource.

The users of the adapter define their run time polling notification nodes based on these templates,
in a way similar to how they configure adapter service nodes. Designer provides facilities for
creating, configuring, and testing polling notification nodes.

For more information, see “Overview” on page 122.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 15

1 Overview

Define Listener Notification Templates
A listener notification works in conjunction with a listener object to create a much more powerful
model for detecting and processing events in the adapter resource than is possible with polling
notifications. You need to implement one listener notification template class for each listener
notification the adapter supports.

A listener object is connected to an adapter resource, waiting for the server to deliver event
notifications. The listener object is instantiated and is given a connectionwhen the associated node
is enabled. The listener object remains active with the same connection to monitor the resource
activity until it is explicitly disabled.

When the listener detects a publishable event in the resource, it passes an object back to the server.
The server interrogates a configured list of listener notifications associated with the listener node
until it finds a listener notification node that can process the event. The first listener notification
to return true from this call is invoked.

The ADK includes both a synchronous and an asynchronous processing model.

Asynchronous Listener Notification. Publishes a document to a webMethods messaging
queue, using the doNotify method. The users of the adapter may process the document's data
any way they want to. For example, they can create an Integration Server trigger that receives
the document and executes an Integration Server service.

Synchronous Listener Notification. Invokes a specified Integration Server service, and
potentially receives a reply from the service anddelivers the results back to the adapter resource.
In this case, the notification object's runNotificationmethod calls invokeService (instead of doNotify),
to process the data produced by the notification. A synchronous listener notification can publish
a document and wait for reply.

For more information, see “Overview” on page 150.

Define Metadata
Connection factories, adapter service templates, polling notification templates, and listener
notification templates all support a metadata interface. Metadata that you create in your adapter
implementation primarily supports design time activities. It describes parameters that the users
of the adapter use to create namespace nodes for connections, adapter services, and notifications,
and describes the data passed to and from adapter services and notification nodes.

When a user of the adapter creates a namespace node, the server interrogates the adapter for
metadata to describe the parameter values supported by the node. The node stores the parameter
values selected or entered by the user. These parameters are used to configure the appropriate
implementation class when it is instantiated at run time.

Metadata parameter values are derived from the adapter's resource domain. A resource domain
defines the domain of valid values for metadata parameters, based on rules and/or data that are
specific to the adapter resource. A resource domain can have a name, a set of resource domain
values, properties that affect the behavior of the resource domain, and associations withmetadata
parameters.

16 webMethods Adapter Development Kit Installation and User’s Guide 9.12

1 Overview

A resource domain can be either fixed or dynamic. A fixed resource domain displays default values
that you provide for the resource domain parameters. With a dynamic resource domain, you use
a method that enables the adapter to look up values for the parameters.

You can use resource domain values to constrain the values of parameters, to enable dynamic
validation of user supplied data, and to disable parameters, based on specific sets of values in
other parameters. A common use of resource domain values is to create a dropdown list of values
for a parameter.

With both fixed and dynamic resource domains, you can allow the users of the adapter to enter
their own values. In addition, you can enable the adapter to validate these values using callbacks
known as adapter check values.

With adapter services and polling notifications, resource domain values can interact with the
Adapter Service Editor and the Adapter Notification Editor. As values in one parameter change,
callbacks are made to the adapter to update resource domain values. In addition, the adapter can
retrieve resource domain values directly from the adapter resource.

A parametermay contain a single value or an array of values. Parameters that hold arrays of values
are called sequence parameters. The user interface for configuring connections does not allow
you to populate more than the first element of a sequence parameter.

The metadata model provides the ability to:

Define groups of parameters that appear on different pages in the user interface.

Define resource domain lookups that return dropdown lists of possible values for a parameter.
Resource domain lookupsmay return values established at development time and/or retrieved
at design time from the resource with which the adapter communicates.

Establish sophisticated relationships between parameters using fieldmaps, tuples, and resource
domain dependencies.

Field maps are used to place sequence parameters in a grid-style table with each sequence
parameter forming a column in the table.

Tuples are used in conjunction with field maps. When a set of parameters is placed in a
tuple, resource domain lookups for those parameters are always made together. This is
commonly used when columns are closely related, for example when column 1 contains
field names, and column 2 contains data types for those fields.

Resource domain dependencies indicate that the values to be returned in a resource domain
lookup are dependent on the value of one or more other parameters. Whenever the value
of one parameter changes, if a second parameter's lookup is dependent on the value of the
first, the lookup for the second parameter is performed again, with the new value of the
first parameter being passed in as an argument to the lookup.

Define signatures that define the data that should be passed to, or received from, the node
when the service or notification is executed (by calling the executemethodof the implementation
class).

Make interactive calls into the adapter to validate the data entered by the user.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 17

1 Overview

Define tree structures to facilitate input of parameter values or to create logical groupings of
the fields in a signature.

Metadata is discussed inmore detail throughout this document, in the chapters about connections,
adapter services, and notifications.

Transaction Support
Integration Server considers a transaction to be one ormore interactionswith one ormore resources
that are treated as a single logical unit of work. The interactions within a transaction are either all
committed or all rolled back. For example, if a transaction includes multiple database inserts, and
one or more inserts fail, all inserts are rolled back.

Integration Server supports the following transactions types:

A local transaction, which is a transaction to a resource's local transaction mechanism

An XAResource transaction, which is a transaction to a resource's XAResource transaction
mechanism

Integration Server can automatically manage both transaction types, without requiring the users
of the adapter to do anything. Integration Server uses the container-managed (implicit) transaction
management approach as defined by the JCA standard and also performs some additional
connectionmanagement. This is because the adapter services use connections to create transactions.
However, there are caseswhere the user of the adapter needs to explicitly control the transactional
units of work.

To support transactions, Integration Server relies on a built-in transactionmanager. The transaction
manager is responsible for beginning and ending transactions, maintaining a transaction context,
enlisting newly connected resources into existing transactions, and ensuring that local and
XAResource transactions are not combined in illegal ways.

For more information, see “Overview” on page 330.

Exception Support
The ADK provides standard exception classes that enable the adapter implementation to inform
the server of exception conditions encountered by the adapter implementation. Any exception
from an adapter implementation is caught and logged in the Integration Server and error logs.
For details about the standard ADK exceptions, see the Javadoc for the com.wm.adk.error package.

Logging Support
The ADK provides the adapter with write access to the Integration Server and error logs. It also
provides the ability to determine whether a particular message at a particular log level is written
to the log. All log messages generated by an adapter are stamped with the current date and time,
as well as codes that uniquely identify the adapter generating the message. Logging services are
tightly integrated with the resource bundle facilities for internationalization support. For more
information, see the Javadoc for com.wm.adk.log.ARTLogger package.

18 webMethods Adapter Development Kit Installation and User’s Guide 9.12

1 Overview

Internationalization Support
If you plan to run your adapter in multiple locales, you can internationalize an adapter quickly,
without having to change any code in the adapter. To accomplish this, you use resource bundles.
A resource bundle contains all display strings and messages used by the adapter at run time and
at design time. A resource bundle is specific to a particular locale.

For more information, see “Creating Resource Bundles” on page 34.

Design Time Tasks

At design time, the users of the adapter select the template classes to configure namespace nodes.
A namespace node is a run time component containing information about how a connection,
adapter service, polling notifications, or listener notifications should behave at run time. The users
of the adapter configure and initialize the run time components of the adapter. To do this, use the
following Integration Server packages:

The adapter package, which contains the adapter run time components as well as the ADK
classes that you, the adapter developer, extend to produce the adapter implementation.

A namespace node package, in which the users of the adapter create the adapter's namespace
nodes for connections, adapter services, polling notifications, and listener notifications.

A namespace node (or node) is based on its corresponding Java classes. For example, a
connection node is based on the Java connection classes created at development time.

Design time tasks include the following:

Create one or more namespace node packages.

Create and initialize namespace nodes for connections, adapter services, polling notifications,
listeners, and listener notifications. The users of the adapter can place all the nodes of an
adapter in one package, or distribute them among multiple packages.

Load the adapter package and namespace node packages into Integration Server.

To perform these tasks, the users of the adapter require access to Integration Server, Designer,
and a web browser.

The Runtime Conceptual Model

At run time, the adapter services and notifications communicate with the adapter resource to
perform the function for which the adapter was created. Designer provides facilities for testing
adapter services and notifications.

Although the following diagram is not strictly UML-compliant, it shows the relationships between
the implementation classes of an adapter and their corresponding namespace nodes created at
design time.

Relationships between adapter implementation classes and namespace nodes

webMethods Adapter Development Kit Installation and User’s Guide 9.12 19

1 Overview

In the diagram, entity icons represent namespace nodes, while standard class icons represent the
implementation classes. The (unlabeled) dependency lines showdirect references between classes
and/or nodes. Thus, the adapter implementation class directly references supported connections
or notification templates by directly referencing the connection factory and the notification
implementation class. The connection factory for each connection type references the service
implementation class of each supported adapter service template.

Each namespace node depends on an implementation class. The implementation class for each
node provides metadata that describes the data that is included in the node at design time. The
node provides parameter settings that are passed back to the implementation classwhen that class
is executed at run time.Note that service and notification nodes require a reference to a connection
node that provides access to the resource.

For more information, see “Overview” on page 184.

20 webMethods Adapter Development Kit Installation and User’s Guide 9.12

1 Overview

2 Installing and Uninstalling the Sample Adapter

■ Overview .. 22

■ Requirements ... 22

■ The Integration Server Home Directory .. 22

■ Installing Sample Adapter .. 22

■ Uninstalling Sample Adapter .. 23

webMethods Adapter Development Kit Installation and User’s Guide 9.12 21

Overview

The Adapter Development Kit (ADK) is a framework providing a set of public Application
Programming Interfaces (APIs) that you can extend to create custom adapters that interact with
Integration Server. AdapterDevelopmentKit(ADK) framework is installed alongwithwebMethods
Adapter Runtime(ART) during Integration Server installation. This chapter talks about installing
and uninstalling the component Sample Adapter using Software AG Installer and Software AG
Uninstaller. Sample Adapter is a sample to consumeADK. For complete information about other
installation methods or installing other webMethods products, see the Installing Software AG
Products guide for your release.

Requirements

For a list of the operating systems, webMethods Integration Server releases and Software AG
Designer releases supported by the Adapter Development Kit, see thewebMethods Adapters System
Requirements .

Sample Adapter has no hardware requirements beyond those of its host Integration Server.

The Integration Server Home Directory

You can create and run multiple Integration Server instances under a single installation directory.
Each Integration Server instance has a home directory under Integration Server_directory \
instances\<instance_name> that contains the packages, configuration files, log files, and updates
for the instance.

For more information about running multiple Integration Server instances, see the webMethods
Integration Server Administrator’s Guide for your release.

This guide uses the packages_directory as the home directory in Integration Server classpaths.
The packages_directory is Integration Server_directory \instances\<instance_name>\packages
directory.

Installing Sample Adapter

1. Download Software AG Installer from the Empower Product Support website.

2. Run the Software AG Installer, as described in the document Using Software AG Installer.

3. Specify the installation directory as follows:

If you are installing on an existingwebMethods Integration Server, specify thewebMethods
installation directory that contains the host webMethods Integration Server.

If you are installing both, the hostwebMethods Integration Server and theSample Adapter,
specify the installation directory to use.

22 webMethods Adapter Development Kit Installation and User’s Guide 9.12

2 Installing and Uninstalling the Sample Adapter

https://empower.softwareag.com/

4. In the product selection list, select Adapters > webMethods Adapter Development Kit >
Sample Adapter 9.12.

If you are using webMethods Integration Server 9.12 and above, Software AG Installer installs
the adapter in both locations, Integration Server_directory \packages and your instance's packages
directory located in Integration Server_directory \instances\<instance_name>\packages.

Software AG Installer installs the components of the Sample Adapter (WmSampleAdapter
package and Sample Server for use with the Sample Adapter) in Integration Server_directory
\instances\<instance_name>\packages\WmSampleAdapter directory.

5. After installation is complete, start the host webMethods Integration Server.

Uninstalling Sample Adapter

1. Run the Software AG Uninstaller, as described in the document Using Software AG Installer.

2. Select the webMethods installation directory that contains the host webMethods Integration
Server.

3. In the product selection list, select Adapters > webMethods Adapter Development Kit >
Sample Adapter 9.12.

Software AG Uninstaller removes all Sample Adapter related files that were installed into
the webMethods Integration Server installation directory. However, Software AG Uninstaller
will not delete the following:

Integration Server_directory \instances\<instance_name>\packages\WmSampleAdapterdirectory
if you added any files to it. You can delete this directory manually.

Any user-defined Adapter Development Kit components such as connections, adapter
services, or adapter notifications. Because these components will not work without the
adapter, delete them manually using Software AG Designer, or Integration Server
Administrator.

4. Restart the host webMethods Integration Server.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 23

2 Installing and Uninstalling the Sample Adapter

24 webMethods Adapter Development Kit Installation and User’s Guide 9.12

2 Installing and Uninstalling the Sample Adapter

3 The Adapter Definition

■ Overview .. 26

■ Creating an Adapter Package .. 27

■ Adapter Definition Classes ... 28

■ Adapter Definition Implementation Classes (Example MyAdapter) 29

■ Creating a WmAdapter Implementation Class ... 29

■ Creating Resource Bundles ... 34

■ Deploying the adapter .. 40

■ Package Management .. 49

webMethods Adapter Development Kit Installation and User’s Guide 9.12 25

Overview

An adapter definition is the framework of an adapter. The adapter definition is recognized as an
adapter by Integration Server, but lacks functionality. This chapter describes how to create an
adapter definition.

To create an adapter definition, perform the following tasks:

Create a webMethods package for the adapter definition.

Create an adapter definition implementation class by extending the com.wm.adk.WmAdapter base
class. The adapter definition implementation class represents the main class of the adapter. In
this class, create services and methods that:

Describe the adapter to Integration Server.

Describe the adapter's resources to Integration Server, including its connection factories,
notification templates, and its default resource bundle implementation class.

Initialize resources and properties referenced by the adapter definition when the adapter
is enabled, and clean up the resources when the adapter is disabled (optional).

Load the adapter onto Integration Server when the adapter is enabled, and unload the
adapter when the adapter is disabled.

For more information, see “Creating a WmAdapter Implementation Class” on page 29.

Create one or more resource bundles.

The resource bundle class must extend the java.util.ListResourceBundle base class, and contain all
the display strings andmessages used by the adapter at run time and at design time. A resource
bundle is specific to a particular locale. If you plan to run your adapter in multiple locales,
you can include a resource bundle for each locale. Creating a resource bundle for each locale
enables you to internationalize an adapter quickly, without having to change any code in the
adapter. Each adapter must have one or more resource bundles. For more information, see
“Creating Resource Bundles” on page 34.

Deploy the adapter.

Create the startup and shutdown Java Services.

Compile the adapter definition.

Compile your implementation class and construct the Java service nodes for your startup
and shutdown services. The ADK provides a sample ANT script that you can run from
the packages folder.

Configure the startup and shutdown Java Service in Designer.

For more information, see “Deploying the adapter” on page 40.

Finally, the users of the adapter use Integration Server Administrator to load the adapter by
enabling the adapter package. For more information, see “Package Management” on page 49.

26 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

Creating an Adapter Package

Create an adapter package in the sameway you create any webMethods package, using Designer.
If you need instructions for creating a package, see the webMethods Service Development Help for
your release.

Designer creates a folder structure in which you can develop your adapter, as shown.

Note:

You must use the adapterPackageName\code\source folder as your source base and create
directories corresponding to your Java package structure (for example, com\mycompany\
adapter\myadapter).
You must set the package dependency as follows:

ValueField

WmARTPackage

*.*Version

The WmART package is installed when you install Integration Server.

The following figure shows the webMethods package structure:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 27

3 The Adapter Definition

Adapter Definition Classes

28 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

Adapter Definition Implementation Classes (Example
MyAdapter)

Creating a WmAdapter Implementation Class

Create an adapter definition by extending the com.wm.adk.WmAdapter base class. This class represents
the main class of the adapter. In this class, you create services and methods that:

Describe the adapter to Integration Server.

Describe the adapter's resources to Integration Server.

Initialize and cleanup resources.

Add custom Dynamic Server Pages (DSPs) to your adapter's administrative interface.

This section describes the basic steps for implementing an adapter definition.

Describing the Adapter to Integration Server

Create an adapter definition by extending the com.wm.adk.WmAdapter base class. You must override
the following base class methods in your WmAdapter implementation class:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 29

3 The Adapter Definition

DescriptionName

Returns the internal name of the adapter. This name is used to
identify the text fields in the resource bundle, and to identify the

getAdapterName

relationship between the adapter and its associatednamespace nodes.
For this reason, it is important that the value returned by thismethod
does not change after namespace nodes have been created. This name
must be unique within the scope of Integration Server.

Returns the current version of the adapter. This value appears in the
adapter's About page. This must not be confused with the package
version used when setting package dependencies.

getAdapterVersion

Returns the JCA standard version supported by the adapter. This
value must always be 1.0.

getAdapterJCASpecVersion

Must return a unique numeric value (if required) that you can obtain
from Software AG.

getAdapterMajorCode

Every adapter built using the ADK requires an internal ID called a
major code. A major code is an integer ID that Integration Server
uses to distinguish journal log information between different adapter
types. The major code is a four digit number between 1 and 9999.

Each adapter implementationmust have amajor code that is unique
from all other adapters built using the ADK that might be present
in the samewebMethods environment.Adapterswith identicalmajor
codes generate an error in the Integration Server log. More
importantly, Integration Server log entries from same code adapters
is indistinguishable.

The major code ranges are reserved as follows:

DescriptionMajor Code Range

This range is reserved for Software
AG built webMethods commercial
adapters.

1-6999

This range is reserved for adapters
built by Software AG Development

7000-8999

Partners. If you are a Development
Partner, youmust register yourmajor
code with Software AG.

This range is reserved for adapters
you build for use within your own

9000-9999

organization. You do not have to
register the major codes for these
adapters unless you are running them
in an environment where the

30 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

DescriptionName

adapters' major codes conflict with
other adapters in your webMethods
environment.

Returns the name of your ListResourceBundle implementation class.
The value must be the fully qualified name of the resource's
associated implementation class rather than an object instance.

getAdapterResourceBundleName

Sets the names of all connection factory and notification
implementation classes in an AdapterTypeInfo object.

fillAdapterTypeInfo

Indicates if the adapter supports parallel asset initialization. The
default return value is false. Override this method and use the watt

supportsParallelAssetInitialization

property for the adapter to enable or disable parallel asset
initialization.

Describing the Adapter's Resources to Integration Server

The adapter resources that you must describe to Integration Server include:

All connection factories and notification templates that the adapter supports. You set the names
of all connection factory and notification implementation classes in an AdapterTypeInfo object in
your adapter's implementation of the fillAdapterTypeInfo method. Set these names later, when
you implement the connections and notifications.

The default resource bundle implementation class. Create a default resource bundle by
extending the java.util.ListResourceBundle base class. Deliver the name of your ListResourceBundle
implementation class in your adapter's implementation of the getAdapterResourceBundleName
method.

Initializing and Cleaning Up

Initialize and clean up the resources used in your adapter implementation. In your WmAdapter
implementation class, you can initialize resources and properties specific to your adapter when
the adapter is enabled and release the resources when the adapter is disabled. Resources held by
connections, adapter services, and notifications have their own cleanup mechanisms.

For example, you might initialize the ARTLogger resource.

There can be only one ArtLogger instance per adapter (that is, permajor code). Youmustmanage
the ArtLogger instance in your WmAdapter implementation class, but it is optional. You must use
a static accessor method, which facilitates access to the ArtLogger instance. In the example, this
is accomplished using the getLogger method.

You must release the ArtLogger instance (and the adapter's major code) using the ArtLogger.close
method when the adapter is disabled,. In the example, this is accomplished using
MyAdapter.cleanup, which is called from AdapterAdmin.unregisterAdapter.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 31

3 The Adapter Definition

You can also use an ARTLogger object to generate journal log entries for your adapter.

Adding Custom DSPs to the Adapter Interface

By default, the adapter's administrative interface includes DSPs for connections, polling
notifications, listeners, and listener notifications. You may add custom DSPs by overriding the
following public methods provided in the com.wm.adk.WmAdapter abstract class:

DescriptionMethod

Returns a list of the label strings to insert in the left hand panel of the
Integration Server Administrator page for the adapter. Each label represents
a link to the DSP to be executed.

getUiItemNames

Returns theURLof theDSP associatedwith the given itemName. This effectively
binds the displayable item link/label name with the DSP to launch when the

getUiItemUrl
(String itemName)

users of the adapter select that link. The URL is relative to the packages folder
of the server installation. For example, if your adapter name isWmFoo and
your DSP is bar.dsp, the URL would be \WmFoo\bar.dsp. In the file system,
however, the .dsp file actually resides in packages\WmFoo\pub\bar.dsp; the pub
folder is not included in theURL. Youmay also append arguments to theURL,
using the standard notation ?=.

Returns the URL of the help file describing the custom DSP page associated
with the given itemName. The pathname requirements are the same as for

getUiItemHelp
(String itemName)

getUiItemUrl(). For example, if your help file is located in \WmFoo\pub\bar_
dsp.html, the path returned by this method must be \WmFoo\bar_dsp.html.

The labels for these DSPs appear in the navigation area in the left hand window of the interface,
immediately below the default labels (theConnections, PollingNotifications, Listeners, andListener
Notifications labels) but above the About label.

For information about creating DSPs, see Dynamic Server Pages and Output Templates Developer’s
Guide.

Internationalization Considerations for Custom DSPS

You are responsible for implementing these methods (and the associated DSPs) in a manner that
takes into consideration the client's locale. In particular, the implementation of getUiItemNames
method must perform the necessary resource domain lookups in order to return locale specific
values. The system does not automatically perform these lookups for you.

Creating WmAdapter Implementation Class with example

1. Create a folder structure for the Java package for adapter implementation. For example:
com\mycompany\adapter\myadapter. In the example, the Java package created is
com\wm\MyAdapter.

32 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

Note:
You must create your Java package and classes in the adapterPackageName\code\source
folder in the webMethods package you created using Designer.

2. Create an interface that contains the constants for the adapter implementation.

In the example, createMyAdapterConstants interface:
package com.wm.MyAdapter;
public interface MyAdapterConstants {

static final int ADAPTER_MAJOR_CODE = 9001;
static final String ADAPTER_JCA_VERSION = "1.0";
static final String ADAPTER_NAME = "MyAdapter";
static final String ADAPTER_VERSION = "9.12";

//Using next statement creates cyclic class loading dependency issue
//therefore, the resource bundle class name is fully spelled out
//static final String ADAPTER_SOURCE_BUNDLE_NAME =

MyAdapterResource.class.getName();
static final String ADAPTER_SOURCE_BUNDLE_NAME =
"com.wm.MyAdapter.MyAdapterResource";

}

3. Create a class by extending the com.wm.adk.WmAdapter base class.

Your WmAdapter implementation class (MyAdapter) must call the base class constructor
(super()). The base class constructor calls several of the implementation class's methods and
instantiates your resource bundle.

The base class constructor calls several of the implementation class'smethods after the first
call to getInstance. It is vital that they do not invoke another call to getInstance which results
in an endlessly recursive call to the constructor, and ultimately crashes the JVM and bring
down Integration Server. Thismust be avoided in static initializers in your resource bundle
as some of the resource bundles are keyed on the same string that is returned from
MyAdapter.getAdapterName. Do not populate the string in a static initializer. This line of code
in a static initializer of a resource bundle produces an undesirable results:
{MyAdapter.getInstance().getAdapterName() +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "My Adapter"}

When specifying any resource, you must use the fully qualified name of the resource's
associated implementation class (rather than an object instance).

In the example, createMyAdapter class:
package com.wm.MyAdapter;
import java.util.Locale;
import com.wm.adk.WmAdapter;
import com.wm.adk.error.AdapterException;
import com.wm.adk.info.AdapterTypeInfo;
import com.wm.adk.log.ARTLogger;

public class MyAdapter extends WmAdapter implements MyAdapterConstants{
public static MyAdapter _instance = null;

webMethods Adapter Development Kit Installation and User’s Guide 9.12 33

3 The Adapter Definition

public static ARTLogger _logger = null;

public MyAdapter() throws AdapterException { super(); }
public void fillAdapterTypeInfo(AdapterTypeInfo arg0, Locale arg1) {}
public String getAdapterJCASpecVersion() { return ADAPTER_JCA_VERSION; }
public int getAdapterMajorCode() { return ADAPTER_MAJOR_CODE; }
public String getAdapterName() { return ADAPTER_NAME; }
public String getAdapterResourceBundleName() { return ADAPTER_SOURCE_BUNDLE_NAME;
}
public String getAdapterVersion() { return ADAPTER_VERSION; }
public static ARTLogger getLogger() { return _logger; }

public void initialize() throws AdapterException {
// TODO Auto-generated method stub
_logger = new ARTLogger(getAdapterMajorCode(),

getAdapterName(),
getAdapterResourceBundleName());

_logger.logDebug(9999,"My Adapter Initialized");
}
public void cleanup() {
if (_logger != null)
_logger.close();

}

public static MyAdapter getInstance() {
// TODO Auto-generated method stub
if (_instance != null)
return _instance;

else {
synchronized (MyAdapter.class) {
if (_instance != null) {
return _instance;

}
try {
_instance = new MyAdapter();
return _instance;

} catch (Throwable t) {
t.printStackTrace();
return null;

}
}

}
}

}

Creating Resource Bundles

A resource bundle describes the adapter resources to Integration Server. For example, connection
factories, notification templates. You set the names of all connection factories and notification
implementation classes in an AdapterTypeInfo object in your adapter's implementation of the
fillAdapterTypeInfomethod. Set these names when you implement the connections and notifications.

A resource bundle contains all the display strings and messages used by the adapter at run
time and at design time.

34 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

A resource bundle is specific to a particular locale. If you plan to run your adapter in multiple
locales, you can include multiple locale specific resource bundles. Creating a resource bundle
for each locale enables you to internationalize an adapter quickly, without having to change
any code in the adapter. An adapter must have one or more resource bundles.

A resource bundle consists of lookup keys that provide locale specific objects (normally text
strings). A lookup key consists of a constant provided by the com.wm.adk.ADKGLOBAL class (a
class provided by the ADK's API) combined with your adapter's class name or a parameter
name. For a list of these constants, see “Resource Bundle Lookup Keys” on page 35. For
example, the ADK uses the following lookup key whenever the display name of the adapter
is required. (Assume that theMyAdapter.getAdapterName method returns the class name
MyAdapterwhereMyAdapter is the WmAdapter implementation class.)
MyAdapter.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME

The following lookup key produces a description for a parameter named password, which is
used to configure a connection pool:
"password" + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION

The adapter automatically references lookup keys to provide the following:

Display names, and property descriptions of the:

Adapter definition

Connection types

Adapter service templates

Polling notification templates

Text, display names, and property descriptions for the following elements of your adapter:

Parameters used to configure nodes

Metadata group names

Log entries

Exception text

Note:
You may also make explicit use of a resource bundle to localize other data, such as resource
domain values, especially if those values are known at development time (for example, a list of
known record status values). In these cases, the strategy for key composition is left to your
discretion. Formore information, see “UsingResource BundleswithResourceDomainValues” on
page 325. Resource domain values are discussed in detail in “Resource Domains” on page 84.

Resource Bundle Lookup Keys

The following table describes the automatic resource bundle lookups performed for each type of
adapter element, and describes how the results are used.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 35

3 The Adapter Definition

UsageKey FormatAdapter
Element

Required. Displays adapter name in
Integration Server Administrator and
in adapter interface.

adapterName +
ADKGLOBAL.
RESOURCEBUNDLEKEY_DISPLAYNAME

Adapter
definition

Required.Displays adapter description
in adapter interface's About window.

adapterName +
ADKGLOBAL.
RESOURCEBUNDLEKEY_DESCRIPTION

Optional. Displays adapter vendor
name in adapter interface's About
window.

adapterName +
ADKGLOBAL.
RESOURCEBUNDLEKEY_VENDORNAME

Optional. Displays adapter's copyright
for third parties in the adapter
interface's About window.

adapterName +
ADKGLOBAL.
RESOURCEBUNDLEKEY_
THIRDPARTYCOPYRIGHTURL

Optional. Encoding used to display
adapter's copyright for third parties in
the adapter interface'sAboutwindow.

adapterName +
ADKGLOBAL.
RESOURCEBUNDLEKEY_
COPYRIGHTENCODING

Required only if the
ADKGLOBAL.
RESOURCEBUNDLEKEY_
THIRDPARTYCOPYRIGHTURL
is specified.

Displays connection type column in
adapter interface.

ConnectionFactoryName.class.getName()
+
ADKGLOBAL.
RESOURCEBUNDLEKEY_DISPLAYNAME

Connection
type

Displays description column in
connection type listing when
configuring connections.

ConnectionFactoryName.class.getName()
+
ADKGLOBAL.
RESOURCEBUNDLEKEY_DESCRIPTION

Displays adapter service template
name when selecting a template to
create an adapter service in Designer.

AdapterServiceName.class.getName() +
ADKGLOBAL.
RESOURCEBUNDLEKEY_DISPLAYNAME

Adapter
service
template

Displays adapter service template
description when selecting a template

AdapterServiceName.class.getName() +
ADKGLOBAL.
RESOURCEBUNDLEKEY_DESCRIPTION

to create an adapter service in
Designer.

Displays template name columnwhen
selecting a template to create polling
notification in Designer.

AdapterNotificationName.class.getName()
+
ADKGLOBAL.
RESOURCEBUNDLEKEY_DISPLAYNAME

Polling
notification
template

36 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

UsageKey FormatAdapter
Element

Displays template description column
when selecting a template to create
polling notification in Designer.

AdapterNotificationName.class.getName()
+
ADKGLOBAL.
RESOURCEBUNDLEKEY_DESCRIPTION

Displays property display namewhen
editing connection, adapter service,

parameterName +
ADKGLOBAL.
RESOURCEBUNDLEKEY_DISPLAYNAME

Parameters
used to
configure
nodes

and polling notification properties in
adapter interface and Designer.

Displays tool tip when mouse is over
parameter name when editing service

parameterName +
ADKGLOBAL.
RESOURCEBUNDLEKEY_DESCRIPTION

and polling notification properties in
Designer.

Displays property display namewhen
editing parameter group for polling
notification in Designer.

groupName +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAMEMetadata

groupnames

Overrides Designer help hyperlink on
each tab associated with group.

groupName +
ADKGLOBAL.
RESOURCEBUNDLEKEY_GROUPURL

Text in all log repositories (server
locale)

new Integer(minorCode).toString()Log entries

Text in all log repositories (server
locale)

new Integer(minorCode).toString()Exception
text

Note:
By default, if you do not specify the DISPLAYNAME lookup key in your resource bundle, the
parameter or class name is used as the display name. Other lookup keys that are not specified,
display nothing.

Considerations for Adapter Definition Lookup Keys

As specified in the preceding table, the lookup keys specifying the adapter's display name,
description, and vendor name are required. All other lookup keys are optional, but not specifying
the optional lookup keys, can result in generating error messages in the log, thereby making the
adapter more difficult to use.

The adapterName reference in the Key Format column of the preceding table refers to the name of
the adapter returned by the WmAdapter implementation class's method getAdapterName. You may
use the name of your WmAdapter implementation class if it is also returned by the getAdapterName
method.

Note:
The adapter name must be unique within the scope of Integration Server.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 37

3 The Adapter Definition

Alternatively, youmay define a constant that both the lookup key and getAdapterNameuse. However,
do not callWmAdapter implementation class's getInstance.getAdapterNamemethod to retrieve the adapter
name from either of these static initializers, or in the resource bundle constructor. Integration
Server instantiates the resource bundle data during execution of the WmAdapter implementation
class's constructor super(); calling getInstancemethod from that point produces undesirable results.

Considerations for Specifying URLs in Resource Bundles

Some lookup keys reference documents, such as copyright and other information. If you include
these document files with your adapter, place them under adapterPackageName\pub (where
adapterPackageName is the file system folder under the Integration Server's packages folder where
your adapter resides). For more information about the Integration Server file system structure,
see “Creating an Adapter Package” on page 27.

In your lookup key, identify the resource file using the file path relative to the pub subfolder. For
example, to specify the location of the copyright file forMyAdapter, a resource bundle would
include the data value:
{ADAPTER_NAME +
ADKGLOBAL.RESOURCEBUNDLEKEY_THIRDPARTYCOPYRIGHTURL,
IS_PKG_NAME + "copyright.html"}

This relative path is equivalent to the following path:

Integration Server_directory \instance\<instance_name>\packages\MyAdapter\pub\copyright.html

This relative path scheme must be used for all URL references used by Designer as well as for the
ADKGLOBAL. RESOURCEBUNDLEKEY_ THIRDPARTYCOPYRIGHTURL clause. Other URL references
accessed through the Integration Server Administrator or the adapter's administrative interface
may use other URL referencing schemes such as absolute paths or valid Internet addresses.

Creating Resource Bundles Class With Example

To create a resource bundle implementation class

1. Create a class by extending the base class java.util.ListResourceBundle in the same Java package
that you created for WmAdapter implementation class. For example:
com\mycompany\adapter\myadapter.

Note:
You must create your class in the same adapterPackageName\code\source folder in which
you created your WmAdapter implementation class in the webMethods package you created
using Designer.

In the example, theMyAdapterResource class in folder com\wm\MyAdapter. In the example, the
Java package created is com\wm\MyAdapter.
package com.wm.MyAdapter;
import java.util.ListResourceBundle;
import com.wm.adk.ADKGLOBAL;

38 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{
static final String IS_PKG_NAME = "/MyAdapter/";
static final Object[][] _contents = {
// adapter type display name.
{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "My Adapter"}
// adapter type descriptions.
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Adapter for MyAdapter Server (a Sample System)"}

// adapter type vendor.
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_VENDORNAME, "Software AG"}
//Copyright URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_THIRDPARTYCOPYRIGHTURL,
IS_PKG_NAME + "copyright.html"}

//Copyright Encoding
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_COPYRIGHTENCODING, "UTF-8"}
//About URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_ABOUT, IS_PKG_NAME + "About.html"}
//Release Notes URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_RELEASENOTEURL, IS_PKG_NAME +

"ReleaseNotes.html"}
};
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

2. You can create multiple resource bundle classes.

Use the following naming convention to create multiple resource bundle classes:
ResourceBundleName ResourceBundleName_locale

For example, a default resource bundle and a corresponding locale specific bundle for use in
Japan might be named:
MyAdapterResourceBundle
MyAdapterResourceBundle_ja

For more information about resource bundle naming conventions, see the Javadoc for
java.util.ResourceBundle.

Note:
For each resource bundle lookup, the adapter uses the default resource bundle if a bundle
specific to the target locale is not available.

3. In your subclass, create resource bundle lookup keys.

4. Specify the adapter’s default resource bundle in your WmAdapter implementation class. You
can return the nameof your default resource bundle using the getAdapterResourceBundleName
method in your WmAdapter implementation class.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 39

3 The Adapter Definition

In the example, theMyAdapter class's getAdapterResourceBundleNamemethod returns the constant
ADAPTER_SOURCE_BUNDLE_NAME, which is initialized in interfaceMyAdapterConstants
interface.

Example of getAdapterResourceBundleNamemethod inMyAdapter class:

@Override
public String getAdapterResourceBundleName() {
// TODO Auto-generated method stub
return ADAPTER_SOURCE_BUNDLE_NAME;
}

Example ofADAPTER_SOURCE_BUNDLE_NAME constant inMyAdapterConstants interface:

static final String ADAPTER_SOURCE_BUNDLE_NAME =
"com.wm.MyAdapter.MyAdapterResource";

5. Create the reference pages for copyright, and index page for the adapter in
adapterPackageName/pub folder.

In the adapters administrative interface, select About, the about page appears with the
display name, description and copyright.

In the Integration Server Administrator, selectPackages > MyAdapter > Home, the index
page appears.

Note:
You must create your reference pages in the same adapterPackageName/pub folder in the
webMethods package you created using Designer.

Deploying the adapter

The users of the adapter explicitly load and unload an adapter by enabling and disabling the
adapter package, using Integration Server Administrator. This section describes:

Creating Adapter Startup and Shutdown Java Services.

Compiling the Adapter.

Registering the Adapter Startup and Shutdown Java Services in Integration Server.

Debugging the Adapter.

Loading the Adapter.

Unloading the Adapter.

This section describes the basic steps for deploying, and debugging an adapter definition.

40 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

Creating Adapter Startup and Shutdown Java Services
The adapter must have one Java Service each for startup and shutdown.

The startup method must retrieve an instance of your WmAdapter implementation class and
pass it to AdapterAdmin.registerAdapter method.

The shutdown service must perform the following:

Retrieve an instance of your WmAdapter implementation class and pass it to
AdapterAdmin.unregisterAdapter method.

Perform the cleanup operations needed by your adapter. Inmost cases, this is accomplished
by callingMyAdapter.cleanupmethod before the call to AdapterAdmin.unregisterAdaptermethod.

You can create the startup and shutdown Java Services in two ways:

1. Create adapter admin Java class, which is used to generate corresponding Java Services using
jcode utility.

2. Create Java Services usingDesigner, which is compiled using Integration Server Administrator.

Creating Java Classes for Adapter Startup and Shutdown

1. Create a folder structure for the Java package for adapter admin class. For example:
adapterPackageName\code\source\wm\mycompany\adapteradmin. In the example, the Java package
created is adapterPackageName\code\source\wm\MyAdapter.

Note:
You must create your Java package and classes in the adapterPackageName\code\source
folder in the webMethods package you created using Designer.

2. Create adapter admin Java class.

In the example, classMyAdapterAdmin is created:
package wm.MyAdapter;
//--- <<IS-START-IMPORTS>> ---
import com.wm.MyAdapter.*;
import com.wm.adk.admin.AdapterAdmin;
import com.wm.app.b2b.server.ServiceException;
import com.wm.data.IData;
//--- <<IS-END-IMPORTS>> ---
public class MyAdapterAdmin {

public static final void startUp (IData pipeline)
throws ServiceException

{
// --- <<IS-START(startUp)>> ---
AdapterAdmin.registerAdapter(MyAdapter.getInstance());
// --- <<IS-END>> ---

}
public static final void shutDown (IData pipeline)

webMethods Adapter Development Kit Installation and User’s Guide 9.12 41

3 The Adapter Definition

throws ServiceException
{

// --- <<IS-START(shutDown)>> ---
MyAdapter instance = MyAdapter.getInstance();
instance.cleanup();
AdapterAdmin.unregisterAdapter(instance);
// --- <<IS-END>> ---

}
}

Note:
Tags are used tomark the beginning and end of imports andmethods. Formore information,
see webMethods Service Development Help.

Creating Java Services for Adapter Startup and Shutdown using Designer

1. Start Designer.

2. Select the webMethods package you created using Designer.

3. Create a folder structure for the Java package for adapter admin Java Services. In the example,
the folder structure created is adapterPackageName\code\source\wm\MyAdapter\MyAdapterAdmin.

Note:
You must create your Java package and classes in the adapterPackageName\code\source
folder in the webMethods package you created using Designer.

4. Create a new Java Service for adapter startup. In the example, the Java Service created is
startUp.

a. Add the following Java code.

public static final void startUp(IData pipeline) throws ServiceException {
// --- <<IS-START(startUp)>> ---
AdapterAdmin.registerAdapter(MyAdapter.getInstance());
// --- <<IS-END>> ---

}

Note:
Tags are used to mark the beginning and end of imports and methods. For more
information, see webMethods Service Development Help.

5. Create a new Java Service for adapter shutdown. In the example, the Java Service created is
shutDown.

a. Add the following Java code.

public static final void shutDown(IData pipeline) throws ServiceException {
// --- <<IS-START(shutDown)>> ---
MyAdapter instance = MyAdapter.getInstance();
instance.cleanup();

42 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

AdapterAdmin.unregisterAdapter(instance);
// --- <<IS-END>> ---

}

Note:
Tags are used to mark the beginning and end of imports and methods. For more
information, see webMethods Service Development Help.

Compiling the Adapter
Before you load your adapter, you must compile your implementation classes and construct the
Java Service nodes for your startup and shutdown services.

1. Create an ANT script to compile the adapter implementation and admin classes, and deploy
these classes in Integration Server as Java Services. In the example, the ANT script created is
build.xml and build.properties.

Note:
You must create your ANT script in the adapterPackageName\code\source folder in the
webMethods package you created using Designer.

For example build.properties:
The Site Name
debug=on
optimize=off
deprecation=off
webM.home=C:/softwareag/912
server.home=${webM.home}/IntegrationServer
package=MyAdapter
instance_name=default
srcdir=${server.home}/instances/${instance_name}/packages/${package}/code/source
destdir=${server.home}/instances/${instance_name}/packages/${package}/code/classes

For example build.xml:
<?xml version="1.0"?>
<project name="Adapter using ADK" default="deploy" basedir=".">
<property file="build.properties" />
<!-- classes belonging to this package -->
<path id="this.package.classpath">
<fileset dir="${server.home}/instances/${instance_name}/packages/${package}/">
<include name="code/classes"/>

</fileset>
</path>
<!-- All classes that need to be found by this script -->
<path id="total.classpath">
<pathelement

location="${server.home}/instances/${instance_name}/packages/WmART/code/jars/wmart.jar"/>
<pathelement location="${server.home}/lib/wm-isserver.jar"/>
<pathelement location="${webM.home}/common/lib/wm-isclient.jar"/>
<pathelement location="${webM.home}/common/lib/glassfish/gf.jakarta.resource.jar"/>
<pathelement

location="${server.home}/instances/${instance_name}/packages/WmART/code/classes/"/>

webMethods Adapter Development Kit Installation and User’s Guide 9.12 43

3 The Adapter Definition

<path refid="this.package.classpath"/>
</path>

<!-- Compile the java files of this package -->
<target name="createclasses" depends="init">
<echo>Creating classes</echo>
<mkdir dir="${destdir}/"/>
<javac debug="${debug}" optimize="${optimize}"
deprecation="${deprecation}" srcdir="${srcdir}"
destdir="${destdir}">
<classpath>
<path refid="total.classpath"/>

</classpath>
</javac>
</target>
<!-- Execute jcode -->
<target name="execjcode" depends="createclasses">
<echo>Deploying classes</echo>
<exec executable="${server.home}/instances/${instance_name}/bin/jcode"

vmlauncher="false" failonerror="true">
<arg value="fragall" />
<arg value="${package}" />

</exec>
</target>
<!-- delete .class files built in this package -->
<target name="cleanclasses">
<echo>Cleaning classes</echo>
<mkdir dir="${destdir}"/>
<delete quiet="false">
<fileset dir="${destdir}" includes="**/*.class"/>

</delete>
</target>

<!-- if this package depends on classes found in other packages,
add targets to build those classes here. -->
<target name="init">
<tstamp/>
</target>

<target name="packageDependencies" depends="" />
<target name="clean" depends="cleanclasses" />
<target name="classes" depends="cleanclasses, createclasses" />
<target name="deploy" depends="execjcode" />
<target name="all" depends="packageDependencies, cleanclasses, execjcode" />
<target name="remake" depends="packageDependencies, cleanclasses, createclasses"
/>

</project>

2. Set the classpath in total.classpath in the ANT script.

The JAR files required to compile your source code are as follows:

Software AG_directory \common\lib\wm-isclient.jar

Software AG_directory \common\lib\glassfish\gf.jakarta.resource.jar

Integration Server_directory \lib\wm-isserver.jar

44 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

Integration Server_directory \instances\<instance_name>\packages\WmART\code\jars\
wmart.jar

The folder containing the class files required to compile your source code is as follows:

Integration Server_directory \instances\<instance_name>\packages\WmART\code\classes

Software AG_directory is the folder in which webMethods components are installed and
Integration Server_directory is the folder in which Integration Server is installed.

Note:

Add the required folders location to your classpath, or package all folders in a JAR and
then add the JAR to your classpath.
You must specify JDK version 1.8 or higher in your classpath.

3. Run the ANT script to compile the Java classes.

ant classes

4. Compile the classes and deploy in Integration Server..

a. Run the ANT script to create classes and deploy in Integration Server as Java Services.

ant deploy

Note:
If you have created adapter admin Java class for adapter startup and shutdown, then
the corresponding Java Services are deployed using jcode utility. The jcode utility is
provided with Integration Server. For more information, see webMethods Service
Development Help.

b. If you have created Startup and Shutdown Java Services usingDesigner, youmust compile
it using Integration Server Administrator.

Start Integration Server Administrator.

Select Settings > Extended > Edit Extended Settings.

Set the property watt.server.compile to include the path to Java compiler and the
classpath to include the wmart.jar in Integration Server_directory \
instances\<instance_name>\packages\WmART\code\jars\wmart.jar. For example:
watt.server.compile=C:\softwareag\912\jvm\jvm\bin\javac
-classpath
{0};C:\softwareag\912\IntegrationServer\instances\default\packages\
WmART\code\jars\wmart.jar; -d {1} {2}

5. Restart Integration Server.

If your startup and shutdown Java Services do not appear in the adapter package, there has
been an error either in compiling your code or in creating the Java Services.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 45

3 The Adapter Definition

Registering the Adapter Startup and Shutdown Java Services
in Integration Server
Before you register the adapter startup and shutdown Java Services for the adapter package, make
sure that you have:

Created your adapter startup and shutdown Java Service.

Successfully compiled the adapter.

1. Start Designer.

2. In the Package Navigator, select the webMethods package you created.

3. Set the Startup Services and Shutdown Services.

Perform the following operations:

In the Properties > StartUp/Shutdown Services > Startup Services, add the startup
service created.

In theProperties > StartUp/Shutdown Services > Shutdown Services, add the shutdown
service created.

4. Restart Integration Server.

5. Start Integration Server Administrator.

6. In Integration Server Administrator, select Adapters.

You can see the adapter you have created in the dropdown.

Debugging the Adapter

1. Shut down your Integration Server .

2. Modify the scriptSoftwareAG_directory \profiles\IS_<instance_name>\bin\startDebugMode.bat
(or startDebugMode.sh in a UNIX environment).

Set SUSPEND_MODE to n.

set SUSPEND_MODE=n

3. Start Integration Server in the debug mode by executing startDebugMode.bat (or
startDebugMode.sh in a UNIX environment).

4. Create a script to attach the debugger to Integration Server.

46 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

For example debug.bat:
rem @echo off
set
TARGET="C:\softwareag\912\IntegrationServer\instances\default\packages\MyAdapter\code\source"
set JAVA_MIN_MEM=64M
set JAVA_MAX_MEM=64M
set JAVA_MEMSET=-ms%JAVA_MIN_MEM% -mx%JAVA_MAX_MEM%
set JAVA_DBG="C:\softwareag\912\jvm\jvm\bin\jdb"
set ARGS=com.sun.jdi.SocketAttach:hostname=localhost,port=10033
%JAVA_DBG% -sourcepath %TARGET% -connect %ARGS%

5. Run the debug script.

debug.bat (or debug.sh in a UNIX environment).

You can attach to Integration Server and "step" your code (assuming you compiled your code
to include debug symbols (for example, javac -g)) using your favorite debugger.

Adapter Load Process

webMethods Adapter Development Kit Installation and User’s Guide 9.12 47

3 The Adapter Definition

The users of the adapter explicitly load and unload an adapter by enabling and disabling the
adapter package, using Integration Server Administrator. This figure shows howMyAdapter loads
the adapter into Integration Server at run time.

The loading process is described as follows:

1. The system calls AdapterAdmin.registerAdapter. This method is the designated package startup
service.

2. The implementation of registerAdapter instantiates theMyAdapter class by calling its getInstance
method. It then registers theMyAdapter object as an adapter by passing it to the registerAdapter
method of the AdapterAdmin class provided by the ADK.

3. During the construction of theMyAdapter instance, super() calls the base class
com.wm.adk.WmAdapter constructor, which instantiates the default resource bundle, calls
MyAdapter.initialize, and retrieves basic information about the adapter. (The com.wm.adk.WmAdapter
constructor only instantiates the default resource bundle; it instantiates and reads other resource
bundles if a request is received using the locale of that supplementary resource bundle.)

4. The adapter load process is completedwith a call to the staticmethod AdapterAdmin.registerAdapter,
which reads and evaluates the adapter's default resource bundle, and updates the Integration
Server list of registered adapters. If the resource bundle does not provide the required resource
bundle elements, the registration process fails, with an error log entry explaining the failure.

5. Upon completion of the adapter's registration, the adapter loads any dependant node packages.
See the chapters about connections, adapter services, polling notifications, and listener
notifications for descriptions of their respective load processes.

6. If the load was successful, the adapter name (as specified in the resource bundle) appears in
the list of adapters in Integration Server Administrator. If it does not appear, refresh your
browser page. If it still does not appear, check the log for errors.

48 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

Adapter Unload Process

During server shutdown or package reload, the system disables the adapter's dependant nodes
(or their packages) before it disables the adapter.When you explicitly disable an adapter's package
using Integration Server Administrator, disable its dependant nodes first. The diagram shows
howMyAdapter unloads the adapter from Integration Server at run time.

To unload an adapter, the server calls AdapterAdmin.unregisterAdapter. This method is the designated
package shutdown service. This method performs the following tasks:

1. Retrieves the adapter instance.

2. Calls the adapter's cleanup method (if implemented).

3. Calls AdapterAdmin.unregisterAdapter.

Reporting Adapter Fix Levels
After you deploy an adapter, you may need to deliver a fix. You can identify the fix to Integration
Server through the adapter's package manifest file. Whenever the adapter package is loaded, the
patch_history field is read from the file and displayed on the adapter's About page. The
management of this field is the responsibility of the adapter developer. The Integration Server
facilities for creating partial package installations can be used to deliver adapter fixes. For more
information, see the webMethods Integration Server Administrator’s Guide for your release.

Package Management

A namespace node package is a package in which the user of the adapter creates the adapter's
namespace nodes for connections, adapter services, polling notifications, listener notifications,
and listeners. The user of the adapter must not create nodes in the adapter package. Keeping

webMethods Adapter Development Kit Installation and User’s Guide 9.12 49

3 The Adapter Definition

namespace nodes separate from the adapter package simplifies the process of upgrading a deployed
adapter.

The procedure for creating a namespace node package is identical to the procedure for creating
any webMethods package. For instructions for creating packages, see the webMethods Service
Development Help for your release.

All the nodes of an adapter may be located in one package, or they may be distributed among
multiple packages.Namespace node packagesmanagement tasks include:

Setting package dependencies for namespace node packages.

Setting package dependencies for namespace nodes.

Using access control lists (ACLs) to control which development group has access to which
adapter services

Enabling and Disabling Packages.

Loading, Reloading, and Unloading Packages.

To perform these tasks, the user of the adaptermust usewebMethods Integration Server, Designer,
and a web browser.

Note:
You must have Integration Server administrator privileges to access an adapter's management
screen. For information about setting user privileges, see the webMethods Integration Server
Administrator’s Guide for your release.

Package Dependency Considerations for Namespace Node
Packages
Following are dependency requirements and guidelines for namespace node packages:

A namespace node package must have a dependency on its associated adapter package, and
the adapter package must have a dependency on theWmART package. For more information
about setting package dependencies, see the webMethods Service Development Help for your
release.

Setting these dependencies ensures that at startup Integration Server automatically loads or
reloads all packages in the proper order:

WmART package.

Adapter package.

Node package(s).

TheWmART package is automatically installedwhen you install Integration Server. Youmust
not manually reload the WmART package.

Keep connections for different adapters in separate packages so that you do not create
interdependencies between adapters. If a package contains connections for two different

50 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

adapters, and you reload one of the adapter packages, the connections for both adapters is
reloaded automatically.

You cannot enable a package if it has a dependency on another package that is disabled. That
is, before you can enable your package, you must enable all packages on which your package
depends. For information about enabling packages, see “Enabling andDisabling Packages” on
page 51.

You can disable a package even if another package that is enabled has a dependency on it.
Therefore, you must manually disable any user-defined packages that have a dependency on
your adapter package before you disable the adapter package.

If the namespace nodes of an adapter are located in multiple packages, see “Package Dependency
Considerations for Namespace Nodes” on page 51. For more information about setting package
dependencies, see the webMethods Service Development Help for your release.

Package Dependency Considerations for Namespace Nodes
If all the namespace nodes of an adapter are located in the same package, there is no need to set
package dependencies.

However, if the nodes of an adapter are located in multiple packages, then:

A package that contains the connection node(s) must depend on the adapter package.

Packages that contain other nodes must depend on their associated connection package.

Formore information about setting package dependencies, see thewebMethods ServiceDevelopment
Help for your release.

Group Access Control
To control which development group has access to which adapter services, use access control lists
(ACLs). You can use ACLs to prevent one development group from inadvertently updating the
work of another group, or to allow or deny access to services that are restricted to one group but
not to others.

For general information about assigning and managing ACLs, see the webMethods Service
Development Help for your release.

Enabling and Disabling Packages
All packages are automatically enabled by default. To prevent Integration Server from loading a
particular package, you must manually disable that package.

Enabling Packages

To enable the package:

Start Integration Server Administrator.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 51

3 The Adapter Definition

Click Packages > Management.

In the Management screen, click No in the Enabled column for the package. The No changes
to Yes (enabled).

Note:
Enabling an adapter package will not cause its associated node package(s) to be reloaded.

Important:
Before you manually enable a node package, you must first enable its associated adapter package.
Similarly, if your adapter has multiple node packages, and you want to disable some of them,
disable the adapter package first. Otherwise, errors will be issued when you try to access the
remaining enabled node packages.

Disabling Packages

To disable the package:

Start Integration Server Administrator.

Click Packages > Management.

In theManagement screen, clickYes in theEnabled column for the package. TheYes changes
to No (disabled).

Disabled packages are not listed in Designer. A disabled adapter will remain disabled until you
explicitly enable it using Integration Server Administrator.

Loading, Reloading, and Unloading Packages

Loading Packages

If the node packages are properly configuredwith a dependency on the adapter package, at startup
Integration Server automatically loads or reloads all packages in the proper order:

WmART package.

Adapter package.

Node package(s).

You must not manually reload the WmART package.

Reloading Packages Manually

You must typically reload the adapter package manually as you make changes to the adapter
code. Similarly, the users of the adapter must reload their node packages manually when they
modify the nodes. Reloading a node package will not cause its associated adapter package to be
reloaded.

You can reload the adapter packages and the node packages by performing either of the following:

52 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

In Integration Server Administrator, in the Management screen, click the reload icon in the
Reload column.

In Designer, right click the package and select the Reload Package option from the menu.

Unloading Packages

At shutdown, Integration Server unloads the packages in the reverse order in which it loaded
them:

Node package(s).

Adapter package.

WmART package (assuming the dependencies are correct).

webMethods Adapter Development Kit Installation and User’s Guide 9.12 53

3 The Adapter Definition

54 webMethods Adapter Development Kit Installation and User’s Guide 9.12

3 The Adapter Definition

4 Connections

■ Overview .. 56

■ Adapter Connection Classes .. 58

■ Adapter Connection Implementation Classes .. 60

■ Creating a WmManagedConnection Implementation Class ... 61

■ Creating a WmManagedConnectionFactory Implementation Class 61

■ Updating the Resource Bundle .. 66

■ Registering Connection Factories in the Adapter ... 67

■ Connection Class Interactions .. 67

■ Configuring and Testing Connection Nodes ... 71

webMethods Adapter Development Kit Installation and User’s Guide 9.12 55

Overview

An adapter connection connects to an adapter resource. This chapter describes the classes provided
by the ADK to support connections, and how to create an adapter connection implementation.

Connection Factories

TheADK's adapter connectionmodel uses a factorymethod pattern inwhich a connection factory
object is responsible for creating connection objects. In many cases, both the factory and its
connections wrap comparable functionality provided in the resource's libraries. For example, an
adapter connection factory may wrap a data source class provided by a database vendor, from
which it creates the database connections andwraps them in an adapter connection object produced
by the factory.

Each connection factory in an adapter implementation constitutes a connection type on the adapter's
administrative interface. You can define one or more connection types for an adapter. If you need
a different set of configuration parameters, create another connection type. For example, if you
have a request that requires special security requirements, create a separate connection type for
it.

A connection factory is also responsible for defining implementation-specific parameters and for
making them available to the connection. The adapter uses these parameters at design time, when
the users of the adapter create connection namespace nodes. For example, note the following
connection type configuration window of the Sample Adapter.

56 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

Connection Management Properties

Each field in the ConnectionManagement Properties section shown in the adapter's administrative
interface has a corresponding metadata parameter provided by the associated connection factory.
At run time, the node passes the user of the adapters' settings for these fields to the connection
factory, which is then used for each connection that the factory creates.

The two fields in Connection Management Properties section that pertain to initializing the
connection pool at startup are as follows:

Startup Retry Count specifies the number of times that the system attempts to initialize the
connection pool at startup if the initial attempt fails, before issuing an AdapterConnectionException.

Startup Backoff Timeout specifies the number of seconds to wait between each attempt to
initialize the connection pool.

These fields provide flexibility inmanaging connections in environmentswhere network anomalies
are commonplace. They are significant in the following situations:

When a new connection is enabled; when Integration Server starts.

When the package containing a previously enabled connection node is reloaded.

For information about other connection management parameters, see “Configuring and Testing
Connection Nodes” on page 71.

Connection Management

Integration Server includes a connectionmanagement service that dynamicallymanages connections
and connection pools based on the settings stored in the connection namespace node (such as the
connection pooling and timeout fields specified in the ConnectionManagement Properties section
shown in the adapter's administrative interface).

When a connection namespace node is enabled, Integration Server uses the connection factory to
initialize the pool, creating a number of connection instances equal to the minimum configured
pool size.

When a connection is needed by an adapter service or notification, the ADK provides a
connection from the pool.

If no connections are available in the pool, and the maximum pool size has not been reached,
a new connection is retrieved from the connection factory.

If the pool is full, the requesting thread blocks the amount indicated in the Block Timeout field
until a connection becomes available.

For information about configuring your connection pool, see “Configuring and TestingConnection
Nodes” on page 71.

Creating Connection Implementation

To create a connection implementation, you perform the following tasks:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 57

4 Connections

Create an adapter connection class by extending the com.wm.adk.connection.WmManagedConnection
base class. In this class, create methods that:

Wrap the connection to your resource.

Instantiates the class on receiving information from the connection factory.

Access the resource. Accessing the resource is your responsibility.

Create an adapter connection factory class by extending the
com.wm.adk.connection.WmManagedConnectionFactory base class. In this class, you create services and
methods that::

Construct a new connection object.

Identify all adapter service templates supported by the factory's connections.

Specify the transactional capabilities of the factory's connections.

Create webMethods metadata for the connection factory.

For more information, see “Creating a WmManagedConnectionFactory Implementation
Class” on page 61.

Update the adapter's resource bundle with display names and other display-oriented data for
the connection implementation and its parameters.

Register the connection type in the adapter.

Compile and reload your adapter.

Configure and test the connection.

Adapter Connection Classes

ADK Adapter Connection Classes

This diagramdisplays theADK classes, classmembers, and classmethods used to create an adapter
connection.

58 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

External Interfaces Used in Adapter Connection Classes

The ADK's base connection classes are dependent on the following external interfaces. These
interfaces are used as arguments of the abstract methods that youmust override in the connection
implementation classes:

DescriptionInterface

Creates webMethods metadata.com.wm.adk.metadata.WmDescriptor

Specifies adapter services supported by the connection.
This interface is an extended version of
javax.resource.cci.ResourceAdapterMetadata.

com.wm.adk.info.ResourceAdapterMetadataInfo

Used in conjunction with the metadata operations for
the associated adapter services and notifications.

com.wm.adk.metadata.WmAdapterAccess

webMethods Adapter Development Kit Installation and User’s Guide 9.12 59

4 Connections

Adapter Connection Implementation Classes

The diagram shows how a typical adapter implements the connection classes.

At design time, each connection factory in an adapter implementation constitutes a connection
type on the adapter's administrative interface. For a connection factory to be recognized as part
of the adapter, youmust specify the class in the fillAdapterTypeInfomethod in the adapter'sWmAdapter
implementation class (see “Registering Connection Factories in the Adapter” on page 67).

For more information about how Integration Server uses connection classes at design time to
support the creation and management of connection namespace nodes, see “Connection Class
Interactions” on page 67.

Note:

60 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

The connection implementation classes often use both the AdapterException class and the
AdapterConnectionException class. The main difference between these classes is the impact on the
connection pool (see “Receiving AdapterConnectionExceptions” on page 71).

Creating a WmManagedConnection Implementation Class

Create an adapter connection class by extending the com.wm.adk.connection.WmManagedConnection base
class. This class is primarily responsible forwrapping the connection to your resource. Themethod
that instantiates the class receives information from the connection factory. Accessing the resource
is your responsibility. You must override the following base class methods in your
WmManagedConnection implementation class:

DescriptionMethod

Validates the user-supplied parameter values in service or notification
editor, if ResourceDomainValues.setCanValidate(true) is set. For more
information, see “Connection Callbacks” on page 62.

adapterCheckValue

Registers the resource domains. Formore information, see “Registering
Resource Domains” on page 84.

registerResourceDomain

Determines the new value or values that is applied to the parameter
in service or notification editor. Formore information, see “Populating
Resource Domains with Values” on page 88.

adapterResourceDomainLookup

Called when the connection is removed from the pool, releasing
implementation specific resources.

destroyConnection

Returns true if initializeConnection is present in the implementation class.initializationRequired

Called once if initializationRequired returns true. Optional.initializeConnection

Creating a WmManagedConnectionFactory Implementation
Class

Create an adapter connection factory class by extending the
com.wm.adk.connection.WmManagedConnectionFactory base class. You must override the following base
class methods in your WmManagedConnectionFactory implementation class:

DescriptionMethod

Constructs a new connection object (for example, SimpleConnection).createManagedConnectionObject

Specifies the transactional capabilities of this factory's connections.
For more information, see this method's Javadoc.

queryTransactionSupportLevel

Supports webMethods metadata constructs. For more information,
see “WmDescriptor Interface” on page 65.

fillWmDescriptor

webMethods Adapter Development Kit Installation and User’s Guide 9.12 61

4 Connections

DescriptionMethod

Called when a connection factory is deleted.deleteCallBack

Called when a connection factory is disabled.disableCallBack

Called when a connection factory is enabled.enableCallBack

Called when a connection factory is initialized.initCallBack

Called when a connection factory is started.startupCallBack

Called when a connection factory is stopped.shutdownCallBack

Called when a connection factory is updated.updateCallBack

Connection Callbacks

The WmManagedConnectionFactory base class defines a set of callback methods that you can override
in any connection factory implementation class. These callbacks are called when the state changes
on the connection node.

The following table describes which methods are called on a connection for certain operations.

Callbacks Received By Enabled ConnectionUser Actions

Enables a disabled connection enableCallBack

startupCallBack

Disables an enabled connection shutdownCallBack

disableCallBack

Enables a package containing an enabled
connection

initCallBack

startupCallBack

Disables a package containing an enabled
connection

shutdownCallBack

Deletes a package containing an enabled
connection

shutdownCallBack

Reloads a package containing an enabled
connection

shutdownCallBack

initCallBack

startupCallBack

Starts Integration Server initCallBack

startupCallBack

62 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

Callbacks Received By Enabled ConnectionUser Actions

Note:
This only occurs if the connections are contained
in a package that is enabled.

Shuts down Integration Server shutdownCallBack

Note:
This only occurs if the connections are contained
in a package that is enabled.

The following table describes which methods are called on a disabled connection for certain
operations.

Callbacks Received By Disabled ConnectionUser Actions

initCallBackCreates a connection

updateCallBackUpdates a connection

deleteCallBackDeletes a connection

initCallBackCopies a connection

Note:
This only occurs if the connection copied creates
a new connection.

initCallBackEnables a package containing a disabled
connection

initCallBackReloads a package containing a disabled
connection

initCallBackStarts Integration Server

Note:
This only occurs if the connections are contained
in a package that is enabled.

Note:
If more than one callback is listed, the callbacks occur in the specified order from top to bottom.
If an action is not listed in the table then no callbacks occur.

Metadata Model for Connection
Each adapter interface field for configuring connection typesmust have a correspondingmetadata
parameter, provided by the associated connection factory. The webMethods metadata models are

webMethods Adapter Development Kit Installation and User’s Guide 9.12 63

4 Connections

designed to define, refine, organize, and constrain parameters used to configure namespace nodes
for connections, adapter services, and notifications. The metadata model for connections is the
foundation for the more complicated metadata model used to configure adapter services and
notifications.

Each metadata parameter is identified by a set accessor method. For example:
public void setHostName(String name);

public void setPortNumber(int portNumber);

Metadata Parameter Names

You derive the name of a parameter from the name of its setmethod. You remove the prefix (set)
andmake the first letter lower case. Thus, the setmethods abovewould definemetadata parameters
named serverName and portNumber. For example:
public void setHostName(String name) {
}

public void setPortNumber(int portNumber) {
}

The complete naming convention rules follow the Java bean property naming conventions.

Some naming variations include:
setFoo() -> parameter name is "foo"
setfoo() -> parameter name is "foo"
setFOO() -> parameter name is "FOO"
setFOo() -> parameter name is "Foo"
set_foo() -> parameter name is "_foo"
set_Foo() -> parameter name is "_Foo"

Metadata Parameter Arguments

A metadata parameter's setmethod must accept a single argument, whose data type defines the
data type of the parameter. For connections, this type must be limited to a Java primitive or a
java.lang.String types. Arrays (or sequence parameters) are allowed, but the adapter's administrative
interface only provides widgets to access the first element of the array. Other object types are
interpreted as external Java bean classes, as described in “Implementing Metadata Parameters
Using External Classes” on page 308.

In addition to defining the parameter name and data type, the setmethod of ametadata parameter
is used at run time to pass the value of the parameter to the connection factory. In the example,
the metadata accessor methods are shown as methods of the connection factory implementation
class. In fact, any method in the connection factory implementation conforming to the naming
convention is interpreted as a metadata parameter accessor method.

64 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

Metadata Parameter get Accessor Methods

Ametadata parametermay have a corresponding get accessormethod (following the same naming
convention) that returns the same data type as the argument of the setmethod. The adapter uses
these getmethods only to retrieve default parameter values when creating a new connection.

Creating a getmethod with a different data type than its corresponding setmethod results in an
error. In addition, creating a getmethodwithout a setmethod produces a parameter whose values
are unusable.

Note:
All namespace nodes store parameter settings based on the parameter name. If you delete or
change the name of your accessormethods, the parameter names stored in the namespace nodes
associated with that class are no longer be valid. From that point forward, any use of that node
(at design time or at run time) fails. If you no longer need ametadata parameter after upgrading
a deployed adapter, hide the parameter (using WmDescriptor.setHidden) instead of deleting it.

WmDescriptor Interface

The com.wm.adk.metadata.WmDescriptor interface controls how metadata parameters are handled at
design time, during data entry.

To create webMethods metadata for your connection factory, use theWmDescriptor interface within
the WmManagedConnectionFactory.fillWmDescriptor method. The table lists some commonly used
WmDescriptor methods.

DescriptionName

Specifies the order in which parameters must appear on the adapter's
administrative interface. Group names are not displayed.

createGroup

Sets the parameter display name, description, group name, and online help links
for the current connection type. This call queries your resource bundle for

setDescriptions

setDescriptions information about the connections, its parameters, and its groups.
The ResourceBundleManager argument must be identical to
WmAdapter.getResourceBundleManager

Assigns a user friendly parameter name. Alternatively, use setDescriptions to use
a localized display name.

setDisplayName

Specifies the minimum length of an input value for a parameter of type string.setMinStringLength

Specifies the maximum length of an input value for a parameter of type string.setMaxStringLength

Displays asterisks when the users of the adapter enter passwords. This method
also displays a confirmation field inwhich usersmust re-enter passwords. Only
one copy of the parameter value is set in the connection factory.

setPassword

Note:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 65

4 Connections

DescriptionName

Do not use setPassword on more than one parameter per WmDescriptor.

Specifies the list of valid values for a parameter. These values appear in a
dropdown.

setValidValues

Note:
The WmDescriptor methods apply to specified metadata parameter. In these cases, the name of
the parameter must be passed as a String.

Updating the Resource Bundle

In theWmManagedConnectionFactory implementation class, the call toWmDescriptor.setDescriptions in the
fillWmDescriptor implementation causes Integration Server to look for display names and other display
data in the adapter's resource bundle. Update the java.util.ListResourceBundle implementation with
entries for the WmManagedConnection implementation and its parameters.

In the example, updateMyAdapterResource class's Object[][] _contentswith the following:
package com.wm.MyAdapter;
import java.util.ListResourceBundle;
import com.wm.adk.ADKGLOBAL;
import com.wm.MyAdapter.connections.SimpleConnectionFactory;
public class MyAdapterResource extends ListResourceBundle implements MyAdapterConstants{

static final String IS_PKG_NAME = "/MyAdapter/";
static final Object[][] _contents = {
..
..
..

//SimpleConnection
,{SimpleConnectionFactory.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,

"Simple Connection"}
,{SimpleConnectionFactory.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"Simple framework for demonstration purposes"}
,{SimpleConnectionFactory.SIMPLE_SERVER_HOST_NAME +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Host Name"}
,{SimpleConnectionFactory.SIMPLE_SERVER_PORT_NUMBER +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Port"}
};

protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;
}

}

Formore information about resource bundles, see “Creating Resource Bundles ClassWith Example
” on page 38.

66 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

Registering Connection Factories in the Adapter

You must register each connection factory class in the WmAdapter implementation class. You do
this by passing the class name to the AdapterTypeInfo.addConnectionFactory method in the
WmAdapter.fillAdapterTypeInfo method in WmAdapter implementation class. In the example the
SimpleConnectionFactory connection factory class is registered in theMyAdapter adapter
implementation class:
package com.wm.MyAdapter;
..
..
..
import com.wm.MyAdapter.connections.SimpleConnectionFactory;
..
..
..
public class MyAdapter extends WmAdapter implements MyAdapterConstants {
..
..
..
public void fillAdapterTypeInfo(AdapterTypeInfo info, Locale locale) {
info.addConnectionFactory(SimpleConnectionFactory.class.getName());

}
}

Connection Class Interactions

Integration Server uses connection classes at design time to support the creation andmanagement
of the connection namespace nodes (as well as the adapter service and notification namespace
nodes). At run time, the ADK connection manager creates and releases connections as necessary,
based on the pool configuration in the connection node and the demand for access to the adapter
resource. This section describes the interactions of connection classes during the management of
connection namespace nodes, as well as the basic flow used whenever connections are created or
destroyed.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 67

4 Connections

Retrieving Connection Metadata

When a user of the adapter creates or edits a connection node, Integration Server interrogates the
connection factory implementation to retrieve the metadata as follows:

1. Gets the adapter name, version, and JCA version, as shown in steps 1 to 3 in the figure.

2. Instantiates the connection factory if it is not already cached, and introspects the connection
factory for themetadata parameters, as shown in step 4 in the figure. Integration Server retrieves
the set accessor methods.

3. Calls the getmethod for each metadata parameter (if present) and retrieves any default values
that may be provided for those parameters, as shown in steps 5-6 in the figure. While get
methods may have other uses in the implementation, this is their only use from the ADK's
perspective.

4. Calls the fillWmDescriptormethod of the connection factory, as shown in step 7 in the figure. The
fillWmDescriptor method can specify the order in which the parameters must appear on the
adapter's administrative interface, set display names, and constrain input of the users of the
adapter.

68 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

Enabling Connection Nodes

Connection nodes are disabled by default; users must explicitly enable them using the adapter's
administrative interface. If a connection node is enabled when Integration Server shuts down, it
is also be enabled at Integration Server startup.

Integration Server performs the following actions to enable a connection node:

1. Obtains a connection factory instance.

If the connection manager has already created a connection factory instance (and it is cached
for usewith this node), that instance is used; otherwise, themanager instantiates a new instance,
as shown in step 1 in the figure.

2. Updates the connection factory instance with the metadata parameter settings using the set
methods.

3. Calls the enableCallBack method to call any adapter specific operations for the enable state
change, as shown in step 4 in the figure.

4. Calls the queryTransactionSupportLevel method to get the transaction support capabilities of
connections created by the connection factory instance, as shown in step 5 in the figure.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 69

4 Connections

Transaction support depends on the capabilities of the adapter resource and the current
metadata parameter settings. This method determines whether connections from this node
can participate in a transaction that may involve other connections, adapters, or resources. For
more information about transaction support, see “Specifying Transaction Support in
Connections” on page 341.

5. Initializes the connection pool.

For each connection it places in the pool (based on the minimum pool size specified when the
node was created, Integration Server calls the createManagedConnectionObject on the connection
factory and the initialization methods on the resulting connection object, as shown in steps 6
through 9 in the figure. If connection pooling is disabled, a single connection is created,
initialized, and then destroyed.

6. Integration Server calls the fillResourceAdapterMetadataInfo method on the connection factory to
register the types of adapter service templates supported by the connection.

7. Calls the startupCallBackmethod to perform any adapter specific operations for the startup state
change, as shown in step 11 in the figure.

Creating Connections
The connection manager requests new connections from an adapter's connection factory when
the node is enabled, andwhenever there is demand for a connection and the pooling limits defined
by the connection node have not been exceeded. If pooling for the node is disabled, the manager
creates a connection for each request, and destroys it when the request is completed. The process
of creating a connection is shown in steps 5-7 in the figure above.

Disabling Connection Nodes
Disabling a connection node causes the connection manager to release all connections in the
connection pool, and to reject any further requests for connections from that node. The connection
manager destroys connections that are currently being used by an adapter service or notification
when the current invocation of the adapter service or notification is completed. To see how a
connection is released, see the figure in “Releasing Connections” on page 71.

Note:
A listener instance holds the connection it retrieves during listener initialization for the lifetime
of the listener instance. Disabling the connection node has no impact on this connection already
held by the listener, but prevents the listener from starting or restarting in the event of an
AdapterConnectionException. For more information, see “Listener and Listener Notification
Interactions” on page 156.

70 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

Releasing Connections

When a connection is not in use and is not needed to maintain a connection pool, the connection
manager calls the connection implementation's destroyConnect method and removes all references
to the object, allowing it to be garbage collected.

Receiving AdapterConnectionExceptions

When Integration Server receives an AdapterConnectionException thrown from an adapter, Integration
Server resets the connection node associated with the exception. This means that the connections
in the pool are destroyed and not recreated until the next connection request.

Configuring and Testing Connection Nodes

Now you are ready to configure a connection node and verify that it establishes a connection to
your adapter resource as follows:

Configure and enable a connection node.

Configuring Connection Nodes
You create, manage, and enable connection namespace nodes using the adapter's management
screen.When you create a connection node, it is disabled by default. Youmust enable the connection
node after you create it.

To configure a connection node

webMethods Adapter Development Kit Installation and User’s Guide 9.12 71

4 Connections

1. Start Designer.

2. In Adapters screen, select the name of your adapter.

An adapter management screen opens, displaying any connection nodes that are currently
configured for the adapter. There may be one connection type for each connection factory
supported by the adapter.

3. Select Connections from the navigation area.

4. Select Configure New Connection.

5. In the Connection Types screen, select a connection type.

6. In the Configure Connection Type screen, provide values for the connection's parameters.

a. Complete the Configure Connection Type > Adapter_Name section as follows:

DescriptionField

Namespace node package inwhich to create the connection. Formore
information about creating packages, see “PackageManagement” on
page 49.

Package

Folder name in which to create the connection. If the folder does not
already exist in the package, the Integration Server creates it.

Folder Name

Connection name.Connection Name

b. Complete the Connection Properties section as appropriate for your adapter resource.

Enter values for the connection's metadata properties. For example, the Sample Adapter
displays parameters such as Sample Server Host, Sample Server Port Number, Local
Transaction Control, and Timeout.

c. Complete the Connection Management Properties section as follows:

DescriptionField

Enables or disables the use of connection pooling for the connection.
The default value is true (enabled).

Enable
Connection
Pooling

Number of connections to create when the connection is enabled. The
default value is 1.

Minimum Pool
Size

Maximum number of connections that can exist at one time in the
connection pool. The default value is 10.

Maximum Pool
Size

72 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

DescriptionField

Number of connections by which the pool will be incremented if
connections are needed, up to themaximumpool size. The default value
is 1.

Pool Increment
Size

If connection pooling is enabled, this field specifies the number of
milliseconds that Integration Server waits to obtain a connection with
the adapter resource before it times out and returns an error.

Block Timeout

For example, you have a pool with Maximum Pool Size of 20. If you
receive 30 simultaneous requests for a connection, 10 requests wait for
a connection from the pool. If you set the Block Timeout to 5000, the
10 requests wait for a connection for 5 seconds before they time out and
return an error. If the services using the connections require 10 seconds
to complete and return connections to the pool, the pending requests
fail and return an errormessage stating that no connections are available.

If you set the Block Timeout value too high, you may encounter
problems during error conditions. If a request contains errors that delay
the response, other requests are not sent. This setting must be tuned in
conjunction with the Maximum Pool Size to accommodate such bursts
in processing. The default value is 1000.

If connection pooling is enabled, this field specifies the number of
milliseconds that an inactive connection can remain in the pool before
it is closed and removed from the pool.

Expire Timeout

The connection pool removes inactive connections until the number of
connections in the pool is equal to theMinimum Pool Size. The inactivity
timer for a connection is resetwhen the connection is used by the adapter.

If you set the Expire Timeout value too high, you may have a number
of unused inactive connections in the pool. This consumes localmemory
and a connection on your backend resource. This could have an adverse
effect if your resource has a limited number of connections.

If you set theExpire Timeout value too low, performance could degrade
because of the increased activity of creating and closing connections.
This setting should be tuned in conjunction with the Minimum Pool
Size to avoid excessive opening/closing of connections during normal
processing.

The default value is 1000. Enter -1 to specify no timeout.

Number of times that the system should attempt to initialize the
connection pool at startup if the initial attempt fails. The default value
is 0 (a single attempt).

Startup Retry
Count

webMethods Adapter Development Kit Installation and User’s Guide 9.12 73

4 Connections

DescriptionField

Number of seconds that the system should wait between attempts to
initialize the connection pool. This field is irrelevant if the value of
Startup Retry Count is 0. The default value is 10.

Startup Backoff
Timeout

7. Click Test Connection.

The connection is tested based on the settings provided.

8. Click Save Connection.

The connection name is now listed on the adapter's Connections screen and in the Service
Browser of Designer.

9. In the adapter'sConnections screen, enable the connection node by clickingNo in theEnabled
column. The Enabled column now shows Yes.

Integration Server initializes a connection pool based on the provided settings. Enabling and
disabling a connection node produces entries in Integration Server log.

Note:
If a connection node is enabled when Integration Server shuts down, it is enabled at Integration
Server startup.

74 webMethods Adapter Development Kit Installation and User’s Guide 9.12

4 Connections

5 Adapter Services

■ Overview .. 76

■ Adapter Service Classes .. 76

■ Metadata Model for Adapter Services .. 78

■ Adapter Service Template Interactions ... 98

■ Adapter Service Implementation .. 102

■ Configuring and Testing Adapter Service Nodes .. 119

webMethods Adapter Development Kit Installation and User’s Guide 9.12 75

Overview

An adapter service defines an operation that the adapter performs on an adapter resource. Adapter
services operate like Integration Server flow services or Java services. Adapter services have input
and output signatures, can be invokedwithin flow services, and can be audited from the Integration
Server's audit system.

Like a connection, an adapter service consists of a Java class component and a namespace node
in which design time settings are stored in the metadata parameters. Adapter services support:

Basic metadata constructs supported by connections.

Additional data types.

More sophisticated widgets.

Ability to define the signature of the adapter service node.

This means that the users of the adapter can specify what data to search for in the flow service
pipeline when the adapter service is called, and what data to place in the pipeline during the
execution of the service. Using these signatures, you can link the adapter services to other
Integration Server elements as part of a total integration solution.

Designer provides the facilities for the users of the adapter to create, configure, and test adapter
service nodes.

Adapter Service Classes

The following figure shows the classes provided by theADK to support adapter service templates.
It also shows the com.wm.adk.cci.interaction.WmAdapterService implementation classMockDbUpdate.

76 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Adapter Services Implementation Classes

Create an adapter service class by extending the com.wm.adk.cci.interaction.WmAdapterService base class.
The adapters include several adapter service template classes, so it is common to place them in
their own package. You must override the following base class methods in your WmAdapterService
implementation class:

DescriptionMethod

Receives a WmManagedConnection implementation object from the
adapter implementation, and a WmRecord containing the pipeline
data.

execute

webMethods Adapter Development Kit Installation and User’s Guide 9.12 77

5 Adapter Services

DescriptionMethod

Note:
This is an abstract method in the base class, so failing to override
it results in a compilation error.

Formore information, see “Adapter Service Execution” on page 96.

Receives a WmTemplateDescriptor object and a Locale object. Serves to
modify how metadata parameters are handled during data entry.

fillWmTemplateDescriptor

Note:
Failing to override this method results in a runtime error.

For more information, see “WmTemplateDescriptor Interface” on
page 79.

Returns the current version of the metadata.metadataVersion

Note:
If the template has multiple metadata versions, override this
method.

Uses metadata version as input and returns an array of the fields
that are not applicable to the metadata version provided.

fieldsToIgnoreInMetadataDefinition

Note:
If the template hasmultiplemetadata versions, failing to override
this method results in breaking the old services.

Metadata Model for Adapter Services

The following sections describe the basics of the metadata model for adapter services.

Metadata Parameters for Adapter Services

Metadata parameters for adapter services use the same model that connections use.

The restriction on sequence parameters (arrays) does not apply to adapter services. The adapter
service editor supports widgets that allow the users of the adapter to view and manipulate
array values in several ways, as described in the next section.

Providing default values to parameters through a "get"method is not as valuable in the context
of adapter services. This functionality is largely replaced by the use of resource domains. Some
functionalities, such as the specification of the run time signature of the service, require values
to be provided through the resource domain facilities. For more information, see “Resource
Domains” on page 84.

For more information, see “Metadata Model for Connection” on page 63.

78 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

WmTemplateDescriptor Interface

The WmTemplateDescriptor interface extends the com.wm.adk.metadata.WmDescriptor interface. The
WmTemplateDescriptor controls how metadata parameters appear, and defines rules for data entry.
Include the method fillWmTemplateDescriptor in your adapter service to populateWmTemplateDescriptor.

Important:
Do not call the base class version of the method (by calling super()).

WmTemplateDescriptor introduces newmethods and concepts. In addition, it alsomodifies the behavior
of some of the methods inherited from WmDescriptor.

WmDescriptor Methods

DescriptionMethod

Specifies the order in which parameters must appear in Designer. Unlike with
connections, you can create multiple groups for adapter services. Each group

createGroup

corresponds to a tab in the adapter service editor, with the group name becoming
the key. The key is used to identify the display name. Each group has a resource
bundle entry that provides the display name shown on the screen. Group names
are only displayed if you do not provide a display name in your resource bundle.

Parameters can be assigned to only one group. If some or all of a service's metadata
parameters are not assigned to a group, a default group is created and the unassigned
parameters are added to it. This is true even if the parameter is hidden. Each group
can have a display name and a description specified in the resource bundle.

Use the resource domain facilities (recommended) instead of thismethod. Formore
information, see “Resource Domains” on page 84.

setValidValues

Displays asterisks when the users of the adapter enter passwords.setPassword

Note:
The adapter service editor does not support the automatedpassword confirmation
facilities described for connections.

Searches the resource bundle for display names, and descriptions for the service,
metadata parameters, and any groups that have been created at the point

setDescriptions

setDescriptions is called. If youwant groupdisplay fields to be loaded from the resource
bundle, call setDescriptions at the end of the fillWmTemplateDescriptor implementation.

Designates properties as hidden. A hidden property does not appear in the adapter
service editor.

setHidden

Note:
Some of these methods have implicit order requirements because the methods build on the
activities performed in previous method calls.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 79

5 Adapter Services

By default, the adapter service editor displays each metadata parameter in its own widget, based
on the parameter's data type. These widgets include:

Data TypeWidget

String parameterText box

ArrayTable widget

BooleanCheck box

NumericA text box with scrollable values

Use the following WmTemplateDescriptor methods to modify and enhance the default behavior.

WmTemplateDescriptor Methods

DescriptionMethod

Organizes parameters into columns of a single table widget.createFieldMap

Grouping mechanism that you can use to modify the behavior of a resource
domain lookup, and how resource domain values are applied in a field map.

createTuple

Changes thewidget froma standard text box to amulti-line text box. Thiswidget
also supports text import fromfiles. The resulting parameter valuemay include
embedded returns.

setMultiline

Associates a metadata parameter of an adapter service with a resource domain
supported by the service's connection.

setResourceDomain

For more information about FieldMaps and Tuples, see “FieldMaps” on page 81, “Tuples” on
page 83.

For more information about setting resource domains, see “Resource Domains” on page 84 and
“Associating Metadata Parameters with Resource Domains” on page 87.

Order of WmTemplateDescriptor and WmDescriptor Methods Called

Some of thesemethods have implicit order requirements because they build on activities performed
in the previous methods calls. For example, call setDescriptions after the final call to createGroup so
that the resource bundle lookups can include all groups defined in the service. Use the calls in the
following order:

1. createGroup

2. createFieldMap

3. createTuple

4. setResourceDomain

80 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

5. setDescriptions

Note:
If you create tuples, make setResourceDomain calls for tuple parameters in the order in which the
parameters are set in the tuple.

Metadata Parameter Groups, FieldMaps and Tuples

Groups

Call the WmTemplateDescriptor.createGroup method to perform the following:

1. Organize parameters into different tabs.

2. Specify the order in which the parameters appear.

FieldMaps

Call theWmTemplateDescriptor.createFieldMapmethod to organize various sequence parameters (within
the same group) into a single table widget in the adapter service editor. The full signature for
createFieldMap is:
void createFieldMap(String[] members,

boolean variable,
boolean fillAll);

The following table describes the parameters of WmTemplateDescriptor.createFieldMap:

DescriptionParameter
Name

Specifies a list of the parameter names that make up the field map. A field map can
contain one or more member parameters, but a parameter must not be a member of
more than one field map.

members

The members argument is not an ordered list.

The members argument has no impact on the order in which the columns appear
in a field map.

The order of the columns in a field map is dictated entirely by the order in which
the parameters appear in the group.

The first member to appear in the group list appears in the first column of the field
map.

The remaining columns follow the order in which they appear in the group.

If there is more than one field map in a group, then the relative positions of the
first column parameters in the group dictates the order in which the field map
tables appear.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 81

5 Adapter Services

DescriptionParameter
Name

Note:
Using the parameters from different groups in a field map results in an exception.

Enables the users of the adapter to add rows to the table. Possible values are:variable

true. The values are not populated by default. However the users of the adapter
must click on the add row icon to populate each value row in the table.

false. The values are populated by default, and the add row icon is disabled,
thereby disabling the users of the adapter from adding rows to the table.

In this case, the fieldmap is considered to be a variable fieldmap because the number
of fields that appear in the adapter service editor may vary.

By default, each time the user of the adapter adds a row to the fieldmap, each column
is populated based on the associated parameter's data type and the contents of the
associated resource domain. Typically, the column contains a dropdown list of string
values from the resource domain. In other cases, either a check box appears (for Boolean
parameters) or the column is empty.

Populates the table with all the available data. Possible values are:fillAll

true. Populates the table with all the available data.

false. The user of the adapter must add the rows in the table.

If the fillAll argument is true and the variable argument is false, then :

The table is expanded to contain one row for each value provided for the
parameter in the first column of the field map.

The values for this first column are provided by the associated resource domain,
and cannot be changed or manipulated by the user. This is true even when the
associated resource domain's setComplete method is false; the users of the
adapter cannot directly update this column. The users of the adapter can still
make changes to other parameters thatmight impact the content of the resource
domain of the first column's parameter. For more information about
dependencies, see “Associating Metadata Parameters with Resource
Domains” on page 87.

The remaining columns contain the same value and user interface widget that
would be employed if the user manually inserted the row.

Note:

If variable is false, then fillAll is assumed to be true, regardless of the value passed in the
argument.
Do not set both fillAll and variable to true; the resulting behavior is unpredictable.

82 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Tuples

The WmTemplateDescriptor.createTuple method is an another grouping mechanism that you can use
to modify:

The behavior of a resource domain lookup.

How the resource domain values are applied to parameters in the tuple.

Members of a tuple are linked when:

The resource domain values are retrieved.

The values are updated on the user interface.

When the adapter service editor performs a resource domain lookup for a parameter in a tuple,
it expects the response array to contain a ResourceDomainValues object for each parameter in the
tuple. Thus, changes resulting from the resource domain lookup is applied simultaneously to each
parameter in the tuple. This mechanism is particularly useful when two or more sequence
parameters in a fieldmap are closely related. For example, when one parameter contains a column
name and the other parameter contains the column format.

Requirements for reliable tuple operation are as follows:

The parameters of a tuple must be sequence parameters of the same field map. If parameters
are in separate fieldmaps, the resource domain lookup functions properly, but the user interface
characteristics do not function as described below.

In the user interface, the first parameter in a tuple serves as the primary parameter, and all
other parameters are secondary parameters. In the adapter service editor:

Users of the adapter can directly manipulate the primary parameter, but not secondary
parameters.

The secondary parameter contains the value from its resource domain that corresponds to
the value selected from the primary parameter. For example, if the fourth member of the
primary parameter's resource domain is selected, then the fourthmember of the secondary
parameter's resource domain appears in the secondary parameter's column.

If a secondary parameter value is not specified in the position corresponding to the primary
parameter's value, then the secondary parameter is left blank in that row.

A tuple must be declared (in the code) before a setResourceDomain method.

The first parameter of a tuplemust be assigned to a resource domain before any othermember
of the tuple.

Each parameter of a tuple must have the same parameter dependencies listed in the
setResourceDomain call that you used to assign the metadata parameters of the adapter service
to a resource domain.

For each ResourceDomainValues object returned in the lookup, the setComplete method must be
true in which the users of the adapter cannot supply parameter values.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 83

5 Adapter Services

The first parameter in the tuple must appear first in its group.

Formore information, see “AssociatingMetadata Parameterswith ResourceDomains” on page 87,
and “Populating Resource Domains with Values” on page 88.

Resource Domains

A resource domain defines the domain of valid values for metadata parameters, based on rules
and/or data that are specific to the adapter resource. Resource domains can have properties that
affect the behavior of the resource domain, and associations with the metadata parameters.

You can use resource domain values to:

Assign default values for parameters.

Enable the adapter to look up parameter values in the adapter resource.

Enable the users of the adapter to supply their own parameter values, and enable the adapter
to validate these values.

Disable parameters, based on specified sets of values in other parameters.

A commonuse of resource domain values is to create a dropdown list of data values for a parameter,
much like the WmDescriptor.setValidValues method in connection factories. However, the resource
domain values differ from the setValidValues lists in two important ways:

Resource domain values can interact with the adapter service editor.

As values in one parameter change, callbacks are made to the adapter to update the resource
domain values. For example, if parameter A contains a list of database table names, and
parameter B contains a list of column names, then when a table is selected in parameter A, the
resource domain values used in parameter B can be updated to reflect the columns from the
table selected in parameter A.

Resource domain values can be retrieved directly from the adapter resource, using a
WmManagedConnection instance.

To create a resource domain:

1. Register the resource domain and its properties in yourWmManagedConnection implementation.

2. Associate the adapter's metadata parameters with the resource domain.

3. Populate the resource domain with values in your WmManagedConnection implementation.

Registering Resource Domains

You must register resource domains in your WmManagedConnection implementation using the
WmManagedConnection.registerResourceDomainmethod. This method has a single argument of the type
WmAdapterAccess. For more information, see“Creating aWmManagedConnection Implementation
Class” on page 61.

84 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Registering a resource domain name establishes the definition of the resource domain within a
given scope. That is, you can register one resource domain to be used by all adapter services that
use the connection, or you can register multiple resource domains on a service-by-service basis.
Youmust register the name of each resource domain supported by the connection (and by extension,
each resource domain used by any service supported by the connection).

In the WmManagedConnection.registerResourceDomainmethod, you must perform the following:

Create a ResourceDomainValues object, which represents a list of values for a resource domain.

Specify whether the resource domain is fixed or dynamic.

DescriptionMethod

Defines a fixed resource domain with one or more
values. A fixed resource domain displays default

WmAdapterAccess.addResourceDomain

values that you provide for the resource domain
parameters. This method expects one or more
ResourceDomainValues objects. For more information
about resource domain values and their settings, see
“Populating Resource Domains with Values” on
page 88.

Defines a dynamic resource domain. A dynamic
resource domain enables the adapter to look up

WmAdapterAccess.addResourceDomainLookup

values for the parameters, based on changes to
dependency parameters.

This method supplies a reference to an object that
the adapter service editor uses to make callbacks
when the adapter service node is configured.
Resource domain lookups can only be performed
against WmManagedConnection objects, so the "this"
reference is generally used as the object reference
argument. For example:
access.addResourceDomainLookup(
"aSampleResourceDomainName", this);

For more information, see “Resource Domain
Lookups” on page 89.

Specify whether the users of the adapter can provide their own parameter values, and enable
the adapter to validate these values. To do this, you use the following methods:

DescriptionMethod

ResourceDomainValues.setComplete(false) Allows the users of the adapter to supply values.

Sets a flag named complete.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 85

5 Adapter Services

DescriptionMethod

Whenusing both fixed resource domains anddynamic
resource domains, you can allow the users of the
adapter to enter their own values, allowing them to
add to the current list of values for the resource
domain.

ResourceDomainValues.setCanValidate(true) Enables the adapter to validate the user supplied
values using adapter check values callbacks. The
WmManagedConnection.adapterCheckValue method
validates the user supplied values.

Sets the canValidate flag

Calls theWmManagedConnection.adapterCheckValuemethod.WmAdapterAccess.addCheckValue

Note:
WmAdapterAccess.addCheckValue must appear after WmAdapterAccess.addResourceDomain or
WmAdapterAccess.addResourceDomainLookup.

The following example registers two resource domains:
101. public void registerResourceDomain(WmAdapterAccess access)
102. throws AdapterException
103. {
104. ResourceDomainValues tableRdvs = new ResourceDomainValues(
105. MockDbUpdate.TABLES_RD, mockTableNames);
106. tableRdvs.setComplete(true);
107. access.addResourceDomain(tableRdvs);
108.
109. access.addResourceDomainLookup(MockDbUpdate.COLUMN_NAMES_RD,this);
110. access.addResourceDomainLookup(MockDbUpdate.COLUMN_TYPES_RD,this);
111.
112. ResourceDomainValues rdvs = new ResourceDomainValues(
113. MockDbUpdate.OVERRIDE_TYPES_RD, new String[] {""});
114. rdvs.setComplete(false);
115. rdvs.setCanValidate(true);
116. access.addResourceDomain(rdvs);
117. access.addCheckValue(MockDbUpdate.OVERRIDE_TYPES_RD,this);
...
121. }

In this example, note that:

Lines 104-105 create a ResourceDomainValues object (identified by the constant
MockDbUpdate.TABLES_RD).

Line 106 indicates that the users of the adaptermay not supply their ownvalues to the resource
domain.

Line 107 adds a resource domain to this object.

86 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Lines 109-110 add lookups for this object, indicating that the resource domain is dynamic. For
these lookups, you must pass an instance of the connection that can satisfy the lookup. This
is accomplished by using the "this" reference.

Lines 112-113 create an empty ResourceDomainValues object.

Line 114-115 indicate that the users of the adaptermay supply their own values, and the adapter
validates these values. setCanValidate(true) calls the adapterCheckValue method (line 117) for each
value that is not already in the resource domain.

Line 116 adds a resource domain to this object. This is a fixed resource domain because no
lookups are performed.

Associating Metadata Parameters with Resource Domains

The metadata parameters of an adapter service must be assigned to a resource domain supported
by the service's connection. The interfaceWmTemplateDescriptor, provides setResourceDomainwith the
following signature:
void setResourceDomain(String name,

String resourceDomainName,
String[] dependencies)

DescriptionParameter Name

Name of the parameter being assigned.name

Resource domain name that matches the name registered in the connection.resourceDomainName

List of any other metadata parameter names in the current adapter service
upon which the value of the parameter in the first argument depends.

dependencies

Dependencies are important to dynamic resource domain lookups. When
the user of an adapter changes the value of a parameter in the dependency
list, a lookup retrieves a new set of resource domain values.

For example, for the parameters named columns and tables, youmight assign
the columns parameter to a resource domain called columnsLookup, with a
dependency on the tables parameter as follows:
d.setResourceDomain("columns", "columnsLookup",

new String[] {"tables"});

When the tables parameter changes,
WmManagedConnection.adapterResourceDomainLookup determines the new value
or values that can be applied to the columns parameter. Depending on the
properties of a resource domain, the lookup may be used to set the value
of a parameter, or to provide a list of possibilities from which the user of
the adapter may select a value.

For more information, see “Resource Domain Lookups” on page 89.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 87

5 Adapter Services

For more information about the variant forms of setResourceDomain, including the concept of
useColumns, see “The useParam Argument of setResourceDomain” on page 171.

Populating Resource Domains with Values

To populate a fixed or dynamic resource domain with values, implement the ResourceDomainValues
class in your WmManagedConnection implementation.

This class is the primary container for controlling the behavior of the adapter service parameters.
It is used during the registration process when you register a fixed resource domain, and it is
returned from the adapterResourceDomainLookupmethod in response to a dynamic callback. Formore
information, see “Resource Domain Lookups” on page 89.

A ResourceDomainValues object contains the following:

Name of the resource domain.

Current list of values for the resource domain.

The current list of values can contain an array of strings or an array of ResourceDomainValue
objects. This array constitutes the list of values that appears in the appropriate widgets in the
adapter service editor. The displayed values are communicated as strings, regardless of the
data type of the parameter associated with the resource domain.

Note:
Using a list of values that cannot be converted to the parameter's data type results in a
runtime error. Null and empty strings are not accepted in numeric parameters.

The following methods:

DescriptionMethod

ResourceDomainValues.setComplete(false) Allows the users of the adapter to supply values.

Sets a flag named complete.

When using both fixed resource domains anddynamic
resource domains, you can allow the users of the
adapter to enter their own values, allowing them to
add to the current list of values for the resource
domain.

ResourceDomainValues.setCanValidate(true) Enables the adapter to validate the user supplied
values using adapter check values callbacks. The
WmManagedConnection.adapterCheckValue method
validates the user supplied values.

Sets the canValidate flag

Disables the parameter in the adapter service editor.ResourceDomainValues.setDisabled

88 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

For example, assume that a parameter named portNumber has a data type of int.When constructing
the associated resource domain values, limit the list of values to numeric strings as follows:
new ResourceDomainValues("portNumberLookup", new String[]
{"6048","8088","9090"});

This example shows a ResourceDomainValues object with a set list. You have the option to define a
range of values, by providing aminimum/maximumvalue. In this case, a singleResourceDomainValues
object is used to define theminimum andmaximumvalues of a numeric parameter. The following
conditions must be met for defining a range of values:

The parameter must be of a numeric data type (such as int or long).

The parameter cannot be a sequence parameter (array).

The ResourceDomainValues object must contain exactly one value that is constructed from a
ResourceDomainValue object.

ResourceDomainValues.setCompletemust be false. Youmust set this method explicitly if you used
the ResourceDomainValue[] constructor; otherwise, changes to the parameter are not saved.

The embedded ResourceDomainValue object must have a name representing a numeric value, and
an endName representing a number value greater than the value of the name.

Note:
This is the only defined use for ResourceDomainValue.endName. In all other cases, only
ResourceDomainValue.name is used. All other ResourceDomainValue attributes are placeholders,
and are not currently implemented. Using a String[] to construct ResourceDomainValues is
equivalent to using a ResourceDomainValue[]where only the ResourceDomainValue.name attributes
are populated.

Resource Domain Lookups

A dynamic resource domain uses resource domain lookups. The method addResourceDomainLookup
is used to enable the adapter to look up parameter values in the adapter resource.

When the users of the adapter create an adapter service node, they select a connection in which
the adapter service executes. That connection also provides data from the resource domain that
you registered with the connection.

When a node is created, the adapter service editor initiates a resource domain lookup to the
connection class for each of the adapter's metadata parameters that are associated with dynamic
resource domains. Additional lookups are made as the users of the adapter modify the values of
parameters upon which other parameters depend.

All resource domain lookups invoke the method adapterResourceDomainLookup in the
WmManagedConnection implementation class:
ResourceDomainValues[] adapterResourceDomainLookup(String serviceName,
String resourceDomainName,
String[][] values)

webMethods Adapter Development Kit Installation and User’s Guide 9.12 89

5 Adapter Services

DescriptionParameter Name

Class name of the adapter service.serviceName

Registered name of the resource domain.resourceDomainName

A multi-dimensional array that is populated with the current value of the
parameters upon which the current lookup depends, as specified in the
WmTemplateDescriptor.setResourceDomain call.

values

Formore information, see “AssociatingMetadata Parameterswith ResourceDomains” on page 87.

For example:
d.setResourceDomain("columnsArg", "columnsLookup", new String[] {"tablesArg"});

This call creates a dependency on tablesArg. When the lookup for the columnsLookup resource
domain is made, the values argument contains the current settings for the tablesArg parameter.
Data in the values argument is organized such that:

The first dimension of the array determines the dependent parameter.

The second dimension iterates the data in the parameter.

Thus, values[0][0] contains the value of the first dependent parameter. If it is a sequence parameter,
then values[0][1]would contain the next value in the sequence, values[0][2] the next, and so
on. If there were more than one dependency, the contents of the second parameter on which the
lookup depends would be contained in values[1][].

Note:
Placing a sequence parameter in a field map has several effects on the resource domain lookup
process (see“Tuples” on page 83).

The signature of adapterResourceDomainLookup indicates that an array of ResourceDomainValues objects
must be returned. Unless your implementation includes tuples, there must be exactly one object
in the response array, and the name attribute of that ResourceDomainValues object must always be
the same as the resourceDomainName argument passed into the method.

When the adapter service editor receives the lookup response data, it is evaluated against any
data in the "current" parameter (the parameter for which the lookup was performed). An entry in
the current parameter is considered valid if any one of the following is true:

The parameter value matches a value in the ResourceDomainValues list.

ResourceDomainValues.setComplete(false) and ResourceDomainValues.setCanValidate(false).

ResourceDomainValues.setComplete(false) and ResourceDomainValues.setCanValidate(true) and the value
was successfully validated through the adapter check values facility.

If the current parameter settings are considered valid, then the parameter values remain unchanged.
However, any current parameter values are merged with the values in the lookup response when
the parameter's dropdown list is opened. (This effectively extends the resource domain to include

90 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

values that were entered by the user.) If the current parameter settings are not considered valid,
then the invalid value is deleted and replaced by a value in the resource domain.

Adapter Check Value Callbacks

Whenusing both fixed resource domains anddynamic resource domains, youmay allow the users
of the adapter to enter their own parameter values, allowing them to add to the current list of
values for the resource domain. To enable the adapter to validate these values, you use callbacks
known as adapter check values. Adapter check values are resource domain mechanisms that
function very much like resource domain lookups. Any value in a parameter that is not part of
the parameter's resource domain list may be validated by an adapter check value. For more
information, see “Registering Resource Domains” on page 84.

Adapter check values can also validate resource domain lookups for each unique value that is not
part of a resource domain list that is complete (that is, a list that does not accept the values supplied
by the users of the adapter). For example, suppose the sequence parameter named colors contains
the values "White", "Gray", "Black", and "Red". After a resource domain lookup, the resource
domain list contains "Black" and "Gray". Assuming that the resource domain is configured
appropriately, the adapter service editor performs an adapter check value callback for "Red" and
"White". If it finds either value, it deletes the cell containing that value or overwrites it, if the
sequence is in a field map.

To use an adapter check value callback, you must:

Set the following methods of the ResourceDomainValues class as follows:

DescriptionMethod

ResourceDomainValues.setComplete(false) Allows the users of the adapter to supply values.

Sets a flag named complete.

When using both fixed resource domains anddynamic
resource domains, you can allow the users of the
adapter to enter their own values, allowing them to
add to the current list of values for the resource
domain.

ResourceDomainValues.setCanValidate(true) Enables the adapter to validate the user supplied
values using adapter check values callbacks. The
WmManagedConnection.adapterCheckValue method
validates the user supplied values.

Sets the canValidate flag

Disables the parameter in the adapter service editor.ResourceDomainValues.setDisabled

If both of these flags are set properly, the adapter service editor calls the following method for
each value that is not already in the resource domain:
Boolean adapterCheckValue(String serviceName,

String resourceDomainName,

webMethods Adapter Development Kit Installation and User’s Guide 9.12 91

5 Adapter Services

String[][] values,
String testValue)

DescriptionParameter Name

Class name of the adapter service.serviceName

Registered name of the resource domain.resourceDomainName

A multi-dimensional array that is populated with the current value of
the parameters upon which the current lookup depends, as specified in
the WmTemplateDescriptor.setResourceDomain call.

values

Value being checked.testValue

Register the adapter check value callback at the same time you register the resource domain
name, using theWmAdapterAccess.addCheckValuemethod. Formore information, see “Registering
Resource Domains” on page 84.

Field Maps with Resource Domain Dependencies

The addResourceDomainLookup and adapterCheckValuemethods have a values[][] argument that contains
the current value(s) of the parameter(s) on which the resource domain association depends. If the
dependency parameter is a sequence parameter, the complete list of values is provided in the
values argument. However, when a parameter depends on another parameter in the same field
map, then by default each row in the field map is handled separately, for resource domain
lookup/check value purposes.

For example, assume that with the sequence parameters A and B, the lookup for B depends on A.
If the parameters are not in the same field map, then whenever a row in A changes, a lookup is
performed for B, to which all values of A are passed. The results list is applied to each row of B,
and updates are made to any rows of B that are no longer valid. The rows may be no longer valid
because their values are not members of a "complete" resource domain (that is, a resource domain
that does not allow the users of the adapter to enter values), or because an adapter check value
callback failed to validate the rows.

However, if A and B are in the same field map, then when the value in a row of A changes, only
the new value in that row is passed to the resource domain lookup, and the values returned from
the lookup apply only to that row of B. For example, if parameter A contains catalog item numbers,
and parameter B contains the colors in which the item is available, then for each catalog item
number in A, there would be a separate dropdown list of available colors in column B. Also note
that if the same catalog item number appeared in multiple rows in column A, then the dropdown
list of colors in column B would be the same. There would not be a separate resource domain
lookup for each of those rows because the adapter service editor would recognize that it already
has the list of colors for that item number. Or, more accurately, that it already has a list of resource
domain values based on the given set of dependency parameter values.

If you want to suppress the behavior described above, prefix the name of the parameter in the
setResourceDomain dependency list with an asterisk (*). For example, the following method causes

92 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Integration Server to treat parameter A like any other parameter, even if it were in a field map
with B:
setResourceDomain("B", "bLookup", new String[] {"*A"})

Adapter Service Node Signatures
In addition to using the metadata model to create parameters for configuring an adapter service
node, you can use the model to define the signatures of that node.

An adapter service node has an input signature and an output signature. An input signaturedescribes
the data that the service expects to find in the flow service pipeline at run time. An output signature
describes the data that the service expects to add to the pipelinewhen it has successfully executed.

You can view an adapter service node's signature in the Input/Output tab of the adapter service
editor in Designer. Rules for defining signatures appear in the following procedure.

Once the signature is complete, users may include an adapter service node in flow constructs.
They can route, map, and transform the input and output of the adapter service as needed in the
integration solution.

The following procedure provides a basic model that you can use to implement a metadata
signature. If you deviate from this model, it is important to understand that signature resource
domains are only invoked as a result of a value applied to a dependent parameter. Having a
resource domain lookup simply change the list of possible values in the resource domain does not
impact the signature unless the current value is changed.

To create the signature of an adapter service node

1. Createmetadata input parameters for the field names, data types, and signature. Eachparameter
must have a data type of String[].

For example, assume that inputNames, inputTypes, and inputSignature are created as follows:
public void setInputNames(String[] val);
public void setInputTypes(String[] val);
public void setInputSignature(String[] val);

2. Add these parameters to a group in the same order as above.

For example:
templateDescriptor.addGroup("group name", new String []
{ …, "inputNames", "inputTypes", "inputSignature"});

3. You may hide any or all of the parameters. (Hiding all parameters in a field map hides the
map table as well.)

For example:
templateDescriptor.setHidden("inputNames");
templateDescriptor.setHidden("inputTypes");

webMethods Adapter Development Kit Installation and User’s Guide 9.12 93

5 Adapter Services

templateDescriptor.setHidden("inputSignature");

4. Create a field map containing the three input parameters. In the createFieldMap method, set
the variable argument to false, and set the fillAll argument to true.

For example:
templateDescriptor.creatFieldMap(new String [] {"inputNames",

"inputTypes", "inputSignature"}, false, true);

In some cases, you can include other parameters in this field map, but this can sometimes be
problematic, particularly if these parameters are hidden.

5. Create a tuple containing the names and types parameters.

For example:
templateDescriptor.creatTuple(new String [] {"inputNames",

"inputTypes"});

6. In the associated connection class(es), register two resource domains to support name and
type lookups.

For example, assume that the resource domains inputNamesLookup, and inputTypesLookup are
created as follows.
access.addResourceDomainLookup("inputNamesLookup", this);
access.addResourceDomainLookup("inputTypesLookup", this);

7. Assign the names parameter to the name lookup resource domain, and assign the types
parameter to the type lookup resource domain. These assignments must specify the same
dependencies because the parameters are in a tuple. If no dependencies are known at this time,
specify null.

For example:
templateDescriptor.setResourceDomain("inputNames","inputNamesLookup",null);
templateDescriptor.setResourceDomain("inputTypes","inputTypesLookup",null);

8. Assign the signature parameter to one of the reserved resource domain names provided in
WmTemplateDescriptor, specifying the names parameter and the types parameter as
dependencies.

For example, INPUT_FIELD_NAMESwould be used as follows:
templateDescriptor.setResourcDomain("inputSignature",

WmTemplateDescriptor.INPUT_FIELD_NAMES, new String[]
{"inputNames", "inputTypes"}););

9. Implement the name and type lookups as described in “Implementing Resource Domain
Lookups for Signature Names and Data Types” on page 95.

94 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

10. Create an output signature by repeating this procedure, substituting OUTPUT_FIELD_NAMES for
INPUT_FIELD_NAMES in step 8.

Implementing Resource Domain Lookups for Signature Names and Data Types

You can load a signature's name and data type parameters using resource domain lookups. You
implement lookups by including an adapterResourceDomainLookupmethod in yourWmManagedConnection
implementation class.

These parameters are implemented as string arrays, with the corresponding index in each array
used to associate a name with a data type. The following subsections describe the values you
supply in your resource domains for the name and data type parameters.

Field Name String Values

Afield name string can contain a simple value, such as itemNumber, or a more complex value such
as customer.orders[].lineItems[].itemNumber. The complex field name string demonstrates the ability
of a signature to specify hierarchy (using a dot ".") andmultiplicity (using a pair a square brackets
"[]"). Thus, this example shows an aggregate of customer fields containing multiple orders that
may contain multiple line items that contain one itemNumber.

Follow these rules when creating resource domain values for containing signature names:

A name can be used as a field (containing data) or an aggregate (containing fields), but not
both.

Each entry must contain a field with any containing aggregates. Do not specify aggregates
alone.

Both fields and aggregates can be arrays, indicated by square brackets. For example:
customer.orders[].lineItems[].itemNumber.

Use name restrictions.

For more information, see the webMethods Service Development Help for your release.

Data Type String Values

A data type string must contain the data type corresponding to the field name string at the same
index in the field name's resource domain list of values. Data types for the adapter services are
similar to the data types for Java services. If the signature item is made accessible from an
Integration Server flow, its data type must be java.lang.String, java.util.Date, or one of the
"big-letter-primitive" classes (e.g., java.lang.Integer). If the data ismade to not be accessible from
a flow, then any class type is acceptable.

Multiplicity in the data type string uses a pair of square brackets [] appended to the class name.
Data type multiplicity represents the multiplicity across the entire signature hierarchy by adding
a set of brackets for each set of brackets in the corresponding name string.

Even though there is only one item number in the lineItems aggregate, there are many in the
signature. In this case, the data type would be java.lang.Integer[][] if itemNumber is an integer.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 95

5 Adapter Services

For examples, see “Example 1: WmAdapterService Implementation Class” on page 103. For more
information, webMethods Service Development Help for your release and “Interacting with the
Pipeline” on page 96.

Adapter Service Execution
When a flow service, or a trigger invokes an adapter service, Designer invokes an adapter service
node. The adapter service node calls theWmAdapterService.executemethod. The signature is as follows:
public WmRecord execute(WmManagedConnection connection,

WmRecord input) throws ResourceException

DescriptionInput
Parameter

The WmManagedConnection object argument delivers a connection instance from the
adapter service's connection node. How the adapter uses this connection object to

connection

gain access to the adapter resource is determined by the adapter's design, not by
the ADK.

The inbound WmRecord object contains data based on the input signature as well
as any other information that may be in the flow service pipeline at the time the

input

adapter service is invoked. The executemethod is responsible for interrogating the
inbound WmRecord object to retrieve the data necessary for the adapter service to
perform its function. The validation that the fields specified in the signature are
actually present in the pipeline is not performed by Integration Server, but the
data type for any field present in the pipeline is guaranteed to conform to the data
type specified in the signature. The adapter service must determine whether all
the required data is present, and how to respondwhen data elements are missing.

DescriptionOutputParameter

When the execute method completes, the outbound WmRecord object must
contain data based on the output signature defined in the metadata. This data

WmRecord object

is added to the pipeline. (An adapter service may not remove the data from
the pipeline because it only works with a copy of the pipeline object, not the
original pipeline object.) Once again, the adapter implementation has primary
responsibility for determining what portions of the signature is populated. A
run time exceptionmight occur if a field thatwas not populated by the adapter
service is mapped within a flow service.

Interacting with the Pipeline

During run time, an adapter service has to perform the following:

Retrieve data from the pipeline at the beginning of its execution.

96 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

To retrieve data from the pipeline, the service must interrogate the WmRecord argument of the
execute method. Limit the interrogation to fields identified in the service's signature because
often there is other information in the pipeline that is not intended for the service.

Add data to the pipeline at the end of execution.

At the end of execution, the execute method must return a WmRecord instance containing the
data that must be added to the pipeline. Organize the return data in a way that is consistent
with the metadata signature so that other adapter services (or flow or Java services) can access
it.

For discussion purposes, assume the following as a sample metadata signature for both input and
output of an adapter service:

TypeField Name

java.lang.Integercustomer.id

java.lang.Stringcustomer.name

java.lang.Integer[]customer.orders[].id

java.util.Date[]customer.orders[].date

java.lang.Integer[][]customer.orders[].lineItems[].itemNumber

java.lang.Integer[][]customer.orders[].lineItems[].quantity

java.lang.String [][]customer.orders[].lineItems[].description

The sample signature describes a hierarchal structure that can be expressed as a tree structure,
where the actual field names form the leaves, and the elements preceding the field name are nodes.
Thus, the names customer, orders, and lineItems are node names, and id, name, date, itemNumber,
quantity, and description are leaves in the tree structure.

The WmRecord class, which is the primary carrier of data into and out of adapter services, is a JCA
based wrapper for an IData object. It provides methods that access the IData content. However,
when dealing with a hierarchal structure (as is the case with the sample), it is necessary to "drill
down" into the IData structure. Therefore, ignore the WmRecord methods except for getIData, and
putIData, which is used to access the underlying IData object.

Note:
The IData interface is part of the standardwebMethods Integration Server Java API. Its structure
is based on key/value pairs, where the key is a String and the value is a Java object. For more
information, see the Javadoc entries for IData, IDataCursor, IDataFactory, and IDataUtil.

getIData Method

Returns an IData object that contains the entire pipeline at the time the service was invoked. The
top-level branch or leaf name(s) in the metadata signature (in this case, customer) is the key used
to access data intended for use by the service. The value associated with that key is either another

webMethods Adapter Development Kit Installation and User’s Guide 9.12 97

5 Adapter Services

IData object (if the key is a node name) or an object of the type specified by the corresponding type
field of the signature. If the name of the branch or leaf includes a pair of square braces "[]", then
the value contains an array of the designated object type.

Thus, the fields in the sample would be populated as follows:

Returns an IData object with an entry, keyed with the name customer.

The value associated with customer is another IData object, with three entries: id, name, and
orders.

The value corresponding with id is an Integer.

The value of name is a String.

The value of orderswould contain an array of IData objects.

The orders IData objects would each contain an id of type Integer, a date of type java.util.Date,
and an array of IData objects associated with the lineItems key.

The lineItems IData objects would contain entries for itemNumber, quantity, and description, with
the data types provided in the signature.

When constructing response data to place in the pipeline at the end of service execution, use the
same rules that apply to interpreting the metadata signature. For each node level in the signature,
there must be a corresponding layer of IData, keyed with the names from the signature. For each
leaf, there must be an IData entry with the corresponding signature name and type.

Note:
Signatures are not enforced by Integration Server or the ADK framework. The validity of a
request based on the presence or absence of a given field, or the value given to a field, is
determined exclusively by the adapter implementation. Similarly, if the service fails to populate
the response WmRecord with data organized according to the signature, subsequent services
cannot access the data provided by the adapter service.

Adapter Service Template Interactions

Creating Adapter Service Nodes
Designer provides awizard to guide the user of the adapter through the process of creating adapter
service nodes. During this process there are two significant interactions with the adapter. They
occur:

When the user of the adapter selects the connection node to be used by the service node.

After the user of the adapter enters the name and folder of the new adapter service node.

Selecting Connection Nodes

The following diagram shows the adapter calls made when the users of the adapter select a
connection node and how the metadata cache is loaded in Designer.

98 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

When the user of the adapter selects the connection node to be used by the service node, the
Integration Server calls the fillResourceAdapterMetadataInfomethod in the connection for the supported
adapter service template class names. Integration Server performs the following:

Instantiates each of these template classes.

Retrieves the default metadata parameter values (by calling the parameter "get" methods).

Calls its fillWmTemplateDescriptor method.

All this information is cached in Designer session, and is not requested again for any adapter
service activity associated with that connection node. That is, after this information has been
gathered from a connection node, the user of the adapter may create multiple adapter service
nodes based on any template associated with that connection using the same set of cached
information. This is particularly significant during development of metadata-related code.

Note:
The cache is not cleared when you recompile the code or reload the package, so it is critical that
you refresh the cache manually when loading updated metadata code. Use the Refresh button
on the Designer toolbar or select Refresh from the Session menu to refresh the cache.)

Entering Names and Folders for Adapter Service Nodes

The other significant adapter interaction that occurs when creating adapter service nodes occurs
after the user of the adapter has entered the name and folder of the new adapter service node.

The following figure describes the parameter interrogation during the creation of an adapter
service node:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 99

5 Adapter Services

Before displaying the adapter service editor screens:

Integration Server invokes the connection's adapterResourceDomainLookupmethod for each lookup
registered with the service.

The values argument in these lookups reflect the dependent parameters' default values that
are cached when the user of the adapter selects a connection node. If your default value for a
dependent parameter is null, make sure your resource domain lookup code can handle a null
value in the values argument.

After the lookups are complete, Integration Server instantiates the adapter service template
class (again), and each of the accessor methods are called.

Values passed to "set" methods come either from the parameter default, or from the result of
a resource domain lookup. These accessor method calls merely validate their operation; the

100 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

service class instance is not cached. This is the last interaction with the metadata parameter
accessor methods during the process of creating an adapter service node. The "set" methods
are not called with the final node settings until the service is executed.

Viewing or Editing Adapter Service Nodes
Users may modify the metadata parameter values of an adapter service node using the adapter
service editor at any time after the node is created.

When an adapter service node is opened (selected), the adapter service editor performs an
adapterResourceDomainLookup call for any resource domain values that it has not already cached. This
lookup interaction is shown in steps 1 and 2 of the above figure.

Resource domain values are cached in the adapter service editor based on the values of dependent
parameters for the adapter service template/connection type combination (that is, for the class,
not the node; thus cached values may be used across nodes that are based on the same template
and connection type). Whenever the user of the adapter changes the value of a dependency
parameter (a parameter upon which a resource domain lookup depends), the adapter service
editor checks its cache for a set of resource domain values based on the newvalue. If an appropriate
set of resource domain values is not found in the cache, then the adapter service editor calls the
adapterResourceDomainLookup method again.

Adapter CheckValues operate verymuch like resource domain lookups.When user of the adapter
types a value into a parameter configured with an adapter check value, a call is made to the
adapterCheckValue method of the corresponding connection class. If the validation succeeds, the
adapter service editor caches the checked parameter value as well as the values of any dependent
parameters for future use. If a parameter uses the adapter check value feature and is also a
dependency parameter for the resource domain lookup of another parameter, the adapter check
value validation is performed first. If the validation succeeds, the appropriate lookups are
performed. For more information, see “Adapter Check Value Callbacks” on page 91.

Executing Adapter Service Nodes

When an adapter service executes, the Integration Server performs the following:

Creates a new instance of the corresponding class, unless it is already cached.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 101

5 Adapter Services

Calls the metadata parameter "set" methods, passing the parameter settings stored in the
adapter service node.

Calls the service's execute method, passing a connection instance and a copy of the pipeline
wrapped in a WmRecord object, as shown in the figure.

Adapter Service Implementation

The example provided in this section demonstrates the mechanics of an adapter service
implementation by making full use of design-time and runtime interactions while emulating
interactions with an external adapter resource.

The example adapter service simulates a simple database update service, allowing the user of the
adapter to select table and columnnames that create the runtime signature for the resulting adapter
service node. Table and column names are provided from hard-coded lists in a mock-connection
implementation, as if the data were actually retrieved from the adapter resource. The example
also includes interactions with the pipeline based on a dynamic service signature. The example is
self-contained; it does not actually interact with any external resource.

Themodel for adapter services forces syntactic and semantic coupling of code in differentmethods
and classes. Because of this, it might be difficult to understand the process of creating an adapter
service by looking at the classes (or even methods) as a unit of work in the development process.
For example, adding a metadata parameter can require updating two or more methods in the
Adapter Service implementation class, updating up to threemethods in the associated connection
classes, and adding two entries in the resource bundle. Thus, this section approaches the
implementation of a service as a series of activities that you perform, each of which may traverse
multiple methods and classes.

This section provides examples of the resulting code, and refers to specific lines.

The tasks for creating an adapter service are as follows:

Defining a WmAdapterService Implementation Class

Specifying Configuration Metadata for Adapter Service

Implementing Configuration Resource Domains for Adapter Service

Manipulating Adapter Service Signature Properties

Specifying Adapter Service Signature Data

Specifying Adapter Service Signature Resource Domains

Implementing the WmAdapterService.executeMethod

Updating the Resource Bundle

Registering Adapter Service in the Connection Factory Implementation Class

Compiling the adapter

Reloading Adapter

102 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Refreshing the Designer cache

Configuring and Testing Adapter Service Nodes

Example 1: WmAdapterService Implementation Class
package com.wm.MyAdapter.services;
import com.wm.adk.cci.interaction.WmAdapterService;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.WmTemplateDescriptor;
import com.wm.data.IData;
import com.wm.data.IDataCursor;
import com.wm.data.IDataFactory;
import com.wm.data.IDataUtil;
import java.util.Hashtable;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;
public class MockDbUpdate extends WmAdapterService {
//MockDB Group
public static final String UPD_SETTINGS_GRP = "Mock Settings";
public static final String TABLE_NAME_PARM = "tableName";
public static final String COLUMN_NAMES_PARM = "columnNames";
public static final String COLUMN_TYPES_PARM = "columnTypes";
public static final String REPEATING_PARM = "repeating";
public static final String OVERRIDE_TYPES_PARM = "overrideTypes";
private String _tableName;
private String[] _columnNames;
private String[] _columnTypes;
private boolean _repeating;
private String[] _overrideTypes;
public void setTableName(String val){ _tableName = val;}
public void setColumnNames(String[] val){ _columnNames = val;}
public void setColumnTypes(String[] val){ _columnTypes = val;}
public void setRepeating(boolean val){ _repeating = val;}
public void setOverrideTypes(String[] val){_overrideTypes = val;}
public static final String TABLES_RD = "tablesRD";
public static final String COLUMN_NAMES_RD = "columnNamesRD";
public static final String COLUMN_TYPES_RD = "columnTypesRD";
public static final String OVERRIDE_TYPES_RD = "overrideTypesRD";
//MockDB Signature Group
public static final String SIG_SETTINGS_GRP = "Signature";
public static final String FIELD_NAMES_PARM = "fieldNames";
public static final String FIELD_TYPES_PARM = "fieldTypes";
public static final String SIG_IN_PARM = "sigIn";
public static final String SIG_OUT_PARM = "sigOut";
private String[] _fieldNames;
private String[] _fieldTypes;
public void setFieldNames(String[] val){ _fieldNames = val;}
public void setFieldTypes(String[] val){ _fieldTypes = val;}
public void setSigIn(String[] val){}
public void setSigOut(String[] val){}
public static final String FIELD_NAMES_RD = "fieldNamesRD";
public static final String FIELD_TYPES_RD = "fieldTypesRD";
public void fillWmTemplateDescriptor(WmTemplateDescriptor d,Locale l)
throws ResourceException

webMethods Adapter Development Kit Installation and User’s Guide 9.12 103

5 Adapter Services

{
//MockDB Grouping and resource domain setup
d.createGroup(UPD_SETTINGS_GRP, new String [] {

TABLE_NAME_PARM,
REPEATING_PARM,
COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM}

);
d.createFieldMap(new String[] {

COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM},

true);
d.createTuple(new String[]{COLUMN_NAMES_PARM,COLUMN_TYPES_PARM});

d.setResourceDomain(TABLE_NAME_PARM,TABLES_RD,null);
d.setResourceDomain(COLUMN_NAMES_PARM,COLUMN_NAMES_RD,
new String[]{TABLE_NAME_PARM});

d.setResourceDomain(COLUMN_TYPES_PARM,COLUMN_TYPES_RD,
new String[]{TABLE_NAME_PARM});

d.setResourceDomain(OVERRIDE_TYPES_PARM,OVERRIDE_TYPES_RD,null);
//MockDB Signature Grouping and resource domain setup
d.createGroup(SIG_SETTINGS_GRP, new String [] {

FIELD_NAMES_PARM,
FIELD_TYPES_PARM,
SIG_IN_PARM,
SIG_OUT_PARM}

);
d.createFieldMap(new String [] {

FIELD_NAMES_PARM,
FIELD_TYPES_PARM,
SIG_IN_PARM,
SIG_OUT_PARM},

false);
d.createTuple(new String[]{FIELD_NAMES_PARM,FIELD_TYPES_PARM});

String [] fieldTupleDependencies = {TABLE_NAME_PARM,
REPEATING_PARM,
COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM};

d.setResourceDomain(FIELD_NAMES_PARM,FIELD_NAMES_RD, fieldTupleDependencies);
d.setResourceDomain(FIELD_TYPES_PARM,FIELD_TYPES_RD, fieldTupleDependencies);
d.setResourceDomain(SIG_IN_PARM,WmTemplateDescriptor.INPUT_FIELD_NAMES,
new String[] {FIELD_NAMES_PARM, FIELD_TYPES_PARM});

d.setResourceDomain(SIG_OUT_PARM,WmTemplateDescriptor.OUTPUT_FIELD_NAMES,
new String[] {FIELD_NAMES_PARM, FIELD_TYPES_PARM});

//Call to setDescriptions
d.setDescriptions(MyAdapter.getInstance().
getAdapterResourceBundleManager(),l);

}
public WmRecord execute(WmManagedConnection connection, WmRecord input)
throws ResourceException
{
Hashtable[] request = this.unpackRequest(input);
return this.packResonse(request);
}
private Hashtable[] unpackRequest(WmRecord request) throws ResourceException
{

104 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Hashtable data[] = null;
IData mainIData = request.getIData();
IDataCursor mainCursor = mainIData.getCursor();
try
{
String tableName = this._tableName;
String[] columnNames = this._columnNames;
if(mainCursor.first(tableName))
{
IData[] recordIData;
if(this._repeating)
{
recordIData = IDataUtil.getIDataArray (mainCursor,tableName);
data = new Hashtable[recordIData.length];

}
else
{
recordIData = new IData[] {IDataUtil.getIData(mainCursor)};
data = new Hashtable[1];

}
for(int rec=0;rec<recordIData.length;rec++)
{
IDataCursor recordCursor = recordIData[rec].getCursor();
data[rec] = new Hashtable();
for(int c = 0; c < columnNames.length;c++)
{
if(recordCursor.first(columnNames[c]))
{
data[rec].put(tableName + "." + columnNames[c],
recordCursor.getValue());
}

}
recordCursor.destroy();

}
}
else
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"No Request Data"});

}
}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error unpacking request data"},t);

}
finally
{
mainCursor.destroy();

}
return data;
}
private WmRecord packResonse(Hashtable[] response) throws ResourceException
{
WmRecord data = null;
try
{
IData[] recordIData = new IData[response.length];
String tableName = this._tableName;
String[] columnNames = this._columnNames;

webMethods Adapter Development Kit Installation and User’s Guide 9.12 105

5 Adapter Services

for(int rec = 0; rec < response.length; rec++)
{
recordIData[rec] = IDataFactory.create();
IDataCursor recordCursor = recordIData[rec].getCursor();
for(int col = 0; col < columnNames.length;col++)
{
IDataUtil.put(recordCursor,columnNames[col],
response[rec].get(tableName + "." +
columnNames[col]));

}
recordCursor.destroy();

}
IData mainIData = IDataFactory.create();
IDataCursor mainCursor = mainIData.getCursor();
if(this._repeating)
{
IDataUtil.put(mainCursor,tableName,recordIData);

}
else
{
IDataUtil.put(mainCursor,tableName,recordIData[0]);

}
mainCursor.destroy();
data = WmRecordFactory.getFactory().createWmRecord("nameNotUsed");
data.setIData(mainIData);

}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error packing response data"},t);

}
return data;
}
}

Example 2: WmManagedConnection Implementation Class
Updates
package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.AdapterException;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.services.MockDbUpdate;
public class SimpleConnection extends WmManagedConnection {
String hostName;
int port;
//Adapter Services variables
private String[] mockTableNames ={ "CUSTOMERS","ORDERS","LINE_ITEMS"};
private String[][] mockColumnNames ={
{"name","id", "ssn"},
{"id","date","customer_id"},
{"order_id","item_number","quantity","description"}
};
private String [][] mockDataTypes = {
{"java.lang.String","java.lang.Integer", "java.lang.String"},
{"java.lang.Integer", "java.util.Date", "java.lang.Integer"},
{"java.lang.Integer", "java.lang.Integer", "java.lang.Integer",

106 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

"java.lang.String"}
};
public SimpleConnection(String hostNameValue, int portValue)
{
super();
hostName = hostNameValue;
port = portValue;
MyAdapter.getInstance().getLogger().logDebug(9999,
"Simple Connection created with hostName = "
+ hostName + "and port = " + Integer.toString(port));

}
public void destroyConnection()
{
MyAdapter.getInstance().getLogger().logDebug(9999,"Simple Connection Destroyed");
}

// The remaining methods support metadata for related services, etc.
// Implement content as needed.
public Boolean adapterCheckValue(String serviceName,
String resourceDomainName,
String[][] values,
String testValue) throws AdapterException
{
Boolean result = new Boolean(false);
if(resourceDomainName.equals(MockDbUpdate.OVERRIDE_TYPES_RD))
{
try
{
Object o = Class.forName(testValue).getConstructor(
new Class[] {String.class}).newInstance(new Object[]{"0"});

result = new Boolean(true);
}
catch (Throwable t){}

}
return result;
}
public ResourceDomainValues[] adapterResourceDomainLookup(String serviceName,
String resourceDomainName, String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;

//MockDB Group Lookup
if(resourceDomainName.equals(MockDbUpdate.COLUMN_NAMES_RD)||
resourceDomainName.equals(MockDbUpdate.COLUMN_TYPES_RD))

{
String tableName = values[0][0];
for(int x = 0; x < this.mockTableNames.length;x++)
{
if(this.mockTableNames[x].equals(tableName))
{
ResourceDomainValues columnsRdvs = new ResourceDomainValues(
MockDbUpdate.COLUMN_NAMES_RD,this.mockColumnNames[x]);

columnsRdvs.setComplete(true);
ResourceDomainValues typesRdvs = new ResourceDomainValues(
MockDbUpdate.COLUMN_TYPES_RD, this.mockDataTypes[x]);

typesRdvs.setComplete(true);
results = new ResourceDomainValues[] {columnsRdvs,typesRdvs};
break;

}
}

webMethods Adapter Development Kit Installation and User’s Guide 9.12 107

5 Adapter Services

}
//MockDB Signature Group Lookup
else if (resourceDomainName.equals(MockDbUpdate.FIELD_NAMES_RD)||
resourceDomainName.equals(MockDbUpdate.FIELD_TYPES_RD))

{
String tableName = values[0][0];
boolean repeating = Boolean.valueOf(values[1][0]).booleanValue();
String[] columnNames = values[2];
String[] columnTypes = values[3];
String[] overrideTypes = values[4];
String[] fieldNames = new String[columnNames.length];
String[] fieldTypes = new String[columnTypes.length];
String optBrackets;
if(repeating)
optBrackets ="[]";

else
optBrackets = "";

for (int i = 0; i< fieldNames.length;i++)
{
fieldNames[i] = tableName + optBrackets + "." + columnNames[i];
fieldTypes[i] = columnTypes[i] + optBrackets;
if(overrideTypes.length > i)
{
if (!overrideTypes[i].equals(""))
{
fieldTypes[i] = overrideTypes[i] + optBrackets;

}
}

}
results = new ResourceDomainValues[]{
new ResourceDomainValues(MockDbUpdate.FIELD_NAMES_RD,fieldNames),
new ResourceDomainValues(MockDbUpdate.FIELD_TYPES_RD,fieldTypes)};

}
return results;
}
public void registerResourceDomain(WmAdapterAccess access)
throws AdapterException
{
//MockDB Group Registering Resource Domain
ResourceDomainValues tableRdvs = new ResourceDomainValues(
MockDbUpdate.TABLES_RD,mockTableNames);

tableRdvs.setComplete(true);
access.addResourceDomain(tableRdvs);
access.addResourceDomainLookup(MockDbUpdate.COLUMN_NAMES_RD,this);
access.addResourceDomainLookup(MockDbUpdate.COLUMN_TYPES_RD,this);
ResourceDomainValues rdvs = new ResourceDomainValues(
MockDbUpdate.OVERRIDE_TYPES_RD, new String[] {""});

rdvs.setComplete(false);
rdvs.setCanValidate(true);
access.addResourceDomain(rdvs);
access.addCheckValue(MockDbUpdate.OVERRIDE_TYPES_RD,this);

//MockDB Signature Group Registering Resource Domain
access.addResourceDomainLookup(MockDbUpdate.FIELD_NAMES_RD,this);
access.addResourceDomainLookup(MockDbUpdate.FIELD_TYPES_RD,this);
}
}

108 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Defining WmAdapterService Implementation Class

1. Create a folder structure for the Java package for adapter service implementation. For example:
com\mycompany\adapter\myadapter. In the example, the Java package created is com\wm\services.

Note:
You must create your Java package and classes in the adapterPackageName\code\source
folder in the webMethods package you created using Designer.

2. Create a class by extending the base class com.wm.adk.cci.interaction.WmAdapterService.

In the example, the class created isMockDBUpdate.

3. Implement the abstract method WmAdapterService.execute.

4. Override the base class implementation of theWmAdapterService.fillWmTemplateDescriptor
method.

Specifying Configuration Metadata for Adapter Service
The next logical step for implementing an adapter service is to create the metadata that enables
the users of the adapter to create adapter service nodes. To do this, you perform the following:

Create metadata parameters appropriate for the function of the adapter service.

Describe presentation for those metadata parameters.

Set the data entry rules for those metadata parameters.

Creating Parameters for Data Entry

The sample implementation includes five metadata parameters that the users of the adapter use
for data entry when they create adapter service nodes. Each parameter has:

An accessor method.

A variable to hold the configured values.

A String constant containing the name of the parameter.

A set of resource bundle entries with a localizable parameter name and description. For
information about metadata parameters, see “Metadata Model for Connection” on page 63.

The following table describes the purpose of each of these parameters for data entry:

DescriptionParameter

Enables the users of the adapter to select a table to update.tableName

webMethods Adapter Development Kit Installation and User’s Guide 9.12 109

5 Adapter Services

DescriptionParameter

Lists the columns in the selected table for updating. The resource domain lookup
for this parameter depends on the value in the tableName parameter.

columnNames

Contains the default type associated with the columnName.columnTypes

Enables the users of the adapter to type a different data type for the column value.overrideTypes

A Boolean flag indicating whether the service is used to update a single row or
multiple rows of the table.

repeating

Specifying the Display and Data Entry Attributes of the "Data Entry" Parameters

After creating the parameters, specify the display and data entry attributes by calling various
methods of the WmTemplateDescriptor interface from the service's fillWmTemplateDescriptor method.

The example code places each data entry parameter into a single group (in display order)
referenced by the constant UPD_SETTINGS_GRP. A constant instead of a string is used to
name the group, because the same value is used in the resource bundle to specify a localizable
group name.

Placing the Column Names and Column Data Types Parameters in a Field Map

Next, the example places columnNames and the two types parameters in a field map. The use of
two data type columns in the fieldMap warrants further discussion. The desired behavior is to:

Automatically update the data type when the column name changes.

Allow the users of the adapter to enter an alternative data type for the given field.

The adapter must convert the data at run time.

To have the type value change with the columnName, the resource domain associated with the
parameter must be "complete" (as specified by the setCompletemethod being set to true). Users are
not allowed to type values into fields of a "complete" resource domain. Because of these conflicting
constraints, it is necessary to have two parameters with different resource domain associations:
one updated by the adapter service editor, and the other by the users of the adapter.

Placing the Column Names and Column Types Parameters in a Tuple

Finally, the columnNames and columnTypes parameters are placed in a tuple. In a tuple, not only
are the resource domain lookups performed together, but the adapter service editor maintains a
relationship between the parameter settings such that when value[n] is selected from the resource
domain value list for columnNames, then value[n] is automatically selected for the corresponding
columnTypes value. Alternatively, you can make a resource domain lookup for columnTypes that
depends on the corresponding value of columnNames and then determines the appropriate type
in the lookup.

110 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

Implementing Configuration Resource Domains for Adapter
Service
The next step for implementing an adapter service is to:

Define and implement the resource domains required for the metadata parameters that you
created.

Identify the values upon which those resource domains depend.

For each parameter that requires either a resource domain to supply a value or that requires a
validity check for values supplied by the users of the adapter, you must:

1. In the service's fillWmTemplateDescriptor method, call
WmTemplateDescriptor.setResourceDomain method, passing the name of the parameter, the
name of the resource domain, and an array of the names of any parameters on which the
resource domain depends.

2. In the associated connection class'sWmManagedConnection.registerResourceDomainmethod,
callWmAdapterAccess.addResourceDomain(ResourceDomainValues) to register the resource
domain support.

3. Implement the code to populate the resource domain values and/or the "check values".

4. In the associated connection class'sWmManagedConnection.registerResourceDomainmethod,
call WmAdapterAccess.addResourceDomainLookup(Resource_Domain_Name,
WmManagedConnection) method to add the resource domains that have to be looked up.

The first parameter, tableName, is associated with a new resource domain called tableNameRD.

The list of available tables in this example does not depend on any other parameters, so
the dependency list is left null.

Furthermore, since the list does not change once it is retrieved from the resource, it can be
implemented as a complete resource domain during registration.

When a ResourceDomainValues object is provided in registerResourceDomain, there is no need to
add support for the resource domain in the lookup method.

The resource domains columnNamesRD and columnTypesRD are created to support the
columnNames and columnTypes parameters, respectively. The columNamesRD resource domain
depends on the value of the tableName parameter. Since columnNames and columnTypeswere
placed in a tuple, columnTypesRDmust also depend on the value of tableName.

The lookup implementation for these resource domains checks for the name of the resource
domain and returns the values for both resource domains in a single response array. The
columnNamesRD resource domain is always passed as the resource domain name in this lookup.
Adding the '||' check decouples the lookup implementation from the order in which the
parameters were placed in the tuple.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 111

5 Adapter Services

The final resource domain, overrideTypesRD associated with the overrideTypes parameter, is
used to validate data entered by the users of the adapter into a Java class that contains the data
at run time. The specifics of the check implementation are probably unrealistic for a real-world
environment, but all the mechanics of doing a check are demonstrated. Remember to set the
setCanValidate method to true in the WmManagedConnection.registerResourceDomainmethod.

Manipulating Adapter Service Signature Properties
In addition to controlling the names and types of the fields in an adapter service signature, the
adapter has control over several other aspects of a service's structure and behavior. These aspects
can be broadly divided into two categories:

Template-based properties which apply to all the adapter service nodes associated with the
service implementation class.

Signature field propertieswhich are specific to the records and fields thatmake up the signature
of a particular node.

Template-Based Signature Properties

In the implementation of the adapter service's fillWmTemplateDescriptor method, the following
signature-related features may be configured using the following methods:

DescriptionMethod Name

Includes the reserved string field named
$connectionName in the service input signature.
Possible Values are:

WmDescriptor.setShowConnectionName(boolean)

true. Default. Includes the reserved string field
named $connectionName in the service input
signature. This field allows the flow adapter
developers to control the connection pool used
during each invocation of the service. The
$connectionNamefield is inserted in the top-level
signature record, outside the wrapper.

false. Excludes the reserved string field named
$connectionName from the service input
signature.

For more information about the effect of
$connectionName on the run time behavior of the
service, see the javadoc for
WmDescriptor.showConnectionName().

Wraps the adapter-defined signature fields in a record
called xxxInput for input fields and xxxOutput for

WmDescriptor.setSignatureWrapped(boolean)

output fields, where xxx represents the name of the

112 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

DescriptionMethod Name

adapter service nodewhen set to true. Possible Values
are:

true. Default.

false.

Enables the access to all fields in the pipeline. Possible
values are:

WmDescriptor.setPassFullPipeline(boolean)

true. Default. The adapter service can access all
the fields in the pipeline.

false. The adapter service may only read or write
to pipeline fields that are part of the service's
defined signature.

Signature Field Properties

All the Integration Server services (including adapter services, flow services, and Java services)
contain an input and output signature definition that identifies the names and types of the pipeline
fields, read or written by the service. For each of these fields, there are also a number of properties
that can be used to document the intended use of the field or to create constraints on what data
is valid for that field at run time. For more information on these properties, see the webMethods
Service Development Help for your release.

In the flow services and Java services, signature fields and their properties can be modified by the
user. For the adapter services, the adapter defines resource domains that act as callbacks from the
developer tool that allows the adapter to specify the name, data type, and structure of the service's
signaturewhile the service is being configured. A separate callbackmechanism allows the adapter
to control a limited subset of signature field constraint properties.

The signature field constraints that are controlled by the adapter include:

Field BehaviorSignature Field Constraint

If true, the field must be present on the pipeline.Required

If false, when the field is present, the field cannot hold a null value.Allow null

Controlswhether the document (record) element can hold fields that
are not specifically identified in the signature. This constraint has no
effect on non-document-type signature elements.

Allow unspecified fields

The controls for these constraints are disabled so the user can view the value, but not modify it.
The remaining properties (that are not related to name and type) are enabled andmay bemanaged
like any other service.

Note:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 113

5 Adapter Services

Like other service types, signature constraints are only enforced at run time if the associated
Validate input or Validate output check box is selected by the user.

Adapters gain access to a signature field's constraints by overriding the setSignatureProperties()method
in the WmAdapterService implementation class. This method is called whenever the adapter service
node is saved, andwhenever the user views the input/output panel of an unsaved adapter service.
Because this call is made while the adapter service changes are still in progress, the call is made
against a temporary object that has all metadata parameter settings as existing in the adapter
service editor. This is not the same object that is used for runtime service invocations.

The ADK includes three classes that are used to provide access to signature property information.

Abstract base class that represents any signature element (field or record).
It exposes read access to all common signature element properties (name,

PipelineVariableProperties

data type, comments, etc.) and read/write access to the Required and
Allow null constraints.

Subclass of PipelineVariableProperties that represents a single
non-document-type field in the signature. It adds read only access to

PipelineFieldProperties

properties that are specific to non-document elements (pick list choices,
content type, etc.)

Subclass of PipelineVariableProperties that represents a single document-type
element in the signature. It adds read/write access to theAllow unspecified

PipelineRecordProperties

fields property, and methods for accessing the member elements of the
record.

The WmAdapterService.setSignatureProperties()method receives two PipelineRecordProperties objects as
arguments, one for the input signature and the other for the output signature. The adapter must
use the accessor/navigation methods available through the two PipelineRecordProperties objects to
locate the signature elements for which the constraints have to be managed. Within the
setSignatureProperties() implementation, it is frequently useful to use the
WmAdapterService.inputRecordName() andWmAdapterService.outputRecordName()methods to get the names
of the respective signature wrappers (if wrappers are enabled). If a connection is needed to get
the constraint information from a connection target, use the WmAdapterService.retrieveConnection()
method.

Note:
This is the only place retrieveConnectionmust be used; using it from the service's execute method
causes errors.

The code listing below demonstrates a simple implementation of the signature constraint
management.
protected void setSignatureProperties(
PipelineRecordProperties inputSigProps,
PipelineRecordProperties outputSigProps) throws ResourceException
{

if(this._tableName != null)
{

114 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

// need a connection to look up info about table being updated
MockDbConnection conn = (MockDbConnection)retrieveConnection();
TableInfo info = conn.getTableInfo(this._tableName);
updateSignatureRecord(inputSigProps, info, _columnNames,

inputRecordName());
updateSignatureRecord(outputSigProps, info, _columnNames,

outputRecordName());
}

}
private void updateSignatureRecord(PipelineRecordProperties inputSigProps,

TableInfo tInfo, String[] columnNames, String wrapperName)
{

PipelineRecordProperties wrapperRec =
(PipelineRecordProperties)inputSigProps.findByPath(wrapperName);
wrapperRec.setAllowNull(false);

wrapperRec.setAllowUnspecifiedFields(false);
wrapperRec.setRequired(true);
if(columnNames != null)
{
for(int i = 0; i < columnNames.length; i++)
{

ColumnInfo cInfo = tInfo.getColumnInfo(columnNames[i]);
PipelineVariableProperties fieldProps =

wrapperRec.findByPath(columnNames[i]);
fieldProps.setAllowNull(false);
fieldProps.setRequired(cInfo.isRequired());

}
}

}

Specifying Adapter Service Signature Data
After implementing the configuration logic for the adapter service template, implement the logic
that defines the runtime signature of a configured adapter service node. To do so, create the
following additional metadata parameters:

sigIn and sigOut.

The reserved signature resource domains uses these parameters.

fieldNames and fieldTypes

These parameters are the dependency parameters in which you build the signature data.
Because the example update service has the same input and output signature, only one set of
name and type parameters is necessary. The relationship between these parameters is
established in the WmTemplateDescriptor. The mechanics of signature construction is discussed
in “Adapter Service Node Signatures” on page 93.

These parameters do not accept input from the users of the adapter; from the user's perspective,
they are largely redundant with information provided elsewhere in the adapter service editor. In
most implementations, these parameters are included in the same group with the configuration
parameters, but are hidden from the users of the adapter. For demonstration purposes, these
parameters remain visible in the example, but they are located in a separate group. Except for that,
themetadata constructs for these parameters follow the same basic rules for specifying a signature
for any service.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 115

5 Adapter Services

Specifying Adapter Service Signature Resource Domains
The resource domain implementation for the signature parameters is a little more complex. The
fieldNamesRD and fieldTypesRD resource domains are designed to depend on the values of each of
the configuration parameters as described in “Specifying Configuration Metadata for Adapter
Service ” on page 109. In theWmManagedConnection lookup implementation, both fieldNamesRD and
fieldTypesRD are constructed as "complete" resource domains.

For fieldNamesRD, the tableName and columnName parameter values are used to form a hierarchical
signature inwhich the columnName elements are contained in an aggregate named by the tableName.
If the parameter named repeating is set to true, then the tableName aggregate is converted to an
array by inserting square brackets ("[]") in the field name.

For fieldTypesRD, a value in the overrideTypes parameter has precedence over a value in columnTypes,
and the repeating parameter is used to specify whether the type repeats.

Implementing the WmAdapterService.execute Method
The final step for implementing an adapter service is to implement its executemethod. Thismethod
is specific to the resource with which the adapter communicates. In most cases, the adapter must
interact with the pipeline at the beginning and/or end of the execute method. The methods
unpackRequest and packResponse demonstrate an effective method of interacting with the pipeline
using the same metadata parameters that were used to create the signature.

Important:
The unpackRequest and packResponsemethods read class fields, but they never write to them. This
is important because of themulti-threaded nature of the adapter service execution. At run time,
exactly one WmAdapterService object corresponds to each adapter service node defined in the
namespace. All invocations of a given adapter service node call the executemethod on the same
object. If more than one thread is executing the service at the same time, then updates to the
class fields by one thread inevitably collide with those of another thread.

Updating the Resource Bundle
Update the resource bundlewith a display name, and description tomake the servicemore usable.
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.services.MockDbUpdate;
..
..
public class MyAdapterResource extends ListResourceBundle implements MyAdapterConstants{

..

..
static final Object[][] _contents = {
..
..

//MockDB Group Resource Domain Values
,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,

116 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

"Mock Update Service"}
,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Simulates a database update service"}

,{MockDbUpdate.UPD_SETTINGS_GRP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,
MockDbUpdate.UPD_SETTINGS_GRP}

,{MockDbUpdate.TABLE_NAME_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Table Name"}

,{MockDbUpdate.TABLE_NAME_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Select Table Name"}

,{MockDbUpdate.COLUMN_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Column Names"}

,{MockDbUpdate.COLUMN_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Name of column updated by this service"}

,{MockDbUpdate.COLUMN_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Column Types"}

,{MockDbUpdate.COLUMN_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Default data type for column"}

,{MockDbUpdate.OVERRIDE_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Override Data Types"}

,{MockDbUpdate.OVERRIDE_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Type to override column default"}

,{MockDbUpdate.REPEATING_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Update Multiple Rows?"}

,{MockDbUpdate.REPEATING_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Select if input will include multiple rows to update"}

//MockDB Signature Group Resource Domain Values
,{MockDbUpdate.SIG_SETTINGS_GRP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,
MockDbUpdate.SIG_SETTINGS_GRP}

,{MockDbUpdate.FIELD_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Field Names"}

,{MockDbUpdate.FIELD_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Name of Field"}

,{MockDbUpdate.FIELD_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Field Type"}

,{MockDbUpdate.FIELD_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Type of Field"}

,{MockDbUpdate.SIG_IN_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Input Signature"}

,{MockDbUpdate.SIG_IN_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Input Signature"}

,{MockDbUpdate.SIG_OUT_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Output Signature"}

,{MockDbUpdate.SIG_OUT_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Output Signature"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

Registering Adapter Service in the Connection Factory
Implementation Class

You must register each adapter service template class in the WmManagedConnectionFactory
implementation class. Pass the class name to the ResourceAdapterMetadataInfo.addServiceTemplatemethod
in the SimpleConnectionFactory.fillResourceAdapterMetadataInfomethod in theWmManagedConnectionFactory

webMethods Adapter Development Kit Installation and User’s Guide 9.12 117

5 Adapter Services

implementation class. In the example, theMockDbUpdate class is registered in the
SimpleConnectionFactory connection factory implementation class:

For example: SimpleConnectionFactory class
import com.wm.MyAdapter.services.*;
.
.
public class SimpleConnectionFactory extends WmManagedConnectionFactory implements
MyAdapterConstants {
.
.
public void fillResourceAdapterMetadataInfo(
ResourceAdapterMetadataInfo info, Locale locale)
{ info.addServiceTemplate(MockDbUpdate.class.getName());
}
}

Compiling Adapter
Compile your adapter as described in “Compiling the Adapter ” on page 43.

Reloading Adapter
Reload your adapter as described in “Loading, Reloading, and Unloading Packages” on page 52.

Refreshing the Designer cache
Refresh the Designer cache.

Configuring and Testing Adapter Service Nodes
Before you configure adapter service nodes, ensure that you have configured a connection node
as described in “Configuring and Testing Connection Nodes” on page 71. You can use Designer
to configure adapter service nodes.

To configure the adapter service nodes

1. Start Designer.

Note:
Make sure that the Integration Server, with which you want to use Designer, is running.

2. Select a namespace node package where you want to create the adapter service node.

3. Create a folder in the selected package and navigate to that folder in the Package Navigator
section.

118 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

4. Select File > New.

5. Select Adapter Service from the list of elements.

6. In the Create a New Adapter Service screen, type a name for your service in the Element
name field and click Next.

7. In the Select Adapter Type screen, select the name of your adapter and click Next.

8. In theSelect an Adapter Connection Alias screen, select the appropriate adapter connection
name and click Next.

9. In the Select a Template screen, select an adapter service template and click Next.

10. Click Finish.

11. Specify values for the tab that is specific for your adapter resource (such as Query, Update,
Add, or Delete tab).

12. Specify values for the Input/Output tab and the Settings tab. For more information, see the
webMethods Service Development Help for your release.

13. Select File > Save.

Configuring and Testing Adapter Service Nodes

Before you configure adapter service nodes, ensure that you have configured a connection node
as described in “Configuring and Testing Connection Nodes” on page 71. You can use Designer
to configure adapter service nodes.

To configure the adapter service nodes

1. Start Designer.

Note:
Make sure that the Integration Server, with which you want to use Designer, is running.

2. Select a namespace node package where you want to create the adapter service node.

3. Create a folder in the selected package and navigate to that folder in the Package Navigator
section.

4. Select File > New.

5. Select Adapter Service from the list of elements.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 119

5 Adapter Services

6. In the Create a New Adapter Service screen, type a name for your service in the Element
name field and click Next.

7. In the Select Adapter Type screen, select the name of your adapter and click Next.

8. In theSelect an Adapter Connection Alias screen, select the appropriate adapter connection
name and click Next.

9. In the Select a Template screen, select an adapter service template and click Next.

10. Click Finish.

11. Specify values for the tab that is specific for your adapter resource (such as Query, Update,
Add, or Delete tab).

12. Specify values for the Input/Output tab and the Settings tab. For more information, see the
webMethods Service Development Help for your release.

13. Select File > Save.

120 webMethods Adapter Development Kit Installation and User’s Guide 9.12

5 Adapter Services

6 Polling Notifications

■ Overview .. 122

■ Polling Notification Classes .. 123

■ Polling Notification Callbacks ... 125

■ Metadata Model for Polling Notifications .. 125

■ Polling Notification Interactions .. 126

■ Polling Notification Implementation .. 129

■ Configuring and Testing Polling Notification Nodes .. 138

■ Cluster Support for Polling Notifications ... 143

webMethods Adapter Development Kit Installation and User’s Guide 9.12 121

Overview

A polling notification is a facility that enables an adapter to initiate activity on Integration Server,
based on events that occur in the adapter resource. A polling notification monitors an adapter
resource for changes (such as an insert, update, or delete operation) so that the appropriate flow
or Java services can react.

The users of the adapter can perform the following:

Create a polling notification using Designer. An adapter connection node created earlier is
assigned to the notification. At the same time, Designer creates a Document Type that describes
the data generated by the polling notification when it executes. The notification publishes this
document to Integration Server. For more information on Integration Server publishable
documents, see the Publish-Subscribe Developer’s Guide for your release.

Create a Integration Server trigger to process a document published by the notification. When
Integration Server receives a document, the trigger invokes the flow or Java service registered
with the trigger. The service then processes the data contained in the notification's document.

Configure the notification scheduling parameters that specify the interval atwhich Integration
Server must invoke the notification, and then enable the notification, using Integration Server
Administrator. For instructions on creating and using polling notification nodes, see
“Configuring and Testing Polling Notification Nodes” on page 138.

For example, when a record is inserted in the database table, which is monitored by a polling
notification:

The polling notification publishes the polling notification document to Integration Server
messaging system.

Integration Server receiving the published document, triggers a flow or Java service that
processes the data contained in the document.

Implementing Polling Notifications
The implementation of a polling notification is similar to the implementation of an adapter service.
Each implementation includes a Java class extending an ADK base class, and a namespace node
inwhich design-time configuration data is stored. In the Java class, themetadatamodel for polling
notifications is nearly identical to that of adapter services. The parameters to configure a polling
notification are built from the polling notifications' metadata.

The primary difference between adapter services and polling notifications is the runtime behavior
of polling notifications. Polling notifications cannot be directly invoked from a flow service or
from Designer. Instead, Integration Server automatically invokes a polling notification in a fixed
time interval. When a polling notification determines that a specified event has occurred in the
adapter resource, it produces a document describing the event. These documents are automatically
published to Integration Server (or webMethods Broker) as they are generated by the notification.
The processing of the published document is based on triggers that are configured to invoke flow
services when the given document type is published.

122 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

Polling Notification Classes

The following figure shows the classes provided by the ADK to support polling notifications and
the com.wm.adk.notification.WmPollingNotifications' implementation class SimpleNotification.

Polling Notification Implementation Classes

Create a polling notification service by extending com.wm.adk.notification.WmPollingNotification base class
. You must override the following base class methods in your WmPollingNotification implementation
class:

DescriptionMethod

Modifies howmetadata parameters are handled during data entry similar
to the WmAdapterService.fillWmTemplateDescriptor method. Failing to override

fillWmTemplateDescriptor

this method results in a runtime error. For more information, see
“WmTemplateDescriptor Interface” on page 79.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 123

6 Polling Notifications

DescriptionMethod

Receives no input and returns results by calling the
WmAsynchronousNotification.doNotifymethod, and passing it aWmRecord instance

runNotification

that must conform to the output signature of the polling notification node.
For more information, see “Specifying Notification Signatures (Document
Type)” on page 135. The WmRecord is constructed in exactly the same way
it is constructed for adapter services. For more information, see “Adapter
Service Execution” on page 96.

The WmAsynchronousNotification class provides two forms of doNotify method:doNotify

1. Process the notification Exactly Once
public void doNotify(WmRecord rec, String msgID)

Receives two input parameters: WmRecord object, and String object for
message ID. Provides a resource specific msgID value with each
notification record:

The adapter implementationmust guarantee that the value ofmsgID
is unique and constant for each notification event.

A notification event is defined as any activity on the adapter resource
that causes the WmPollingNotification.runNotification implementation to
call WmAsynchronousNotification.doNotify.

ThemsgID is never duplicated for different notification events, but
the msgID is the same if the same notification event is retrieved
multiple times from the adapter resource, even in a failure-recovery
scenario.

Integration Server guarantees thatmsgID values generated by different
notification nodes are unique. This is accomplished by combining the
msgID value provided by the adapter with a GUID created by
Integration Server, and associated with the notification node when it
is created.

Note:
A fixed number of characters are available in Integration Server to
hold a notification ID. Of these, the WmART package reserves a
certain number to hold a unique ID that is inserted prior to
dispatching a notification. The remaining characters are available to
youwhen callingWmAsynchronousNotification.doNotify(WmRecord rec, String
msgId). The length (number of characters) of the value in msgIdmust
not exceed a particular limit. Call the
WmAsynchronousNotification.adapterMaxMessageIdLenmethod to determine
this limit. For more information, see the Javadoc.

2. Process the notification

124 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

DescriptionMethod
public void doNotify(WmRecord rec)

Receives one input parameters: WmRecord object.

Polling Notification Callbacks

The base class WmPollingNotification defines a set of callback methods that you can override in the
notification implementation class. The following table describes when these methods are called,
and the impact of an exception thrown from the method. For complete details, see the Javadoc for
the WmPollingNotification class.

Callbacks ReceivedUser Actions

deleteCallBackNotification node is deleted or renamed.

disableCallBackNotification node is disabled.

enableCallBackDisabled notification node is enabled.

initCallBackNotification node is created, the package is enabled.

resumeCallBackSuspended notification node is enabled.

shutdownCallBackNotification node is disabled or suspended, the Integration Server is
shutdown, the package is disabled.

startupCallBackNotification node is enabled or resumed, the Integration Server starts.

suspendCallBackEnabled notification node is suspended.

updateCallBackNotification node is modified, but not called when notification node is
created.

Note:
In all cases, an AdapterExceptionwill cause the associated connection to be destroyed and removed
from the pool.

Metadata Model for Polling Notifications

The metadata model for polling notifications is identical to the model for adapter services, except
for the following:

A polling notification has no input signature. The output signature is constructed in the same
way, but the server uses it to generate a Document Type node that enables triggers to identify
notification data in the node.

You register polling notifications in the WmAdapter.fillAdapterTypeInfo method instead of the
WmManagedConnectionFactory.fillResourceAdapterMetadataInfo method.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 125

6 Polling Notifications

Polling Notification Interactions

Although polling notifications are structurally similar to adapter services, the dynamic model is
similar only in the way in which metadata is initialized, which is described as follows

Loading Polling Notification Templates

As with adapter services, Designer caches metadata values for polling notifications. These values
include resource domain values and template descriptor information. The following figure shows
the interactions within the adapter as Designer loads its cache for a polling notification. This
interaction occurs either when a new polling notification node is created, or an existing one is
viewed (if the data is not already held in the Designer cache).

126 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

Creating and Loading Polling Notification Nodes

When a user of the adapter creates a new polling notification node, or loads an existing node
during server startup or package startup, the server instantiates the appropriate class and executes
the initCallBack method. The package containing the polling notification node, holds the object
reference of the polling notification node for the lifetime of the package. If this interaction is
initiated by a package load, and the polling notification node is enabled, the enable/startup
interaction occurs immediately afterwards.

Updating Polling Notifications

Unlike with adapter services, polling notification parameter values are updated each time a user
of the adapter saves the values in Designer. After the "set" methods pass the modified values to

webMethods Adapter Development Kit Installation and User’s Guide 9.12 127

6 Polling Notifications

the object instance, the notification calls the updateCallBack method. If that method throws an
exception, it prevents the values from being persisted in the notification node.

Enabling Polling Notifications

When a user of the adapter enables a polling notification using Integration Server Administrator,
the notification calls the enableCallBack method before the startupCallBack method. If the node was
previously enabled, and the user is simply starting up the notification after the package loads,
then the enableCallBack call is skipped. An exception from eithermethod call disables the notification
node.

The server calls the runNotificationmethod at regular intervals, based on the scheduling parameters
that specify the interval at which Integration Server must invoke the notification. The same object
instance is always used unless the schedule is configured to allow overlapping, and the previous
call to runNotification has not completed.

128 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

Disabling Polling Notifications

The figure shows the interactions that occurwhen a user of the adapter explicitly disables a polling
notification node. If a node is shut down by any other means, the disableCallBack is skipped.

Polling Notification Implementation

The tasks for implementing a polling notification are as follows:

Defining a WmPollingNotification Implementation Class

Specifying Configuration Metadata for Polling Notifications

Implementing Configuration Resource Domains for Polling Notifications

Specifying Notification Signatures (Document Type)

Manipulating Adapter Notification Document Properties

Implementing Signature Resource Domains

Implementing the WmPollingNotification.runNotificationMethod and Callbacks

Updating the Resource Bundle

Registering Polling Notifications in the Adapter

Compiling the Adapter

Reloading Adapter

webMethods Adapter Development Kit Installation and User’s Guide 9.12 129

6 Polling Notifications

Refreshing the Designer cache

Configuring and Testing Polling Notification Nodes

The example polling notification implementation monitors the contents of a directory and sends
notifications when files are added to, or removed from the directory. Although this example is
very simple, it demonstrates most of the notification capabilities, except for callbacks.

Note:
This example implements a design strategy that enables you to encapsulate the resource domain
support inside an adapter service or notification. This strategy is discussed in . You do not need
to fully understand this strategy to understand the example code. However, if you are
uncomfortable with this strategy, you may implement those methods in your connection
implementation. You will have to adjust the method signatures and the "this" references
appropriately. The "this" reference refers to the notification. If you move the methods to the
connection, then the "this" refers to the connection.

Example Polling Notification Class
package com.wm.MyAdapter.notifications;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.error.AdapterException;
import com.wm.adk.metadata.ResourceDomainValues;
import com.wm.adk.metadata.WmAdapterAccess;
import com.wm.adk.metadata.WmTemplateDescriptor;
import com.wm.adk.notification.WmPollingNotification;
import java.io.File;
import java.util.ArrayList;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;
public class SimpleNotification extends WmPollingNotification
{
public static final String NOTIFICATION_SETUP_GROUP = "SimpleNotification";
public static final String DIRECTORY_PARM = "directory";
public static final String CHECK_ADDED_PARM = "checkAdded";
public static final String CHECK_DELETED_PARM = "checkDeleted";
public static final String SIG_FIELD_NAMES_PARM = "fieldNames";
public static final String SIG_FIELD_TYPES_PARM = "fieldTypes";
public static final String SIG_PARM = "signature";
public static final String DIRECTORIES_RD =
"SimpleNotification.directories.rd";
public static final String FIELD_NAMES_RD =
"SimpleNotification.fieldNames.rd";
public static final String FIELD_TYPES_RD =
"SimpleNotification.fieldTypes.rd";
private String _directory;
private boolean _checkAdded;
private boolean _checkDeleted;
private String[] _fieldNames;
private String[] _fieldTypes;
public void setDirectory(String val){_directory = val;}
public void setCheckAdded(boolean val){_checkAdded = val;}
public void setCheckDeleted(boolean val){_checkDeleted = val;}

130 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

public void setFieldNames(String[] val){_fieldNames = val;}
public void setFieldTypes(String[] val){_fieldTypes = val;}
public void setSignature(String[] val){}
private ArrayList _fileList = new ArrayList();
public SimpleNotification(){}
public void fillWmTemplateDescriptor(WmTemplateDescriptor descriptor, Locale l)
throws ResourceException
{
descriptor.createGroup(NOTIFICATION_SETUP_GROUP,
new String[]{DIRECTORY_PARM, CHECK_ADDED_PARM, CHECK_DELETED_PARM,
SIG_FIELD_NAMES_PARM, SIG_FIELD_TYPES_PARM, SIG_PARM});

descriptor.createFieldMap(
new String[]{SIG_FIELD_NAMES_PARM, SIG_FIELD_TYPES_PARM, SIG_PARM},
false);

descriptor.setHidden(SIG_FIELD_NAMES_PARM);
descriptor.setHidden(SIG_FIELD_TYPES_PARM);
descriptor.setHidden(SIG_PARM);
descriptor.createTuple(
new String[]{SIG_FIELD_NAMES_PARM, SIG_FIELD_TYPES_PARM});

descriptor.setResourceDomain(DIRECTORY_PARM, DIRECTORIES_RD, null);
descriptor.setResourceDomain(SIG_FIELD_NAMES_PARM, FIELD_NAMES_RD, null);
descriptor.setResourceDomain(SIG_FIELD_TYPES_PARM, FIELD_TYPES_RD, null);
descriptor.setResourceDomain(SIG_PARM, WmTemplateDescriptor.OUTPUT_FIELD_NAMES,
new String[]{SIG_FIELD_NAMES_PARM, SIG_FIELD_TYPES_PARM});

descriptor.setDescriptions(
MyAdapter.getInstance().getAdapterResourceBundleManager(),l);

}
public void runNotification() throws ResourceException
{
File thisDir = new File(_directory);
File [] newList = thisDir.listFiles();
ArrayList scratchCopy = new ArrayList(this._fileList);
for (int nlIndex = 0;nlIndex < newList.length;nlIndex++)
{
String name = newList[nlIndex].getName();
if(newList[nlIndex].isFile())
{
if(scratchCopy.contains(name))
{
scratchCopy.remove(name);

}
else
{
this._fileList.add(name);
if(this._checkAdded)
{
this.doNotify(createNotice(name,_directory,true,false));

}
}

}
else
{
scratchCopy.remove(name);

}
}
// now anything left in the scratch copy is missing from the directory
String[] deadList = new String[scratchCopy.size()];
scratchCopy.toArray(deadList);
for(int dlIndex = 0; dlIndex < deadList.length;dlIndex++)
{

webMethods Adapter Development Kit Installation and User’s Guide 9.12 131

6 Polling Notifications

this._fileList.remove(deadList[dlIndex]);
if(this._checkDeleted)
{
this.doNotify(createNotice(deadList[dlIndex], _directory,false,true));

}
}
}
public Boolean adapterCheckValue(WmManagedConnection connection,
String resourceDomainName, String[][] values, String testValue)
throws AdapterException
{
boolean result = true;
if(resourceDomainName.equals(DIRECTORIES_RD))
{
File testDir = new File(testValue);
if (!testDir.exists())
{
result = false;

}
else if(!testDir.isDirectory())
{
result = false;

}
}
return new Boolean(result);
}
public ResourceDomainValues[] adapterResourceDomainLookup(
WmManagedConnection connection, String resourceDomainName,
String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;
if (resourceDomainName.equals(FIELD_NAMES_RD) ||
resourceDomainName.equals(FIELD_TYPES_RD))

{
ResourceDomainValues names =
new ResourceDomainValues(FIELD_NAMES_RD,new String[] {
"FileName", "Path","isAdded","isDeleted"});

ResourceDomainValues types =
new ResourceDomainValues(FIELD_TYPES_RD,new String[] {
"java.lang.String", "java.lang.String",
"java.lang.Boolean","java.lang.Boolean"});

results = new ResourceDomainValues[] {names,types};
}
return results;
}
public void registerResourceDomain(WmManagedConnection connection,
WmAdapterAccess access) throws AdapterException
{
access.addResourceDomainLookup(this.getClass().getName(),
FIELD_NAMES_RD,connection);

access.addResourceDomainLookup(this.getClass().getName(),
FIELD_TYPES_RD,connection);

ResourceDomainValues rd = new ResourceDomainValues(DIRECTORIES_RD,
new String[] {""});

rd.setComplete(false);
rd.setCanValidate(true);
access.addResourceDomain(rd);
access.addCheckValue(DIRECTORIES_RD, connection);
}
private WmRecord createNotice(String file, String dir, boolean isAdded,

132 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

boolean isDeleted)
{
WmRecord notice =
WmRecordFactory.getFactory().createWmRecord("notUsed");

notice.put("FileName",file);
notice.put("Path",dir);
notice.put("isAdded",new Boolean(isAdded));
notice.put("isDeleted", new Boolean(isDeleted));
return notice;
}

}

Defining a WmPollingNotification Implementation Class

1. Create a directory structure for the Java package for adapter polling notification implementation.
For example: com\mycompany\adapter\myadapter\notifications. In the example, the Java
package created is com\wm\MyAdapter\notifications.

Note:
You must create your Java package and classes in the adapterPackageName\code\source
directory in the webMethods package you created using Designer.

2. Create a class by extending com.wm.adk.notification.WmPollingNotification base class.

In the example, the class created is SimpleNotification.

Important:
You can make a callback to the connection factory using WmManagedConnection.getFactory. If
you do this, do not call the setmethods on the connection factory which produces
unpredictable results.

3. Implement the runNotification method.

4. Override the base class implementation of the fillWmTemplateDescriptor method.

Specifying Configuration Metadata for Polling Notifications
The next step for implementing a polling notification is to create the metadata constructs that the
users of the adapter use for entering data when they create polling notification nodes. To do this,
you perform the following:

Create metadata parameters appropriate for the function of the polling notification. Each
parameter has:

A variable to hold the configured values.

A String constant containing the name of the parameter.

An accessor method.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 133

6 Polling Notifications

A set of resource bundle entries with a localizable parameter name and description as
shown in “Updating the Resource Bundle” on page 136.

For more information on metadata parameters, see “Metadata Model for Connection” on
page 63.

Describe presentation for those metadata parameters.

Set the data entry rules for those metadata parameters.

The example implementation includes three metadata parameters that the users of the adapter
use to create polling notification nodes. The following table describes the purpose of each of these
parameters for data entry:

DescriptionParameter

Directory to monitor.directory

Indicates whether notifications must be sent when files are added to the specified
directory.

checkAdded

Indicateswhether notificationsmust be sentwhenfiles are deleted from the specified
directory.

checkDeleted

Specifying the Display and Data Entry Attributes of the Data Entry Parameters

After creating the parameters, specify the display and data entry attributes by calling various
methods of the WmTemplateDescriptor interface from the service's fillWmTemplateDescriptor method.

The example code places each data entry parameter into a single group (in display order)
referenced by theNOTIFICATION_SETUP_GROUP constant. A constant instead of a string is
used to name the group, because the same value is used in the resource bundle to specify a
localizable group name.

Implementing Configuration Resource Domains for Polling
Notifications
The next steps for implementing a polling notification are:

Define and implement the resource domains required for the metadata parameters that you
created.

Identify the values on which those resource domains depend.

For each parameter that requires a resource domain to supply a value, or that requires a validity
check for values supplied by the users of the adapter, you must perform the following:

1. In the WmPollingNotification.fillWmTemplateDescriptor method, call
WmTemplateDescriptor.setResourceDomain method, passing the name of the parameter, the

134 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

name of the resource domain, and an array of the names of any parameters on which the
resource domain depends.

2. In the WmPollingNotification.registerResourceDomain method, call
WmAdapterAccess.addResourceDomain(ResourceDomainValues) method to register the
resource domain support.

3. In the WmPollingNotification.registerResourceDomain method, implement code to populate
the resource domain values and/or the adapter check values. For more information about
adapter check values, see “Adapter Check Value Callbacks” on page 91.

4. In the associated connection class'sWmManagedConnection.registerResourceDomainmethod,
call WmAdapterAccess.addResourceDomainLookup method to add the polling notification
metadata parameters with resource domain lookup.

package com.wm.MyAdapter.connection;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.AdapterException;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.services.MockDbUpdate;
import com.wm.MyAdapter.notifications.SimpleNotification;
public class SimpleConnection extends WmManagedConnection {
..
..
public void registerResourceDomain(WmAdapterAccess access)
throws AdapterException
{

..

..

..
//Simple Polling Notification Registering Resource Domain
access.addResourceDomainLookup(SimpleNotification.DIRECTORIES_RD, this);
access.addResourceDomainLookup(SimpleNotification.FIELD_NAMES_RD, this);
access.addResourceDomainLookup(SimpleNotification.FIELD_TYPES_RD, this);
}

}

In this example, there are no preset values, but adapter's user supplied data for the directory
parameter is validated to ensure that the directory exists.

Specifying Notification Signatures (Document Type)
After you implement the configuration logic for the polling notification, you implement the logic
that defines the signature of the polling notification node. It is used to create a document type
node that enables triggers to identify notification data in the node.

Note:
A polling notification only has an output signature.

To define an output signature, you create additional metadata parameters as follows:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 135

6 Polling Notifications

DescriptionParameter

Used with the reserved signature resource domain.signature

Dependency parameters in which you build the signature data. The relationship
between these parameters is established in theWmTemplateDescriptor interface. Formore

fieldName

fieldType information about themechanics of signature construction, see “Adapter ServiceNode
Signatures” on page 93.

Manipulating Adapter Notification Document Properties
With few exceptions, the document properties for an adapter's polling and listener notifications
are managed and manipulated the same way as they are for an adapter service's signature. For
the three template based features (signature wrapping, override connection name, and pass full
pipeline), only the pass full pipeline feature applies to notification documents, and then, only for
synchronous notifications.When the pass full pipeline option is enabled for a synchronous listener
notification, then the notification can pass fields to the invoked service that are not defined in its
request document, and receive fields from that service that are not defined in the notification's
reply document. Template-based signature manipulation features have no other effect on
notification documents.

Document field properties are managed in exactly the same way as the signature field properties
as described earlier. In the case of notifications, the setSignaturePropertiesmethod is called
setDocumentProperties method. For asynchronous notifications, only one PipelineRecordProperties
argument exists.

Implementing Signature Resource Domains
The resource domain implementation for the signature parameters in this example is
straightforward. The signature in this case is static, but it is implemented as a lookup, to facilitate
maintenance of the class.

Implementing the WmPollingNotification.runNotification Method
and Callbacks

The final task for implementing a polling notification is to add the runNotification method and any
callbackmethods. This example implements some very basic logic as previously described. It relies
on the fact that the object instance is reused between runNotification calls. This may not be a good
technique if the runNotification call runs for a long time or if overlapping calls occur. A more robust
model would probably use a persistent store instead of an instance variable to track the current
directory snapshot.

Updating the Resource Bundle
Update the resource bundle with display names, and descriptions tomake the polling notification
more usable, as follows:

136 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.notifications.SimpleNotification;
public class MyAdapterResource extends ListResourceBundle implements MyAdapterConstants{

..

..
static final Object[][] _contents = {
..
..

//Polling Notifications
,{SimpleNotification.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Simple Polling Notification"}

,{SimpleNotification.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Looks for file updates to a specified directory"}

,{SimpleNotification.NOTIFICATION_SETUP_GROUP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,

"Simple Notification Settings"}
,{SimpleNotification.DIRECTORY_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Directory Path"}

,{SimpleNotification.DIRECTORY_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Directory to monitor"}

,{SimpleNotification.CHECK_ADDED_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Notify on Add"}

,{SimpleNotification.CHECK_ADDED_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Check if notification must be generated when file added"}

,{SimpleNotification.CHECK_DELETED_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Notify on Delete"}

,{SimpleNotification.CHECK_DELETED_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Check if notification must be generated when file deleted"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

Registering Polling Notifications in the Adapter

You must register each polling notification class in the WmAdapter implementation class. You do
this by passing the class name to the AdapterTypeInfo.addNotificationType method in the
WmAdapter.fillAdapterTypeInfomethod in WmAdapter implementation class. In the example, the polling
notification SimpleNotification class is registered in theMyAdapter adapter implementation class:

For example:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.notifications.*;
..
..
public class MyAdapter extends WmAdapter implements MyAdapterConstants {
..
..
public void fillAdapterTypeInfo(AdapterTypeInfo info, Locale locale)
{

webMethods Adapter Development Kit Installation and User’s Guide 9.12 137

6 Polling Notifications

..

..
info.addNotificationType(SimpleNotification.class.getName());

}
}

Configuring and Testing Polling Notification Nodes

Now you are ready to configure a polling notification node as follows:

Configuring Polling Notification Nodes

Scheduling and Enabling Polling Notification Nodes

Testing Polling Notification Nodes

Before you configure a polling notification node, ensure that you have configured a connection
node as described in “Configuring and Testing Connection Nodes” on page 71. This section
provides procedures for:

Configuring Polling Notification Nodes
Perform the following procedure to configure a polling notification node. You can use Designer
to configure a polling notification node.

To configure a polling notification node

1. Start Designer.

Note:
Ensure that the Integration Server connected to the Designer is running.

2. Select a namespace node package where you want to create the polling notification node.

3. Create a folder in the selected package, and navigate to that folder in Package Navigator.

4. Select File > New.

5. Select Adapter Notification from the list of elements.

6. In the Create a New Adapter Notification screen, type a name for your polling notification
in the Element name field, and click Next.

7. In the Select Adapter Type screen, select the name of your adapter, and click Next.

8. In the Select a Template screen, select an adapter notification template, and click Next.

138 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

9. In theSelect an Adapter Connection Alias screen, select the appropriate adapter connection
name, and click Next.

10. In the Publish Document Name, select Finish.

11. Select File > Save.

The adapter creates the notification node and a document named
notificationNamePublishDocument. This document contains the data of the affected portion of
the adapter resource such as a database row, and is used to inform Integration Server of the
changes.

12. In the Adapter Notification Editor's notificationNameSetting tab, select a polling event and
polling location to monitor. Configure the Adapter Notification Editor fields as applicable to
your adapter resource. For information about using the Adapter Notification Editor, see the
webMethods Service Development Help for your release.

13. Select File > Save.

14. Schedule and enable the notification at runtime.

Scheduling and Enabling Polling Notification Nodes
Before you can use a notification, you must schedule and enable it.

To schedule and enable a polling notification node

1. Start Integration Server Administrator.

2. In Adapters screen, select the name of your adapter.

3. Select Polling Notifications.

4. In the Polling Notifications screen, use the following options to schedule and enable each
polling notification:

Note:
If you use an XA-Transaction connection, you cannot enable a notification.

Description/ActionOption

Name of the notification.Notification Name

Name of the package for the notification.Package Name

webMethods Adapter Development Kit Installation and User’s Guide 9.12 139

6 Polling Notifications

Description/ActionOption

Note:
Before you can enable a polling notification, you must schedule it. Click
on the icon in the Edit Schedule column to edit the schedule.

State

Once you schedule a polling notification, you can select the option Enabled
to enable, and Disabled to disable a polling notification. Click the current
value in this field to change its value.

Use the Edit Schedule icon to create a polling notification as described in
step 5.

Note:
You must disable a polling notification before you can edit it.

Edit Schedule

Click on the icon in the Edit Schedule column to create or modify polling
notification parameters.

Click on the icon in the View Schedule column to review the scheduled
parameters for the selected polling notification. ClickReturn to Notifications
to go back to the main polling notification page.

View Schedule

5. To create or modify schedule parameters for the selected notification, click the Edit Schedule
icon and set the following options:

Description/ActionOption

Type the polling interval time in seconds.Interval (seconds)

This option determines when the scheduled interval time you set in the
Interval field begins. Enable this option to allow for executions of the

Overlap

scheduled notification to overlap. With the Overlap option enabled, the next
scheduled execution does not wait for the current execution to end.

Note:

If your notification requires the preservation of the notification
ordering, do not enable this option.
This option is enabled for clustered notifications.

Enable this option to start polling immediately.Immediate

6. Click Save Schedule.

Testing Polling Notification Nodes

Creating the Flow Service for the Polling Notification Node

140 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

Perform the following procedure to create the flow service for the Polling notification node.

To create the flow service for the Polling notification node

1. Start Designer.

2. In the Package Navigator, select the folder where you want to create the flow service.

3. Select File > New.

4. Select Flow Service from the list of elements.

5. In the Create a New Flow Service screen, type TestMyAdapterFlowService in the Element
name field, and click Next.

6. On the Select the Source Type screen, select Empty Flow, and click Finish.

7. Click to insert a flow step.

8. Navigate to the pub.flow:savePipelineToFile service in the WmPublic package, and click
OK.

Note:
The savePipelineToFile service saves the contents of the pipeline (from the polling notification
event) to the file that you specify in the fileName parameter.

9. Click the Pipeline tab.

10. Open the fileName parameter in the pipeline and set its value to
MonitorPollingNotificationPipeline.log.

Click OK.

Creating the Trigger for the Polling Notification Node

Perform the following procedure to create the trigger for the Polling notification node.

To create the trigger for the Polling notification node

1. Start Designer.

2. In the Package Navigator, select the folder where you want to create the trigger.

3. Select File > New.

4. Select webMethods Messaging Trigger from the list of elements.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 141

6 Polling Notifications

5. On thewebMethods Messaging Trigger screen, type TestMyAdapterMsgTrigger in theElement
name field and click Finish.

6. In the trigger editor, in the Conditions section, accept the default Condition1.

7. In the Condition detail section, in the Service field, select or type the flow service name
TestMyAdapterFlowService.

8. Click to insert document types. Select TestMyPollingNotificationPublishDocument and
click OK.

9. Click to save your trigger.

Scheduling and Enabling the Polling Notification Node

Perform the following procedure to schedule and enable the Polling notification node.

To schedule and enable the Polling notification node

1. Start Integration Server Administrator.

2. In Adapters screen, select the name of your adapter.

3. Select Polling Notifications.

4. Click Edit Schedule.

5. Set the Interval to 10 and click the Save Schedule button.

6. Enable the node by selecting Enabled in the State column.

Testing the Polling Notification Node

Perform the following procedure to test the polling notification node.

To test the Polling notification node

1. Add a file to the directory that is monitored. In this example, the directory is C:\Monitor and
file added is Testing-1.txt.

The fileMonitorPollingNotificationPipeline.log is created in Integration Server_directory /
instances/<instance_name>/pipeline. This file contains the following entry for the file added in
C:\Monitor:
<?xml version="1.0" encoding="UTF-8"?>
<IDataXMLCoder version="1.0">

142 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

<record javaclass="com.wm.data.ISMemDataImpl">
<value name="fileName">MonitorPollingNotificationPipeline.log</value>
<record name="TestMyAdapter:TestMyAdapterNotificationPublishDocument"

javaclass="com.wm.data.ISMemDataImpl">
<value name="FileName">Testing-1.txt</value>
<value name="Path">C:\Monitor</value>
<jboolean name="isAdded">true</jboolean>
<jboolean name="isDeleted">false</jboolean>
<record name="_env" javaclass="com.wm.data.ISMemDataImpl">

<value name="locale"></value>
<value name="activation">wm6bfd23a95-1c84-4e3e-b687-5858453777bc</value>
<value name="businessContext">wm6:bfd23a95-1c84-4e3e-b687-5858453777bc\snull\

snull:wm6bfd23a95-1c84-4e3e-b687-5858453777bc:null:IS_61:null</value>
<value name="uuid">wm:c3fb4d30-2f23-11ec-8723-000000000002</value>
<value name="trackId">wm:c3fb4d30-2f23-11ec-8723-000000000002</value>
<value name="pubId">islocalpubid</value>
<Date name="enqueueTime" type="java.util.Date">Sun Oct 17 13:55:20 IST

2021</Date>
<Date name="recvTime" type="java.util.Date">Sun Oct 17 13:55:20 IST 2021</Date>
<number name="age" type="java.lang.Integer">0</number>

</record>
</record>

</record>
</IDataXMLCoder>

Cluster Support for Polling Notifications

When Integration Servers are deployed in a cluster, the servers in that cluster automatically share
information about the registered polling notifications. The adapter runtime automatically
coordinates polling and some callbacks among instances of the same polling notification node on
different servers in a cluster.

This coordination of clustered polling notifications requires no special coding by the adapter
developers. However, there are design considerations for adapters that is used in a cluster. There
are also global, adapter-specific, and node-specific configuration options that control how
coordination is performed. At a minimum, adapter developers must specify configuration values
that are appropriate for the adapter.

Callback Coordination
When a callback is coordinated across the cluster, that callback is only executed on one instance
of the polling notification in the cluster. For example, if the enableCallBack is coordinated, the first
polling notification in the cluster that is enabled, executes the enableCallBack. When subsequent
instances of that notification are enabled, the enableCallBack call is suppressed. If the callbacks were
not coordinated, each instance executes the enableCallBack when the node instance is enabled.

The purpose of callback coordination is to prevent redundant updates to the backend associated
with starting or stopping a notification. For example, when the disableCallBack is called on a polling
notification for theAdapter for JDBC, a database trigger that gathers information for the notification
is removed. Without coordination, all instances of that notification would be effectively disabled
as soon as the first instance is disabled. With coordination, the disableCallBack is not executed until
the last instance of that notification in the cluster is disabled.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 143

6 Polling Notifications

From a design standpoint, it is important to segregate management of resources on the backend
in separate callbacks from management of resources that are local to the notification instance.
Callback coordination is configured so that related pairs of callbacks are either coordinated, or
not. The following pairs of callbacks may be coordinated:

DescriptionCoordinated Callback
Pairs

This occurs when the persistent node state is changed from disabled or
changed to disabled. When coordinated, the first instance to go from

enableCallBack and
disableCallBack

disabled to enabled executes the enableCallBack method and the last
instance to go from either suspended or enabled to disabled executes
the disableCallBack method.

This occurs when the node becomes active or inactive for any reason,
including when the node is enabled, disabled, suspended, or resumed (if

startupCallBack and
shutdownCallBack

the node is enabled, it also includes Integration Server and package
startup or shutdown). When coordinated, the first instance to become
active will execute the startupCallBack and the last instance to become
inactive executes the shutdownCallBack.

This occurs when the node is suspended or resumed. When coordinated,
the first instance to go from enabled to suspended executes the

suspendCallBack and
resumeCallBack

suspendCallBack and the last instance to go from either suspended to
enabled executes the resumeCallBack.

For information on how to configure callback coordination, see “Configuration Settings” on
page 146.

Polling Coordination
When a polling notification is started, it executes polls in an interval according to its schedule
configuration. When polling is coordinated across a cluster, a poll is executed on only one of the
active instances at each scheduled interval.Which instance executes depends on the configuration
and timing.

Integration Server supports a coordinationmode configuration setting for each polling notification
node. This configuration is normally set from Integration Server Administrator on the same page
where the schedule is set. The following coordination mode values are supported:

DescriptionCoordination Mode
Setting

Disables all cluster coordination for this node (both polling and callback
coordination). Instances of this node act independentlywithout considering
the cluster.

Disabled

The first instance of this notification to start executes all polls until that
instance either shuts down or fails. When that occurs, the first active

Standby

144 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

DescriptionCoordination Mode
Setting

notification instance that detects that the original instance is no longer
polling take its place.

Behaves much like standby, except that at the end of each interval, the
instance that first detects that the time to poll has arrived executes the poll.

Distributed

When the Integration Server clocks are properly synchronized, generally
the server with the lightest load executes the poll.

The coordination information for clustered polling notifications is stored in the cluster’s shared
cache.

All coordination of clustered polling notifications is done through an entry specific to the node in
the cluster's shared cache. When the first instance of a notification (with coordination enabled) is
introduced into a cluster, a new shared cache session is created and populated with the name of
the server hosting the node, and the state of the node. As that node is copied to other servers in
the cluster, each instance is registered in the same shared cache session. The states of these respective
instances are used to determine when coordinated callbacks must be executed.

Important:
Always copy polling notification nodes instead of creating new nodes with the same name and
configuration. Each polling notification node is created with a GUID that forms part of the
message ID of all documents published by the notification. If the instances do not have the same
GUID, it can interfere with duplicate-message detection facilities.

When the first instance of a clustered polling notification is started, that instance is marked as
"primary", its schedule and coordination settings are recorded, and the time calculated for the
next poll are all recorded in the shared cache session. Being "primary" means that first instance
executes the first poll (barring failures). When the "primary" schedules the next poll, it releases
the "primary" status if coordination is distributed, or retains it if coordination is configured for
standby mode.

When another instance of a clustered polling notification starts, that instance first detects that a
previous instance is already started. Since this instance is not the first, it overwrites its own cluster
and schedule settings with those recorded in the shared cache. This instance then schedules itself
to "wake up" at the next scheduled poll time. When it wakes up, if another instance is marked as
"primary", the notification instance will verify that the indicated instance is still active, then
reschedule itself to wake up periodically until it detects that the poll was completed within the
configured time limit. It then reschedules itself to wake up at the next scheduled poll and repeats
the process. If the polling time arrives and no instance is marked as "primary", or it detects that
the "primary" instance is no longer functioning, then the local instance assumes the "primary" role
and executes the poll as described above. Since all coordination is based on timestamps recorded
in the shared cache, it is very important for server clocks to be synchronized.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 145

6 Polling Notifications

Configuration Settings
Cluster coordination is controlled by a number of configuration settings to control behavior and
tune failure detection using timeouts.

Global Settings

The following parameters are set in the server.cnf file and apply globally to all clustered
notifications for all adapters:

DescriptionParameter Name

Interval in milliseconds, with which a secondary instance will
check to see if an executing instance is still alive. If not set, the

watt.art.
clusteredPollingNotification.
keepAliveInterval secondary instance will change to the default maxLockDuration

value of 180000 for the shared cache.

Time in milliseconds, that an executing node can be late before
it is assumed to have failed. In general, this settingmust be equal

watt.art.
clusteredPollingNotification.
keepAliveExpireTimeout to the amount of drift anticipated on the server clocks. If not set,

the secondary instance will change to the default
maxLockDuration value of 180000 for the shared cache.

Note:
The parameters can also be set using Integration Server Administrator. For more information,
see webMethods Integration Server Administrator’s Guide.

Adapter-Specific Settings

In the configuration directory of the adapter's package, the clusterProperties.cnf provides
settings that specify a callback scheme, and place limits on which coordination modes can be
applied to notification nodes for the adapter. The clusterProperties.cnf file is an XML file in
which settings may be provided globally for the adapter or specifically to a particular notification
template. Template-specific settings use the template class name to set the scope of the setting.
The clusterProperties.cnf file is located in the Integration Server_directory \
instances\instance_name\packages\AdapterName\config folder.

The following example includes all of the major constructs of a clusterProperties.cnf file:
<?xml version="1.0"?>
<clusterProps>
<pollingNotifications>

<callbackScheme>1</callbackScheme>
<runtimeModeLimit>distribute</runtimeModeLimit>
<template

className="com.wm.adapter.wmarttest.notification.LatchedPollingNotification">
<callbackScheme>1</callbackScheme>
<runtimeModeLimit>standby</runtimeModeLimit>

</template>
</pollingNotifications>

146 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

<listenerNotifications>
<callbackScheme>1</callbackScheme>

</listenerNotifications>
<listeners>

<runtimeModeLimit>standby</runtimeModeLimit>
</listeners>

</clusterProps>

The outer <clusterProps>wrapper contains the following three elements:

<pollingNotifications>wraps settings for clustered polling notifications. The
<pollingNotifications>wrapper must contain the following global settings that provide the
adapter's default values:

A <callbackScheme>

A <runtimeModeLimit>

These can be followed by any number of template wrappers, which contain the
<callbackScheme> and <runtimeModeLimit> settings specific to each template. Template specific
settings are applied to notification nodes created from the associated template name.

The <callbackScheme> setting controls how callback coordination is performed, while
<runtimeModeLimit> constrains the coordination mode setting that can be set for a notification
node. Valid values for these settings are included in the following tables.

Values for callbackScheme Setting

Coordination Modes

Resume/SuspendStartup/ShutdownEnable/DisablecallbackScheme

No CoordinationNo CoordinationNo Coordination0

No CoordinationNo CoordinationCoordinated1. Default

No CoordinationCoordinatedNo Coordination2

No CoordinationCoordinatedCoordinated3

CoordinatedNo CoordinationNo Coordination4

CoordinatedCoordinatedNo Coordination5

CoordinatedNo CoordinationCoordinated6

CoordinatedCoordinatedCoordinated7

Values for runtimeModeLimit Setting

ResultruntimeModelLimit

Nodes created using this template cannot be coordinated across a cluster.
Nodes are forced into the disabled coordination mode.

disable

webMethods Adapter Development Kit Installation and User’s Guide 9.12 147

6 Polling Notifications

ResultruntimeModelLimit

Nodes can be coordinated in standbymode or coordination may be
disabled.

standby. Default

Nodes can be coordinated in distributed or standbymode, or
coordination may be disabled.

distribute

When a polling notification is created or registered on a cluster-aware Integration Server, the
Integration Server looks for a clusterProperties.cnf file in the adapter's config directory. If
the file contains no entry for the notification's template, a new <template> entry is created
using the settings specified globally for all polling notifications. If the file is completely absent
or unreadable, a new file is created using the default settings identified earlier.

<listenerNotifications> is for future use. Copy wrapper and contents from the example.

<listeners> is for future use. Copy wrapper and contents from the example.

Node-Specific Settings

The polling notification schedule page in Integration Server Administrator includes cluster settings
that are only editable in a clustered environment. On this page, the coordinationmodemay be set
to one of the values supported by its template. Formore information, see runtimeModeLimit earlier.
In addition, timeouts may be separately configured for polling and setup callback operations.

148 webMethods Adapter Development Kit Installation and User’s Guide 9.12

6 Polling Notifications

7 Listener Notifications

■ Overview .. 150

■ Listener Classes ... 151

■ Asynchronous Listener Notification Classes .. 153

■ Synchronous Listener Notification Classes .. 154

■ Listener and Listener Notification Interactions ... 156

■ Listener Implementation ... 159

■ Listener Notification Implementation .. 167

■ Configuring and Testing Listener Nodes and Listener Notification Nodes 178

webMethods Adapter Development Kit Installation and User’s Guide 9.12 149

Overview

Listeners and listener notifications work together to create a much more powerful model than
polling notifications in detecting and processing events in the adapter resource.

When the user of the adapter enables the polling notification node, the following events occur:

Integration Server instantiates and initializes a polling notification object with settings from
the node.

Integration Server then invokes the polling notification object by calling its runNotificationmethod
on a periodic basis.

The polling notification objectmust retrieve a connection and use it to determine if publishable
events have occurred in the adapter resource.

If an event has occurred, the polling notification object must generate a WmRecord object
conforming to the output signature of the polling notification node, and publish it by calling
the doNotify method.

The polling notification object then goes to sleep until the next time it is invoked.

If the overlap option is enabled in the notification schedule, a second objectmay be instantiated
while the previous instance is still processing events detected in a previous invocation. The
second instance retrieves another connection, and interrogates the resource again. This model
can make state management significantly more difficult.

When the user of the adapter uses a listener notification, the responsibility of monitoring the
adapter resource and processing any events is divided between a listener and its notification(s).

A listener object is instantiated and is given a connection when the user of the adapter enables
the associated node.

The listener object remains active with the same connection to monitor the resource activity
until it is disabled either explicitly or by disabling the containing package, the adapter, the
connection, or Integration Server.

When the listener detects a publishable event in the resource, it passes an object back to
Integration Server.

Integration Server interrogates a configured list of listener notifications associated with the
listener node until it finds a listener notification node that can process the event. Integration
Server accomplishes this by calling the listener notification's supports method. The first
notification to return true from this call is invoked using its runNotificationmethod. This behavior
is similar to the polling notification where any data about the event that was provided by the
listener is passed as an argument to the runNotification method.

Synchronous and Asynchronous Listener Notifications
The ADK includes both, synchronous and asynchronous processing model.

150 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

An asynchronous listener notification publishes a document to a configured webMethods Broker,
using the doNotify method.

An asynchronous listener notification publishes a document.

The notification object's runNotification method calls doNotify method.

The users of the adapter may process the document's data as needed. For example, the users
of the adapter can create an Integration Server trigger that receives the document and executes
an Integration Server flow service or a Java service.

Asynchronous listener notifications do not support session handling. When a synchronous
listener notification calls an Integration Server service that needs that needs information
contained in the session data, itmay appear towork because asynchronous listener notifications
themselves do not execute a service. Instead, an Integration Server trigger, which supports
session handling, is used to receive the document and execute an Integration Server flow
service or a Java service.

A synchronous listener notification invokes a specified Integration Server service, and potentially
receives a reply from the service and delivers the results back to the adapter resource.

A synchronous listener notification does not publish a document.

The notification object's runNotification method calls invokeService.

The users of the adapter cannot process the document's data as the processing is done in the
invokeService method.

Synchronous listener notifications do not support session handling. When a synchronous
listener notification calls an Integration Server service that needs information contained in the
session data, that service can fail.

Implementing Listeners and Listener Notifications
The implementation of a listener and listener notification is similar to the implementation of an
adapter connection. Each implementation includes a Java class extending an ADK base class, and
a namespace node inwhich design-time configuration data is stored. In the Java class, themetadata
model for listeners and listener notification is nearly identical to that of adapter connections. The
configuration pages are built from the listeners metadata. For more information, see “Metadata
Model for Connection” on page 63

Listener Classes

The following figure shows the classes provided by the ADK to support listener notifications. It
also shows the com.wm.adk.notification.WmConnectedListener implementation class SimpleListener.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 151

7 Listener Notifications

Create a listener class by extending com.wm.adk.notification.WmConnectedListener base class. You must
override the following base class methods in your WmConnectedListener implementation class:

DescriptionMethod

Controls howmetadata parameters are displayed, and defines rules for data entry
for the listener's metadata parameters. From the standpoint of the adapter
implementation, the model is identical to the connection model.

fillWmDescriptor

Initializes the listener. This method is called during the listener startup sequence
as well as during the recovery procedure after an AdapterConnectionException is
encountered.

listenerStartup

152 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

DescriptionMethod

Monitors the adapter resource. This method returns data that is analyzed by the
supportmethod of associated listener notifications. Formore details, see “Listener
and Listener Notification Interactions” on page 156.

waitForData

Cleans up listener resources. This method is called during the listener shutdown
sequence.

listenerShutdown

Note:
You may optionally override the processNotificationResults method to allow the
listener implementation class to post-process listener notification results. For
an example of using both methods, see “Implementing Listener Methods” on
page 164.

In addition, the implementation class may override the following optional methods:

DescriptionMethod

Allows the listener implementation class to restrict the notification classes
it supports by explicitly identifying them. For more information, see

restrictNotificationTypes

“Restricting Listeners to Register Specified Notification Templates” on
page 163.

Invoked on a thread separate from the listener's thread, this method allows
the listener's waitForData loop to be gracefully interrupted prior to a normal
shutdown.

shutdownCallBack

Asynchronous Listener Notification Classes

The following figure shows the classes provided by the ADK to support asynchronous listener
notifications.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 153

7 Listener Notifications

Create an asynchronous listener notification class by extending the base class
com.wm.adk.notification.WmAsyncListenerNotification, as shown by the SessionLogListenerNotification class in
the figure. As previously mentioned, the implementation of an asynchronous listener notification
is similar to a polling notification. The key differences occur in the following methods:

DescriptionMethod

Determines whether the notification can process the object returned by the listener's
waitForData method.

supports

boolean supports(Object)

If the supports method returns true, the Integration Server calls the following
runNotification method to process the data.

runNotification

NotificationResults runNotification(NotificationEvent)

The implementation of this method must

Call one of the WmAsynchronousNotification.doNotifymethods for each notification it
wants to generate, based on the NotificationEvent data content.

Never return null.

Note:
The NotificationEvent simply wraps the data object returned from the listener's
waitForData method.

For more information about alternative method of managing resource domains, see .

Synchronous Listener Notification Classes

The following figure shows the classes provided by the ADK to support synchronous listener
notifications.

154 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

Create a synchronous listener notification class by extending
com.wm.adk.notification.WmSyncListenerNotification base class. The examples in this section do not
implement a synchronous notification, so the figure in this section only shows a placeholder class.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 155

7 Listener Notifications

A synchronous notification calls the WmSynchronousNotification.invokeServicemethod, passing it a
WmRecord object containing data consistent with the output signature of the notification node.

Synchronous listener notifications are expected to define both an input and output signature. The
terms input and output are relative to the notification. The output signature specifies the format
of the data that the notification places on the pipeline prior to invoking the service associatedwith
the synchronous notification. The input signature describes the data that the notification expects
to find on the pipeline after the invoked service has completed processing.

The service invoked by WmSynchronousNotification.invokeServicemethod is specified at design time in
the notification node data. When this service is invoked, it executes on a separate thread (and
therefore in a different transactional context) from the listener.When the invoked service completes,
Integration Server extracts the data on the pipeline that is identified in the notification node's input
signature and delivers that data as aWmRecordwrapped in the SyncNotificationResults object returned
by invokeService method.

Listener and Listener Notification Interactions

The design time interactions for listeners and listener notifications are essentially the same as the
interactions for connections and polling notifications, as described in “Connection Class
Interactions” on page 67 and “Polling Notification Interactions” on page 126, respectively. This
section describes the runtime behavior of listeners and their associated notifications.

Important:
A listener and the associated listener notifications must reside in the same package in the
Integration Server_directory /instances/<instance_name>/packages/<your_package> folder.
Otherwise, data is lost when a package is reloaded.

The figures that illustrate listener runtime interactions with synchronous and asynchronous
notifications in this section show the runtime lifecycle of a listener from the time it is started until
the time it is shut down. The difference between the two diagrams begins at step 3.3, when the
server calls the runNotification method of the notification. Do not interpret the separation of these
diagrams to imply that a given listener can use only synchronous or asynchronous notifications.
On the contrary, step 3 represents a loop that repeats continuously while the listener is running,
and any iteration of the loopmay follow either course depending on the class type of the notification
that indicates support for the notification event.

When a listener starts (or restarts), Integration Server performs the following:

Retrieves a connection from the associated connection node.

Calls the listener's listenerStartup method. This listenerStartup method performs the following:

Access the connection using the retrieveConnection method from the base class.

Initialization required prior to the first waitForData call.

Disables the listener if an exception is thrown by the listenerStartup method, or if retrieving
connection by Integration Server fails.

Note:

156 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

A listener instance holds the connection it retrieves during listener initialization for the lifetime
of the listener instance. Disabling the connection node has no impact on this connection already
held by the listener, but prevents the listener from starting or restarting in the event of an
AdapterConnectionException.

After initialization of the listener is complete, Integration Server initiates the notification
event-processing loop represented by step 3 of the interaction diagrams. This loop continues until
one of the following events occurs:

The user of the adapter disables the listener in the adapter's administrative interface.

Package containing the listener is disabled (or reloaded).

Note:
Disable the listener package before you disable the adapter package.

Integration Server is shut down.

Listener or a listener notification throws an AdapterConnectionException. This causes the listener
to shut down and to attempt to restart with a new connection.

Listener throws an AdapterException or a RunTimeException.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 157

7 Listener Notifications

The following figure shows the listener runtime interactions with synchronous notification

The event-processing loop begins with a call to the listener's waitForData method. This method
performs the following:

Interrogates the adapter resource to determine whether an event has occurred that the listener
should report.

If the event has not occurred, the listener should return a null object.

The model assumes that the listener implements some form of blocking read operation with
a time component that allows it to return periodically, even if no notification event has occurred.
The adapter developermust provide appropriatemeans of configuring the timing characteristics
of this blocked read, such as through a metadata parameter on either the listener or the
connection.

If the event has occurred, the listener's waitForDatamethod returns a non-null object, Integration
Server iterates through the listener notifications that are currently registered with the listener,
which must be enabled and registered.

158 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

The data object received from waitForDatamethod is passed to the supportsmethod (step 3.2)
for each notification.

For the first notification that returns true from its supports method:

Integration Server calls the runNotification method passing the data object wrapped as a
NotificationEvent (step 3.3).

Integration Server calls the listener's processNotificationResults method with a
NotificationResults as input object returned from runNotification (step 3.4).

If no notification returned true from the supportsmethod, or if runNotification threw an exception
other than an AdapterConnectionException, then processNotificationResults is called with a null
argument.

The listener notification's runNotification method (step 3.3) is responsible for the following:

Interpreting the NotificationEvent object.

Building a WmRecord object consistent with its output signature.

This may or may not require additional interaction with the resource. If it does, a connection
is made available for that purpose through the retrieveConnection method, which is the same
connection used by the listener.

An asynchronous notification passes this WmRecord object to the doNotify method (step 3.3.1).

The doNotify method publishes the document in the same way it does for polling notifications.

An asynchronous notification must instantiate a new AsynchNotificationResults object (step 3.3.3),
including the notification name, which can be retrieved from the base class nodeName method
(step 3.3.2).

A synchronous notification's implementation of runNotificationmethodpasses its output,WmRecord
object to invokeService method instead of doNotify method (step 3.3.1).

The service called by invokeServicemethod is specified in the configuration of the synchronous
listener notification node. The service is invoked on a separate thread and transaction context.

The results of the service invocation are returned to invokeService method as a
SynchronousNotificationResults object.

The results are then available to be interrogated by the notification and/or the listener, using
the methods provided by that class.

Listener Implementation

The example listener implementation provided in this section shows the basic mechanics of a
simple listener that can be used to monitor activity on an Integration Server log file. The example
listener notification parses a session log entry and produces asynchronous notifications.

The tasks for implementing a listener are as follows:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 159

7 Listener Notifications

Defining a WmConnectedListener Implementation Class

Specifying Configuration Metadata for Listeners

Implementing Listener Methods

Creating getReader Method in the WmManagedConnection Implementation Class

Updating the Resource Bundle

Registering Listeners in the WmAdapter Implementation Class

Compiling the Adapter

Reloading Adapter

Refreshing the Designer cache

Configuring a Listener

Example Listener Class
package com.wm.MyAdapter.listeners;
import com.wm.adk.error.AdapterException;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.notification.WmConnectedListener;
import com.wm.adk.notification.NotificationResults;
import java.io.FileReader;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.connections.SimpleConnection;

public class SimpleListener extends WmConnectedListener
{
public static final String FILE_NAME_PARM = "fileName";
private String _fileName = null;
public void setFileName(String val){_fileName = val;}
private FileReader _reader = null;
private StringBuffer workingBuffer = new StringBuffer();
private String _lastDataObject = null;
public void fillWmDescriptor(WmDescriptor descriptor, Locale locale)
throws ResourceException
{
descriptor.setRequired(FILE_NAME_PARM);
descriptor.setDescriptions(
MyAdapter.getInstance().getAdapterResourceBundleManager(), locale);

}

public void listenerStartup() throws ResourceException
{
try
{
//_reader = ((SimpleConnection)retrieveConnection()).getReader();
_reader = ((SimpleConnection)retrieveConnection()).getReader(_fileName);
while(_reader.ready())
{
_reader.read(); // move to the end of the stream

160 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

}
}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(100,t);

}
}
public Object waitForData() throws ResourceException
{
try
{
if(_reader.ready())
{
do
{
int i = _reader.read();
if (i != -1)
{
char c = (char)i;
workingBuffer.append(c);
if(c == '\n')
{
_lastDataObject = new String(workingBuffer);
workingBuffer = new StringBuffer();
break;
}

}
else
{
break;

}
} while (_reader.ready());

}
}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(100,t);

}
return _lastDataObject;
}

public void listenerShutdown()
{
try
{
_reader.close();

}
catch(Throwable t){}
}
public void processNotificationResults(NotificationResults results)
throws ResourceException
{
if(results != null)
{
if(results.hadError())
{
MyAdapter.getLogger().logError(9999,
"Error processing: " + this._lastDataObject +
" errorInfo = " + (results.getErrorInfo() == null ? "" :

results.getErrorInfo().toString()));

webMethods Adapter Development Kit Installation and User’s Guide 9.12 161

7 Listener Notifications

}
}
else
{
MyAdapter.getLogger().logError(9999,
"No notification available to process:" +
this._lastDataObject);

}
}
}

Defining a WmConnectedListener Implementation Class

1. Create a class by extending com.wm.adk.notification.WmConnectedListener base class. In this
example, the class created is SimpleListener.

2. Add skeletal implementation of the abstract methods.

3. Implement the shutdownCallBack method.

The shutdownCallBack method is invoked on a thread separate from the listener's thread. This
feature allows the listener's waitForData loop to be gracefully interrupted prior to a normal
shutdown. The thread that initiates listenerShutdownmethod invokes shutdownCallBackmethod in
the following situations:

When the listener node is disabled.

When the package containing the listener node is reloaded.

When Integration Server shuts down.

The system passes to this method a reference to the underlying resource connection. The
method is invoked prior to calling the listener's listenerShutdown method. It will not be called if
the shutdown is due to an exception.

The signature of this method is:
public void shutdownCallBack(WmManagedConnection wmConn) throws

ResourceException

The listenerShutdownmethod is subsequently invoked by WmART on the listener's thread. This
is where you must perform any listener-specific cleanup tasks.

Specifying Configuration Metadata for Listener Notifications
The next step for implementing a listener is to create the metadata constructs that the users of the
adapter use for entering data when they create listener notification nodes. To do this, perform the
following:

Create metadata parameters appropriate for the function of the listener notification nodes.
Each parameter has:

162 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

A variable to hold the configured values.

A String constant containing the name of the parameter.

An accessor method.

A set of resource bundle entries with a localizable parameter name and description as
shown in “Updating the Resource Bundle” on page 136.

For more information on metadata parameters, see “Metadata Model for Connection” on
page 63.

Describe presentation for those metadata parameters.

Set the data entry rules for those metadata parameters.

The example implementation includes one metadata parameter, that the users of the adapter use
to create listener notification nodes. The following table describes the purpose of each of these
parameters for data entry:

DescriptionParameter

File to monitor.fileName

Resource Bundle EntriesVariableAccessor MethodParameter

NoneFILE_NAME_PARMsetFileNamefileName

Specifying the Display and Data Entry Attributes of the Data Entry Parameters

After creating the parameters, specify the display and data entry attributes by calling various
methods of the WmDescriptor interface from the service's fillWmDescriptor method.

The example code places each data entry parameter into a single group (in display order)
referenced by the constantNOTIFICATION_SETUP_GROUP. A constant instead of a string is
used to name the group, because the same value is used in the resource bundle to specify a
localizable group name.

Restricting Listeners to Register Specified Notification Templates

By default a listener supports all listener notification templates of the adapter. When the users of
the adapter configure a new listener notification (either synchronous or asynchronous) using
Designer, they may select from the complete list of all enabled listeners in the adapter. You may
want to override this default behavior so that the listener implementation specifies exactly which
notification templates it supports. To do this, implement the restrictNotificationTypes method in your
listener implementation class. This method returns a String array containing the fully qualified
path names of one or more notification template classes that the listener supports. When the users
of the adapter attempt to configure a new listener notification in Designer, only those template
classes in the returned arraywill appear in theAdapterNotification Editor. The following example
shows how to use this method.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 163

7 Listener Notifications

public class SimpleListener extends WmConnectedListener
{
...

public String[] restrictNotificationTypes()
{

return new String[]{"com.wm.myadapter.notifications.FooNotification",
"com.wm.myadapter.notifications.BarNotification"};

}
...
}

Note:
All names returned by this method should refer to classes that extend WmNotification.

Implementing Listener Methods
Create the private class attributes and implement the following methods:

listenerStartup

waitForData

listenerShutdown

processNotificationResults

In the example, the class created is SimpleListener. Create the private class attributes and implement
the abstract methods to manage a FileReader object and variables to hold data read from the log.

The example also includes an implementation of processNotificationResults.

Creating getReader Method in WmManagedConnection
Implementation Class

Create the getReader method in the WmManagedConnection implementation class. This method is
called from the listenerStartup method in WmConnectedListener implementation class.
package com.wm.MyAdapter.connections;
..
..
import java.io.FileReader;
import java.io.FileNotFoundException;
..
..
public class SimpleConnection extends WmManagedConnection {
..
..
public FileReader getReader(String fileName) throws AdapterException
{
FileReader _reader = null;

try {
_reader = new FileReader(fileName);

}

164 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

catch(Exception e) {
throw MyAdapter.getInstance().createAdapterException(100,e);

}
return _reader;
}

}

Updating the Resource Bundle
Update the resource bundlewith a display name, and description tomake the listenermore usable.
For example:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.listeners.SimpleListener;
..
..
public class MyAdapterResource extends ListResourceBundle implements MyAdapterConstants{

..

..
static final Object[][] _contents = {
..
..

//Listener
,{SimpleListener.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Simple Listener"}

,{SimpleListener.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Use to monitor log files"}

,{SimpleListener.FILE_NAME_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Log File Name"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

Registering Listeners in the WmAdapter Implementation Class

Youmust register each listener class in theWmAdapter implementation class. You do this by passing
the class name to the AdapterTypeInfo.addListenerTypemethod in theWmAdapter.fillAdapterTypeInfomethod
in theWmAdapter implementation class. In the example, the listener class SimpleListener is registered
in the adapter implementation classMyAdapter:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.listeners.SimpleListener;
..
..
public class MyAdapter extends WmAdapter implements MyAdapterConstants {
..
..
public void fillAdapterTypeInfo(AdapterTypeInfo info, Locale locale)
{

webMethods Adapter Development Kit Installation and User’s Guide 9.12 165

7 Listener Notifications

..

..
info.addListenerType(SimpleListener.class.getName());

}
}

Compiling Adapter
Compile your adapter as described in “Compiling the Adapter ” on page 43.

Reloading Adapter
Reload your adapter as described in “Loading, Reloading, and Unloading Packages” on page 52.

Refreshing the Designer cache
Refresh the Designer cache.

Configuring a Listener
Perform the following procedure to configure a listener node. You can use Designer to configure
adapter service nodes.

To configure a listener node

1. Start Integration Server Administrator.

2. In Adapters screen, select the name of your adapter.

3. Select Listeners.

4. In the Listeners screen, click Configure New Listener.

5. In theListener Types screen, select the appropriate listener type defined for the adapter.

6. Complete the Configure Listener Type > Adapter_Name section as follows:

Description\ActionField

Namespace node package in which you want to create the listener.Package

Name of the folder in which to create the listener.Folder Name

Name of the listener node.Listener Name

Connection node.Connection Name

166 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

Description\ActionField

Number of times that the system must attempt to start the listener
if the initial attempt fails. Specifically, it specifies how many times

Retry Limit

to retry the listenerStartup method before issuing an
AdapterConnectionException.When the value is set to 0, the systemmakes
a single attempt. The default value is 5.

Number of seconds the system must wait between each attempt to
start the listener. This field is irrelevant if the value of Retry Limit
is 0. The default value is 10.

Retry Backoff Timeout

7. Click Save Listener.

Note:
Enabling the listener before you configure and enable its corresponding listener notification
node produces a warning.

Note:
A listener instance holds the connection it retrieves during listener initialization for the lifetime
of the listener instance. Disabling the connection node will not impact the connection already
held by the listener, but it will prevent the listener from starting or restarting in the event of an
AdapterConnectionException.

Listener Notification Implementation

The following example implements an asynchronous listener notification that recognizes session
log entries and generates notifications from them. To distinguish a session log entry from another
type of log entry, the listener parses the entry data in the notification's supportsmethod. The supports
method model is flexible enough to permit this approach because the same listener notification
object instance that returns true from the supports call is guaranteed to receive the runNotification call.

The example listener notification uses an alternative approach to implementing resource domains
that redirects resource domain activities back to the notification (or adapter service) that uses it.
This model does a better job of encapsulating the notification functionality into a single class. The
model is described in detail in . If you do not want to use this model, you may implement the
resource domain code following the model described in “Specifying Adapter Service Signature
Resource Domains” on page 116.

Another new concept used in this example is the "uses" metadata mechanism. This is a shortcut
mechanism commonly used to manipulate a metadata signature. You use it to add a column of
check boxes to the adapter's interface so that the users of the adapter can select the fields to use
for the notification. When they select the check boxes, values will appear in the Signature column.
This metadata mechanism is described in “The useParam Argument of setResourceDomain” on
page 171, but you do not need to fully understand the constraint of that feature to implement this
example.

The tasks for implementing an asynchronous listener notification are as follows:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 167

7 Listener Notifications

Defining a WmAsyncListenerNotification Implementation Class

Specifying Configuration Metadata for Listener Notifications

Implementing Configuration Resource Domains for Listener Notifications

Implementing the supports and runNotification Method

Updating the Resource Bundle

Registering Listener Notifications in the Adapter

Compiling the Adapter

Reloading Adapter

Refreshing the Designer cache

Configuring and Testing Listener Notification Nodes

Example Listener Notification Class
package com.wm.MyAdapter.listeners;
import com.wm.adk.error.AdapterException;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.notification.WmAsyncListenerNotification;
import com.wm.adk.notification.NotificationResults;
import com.wm.adk.notification.AsyncNotificationResults;
import com.wm.adk.notification.NotificationEvent;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import javax.resource.ResourceException;
import java.util.Locale;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.StringTokenizer;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.MyAdapterConstants;
import com.wm.MyAdapter.connections.SimpleConnection;

public class SessionLogListenerNotification extends WmAsyncListenerNotification
implements MyAdapterConstants
{
private String[] _fieldNames = null;
private String[] _fieldTypes = null;
private boolean[] _uses = null;
public void setFieldNames(String[] val){_fieldNames = val;}
public void setFieldTypes(String[] val){_fieldTypes = val;}
public void setUses (boolean[] val){_uses = val;}
public void setSignature(String[] val){}
public static final String NOTIFICATION_SETUP_GROUP =
"SessionLogListenerNotification.setup";
public static final String FIELD_NAMES_PARM = "fieldNames";
public static final String FIELD_TYPES_PARM = "fieldTypes";
public static final String USES_PARM = "uses";
public static final String SIG_PARM = "signature";

168 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

public static final String FIELD_NAMES_RD =
"SessionLogListenerNotification.fieldNames.rd";
public static final String FIELD_TYPES_RD =
"SessionLogListenerNotification.fieldTypes.rd";
public static final String[] _sigFieldNames = {
"timeStamp",
"component",
"rootContext",
"parentContext",
"currentContext",
"server",
"eventCode",
"user",
"sessionName",
"RPCs",
"age"};
private Object[] _parsedValues = new Object[_sigFieldNames.length];

public void fillWmTemplateDescriptor(WmTemplateDescriptor descriptor,Locale l)
throws ResourceException
{
String[] parms = new String[] {FIELD_NAMES_PARM,
FIELD_TYPES_PARM,
USES_PARM,
SIG_PARM};

descriptor.createGroup(NOTIFICATION_SETUP_GROUP, parms);
descriptor.createFieldMap(parms, false);
descriptor.createTuple(new String[]{FIELD_NAMES_PARM, FIELD_TYPES_PARM});
descriptor.setResourceDomain(FIELD_NAMES_PARM, FIELD_NAMES_RD, null);
descriptor.setResourceDomain(FIELD_TYPES_PARM, FIELD_TYPES_RD, null);
descriptor.setResourceDomain(SIG_PARM,
WmTemplateDescriptor.OUTPUT_FIELD_NAMES,new String[]{
FIELD_NAMES_PARM,FIELD_TYPES_PARM}, USES_PARM);

descriptor.setDescriptions(MyAdapter.getInstance().
getAdapterResourceBundleManager(), l);

}
public Boolean adapterCheckValue(WmManagedConnection connection,
String resourceDomainName, String[][] values,
String testValue) throws AdapterException
{
return true;
}
public ResourceDomainValues[] adapterResourceDomainLookup(
WmManagedConnection connection, String resourceDomainName,
String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;
if (resourceDomainName.equals(FIELD_NAMES_RD)
|| resourceDomainName.equals(FIELD_TYPES_RD))

{
ResourceDomainValues names = new ResourceDomainValues(
FIELD_NAMES_RD, _sigFieldNames);

ResourceDomainValues types = new ResourceDomainValues(
FIELD_TYPES_RD,new String[] {
Date.class.getName(), //timestamp
String.class.getName(), // component
String.class.getName(), // rootContext
String.class.getName(), // parentContext
String.class.getName(), // currentContext
String.class.getName(), // server

webMethods Adapter Development Kit Installation and User’s Guide 9.12 169

7 Listener Notifications

Integer.class.getName(), // eventCode
String.class.getName(), // user
String.class.getName(), // sessionName
Integer.class.getName(), // RPCs
Long.class.getName() // age

});
results = new ResourceDomainValues[] {names,types};

}
return results;
}
public void registerResourceDomain(WmManagedConnection connection,
WmAdapterAccess access) throws AdapterException
{
access.addResourceDomainLookup(this.getClass().getName(),
FIELD_NAMES_RD, connection);

access.addResourceDomainLookup(this.getClass().getName(),
FIELD_TYPES_RD, connection);

}
public boolean supports(Object data) throws ResourceException
{
boolean result = false;
try
{
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd H:mm:ss zzz");
String sData = (String)data;
this._parsedValues[0] = sdf.parse(sData.substring(0,48));
StringTokenizer st = new StringTokenizer(sData.substring(49)," ",false);
this._parsedValues[1] = st.nextToken();
this._parsedValues[2] = st.nextToken();
this._parsedValues[3] = st.nextToken();
this._parsedValues[4] = st.nextToken();
/*
st.nextToken(); // skip the session ID
this._parsedValues[5] = st.nextToken();
this._parsedValues[6] = new Integer(st.nextToken());
this._parsedValues[7] = st.nextToken();
this._parsedValues[8] = st.nextToken();
this._parsedValues[9] = new Integer(st.nextToken());
this._parsedValues[10] = new Long(st.nextToken());
*/
result = true;

}
catch(Throwable t){}
return result;
}

public NotificationResults runNotification(NotificationEvent event)
throws ResourceException
{
NotificationResults result = null;
WmRecord notice = WmRecordFactory.getFactory().createWmRecord("notUsed");
for(int i = 0; i< _sigFieldNames.length;i++)
{
if (_uses[i])
{
notice.put(_sigFieldNames[i],_parsedValues[i]);

}
}
this.doNotify(notice);
result = new AsyncNotificationResults(this.nodeName(),true,null);

170 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

return result;
}

}

Defining a WmAsyncListenerNotification Implementation Class

Create a class by extending com.wm.adk.notification.WmAsyncListenerNotification base class. This class
must provide default implementations for the following abstract methods

fillWmTemplateDescriptor

supports

runNotification

If you are not using the alternative resource domain management model, skip the following
methods:

adapterCheckValue

adapterResourceDomainLookup

registerResourceDomain

Specifying Configuration Metadata for Listener Notifications
The example listener notification in this section includes only those configuration parameters that
are directly related to the signature. The only new concept in this section is the use of the useParam
argument of theWmTemplateDescriptor.setResourceDomain method.

The useParam Argument of setResourceDomain

The WmTemplateDescriptor interface provides two signatures for the setResourceDomain method, one
of which includes the argument useParam:
public void setResourceDomain(java.lang.String name,

java.lang.String resourceDomainName,
java.lang.String[] dependencies,
java.lang.String useParam)

Use this argument as a filter to determine which of the available fields will be included in the
signature. The example implements the useParam argument as USES_PARM constant, in the
setResourceDomain method near the end of the example.

The USES_PARM parameter is only meaningful when the parameter identified in the name
argument and the parameter names in useParam parameter are in the same fieldMap, and the
data type of the useParam parameter is boolean[]. When these conditions are satisfied, the
adapter service editor treats the useParam setting as a filter on the resource domain association.
When this occurs, the resource domain values are only applied to the name parameter row in
the fieldMap if the corresponding value in the useParam is true which occurs when the user of
the adapter selects the check box.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 171

7 Listener Notifications

When the user of the adapter selects the fields to use for the notification by selecting the check
boxes in the Uses column, values appear in the Signature column. When you save changes
to the notification node, the signature changes are reflected in the associated document type.

Implementing Configuration Resource Domains for Listener
Notifications

Note:
In this example, notice the use of class.getNamemethodwhen specifying data types. Using this
technique enables you to catch spelling errors at compile time.

Implementing the supports and runNotification Method

This example implementation of the supports method parses the contents of the data object that is
originally returned from the listener's waitForData method, into the _parsedValues object variable.
Any error in the parsing process indicates that the data object was not a session log entry, and the
supports method returns a false value.

The runNotification method implementation assumes that the supports method was successful in
parsing the data object, so it does not need the NotificationEvent argument. It merely populates a
WmRecord object by inserting the parsed names, using the same key names array that populate the
resource domain.

Note:
The runNotificationmethod calls doNotifymethod to publish the document. The doNotifymethod has
two forms. When calling the WmAsynchronousNotification.doNotify(WmRecord rec, String msgId) form of
this method, the length (the number of characters) of the value in msgId should not exceed a
particular limit. To determine this limit, call theWmAsynchronousNotification.adapterMaxMessageIdLen()
method. There is a fixed number of characters available in Integration Server to hold a notification
ID. Of these, the WmART package reserves a certain number to hold a unique ID that it inserts
prior to dispatching a notification. The remaining characters are available to you when calling
WmAsynchronousNotification.doNotify(WmRecord rec, String msgId). Formore information, see the Javadoc
for WmAsynchronousNotifcation.doNotify.

Updating the Resource Bundle
Update the resource bundle with a display name, and description tomake the listener notification
more usable.
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.listeners.SessionLogListenerNotification;
..
..
public class MyAdapterResource extends ListResourceBundle implements MyAdapterConstants{

..

..
static final Object[][] _contents = {

172 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

..

..
//SessionLog Listener Notification
,{SessionLogListenerNotification.class.getName() +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"SessionLog Listener Notification"}

,{SessionLogListenerNotification.class.getName() +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"Use SessionLog Listener Notification to monitor log files"}
,{SessionLogListenerNotification.FIELD_NAMES_PARM +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Field Name"}

,{SessionLogListenerNotification.FIELD_NAMES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"Field Name To Check"}
,{SessionLogListenerNotification.FIELD_TYPES_PARM +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Field Types"}

,{SessionLogListenerNotification.FIELD_TYPES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"Field Types To Check"}
}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

Registering Listener Notifications in the Adapter

You must register each listener notification class in the WmAdapter implementation class. You do
this by passing the class name to the AdapterTypeInfo.addNotificationType method in the
WmAdapter.fillAdapterTypeInfo method in the WmAdapter implementation class. In the example, the
listener notification class SessionLogListenerNotification is registered in the adapter implementation
classMyAdapter:

For example:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.listeners.SessionLogListenerNotification;
..
..
public class MyAdapter extends WmAdapter implements MyAdapterConstants {
..
..
public void fillAdapterTypeInfo(AdapterTypeInfo info, Locale locale)
{

..

..
info.addNotificationType(SessionLogListenerNotification.class.getName());

}
}

webMethods Adapter Development Kit Installation and User’s Guide 9.12 173

7 Listener Notifications

Compiling Adapter
Compile your adapter as described in “Compiling the Adapter ” on page 43.

Reloading Adapter
Reload your adapter as described in “Loading, Reloading, and Unloading Packages” on page 52.

Refreshing the Designer cache
Refresh the Designer cache.

Configuring and Testing Listener Nodes and Listener
Notification Nodes
Now you are ready to configure a listener notification node as follows:

Configuring Listener Notification Nodes

Testing Listener Nodes and Listener Notification Nodes

Configuring Listener Notification Nodes

A listener notification node can be either synchronous or asynchronous. When an event occurs,
an asynchronous listener notification publishes a document. Youmust create a trigger that receives
the document and executes a service to process the document's data. With a synchronous listener
notification, you can designate a flow service to process the data produced by the notification. A
synchronous notification does not use a trigger.

To configure a listener notification node

1. Start Designer.

2. Select a namespace node package where you want to create the listener notification.

3. Create a folder in the selected package, and navigate to that folder in Package Navigator.

4. Select File > New.

5. Select Adapter Notification from the list of elements.

6. In the Create a New Adapter Notification screen, type a name for your listener notification
in the Element name field, and click Next.

174 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

7. In the Select Adapter Type screen, select the name of your adapter, and click Next.

8. In the Select a Template screen, select a listener notification template, and click Next.

9. In the Select an Adapter Notification Listener screen, select the appropriate adapter listener
name, and click Next.

10. Perform one of the following steps:

If you selected an asynchronous listener notification template, click Finish.

If you selected a synchronous listener notification template, select a flow service to process
the data produced by the notification, click Next, and then click Finish.

The Adapter Notification Editor opens.

11. In the Adapter Notification Editor, select an event.

12. Select File > Save.

If you selected an asynchronous listener notification template, the adapter creates a listener
notification and a document named notificationNamePublishDocument. The publishable
document contains the fields which are configured in the Listener Notification template.

Note:
Documents are not created for synchronous listener notifications.

When choosing the service for a synchronous notification, ensure that it does not require
session data. For more information, see “Synchronous and Asynchronous Listener
Notifications” on page 150.

Testing Listener and Listener Notification Nodes

Creating the Flow Service for the Listener Notification Node

Perform the following procedure to create the flow service for the listener notification node.

To create the flow service for the listener notification node

1. Start Designer.

2. In the Package Navigator, select the folder where you want to create the flow service.

3. Select File > New.

4. Select Flow Service from the list of elements.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 175

7 Listener Notifications

5. In the Create a New Flow Service screen, type TestMyAdapterFlowService in the Element
name field, and click Next.

6. On the Select the Source Type screen, select Empty Flow, and click Finish.

7. Click to insert a flow step.

8. Navigate to the pub.flow:savePipelineToFile service in the WmPublic package, and click
OK.

Note:
The savePipelineToFile service saves the contents of the pipeline (from the listener notification
event) to the file that you specify in the fileName parameter.

9. Click the Pipeline tab.

10. Open the fileName parameter in the pipeline and set its value to
MonitorListenerNotificationPipeline.log.

Click OK.

Creating the Trigger for the Listener Notification Node

Perform the following procedure to create the trigger for the Polling notification node.

To create the trigger for the Polling notification node

1. Start Designer.

2. In the Package Navigator, select the folder where you want to create the trigger.

3. Select File > New.

4. Select webMethods Messaging Trigger from the list of elements.

5. On thewebMethods Messaging Trigger screen, type TestMyAdapterMsgTrigger in theElement
name field and click Finish.

6. In the trigger editor, in the Conditions section, accept the default Condition1.

7. In the Condition detail section, in the Service field, select or type the flow service name
TestMyAdapterFlowService.

8. Click to insert document types. Select TestMyListenerNotificationPublishDocument and
click OK.

176 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

9. Click to save your trigger.

Enabling Listener Notification Nodes and Listener Nodes

Enabling the listener before you configure and enable its corresponding listener notification node
produces a warning.

To enable a listener node and a listener notification node

1. Start Integration Server Administrator.

2. In Adapters screen, select the name of your adapter.

3. Select Listener Notifications.

4. In the Listener Notification screen, enable the listener notification node by clicking No in the
Enabled column. The Enabled column now shows Yes (enabled).

5. Select Listeners.

6. In the Listeners screen, enable the listener by clickingNo in theEnabled column. TheEnabled
column now shows Yes (enabled).

Testing Listener

The fileMonitorListenerNotificationPipeline.log is created in Integration Server_directory /
instances/<instance_name>/pipeline/ folder. This file contains one entry each time the file added
in the listener is updated:
<?xml version="1.0" encoding="UTF-8"?>
<IDataXMLCoder version="1.0">
<record javaclass="com.wm.data.ISMemDataImpl">

<value name="fileName">MonitorListenerNotificationPipeline.log</value>
<record

name="TestMyAdapterListener:TestMyAdapterListenerNotificationPublishDocument"
javaclass="com.wm.data.ISMemDataImpl">

<Date name="timeStamp" type="java.util.Date">Thu Oct 21 12:34:45 IST 2021</Date>
<value name="component">)</value>
<value name="rootContext">Unable</value>
<record name="_env" javaclass="com.wm.data.ISMemDataImpl">

<value name="locale"></value>
<value name="activation">wm624455fb0-b66d-4344-b92f-cee92639b14c</value>
<value

name="businessContext">wm6:2281c61b-a0dd-4dc2-bb31-6eaea2052a1c\snull\snull:
wm624455fb0-b66d-4344-b92f-cee92639b14c:null:IS_61:null</value>

<value name="uuid">wm:14c48f70-323e-11ec-b7fd-000000000152</value>
<value name="trackId">wm:14c48f70-323e-11ec-b7fd-000000000152</value>
<value name="pubId">islocalpubid</value>
<Date name="enqueueTime" type="java.util.Date">Thu Oct 21 12:41:15 IST

2021</Date>
<Date name="recvTime" type="java.util.Date">Thu Oct 21 12:41:15 IST 2021</Date>

webMethods Adapter Development Kit Installation and User’s Guide 9.12 177

7 Listener Notifications

<number name="age" type="java.lang.Integer">0</number>
</record>

</record>
</record>

</IDataXMLCoder>

Configuring and Testing Listener Nodes and Listener
Notification Nodes

Now you are ready to configure a listener notification node as follows:

Configuring Listener Notification Nodes

Testing Listener Nodes and Listener Notification Nodes

Configuring Listener Notification Nodes
A listener notification node can be either synchronous or asynchronous. When an event occurs,
an asynchronous listener notification publishes a document. Youmust create a trigger that receives
the document and executes a service to process the document's data. With a synchronous listener
notification, you can designate a flow service to process the data produced by the notification. A
synchronous notification does not use a trigger.

To configure a listener notification node

1. Start Designer.

2. Select a namespace node package where you want to create the listener notification.

3. Create a folder in the selected package, and navigate to that folder in Package Navigator.

4. Select File > New.

5. Select Adapter Notification from the list of elements.

6. In the Create a New Adapter Notification screen, type a name for your listener notification
in the Element name field, and click Next.

7. In the Select Adapter Type screen, select the name of your adapter, and click Next.

8. In the Select a Template screen, select a listener notification template, and click Next.

9. In the Select an Adapter Notification Listener screen, select the appropriate adapter listener
name, and click Next.

10. Perform one of the following steps:

178 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

If you selected an asynchronous listener notification template, click Finish.

If you selected a synchronous listener notification template, select a flow service to process
the data produced by the notification, click Next, and then click Finish.

The Adapter Notification Editor opens.

11. In the Adapter Notification Editor, select an event.

12. Select File > Save.

If you selected an asynchronous listener notification template, the adapter creates a listener
notification and a document named notificationNamePublishDocument. The publishable
document contains the fields which are configured in the Listener Notification template.

Note:
Documents are not created for synchronous listener notifications.

When choosing the service for a synchronous notification, ensure that it does not require
session data. For more information, see “Synchronous and Asynchronous Listener
Notifications” on page 150.

Testing Listener and Listener Notification Nodes

Creating the Flow Service for the Listener Notification Node

Perform the following procedure to create the flow service for the listener notification node.

To create the flow service for the listener notification node

1. Start Designer.

2. In the Package Navigator, select the folder where you want to create the flow service.

3. Select File > New.

4. Select Flow Service from the list of elements.

5. In the Create a New Flow Service screen, type TestMyAdapterFlowService in the Element
name field, and click Next.

6. On the Select the Source Type screen, select Empty Flow, and click Finish.

7. Click to insert a flow step.

8. Navigate to the pub.flow:savePipelineToFile service in the WmPublic package, and click
OK.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 179

7 Listener Notifications

Note:
The savePipelineToFile service saves the contents of the pipeline (from the listener notification
event) to the file that you specify in the fileName parameter.

9. Click the Pipeline tab.

10. Open the fileName parameter in the pipeline and set its value to
MonitorListenerNotificationPipeline.log.

Click OK.

Creating the Trigger for the Listener Notification Node

Perform the following procedure to create the trigger for the Polling notification node.

To create the trigger for the Polling notification node

1. Start Designer.

2. In the Package Navigator, select the folder where you want to create the trigger.

3. Select File > New.

4. Select webMethods Messaging Trigger from the list of elements.

5. On thewebMethods Messaging Trigger screen, type TestMyAdapterMsgTrigger in theElement
name field and click Finish.

6. In the trigger editor, in the Conditions section, accept the default Condition1.

7. In the Condition detail section, in the Service field, select or type the flow service name
TestMyAdapterFlowService.

8. Click to insert document types. Select TestMyListenerNotificationPublishDocument and
click OK.

9. Click to save your trigger.

Enabling Listener Notification Nodes and Listener Nodes

Enabling the listener before you configure and enable its corresponding listener notification node
produces a warning.

To enable a listener node and a listener notification node

180 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

1. Start Integration Server Administrator.

2. In Adapters screen, select the name of your adapter.

3. Select Listener Notifications.

4. In the Listener Notification screen, enable the listener notification node by clicking No in the
Enabled column. The Enabled column now shows Yes (enabled).

5. Select Listeners.

6. In the Listeners screen, enable the listener by clickingNo in theEnabled column. TheEnabled
column now shows Yes (enabled).

Testing Listener

The fileMonitorListenerNotificationPipeline.log is created in Integration Server_directory /
instances/<instance_name>/pipeline/ folder. This file contains one entry each time the file added
in the listener is updated:
<?xml version="1.0" encoding="UTF-8"?>
<IDataXMLCoder version="1.0">
<record javaclass="com.wm.data.ISMemDataImpl">

<value name="fileName">MonitorListenerNotificationPipeline.log</value>
<record

name="TestMyAdapterListener:TestMyAdapterListenerNotificationPublishDocument"
javaclass="com.wm.data.ISMemDataImpl">

<Date name="timeStamp" type="java.util.Date">Thu Oct 21 12:34:45 IST 2021</Date>
<value name="component">)</value>
<value name="rootContext">Unable</value>
<record name="_env" javaclass="com.wm.data.ISMemDataImpl">

<value name="locale"></value>
<value name="activation">wm624455fb0-b66d-4344-b92f-cee92639b14c</value>
<value

name="businessContext">wm6:2281c61b-a0dd-4dc2-bb31-6eaea2052a1c\snull\snull:
wm624455fb0-b66d-4344-b92f-cee92639b14c:null:IS_61:null</value>

<value name="uuid">wm:14c48f70-323e-11ec-b7fd-000000000152</value>
<value name="trackId">wm:14c48f70-323e-11ec-b7fd-000000000152</value>
<value name="pubId">islocalpubid</value>
<Date name="enqueueTime" type="java.util.Date">Thu Oct 21 12:41:15 IST

2021</Date>
<Date name="recvTime" type="java.util.Date">Thu Oct 21 12:41:15 IST 2021</Date>
<number name="age" type="java.lang.Integer">0</number>

</record>
</record>

</record>
</IDataXMLCoder>

webMethods Adapter Development Kit Installation and User’s Guide 9.12 181

7 Listener Notifications

182 webMethods Adapter Development Kit Installation and User’s Guide 9.12

7 Listener Notifications

8 Runtime Activities

■ Overview .. 184

■ Retry and Recovery Architecture ... 184

■ Runtime Connection Allocation for Adapter Services ... 187

webMethods Adapter Development Kit Installation and User’s Guide 9.12 183

Overview

A well designed adapter must include the following runtime capabilities:

Ability to identify, and recover from temporary errors.

Ability to retrieve and manage connections.

Allow the user to dynamically control the type of connection used for each service invocation.

For more information, see “Runtime Connection Allocation for Adapter Services” on page 187.

Retry and Recovery Architecture

Ahighly available and reliable systemhas the ability to recover from temporary errors. If a transient
error is encountered during execution, then the system must perform the following tasks:

1. Detect the error

2. Remove or regenerate the component causing the error

3. Retry the operation

The first phase in recovery is defining a transient error. For a webMethods adapter, a transient
error goes away in time,without requiring human intervention on Integration Server. For example:

Non-transient error. If an adapter service performing an insert is called, and the backend
resource rejects the insert because the data format is incorrect, then the error is not transient.
The data must be manually reformatted for the insert to complete correctly.

Transient Error. If an adapter service performing an insert is called, and the backend resource
is offline for scheduled maintenance, then the insert fails. However, when the system comes
back on line, the insert works. Retrying the operation in this scenario is useful.

Note:

The adapter must detect the transient error.
Integration Server provides the remove, regenerate, and retry functions.

Detection

The ability to recognize these errors is critical in every component of an adapter. It is up to the
adapter developer to determine which backend errors are transient. When an adapter recognizes
this situation, it throws an AdapterConnectionException to alert Integration Server about the error. The
AdapterConnectionException is a subclass of the ResourceException. AdapterConnectionException is a valid
exception from any ADK method that declares a throws ResourceException.

An adapter developer must isolate the errors that are transient. When Integration Server catches
the AdapterConnectionException, then Integration Server initiates the retry operations. If Integration
Server initiates the retry operations for non-transient errors, then the processing time is wasted.

184 webMethods Adapter Development Kit Installation and User’s Guide 9.12

8 Runtime Activities

Removal

Transient exceptions within adapters are related to connection errors. Clear and regenerate the
connection used in the operation before retrying.

Based on the AdapterConnectionException received from the adapter, Integration Server cleans the
entire pool or just the current connection. By default, the exception is an indication to clean the
entire pool. For most applications this is the correct behavior.

Destroying, and discarding the object, cleans the current connection.

Notifying the connection poolmanager, and destroying and discarding all the free connections
cleans the pool.

Releasing the connections destroys and discards the busy connections.

The connection node remains enabled.

Regeneration

The regeneration occurs when a new connection is requested. If the connection is not pooled, an
attempt is made to create the connection. If successful, a connection is created and used. If the
connection is pooled and only the single connection is destroyed, another connection is reserved
from the pool and used. If the pool is cleared, the pool attempts to fill to the minimum number of
connections specified for the pool. If successful, a connection is reserved and used.

If the transient error occurs at any stage of the pool regeneration or connection creation, the adapter
must throw an AdapterConnectionException, that ends the current retry operation. Then Integration
Server starts another retry operation or ends the retry loop if the maximum attempts are made.

Retry Mechanisms

The retry facility is provided by Integration Server. The retry facility depends on the adapter
construct that detected the failure. A retry is configured with a retry count and a backoff time.
Retry count sets the number of times the action is tried before being considered a fatal error. The
backoff time is the time interval between retries.

Note:
Throwing a non-retryable exception on any retry iteration is treated as a fatal exception and the
retries stop.

Below is a list of adapter objects and how retry behavior applies to each:

Connection Pools. The retry process occurs in the following scenarios:

Beginning of the pool startup. If the backend system is down, and the user tries to enable
the pool from Integration Server Administrator, the pool startup retries until the number
of retries is exhausted or the retryable exception goes away. If the retries are exhausted,
the pool is disabled.

Creating the pool during Integration Server startup.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 185

8 Runtime Activities

Listeners. The retry process occurs during the listener startup or during listener execution. If
the number of retries is exhausted, the listener is disabled. During execution, if the listener
notification produces an AdapterConnectionException, the corresponding listener goes into the
retry mode.

Adapter Services. Integration Server provides retry mechanism on services invoked from the
triggers or flows invoked. An AdapterConnectionException caught from the adapter services execute
method, is rethrown as an ISRuntimeException. Integration Server recognizes ISRuntimeException
as a transient error and the retry cycle begins.

Polling Notifications. The polling notification retry works differently from the other
components. If a transient error is detected during the scheduled execution, the connection is
cleaned. The next scheduled interval acts as the retry back off time. However, there is no
maximum number of attempts. The notification remains enabled and executes on its next
scheduled interval.

Retry Process in Adapter Services

The diagram shows the interactions with an adapter during an adapter service retry scenario.

186 webMethods Adapter Development Kit Installation and User’s Guide 9.12

8 Runtime Activities

The transient error condition is initially detected in the adapter service's execute method (step
2).

The adapter throws an AdapterConnectionException (step 2.1).

The adapter throwing the AdapterConnectionException resets the connection pool by destroying
all the idle connections immediately and any active connections as they return to the connection
pool (step 3).

When the connection pool is reset, the error is sent to the Integration Server service invocation
logic as a retryable exception.

If so configured, and after an appropriate timeout period, the adapter service is again invoked
(beginning at step 4).

Since the connection pool was emptied after the AdapterConnectionException, a new connection is
created for the service invocation (steps 5 and 6).

If a transient error condition occurs, then another AdapterConnectionException must be thrown
from either the createManagedConnectionObjectmethod or initializeConnectionmethod call. The pool
is reset again (step 3) and the retry process begins.

Runtime Connection Allocation for Adapter Services

When an adapter service is invoked, either directly or from a flow service, the Integration Servers'
webMethodsAdapter Runtimeprovides a connection object to the adapter services' implementation
of WmAdapterService.executemethod. This section describes how connections are retrieved and
managed, and how to dynamically control the type of connection used for each service invocation.

At runtime, all connection activities for adapter services are performed inside a transaction context
that holds references to connections used when the context is open. This is true regardless of
whether the referenced connections are transacted or not. There is an implicit transaction context
that begins at the invocation of a top-level flow service such as anHTTP invocation of an Integration
Server service and continues until that top-level service exits. Additional contexts may be created
using the pub.art.transaction:startTransaction and closed using pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction. Formore information about using these services, seewebMethods
Integration Server Built-In Services Reference for your release.

When Integration Servers' webMethodsAdapter Runtime retrieves a connection from a connection
pool for use by an adapter service, a reference to that connection is placed in the transaction context,
and the connection is not returned to the pool until the transaction context is closed. If another
adapter service call is made within the transaction context, Integration Server first determines
whether a connection from the required connection pool and the partition are in the context; if so,
Integration Server uses the connection from the transaction context for use by the adapter service
instead of requesting another from the connection pool.

When a connection is requested from a particular connection pool, the request may identify a
partition in the formof an adapter-generatedConnectionRequestInfo object. A connection pool partition
is a logical divisionwithin a given connection poolwhere connection objects in different partitions
are used at different times in an adapter-defined way.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 187

8 Runtime Activities

If no ConnectionRequestInfo object is provided in the request, then the default (or null) partition
is used.

If the pool has an available connection in the specified partition, the poolmarks that connection
as busy and returns the connection to the caller.

If the pool has no available connection in the specified partition, and the pool is not full, then
the pool requests a new connection from the associated connection factory, including any
provided ConnectionRequestInfo object.

Dynamically Selecting a Connection Node

Each connection node must be used to access a single physical resource. In some integration
environments, similar functionality is available on multiple physical resources. In these cases, a
single adapter service node may be used to access those resources by dynamically specifying
which connection node to use for a particular service invocation.

The connection node used for a particular invocation is determined as follows:

1. The adapter may specify a connection name by overriding the default implementation of the
WmAdapterService.getConnectionSpecmethod to return a WmConnectionSpec object containing the
connection name. Formore information on usingWmConnectionSpec objects, see “Implementing
WmConnectionSpec” on page 192.

2. If the connection is not specified usingWmAdapterService.getConnectionSpecmethod, the connection
name may be specified on the pipeline in the $connectionName field. Integration Server
checks for a value in $connectionName, if the field is part of the service's input signature.
For more information about exposing $connectionName field in the service signature, see
the Javadoc for WmDescriptor.showConnectionName method.

3. If a connection node name has still not been specified, the service's default connection is used.
The default connection is the connection that is usedwhen the adapter service is created, unless
it is changed using either the pub.art.service:setAdapterServiceNodeConnection or the
wm.art.dev.service:updateAdapterServiceNode service.

To update a service node, in Designer you must either lock the node for editing or check out
the node.When the Integration Servers' watt.server.ns.lockingMode property is set to system,
you must obtain Write ACL access to the service node that you want to edit before updating
the node. For information about obtaining Write ACL access, see the webMethods Service
Development Help for your release.

Partitioned Connection Pools

While a connection node defines a general set of connections to a backend resource, it is sometime
necessary to connect to the backend using the attributes that are specific to a particular operation
or data set. For example, the backend may require that a connection be established with a specific
set of user credentials in order to update a given record. If the number of unique attributes is small,
it may be possible to define a connection pool with each set of attributes and select the appropriate
pool at run time based on the service being called or the data being manipulated. When this is not
practical, an adapter must implement connection pool partitioning.

188 webMethods Adapter Development Kit Installation and User’s Guide 9.12

8 Runtime Activities

A connection pool partition is a logical division within a given connection pool where connection
objects in different partitions are used at different times in an adapter-defined way. Connections
in different partitions have different permissions, and are often associated with different users.
However, the use of partitions and how they are segregated is entirely determined by the adapter
implementation. Connection objects are assigned to a particular partition at the time they are
created and remain in the same partition for the life of the object.

When a connection pool is started, it is initialized with connections in the default (null) partition.
Additional partitions are created and populated as the connections from those partitions are
requested.

Obtaining a Connection in a Partition of the Connection Pool

The diagram shows the interactions when a connection is obtained in a specified partition of the
pool.

The process of requesting a connection from a particular partition begins in the
WmAdapterService.getConnectionSpecmethod. Adapter developers must extend the WmConnectionSpec
class to capture any context information necessary to determine the required partition. This may
include information from the invocation pipeline, as well as information about the service being
invoked, including the metadata parameter settings.

The WmConnectionSpec object returned by the service implementation is then passed to the
getConnectionRequestInfo method of the connection factory associated with the selected connection
node. The connection factory is then required to identify the connection pool partition based on
the information in the WmConnectionSpec object.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 189

8 Runtime Activities

Note:
The connection node need not be identified in the WmConnectionSpec object.

Formore information about selecting a connection node for an invocation, see “EnablingConnection
Nodes” on page 69.

Implementing Partitioned Connection Pools
In order to support partitioned connection pools in an adapter, the adapter developermust perform
the following:

Create a class that defines the partition by extending the
com.wm.adk.connection.WmConnectionRequestInfo base class.

Create a class to hold any required information gathered from an adapter service invocation
by extending the com.wm.adk.connection.WmConnectionSpec base class.

Implement the getConnectionRequestInfo method in the adapter's WmManagedConnectionFactory
implementation.

Implement the getConnectionSpec method in the adapter's WmAdapterService implementation.

For example, MegaBank is a company, regularly acquiring and absorbing the customer base of
smaller banks. A customer acquired in this way is assigned a new MegaBank user name with
which the customer can access the accounts as well as other services provided by the larger bank.
Since MegaBank has adapters for most major banking systems, MegaBank is able to seamlessly
integrate the new bank's system very quickly by mapping the customer's new MegaBank user
name with login information already present in the acquired bank's system. Using partitioned
pools, connections are established using authentication information already known to the backend.

Example WmConnectionRequestInfo
public class MbConnectionRequestInfo extends WmConnectionRequestInfo
{

private final String userId;
private final String mbUserName;
private final Credentials credentials;
private final String logName;

/**
* Sole constructor. verifies all fields populated.
*
* @param mbUserName - common user name used across the integration
* @param userId - name of user as known to the backend system
* @param credentials - credentials required for this user to access
* the backend system
* @throws IllegalArgumentException - if any argument is null
*/

public MbConnectionRequestInfo(String mbUserName, String userId,
Credentials credentials) throws IllegalArgumentException

{
if (mbUserName == null || userId == null || credentials == null)
{

190 webMethods Adapter Development Kit Installation and User’s Guide 9.12

8 Runtime Activities

throw new IllegalArgumentException();
}
this.userId = userId;
this.mbUserName = mbUserName;
this.credentials = credentials;
this.logName = mbUserName + "(" + userId + ")";

}

public Credentials getCredentials()
{

return credentials;
}
public String getMbUserName()
{

return mbUserName;
}
public String getUserId()
{

return userId;
}

/**
* Name used by the connection pool when creating log entries relevant
* to the partition identified by this object.
*/

public String getLoggableName()
{

return logName;
}
/**
* In a ConnectionRequestInfo object the hashCode of objects that
* identifythe same partion must be the same, so we use only the
* hashcode of the userId String.
*/

public int hashCode()
{

return this.userId.hashCode();
}
/**
* If two ConnectionRequestInfo objects identify the same partition,
* then the equals method must return true. We compare the userIds of
* the two object rather than allow the default equals implementation
* which only checks if they are the same object instance.
* @param obj - object being compared to this.
*/

public boolean equals(Object obj)
{

boolean isEqual = false;
if(obj instanceof MbConnectionRequestInfo)

{
isEqual = this.userId.equals(((MbConnectionRequestInfo)obj).userId);

}
return isEqual;

}

Example WmConnectionSpec
public class MbConnectionSpec extends WmConnectionSpec
{

webMethods Adapter Development Kit Installation and User’s Guide 9.12 191

8 Runtime Activities

private String mbUserName;
public MbConnectionSpec()
{
super();
}
public String getMbUserName()
{
return mbUserName;
}
public void setMbUserName(String mbUserName)
{
this.mbUserName = mbUserName;
}
}

Implementing WmConnectionRequestInfo

A ConnectionRequestInfo object defines a partition both within the connection pool and in
WmManagedConnectionFactory.createManagedConnectionObject when a new connection is created. The
connection pool organized its connections based on the ConnectionRequestInfo object used when the
connection was created. In this case, ConnectionRequestInfo objects X and Y are considered the same
if X.hashCode() == Y.hashCode() && X.equals(Y). The remainder of the ConnectionRequestInfo
implementation is defined by the adapter.

1. Create a class by extending the com.wm.adk.connection.WmConnectionRequestInfo base class.

In the example, aMbConnectionRequestInfo class is created.

2. Create a partition with which the backend connection is established.

In the example, a partition is defined by the userIdwith which the backend connection is
established.

3. Add the methods to ensure that the connection pool properly recognizes objects that refer to
the same partition.

In the example, the hashCode and equals methods refer to the userId.

4. Implement the getLogableName abstract method to provide a partition name that can be
recorded in Integration Server logs.

In the example, getLogableNamemethod is also used to correlate the MegaBank user name with
the ID used to access the backend.

Note:
Care must be taken in implementing this method to avoid exposing any sensitive data such
as passwords.

Implementing WmConnectionSpec

A WmConnectionSpec object is used during an adapter service invocation to identify a connection
node and/or to hold any contextual information from the service configuration and invocation

192 webMethods Adapter Development Kit Installation and User’s Guide 9.12

8 Runtime Activities

pipeline that is needed to identify the partition of the connection. Accessors for the connection
node name are provided in the base class. Contextual information need for partition definition is
specific to the adapter and must be implemented in an adapter-defined subclass.

1. Create a class by extending the com.wm.adk.connection.WmConnectionSpec base class.

In the example, aMbConnectionSpec class is created.

2. Create a get and a set method for the username.

In the example, each customer is assigned a username that allows access to all of the bank's
services. The username value must be cross-referenced to obtain the name by which that user
is known on the specific backend system. This cross-referencing is delegated to the
WmConnectionFactory.getConnectionRequestInfo implementation.

Updating the Connection Factory

The adapter's WmManagedConnectionFactory implementation must be able to produce valid
WmConnectionRequestInfo objects and it must be able to use those objects to create connections with
the required characteristics to support the partitioned connection pool feature.

1. Implement the getConnectionRequestInfo method.

In the example, getConnectionRequestInfouses information from theConnectionSpec object to produce
a valid ConnectionRequestInfo object. The MegaBank user name is used as a key to lookup a set
of user ID and credentials appropriate for the backend being accessed by this connection.

Note:
Details of how this lookup is implemented are adapter specific and outside the scope of this
document.

/**
* Produce a ConnectionRequestInfo object based on the provided ConnectionSpec
* object. If an mbUserName is provided, lookup the name to use on the backend
* for this connection pool.
*/
public ConnectionRequestInfo getConnectionRequestInfo(ConnectionSpec spec)
{
MbConnectionRequestInfo partitionDef = null;
if(spec != null && spec instanceof MbConnectionSpec)
{
synchronized(this)
{
try
{
String mbUserName = ((MbConnectionSpec)spec).getMbUserName();
lookupUser(mbUserName);
partitionDef = new MbConnectionRequestInfo(mbUserName,
this.backendUserID, this.credentials);
}
catch(IllegalArgumentException ex)
{
// no partition info available for this user. Swallow the
// exception and return null

webMethods Adapter Development Kit Installation and User’s Guide 9.12 193

8 Runtime Activities

}
}
}
return partitionDef
}

2. Update the createManagedConnectionObject method.

The ConnectionRequestInfo object returned from getConnectionRequestInfo method is passed to the
createManagedConnectionObject method when the connection pool needs a new connection
belonging to a particular partition. In the example, this information is used to override default
logon information that is otherwise established based on the metadata parameter settings.

Note:
The createManagedConnectionObject method implementations must be able to establish
default-partition connections when null is passed in the cxRequestInfo argument.

/**
* Create a connection using userId and credentials from the provided
* connectionRequestInfo object, if provided. If connectionRequestInfo is
* not provided use the default userId and credentials information established
* at node startup from metadata parameters.
*/
public WmManagedConnection createManagedConnectionObject(Subject subject,

ConnectionRequestInfo cxRequestInfo) throws ResourceException
{

String connUser;
Credentials connCredentials;
if (cxRequestInfo != null && cxRequestInfo instanceof
MbConnectionRequestInfo)

{
connUser = ((MbConnectionRequestInfo)cxRequestInfo).getUserId();
connCredentials =
((MbConnectionRequestInfo)cxRequestInfo).getCredentials();

}
else
{

connUser = this.defaultUserId;
connCredentials = this.defaultCredentials;

}
return new MbConnection(connUser, connCredentials);

}

194 webMethods Adapter Development Kit Installation and User’s Guide 9.12

8 Runtime Activities

9 Usage Scenarios

■ How to register an adapter with the Integration Server? .. 196

■ How to create an adapter connection implementation? ... 209

■ How to create an adapter service implementation? ... 216

■ How to create a polling notification implementation? ... 253

■ How to create an adapter listener implementation? ... 278

webMethods Adapter Development Kit Installation and User’s Guide 9.12 195

How to register an adapter with the Integration Server?

An adapter definition is the framework of an adapter. Although an adapter definition is recognized
as an adapter by Integration Server, it lacks functionality. This chapter describes how to create an
adapter definition.

Pre-requisites:

Integration Server 9.12 or later installed.

Designer 9.12 or later installed.

Integration Server Administrator access.

Java 1.8 or later installed.

Basic understanding of Integration Server, Designer, Integration Server Administrator, Java.

In Integration Server Administrator, in the navigation, when you select Adapters, the adapter
created by you appears in the dropdown.

Creating an Adapter Package

1. Start Integration Server.

2. Open Designer.

3. In Designer, in the Package Navigator, select the Default package.

4. Select File > New > Package.

196 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

5. Enter the Package name. For example: MyAdapter.

6. Select the package created and right-click to select Properties.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 197

9 Usage Scenarios

7. In Properties, select Package Dependencies.

Click to add a row and specify values for the following fields:

ValueField

WmARTPackage

*.*Version

198 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

The adapter package that contains the adapter implementation is created. The following folder
structure is created in Integration Server_directory \instances\<instance_name>\packages\MyAdapter.

Creating an Adapter Implementation Class

1. Start the editor to create Java files.

2. Create directories corresponding to your Java package structure in the webMethods package
you created using Designer. For example: Integration Server_directory
\instances\<instance_name>\packages\MyAdapter\code\source folder.

3. Create the following classes and interfaces:

a. An interface that contains the constants for the adapter implementation.

In the example, the interface created isMyAdapterConstants:
package com.wm.MyAdapter;
public interface MyAdapterConstants {

webMethods Adapter Development Kit Installation and User’s Guide 9.12 199

9 Usage Scenarios

static final int ADAPTER_MAJOR_CODE = 9001;
static final String ADAPTER_JCA_VERSION = "1.0";
static final String ADAPTER_NAME = "MyAdapter";
static final String ADAPTER_VERSION = "9.12";

//Using next statement will create cyclic class loading dependency issue
//therefore, the resource bundle class name is fully spelled out
//static final String ADAPTER_SOURCE_BUNDLE_NAME =

MyAdapterResource.class.getName();
static final String ADAPTER_SOURCE_BUNDLE_NAME =
"com.wm.MyAdapter.MyAdapterResource";

}

b. A class by extending the base class com.wm.adk.WmAdapter.

In the example, the class created isMyAdapter:
package com.wm.MyAdapter;
import java.util.Locale;
import com.wm.adk.WmAdapter;
import com.wm.adk.error.AdapterException;
import com.wm.adk.info.AdapterTypeInfo;
import com.wm.adk.log.ARTLogger;

public class MyAdapter extends WmAdapter implements MyAdapterConstants{
public static MyAdapter _instance = null;
public static ARTLogger _logger = null;

public MyAdapter() throws AdapterException { super(); }
public void fillAdapterTypeInfo(AdapterTypeInfo arg0, Locale arg1) {}
public String getAdapterJCASpecVersion() { return ADAPTER_JCA_VERSION; }
public int getAdapterMajorCode() { return ADAPTER_MAJOR_CODE; }
public String getAdapterName() { return ADAPTER_NAME; }
public String getAdapterResourceBundleName() { return

ADAPTER_SOURCE_BUNDLE_NAME; }
public String getAdapterVersion() { return ADAPTER_VERSION; }
public static ARTLogger getLogger() { return _logger; }

public void initialize() throws AdapterException {
// TODO Auto-generated method stub
_logger = new ARTLogger(getAdapterMajorCode(),

getAdapterName(),
getAdapterResourceBundleName());

_logger.logDebug(9999,"My Adapter Initialized");
}
public void cleanup() {
if (_logger != null)
_logger.close();

}

public static MyAdapter getInstance() {
// TODO Auto-generated method stub
if (_instance != null)
return _instance;

else {
synchronized (MyAdapter.class) {
if (_instance != null) {

200 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

return _instance;
}
try {
_instance = new MyAdapter();
return _instance;

} catch (Throwable t) {
t.printStackTrace();
return null;

}
}
}

}
}

c. Create a resource bundle class by extending the base class java.util.ListResourceBundle.

In the example, the class created isMyAdapterResource:
package com.wm.MyAdapter;
import java.util.ListResourceBundle;
import com.wm.adk.ADKGLOBAL;

public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{

static final String IS_PKG_NAME = "/MyAdapter/";
static final Object[][] _contents = {
// adapter type display name.
{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "My Adapter"}
// adapter type descriptions.
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Adapter for MyAdapter Server (a Sample System)"}
// adapter type vendor.
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_VENDORNAME, "Software AG"}
//Copyright URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_THIRDPARTYCOPYRIGHTURL,
IS_PKG_NAME + "copyright.html"}
//Copyright Encoding
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_COPYRIGHTENCODING, "UTF-8"}
//About URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_ABOUT, IS_PKG_NAME +

"About.html"}
//Release Notes URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_RELEASENOTEURL, IS_PKG_NAME +

"ReleaseNotes.html"}
};
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

d. Specify the adapter’s default resource bundle in your WmAdapter implementation class.
You can return the name of your default resource bundle using the
getAdapterResourceBundleName method in your WmAdapter implementation class.

Example of getAdapterResourceBundleName inMyAdapter class:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 201

9 Usage Scenarios

@Override
public String getAdapterResourceBundleName() {
// TODO Auto-generated method stub
return ADAPTER_SOURCE_BUNDLE_NAME;
}

ExampleofADAPTER_SOURCE_BUNDLE_NAMEconstant inMyAdapterConstants interface:
//static final String ADAPTER_SOURCE_BUNDLE_NAME =

MyAdapterResource.class.getName();
static final String ADAPTER_SOURCE_BUNDLE_NAME =
"com.wm.MyAdapter.MyAdapterResource";

e. Create the reference pages for copyright, and index page for the adapter in
adapterPackageName/pub folder.

Note:
Youmust create your reference pages in the same adapterPackageName/pub folder in the
webMethods package you created using Designer.

All the Java classes and html pages for adapter implementation are created.

Creating Adapter Startup and Shutdown Java Services

1. Create adapter startup and shutdown Java Service.

Create Java class for adapter startup and shutdown,which is used to generate corresponding
Java Services using jcode utility.

Create a folder structure for the Java package for adapter admin class. For example:
adapterPackageName\wm\mycompany\adapteradmin. In the example, the Java package
created is adapterPackageName\wm\MyAdapter.

Create adapter admin Java class.
package wm.MyAdapter;
//--- <<IS-START-IMPORTS>> ---
import com.wm.MyAdapter.*;
import com.wm.adk.admin.AdapterAdmin;
import com.wm.app.b2b.server.ServiceException;
import com.wm.data.IData;
//--- <<IS-END-IMPORTS>> ---
public class MyAdapterAdmin {

public static final void startUp (IData pipeline)
throws ServiceException

{
// --- <<IS-START(startUp)>> ---
AdapterAdmin.registerAdapter(MyAdapter.getInstance());
// --- <<IS-END>> ---

}
public static final void shutDown (IData pipeline)

throws ServiceException
{

// --- <<IS-START(shutDown)>> ---

202 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

MyAdapter instance = MyAdapter.getInstance();
instance.cleanup();
AdapterAdmin.unregisterAdapter(instance);
// --- <<IS-END>> ---

}
}

Note:
Tags are used to mark the beginning and end of imports and methods. For more
information, see webMethods Service Development Help.

Create adapter startup and shutdown Java Service using Designer.

Open Designer.

Select the webMethods package you created using Designer.

Create a folder structure for the Java package for adapter admin Java Services. For
example: wm\mycompanyname\adapteradmin. In the example, the folder structure created
is wm\MyAdapter.

Create a new Java Service for adapter startup. In the example, the Java Service created
is startUp.

Add the following Java code.
public static final void startUp(IData pipeline) throws
ServiceException {

// --- <<IS-START(startUp)>> ---
AdapterAdmin.registerAdapter(MyAdapter.getInstance());
// --- <<IS-END>> ---

}

Note:
Tags are used to mark the beginning and end of imports and methods. For more
information, see webMethods Service Development Help.

Create a new Java Service for adapter shutdown. In the example, the Java Service
created is shutDown.

Add the following Java code.
public static final void shutDown(IData pipeline) throws
ServiceException {

// --- <<IS-START(shutDown)>> ---
MyAdapter instance = MyAdapter.getInstance();
instance.cleanup();
AdapterAdmin.unregisterAdapter(instance);

// --- <<IS-END>> ---
}

Note:
Tags are used to mark the beginning and end of imports and methods. For more
information, see webMethods Service Development Help.

The Java classes for adapter admin are created.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 203

9 Usage Scenarios

Compiling the Adapter

1. Create an ANT script to compile the adapter classes, and deploy the admin classes as Java
Services. For example: build.xml and build.properties.

File build.properties:
The Site Name
debug=on
optimize=off
deprecation=off
webM.home=C:/softwareag/912
server.home=${webM.home}/IntegrationServer
package=MyAdapter
instance_name=default
srcdir=${server.home}/instances/${instance_name}/packages/${package}/code/source
destdir=${server.home}/instances/${instance_name}/packages/${package}/code/classes

File build.xml:
<?xml version="1.0"?>
<project name="Adapter using ADK" default="deploy" basedir=".">
<property file="build.properties" />
<!-- classes belonging to this package -->
<path id="this.package.classpath">
<fileset dir="${server.home}/instances/${instance_name}/packages/${package}/">
<include name="code/classes"/>

</fileset>
</path>
<!-- All classes that need to be found by this script -->
<path id="total.classpath">
<pathelement

location="${server.home}/instances/${instance_name}/packages/WmART/code/jars/wmart.jar"/>
<pathelement location="${server.home}/lib/wm-isserver.jar"/>
<pathelement location="${webM.home}/common/lib/wm-isclient.jar"/>
<pathelement location="${webM.home}/common/lib/glassfish/gf.jakarta.resource.jar"/>
<pathelement

location="${server.home}/instances/${instance_name}/packages/WmART/code/classes/"/>

<path refid="this.package.classpath"/>
</path>

<!-- Compile the java files of this package -->
<target name="createclasses" depends="init">
<echo>Creating classes</echo>
<mkdir dir="${destdir}/"/>
<javac debug="${debug}" optimize="${optimize}"
deprecation="${deprecation}" srcdir="${srcdir}"
destdir="${destdir}">
<classpath>
<path refid="total.classpath"/>

</classpath>
</javac>
</target>
<!-- Execute jcode -->
<target name="execjcode" depends="createclasses">

204 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

<echo>Deploying classes</echo>
<exec executable="${server.home}/instances/${instance_name}/bin/jcode"

vmlauncher="false" failonerror="true">
<arg value="fragall" />
<arg value="${package}" />

</exec>
</target>
<!-- delete .class files built in this package -->
<target name="cleanclasses">
<echo>Cleaning classes</echo>
<mkdir dir="${destdir}"/>
<delete quiet="false">
<fileset dir="${destdir}" includes="**/*.class"/>

</delete>
</target>

<!-- if this package depends on classes found in other packages,
add targets to build those classes here. -->
<target name="init">
<tstamp/>
</target>

<target name="packageDependencies" depends="" />
<target name="clean" depends="cleanclasses" />
<target name="classes" depends="cleanclasses, createclasses" />
<target name="deploy" depends="execjcode" />
<target name="all" depends="packageDependencies, cleanclasses, execjcode" />
<target name="remake" depends="packageDependencies, cleanclasses, createclasses"
/>

</project>

a. Set the classpath in total.classpath in the ANT script.

The JAR files required to compile your source code are as follows:

Software AG_directory \common\lib\wm-isclient.jar

Software AG_directory \common\lib\glassfish\gf.jakarta.resource.jar

Integration Server_directory \lib\wm-isserver.jar

Integration Server_directory \instances\<instance_name>\packages\WmART\code\jars\
wmart.jar

The folder containing the class files required to compile your source code is as follows:

Integration Server_directory \instances\<instance_name>\packages\WmART\code\classes

Software AG_directory is the folder in which webMethods components are installed and
Integration Server_directory is the folder in which Integration Server is installed.

2. Run the ANT script to compile the Java classes.

ant classes

3. Compile the Java classes and deploy in Integration Server as Java Services.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 205

9 Usage Scenarios

a. Run the ANT script to compile the Java classes and deploy in Integration Server as Java
Services.

ant deploy

Note:
If you have created adapter admin Java class for startup and shutdown, then the
corresponding Java Services are deployed using jcode utility. The jcode utility is provided
with Integration Server. For more information, seewebMethods Service Development Help.

b. If you have created startup and shutdown Java Services using Designer, youmust compile
it using Integration Server Administrator.

Start Integration Server Administrator.

Select Settings > Extended > Edit Extended Settings.

Set the property watt.server.compile to include the path to Java compiler and the
classpath to include the wmart.jar in Integration Server_directory \
instances\<instance_name>\packages\WmART\code\jars\wmart.jar. For example:
watt.server.compile=C:\softwareag\912\jvm\jvm\bin\javac
-classpath
{0};C:\softwareag\912\IntegrationServer\instances\default\packages\
WmART\code\jars\wmart.jar; -d {1} {2}

4. Restart Integration Server.

5. Refresh Designer.

The Java Services are deployed. The startup and shutdown Java Services appear.

206 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

Registering the Adapter Startup and Shutdown Java Services
in Integration Server

1. Start Designer.

2. In the Package Navigator, select the webMethods package you created.

3. Set the Startup Services and Shutdown Services.

Perform the following operations:

In the Properties > StartUp/Shutdown Services > Startup Services, add the startup
Java Service created.

In theProperties > StartUp/Shutdown Services > Shutdown Services, add the shutdown
Java Service created.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 207

9 Usage Scenarios

4. Restart Integration Server.

Testing the Adapter Registration

1. Start Integration Server Administrator.

2. In Integration Server Administrator, in the navigation, select Adapters.

The adapter you have created appears in the menu.

208 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

3. In theIntegration Server Administrator, select MyAdapter > About.

The adapters' about page appears with the display name, description and copyright.

4. In the Integration Server Administrator, select Packages > MyAdapter > Home

The adapters' index page appears.

How to create an adapter connection implementation?

An adapter connection connects to an adapter resource. This chapter describes how to create an
adapter connection implementation.

Pre-requisites:

webMethods Integration Server 9.12 or later installed.

Designer 9.12 or later installed.

Integration Server Administrator access.

Java 1.8 or later installed.

Basic understanding of webMethods Integration Server, Designer, Integration Server
Administrator, Java.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 209

9 Usage Scenarios

1. Start the editor to create Java files for adapter connection implementation.

2. Create directories corresponding to your Java package structure in the webMethods package
you created using Designer. For example: com\mycompany\adapter\myAdapter\connections. In
the example, the folder created is com\wm\MyAdapter\connection.

Note:
You must create your Java package and classes in the adapterPackageName\code\source
folder in the webMethods package you created using Designer.

3. Create the following classes and interfaces:

a. Create a class by extending the com.wm.adk.connection.WmManagedConnection base
class.

In the example, created SimpleConnection class:
package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.MyAdapter.MyAdapter;
public class SimpleConnection extends WmManagedConnection {
String hostName;
int port;
public SimpleConnection(String hostNameValue, int portValue)
{
super();
hostName = hostNameValue;
port = portValue;
MyAdapter.getInstance().getLogger().logDebug(9999,
"Simple Connection created with hostName = "
+ hostName + "and port = " + Integer.toString(port));

}
public void destroyConnection()
{
MyAdapter.getInstance().getLogger().logDebug(9999,"Simple Connection

Destroyed");
}

// The remaining methods support metadata for related services, etc.
// Implement content as needed.
public void registerResourceDomain(WmAdapterAccess access)
{}
public Boolean adapterCheckValue(String serviceName, String resourceDomainName,
String[][] values, String testValue)
{ return null; }
public ResourceDomainValues[] adapterResourceDomainLookup(String serviceName,

String resourceDomainName, String[][] values)
{ return null; }

}

b. Create a class by extending the com.wm.adk.connection.WmManagedConnectionFactory
base class.

210 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

In the example, created SimpleConnectionFactory class:
package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnectionFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.info.ResourceAdapterMetadataInfo;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.error.AdapterException;
import java.util.Locale;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.MyAdapterConstants;

public class SimpleConnectionFactory extends WmManagedConnectionFactory
implements MyAdapterConstants {
private String hostName;
private int port;
public void setHostName(String hostNameValue){hostName = hostNameValue;}
public void setPort(int portValue){port = portValue;}
public SimpleConnectionFactory(){super();}
public WmManagedConnection createManagedConnectionObject(
javax.security.auth.Subject subject,
javax.resource.spi.ConnectionRequestInfo cxRequestInfo)
{
return new SimpleConnection(hostName, port);
}
public void fillWmDescriptor(WmDescriptor d,Locale l) throws
AdapterException
{
d.createGroup(GROUP_SIMPLE_CONNECTION,
new String[]{SIMPLE_SERVER_HOST_NAME, SIMPLE_SERVER_PORT_NUMBER});

d.setValidValues(SIMPLE_SERVER_PORT_NUMBER, new String[]
{"5555","1555","4000"});

d.setDescriptions(
MyAdapter.getInstance().getAdapterResourceBundleManager(),l);

}
public void fillResourceAdapterMetadataInfo(
ResourceAdapterMetadataInfo info, Locale locale)
{}

}

c. Update the interface that contains the constants (you created for the adapter implementation)
and add the connection constants:

In the example, updateMyAdapterConstants interface:
package com.wm.MyAdapter;
import com.wm.MyAdapter.connections.SimpleConnectionFactory;
public interface MyAdapterConstants {

static final int ADAPTER_MAJOR_CODE = 9009;
static final String ADAPTER_JCA_VERSION = "1.0";
static final String ADAPTER_NAME = "MyAdapter";
static final String ADAPTER_VERSION = "9.12";

// using next statement will create cyclic class loading dependency issue
// therefore, the resource bundle class name is fully spelled out
//static final String ADAPTER_SOURCE_BUNDLE_NAME =

MyAdapterResource.class.getName();
static final String ADAPTER_SOURCE_BUNDLE_NAME =

webMethods Adapter Development Kit Installation and User’s Guide 9.12 211

9 Usage Scenarios

"com.wm.MyAdapter.MyAdapterResource";

// added at Phase 2 to support connector
static final String CONNECTION_TYPE = SimpleConnectionFactory.class.getName();
// for all the properties, make sure the value matches the get/set method
// naming convention. you have to understand how a Java introspection
// build a property name using the names of the get and set methods
// added at Phase 2 to support connector
// connector properties
static final String GROUP_SIMPLE_CONNECTION = "SimpleServerConnection";
static final String SIMPLE_SERVER_HOST_NAME = "hostName";
static final String SIMPLE_SERVER_PORT_NUMBER = "port";

}

d. Update the resource bundle implementation class to add the display name and description
of the connection factory class and the fields in the connection factory class.

In the example, updateMyAdapterResource class's Object[][] _contents as follows:
package com.wm.MyAdapter;
import java.util.ListResourceBundle;
import com.wm.adk.ADKGLOBAL;
import com.wm.MyAdapter.connections.SimpleConnectionFactory;

public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{
static final String IS_PKG_NAME = "/MyAdapter/";
static final Object[][] _contents = {
// adapter type display name.
{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "MyAdapter"}
// adapter type descriptions.
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Adapter for MyAdapter Server (a Sample System)"}
// adapter type vendor.
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_VENDORNAME, "Software AG"}
//Copyright URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_THIRDPARTYCOPYRIGHTURL,

IS_PKG_NAME + "copyright.html"}
//Copyright Encoding
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_COPYRIGHTENCODING, "UTF-8"}
//About URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_ABOUT, IS_PKG_NAME + "About.html"}
//Release Notes URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_RELEASENOTEURL, IS_PKG_NAME +

"ReleaseNotes.html"}
//SimpleConnection
,{SimpleConnectionFactory.class.getName() +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Simple Connection"}
,{SimpleConnectionFactory.class.getName() +

ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Simple framework for demonstration purposes"}
,{SimpleConnectionFactory.SIMPLE_SERVER_HOST_NAME +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Host Name"}
,{SimpleConnectionFactory.SIMPLE_SERVER_PORT_NUMBER +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Port"}

212 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

};

protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;
}

}

e. Register the connection type to the adapter by updating your fillAdapterTypeInfomethod
in your WmAdapter implementation class.

In the example the SimpleConnectionFactory connection factory class is registered using the
method addConnectionFactory in the adapter implementation class's
MyAdapter.fillAdapterTypeInfomethod:
package com.wm.MyAdapter;
..
..
..
import com.wm.MyAdapter.connections.SimpleConnectionFactory;
..
..
..
public class MyAdapter extends WmAdapter implements MyAdapterConstants {
..
..
..
public void fillAdapterTypeInfo(AdapterTypeInfo info, Locale locale) {

info.addConnectionFactory(SimpleConnectionFactory.class.getName());
}

}

4. Execute the ANT script created in adapter definition to compile, and deploy the adapter in
Integration Server.

Use the files build.xml and build.properties.
ant deploy

5. Restart Integration Server.

6. Start Integration Server Administrator.

7. In Integration Server Administrator, select Adapters > MyAdapter.

The adapters' connection configured are listed.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 213

9 Usage Scenarios

8. In the Adapters > MyAdapter > Connections screen, select Configure New Connections.

The adapters' connection types are listed.

9. In the Adapters > My Adapter > Connection Types screen, select the Connection Type
Simple Connection.

The adapters' connection properties to configure are listed:

214 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

10. In the Adapters > My Adapter > Configure Connection Type screen, add the details and
Save Connection.

The Adapters > My Adapter > Connections screen lists the connection you added.

11. In the Adapters > My Adapter > Connections screen, click No in the Enabled column.

The Enabled column now shows Yes.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 215

9 Usage Scenarios

How to create an adapter service implementation?

An adapter service defines an operation that the adapter performs on an adapter resource. Adapter
services operate likewebMethods Integration Server flow services or Java services. Adapter services
have input and output signatures, you call them within flow services, and you can audit them
from the Integration Server's audit system.

Ensure that you have:

webMethods Integration Server 9.12 or later installed.

Designer 9.12 or later installed.

Integration Server Administrator access.

Java 1.8 or later installed.

Basic understanding of webMethods Integration Server, Designer, Integration Server
Administrator, Java.

How to create a basic adapter service implementation without
any elements?

1. Start the editor to create Java files for the adapter service implementation.

2. Create directories corresponding to your Java package structure in the webMethods package
you created using Designer. For example: com\mycompany\adapter\myAdapter\services. In the
example, the folder created is com\wm\MyAdapter\services.

Note:
You should create your Java package and classes in the adapterPackageName\code\source
folder in the webMethods package you created using Designer.

3. Create a class by extending the com.wm.adk.cci.interaction.WmAdapterService base class.

216 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

In the example, createdMockDbUpdate class:
package com.wm.MyAdapter.services;
import com.wm.adk.cci.interaction.WmAdapterService;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.WmTemplateDescriptor;
import java.util.Hashtable;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;

public class MockDbUpdate extends WmAdapterService {
public void fillWmTemplateDescriptor(WmTemplateDescriptor d,Locale l)
throws ResourceException {
}
public WmRecord execute(WmManagedConnection connection, WmRecord input)
throws ResourceException {
return null;

}
}

4. Update the resource bundle implementation class to add the display name and description of
the adapter service.

In the example, updatedMyAdapterResource class:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.services.MockDbUpdate;
public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{
..
..
static final Object[][] _contents = {
..
..
//Adapter Services

,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Mock Update Service"}

,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Simulates a database update service"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

5. Register the adapter service by updating your fillResourceAdapterMetadataInfo method in
your WmManagedConnectionFactory connection factory implementation class.

In the example, theMockDbUpdate class is registered using fillResourceAdapterMetadataInfomethod
in the SimpleConnectionFactory connection factory class:
package com.wm.MyAdapter.connections;

webMethods Adapter Development Kit Installation and User’s Guide 9.12 217

9 Usage Scenarios

import com.wm.adk.connection.WmManagedConnectionFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.info.ResourceAdapterMetadataInfo;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.error.AdapterException;
import java.util.Locale;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.MyAdapterConstants;
import com.wm.MyAdapter.services.MockDbUpdate;
public class SimpleConnectionFactory extends WmManagedConnectionFactory implements
MyAdapterConstants {

..

..

..
public void fillResourceAdapterMetadataInfo(ResourceAdapterMetadataInfo info,

Locale locale) {
info.addServiceTemplate(MockDbUpdate.class.getName());
}

}

6. Execute the ANT script created in the adapter definition to compile, and deploy the adapter
in Integration Server.

Use the files build.xml and build.properties.
ant deploy

7. Restart Integration Server.

8. Start Integration Server Administrator.

9. Select Adapters > MyAdapter > Connections.

The screen lists the adapters' connection configured:

10. In the Adapters > MyAdapter > Connections screen, select Configure New Connection.

The screen lists the adapters' connection types:

218 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

11. In theAdapters > MyAdapter > Connection Types screen, select the connection type Simple
Connection.

The screen lists the adapters' connection properties to configure:

12. In the Adapters > MyAdapter > Configure Connection Type screen, add the details and
click Save Connection.

The Adapters > MyAdapter > Connections screen lists the connection you added.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 219

9 Usage Scenarios

13. In the Adapters > MyAdapter > Connections screen, click No in the Enabled column for the
connection you added.

The Enabled column now shows Yes.

14. In Designer, create the adapter service.

a. In Package Navigator, select the Default package.

b. Select File > New > Folder.

220 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

c. Enter the Folder name. For example: TestMyAdapter.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 221

9 Usage Scenarios

d. In the Package Navigator, select the Default > TestMyAdapter.

e. Select File > New > Adapter Service.

222 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

f. Enter the Element name and click Next. For example: TestMyAdapterService.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 223

9 Usage Scenarios

g. In theSelect Adapter Type, select an adapter type forwhich youwant to create the service.
For example: MyAdapter.

224 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

h. In the Select an Adapter Connection Alias, select an adapter connection. For example:
TestMyAdapter:Conn1.

i. In the Select a Template, select an adapter template and click Finish. For example: Mock
Update Service.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 225

9 Usage Scenarios

A new adapter service of typeMyAdapter is created. You will see the following tabs:

1. MockDbUpdate.

2. Adapter Settings

3. Input/Output

4. Logged Fields

5. Comments

226 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

webMethods Adapter Development Kit Installation and User’s Guide 9.12 227

9 Usage Scenarios

228 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

webMethods Adapter Development Kit Installation and User’s Guide 9.12 229

9 Usage Scenarios

230 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

How to display elements in an adapter service?

1. Update the com.wm.adk.cci.interaction.WmAdapterService implementation class.

a. Create a class attribute, and a corresponding set method for each metadata parameter. For
example, a class attribute _tableName, and a corresponding set method setTableName for
the parameter table name.

Class Attribute Set Method NameClass Attribute Name

setTableName_tableName

setColumnNames_columnNames

setColumnTypes_columnTypes

setRepeating_repeating

setOverrideTypes_overrideTypes

webMethods Adapter Development Kit Installation and User’s Guide 9.12 231

9 Usage Scenarios

For example classMockDbUpdate:
package com.wm.MyAdapter.services;
import com.wm.adk.cci.interaction.WmAdapterService;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.WmTemplateDescriptor;
import java.util.Hashtable;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;

public class MockDbUpdate extends WmAdapterService {
private String _tableName;
private String[] _columnNames;
private String[] _columnTypes;
private boolean _repeating;
private String[] _overrideTypes;
public static final String TABLE_NAME_PARM = "tableName";
public static final String COLUMN_NAMES_PARM = "columnNames";
public static final String COLUMN_TYPES_PARM = "columnTypes";
public static final String REPEATING_PARM = "repeating";
public static final String OVERRIDE_TYPES_PARM = "overrideTypes";
public void setTableName(String val){ _tableName = val;}
public void setColumnNames(String[] val){ _columnNames = val;}
public void setColumnTypes(String[] val){ _columnTypes = val;}
public void setRepeating(boolean val){ _repeating = val;}
public void setOverrideTypes(String[] val){_overrideTypes = val;}

public void fillWmTemplateDescriptor(WmTemplateDescriptor d,Locale l)
throws ResourceException
{ }
public WmRecord execute(WmManagedConnection connection, WmRecord input)
throws ResourceException
{
return null;
}

}

2. Update the resource bundle implementation class to add the display name and description of
the adapter service.

In the example, the class isMyAdapterResource:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.services.MockDbUpdate;
public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{
..
..
static final Object[][] _contents = {
..
..
//Adapter Services

,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Mock Update Service"}

232 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Simulates a database update service"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

3. Register the adapter service by updating your fillResourceAdapterMetadataInfo method in
your WmManagedConnectionFactory implementation class.

In the example, the adapter serviceMockDbUpdate is registered using the method
fillResourceAdapterMetadataInfo in the connection factory class SimpleConnectionFactory class:
package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnectionFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.info.ResourceAdapterMetadataInfo;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.error.AdapterException;
import java.util.Locale;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.MyAdapterConstants;
import com.wm.MyAdapter.services.MockDbUpdate;
public class SimpleConnectionFactory extends WmManagedConnectionFactory implements
MyAdapterConstants {

..

..

..
public void fillResourceAdapterMetadataInfo(ResourceAdapterMetadataInfo info,

Locale locale) {
info.addServiceTemplate(MockDbUpdate.class.getName());
}

}

4. Execute the ANT script created in the adapter definition to compile, and deploy the adapter
in Integration Server.

Use the files build.xml and build.properties.
ant deploy

5. Restart Integration Server.

6. Start Integration Server Administrator.

7. In Designer, create the adapter service.

A new adapter service of typeMyAdapter is created with the metadata parameters as shown in
the MockDBUpdate tab below:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 233

9 Usage Scenarios

How to group elements, display data in tables and perform
lookups in an adapter service?

1. Update the com.wm.adk.cci.interaction.WmAdapterService implementation class.

a. Create a class attribute, a set method, a constant, and a resource domain for eachmetadata
parameter. For example, a class attribute _tableName, a setmethod setTableName, a constant
TABLE_NAME_PARM, and a resource domain TABLES_RD (which needs to lookup) for the
parameter table name.

234 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

ResourceDomainName
Constant

Class Attribute Name
Constant

Class Attribute
Set Method
Name

Class Attribute
Name

TABLES_RDTABLE_NAME_PARMsetTableName_tableName

COLUMN_NAMES_RDCOLUMN_NAMES_PARMsetColumnNames_columnNames

COLUMN_TYPES_RDCOLUMN_TYPES_PARMsetColumnTypes_columnTypes

NoneREPEATING_PARMsetRepeating_repeating

OVERRIDE_TYPES_RDOVERRIDE_TYPES_PARMsetOverrideTypes_overrideTypes

b. In thefillWmTemplateDescriptormethod, callWmTemplateDescriptor.createGroupmethod,
WmTemplateDescriptor.createFieldMapmethod, andWmTemplateDescriptor.createTuple
method.

c. In the fillWmTemplateDescriptormethod, callWmTemplateDescriptor.setResourceDomain
method, and WmTemplateDescriptor.setDescriptions method.

d. Create the privateHashtable[] unpackRequest(WmRecord request)method to process and
convert the webMethods's datatype WmRecord to Hashtable[].

e. Create the private WmRecord packResonse(Hashtable[] response) method to process and
convert the Hashtable[] to webMethods's datatype WmRecord.

f. In the execute method, call unpackRequest method, and packResonse method.

For example,MockDbUpdate class :
package com.wm.MyAdapter.services;
import com.wm.adk.cci.interaction.WmAdapterService;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.WmTemplateDescriptor;
import com.wm.data.IData;
import com.wm.data.IDataCursor;
import com.wm.data.IDataFactory;
import com.wm.data.IDataUtil;
import java.util.Hashtable;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;

public class MockDbUpdate extends WmAdapterService {
//MockDB Group
public static final String UPD_SETTINGS_GRP = "Mock Settings";
public static final String TABLE_NAME_PARM = "tableName";
public static final String COLUMN_NAMES_PARM = "columnNames";
public static final String COLUMN_TYPES_PARM = "columnTypes";
public static final String REPEATING_PARM = "repeating";

webMethods Adapter Development Kit Installation and User’s Guide 9.12 235

9 Usage Scenarios

public static final String OVERRIDE_TYPES_PARM = "overrideTypes";
private String _tableName;
private String[] _columnNames;
private String[] _columnTypes;
private boolean _repeating;
private String[] _overrideTypes;
public void setTableName(String val){ _tableName = val;}
public void setColumnNames(String[] val){ _columnNames = val;}
public void setColumnTypes(String[] val){ _columnTypes = val;}
public void setRepeating(boolean val){ _repeating = val;}
public void setOverrideTypes(String[] val){_overrideTypes = val;}
public static final String TABLES_RD = "tablesRD";
public static final String COLUMN_NAMES_RD = "columnNamesRD";
public static final String COLUMN_TYPES_RD = "columnTypesRD";
public static final String OVERRIDE_TYPES_RD = "overrideTypesRD";

public void fillWmTemplateDescriptor(WmTemplateDescriptor d,Locale l)
throws ResourceException {
//MockDB Grouping and resource domain setup
d.createGroup(UPD_SETTINGS_GRP, new String [] {

TABLE_NAME_PARM,
REPEATING_PARM,
COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM}

);
d.createFieldMap(new String[] {

COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM},

true);
d.createTuple(new String[]{COLUMN_NAMES_PARM,COLUMN_TYPES_PARM});

d.setResourceDomain(TABLE_NAME_PARM,TABLES_RD,null);
d.setResourceDomain(COLUMN_NAMES_PARM,COLUMN_NAMES_RD,
new String[]{TABLE_NAME_PARM});

d.setResourceDomain(COLUMN_TYPES_PARM,COLUMN_TYPES_RD,
new String[]{TABLE_NAME_PARM});

d.setResourceDomain(OVERRIDE_TYPES_PARM,OVERRIDE_TYPES_RD,null);
//Call to setDescriptions
d.setDescriptions(MyAdapter.getInstance().
getAdapterResourceBundleManager(),l);

}
public WmRecord execute(WmManagedConnection connection, WmRecord input)
throws ResourceException {
Hashtable[] request = this.unpackRequest(input);
return this.packResonse(request);
}
private Hashtable[] unpackRequest(WmRecord request) throws ResourceException {
Hashtable data[] = null;
IData mainIData = request.getIData();
IDataCursor mainCursor = mainIData.getCursor();
try {
String tableName = this._tableName;
String[] columnNames = this._columnNames;
if(mainCursor.first(tableName)) {
IData[] recordIData;
if(this._repeating) {
recordIData = IDataUtil.getIDataArray (mainCursor,tableName);
data = new Hashtable[recordIData.length];

236 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

}
else {
recordIData = new IData[] {IDataUtil.getIData(mainCursor)};
data = new Hashtable[1];
}
for(int rec=0;rec<recordIData.length;rec++) {
IDataCursor recordCursor = recordIData[rec].getCursor();
data[rec] = new Hashtable();
for(int c = 0; c < columnNames.length;c++) {
if(recordCursor.first(columnNames[c])) {
data[rec].put(tableName + "." + columnNames[c],
recordCursor.getValue());
}

}
recordCursor.destroy();
}

}
else {
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"No Request Data"});

}
}
catch (Throwable t) {
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error unpacking request data"},t);

}
finally {
mainCursor.destroy();

}
return data;
}
private WmRecord packResonse(Hashtable[] response) throws ResourceException {
WmRecord data = null;
try {
IData[] recordIData = new IData[response.length];
String tableName = this._tableName;
String[] columnNames = this._columnNames;
for(int rec = 0; rec < response.length; rec++) {
recordIData[rec] = IDataFactory.create();
IDataCursor recordCursor = recordIData[rec].getCursor();
for(int col = 0; col < columnNames.length;col++) {
IDataUtil.put(recordCursor,columnNames[col],
response[rec].get(tableName + "." +
columnNames[col]));

}
recordCursor.destroy();

}
IData mainIData = IDataFactory.create();
IDataCursor mainCursor = mainIData.getCursor();
if(this._repeating) {
IDataUtil.put(mainCursor,tableName,recordIData);

}
else {
IDataUtil.put(mainCursor,tableName,recordIData[0]);

}
mainCursor.destroy();
data = WmRecordFactory.getFactory().createWmRecord("nameNotUsed");
data.setIData(mainIData);

}
catch (Throwable t) {

webMethods Adapter Development Kit Installation and User’s Guide 9.12 237

9 Usage Scenarios

throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error packing response data"},t);

}
return data;
}

}

2. Update the WmManagedConnection implementation class.

Add the data for the mock tables in the adapter service.

Add the methods adapterCheckValue, adapterResourceDomainLookup, and registerResourceDomain

For example, SimpleConnection class:
package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.AdapterException;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.services.MockDbUpdate;
public class SimpleConnection extends WmManagedConnection {
String hostName;
int port;

//Adapter Services variables
private String[] mockTableNames ={ "CUSTOMERS","ORDERS","LINE_ITEMS"};
private String[][] mockColumnNames ={
{"name","id", "ssn"},
{"id","date","customer_id"},
{"order_id","item_number","quantity","description"}
};
private String [][] mockDataTypes = {
{"java.lang.String","java.lang.Integer", "java.lang.String"},
{"java.lang.Integer", "java.util.Date", "java.lang.Integer"},
{"java.lang.Integer", "java.lang.Integer", "java.lang.Integer",
"java.lang.String"}
};
public SimpleConnection(String hostNameValue, int portValue)
{

..

..
}
public void destroyConnection()
{

..

..
}

// The remaining methods support metadata for related services, etc.
// Implement content as needed.
public Boolean adapterCheckValue(String serviceName,
String resourceDomainName,
String[][] values,
String testValue) throws AdapterException
{
Boolean result = new Boolean(false);
if(resourceDomainName.equals(MockDbUpdate.OVERRIDE_TYPES_RD))
{

238 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

try
{
Object o = Class.forName(testValue).getConstructor(
new Class[] {String.class}).newInstance(new Object[]{"0"});

result = new Boolean(true);
}
catch (Throwable t){}

}
return result;

}
public ResourceDomainValues[] adapterResourceDomainLookup(String serviceName,
String resourceDomainName, String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;

//MockDB Group Lookup
if(resourceDomainName.equals(MockDbUpdate.COLUMN_NAMES_RD)||
resourceDomainName.equals(MockDbUpdate.COLUMN_TYPES_RD))

{
String tableName = values[0][0];
for(int x = 0; x < this.mockTableNames.length;x++)
{
if(this.mockTableNames[x].equals(tableName))
{
ResourceDomainValues columnsRdvs = new ResourceDomainValues(
MockDbUpdate.COLUMN_NAMES_RD,this.mockColumnNames[x]);

columnsRdvs.setComplete(true);
ResourceDomainValues typesRdvs = new ResourceDomainValues(
MockDbUpdate.COLUMN_TYPES_RD, this.mockDataTypes[x]);

typesRdvs.setComplete(true);
results = new ResourceDomainValues[] {columnsRdvs,typesRdvs};
break;
}

}
}

return results;
}
public void registerResourceDomain(WmAdapterAccess access)
throws AdapterException
{
//MockDB Group Registering Resource Domain
ResourceDomainValues tableRdvs = new ResourceDomainValues(
MockDbUpdate.TABLES_RD,mockTableNames);

tableRdvs.setComplete(true);
access.addResourceDomain(tableRdvs);
access.addResourceDomainLookup(MockDbUpdate.COLUMN_NAMES_RD,this);
access.addResourceDomainLookup(MockDbUpdate.COLUMN_TYPES_RD,this);
ResourceDomainValues rdvs = new ResourceDomainValues(
MockDbUpdate.OVERRIDE_TYPES_RD, new String[] {""});

rdvs.setComplete(false);
rdvs.setCanValidate(true);
access.addResourceDomain(rdvs);
access.addCheckValue(MockDbUpdate.OVERRIDE_TYPES_RD,this);
}

}

3. Update the resource bundle implementation class to add the display name and description of
the adapter service.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 239

9 Usage Scenarios

In the example, updatedMyAdapterResource class:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.services.MockDbUpdate;
public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{
..
..
static final Object[][] _contents = {
..
..
//Adapter Services
,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Mock Update Service"}

,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Simulates a database update service"}

//MockDB Group Resource Domain Values
,{MockDbUpdate.UPD_SETTINGS_GRP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,
MockDbUpdate.UPD_SETTINGS_GRP}

,{MockDbUpdate.TABLE_NAME_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "Table Name"}

,{MockDbUpdate.TABLE_NAME_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION, "Select Table Name"}

,{MockDbUpdate.COLUMN_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Column Names"}

,{MockDbUpdate.COLUMN_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Name of column updated by this service"}

,{MockDbUpdate.COLUMN_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Column Types"}

,{MockDbUpdate.COLUMN_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Default data type for column"}

,{MockDbUpdate.OVERRIDE_TYPES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "Override Data Types"}

,{MockDbUpdate.OVERRIDE_TYPES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION, "Type to override column default"}

,{MockDbUpdate.REPEATING_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "Update Multiple Rows?"}

,{MockDbUpdate.REPEATING_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Select if input will include multiple rows to update"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

4. Register the adapter service by updating your fillResourceAdapterMetadataInfo method in
your WmManagedConnectionFactory implementation class.

In the example,MockDbUpdate class is registered using the fillResourceAdapterMetadataInfomethod
in the SimpleConnectionFactory connection factory class:
package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnectionFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.info.ResourceAdapterMetadataInfo;

240 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.error.AdapterException;
import java.util.Locale;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.MyAdapterConstants;
import com.wm.MyAdapter.services.MockDbUpdate;
public class SimpleConnectionFactory extends WmManagedConnectionFactory implements
MyAdapterConstants {

..

..

..
public void fillResourceAdapterMetadataInfo(ResourceAdapterMetadataInfo info,

Locale locale) {
info.addServiceTemplate(MockDbUpdate.class.getName());
}

}

5. Execute the ANT script created in the adapter definition to compile, and deploy the adapter
in Integration Server.

Use the files build.xml and build.properties.
ant deploy

6. Restart Integration Server.

7. Start Integration Server Administrator.

8. In Designer, create the adapter service.

A new adapter service of typeMyAdapter is created. You can see the following in the MockDBUpdate
tab:

The labels are descriptive (as described in ListResourceBundle implementation).

The table names are populated with mock data as described in WmManagedConnection
implementation.

The column names and column types update when the table name changes.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 241

9 Usage Scenarios

How to display adapter service signature?

1. Update the com.wm.adk.cci.interaction.WmAdapterService implementation class.

a. Create a class attribute, a set method, a constant, and a resource domain for eachmetadata
parameter. For example, a class attribute _fieldNames, a corresponding set method
setFieldNames, a corresponding constant FIELD_NAMES_PARM, and a corresponding resource
domain FIELD_NAMES_RD (which needs to lookup) for the parameter table name.

Resource Domain
Name Constant

Class Attribute Name
Constant

Class Attribute Set
Method Name

Class Attribute
Name

FIELD_NAMES_RDFIELD_NAMES_PARMsetFieldNames_fieldNames

FIELD_TYPES_RDFIELD_TYPES_PARMsetFieldTypes_fieldTypes

NoneSIG_IN_PARMsetSigInNone

NoneSIG_OUT_PARMsetSigOutNone

b. In thefillWmTemplateDescriptormethod, callWmTemplateDescriptor.createGroupmethod,
WmTemplateDescriptor.createFieldMapmethod, andWmTemplateDescriptor.createTuple
method for the new tab Signature.

c. In the fillWmTemplateDescriptormethod, callWmTemplateDescriptor.setResourceDomain
method, and WmTemplateDescriptor.setDescriptions method.

d. Create the privateHashtable[] unpackRequest(WmRecord request)method to process and
convert the webMethods's datatype WmRecord to Hashtable[].

e. Create the private WmRecord packResonse(Hashtable[] response) method to process and
convert the Hashtable[] to webMethods's datatype WmRecord.

242 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

f. In the execute method, call unpackRequest method, and packResonse method.

For example,MockDbUpdate class:
package com.wm.MyAdapter.services;
import com.wm.adk.cci.interaction.WmAdapterService;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.WmTemplateDescriptor;
import com.wm.data.IData;
import com.wm.data.IDataCursor;
import com.wm.data.IDataFactory;
import com.wm.data.IDataUtil;
import java.util.Hashtable;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;

public class MockDbUpdate extends WmAdapterService {
//MockDB Group
public static final String UPD_SETTINGS_GRP = "Mock Settings";
public static final String TABLE_NAME_PARM = "tableName";
public static final String COLUMN_NAMES_PARM = "columnNames";
public static final String COLUMN_TYPES_PARM = "columnTypes";
public static final String REPEATING_PARM = "repeating";
public static final String OVERRIDE_TYPES_PARM = "overrideTypes";
private String _tableName;
private String[] _columnNames;
private String[] _columnTypes;
private boolean _repeating;
private String[] _overrideTypes;
public void setTableName(String val){ _tableName = val;}
public void setColumnNames(String[] val){ _columnNames = val;}
public void setColumnTypes(String[] val){ _columnTypes = val;}
public void setRepeating(boolean val){ _repeating = val;}
public void setOverrideTypes(String[] val){_overrideTypes = val;}
public static final String TABLES_RD = "tablesRD";
public static final String COLUMN_NAMES_RD = "columnNamesRD";
public static final String COLUMN_TYPES_RD = "columnTypesRD";
public static final String OVERRIDE_TYPES_RD = "overrideTypesRD";

//MockDB Signature Group
public static final String SIG_SETTINGS_GRP = "Signature";
public static final String FIELD_NAMES_PARM = "fieldNames";
public static final String FIELD_TYPES_PARM = "fieldTypes";
public static final String SIG_IN_PARM = "sigIn";
public static final String SIG_OUT_PARM = "sigOut";
private String[] _fieldNames;
private String[] _fieldTypes;
public void setFieldNames(String[] val){ _fieldNames = val;}
public void setFieldTypes(String[] val){ _fieldTypes = val;}
public void setSigIn(String[] val){}
public void setSigOut(String[] val){}
public static final String FIELD_NAMES_RD = "fieldNamesRD";
public static final String FIELD_TYPES_RD = "fieldTypesRD";

public void fillWmTemplateDescriptor(WmTemplateDescriptor d,Locale l)
throws ResourceException {

webMethods Adapter Development Kit Installation and User’s Guide 9.12 243

9 Usage Scenarios

//MockDB Grouping and resource domain setup
d.createGroup(UPD_SETTINGS_GRP, new String [] {

TABLE_NAME_PARM,
REPEATING_PARM,
COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM}

);
d.createFieldMap(new String[] {

COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM},

true);
d.createTuple(new String[]{COLUMN_NAMES_PARM,COLUMN_TYPES_PARM});

d.setResourceDomain(TABLE_NAME_PARM,TABLES_RD,null);
d.setResourceDomain(COLUMN_NAMES_PARM,COLUMN_NAMES_RD,
new String[]{TABLE_NAME_PARM});

d.setResourceDomain(COLUMN_TYPES_PARM,COLUMN_TYPES_RD,
new String[]{TABLE_NAME_PARM});

d.setResourceDomain(OVERRIDE_TYPES_PARM,OVERRIDE_TYPES_RD,null);
//MockDB Signature Grouping and resource domain setup
d.createGroup(SIG_SETTINGS_GRP, new String [] {

FIELD_NAMES_PARM,
FIELD_TYPES_PARM,
SIG_IN_PARM,
SIG_OUT_PARM}

);
d.createFieldMap(new String [] {

FIELD_NAMES_PARM,
FIELD_TYPES_PARM,
SIG_IN_PARM,
SIG_OUT_PARM},

false);
d.createTuple(new String[]{FIELD_NAMES_PARM,FIELD_TYPES_PARM});

String [] fieldTupleDependencies = {TABLE_NAME_PARM,
REPEATING_PARM,
COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM};

d.setResourceDomain(FIELD_NAMES_PARM,FIELD_NAMES_RD, fieldTupleDependencies);
d.setResourceDomain(FIELD_TYPES_PARM,FIELD_TYPES_RD, fieldTupleDependencies);
d.setResourceDomain(SIG_IN_PARM,WmTemplateDescriptor.INPUT_FIELD_NAMES,
new String[] {FIELD_NAMES_PARM, FIELD_TYPES_PARM});

d.setResourceDomain(SIG_OUT_PARM,WmTemplateDescriptor.OUTPUT_FIELD_NAMES,
new String[] {FIELD_NAMES_PARM, FIELD_TYPES_PARM});

//Call to setDescriptions
d.setDescriptions(MyAdapter.getInstance().
getAdapterResourceBundleManager(),l);

}
public WmRecord execute(WmManagedConnection connection, WmRecord input)
throws ResourceException {
Hashtable[] request = this.unpackRequest(input);
return this.packResonse(request);
}
private Hashtable[] unpackRequest(WmRecord request) throws ResourceException {
Hashtable data[] = null;
IData mainIData = request.getIData();
IDataCursor mainCursor = mainIData.getCursor();

244 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

try {
String tableName = this._tableName;
String[] columnNames = this._columnNames;
if(mainCursor.first(tableName)) {
IData[] recordIData;
if(this._repeating) {
recordIData = IDataUtil.getIDataArray (mainCursor,tableName);
data = new Hashtable[recordIData.length];
}
else {
recordIData = new IData[] {IDataUtil.getIData(mainCursor)};
data = new Hashtable[1];
}
for(int rec=0;rec<recordIData.length;rec++) {
IDataCursor recordCursor = recordIData[rec].getCursor();
data[rec] = new Hashtable();
for(int c = 0; c < columnNames.length;c++) {
if(recordCursor.first(columnNames[c])) {
data[rec].put(tableName + "." + columnNames[c],
recordCursor.getValue());
}

}
recordCursor.destroy();
}

}
else {
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"No Request Data"});

}
}
catch (Throwable t) {
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error unpacking request data"},t);

}
finally {
mainCursor.destroy();

}
return data;
}
private WmRecord packResonse(Hashtable[] response) throws ResourceException {
WmRecord data = null;
try {
IData[] recordIData = new IData[response.length];
String tableName = this._tableName;
String[] columnNames = this._columnNames;
for(int rec = 0; rec < response.length; rec++) {
recordIData[rec] = IDataFactory.create();
IDataCursor recordCursor = recordIData[rec].getCursor();
for(int col = 0; col < columnNames.length;col++) {
IDataUtil.put(recordCursor,columnNames[col],
response[rec].get(tableName + "." +
columnNames[col]));

}
recordCursor.destroy();

}
IData mainIData = IDataFactory.create();
IDataCursor mainCursor = mainIData.getCursor();
if(this._repeating) {
IDataUtil.put(mainCursor,tableName,recordIData);

}

webMethods Adapter Development Kit Installation and User’s Guide 9.12 245

9 Usage Scenarios

else {
IDataUtil.put(mainCursor,tableName,recordIData[0]);

}
mainCursor.destroy();
data = WmRecordFactory.getFactory().createWmRecord("nameNotUsed");
data.setIData(mainIData);

}
catch (Throwable t) {
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error packing response data"},t);

}
return data;
}

}

2. Update the WmManagedConnection implementation class.

Add the data for the mock tables in the adapter service.

Add the methods adapterCheckValue, adapterResourceDomainLookup, and registerResourceDomain

For example, SimpleConnection class
package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.AdapterException;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.services.MockDbUpdate;
public class SimpleConnection extends WmManagedConnection {
String hostName;
int port;

//Adapter Services variables
private String[] mockTableNames ={ "CUSTOMERS","ORDERS","LINE_ITEMS"};
private String[][] mockColumnNames ={
{"name","id", "ssn"},
{"id","date","customer_id"},
{"order_id","item_number","quantity","description"}
};
private String [][] mockDataTypes = {
{"java.lang.String","java.lang.Integer", "java.lang.String"},
{"java.lang.Integer", "java.util.Date", "java.lang.Integer"},
{"java.lang.Integer", "java.lang.Integer", "java.lang.Integer",
"java.lang.String"}
};
public SimpleConnection(String hostNameValue, int portValue)
{
super();
hostName = hostNameValue;
port = portValue;
MyAdapter.getInstance().getLogger().logDebug(9999,
"Simple Connection created with hostName = "
+ hostName + "and port = " +
Integer.toString(port));

}
public void destroyConnection()
{
MyAdapter.getInstance().getLogger().logDebug(9999,"Simple Connection Destroyed");

246 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

}

// The remaining methods support metadata for related services, etc.
// Implement content as needed.
public Boolean adapterCheckValue(String serviceName,
String resourceDomainName,
String[][] values,
String testValue) throws AdapterException
{
Boolean result = new Boolean(false);
if(resourceDomainName.equals(MockDbUpdate.OVERRIDE_TYPES_RD))
{
try
{
Object o = Class.forName(testValue).getConstructor(
new Class[] {String.class}).newInstance(new Object[]{"0"});

result = new Boolean(true);
}
catch (Throwable t){}

}
return result;

}
public ResourceDomainValues[] adapterResourceDomainLookup(String serviceName,
String resourceDomainName, String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;
//MockDB Group Lookup
if(resourceDomainName.equals(MockDbUpdate.COLUMN_NAMES_RD)||
resourceDomainName.equals(MockDbUpdate.COLUMN_TYPES_RD))

{
String tableName = values[0][0];
for(int x = 0; x < this.mockTableNames.length;x++)
{
if(this.mockTableNames[x].equals(tableName))
{
ResourceDomainValues columnsRdvs = new ResourceDomainValues(
MockDbUpdate.COLUMN_NAMES_RD,this.mockColumnNames[x]);

columnsRdvs.setComplete(true);
ResourceDomainValues typesRdvs = new ResourceDomainValues(
MockDbUpdate.COLUMN_TYPES_RD, this.mockDataTypes[x]);

typesRdvs.setComplete(true);
results = new ResourceDomainValues[] {columnsRdvs,typesRdvs};
break;
}

}
//MockDB Signature Group Lookup
else if (resourceDomainName.equals(MockDbUpdate.FIELD_NAMES_RD)||
resourceDomainName.equals(MockDbUpdate.FIELD_TYPES_RD))

{
String tableName = values[0][0];
boolean repeating = Boolean.valueOf(values[1][0]).booleanValue();
String[] columnNames = values[2];
String[] columnTypes = values[3];
String[] overrideTypes = values[4];
String[] fieldNames = new String[columnNames.length];
String[] fieldTypes = new String[columnTypes.length];
String optBrackets;
if(repeating)
optBrackets ="[]";
else

webMethods Adapter Development Kit Installation and User’s Guide 9.12 247

9 Usage Scenarios

optBrackets = "";
for (int i = 0; i< fieldNames.length;i++)
{
fieldNames[i] = tableName + optBrackets + "." + columnNames[i];
fieldTypes[i] = columnTypes[i] + optBrackets;
if(overrideTypes.length > i)
{
if (!overrideTypes[i].equals(""))
{
fieldTypes[i] = overrideTypes[i] + optBrackets;
}

}
}
results = new ResourceDomainValues[]{
new ResourceDomainValues(MockDbUpdate.FIELD_NAMES_RD,fieldNames),
new ResourceDomainValues(MockDbUpdate.FIELD_TYPES_RD,fieldTypes)};

}

return results;
}
public void registerResourceDomain(WmAdapterAccess access)
throws AdapterException
{
//MockDB Group Registering Resource Domain
ResourceDomainValues tableRdvs = new ResourceDomainValues(
MockDbUpdate.TABLES_RD,mockTableNames);

tableRdvs.setComplete(true);
access.addResourceDomain(tableRdvs);
access.addResourceDomainLookup(MockDbUpdate.COLUMN_NAMES_RD,this);
access.addResourceDomainLookup(MockDbUpdate.COLUMN_TYPES_RD,this);
ResourceDomainValues rdvs = new ResourceDomainValues(
MockDbUpdate.OVERRIDE_TYPES_RD, new String[] {""});

rdvs.setComplete(false);
rdvs.setCanValidate(true);
access.addResourceDomain(rdvs);
access.addCheckValue(MockDbUpdate.OVERRIDE_TYPES_RD,this);
//MockDB Signature Group Registering Resource Domain
access.addResourceDomainLookup(MockDbUpdate.FIELD_NAMES_RD,this);
access.addResourceDomainLookup(MockDbUpdate.FIELD_TYPES_RD,this);
}

}

3. Update the resource bundle implementation class to add the display name and description of
the adapter service.

In the example, updateMyAdapterResource class:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.services.MockDbUpdate;
public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{
..
..
static final Object[][] _contents = {
..
..

//MockDB Group Resource Domain Values

248 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Mock Update Service"}

,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Simulates a database update service"}

,{MockDbUpdate.UPD_SETTINGS_GRP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,
MockDbUpdate.UPD_SETTINGS_GRP}

,{MockDbUpdate.TABLE_NAME_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "Table Name"}

,{MockDbUpdate.TABLE_NAME_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION, "Select Table Name"}

,{MockDbUpdate.COLUMN_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Column Names"}

,{MockDbUpdate.COLUMN_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Name of column updated by this service"}

,{MockDbUpdate.COLUMN_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Column Types"}

,{MockDbUpdate.COLUMN_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Default data type for column"}

,{MockDbUpdate.OVERRIDE_TYPES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "Override Data Types"}

,{MockDbUpdate.OVERRIDE_TYPES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION, "Type to override column default"}

,{MockDbUpdate.REPEATING_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "Update Multiple Rows?"}

,{MockDbUpdate.REPEATING_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Select if input will include multiple rows to update"}

//MockDB Signature Group Resource Domain Values
,{MockDbUpdate.SIG_SETTINGS_GRP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,
MockDbUpdate.SIG_SETTINGS_GRP}

,{MockDbUpdate.FIELD_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Field Names"}

,{MockDbUpdate.FIELD_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Name of Field"}

,{MockDbUpdate.FIELD_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Field Type"}

,{MockDbUpdate.FIELD_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Type of Field"}

,{MockDbUpdate.SIG_IN_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Input Signature"}

,{MockDbUpdate.SIG_IN_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Input Signature"}

,{MockDbUpdate.SIG_OUT_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Output Signature"}

,{MockDbUpdate.SIG_OUT_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Output Signature"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

4. Register the adapter service by updating your fillResourceAdapterMetadataInfo method in
your WmManagedConnectionFactory implementation class.

In the example,MockDbUpdate class is registered using the fillResourceAdapterMetadataInfomethod
in the SimpleConnectionFactoryconnection factory class:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 249

9 Usage Scenarios

package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnectionFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.info.ResourceAdapterMetadataInfo;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.error.AdapterException;
import java.util.Locale;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.MyAdapterConstants;
import com.wm.MyAdapter.services.MockDbUpdate;
public class SimpleConnectionFactory extends WmManagedConnectionFactory implements
MyAdapterConstants {

..

..

..
public void fillResourceAdapterMetadataInfo(ResourceAdapterMetadataInfo info,

Locale locale) {
info.addServiceTemplate(MockDbUpdate.class.getName());
}

}

5. Execute the ANT script created in the adapter definition to compile, and deploy the adapter
in Integration Server.

Use the files build.xml and build.properties.
ant deploy

6. Restart Integration Server.

7. Start Integration Server Administrator.

8. In Designer, create the adapter service.

You will see the Mock Settings, and Signature tab

a. In the Mock Settings tab, select a table and then select Signature tab. For example: In
Mock Settings tab, select table Customer and then select Signature tab.

Youwill see the following in theMock Settings tab, Signature tab, and Input/Output tab.

250 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

b. In the Mock Settings tab, for a table, populate the rows using Insert Row or Fill in all rows
to the table and then select Signature tab. For example: In the Mock Settings tab, select
the table Customer, populate the rows using Insert Row or Fill in all rows to the table
and then select Signature tab.

Youwill see the following in theMock Settings tab, Signature tab, and Input/Output tab.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 251

9 Usage Scenarios

252 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

Note:
The Signature tab shown is for demonstration purposes only. In most cases, the fields
in the Signature are hidden. Select the Input/Output tab to view the signature.

An adapter service of typeMyAdapter is created with two user defined tabsMock Settings, and
Signature.

How to create a polling notification implementation?

A polling notification is a facility that enables an adapter to initiate activity on Integration Server,
based on events that occur in the adapter resource. A polling notification monitors an adapter
resource for changes (such as an insert, update, or delete operation) so that the appropriate flow
or Java services can react to the data, such as sending an invoice or publishing an invoice to
Integration Server.

Ensure that you have:

webMethods Integration Server 9.12 or later installed.

Designer 9.12 or later installed.

Integration Server Administrator access.

Java 1.8 or later installed.

Basic understanding of webMethods Integration Server, Designer, Integration Server
Administrator, Java.

1. Start the editor to create Java files for adapter service implementation.

2. Create directories corresponding to your Java package structure in the webMethods package
you created using Designer. For example: com\mycompany\adapter\myAdapter\notifications.
In the example, the folder created is com\wm\MyAdapter\notifications.

Note:
You must create your Java package and classes in the adapterPackageName\code\source
folder in the webMethods package you created using Designer.

3. Create the com.wm.adk.notification.WmPollingNotification implementation class.

In the example, created a SimpleNotification class.

a. Create a constant for grouping the metadata parameters.

In the example, NOTIFICATION_SETUP_GROUP is the constant.

b. Create a class attribute, a set method, a constant, and a resource domain for eachmetadata
parameter. For example, a constant DIRECTORY_PARM, a corresponding class attribute
_directory, a corresponding setmethod setDirectory, and a resource domain DIRECTORIES_RD
(which needs to lookup) for the parameter table name.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 253

9 Usage Scenarios

Resource Domain
Name Constant

Class Attribute Name
Constant

Class Attribute Set
Method Name

Class Attribute
Name

DIRECTORIES_RDDIRECTORY_PARMsetDirectory_directory

NoneCHECK_ADDED_PARMsetCheckAdded_checkAdded

NoneCHECK_DELETED_PARMsetCheckDeleted_checkDeleted

FIELD_NAMES_RDSIG_FIELD_NAMES_PARMsetFieldNames_fieldNames

FIELD_TYPES_RDSIG_FIELD_TYPES_PARMsetFieldTypes_fieldTypes

NoneSIG_PARMsetSignatureNone

c. In thefillWmTemplateDescriptormethod, callWmTemplateDescriptor.createGroupmethod,
WmTemplateDescriptor.createFieldMapmethod, andWmTemplateDescriptor.createTuple
method.

d. In the fillWmTemplateDescriptormethod, callWmTemplateDescriptor.setHiddenmethod
to hide the fields.

e. In the fillWmTemplateDescriptormethod, callWmTemplateDescriptor.setResourceDomain
method, and WmTemplateDescriptor.setDescriptions method.

f. In the runNotification method, call doNotify method.

g. In the adapterCheckValuemethod, check if a lookup is performed on the _directory value
and if the specified folder exists.

h. In the adapterResourceDomainLookup method, add resource domain values if a lookup
is performed on the _fieldNames and _fieldTypes.

i. In the registerResourceDomainmethod, register resource domain lookup for the _fieldNames
and _fieldTypesmetadata parameters, and add resource domain values for the _directory
metadata parameter.

j. Create a createNotice method to add the information logged.

For example, the SimpleNotification class:
package com.wm.MyAdapter.notifications;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.error.AdapterException;
import com.wm.adk.metadata.ResourceDomainValues;
import com.wm.adk.metadata.WmAdapterAccess;
import com.wm.adk.metadata.WmTemplateDescriptor;
import com.wm.adk.notification.WmPollingNotification;
import java.io.File;

254 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

import java.util.ArrayList;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;

public class SimpleNotification extends WmPollingNotification
{
public static final String NOTIFICATION_SETUP_GROUP = "SimpleNotification";
public static final String DIRECTORY_PARM = "directory";
public static final String CHECK_ADDED_PARM = "checkAdded";
public static final String CHECK_DELETED_PARM = "checkDeleted";
public static final String SIG_FIELD_NAMES_PARM = "fieldNames";
public static final String SIG_FIELD_TYPES_PARM = "fieldTypes";
public static final String SIG_PARM = "signature";
public static final String DIRECTORIES_RD =
"SimpleNotification.directories.rd";
public static final String FIELD_NAMES_RD =
"SimpleNotification.fieldNames.rd";
public static final String FIELD_TYPES_RD =
"SimpleNotification.fieldTypes.rd";
private String _directory;
private boolean _checkAdded;
private boolean _checkDeleted;
private String[] _fieldNames;
private String[] _fieldTypes;
public void setDirectory(String val){_directory = val;}
public void setCheckAdded(boolean val){_checkAdded = val;}
public void setCheckDeleted(boolean val){_checkDeleted = val;}
public void setFieldNames(String[] val){_fieldNames = val;}
public void setFieldTypes(String[] val){_fieldTypes = val;}
public void setSignature(String[] val){}
private ArrayList _fileList = new ArrayList();
public SimpleNotification(){}

public void fillWmTemplateDescriptor(WmTemplateDescriptor descriptor, Locale l)
throws ResourceException
{
descriptor.createGroup(NOTIFICATION_SETUP_GROUP,
new String[]{DIRECTORY_PARM, CHECK_ADDED_PARM, CHECK_DELETED_PARM,
SIG_FIELD_NAMES_PARM, SIG_FIELD_TYPES_PARM, SIG_PARM});

descriptor.createFieldMap(
new String[]{SIG_FIELD_NAMES_PARM, SIG_FIELD_TYPES_PARM, SIG_PARM},
false);

descriptor.setHidden(SIG_FIELD_NAMES_PARM);
descriptor.setHidden(SIG_FIELD_TYPES_PARM);
descriptor.setHidden(SIG_PARM);
descriptor.createTuple(
new String[]{SIG_FIELD_NAMES_PARM, SIG_FIELD_TYPES_PARM});

descriptor.setResourceDomain(DIRECTORY_PARM, DIRECTORIES_RD, null);
descriptor.setResourceDomain(SIG_FIELD_NAMES_PARM, FIELD_NAMES_RD, null);
descriptor.setResourceDomain(SIG_FIELD_TYPES_PARM, FIELD_TYPES_RD, null);
descriptor.setResourceDomain(SIG_PARM, WmTemplateDescriptor.OUTPUT_FIELD_NAMES,
new String[]{SIG_FIELD_NAMES_PARM, SIG_FIELD_TYPES_PARM});

descriptor.setDescriptions(
MyDemoAdapter.getInstance().getAdapterResourceBundleManager(),l);

}

public void runNotification() throws ResourceException
{
File thisDir = new File(_directory);

webMethods Adapter Development Kit Installation and User’s Guide 9.12 255

9 Usage Scenarios

File [] newList = thisDir.listFiles();
ArrayList scratchCopy = new ArrayList(this._fileList);
for (int nlIndex = 0;nlIndex < newList.length;nlIndex++)
{
String name = newList[nlIndex].getName();
if(newList[nlIndex].isFile())
{
if(scratchCopy.contains(name))
{
scratchCopy.remove(name);

}
else
{
this._fileList.add(name);
if(this._checkAdded)
{
this.doNotify(createNotice(name,_directory,true,false));

}
}

}
else
{
scratchCopy.remove(name);

}
}
// now anything left in the scratch copy is missing from the directory
String[] deadList = new String[scratchCopy.size()];
scratchCopy.toArray(deadList);
for(int dlIndex = 0; dlIndex < deadList.length;dlIndex++)
{

this._fileList.remove(deadList[dlIndex]);
if(this._checkDeleted)
{
this.doNotify(createNotice(deadList[dlIndex], _directory,false,true));

}
}
}

public Boolean adapterCheckValue(WmManagedConnection connection,
String resourceDomainName, String[][] values, String testValue)
throws AdapterException
{
boolean result = true;
if(resourceDomainName.equals(DIRECTORIES_RD))
{
File testDir = new File(testValue);
if (!testDir.exists())
{
result = false;

}
else if(!testDir.isDirectory())
{
result = false;

}
}
return new Boolean(result);
}

public ResourceDomainValues[] adapterResourceDomainLookup(
WmManagedConnection connection, String resourceDomainName,

256 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;
if (resourceDomainName.equals(FIELD_NAMES_RD) ||
resourceDomainName.equals(FIELD_TYPES_RD))

{
ResourceDomainValues names =
new ResourceDomainValues(FIELD_NAMES_RD,new String[] {
"FileName", "Path","isAdded","isDeleted"});

ResourceDomainValues types =
new ResourceDomainValues(FIELD_TYPES_RD,new String[] {
"java.lang.String", "java.lang.String",
"java.lang.Boolean","java.lang.Boolean"});

results = new ResourceDomainValues[] {names,types};
}
return results;
}

public void registerResourceDomain(WmManagedConnection connection,
WmAdapterAccess access) throws AdapterException
{
access.addResourceDomainLookup(this.getClass().getName(),
FIELD_NAMES_RD,connection);

access.addResourceDomainLookup(this.getClass().getName(),
FIELD_TYPES_RD,connection);

ResourceDomainValues rd = new ResourceDomainValues(DIRECTORIES_RD,
new String[] {""});

rd.setComplete(false);
rd.setCanValidate(true);
access.addResourceDomain(rd);
access.addCheckValue(DIRECTORIES_RD, connection);
}

private WmRecord createNotice(String file, String dir, boolean isAdded,
boolean isDeleted)
{
WmRecord notice =
WmRecordFactory.getFactory().createWmRecord("notUsed");

notice.put("FileName",file);
notice.put("Path",dir);
notice.put("isAdded",new Boolean(isAdded));
notice.put("isDeleted", new Boolean(isDeleted));
return notice;
}

}

4. Update the WmManagedConnection implementation class to add the polling notification
metadata parameters with resource domain lookup.

In the example, update SimpleConnection class's registerResourceDomainmethod as follows:
package com.wm.MyAdapter.connection;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.AdapterException;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.services.MockDbUpdate;
import com.wm.MyAdapter.notifications.SimpleNotification;
public class SimpleConnection extends WmManagedConnection {

webMethods Adapter Development Kit Installation and User’s Guide 9.12 257

9 Usage Scenarios

..

..
public void registerResourceDomain(WmAdapterAccess access)
throws AdapterException
{
..
..
//Simple Notification Registering Resource Domain
access.addResourceDomainLookup(SimpleNotification.DIRECTORIES_RD, this);
access.addResourceDomainLookup(SimpleNotification.FIELD_NAMES_RD, this);
access.addResourceDomainLookup(SimpleNotification.FIELD_TYPES_RD, this);

}

5. Update the resource bundle implementation class to add the display name, and description
of the polling notification class and the fields in the polling notification class.

In the example, updateMyAdapterResource class's Object[][] _contents as follows:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.notifications.SimpleNotification;
public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{

..

..
static final Object[][] _contents = {
..
..
//Polling Notifications

,{SimpleNotification.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Simple Polling Notification"}

,{SimpleNotification.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Looks for file updates to a specified directory"}

,{SimpleNotification.NOTIFICATION_SETUP_GROUP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,

"Simple Notification Settings"}
,{SimpleNotification.DIRECTORY_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Directory Path"}

,{SimpleNotification.DIRECTORY_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Directory to monitor"}

,{SimpleNotification.CHECK_ADDED_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Notify on Add"}

,{SimpleNotification.CHECK_ADDED_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Check if notification should be generated when file added"}

,{SimpleNotification.CHECK_DELETED_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Notify on Delete"}

,{SimpleNotification.CHECK_DELETED_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Check if notification should be generated when file deleted"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

6. Register the polling notification type in the adapter by updating your fillAdapterTypeInfo
method in your WmAdapter implementation class.

258 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

In the example, the polling notification class SimpleNotification is registered using the
addNotificationType method in the adapter implementation class'sMyAdapter.fillAdapterTypeInfo
method:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.notifications.*;
..
..
public class MyAdapter extends WmAdapter implements MyAdapterConstants {
..
..
public void fillAdapterTypeInfo(AdapterTypeInfo info, Locale locale)
{

..

..
info.addNotificationType(SimpleNotification.class.getName());

}
}

7. Execute the ANT script created in adapter definition to compile, and deploy the adapter in
Integration Server.

Use the files build.xml and build.properties.
ant deploy

8. Restart Integration Server.

9. In Integration Server Administrator, navigate to Adapters > MyAdapter .

Polling Notifications appears in the menu.

10. In Designer, create the Adapter Notification.

a. In Package Navigator, select the Default package.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 259

9 Usage Scenarios

b. Select File > New > Folder.

c. Enter the Folder name. For example: TestMyAdapter.

260 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

d. In Package Navigator, select the Default > TestMyAdapter.

e. Select File > New > Adapter Notification.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 261

9 Usage Scenarios

f. In theCreate a New Adapter Notification screen, enter theElement name and clickNext.
For example: TestMyPollingNotification.

262 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

g. In the Select Adapter Type screen, select an adapter type for which you want to create
the polling notification. For example: MyAdapter.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 263

9 Usage Scenarios

h. In the Select a Template screen, select a polling notification template, and click Finish.
For example: Simple Polling Notification.

264 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

i. In the Select an Adapter Connection Alias screen, select an adapter connection. For
example: TestMyAdapter:Conn1. .

j. In the Publish Document Name screen, select Finish.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 265

9 Usage Scenarios

In Designer, you can see the following two items created:

a. A new adapter notification TestMyPollingNotification is created with two tabs: Simple
Notification Settings, and Adapter Settings.

266 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

webMethods Adapter Development Kit Installation and User’s Guide 9.12 267

9 Usage Scenarios

b. A newDocument Type TestMyPollingNotificationPublishDocument is created with two tabs:
Tree, and Comments.

268 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

webMethods Adapter Development Kit Installation and User’s Guide 9.12 269

9 Usage Scenarios

11. In Designer, select a Directory Path to monitor and the polling event Notify on Add and
Notify on Delete to monitor.

12. Select File > Save.

270 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

13. Create a Flow Service for the Polling Notification Node using Designer.

a. Navigate to the folder Default > TestMyAdapter.

b. Select New > Flow Service.

c. In the Create a New Flow Service screen, add TestMyAdapterFlowService in the Element
name field and click Finish.

d. In the Flow Service > Tree tab, right-click and select Insert > savePipelineToFile.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 271

9 Usage Scenarios

e. In the Flow Service, Tree tab, select the savePipelineToFile method. You can see the
Service In > fileName in the Pipeline tab.

272 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

f. Update Service In > fileName in the Pipeline tab. In this example, the value is
MonitorPollingNotificationPipeline.log.

g. Click OK, and save the flow service.

14. Create a trigger using Designer.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 273

9 Usage Scenarios

a. Navigate to the folder Default > TestMyAdapter.

b. Create the webMethods Messaging Trigger and select Finish. In the example,
TestMyAdapterMsgTrigger is created.

274 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

c. In the webMethods Messaging Trigger, Trigger Settings tab, Condition Detail section,
perform the following:

In the trigger editor, in the Conditions section, accept the default Condition1.

In the Condition detail section, in theServicefield, select or type the flow service name
TestMyAdapterFlowService.

Click to insert the Document Type TestMyPollingNotificationPublishDocument.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 275

9 Usage Scenarios

d. Save the messaging trigger.

15. Schedule and enable the polling notification.

a. In Integration ServerAdministrator, selectAdapters > MyAdapter > Polling Notifications,
the list of polling notifications appear.

b. Select Edit Schedule for TestMyPollingNotification.

c. Modify the schedule parameters for the TestMyPollingNotification.

276 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

d. Select Save Settings.

e. In Adapters > MyAdapter > Polling Notifications screen, select State as Enabled.

16. Add a file to the folder that is monitored. In this example, the folder is C:\Monitor and file is
added Testing-1.txt.

The fileMonitorPollingNotificationPipeline.log is created in Integration Server_directory /
instances/<instance_name>/pipeline. This file contains the following entry for the file added in
C:\Monitor:
<?xml version="1.0" encoding="UTF-8"?>
<IDataXMLCoder version="1.0">
<record javaclass="com.wm.data.ISMemDataImpl">

<value name="fileName">MonitorPollingNotificationPipeline.log</value>
<record name="TestMyAdapter:TestMyAdapterNotificationPublishDocument"

javaclass="com.wm.data.ISMemDataImpl">
<value name="FileName">Testing-1.txt</value>
<value name="Path">C:\Monitor</value>
<jboolean name="isAdded">true</jboolean>
<jboolean name="isDeleted">false</jboolean>
<record name="_env" javaclass="com.wm.data.ISMemDataImpl">

<value name="locale"></value>
<value name="activation">wm6bfd23a95-1c84-4e3e-b687-5858453777bc</value>
<value name="businessContext">wm6:bfd23a95-1c84-4e3e-b687-5858453777bc\snull\

snull:wm6bfd23a95-1c84-4e3e-b687-5858453777bc:null:IS_61:null</value>
<value name="uuid">wm:c3fb4d30-2f23-11ec-8723-000000000002</value>
<value name="trackId">wm:c3fb4d30-2f23-11ec-8723-000000000002</value>
<value name="pubId">islocalpubid</value>

webMethods Adapter Development Kit Installation and User’s Guide 9.12 277

9 Usage Scenarios

<Date name="enqueueTime" type="java.util.Date">Sun Oct 17 13:55:20 IST
2021</Date>

<Date name="recvTime" type="java.util.Date">Sun Oct 17 13:55:20 IST 2021</Date>
<number name="age" type="java.lang.Integer">0</number>

</record>
</record>

</record>
</IDataXMLCoder>

How to create an adapter listener implementation?

An adapter connection connects to an adapter resource. This chapter describes how to create an
adapter connection implementation.

Pre-requisites:

webMethods Integration Server 9.12 or later installed.

Designer 9.12 or later installed.

Integration Server Administrator access.

Java 1.8 or later installed.

Basic understanding of webMethods Integration Server, Designer, Integration Server
Administrator, Java.

1. Start the editor to create Java files for adapter listener implementation.

2. Create directories corresponding to your Java package structure in the webMethods package
you created using Designer. For example: com\mycompany\adapter\myAdapter\listeners. In
the example, the folder created is com\wm\MyAdapter\listeners.

Note:
You must create your Java package and classes in the adapterPackageName\code\source
folder in the webMethods package you created using Designer.

3. Create the com.wm.adk.notification.WmConnectedListener implementation class.

In the example, created a SimpleListener class.

a. Create a class attribute, a set method, a constant, and a resource domain for eachmetadata
parameter. For example, a constant FILE_NAME_PARM, a corresponding class attribute
_fileName, a corresponding set method setFileName.

Resource Domain
Name Constant

Class Attribute Name
Constant

Class Attribute Set
Method Name

Class Attribute
Name

NoneFILE_NAME_PARMsetFileName_fileName

278 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

b. In the fillWmDescriptor method, call WmDescriptor.setRequired method, and
WmDescriptor.setDescriptions method.

c. In the listenerStartupmethod, call retrieveConnectionmethod to retrieve connection object
and use it to read the file.

d. Implement the waitForData method.

e. In the listenerShutdown method, close the FileReader object.

f. Implement the processNotificationResults method.

For example: the SimpleListener class:
package com.wm.MyAdapter.listeners;
import com.wm.adk.error.AdapterException;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.notification.WmConnectedListener;
import com.wm.adk.notification.NotificationResults;
import java.io.FileReader;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.connections.SimpleConnection;

public class SimpleListener extends WmConnectedListener
{
public static final String FILE_NAME_PARM = "fileName";
private String _fileName = null;
public void setFileName(String val){_fileName = val;}
private FileReader _reader = null;
private StringBuffer workingBuffer = new StringBuffer();
private String _lastDataObject = null;
public void fillWmDescriptor(WmDescriptor descriptor, Locale locale)
throws ResourceException
{
descriptor.setRequired(FILE_NAME_PARM);
descriptor.setDescriptions(
MyAdapter.getInstance().getAdapterResourceBundleManager(), locale);

}

public void listenerStartup() throws ResourceException
{
try
{
//_reader = ((SimpleConnection)retrieveConnection()).getReader();
_reader = ((SimpleConnection)retrieveConnection()).getReader(_fileName);
while(_reader.ready())
{
_reader.read(); // move to the end of the stream

}
}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(100,t);

}

webMethods Adapter Development Kit Installation and User’s Guide 9.12 279

9 Usage Scenarios

}
public Object waitForData() throws ResourceException
{
try
{
if(_reader.ready())
{
do
{
int i = _reader.read();
if (i != -1)
{
char c = (char)i;
workingBuffer.append(c);
if(c == '\n')
{
_lastDataObject = new String(workingBuffer);
workingBuffer = new StringBuffer();
break;
}

}
else
{
break;

}
} while (_reader.ready());

}
}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(100,t);

}
return _lastDataObject;
}

public void listenerShutdown()
{
try
{
_reader.close();

}
catch(Throwable t){}
}
public void processNotificationResults(NotificationResults results)
throws ResourceException
{
if(results != null)
{
if(results.hadError())
{
MyAdapter.getLogger().logError(9999,
"Error processing: " + this._lastDataObject +
" errorInfo = " + (results.getErrorInfo() == null ? "" :

results.getErrorInfo().toString()));
}

}
else
{
MyAdapter.getLogger().logError(9999,
"No notification available to process:" +

280 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

this._lastDataObject);
}
}

}

4. Add a getReader method in the WmManagedConnection implementation class.

package com.wm.MyAdapter.connections;
..
..
import java.io.FileReader;
import java.io.FileNotFoundException;
..
..
public class SimpleConnection extends WmManagedConnection {
..
..
public FileReader getReader(String fileName) throws AdapterException
{
FileReader _reader = null;

try {
_reader = new FileReader(fileName);

}
catch(Exception e) {
throw MyAdapter.getInstance().createAdapterException(100,e);

}
return _reader;
}

}

5. Update the resource bundle implementation class to add the display name and description of
the listener class and the fields in the listener class.

In the example, updateMyAdapterResource class's Object[][] _contents as follows:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.listeners.SimpleListener;
..
..
public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{

..

..
static final Object[][] _contents = {
..
..

//Listener
,{SimpleListener.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Simple Listener"}

,{SimpleListener.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Use to monitor log files"}

,{SimpleListener.FILE_NAME_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Log File Name"}

}
protected Object[][] getContents() {

webMethods Adapter Development Kit Installation and User’s Guide 9.12 281

9 Usage Scenarios

// TODO Auto-generated method stub
return _contents;

}
}

6. Register the listener type to the adapter by updating your fillAdapterTypeInfomethod in your
WmAdapter implementation class.

package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.listeners.SimpleListener;
..
..
public class MyAdapter extends WmAdapter implements MyAdapterConstants {
..
..
public void fillAdapterTypeInfo(AdapterTypeInfo info, Locale locale)
{

..

..
info.addListenerType(SimpleListener.class.getName());

}
}

7. Execute the ANT script created in adapter definition to compile, and deploy the adapter in
Integration Server.

Use the files build.xml and build.properties.
ant deploy

8. Restart Integration Server.

9. Start Integration Server Administrator.

10. In Integration Server Administrator, select Adapters > MyAdapter.

The adapters' connection configured are listed.

11. In the Adapters > MyAdapter > Connections screen, select Configure New Connections.

The adapters' connection types are listed.

282 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

12. In the Adapters > MyAdapter > Connection Types screen, select the Connection Type
Simple Connection.

The adapters' connection properties to configure are listed:

13. In the Adapters > MyAdapter > Configure Connection Type screen, add the details and
Save Connection.

The Adapters > MyAdapter > Connections screen lists the connection you added.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 283

9 Usage Scenarios

14. In the Adapters > MyAdapter > Connections screen, click No in the Enabled column.

The Enabled column now shows Yes.

15. In Integration Server Administrator, select Adapters > MyAdapter.

The adapters' menu lists Listeners.

16. In the Adapters > MyAdapter > Listeners screen, select Configure new listener.

The adapters' listener types are listed.

284 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

17. In the Adapters > MyAdapter > Configure Listener Type screen, select the Listener Type
Simple Listener.

The adapters' Simple Listener properties to configure are listed:

18. In the Adapters > My Adapter > Configure Listener Type screen, add the details (File path
of the log on which you want to add the listener. For example:
C:\softwareag\107\IntegrationServer\instances\default\logs\server.log) and Save
Listener.

The Adapters > My Adapter > Listener screen lists the listener you added.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 285

9 Usage Scenarios

19. In the Adapters > MyAdapter > Listener screen, select Enabled in the Status column.

The Listener column now shows Enabled.

20. Create a class by extending com.wm.adk.notification.WmAsyncListenerNotification base class.

In the example, created a SessionLogListenerNotification class.

a. Create a class attribute, a set method, a constant, and a resource domain for eachmetadata
parameter. For example, a constant FIELD_NAMES_PARM, a corresponding class attribute
_fileName, a corresponding set method setFileName.

Resource Domain
Name Constant

Class Attribute Name
Constant

Class Attribute Set
Method Name

Class Attribute
Name

FIELD_NAMES_RDFIELD_NAMES_PARMsetFieldNames_fieldNames

FIELD_TYPES_RDFIELD_TYPES_PARMsetFieldTypes_fieldTypes

NoneUSES_PARMsetUses_uses

NoneSIG_PARMsetSignatureNone

286 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

b. In thefillWmTemplateDescriptormethod, callWmTemplateDescriptor.createGroupmethod,
WmTemplateDescriptor.createFieldMapmethod, andWmTemplateDescriptor.createTuple
method.

c. In the fillWmTemplateDescriptormethod, callWmTemplateDescriptor.setResourceDomain
method, and WmTemplateDescriptor.setDescriptions method.

Note:
Use of WmTemplateDescriptor.setResourceDomain for SIG_PARM:

descriptor.setResourceDomain(SIG_PARM,
WmTemplateDescriptor.OUTPUT_FIELD_NAMES,new String[]{
FIELD_NAMES_PARM,FIELD_TYPES_PARM}, USES_PARM);

d. Implement the adapterCheckValue method to return true.

e. Implement the adapterResourceDomainLookup method.

f. In the registerResourceDomain method, call addResourceDomainLookup method for
FIELD_NAMES_RD, and FIELD_TYPES_RD.

g. Implement the supports method to parse the data and return true.

h. Implement the runNotification method.

For example, the SessionLogListenerNotification class:
package com.wm.MyAdapter.listeners;
import com.wm.adk.error.AdapterException;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.notification.WmAsyncListenerNotification;
import com.wm.adk.notification.NotificationResults;
import com.wm.adk.notification.AsyncNotificationResults;
import com.wm.adk.notification.NotificationEvent;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import javax.resource.ResourceException;
import java.util.Locale;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.StringTokenizer;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.MyAdapterConstants;
import com.wm.MyAdapter.connections.SimpleConnection;

public class SessionLogListenerNotification extends WmAsyncListenerNotification
implements MyAdapterConstants

{
private String[] _fieldNames = null;
private String[] _fieldTypes = null;
private boolean[] _uses = null;
public void setFieldNames(String[] val){_fieldNames = val;}

webMethods Adapter Development Kit Installation and User’s Guide 9.12 287

9 Usage Scenarios

public void setFieldTypes(String[] val){_fieldTypes = val;}
public void setUses (boolean[] val){_uses = val;}
public void setSignature(String[] val){}
public static final String NOTIFICATION_SETUP_GROUP =
"SessionLogListenerNotification.setup";
public static final String FIELD_NAMES_PARM = "fieldNames";
public static final String FIELD_TYPES_PARM = "fieldTypes";
public static final String USES_PARM = "uses";
public static final String SIG_PARM = "signature";
public static final String FIELD_NAMES_RD =
"SessionLogListenerNotification.fieldNames.rd";
public static final String FIELD_TYPES_RD =
"SessionLogListenerNotification.fieldTypes.rd";
public static final String[] _sigFieldNames = {
"timeStamp",
"component",
"rootContext",
"parentContext",
"currentContext",
"server",
"eventCode",
"user",
"sessionName",
"RPCs",
"age"};
private Object[] _parsedValues = new Object[_sigFieldNames.length];

public void fillWmTemplateDescriptor(WmTemplateDescriptor descriptor,Locale l)
throws ResourceException
{
String[] parms = new String[] {FIELD_NAMES_PARM,
FIELD_TYPES_PARM,
USES_PARM,
SIG_PARM};

descriptor.createGroup(NOTIFICATION_SETUP_GROUP, parms);
descriptor.createFieldMap(parms, false);
descriptor.createTuple(new String[]{FIELD_NAMES_PARM, FIELD_TYPES_PARM});
descriptor.setResourceDomain(FIELD_NAMES_PARM, FIELD_NAMES_RD, null);
descriptor.setResourceDomain(FIELD_TYPES_PARM, FIELD_TYPES_RD, null);
descriptor.setResourceDomain(SIG_PARM,
WmTemplateDescriptor.OUTPUT_FIELD_NAMES,new String[]{
FIELD_NAMES_PARM,FIELD_TYPES_PARM}, USES_PARM);

descriptor.setDescriptions(MyAdapter.getInstance().
getAdapterResourceBundleManager(), l);

}
public Boolean adapterCheckValue(WmManagedConnection connection,
String resourceDomainName, String[][] values,
String testValue) throws AdapterException
{
return true;
}
public ResourceDomainValues[] adapterResourceDomainLookup(
WmManagedConnection connection, String resourceDomainName,
String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;
if (resourceDomainName.equals(FIELD_NAMES_RD)
|| resourceDomainName.equals(FIELD_TYPES_RD))

{
ResourceDomainValues names = new ResourceDomainValues(

288 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

FIELD_NAMES_RD, _sigFieldNames);
ResourceDomainValues types = new ResourceDomainValues(
FIELD_TYPES_RD,new String[] {
Date.class.getName(), //timestamp
String.class.getName(), // component
String.class.getName(), // rootContext
String.class.getName(), // parentContext
String.class.getName(), // currentContext
String.class.getName(), // server
Integer.class.getName(), // eventCode
String.class.getName(), // user
String.class.getName(), // sessionName
Integer.class.getName(), // RPCs
Long.class.getName() // age
});

results = new ResourceDomainValues[] {names,types};
}
return results;
}
public void registerResourceDomain(WmManagedConnection connection,
WmAdapterAccess access) throws AdapterException
{
access.addResourceDomainLookup(this.getClass().getName(),
FIELD_NAMES_RD, connection);

access.addResourceDomainLookup(this.getClass().getName(),
FIELD_TYPES_RD, connection);

}
public boolean supports(Object data) throws ResourceException
{
boolean result = false;
try
{
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd H:mm:ss zzz");
String sData = (String)data;
this._parsedValues[0] = sdf.parse(sData.substring(0,48));
StringTokenizer st = new StringTokenizer(sData.substring(49)," ",false);
this._parsedValues[1] = st.nextToken();
this._parsedValues[2] = st.nextToken();
this._parsedValues[3] = st.nextToken();
this._parsedValues[4] = st.nextToken();
/*
st.nextToken(); // skip the session ID
this._parsedValues[5] = st.nextToken();
this._parsedValues[6] = new Integer(st.nextToken());
this._parsedValues[7] = st.nextToken();
this._parsedValues[8] = st.nextToken();
this._parsedValues[9] = new Integer(st.nextToken());
this._parsedValues[10] = new Long(st.nextToken());
*/
result = true;

}
catch(Throwable t){}
return result;
}

public NotificationResults runNotification(NotificationEvent event)
throws ResourceException
{
NotificationResults result = null;
WmRecord notice = WmRecordFactory.getFactory().createWmRecord("notUsed");

webMethods Adapter Development Kit Installation and User’s Guide 9.12 289

9 Usage Scenarios

for(int i = 0; i< _sigFieldNames.length;i++)
{
if (_uses[i])
{
notice.put(_sigFieldNames[i],_parsedValues[i]);

}
}
this.doNotify(notice);
result = new AsyncNotificationResults(this.nodeName(),true,null);
return result;
}

}

21. Update the WmManagedConnection implementation class, SimpleConnection.

a. Update the WmManagedConnection.registerResourceDomain method to register the
listener notification metadata parameters for lookup.

In the example, update SimpleConnection.registerResourceDomainmethod as follows:
package com.wm.MyAdapter.connections;
..
..
import com.wm.MyAdapter.listeners.SessionLogListenerNotification;
..
..
public class SimpleConnection extends WmManagedConnection {
..
..
public void registerResourceDomain(WmAdapterAccess access)
throws AdapterException
{
..
..
//SessionLog Listener Notification Registering Resource Domain
access.addResourceDomainLookup(SessionLogListenerNotification.FIELD_NAMES_RD,

this);
access.addResourceDomainLookup(SessionLogListenerNotification.FIELD_TYPES_RD,

this);
}

}

b. Update the adapterResourceDomainLookup method to add the resource domain lookup
of the listener notification metadata parameters.

In the example, update SimpleConnection.adapterResourceDomainLookupmethod as follows:
package com.wm.MyAdapter.connections;
..
..
import java.util.Date;
..
import com.wm.MyAdapter.listeners.SessionLogListenerNotification;
..
..
public class SimpleConnection extends WmManagedConnection {
..

290 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

..
public ResourceDomainValues[] adapterResourceDomainLookup(String serviceName,
String resourceDomainName, String[][] values) throws AdapterException
{

..

..
//Listener notification
else if

(resourceDomainName.equals(SessionLogListenerNotification.FIELD_NAMES_RD)
|| resourceDomainName.equals(SessionLogListenerNotification.FIELD_TYPES_RD))
{
ResourceDomainValues names = new ResourceDomainValues(
SessionLogListenerNotification.FIELD_NAMES_RD,

SessionLogListenerNotification._sigFieldNames);
ResourceDomainValues types = new ResourceDomainValues(
SessionLogListenerNotification.FIELD_TYPES_RD,new String[] {
Date.class.getName(), //timestamp
String.class.getName(), // component
String.class.getName(), // rootContext
String.class.getName(), // parentContext
String.class.getName(), // currentContext
String.class.getName(), // server
Integer.class.getName(), // eventCode
String.class.getName(), // user
String.class.getName(), // sessionName
Integer.class.getName(), // RPCs
Long.class.getName() // age
});
results = new ResourceDomainValues[] {names,types};

}
}

22. Update the resource bundle implementation class to add the display name and description of
the listener notification class and the fields in the listener notification class.

In the example, updateMyAdapterResource class's Object[][] _contents as follows:
package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.listeners.SessionLogListenerNotification;
..
..
public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{

..

..
static final Object[][] _contents = {
..
..

//SessionLog Listener Notification
,{SessionLogListenerNotification.class.getName() +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"SessionLog Listener Notification"}

,{SessionLogListenerNotification.class.getName() +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"Use SessionLog Listener Notification to monitor log files"}
,{SessionLogListenerNotification.FIELD_NAMES_PARM +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,

webMethods Adapter Development Kit Installation and User’s Guide 9.12 291

9 Usage Scenarios

"Field Name"}
,{SessionLogListenerNotification.FIELD_NAMES_PARM +

ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Field Name To Check"}

,{SessionLogListenerNotification.FIELD_TYPES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,

"Field Types"}
,{SessionLogListenerNotification.FIELD_TYPES_PARM +

ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Field Types To Check"}

}
protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;

}
}

23. Register the listener notification type in the adapter by updating your fillAdapterTypeInfo
method in your WmAdapter implementation class.

package com.wm.MyAdapter;
..
..
import com.wm.MyAdapter.listeners.SessionLogListenerNotification;
..
..
public class MyAdapter extends WmAdapter implements MyAdapterConstants {
..
..
public void fillAdapterTypeInfo(AdapterTypeInfo info, Locale locale)
{

..

..
info.addNotificationType(SessionLogListenerNotification.class.getName());

}
}

24. In Designer, create the Adapter Notification.

a. In Package Navigator, select the Default package.

b. Select File > New > Folder.

292 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

c. Enter the Folder name. For example: TestMyAdapterListener.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 293

9 Usage Scenarios

d. In the Package Navigator, select the Default > TestMyAdapter.

e. Select File > New > Adapter Notification.

294 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

f. Enter theElement name and clickNext. For example: TestMyAdapterListenerNotification.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 295

9 Usage Scenarios

g. In the Select Adapter Type screen, select an adapter type for which you want to create
the service. For example: MyAdapter.

h. In the Select a Template screen, select a listener notification template and click Finish.
For example: SessionLog Listener Notification.

296 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

i. In the Select an Adapter Notification Listener screen, select an adapter listener. For
example: TestMyAdapter:List1.

j. In the Publish Document Name screen, select Finish.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 297

9 Usage Scenarios

In Designer, you can see the following two items created:

a. A new adapter notification TestMyAdapterListenerNotification is created with two tabs:
SessionLogListenerNotification.setup, and Adapter Settings.

298 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

b. A new Document Type TestMyAdapterListenerNotificationPublishDocument is created with
two tabs: Tree, and Comments.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 299

9 Usage Scenarios

25. Create a Flow Service for the Listener Notification Node using Designer.

a. Navigate to the folder Default > TestMyAdapter.

b. Create the Flow Service.

300 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

c. In the Create a New Flow Service screen, add TestMyAdapterFlowService in the Element
name field and click Finish.

d. In the Flow Service > Tree tab, right-click and select Insert > savePipelineToFile.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 301

9 Usage Scenarios

e. In the Flow Service > Tree tab, select the savePipelineToFile method. You can see the
Service In > fileName in the Pipeline tab.

302 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

f. Update Service In > fileName in the Pipeline tab. In this example, the value is
MonitorListenerNotificationPipeline.log.

g. Click OK, and save the flow service.

26. Create a trigger using Designer.

a. Navigate to the folder Default > TestMyAdapter.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 303

9 Usage Scenarios

b. Create the webMethods Messaging Trigger and select Finish. In the example,
TestMyAdapterListenerMsgTrigger is created.

c. In the webMethods Messaging Trigger, Trigger Settings tab, Condition Detail section,
perform the following:

In the trigger editor, in the Conditions section, accept the default Condition1.

304 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

In theCondition detail section, in theServicefield, select or type the flow service name
TestMyAdapterFlowService.

Click to insert theDocument TypeTestMyAdapterListenerNotificationPublishDocument.

d. Save the messaging trigger.

27. Enable the listener notification.

a. Start Integration Server Administrator

b. InAdapters > MyAdapter > Listener Notifications screen, clickNo in theEnabled column
for the listener notification.

The fileMonitorListenerNotificationPipeline.log is created in Integration Server_directory /
instances/<instance_name>/pipeline/ folder. This file contains one entry each time the file added
in the listener is updated:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 305

9 Usage Scenarios

<?xml version="1.0" encoding="UTF-8"?>
<IDataXMLCoder version="1.0">
<record javaclass="com.wm.data.ISMemDataImpl">

<value name="fileName">MonitorListenerNotificationPipeline.log</value>
<record

name="TestMyAdapterListener:TestMyAdapterListenerNotificationPublishDocument"
javaclass="com.wm.data.ISMemDataImpl">

<Date name="timeStamp" type="java.util.Date">Thu Oct 21 12:34:45 IST 2021</Date>
<value name="component">)</value>
<value name="rootContext">Unable</value>
<record name="_env" javaclass="com.wm.data.ISMemDataImpl">
<value name="locale"></value>
<value name="activation">wm624455fb0-b66d-4344-b92f-cee92639b14c</value>
<value

name="businessContext">wm6:2281c61b-a0dd-4dc2-bb31-6eaea2052a1c\snull\snull:
wm624455fb0-b66d-4344-b92f-cee92639b14c:null:IS_61:null</value>

<value name="uuid">wm:14c48f70-323e-11ec-b7fd-000000000152</value>
<value name="trackId">wm:14c48f70-323e-11ec-b7fd-000000000152</value>
<value name="pubId">islocalpubid</value>
<Date name="enqueueTime" type="java.util.Date">Thu Oct 21 12:41:15 IST

2021</Date>
<Date name="recvTime" type="java.util.Date">Thu Oct 21 12:41:15 IST 2021</Date>
<number name="age" type="java.lang.Integer">0</number>

</record>
</record>

</record>
</IDataXMLCoder>

306 webMethods Adapter Development Kit Installation and User’s Guide 9.12

9 Usage Scenarios

A Alternative Approaches to Metadata

■ Overview .. 308

■ Implementing Metadata Parameters Using External Classes 308

■ An Alternative Approach to Organizing Resource Domains ... 308

■ Using Resource Bundles with Resource Domain Values ... 325

webMethods Adapter Development Kit Installation and User’s Guide 9.12 307

Overview

This chapter describes other capabilities supported by the ADK that are useful, but not required,
for implementing an adapter.

Implementing Metadata Parameters Using External Classes

A basic model specifying all adapter metadata parameters is described in “Metadata Model for
Connection” on page 63. Integration Server derives a parameter's name and data type from the
name of the accessor methods defined in the class in which the parameter is defined.

If a class contains a conforming accessor method that uses an object data type not existing in the
listed data types, the adapter interprets that object as being an external container for the metadata
parameters. For more information about the data types supported, see paramType parameter in
“Overview” on page 344.

In this example, the WmAdapterService class contains an accessor method:
SetParameters(MyServiceParameters value);

Integration Server considersMyServiceParameters, an external class that contains accessor
methods.

Integration Server introspects theMyServiceParameters class, and derives metadata parameter
names from it.

Note:
MyServiceParametersmust support a default (no argument) constructor.

This feature changes the name of the parameter string used in the descriptor methods as well
as the resource bundle by prefixing it with the name derived from themethod that implements
the indirection.

IfMyServiceParameters class includes a setFoo(String value) method, then

The string that referenced this parameter is parameters.foo.

The parameters value is derived from setParameters method.

The foo value is derived from setFoo method.

An Alternative Approach to Organizing Resource Domains

The model described in this section provides an alternative way of organizing resource domain
information, such that the resource domain implementation is contained within each adapter
service or notification class that uses the resource domain, rather than within your
WmManagedConnection implementation. To implement this approach youmust perform the following:

Create an interface defining themethods for resource domain handling. The followingmethods
are defined:

308 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

adapterResourceDomainLookup

adapterCheckValue

registerResourceDomain

Update the connection factory to use a string array containing the class name for each service
or notification type added to the adapter.

Remove the methods listed in the resource domain handler interface from connection
implementation class.

Implement the resource domain handler interface in the service and notification classes which
enables the classes to manage their own resource domain functionality.

Note:
The ResourceDomainHandler interface is not delivered as part of the ADK.

1. Create an interface for handling the resource domain.

In this example, a ResourceDomainHandler is created in the com.wm.MyAdapter package.
package com.wm.MyAdapter;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.*;
public interface ResourceDomainHandler
{
/**
* Implements resource domain lookups using the provided connection. Refer to
* the method of the same name in com.wm.adk.connection.WmManagedConnection.
**
@param connection
* @param resourceDomainName
* @param values
* @return ResourceDomainValues[]
* @throws AdapterException
*/
public ResourceDomainValues[] adapterResourceDomainLookup(
WmManagedConnection connection, String resourceDomainName,
String[][] values) throws AdapterException;
/**
* Implements Adapter check values using the provided connection. Refer to
* the method of the same name in com.wm.adk.connection.WmManagedConnection.
**
@param connection
* @param resourceDomainName
* @param values
* @param testValue
* @return Boolean
* @throws AdapterException
*/
public Boolean adapterCheckValue(WmManagedConnection connection,
String resourceDomainName,
String[][] values, String testValue) throws AdapterException;
/**
* Implements resource domain registrations specific to a particular service

webMethods Adapter Development Kit Installation and User’s Guide 9.12 309

A Alternative Approaches to Metadata

* or notification. Refer to the method of the same name in
* com.wm.adk.connection.WmManagedConnectionFactory.
**
@param connection
* @param access
* @throws AdapterException
*/
public void registerResourceDomain(WmManagedConnection connection,
WmAdapterAccess access) throws AdapterException;

}

2. Update the connection factory implementation class to create a list of services and notifications
that implement the interface, register them, and pass to the connections that the connection
factory creates.

In this example a class SimpleConnectionFactory contains the following:

Create a supportedServiceTemplates string array containing the class name of the adapter
service templates.

Create a supportedNotificationTemplates string array containing the class name of the adapter
notification templates.

Update fillResourceAdapterMetadataInfomethod using supportedServiceTemplates to register the
adapter service templates, and supportedNotificationTemplates to register the adapter
notification templates.

Update createManagedConnectionObject method to pass the list of services and notifications
implementing the resource domain handler interface to the connection class.

package com.wm.MyAdapter.connections;
import com.wm.adk.connection.WmManagedConnectionFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.info.ResourceAdapterMetadataInfo;
import com.wm.adk.metadata.WmDescriptor;
import com.wm.adk.error.AdapterException;
import java.util.Locale;
import java.util.ArrayList;
import java.util.Arrays;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.MyAdapterConstants;
import com.wm.MyAdapter.services.MockDbUpdate;
import com.wm.MyAdapter.services.UIMockDbUpdate;
public class SimpleConnectionFactory extends WmManagedConnectionFactory implements
MyAdapterConstants {
private String hostName;
private int port;

private static final String[] supportedServiceTemplates = {
MockDbUpdate.class.getName(),
UIMockDbUpdate.class.getName()
};

/*
private static final String[] supportedNotificationTemplates = {
SimpleNotification.class.getName(),
SessionLogListenerNotification.class.getName()

310 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

};
*/

public void setHostName(String hostNameValue){hostName = hostNameValue;}
public void setPort(int portValue){port = portValue;}
public SimpleConnectionFactory(){super();}
public WmManagedConnection createManagedConnectionObject(
javax.security.auth.Subject subject,
javax.resource.spi.ConnectionRequestInfo cxRequestInfo)
{
ArrayList templateList = new ArrayList(Arrays.asList(supportedServiceTemplates));
//Use the following to add notifications or other services
//templateList.addAll(Arrays.asList(supportedNotificationTemplates));
String[] listArg = new String[templateList.size()];
templateList.toArray(listArg);
return new SimpleConnection(hostName,port,listArg);
}
public void fillWmDescriptor(WmDescriptor d,Locale l) throws
AdapterException
{
d.createGroup(GROUP_SIMPLE_CONNECTION,
new String[]{SIMPLE_SERVER_HOST_NAME, SIMPLE_SERVER_PORT_NUMBER});

d.setValidValues(SIMPLE_SERVER_PORT_NUMBER, new String[] {"5555","1555","4000"});
d.setDescriptions(
MyAdapter.getInstance().getAdapterResourceBundleManager(),l);

}
public void fillResourceAdapterMetadataInfo(ResourceAdapterMetadataInfo info,

Locale locale) {

for (int i = 0; i < supportedServiceTemplates.length;i++)
{
info.addServiceTemplate(supportedServiceTemplates[i]);

}
//Use the following to add notifications or other services
/*
for (int i = 0; i < supportedNotificationTemplates.length;i++)
{
info.addNotificationTemplate(supportedNotificationTemplates[i]);

}
*/
}

}

3. Update the connection implementation class to use the service name and forward the requests
to the appropriate service or notification class.

In this example, the SimpleConnection class contains the following:

Create the registerResourceDomainmethod and forward the requests to the appropriate service
or notification class.

Create the adapterResourceDomainLookup method, use the service name to identify the class
name, and forward the requests to the appropriate service or notification class.

Create the adapterCheckValue method, use the service name to identify the class name, and
forward the requests to the appropriate service or notification class.

package com.wm.MyAdapter.connections;

webMethods Adapter Development Kit Installation and User’s Guide 9.12 311

A Alternative Approaches to Metadata

import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.AdapterException;
import com.wm.MyAdapter.MyAdapter;
import com.wm.MyAdapter.services.MockDbUpdate;
import com.wm.MyAdapter.ResourceDomainHandler;
public class SimpleConnection extends WmManagedConnection {
String hostName;
int port;
private String[] resourceHandlerList;
public SimpleConnection(String hostNameValue, int portValue, String[]

resourceHandlerListValue)
{
super();
hostName = hostNameValue;
port = portValue;
resourceHandlerList = resourceHandlerListValue;
MyAdapter.getInstance().getLogger().logDebug(9999,
"Simple Connection created with hostName = "
+ hostName + "and port = " + Integer.toString(port));

}
public void destroyConnection()
{
MyAdapter.getInstance().getLogger().logDebug(9999,"Simple Connection Destroyed");
}
public void registerResourceDomain(WmAdapterAccess access)
throws AdapterException
{
try {
Class serviceClass;
ResourceDomainHandler serviceObject;
for (int i = 0;i < resourceHandlerList.length;i++) {
serviceClass = Class.forName(resourceHandlerList[i]);
serviceObject = (ResourceDomainHandler)serviceClass.newInstance();
serviceObject.registerResourceDomain(this,access);

}
}
catch (Throwable t) {
throw MyAdapter.getInstance().createAdapterException(9999,t);

}
}
public ResourceDomainValues[] adapterResourceDomainLookup(String serviceName,
String resourceDomainName, String[][] values) throws AdapterException
{
Class serviceClass;
ResourceDomainHandler serviceObject;
try {
serviceClass = Class.forName(serviceName);
serviceObject = (ResourceDomainHandler)serviceClass.newInstance();

}
catch (Throwable t) {
throw MyAdapter.getInstance().createAdapterException(9999,t);

}
return serviceObject.adapterResourceDomainLookup(this,resourceDomainName,values);
}
public Boolean adapterCheckValue(String serviceName,
String resourceDomainName,
String[][] values,
String testValue) throws AdapterException
{

312 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

Class serviceClass;
ResourceDomainHandler serviceObject;
try {
serviceClass = Class.forName(serviceName);
serviceObject = (ResourceDomainHandler)serviceClass.newInstance();

}
catch (Throwable t) {
throw MyAdapter.getInstance().createAdapterException(9999,t);

}
return serviceObject.adapterCheckValue(this,resourceDomainName,values,testValue);
}

}

4. Create two adapter service templates classes.

In this example, the two adapter service templates created are:

UIMockDbUpdate class:
package com.wm.MyAdapter.services;
import com.wm.adk.cci.interaction.WmAdapterService;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.WmTemplateDescriptor;
import com.wm.data.IData;
import com.wm.data.IDataCursor;
import com.wm.data.IDataFactory;
import com.wm.data.IDataUtil;
import java.util.Hashtable;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;
//Alternate
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.AdapterException;
import com.wm.MyAdapter.ResourceDomainHandler;
//
public class UIMockDbUpdate extends WmAdapterService implements
ResourceDomainHandler{
//Adapter Services variables
private String[] UI_mockTableNames ={

"UI_CUSTOMERS","UI_ORDERS","UI_LINE_ITEMS"};
private String[][] UI_mockColumnNames ={
{"name","id", "ssn"},
{"id","date","customer_id"},
{"order_id","item_number","quantity","description"}
};
private String [][] UI_mockDataTypes = {
{"java.lang.String","java.lang.Integer", "java.lang.String"},
{"java.lang.Integer", "java.util.Date", "java.lang.Integer"},
{"java.lang.Integer", "java.lang.Integer", "java.lang.Integer",
"java.lang.String"}
};
//MockDB Group
public static final String UI_UPD_SETTINGS_GRP = "UI Mock Settings";
public static final String UI_TABLE_NAME_PARM = "baseTableName";
public static final String UI_COLUMN_NAMES_PARM = "baseColumnNames";

webMethods Adapter Development Kit Installation and User’s Guide 9.12 313

A Alternative Approaches to Metadata

public static final String UI_COLUMN_TYPES_PARM = "baseColumnTypes";
public static final String UI_REPEATING_PARM = "baseRepeating";
public static final String UI_OVERRIDE_TYPES_PARM = "baseOverrideTypes";
private String baseTableName;
private String[] baseColumnNames;
private String[] baseColumnTypes;
private boolean baseRepeating;
private String[] baseOverrideTypes;
public void setBaseTableName(String val){ baseTableName = val;}
public void setBaseColumnNames(String[] val){ baseColumnNames = val;}
public void setBaseColumnTypes(String[] val){ baseColumnTypes = val;}
public void setBaseRepeating(boolean val){ baseRepeating = val;}
public void setBaseOverrideTypes(String[] val){baseOverrideTypes = val;}
public static final String UI_TABLES_RD = "baseTablesRD";
public static final String UI_COLUMN_NAMES_RD = "baseColumnNamesRD";
public static final String UI_COLUMN_TYPES_RD = "baseColumnTypesRD";
public static final String UI_OVERRIDE_TYPES_RD = "baseOverrideTypesRD";
public void fillWmTemplateDescriptor(WmTemplateDescriptor d,Locale l)
throws ResourceException
{
//UIMockDB Grouping and resource domain setup
d.createGroup(UI_UPD_SETTINGS_GRP, new String [] {

UI_TABLE_NAME_PARM,
UI_REPEATING_PARM,
UI_COLUMN_NAMES_PARM,
UI_COLUMN_TYPES_PARM,
UI_OVERRIDE_TYPES_PARM}

);
d.createFieldMap(new String[] {

UI_COLUMN_NAMES_PARM,
UI_COLUMN_TYPES_PARM,
UI_OVERRIDE_TYPES_PARM},

true);
d.createTuple(new String[]{UI_COLUMN_NAMES_PARM, UI_COLUMN_TYPES_PARM});

d.setResourceDomain(UI_TABLE_NAME_PARM, UI_TABLES_RD, null);
d.setResourceDomain(UI_COLUMN_NAMES_PARM, UI_COLUMN_NAMES_RD,
new String[]{UI_TABLE_NAME_PARM});

d.setResourceDomain(UI_COLUMN_TYPES_PARM, UI_COLUMN_TYPES_RD,
new String[]{UI_TABLE_NAME_PARM});

d.setResourceDomain(UI_OVERRIDE_TYPES_PARM,UI_OVERRIDE_TYPES_RD,null);
//Call to setDescriptions
d.setDescriptions(MyAdapter.getInstance().
getAdapterResourceBundleManager(),l);

}
public WmRecord execute(WmManagedConnection connection, WmRecord input)
throws ResourceException
{
Hashtable[] request = unpackRequest(input);
return packResonse(request);
}
private Hashtable[] unpackRequest(WmRecord request) throws ResourceException
{
Hashtable data[] = null;
IData mainIData = request.getIData();
IDataCursor mainCursor = mainIData.getCursor();
try
{
String tableNameValue = baseTableName;
String[] columnNamesValue = baseColumnNames;

314 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

if(mainCursor.first(tableNameValue))
{
IData[] recordIData;
if(baseRepeating)
{
recordIData = IDataUtil.getIDataArray (mainCursor,tableNameValue);
data = new Hashtable[recordIData.length];
}
else
{
recordIData = new IData[] {IDataUtil.getIData(mainCursor)};
data = new Hashtable[1];
}
for(int rec=0;rec<recordIData.length;rec++)
{
IDataCursor recordCursor = recordIData[rec].getCursor();
data[rec] = new Hashtable();
for(int c = 0; c < columnNamesValue.length;c++)
{
if(recordCursor.first(columnNamesValue[c]))
{
data[rec].put(tableNameValue + "." + columnNamesValue[c],
recordCursor.getValue());
}

}
recordCursor.destroy();
}
}
else
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"No Request Data"});

}
}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error unpacking request data"},t);

}
finally
{
mainCursor.destroy();

}
return data;
}
private WmRecord packResonse(Hashtable[] response) throws ResourceException
{
WmRecord data = null;
try
{
IData[] recordIData = new IData[response.length];
String tableNameValue = baseTableName;
String[] columnNamesValue = baseColumnNames;
for(int rec = 0; rec < response.length; rec++)
{
recordIData[rec] = IDataFactory.create();
IDataCursor recordCursor = recordIData[rec].getCursor();
for(int col = 0; col < columnNamesValue.length;col++)
{
IDataUtil.put(recordCursor,columnNamesValue[col],

webMethods Adapter Development Kit Installation and User’s Guide 9.12 315

A Alternative Approaches to Metadata

response[rec].get(tableNameValue + "." +
columnNamesValue[col]));

}
recordCursor.destroy();

}
IData mainIData = IDataFactory.create();
IDataCursor mainCursor = mainIData.getCursor();
if(baseRepeating)
{
IDataUtil.put(mainCursor,tableNameValue,recordIData);

}
else
{
IDataUtil.put(mainCursor,tableNameValue,recordIData[0]);

}
mainCursor.destroy();
data = WmRecordFactory.getFactory().createWmRecord("nameNotUsed");
data.setIData(mainIData);

}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error packing response data"},t);

}
return data;
}

//Alternate Methods
public void registerResourceDomain(WmManagedConnection connection,

WmAdapterAccess access)
throws AdapterException
{
//UIMockDB Group Registering Resource Domain
ResourceDomainValues tableRdvs = new ResourceDomainValues(
UIMockDbUpdate.UI_TABLES_RD, UI_mockTableNames);

tableRdvs.setComplete(true);
access.addResourceDomain(tableRdvs);
access.addResourceDomainLookup(UIMockDbUpdate.UI_COLUMN_NAMES_RD,connection);
access.addResourceDomainLookup(UIMockDbUpdate.UI_COLUMN_TYPES_RD,connection);
ResourceDomainValues rdvs = new ResourceDomainValues(
UIMockDbUpdate.UI_OVERRIDE_TYPES_RD, new String[] {""});

rdvs.setComplete(false);
rdvs.setCanValidate(true);
access.addResourceDomain(rdvs);
access.addCheckValue(UIMockDbUpdate.UI_OVERRIDE_TYPES_RD,connection);

}

public ResourceDomainValues[] adapterResourceDomainLookup(
WmManagedConnection connection,
String resourceDomainName, String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;

if(resourceDomainName.equals(UIMockDbUpdate.UI_COLUMN_NAMES_RD)||
resourceDomainName.equals(UIMockDbUpdate.UI_COLUMN_TYPES_RD))

{
String tableName = values[0][0];
for(int x = 0; x < UI_mockTableNames.length;x++)
{

316 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

if(UI_mockTableNames[x].equals(tableName))
{
ResourceDomainValues columnsRdvs = new ResourceDomainValues(
UIMockDbUpdate.UI_COLUMN_NAMES_RD,UI_mockColumnNames[x]);

columnsRdvs.setComplete(true);
ResourceDomainValues typesRdvs = new ResourceDomainValues(
UIMockDbUpdate.UI_COLUMN_TYPES_RD, UI_mockDataTypes[x]);

typesRdvs.setComplete(true);
results = new ResourceDomainValues[] {columnsRdvs,typesRdvs};
break;
}
}

}
return results;
}

public Boolean adapterCheckValue(WmManagedConnection connection,
String resourceDomainName,
String[][] values,
String testValue) throws AdapterException
{
Boolean result = new Boolean(false);
if(resourceDomainName.equals(UIMockDbUpdate.UI_OVERRIDE_TYPES_RD))
{
try
{
Object o = Class.forName(testValue).getConstructor(
new Class[] {String.class}).newInstance(new Object[]{"0"});
result = new Boolean(true);
}
catch (Throwable t){}

}
return result;
}

}

MockDbUpdate class:
package com.wm.MyAdapter.services;
import com.wm.adk.cci.interaction.WmAdapterService;
import com.wm.adk.cci.record.WmRecord;
import com.wm.adk.cci.record.WmRecordFactory;
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.WmTemplateDescriptor;
import com.wm.data.IData;
import com.wm.data.IDataCursor;
import com.wm.data.IDataFactory;
import com.wm.data.IDataUtil;
import java.util.Hashtable;
import java.util.Locale;
import javax.resource.ResourceException;
import com.wm.MyAdapter.MyAdapter;
//Alternate
import com.wm.adk.connection.WmManagedConnection;
import com.wm.adk.metadata.*;
import com.wm.adk.error.AdapterException;
import com.wm.MyAdapter.ResourceDomainHandler;
//
public class MockDbUpdate extends WmAdapterService implements
ResourceDomainHandler {

webMethods Adapter Development Kit Installation and User’s Guide 9.12 317

A Alternative Approaches to Metadata

//Adapter Services variables
private String[] mockTableNames ={ "CUSTOMERS","ORDERS","LINE_ITEMS"};
private String[][] mockColumnNames ={
{"name","id", "ssn"},
{"id","date","customer_id"},
{"order_id","item_number","quantity","description"}
};
private String [][] mockDataTypes = {
{"java.lang.String","java.lang.Integer", "java.lang.String"},
{"java.lang.Integer", "java.util.Date", "java.lang.Integer"},
{"java.lang.Integer", "java.lang.Integer", "java.lang.Integer",
"java.lang.String"}
};
//MockDB Group
public static final String UPD_SETTINGS_GRP = "Mock Settings";
public static final String TABLE_NAME_PARM = "tableName";
public static final String COLUMN_NAMES_PARM = "columnNames";
public static final String COLUMN_TYPES_PARM = "columnTypes";
public static final String REPEATING_PARM = "repeating";
public static final String OVERRIDE_TYPES_PARM = "overrideTypes";
private String tableName;
private String[] columnNames;
private String[] columnTypes;
private boolean repeating;
private String[] overrideTypes;
public void setTableName(String val){ tableName = val;}
public void setColumnNames(String[] val){ columnNames = val;}
public void setColumnTypes(String[] val){ columnTypes = val;}
public void setRepeating(boolean val){ repeating = val;}
public void setOverrideTypes(String[] val){overrideTypes = val;}
public static final String TABLES_RD = "tablesRD";
public static final String COLUMN_NAMES_RD = "columnNamesRD";
public static final String COLUMN_TYPES_RD = "columnTypesRD";
public static final String OVERRIDE_TYPES_RD = "overrideTypesRD";
//MockDB Signature Group
public static final String SIG_SETTINGS_GRP = "Signature";
public static final String FIELD_NAMES_PARM = "fieldNames";
public static final String FIELD_TYPES_PARM = "fieldTypes";
public static final String SIG_IN_PARM = "sigIn";
public static final String SIG_OUT_PARM = "sigOut";
private String[] fieldNames;
private String[] fieldTypes;
public void setFieldNames(String[] val){ fieldNames = val;}
public void setFieldTypes(String[] val){ fieldTypes = val;}
public void setSigIn(String[] val){}
public void setSigOut(String[] val){}
public static final String FIELD_NAMES_RD = "fieldNamesRD";
public static final String FIELD_TYPES_RD = "fieldTypesRD";
public void fillWmTemplateDescriptor(WmTemplateDescriptor d,Locale l)
throws ResourceException
{
//MockDB Grouping and resource domain setup
d.createGroup(UPD_SETTINGS_GRP, new String [] {

TABLE_NAME_PARM,
REPEATING_PARM,
COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM}

);
d.createFieldMap(new String[] {

318 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM},
true);

d.createTuple(new String[]{COLUMN_NAMES_PARM,COLUMN_TYPES_PARM});

d.setResourceDomain(TABLE_NAME_PARM,TABLES_RD,null);
d.setResourceDomain(COLUMN_NAMES_PARM,COLUMN_NAMES_RD,
new String[]{TABLE_NAME_PARM});

d.setResourceDomain(COLUMN_TYPES_PARM,COLUMN_TYPES_RD,
new String[]{TABLE_NAME_PARM});

d.setResourceDomain(OVERRIDE_TYPES_PARM,OVERRIDE_TYPES_RD,null);
//MockDB Signature Grouping and resource domain setup
d.createGroup(SIG_SETTINGS_GRP, new String [] {

FIELD_NAMES_PARM,
FIELD_TYPES_PARM,
SIG_IN_PARM,
SIG_OUT_PARM}
);

d.createFieldMap(new String [] {
FIELD_NAMES_PARM,
FIELD_TYPES_PARM,
SIG_IN_PARM,
SIG_OUT_PARM},
false);

d.createTuple(new String[]{FIELD_NAMES_PARM,FIELD_TYPES_PARM});

String [] fieldTupleDependencies = {TABLE_NAME_PARM,
REPEATING_PARM,
COLUMN_NAMES_PARM,
COLUMN_TYPES_PARM,
OVERRIDE_TYPES_PARM};

d.setResourceDomain(FIELD_NAMES_PARM,FIELD_NAMES_RD, fieldTupleDependencies);
d.setResourceDomain(FIELD_TYPES_PARM,FIELD_TYPES_RD, fieldTupleDependencies);
d.setResourceDomain(SIG_IN_PARM,WmTemplateDescriptor.INPUT_FIELD_NAMES,
new String[] {FIELD_NAMES_PARM, FIELD_TYPES_PARM});

d.setResourceDomain(SIG_OUT_PARM,WmTemplateDescriptor.OUTPUT_FIELD_NAMES,
new String[] {FIELD_NAMES_PARM, FIELD_TYPES_PARM});

//Call to setDescriptions
d.setDescriptions(MyAdapter.getInstance().
getAdapterResourceBundleManager(),l);

}
public WmRecord execute(WmManagedConnection connection, WmRecord input)
throws ResourceException
{
Hashtable[] request = unpackRequest(input);
return packResonse(request);
}
private Hashtable[] unpackRequest(WmRecord request) throws ResourceException
{
Hashtable data[] = null;
IData mainIData = request.getIData();
IDataCursor mainCursor = mainIData.getCursor();
try
{
String tableNameValue = tableName;
String[] columnNamesValue = columnNames;
if(mainCursor.first(tableNameValue))
{
IData[] recordIData;

webMethods Adapter Development Kit Installation and User’s Guide 9.12 319

A Alternative Approaches to Metadata

if(repeating)
{
recordIData = IDataUtil.getIDataArray (mainCursor,tableNameValue);
data = new Hashtable[recordIData.length];

}
else
{
recordIData = new IData[] {IDataUtil.getIData(mainCursor)};
data = new Hashtable[1];

}
for(int rec=0;rec<recordIData.length;rec++)
{
IDataCursor recordCursor = recordIData[rec].getCursor();
data[rec] = new Hashtable();
for(int c = 0; c < columnNamesValue.length;c++)
{
if(recordCursor.first(columnNamesValue[c]))
{
data[rec].put(tableNameValue + "." + columnNamesValue[c],
recordCursor.getValue());
}

}
recordCursor.destroy();

}
}
else
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"No Request Data"});

}
}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error unpacking request data"},t);

}
finally
{
mainCursor.destroy();

}
return data;
}
private WmRecord packResonse(Hashtable[] response) throws ResourceException
{
WmRecord data = null;
try
{
IData[] recordIData = new IData[response.length];
String tableNameValue = tableName;
String[] columnNamesValue = columnNames;
for(int rec = 0; rec < response.length; rec++)
{
recordIData[rec] = IDataFactory.create();
IDataCursor recordCursor = recordIData[rec].getCursor();
for(int col = 0; col < columnNamesValue.length;col++)
{
IDataUtil.put(recordCursor,columnNamesValue[col],
response[rec].get(tableNameValue + "." +
columnNamesValue[col]));

}

320 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

recordCursor.destroy();
}
IData mainIData = IDataFactory.create();
IDataCursor mainCursor = mainIData.getCursor();
if(repeating)
{
IDataUtil.put(mainCursor,tableNameValue,recordIData);
}
else
{
IDataUtil.put(mainCursor,tableNameValue,recordIData[0]);
}
mainCursor.destroy();
data = WmRecordFactory.getFactory().createWmRecord("nameNotUsed");
data.setIData(mainIData);

}
catch (Throwable t)
{
throw MyAdapter.getInstance().createAdapterException(9999,
new String[] {"Error packing response data"},t);

}
return data;
}

public void registerResourceDomain(WmManagedConnection connection,
WmAdapterAccess access)

throws AdapterException
{
//MockDB Group Registering Resource Domain
ResourceDomainValues tableRdvs = new ResourceDomainValues(
MockDbUpdate.TABLES_RD,mockTableNames);

tableRdvs.setComplete(true);
access.addResourceDomain(tableRdvs);
access.addResourceDomainLookup(MockDbUpdate.COLUMN_NAMES_RD,connection);
access.addResourceDomainLookup(MockDbUpdate.COLUMN_TYPES_RD,connection);
ResourceDomainValues rdvs = new ResourceDomainValues(
MockDbUpdate.OVERRIDE_TYPES_RD, new String[] {""});

rdvs.setComplete(false);
rdvs.setCanValidate(true);
access.addResourceDomain(rdvs);
access.addCheckValue(MockDbUpdate.OVERRIDE_TYPES_RD,connection);

//MockDB Signature Group Registering Resource Domain
access.addResourceDomainLookup(MockDbUpdate.FIELD_NAMES_RD,connection);
access.addResourceDomainLookup(MockDbUpdate.FIELD_TYPES_RD,connection);
}

public ResourceDomainValues[] adapterResourceDomainLookup(
WmManagedConnection connection,
String resourceDomainName, String[][] values) throws AdapterException
{
ResourceDomainValues[] results = null;

//MockDB Group Lookup
if(resourceDomainName.equals(MockDbUpdate.COLUMN_NAMES_RD)||
resourceDomainName.equals(MockDbUpdate.COLUMN_TYPES_RD))

{
String tableName = values[0][0];
for(int x = 0; x < mockTableNames.length;x++)
{

webMethods Adapter Development Kit Installation and User’s Guide 9.12 321

A Alternative Approaches to Metadata

if(mockTableNames[x].equals(tableName))
{
ResourceDomainValues columnsRdvs = new ResourceDomainValues(
MockDbUpdate.COLUMN_NAMES_RD,mockColumnNames[x]);

columnsRdvs.setComplete(true);
ResourceDomainValues typesRdvs = new ResourceDomainValues(
MockDbUpdate.COLUMN_TYPES_RD, mockDataTypes[x]);

typesRdvs.setComplete(true);
results = new ResourceDomainValues[] {columnsRdvs,typesRdvs};
break;

}
}

}
//MockDB Signature Group Lookup
else if (resourceDomainName.equals(MockDbUpdate.FIELD_NAMES_RD)||
resourceDomainName.equals(MockDbUpdate.FIELD_TYPES_RD))

{
String tableName = values[0][0];
boolean repeating = Boolean.valueOf(values[1][0]).booleanValue();
String[] columnNames = values[2];
String[] columnTypes = values[3];
String[] overrideTypes = values[4];
String[] fieldNames = new String[columnNames.length];
String[] fieldTypes = new String[columnTypes.length];
String optBrackets;
if(repeating)
optBrackets ="[]";

else
optBrackets = "";

for (int i = 0; i< fieldNames.length;i++)
{
fieldNames[i] = tableName + optBrackets + "." + columnNames[i];
fieldTypes[i] = columnTypes[i] + optBrackets;
if(overrideTypes.length > i)
{
if (!overrideTypes[i].equals(""))
{
fieldTypes[i] = overrideTypes[i] + optBrackets;

}
}

}
results = new ResourceDomainValues[]{
new ResourceDomainValues(MockDbUpdate.FIELD_NAMES_RD,fieldNames),
new ResourceDomainValues(MockDbUpdate.FIELD_TYPES_RD,fieldTypes)};

}
return results;
}

public Boolean adapterCheckValue(WmManagedConnection connection,
String resourceDomainName,
String[][] values,
String testValue) throws AdapterException
{
Boolean result = new Boolean(false);
if(resourceDomainName.equals(MockDbUpdate.OVERRIDE_TYPES_RD))
{
try
{
Object o = Class.forName(testValue).getConstructor(
new Class[] {String.class}).newInstance(new Object[]{"0"});

322 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

result = new Boolean(true);
}
catch (Throwable t){}

}
return result;
}

}

Corresponding MyAdapterResource class:
package com.wm.MyAdapter;
import java.util.ListResourceBundle;
import com.wm.adk.ADKGLOBAL;
import com.wm.MyAdapter.connections.SimpleConnectionFactory;
import com.wm.MyAdapter.services.MockDbUpdate;
import com.wm.MyAdapter.services.UIMockDbUpdate;
public class MyAdapterResource extends ListResourceBundle implements
MyAdapterConstants{

static final String IS_PKG_NAME = "/MyAdapter/";
static final Object[][] _contents = {

// adapter type display name.
{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME, "MyAdapter"}
// adapter type descriptions.
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Adapter for MyAdapter Server (a Sample System)"}

// adapter type vendor.
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_VENDORNAME, "Software AG"}

//Copyright URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_THIRDPARTYCOPYRIGHTURL,

IS_PKG_NAME + "copyright.html"}
//Copyright Encoding
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_COPYRIGHTENCODING, "UTF-8"}
//About URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_ABOUT, IS_PKG_NAME + "About.html"}
//Release Notes URL Page
,{ADAPTER_NAME + ADKGLOBAL.RESOURCEBUNDLEKEY_RELEASENOTEURL, IS_PKG_NAME +

"ReleaseNotes.html"}
//SimpleConnection
,{SimpleConnectionFactory.class.getName() +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Simple Connection"}
,{SimpleConnectionFactory.class.getName() +

ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Simple framework for demonstration purposes"}
,{SimpleConnectionFactory.SIMPLE_SERVER_HOST_NAME +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Host Name"}
,{SimpleConnectionFactory.SIMPLE_SERVER_PORT_NUMBER +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Port"}

//UIMockDB Group Resource Domain Values
,{UIMockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"UI Mock Update Service"}

,{UIMockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"UI Simulates a database update service"}

,{UIMockDbUpdate.UI_UPD_SETTINGS_GRP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,
UIMockDbUpdate.UI_UPD_SETTINGS_GRP}

,{UIMockDbUpdate.UI_TABLE_NAME_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,

webMethods Adapter Development Kit Installation and User’s Guide 9.12 323

A Alternative Approaches to Metadata

"UI Table Name"}
,{UIMockDbUpdate.UI_TABLE_NAME_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"UI Select Table Name"}
,{UIMockDbUpdate.UI_COLUMN_NAMES_PARM +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"UI Column Names"}

,{UIMockDbUpdate.UI_COLUMN_NAMES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"UI Name of column updated by this service"}
,{UIMockDbUpdate.UI_COLUMN_TYPES_PARM +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"UI Column Types"}

,{UIMockDbUpdate.UI_COLUMN_TYPES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"UI Default data type for column"}
,{UIMockDbUpdate.UI_OVERRIDE_TYPES_PARM +

ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"UI Override Data Types"}

,{UIMockDbUpdate.UI_OVERRIDE_TYPES_PARM +
ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"UI Type to override column default"}
,{UIMockDbUpdate.UI_REPEATING_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,

"UI Update Multiple Rows?"}
,{UIMockDbUpdate.UI_REPEATING_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"UI Select if input will include multiple rows to update"}

//MockDB Group Resource Domain Values
,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Mock Update Service"}

,{MockDbUpdate.class.getName() + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Simulates a database update service"}

,{MockDbUpdate.UPD_SETTINGS_GRP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,
MockDbUpdate.UPD_SETTINGS_GRP}

,{MockDbUpdate.TABLE_NAME_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Table Name"}

,{MockDbUpdate.TABLE_NAME_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Select Table Name"}

,{MockDbUpdate.COLUMN_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Column Names"}

,{MockDbUpdate.COLUMN_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Name of column updated by this service"}

,{MockDbUpdate.COLUMN_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Column Types"}

,{MockDbUpdate.COLUMN_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Default data type for column"}

,{MockDbUpdate.OVERRIDE_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,

"Override Data Types"}
,{MockDbUpdate.OVERRIDE_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,

"Type to override column default"}
,{MockDbUpdate.REPEATING_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Update Multiple Rows?"}

,{MockDbUpdate.REPEATING_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Select if input will include multiple rows to update"}

//MockDB Signature Group Resource Domain Values
,{MockDbUpdate.SIG_SETTINGS_GRP + ADKGLOBAL.RESOURCEBUNDLEKEY_GROUP,
MockDbUpdate.SIG_SETTINGS_GRP}

,{MockDbUpdate.FIELD_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,

324 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

"Field Names"}
,{MockDbUpdate.FIELD_NAMES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Name of Field"}

,{MockDbUpdate.FIELD_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Field Type"}

,{MockDbUpdate.FIELD_TYPES_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Type of Field"}

,{MockDbUpdate.SIG_IN_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Input Signature"}

,{MockDbUpdate.SIG_IN_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Input Signature"}

,{MockDbUpdate.SIG_OUT_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DISPLAYNAME,
"Output Signature"}

,{MockDbUpdate.SIG_OUT_PARM + ADKGLOBAL.RESOURCEBUNDLEKEY_DESCRIPTION,
"Output Signature"}

};

protected Object[][] getContents() {
// TODO Auto-generated method stub
return _contents;
}

}

Using Resource Bundles with Resource Domain Values

A resource bundle contains all display strings and messages used by the adapter at runtime and
at design time. A resource bundle is:

Specific to a particular locale.

Enables you to internationalize an adapter quickly, without having to change the code in the
adapter.

For more information, see “Creating Resource Bundles Class With Example ” on page 38.

Adapters can explicitly use a resource bundle to localize other data known at development time.
For example, you can localize data such as resource domain values. For more information about
resource domain values, see “Populating Resource Domains with Values” on page 88. In those
cases, the strategy for key composition is left to your discretion.

Important:
When a localized value needs to be understood in the other parts of the code, a translation is
performed. For example, a list of known record status values as shown: (if this.getStatus()
!= "active")

For example, suppose an adapter service includes a metadata parameter called status, which can
be set to a value of active or inactive. These values must be localized so that active or inactive
appear in the language of the current user. If the runtime locale is different from the locale in
design-time client, then the adapter needs to know the language that is used when the value of
statuswas set. You must use the following:
if (this.getStatus() != inLanguageOfDesignTimeClient("active"))

instead of the following:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 325

A Alternative Approaches to Metadata

if (this.getStatus() != "active")

The localization becomes more complicated if the adapter service node is managed (edited) in
more than one locale. If a resource domain lookup depends on a value that is localized, and that
value was set by a client in a different locale than the current client, then use the following:
if (this.getStatus() != inLanguageUsedWhenValueWasSet("active"))

To support this functionality, the ADK inserts a special designTimeLocalemetadata property, in
each adapter service node and notification node.

Value of designTimeLocale is set when the node is created.

Adapter users update the value in the node when they click the icon on the Designer

toolbar which reloads values from the adapter. The icon appears when users view an
adapter service or notification node.

An adapter that uses the designTimeLocale property can then present resource domain values
in the appropriate client locale when the node is created, and understand the value at runtime
regardless of what locale Integration Server may use.

For example, if a Japanese client wants to edit a node that was configured by an English client,
then

The initial presentation in theAdapter Service Editor orAdapterNotification Editor reflects
the English values currently stored in the node.

When the Japanese client clicks the icon, Integration Server changes the designTimeLocale
to Japanese, and performs all resource domain lookups using the new locale.

From the adapter user's perspective, all localized values change from English to Japanese.

This example assumes that the adapter includes both an English and a Japanese resource
bundle.

To support localized resource domain values, perform the following:

Include the ADKGLOBAL.DESIGN_LOCALE_PROPERTY property name in the resource
domain dependency list of any parameter that uses a resource domainwith localized resource
domain values.

Include ADKGLOBAL.DESIGN_LOCALE_PROPERTY property name for all the parameters
where the lookup depends on a parameter containing localized values.

For example:
d.setResourceDomain("status", "statusLookup", new

String[]{ADKGLOBAL.DESIGN_LOCALE_PROPERTY});
d.setResourceDomain("statusDescription","statusDescriptionLookup", new

String[]
{ "status",ADKGLOBAL.DESIGN_LOCALE_PROPERTY });

326 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

You must present the designTimeLocale as a string (derived from Locale.toString) so that the value is
available as a resource domain value. To convert this string to a Locale object, use
AdapterUtil.parseLocaleStringmethod.

Within the implementation of the statusLookup, the adapter uses the designTimeLocale value provided
to create a list of localized string values:
if (resourceDomainName.equals("statusLookup"))
{
AdapterResourceBundleManager ar =

MyAdapter.getInstance().getAdapterResourceBundleManager();
Locale lookupLocale = AdapterUtil.parseLocaleString(values[0][0]);
for (int i =0; i< statusNames.length;i++)
{

try {
displayNames[i] =

ar.getStringResource(statusNames[i], lookupLocale);
}
catch(Throwable t)
{

displayNames[i] = statusNames[i];
}

}
ResourceDomainValues rdv = new

ResourceDomainValues(resourceDomainName,displayNames);
rdv.setComplete(true); // allow user edit
return new ResourceDomainValues[] {rdv};

}

At runtime, the adapter uses the getDesignTimeLocalemethod to retrieve the locale, and to interpret
the value of localized parameters. For example:
Locale lookupLocale =

AdapterUtil.parseLocaleString(this.getDesignTimeLocale());
AdapterResourceBundleManager ar =

MyAdapter.getInstance().getAdapterResourceBundleManager();
if (this.getStatus.equals(ar.getStringResource("active",lookupLocale)))
{
...

For more information, see the Javadoc for the following:

com.wm.adk.ADKGLOBALS.DESIGN_TIME_LOCALE_PROPERTY

com.wm.adk.cci.interaction.WmAdapterService.getDesignTimeLocale

com.wm.adk.notification.WmNotification.getDesignTimeLocale

com.wm.adk.util.AdapterUtil.parseLocaleString

webMethods Adapter Development Kit Installation and User’s Guide 9.12 327

A Alternative Approaches to Metadata

328 webMethods Adapter Development Kit Installation and User’s Guide 9.12

A Alternative Approaches to Metadata

B Integration Server Transaction Support

■ Overview .. 330

■ Simple Transactions ... 331

■ More Complex Transactions ... 331

■ Implicit Transaction Usage Cases .. 332

■ Explicit Transaction Usage Cases .. 333

■ Built-In Services For Explicit Transactions .. 337

■ Transaction Error Situations ... 340

■ Specifying Transaction Support in Connections ... 341

webMethods Adapter Development Kit Installation and User’s Guide 9.12 329

Overview

This section describes how Integration Server supports transactions. Integration Server considers
a transaction to be one or more interactions with one or more resources that are treated as a single
logical unit of work. The interactions within a transaction are either all committed or all rolled
back. For example, if a transaction includesmultiple database inserts, and one ormore inserts fail,
all inserts are rolled back.

Integration Server supports the following types of transactions:

Local Transaction. Transaction to a resource's local transaction mechanism.

XAResource Transaction. Transaction to a resource's XAResource transaction mechanism.

Integration Server can manage both types of transactions, without requiring the adapter users'
input.

Integration Server uses a container-managed (implicit) transaction management approach
based on the JCA standard.

Integration Server performs additional connection management. This is because the adapter
services use connections to create transactions.

For more information about implicit transactions, see “Implicit Transaction Usage Cases” on
page 332. However, there are caseswhere adapter users need to explicitly control the transactional
units of work. For more information about explicit transactions, see “Explicit Transaction Usage
Cases” on page 333.

Integration Server relies on a built-in transactionmanager to support transactions. The transaction
manager is responsible for the following:

Beginning and ending transactions.

Maintaining a transaction context.

Enlisting newly connected resources into existing transactions.

Ensuring that local and XAResource transactions are not combined in invalid ways.

Manages operations performed by a transacted JMS trigger, or a built-in JMS service that uses
a transacted JMS connection alias.

Important:
You cannot create steps and trace a flow that contains a transacted adapter service.

Note:
If you interact with a resource that does not support transactions, Integration Server does not
create a transaction for it.

For more information about specifying the type(s) of transactions to support in your adapter, see
“Specifying Transaction Support in Connections” on page 341.

330 webMethods Adapter Development Kit Installation and User’s Guide 9.12

B Integration Server Transaction Support

Simple Transactions

The simplest Integration Server transaction scenario is a Flow Service (or a Java Service) that
invokes one adapter service that interacts with one resource. For example, the transaction might
perform a database insert.

Integration Server executes the transaction without requiring adapter users to perform any
transaction management, as follows:

1. Integration Server invokes the request as follows:

a. Adapter service obtains a connection from the connection pool.

b. Adapter service creates a transaction.

c. Adapter service enlists the connection in the current transaction.

d. Adapter service performs the database insert. If the insert fails, a ServiceException is thrown.

2. Integration Server informs the transaction manager that the service request is completed as
follows:

If the service request succeeds, the transaction manager commits the current transaction.
If the commit fails, the transaction manager throws an exception that results in the failure
of the service request, and a ServiceException is returned to the adapter user.

If the service request fails, the transaction manager rolls back the current transaction.

Note:
The commit or rollback occurs after the service is complete, but before any response is sent to
the client that invoked the service. This is because if the transaction commit fails, the service
itself must fail. So, the transaction notification essentially becomes the last step of the service
as opposed to occurring after the service is already complete.

More Complex Transactions

Suppose that a Flow Service or a Java Service invokes multiple adapter services. These adapter
services might interact with a single resource (such as two services that perform two inserts into
a single database) or with multiple resources (such as services that synchronize a database and
an ERP system).

You can have one or more connections to a single resource. If multiple connections are used, then
Integration Server enlists each connection in the transaction.

When the service request is complete, Integration Server notifies the transaction manager, which
closes all enlisted connections and transactions.

If the service request is successful, then Integration Server commits all transactions automatically
using a two-phase commit if multiple resources are used.

If the service request returns an error, then Integration Server rolls back the transaction and
returns an error; that causes the service to return an error.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 331

B Integration Server Transaction Support

As mentioned previously, there are cases where adapter users must explicitly control the
transactional units of work. For more information, see “Explicit Transaction Usage Cases” on
page 333.

Note:
If a transaction accesses multiple resources, and more than one of the resources supports local
transactions only, then the integrity of the transaction cannot be guaranteed. For example, if
the first resource successfully commits, and the second resource fails to commit, the first resource
interaction cannot be rolled back; it has already been committed. Integration Server detects this
case when connecting to more than one resource that do not support two-phase commits and
throws a runtime exception which results in the failure of the service execution.

Implicit Transaction Usage Cases

Integration Server handles implicit transactions. For a flow to bemanaged implicitly, it can contain
one of the following:

One local transaction, interacting with one resource.

One ormore XAResource transactions; each transaction can interactwith one ormore resources.

One or more XAResource transactions and one local transaction.

If a flow contains multiple local transactions, the adapter user must explicitly control the
transactional units of work. For more information, see “Explicit Transaction Usage Cases” on
page 333.

Following are examples of implicit transactions.

One Local Transaction

In this example, a flowwith two adapter services interactswith the same local transaction resource.
The flow performs two inserts into two tables of a database:
BEGIN FLOW
INVOKE insertDatabase1TableA // Local Transaction Resource1
INVOKE insertDatabase1TableB // Local Transaction Resource1
END FLOW

Integration Server starts the transaction when insertDatabase1TableA is invoked.

Integration Server opens a connection to the resource, enlists it in the transaction, and performs
the insert into TableA.

When insertDatabase1TableB is invoked, Integration Server reuses the same connection to insert
data into TableB.

When the request is complete, Integration Server closes the connection and commits the
transaction.

332 webMethods Adapter Development Kit Installation and User’s Guide 9.12

B Integration Server Transaction Support

Two Local Transactions

The following flow is invalid because it tries to interact with two local transaction resources as
follows:
BEGIN FLOW
INVOKE insertDatabase1TableA // Service for Resource1
INVOKE insertDatabase2TableA // Service for Resource2
END FLOW

Three XAResource Transactions

The following flow is valid because a flow can contain any number of XAResource transactions.
BEGIN FLOW
INVOKE insertDatabase1TableA // XAResource Transaction Resource1
INVOKE insertDatabase2TableA // XAResource Transaction Resource2
INVOKE insertDatabase3TableA // XAResource Transaction Resource3
END FLOW

One Local Transaction and One XAResource Transaction

Continuing with the previous case, this flow contains an additional insert to a different database
that accepts XAResource transactions as follows:
BEGIN FLOW
INVOKE insertDatabase1TableA // Local Transaction Resource1
INVOKE insertDatabase1TableB // Local Transaction Resource1
INVOKE insertDatabase2TableA // XAResource Transaction Resource1
END FLOW

When Integration Server invokes insertDatabase2TableA, a transaction is already in progress
with the first database enlisted. Integration Server performs the following:

Establishes a second connection to Database2.

Enlists the new connection in the XAResource transaction.

Performs the insert to tableA.

When the request is complete

Integration Server closes both connections.

TransactionManager performs a local commit for the non-XAResource and then a two-phase
commit for the XAResource enlisted in the transaction.

Explicit Transaction Usage Cases

Adapter usersmust explicitly start and end each transaction, except the first one to includemultiple
local transactions in a single flow.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 333

B Integration Server Transaction Support

Depending on what the flow needs to accomplish, adapter users may explicitly start and end
XAResource transactions as well. This way, the adapter users can create a flow that includes
multiple local transactions and multiple XAResource transactions.

Integration Server provides the following built-in services to support multiple local transactions
and multiple XAResource transactions:

pub.art.transaction.startTransaction

pub.art.transaction.commitTransaction

pub.art.transaction.rollbackTransaction

pub.art.transaction.setTransactionTimeout

For more information, see “Built-In Services For Explicit Transactions” on page 337.

For example, the following flow includes a local transaction nestedwithin another local transaction:
BEGIN FLOW // start transaction 1
.
.
.

INVOKE startTransaction(2) // start transaction 2
.
.
.
INVOKE commitTransaction(2) // commit transaction 2

END FLOW // commit transaction 1

A nested transactionmust adhere to the same rules that apply to container-manager transactions.
That is, a nested transaction can contain one of the following:

One local transaction, interacting with one resource.

One ormore XAResource transactions; each transaction can interactwith one ormore resources.

One or more XAResource transactions and one local transaction.

Following are some examples of explicit transactions.

Two Local Transactions

To make this flow work properly, explicitly start and commit the nested local transaction, using
the startTransaction and commitTransaction services as follows:
BEGIN FLOW // start transaction 1
INVOKE interactWithResourceA // service for transaction 1

INVOKE startTransaction(2) // start transaction 2
INVOKE interactWithResourceB // service for transaction 2
INVOKE commitTransaction(2) // commit transaction 2

END FLOW // commit transaction 1

The flow executes as follows:

334 webMethods Adapter Development Kit Installation and User’s Guide 9.12

B Integration Server Transaction Support

1. When interactWithResourceA is invoked, Integration Server starts transaction 1 and enlists
ResourceA.

2. Transaction 2 executes as follows:

a. When startTransaction(2) is invoked, Integration Server starts a new, nested transaction.

b. When interactWithResourceB is invoked, ResourceB is enlisted in transaction 2.

c. When commitTransaction(2) is invoked, the connection toResourceB is closed, and transaction
2 is committed. At this point, only the work done on ResourceB is committed; transaction 1
is still open, and the work done with ResourceA is not yet committed.

3. When the flow ends, Integration Server closes the connection for transaction 1 and commits its
work to ResourceA.

Note:
Each transaction is a separate unit of work. Transaction 1 could be rolled back (or the commit
could fail), while transaction 2 remains committed (or vice versa).

Alternatively, to achieve the same result, you can explicitly start transaction 1 before the adapter
service is invoked, and explicitly commit it as follows:
BEGIN FLOW
INVOKE startTransaction(1) // start transaction 1
INVOKE interactWithResourceA // service for transaction 1
INVOKE startTransaction(2) // start transaction 2
INVOKE interactWithResourceB // service for transaction 2
INVOKE commitTransaction(2) // commit transaction 2
INVOKE commitTransaction(1) // commit transaction 1
END FLOW

Two XAResource Transactions

The following flow includes two XAResource transactions: one that interacts with ResourceA, and
a nested transaction that interacts with ResourceB and ResourceC.
BEGIN FLOW // start transaction 1
INVOKE interactWithResourceA // service for transaction 1

INVOKE startTransaction(2) // start transaction 2
INVOKE interactWithResourceB // service for transaction 2
INVOKE interactWithResourceC // service for transaction 2
INVOKE commitTransaction(2) // commit transaction 2

END FLOW // commit transaction 1

The flow executes as follows:

1. When interactWithResourceA is invoked, Integration Server starts transaction 1 and enlists
ResourceA.

2. Transaction 2 executes as follows:

a. When startTransaction(2) is invoked, Integration Server starts a new, nested transaction.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 335

B Integration Server Transaction Support

b. When interactWithResourceB and interactWithResourceC are invoked, both resources are
enlisted in transaction 2.

c. When commitTransaction(2) is invoked, the connections to ResourceB and ResourceC are
closed, and transaction 2 is committed. At this point, only the work done on ResourceB and
ResourceC is committed; transaction 1 is still open, and the work done with resourceA is not
yet committed.

3. When the flow ends, Integration Server closes the connection for transaction 1 and commits its
work to ResourceA.

One XAResource Transaction and Two Nested Local Transactions

The following flow includes three transactions: one XAResource transaction that interacts with
two resources, and two nested local transactions that interact with one resource each.
BEGIN FLOW // start XAResource transaction 1
INVOKE interactWithXAResourceA // service for XAResource transaction 1
INVOKE interactWithXAResourceB // service for XAResource transaction 2

INVOKE startTransaction(2) // start local transaction 1
INVOKE interactWithLocalResourceA // service for local transaction 1
INVOKE commitTransaction(2) // commit local transaction 1
INVOKE startTransaction(3) // start local transaction 2
INVOKE interactWithLocalResourceB // service for local transaction 2
INVOKE commitTransaction(3) // commit local transaction 2

END FLOW // commit XAResource transaction 1

The flow executes as follows:

1. When interactWithXAResourceA is invoked, Integration Server starts transaction 1 and enlists
XAResourceA.

2. When interactWithXAResourceB is invoked, Integration Server enlistsXAResourceB in transaction
1.

3. Transaction 2 is executed as follows:

a. When startTransaction(2) is invoked, Integration Server starts a new, nested transaction.

b. When interactWithLocalResourceA is invoked, LocalResourceA is enlisted in transaction 2.

c. When commitTransaction(2) is invoked, the connection to LocalResourceA is closed, and
transaction 2 is committed.At this point, only thework done on LocalResourceA is committed;
transaction 1 is still open, and the work done with XAResourceA and XAResourceB is not
yet committed.

4. Transaction 3 is executed as follows:

a. When startTransaction(3) is invoked, Integration Server starts a new, nested transaction.

b. When interactWithLocalResourceB is invoked, LocalResourceB is enlisted in transaction 3.

c. When commitTransaction(3) is invoked, the connection to LocalResourceB is closed, and
transaction 3 is committed. At this point, only the work done on LocalResourceA and

336 webMethods Adapter Development Kit Installation and User’s Guide 9.12

B Integration Server Transaction Support

LocalResourceB is committed; transaction 1 is still open, and thework donewithXAResourceA
and XAResourceB is not yet committed.

5. When the flow ends, Integration Server closes the connection for transaction 1 and commits its
work to XAResourceA and XAResourceB.

One XAResource Transaction and One Nested Local and XAResource Transaction

The following flow includes two transactions: one XAResource transaction that interacts with two
resources, and one nested transaction that interacts with one local resource and one XAResource.
BEGIN FLOW // start XAResource transaction 1
INVOKE interactWithXAResourceA // service for XAResource transaction 1
INVOKE interactWithXAResourceB // service for XAResource transaction 2

INVOKE startTransaction(2) // start transaction 2
INVOKE interactWithLocalResourceA // service for transaction 2
INVOKE interactWithXAResourceC // service for transaction 2
INVOKE interactWithLocalResourceA // service for transaction 2
INVOKE commitTransaction(2) // commit transaction 2

END FLOW // commit XAResource transaction 1

The flow executes as follows:

1. When interactWithResourceA is invoked, Integration Server starts an XAResource transaction 1
and enlists ResourceA.

2. When interactWithXAResourceB is invoked, Integration Server enlistsXAResourceB in transaction
1.

3. Transaction 2 is executed as follows:

a. When startTransaction(2) is invoked, Integration Server starts a new, nested transaction.

b. When interactWithLocalResourceA is invoked, LocalResourceA is enlisted in transaction 2.

c. When interactWithXAResourceC is invoked, XAResourceC is enlisted in transaction 2.

d. When interactWithLocalResourceA is invoked, LocalResourceA is enlisted in transaction 2.

e. When commitTransaction(2) is invoked, the connection to both resources of transaction 2 is
closed, and transaction 2 is committed. At this point, only the work done on LocalResourceA
and XAResourceC is committed; transaction 1 is still open, and the work done with
XAResourceA and XAResourceB is not yet committed.

4. When the flow ends, Integration Server closes the connection for transaction 1 and commits its
work to XAResourceA and XAResourceB.

Built-In Services For Explicit Transactions

Use the built-in services described in this section tomanage explicit transactions for your Adapter
Development Kit services.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 337

B Integration Server Transaction Support

Explicit transactions are transactions that ismanually controlledwithin flow services using built-in
services. Implicit transactions are automatically handled by the Integration Server's transaction
manager. When you define an explicit transaction, it is nestedwithin the implicit transactions that
are controlled by the transactionmanager. You can havemore than one explicit transaction defined
within an implicit transaction. You can also nest explicit transactions within each other.

Any flow service steps found between a pub.art.transaction:startTransaction service and either a
pub.art.transaction:commitTransaction service or a pub.art.transaction:rollbackTransaction service are part of an
explicit transaction rather than the implicit transaction.

Within both implicit and explicit transactions, you cannot have multiple connections with a
transaction type of LOCAL_TRANSACTION because you will not be able to rollback the first
LOCAL_TRANSACTION after it is committed. Use the built-in services to define explicit
transactions to prevent from inadvertently committing transactions if you need to rollback the
transaction.

The table below briefly describes the public services in Integration Servers' WmART package. The
sections that follow describe each service in detail.

FunctionService

Starts an explicit transaction.pub.art.transaction:startTransaction

Commits an explicit transaction.pub.art.transaction:commitTransaction

Rolls back an explicit transaction.pub.art.transaction:rollbackTransaction

Enables you to manually set a transaction
timeout interval for implicit and explicit
transactions.

pub.art.transaction:setTransactionTimeout

pub.art.transaction:startTransaction
Starts an explicit transaction. The service must be used in conjunction with either a
pub.art.transaction:commitTransaction service or pub.art.transaction:rollbackTransaction service. If a
corresponding pub.art.transaction:commitTransaction service or pub.art.transaction:rollbackTransaction service
is not provided, then the flow service receives a runtime error.

Input Parameters

Document. Document that contains the variable transactionName.startTransactionInput

String. Used to associate a name with an explicit transaction. The
transactionNamemust correspond to the transactionName in any

transactionName

pub.art.transaction:rollbackTransaction or pub.art.transaction:commitTransaction services
associated with the explicit transaction.

338 webMethods Adapter Development Kit Installation and User’s Guide 9.12

B Integration Server Transaction Support

Output Parameters

Document. Document that contains the variable transactionName.startTransactionOutput

String. Used to associate a name with an explicit transaction. The
transactionNamemust correspond to the transactionName in any

transactionName

pub.art.transaction:rollbackTransaction or pub.art.transaction:commitTransaction services
associated with the explicit transaction.

pub.art.transaction:commitTransaction
Commits an explicit transaction. The service must be used in conjunction with the
pub.art.transaction:startTransaction service. If a corresponding pub.art.transaction:startTransaction service is
not provided, then the flow service receives a runtime error.

Input Parameters

Document. Document that contains the variable transactionName.commitTransactionInput

String. Used to associate a name with an explicit transaction. The
transactionNamemust correspond to the transactionName in any

transactionName

pub.art.transaction:startTransaction or pub.art.transaction:rollbackTransaction services
associated with the explicit transaction.

pub.art.transaction:rollbackTransaction
Rolls back an explicit transaction. The service must be used in conjunction with a
pub.art.transaction:startTransaction service. If a corresponding pub.art.transaction:startTransaction service is
not provided, then the flow service receives a runtime error.

Input Parameters

Document. Document that contains the variable transactionName.rollbackTransactionInput

String. Used to associate a name with an explicit transaction. The
transactionNamemust correspond to the transactionName in any

transactionName

WmART.pub.art.transaction:startTransaction or
WmART.pub.art.transaction:commitTransaction services associated with the
explicit transaction.

pub.art.transaction:setTransactionTimeout
Enables you to manually set a transaction timeout interval for implicit and explicit transactions.
The service overrides the Integration Server's transaction timeout interval. For more information

webMethods Adapter Development Kit Installation and User’s Guide 9.12 339

B Integration Server Transaction Support

about changing the Integration Server default transaction timeout, see “Changing the Integration
Servers' Transaction Timeout Interval” on page 340.

Youmust call this service within a flow before the start of any implicit or explicit transactions.
Implicit transactions start when you call an adapter service in a flow. Explicit transactions start
when you call the pub.art.transaction:startTransaction service.

If the execution of a transaction takes longer than the transaction timeout interval, all current
executions associated with the flow are cancelled and rolled back if necessary.

The service only overrides the transaction timeout interval for the flow service in which you
call it.

Input Parameters

Integer. Number of seconds that the implicit or explicit transaction stays open
before the transaction manager aborts it.

timeoutSeconds

Changing the Integration Servers' Transaction Timeout Interval

Configures the maximum number of seconds that a transaction can remain open and still be
considered valid. This transaction timeout parameter does not halt the execution of a flow. Default
value is NO_TIMEOUT.

For example, if a current transaction has a timeout value of 60 seconds and a flow takes 120 seconds
to complete, the transactionmanager rolls back all registered operations regardless of the execution
status.

You can configure the following property on theExtended Settings screen (Settings > Extended)
in Integration Server Administrator:
watt.art.tmgr.timeout=TransactionTimeout

where TransactionTimeout is the number of seconds before transaction timeout.

Restart Integration Server after configuring the property.

Transaction Error Situations

When Integration Server encounters a situation that compromises the transactional integrity, it
throws an error. Such situations include the following:

A transaction includes a resource that only supports local transactions.

If a transaction accesses multiple resources, and more than one of the resources support local
transactions only, then the integrity of the transaction cannot be guaranteed. For example, if
the first resource successfully commits, and the second resource fails to commit, the first
resource interaction cannot be rolled back; it has already been committed. To prevent this,
Integration Server detects this case when connecting to more than one resource that does not

340 webMethods Adapter Development Kit Installation and User’s Guide 9.12

B Integration Server Transaction Support

support two-phase commits, and throws a runtime exception resulting in the failure of the
service execution.

A transactional or non-transactional resource is used in both a parent transaction and a nested
transaction.

This situation is ambiguous, andmost likely means that a nested transaction was not properly
closed.

A parent transaction is closed before its nested transaction.

After a service request has invoked all its services, but before returning results to the caller,
the servicemay commit its work. This commit could fail if the resource is unavailable or rejects
the commit and causes the entire request to fail, and the transaction is rolled back.

Specifying Transaction Support in Connections

Return the appropriate transaction support level in your
WmManagedConnectionFactory.queryTransactionSupportLevel implementation to support transactions in
your adapter.

For local transaction support, override the WmManagedConnection.getLocalTransaction method to
return a javax.resource.spi.LocalTransaction object that is capable of interfacingwith the transactional
capabilities of your resource.

For XA transaction support, override the WmManagedConnection.getXAResourcemethod to return
a javax.transaction.xa.XAResource object that is capable of interfacing with the XA transactional
capabilities of your resource.

Important:
Do not call the super method when you override getLocalTransaction or getXAResource methods.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 341

B Integration Server Transaction Support

342 webMethods Adapter Development Kit Installation and User’s Guide 9.12

B Integration Server Transaction Support

C Using the Services for Managing Namespace

Nodes

■ Overview .. 344

■ Connection Services .. 392

■ Adapter Service Services ... 402

■ Listener Services .. 410

■ Listener Notification Services ... 418

■ Polling Notification Services ... 430

webMethods Adapter Development Kit Installation and User’s Guide 9.12 343

Overview

The ADK provides a set of auxiliary Java services that you can use to replicate namespace nodes
programmatically and to change the nodes' metadata appropriately when deploying an adapter
to a different Integration Server. It provides services for connections, adapter services, listeners,
listener notifications, and polling notifications.

Connection Services

These services are located in the WmART.wm.art.dev.connection package.

DescriptionService

Creates a new connection node in the specified
package and folder.

wm.art.dev.connection:createConnectionNode

Removes the specified connection node.wm.art.dev.connection:deleteConnectionNode

Returns the connection manager metadata
properties that are predefined for all connections.

wm.art.dev.connection:fetchConnectionManagerMetadata

Queries the connection factory and returns the
metadata for all properties supported by
connections of the specified type.

wm.art.dev.connection:fetchConnectionMetadata

Alters the values of an existing connection.wm.art.dev.connection:updateConnectionNode

wm.art.dev.connection:createConnectionNode

This service creates a new connection node in the specified package and folder, and initializes the
connection in a disabled state.

You must perform the following steps to populate the input pipeline:

1. Usewm.art.dev.connection:fetchConnectionManagerMetadata service to identify the supported connection
manager properties and configure the connectionManagerSettings input parameter.

All connection manager properties have default values.

The default value is set in the defaultValuemetadata attribute.

You can use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

The connection manager properties may be optional or a required property.

344 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.connection:createConnectionNode service
throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The poolable connection manager property is always required.

The remaining connection manager properties depend on the value of poolable property.

If poolable is set to true, then the remaining connection manager properties must be
assigned values as well.

If poolable is set to false, you may omit the remaining connection manager properties.

2. Use wm.art.dev.connection:fetchConnectionMetada service to identify the connection-specific properties
and configure the connectionSettings input parameter.

Connection-specific properties may or may not have default values, depending on the
specific adapter's implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a connection specific property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Connection-specific properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.connection:createConnectionNode service
throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

3. Enable the connection using the pub.art.connection:enableConnection service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 345

C Using the Services for Managing Namespace Nodes

The resource domains registered by the connection factories are set in the connection's properties
according to the interdependencies between the resource domains. Knowledge of these
interdependencies is adapter-specific, and beyond the scope of this service. This service does not
interpret resource domains.

Input Parameters

DescriptionName

String. Required. Name of the connection in the format: folder:node.connectionAlias

String. Required. Package where the connection is installed.packageName

String. Required. Name of the adapter. Same as the value returned by
calling WmAdapter.getAdapterName method.

adapterTypeName

String. Required. Fully qualified path of the connection factory
implementation class.

connectionFactoryType

IData. Required. Structure for passing connection'smanager property
values. The connection's manager property are predefined for all
connections

connectionManagerSettings

Boolean. Required. Determines whether
to pool the connection.

poolable

Note:
If poolable is false, then the following
property values are not used:

minimumPoolSize
maximumPoolSize
poolIncrementSize
blockingTimeout
expireTimeout

Integer.Minimumnumber of connections
retained in the pool.

minimumPoolSize

Integer. Maximum number of
connections retained in the pool.

maximumPoolSize

Integer. Number of connections to add
to the pool when additional connections

poolIncrementSize

are needed without exceeding the
maximumPoolSize value.

Integer. Milliseconds to wait for a
connection.

blockingTimeout

346 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

Integer. Milliseconds of inactivity that
may elapse prior to destroying the
connection.

expireTimeout

IData Required. Structure for passing a connection's property values.
The actual connection properties and their underlying data types vary

connectionSettings

from adapter to adapter. You must set a connection property's value
in accordancewith its data type. To determine the value, call the service
wm.art.dev.connection:fetchConnectionMetadata and note the parameterType
attribute for that property.

String. Internal name of the property.systemName

For more information about the predefined connection manager properties, see
wm.art.dev.connection:fetchConnectionManagerMetadata

For more information about the adapter-specific connection properties, see
wm.art.dev.connection:fetchConnectionMetadata

Output Parameters

None.

Example

You must construct connectionManagerSettings and connectionSettings to create a connection node.
The value of property's systemName is the internal name of the property. When constructing the
connectionSettings input parameters, use this internal name as the key for setting a property's value.
For example, if a connection defines a property named hostPort, then its systemName returned by
wm.art.dev.connection:fetchConnectionMetadata service is hostPort. If the caller is a Java application, it
might then use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData connSettings = IDataFactory.create();
IDataCursor connCursor = connSettings.getCursor();
connCursor.insertAfter("hostPort", new Integer(1234));
.
.
.
pipeCursor.insertAfter("connectionSettings", connSettings);
.
.
.

In this example, the hostPort property takes a java.lang.Integer value.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 347

C Using the Services for Managing Namespace Nodes

wm.art.dev.connection:deleteConnectionNode

This service deletes the specified connection node.

You must disable the connection node before you delete it, using the
pub.art.connection:disableConnection service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The delete action is immediate and non-reversible, and returns no output data.

You may assume that the service completed successfully if it does not throw a checked
exception.

Input Parameters

DescriptionName

String. Required. Name of the connection in the format: folder:node.connectionAlias

Output Parameters

None.

wm.art.dev.connection:fetchConnectionManagerMetadata

This service fetches the connectionmanager properties that are predefined for all the connections,
such as poolable, minimumPoolSize, maximumPoolSize, and others.

This service receives no inputs and returns an array of connectionManagerProperties structure. The
connectionManagerProperties structure contains all metadata associatedwith each of the connection
manager properties such as systemName, parameterType, defaultValue, and isRequired attributes,
which you can use to configure a connection node.

Input Parameters

None.

Output Parameters

DescriptionName

IData. Required. An n-dimensioned array of connectionmanager
properties.

connectionManagerProperties[n]

String. Required. Internal property name.
Values are:

systemName

348 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

poolable

minimumPoolSize

maximumPoolSize

poolIncrementSize

blockingTimeout

expireTimeout

String. Required. External property name
displayed.

displayName

String. Required. Description of the property.description

String. Required. Data type of the property.parameterType

The following Java data types are
supported for connections: char, short,
int, long, float, double, boolean,
java.lang.String, java.lang.Character,
java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Boolean.

Arrays are not supported.

String. Not applicable to connection manager
properties.

groupURL

String. Not applicable to connection manager
properties.

groupName

String. Not applicable to connection manager
properties.

tupleName

String. Not applicable to connection manager
properties.

treeName

String. Not applicable to connection manager
properties.

treeDelimiter

String. Not applicable to connection manager
properties.

resourceDomain

String. Default value of the property.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

webMethods Adapter Development Kit Installation and User’s Guide 9.12 349

C Using the Services for Managing Namespace Nodes

wm.art.dev.connection:fetchConnectionMetadata

This service fetches the adapter-specific properties.

This service receives an adapter type name and a fully qualified connection factory class path,
queries the connection factory and returns the metadata for all properties supported by the
connections of that type.

Input Parameters

DescriptionName

String. Required. Name of adapter. Same as the value returned by
WmAdapter.getAdapterName method.

adapterTypeName

String. Required. Fully qualified path of the connection factory
implementation class.

connectionFactoryType

Output Parameters

The service returns a connectionProperties array containing all metadata associated with each of
the connection properties. You can use the following attributes to configure a connection node:
systemName, parameterType, defaultValue, and isRequired.

DescriptionName

String. Required. Adapter specific property name. Same as the value
returned by WmDescriptor.getDisplayName method.

displayName

String. Required. Adapter specific property description. Same as the value
returned by WmDescriptor.getDescription method.

description

String. Required. URL of online help page for the connection.templateURL

IData[]. Required. An n-dimensioned array of properties.connectionProperties[n]

String. Required. Adapter specific internal
property name.

systemName

String. Required. External property name
displayed.

displayName

String. Required. Description of the property.description

String. Required. Data type of the property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,

350 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group towhich the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name to which the
property belongs.

resourceDomain

String. Default property value.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifies whether the editors must
pre-fill the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifieswhether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

webMethods Adapter Development Kit Installation and User’s Guide 9.12 351

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Specifieswhether the property is available
for use.

useParam

Example

For example, a Java client might invoke this service as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
pipeCursor.insertAfter("adapterTypeName",
"FooAdapter");
pipeCursor.insertAfter("connectionFactoryType",

"com.wm.adapters.FooConnFactory");
ExtendedConnectionUtils.fetchConnectionMetadata(pipeline);
.
.
.

wm.art.dev.connection:updateConnectionNode

This service updates the values of an existing connection.

You must disable the connection node before you update it, using the
pub.art.connection:disableConnection service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

You must perform the following steps to populate the input pipeline:

1. Usewm.art.dev.connection:fetchConnectionManagerMetadata service to identify the supported connection
manager properties and configure the connectionManagerSettings input parameter.

2. Use wm.art.dev.connection:fetchConnectionMetadata service to identify the connection-specific
properties and configure the connectionSettings input parameter.

3. Provide values for the properties you want to change.

This service attempts to overlay these new values on the connection's current property values.
The resulting set of merged property values are used to reconfigure the connection.

If you are not changing any connection manager or connection-specific properties, it is not
necessary to pass in that container parameter. For example, if you are not changing any
connection manager properties, you must not build and pass in the connectionManagerSettings
parameter.

4. If you are providing explicit property values in connectionManagerSettings and connectionSettings
parameter, then the values must conform to the underlying data types of those properties.

For an example of setting a connection property, see the Java code example in
wm.art.dev.connection:createConnectionNode.

352 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of the connection in the format: folder:node.connectionAlias

IData. Required. Structure for passing connection'smanager property
values. The connection's manager property are predefined for all
connections.

connectionManagerSettings

Boolean. Required. Determines whether
to pool the connection.

poolable

Note:
If poolable is false, then the following
property values are not used:

minimumPoolSize
maximumPoolSize
poolIncrementSize
blockingTimeout
expireTimeout

Integer. Minimumnumber of connections
retained in the pool.

minimumPoolSize

Integer.Maximumnumber of connections
retained in the pool.

maximumPoolSize

Integer. Number of connections to add to
the pool when additional connections are

poolIncrementSize

needed and must not exceed
maximumPoolSize.

Integer. Milliseconds to wait for a
connection.

blockingTimeout

Integer.Milliseconds of inactivity thatmay
elapse prior to destroying the connection.

expireTimeout

IData. Required. Structure for passing a connection's property values.
The actual connection properties and their underlying data types vary

connectionSettings

from adapter to adapter. You must set a connection property's value
in accordancewith its data type. To determine the value, call the service
wm.art.dev.connection:fetchConnectionMetadata and note the parameterType
attribute for that property.

String. Internal name of the property.systemName

For more information about the predefined connection manager properties, see
wm.art.dev.connection:fetchConnectionManagerMetadata

webMethods Adapter Development Kit Installation and User’s Guide 9.12 353

C Using the Services for Managing Namespace Nodes

For more information about the adapter-specific connection properties, see
wm.art.dev.connection:fetchConnectionMetadata

Output Parameters

None.

Adapter Service Services

These services are located in the WmART.wm.art.dev.service package.

DescriptionService

Creates a new adapter service node in the
specified package and folder from the specified
service template and connection alias.

wm.art.dev.service:createAdapterServiceNode

Removes a specified adapter service node.wm.art.dev.service:deleteAdapterServiceNode

Returns all metadata for a specified adapter
service template.

wm.art.dev.service:fetchAdapterServiceTemplateMetadata

Alters the values of an existing adapter service.wm.art.dev.service:updateAdapterServiceNode

wm.art.dev.service:createAdapterServiceNode

This service creates a new adapter service node in the specified package and folder from the
specified service template and connection alias.

You must perform the following steps to populate the input pipeline:

1. Use wm.art.dev.service:fetchAdapterServiceTemplateMetadata service to identify the supported service
template properties and configure the adapterServiceSettings input parameter.

The service's inputFieldNames, inputFieldTypes, outputFieldNames, and outputFieldTypes
parameters in the adapterServiceSettings structure define the properties that comprise the
adapter service's input and output signatures.

The data types of properties in the adapterServiceSettings structure are arrays of java.lang.String
type.

A one-to-one correspondence exists between the elements in the *FieldNames and *FieldTypes
arrays. For example, if the property names abc, xyz, and foo are inserted into the
outputFieldNames parameter, then the service expects that exactly three data types will be
inserted into outputFieldTypes, and that those data types correspond to the same element
in outputFieldNames.

Adapter service properties may or may not have default values, depending on the specific
adapter's implementation.

354 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Adapter service properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.service:createAdapterServiceNode service
throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

The resource domains registered by the adapter service template are set in the adapter service's
properties according to the interdependencies between the resource domains. This includes input
and output signatures since they are supported through resource domains. This service provides
the properties inputFieldNames, inputFieldTypes, outputFieldNames, and outputFieldTypes for this
purpose. Knowledge of these interdependencies is adapter-specific, and beyond the scope of this
service. This service does not interpret resource domains.

Input Parameters

DescriptionName

String. Required.Namespace name of the newadapter service in the format:
folder:node.

serviceName

String. Required. Package in which to install the adapter service.packageName

String. Required. Namespace name of the connection in the format:
folder:node.

connectionAlias

String. Required. Fully qualified pathname of the adapter service template
class.

serviceTemplate

IData. Required. Structure for passing the adapter's property values.adapterServiceSettings

String. Required. Adapter service specific internal
property name.

systemName

webMethods Adapter Development Kit Installation and User’s Guide 9.12 355

C Using the Services for Managing Namespace Nodes

DescriptionName

String[]. Names of the fields used in the adapter's
input signature.

inputFieldNames

String[]. Data types of the fields used in the
adapter's input signature.

inputFieldTypes

Note:

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean,
java.lang.String, java.lang.Character,
java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Boolean.
Arrays are supported.

String[]. Names of the fields used in the adapter's
output signature.

outputFieldNames

String[]. Data types of the fields used in the
adapter's output signature.

outputFieldTypes

Note:

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean,
java.lang.String, java.lang.Character,
java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Boolean.
Arrays are supported.

Output Parameters

None.

Example

Youmust construct adapterServiceSettings to create an adapter service node. The value of a property's
systemName is the internal name of the property. When constructing the input parameter
adapterServiceSettings, you must use this internal name as the key for setting a property's value.
For example, if a service template defines a property named sqlCommand, then its systemName as
returned by fetchAdapterServiceTemplateMetadata service is sqlCommand. If the caller is a Java application,
it might then use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();

356 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

.

.

.
IData svcSettings = IDataFactory.create();
IDataCursor svcCursor = svcSettings.getCursor();
svcCursor.insertAfter("sqlCommand", "SELECT * FROM fooTable");
.
.
.
pipeCursor.insertAfter("adapterServiceSettings", svcSettings);
.
.
.

In this example, the sqlCommand property takes a java.lang.String value.

wm.art.dev.service:deleteAdapterServiceNode

This service deletes the specified adapter service node.

The delete action is immediate and non-reversible, and returns no output data.

You may assume that the service completed successfully if it does not throw a checked
exception.

Input Parameters

DescriptionName

String. Required. Name of the adapter service in the format: folder:node.serviceName

Output Parameters

None.

wm.art.dev.service:fetchAdapterServiceTemplateMetadata

This service fetches all metadata for an adapter service template for a specified connection alias
and adapter service template class path.

This service receives a connection and a fully qualified adapter service template class path, and
returns the metadata for all properties supported by the adapter service template.

This service returns an array of templateProperties structure each containing attributes such as
systemName, parameterType, defaultValue, and isRequired.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 357

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of the connection in the format: folder:node.connectionAlias

String. Required. Fully qualified pathname of the adapter service template class.serviceTemplate

Output Parameters

DescriptionName

String. Required. Adapter service template description. Same as the value
returned by WmDescriptor.getDisplayName method.

description

String. Required. Adapter service template name displayed. Same as the
value returned by WmDescriptor.getDescription method.

displayName

String. Required. URL of the online help page for the adapter service.templateURL

IData[]. Required. An i-dimensioned array of field maps.indexMaps[i]

String. Field map name.mapName

Boolean. Specifies whether the field map is of
variable length.

isVariable

Boolean. Disables all the buttons used for
appending the rows for a fieldmap in theAdapter
Service Editor.

disableAppendAll

IData. Required. An n-dimensioned array of properties.templateProperties[n]

String Required. Internal property name.systemName

String Required. External property name.displayName

String Required. Description of the property.description

String Required. Data type of property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

358 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

String. URL of the group's help page.groupURL

String. Name of the group to which the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name and dependencies.resourceDomain

String. Property name for which values are
displayed in the tree structure for selection.

treeView

String. Default value of the property.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifieswhether the editorsmust pre-fill
the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifieswhether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Upper bound of the sequence.maxSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

String. Specifieswhether the property is available
for use.

useParam

webMethods Adapter Development Kit Installation and User’s Guide 9.12 359

C Using the Services for Managing Namespace Nodes

wm.art.dev.service:updateAdapterServiceNode

This service updates an existing adapter service node.

You must perform the following steps to populate the input pipeline:

1. Use wm.art.dev.service:fetchAdapterServiceTemplateMetadata service to identify the supported service
template properties and configure the adapterServiceSettings input parameter.

The value of the systemNamemetadata attribute is the internal name of a property. Use this
internal name as the key for setting a property's value when constructing the
adapterServiceSettings input parameter.

2. Set only those properties that you want to change.

This service attempts to overlay these new values on the adapter service's current property
values. The resulting set ofmerged property values are used to reconfigure the adapter service.

3. Update the properties depending on the data type.

If a property's data type is non-primitive (derived from java.lang.Object), you may clear a
property's current value by setting its value to null.

If a property's data type is Java primitive, then the property value cannot be cleared;
however the property can be updated.

4. If you are providing explicit property values in the adapterServiceSettings parameter, then the
values must conform to the underlying data types of those properties.

5. Change the connection resource that the adapter service uses by providing a new connectionAlias
input parameter.

If you omit the connectionAliasparameter, the adapter servicewill continue to use its current
connection resource.

If you are changing only the connection resource, it is not necessary to provide the
adapterServiceSettings input parameter.

The resource domains registered by the adapter service template are set in the adapter service's
properties according to the interdependencies between the resource domains. This includes input
and output signatures since they are supported through resource domains. This service provides
the properties inputFieldNames, inputFieldTypes, outputFieldNames, and outputFieldTypes for this
purpose. Knowledge of these interdependencies is adapter-specific, and beyond the scope of this
service. This service does not interpret resource domains.

For an example of setting an adapter service property, see the Java code example in
wm.art.dev.service:createAdapterServiceNode.

360 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of the existing adapter service in the format:
folder:node.

serviceName

String. Required. Name of the connection in the format: folder:node.connectionAlias

IData. Required. Structure for passing the adapter's property values.adapterServiceSettings

String. Required. Adapter service specific internal
property name.

systemName

String[]. Names of the fields used in the adapter's
input signature.

inputFieldNames

String[]. Data types of the fields used in the adapter's
input signature.

inputFieldTypes

The following Java data types are supported for
connections: char, short, int, long, float,
double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are supported.

String[]. Names of the fields used in the adapter's
output signature.

outputFieldNames

String[]. Data types of the fields used in the adapter's
output signature.

outputFieldTypes

The following Java data types are supported for
connections: char, short, int, long, float,
double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are supported.

Output Parameters

None.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 361

C Using the Services for Managing Namespace Nodes

Listener Services

These services are located in the WmART.wm.art.dev.listener package.

DescriptionService

Logs the data for listeners.wm.art.dev.listener:analyzeListenerNodes

Creates a new instance of a listener in the specified
package and folder from the specified listener
template and connection alias.

wm.art.dev.listener:createListenerNode

Removes a specified instance of a listener.wm.art.dev.listener:deleteListenerNode

Returns all metadata supported by that listener
template.

wm.art.dev.listener:fetchListenerTemplateMetadata

Alters the values of an existing listener.wm.art.dev.listener:updateListenerNode

Checks the registration of listener notifications.wm.art.dev.listener:updateRegisteredNotifications

wm.art.dev.listener:analyzeListenerNodes

This service logs the data for listeners in the server log file. The data includes the names of associated
listener notifications, the class name of listener notifications, their status (active or disabled), and
whether the associated listener notification is linked with the same listener or not.

Note:
A listener can be used bymultiple listener notifications, but a listener notificationwill have only
one listener node.

Input Parameters

None.

Output Parameters

None.

wm.art.dev.listener:createListenerNode

This service creates a new listener node in the specified package and folder from the specified
listener template and connection alias, and initializes the new listener in a disabled state.

You must perform the following steps to populate the input pipeline:

1. Usewm.art.dev.service:fetchListenerTemplateMetadata service to identify the supported listener template
properties and configure the listenerSettings input parameter.

362 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Listener propertiesmay ormay not have default values, depending on the specific adapter's
implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Listener properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.listener:createListenerNode service throws
an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

2. Activate the listener using the pub.art.listener:enableListener service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The resource domains registered by the listener service template are set in the listener's properties
according to the interdependencies between the resource domains. Knowledge of these
interdependencies is adapter-specific, and beyond the scope of this service. This service does not
interpret resource domains.

Input Parameters

DescriptionName

String. Required. Name of the listener in the format: folder:node.listenerName

String. Required. Package where the listener is installed.packageName

String. Required. Name of the connection in the format: folder:node.connectionAlias

String. Required. Fully qualified pathname of the listener template class.listenerTemplate

IData. Required. Structure for passing the listener's property values.listenerSettings

webMethods Adapter Development Kit Installation and User’s Guide 9.12 363

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Required. Internal name of the property.systemName

The following Java data types are supported for
connections: char, short, int, long, float,
double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

String. Required. Number of times that the system
must attempt to start the listener if the initial attempt
fails.

retryLimit

String. Required.Number of seconds the systemmust
wait between each attempt to start the listener. This
field is irrelevant if the value of Retry Limit is 0.

retryBackoffTimeout

Output Parameters

None.

Example

You must construct listenerSettings to create a listener node. The value of a property's systemName
is the internal name of the property. When constructing the input parameter listenerSettings, you
must use this internal name as the key for setting a property's value. For example, if a listener
template defines a property named portNumber, then its systemName as returned by
wm.art.dev.listener:fetchListenerTemplateMetadata service is portNumber. If the caller is a Java application,
it might then use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData lstnrSettings = IDataFactory.create();
IDataCursor lstnrCursor = lstnrSettings.getCursor();
lstnrCursor.insertAfter("portNumber", new Integer((int)8888));
.
.
.
pipeCursor.insertAfter("listenerSettings", lstnrSettings);
.
.
.

In this example, the portNumber property takes a java.lang.Integer value.

364 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

wm.art.dev.listener:deleteListenerNode

This service deletes a specified listener node.

You must disable the listener node before you delete it, using the pub.art.listener:disableListener
service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The delete action is immediate and non-reversible, and returns no output data.

You may assume that the service completed successfully if it does not throw a checked
exception.

Input Parameters

DescriptionName

String. Required. Name of the listener in the format: folder:node.listenerName

Output Parameters

None.

wm.art.dev.listener:fetchListenerTemplateMetadata

This service fetches allmetadata supported by the listener template for a specified connection alias
and listener template class path.

This service takes a valid connection alias and listener template class path, and returns an array
of templateProperties structure each containing attributes such as systemName, parameterType,
defaultValue, and isRequired.

Input Parameters

DescriptionName

String. Required. Name of an existing connection in the format: folder:node.connectionAlias

String. Required. Fully qualified pathname of listener template class.listenerTemplate

webMethods Adapter Development Kit Installation and User’s Guide 9.12 365

C Using the Services for Managing Namespace Nodes

Output Parameters

DescriptionName

String. Required. Listener template description. Same as the value returned
by WmDescriptor.getDisplayName method.

description

String. Required. Listener template name displayed. Same as the value
returned by WmDescriptor.getDescription method.

displayName

String. Default template metadatalistAllConnection

String. Required. URL of the online help page for the listener.templateURL

Boolean. Specifies whether the listener requires a connection.requiresConnection

IData[]. Required. An i-dimensioned array of field maps.indexMaps[i]

String. Field map name.mapName

Boolean. Specifies whether the field map is
variable length.

isVariable

Boolean. Disables all the buttons used for
appending the rows for a fieldmap in theAdapter
Service Editor.

disableAppendAll

IData[]. Required. An n-dimensioned array of properties.templateProperties[n]

String. Required. Internal property name.systemName

String. Required. External displayable property
name.

displayName

String. Required. Description of the property.description

String. Required. Data type of property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group to which the property
belongs.

groupName

366 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name to which the
property belongs.

resourceDomain

String. Property name for which values are
displayed in the tree structure for selection.

treeView

String. Default value of the property.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifies whether the editors should
pre-fill the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifieswhether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Upper bound of the sequence.maxSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

String. Specifieswhether the property is available
for use.

useParam

wm.art.dev.listener:updateListenerNode

This service updates an existing listener node.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 367

C Using the Services for Managing Namespace Nodes

Youmust disable the listener before updating its properties, using the pub.art.listener:disableListener
service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

You must perform the following steps to populate the input pipeline:

1. Usewm.art.dev.listener:fetchListenerTemplateMetadata service to identify the supported service template
properties and configure the listenerSettings input parameter.

The value of the systemNamemetadata attribute is the internal name of a property. Use this
internal name as the key for setting a property's value when constructing the input
parameter listenerSettings.

2. Set only those properties that you want to change.

Note:
This service attempts to overlay these new values on the listener's current property values.
The resulting set of merged property values are used to reconfigure the listener.

3. Update the property depending on the data type.

If a property's data type is non-primitive (derived from java.lang.Object), you may clear a
property's current value by setting its value to null.

If a property's data type is Java primitive, then the property value cannot be cleared;
however the property can be updated.

4. If you are providing explicit property values in listenerSettingsparameter, then the valuesmust
conform to the underlying data types of those properties.

5. Change the connection resource that the listener uses by providing a new connectionAlias input
parameter.

If you omit the connectionAliasparameter, the listener continues to use its current connection
resource.

If you are changing only the connection resource, it is not necessary to provide the
listenerSettings input parameter.

The resource domains registered by the listener templates are set in the listener's properties
according to the interdependencies between the resource domains. Knowledge of these
interdependencies is adapter-specific, and beyond the scope of this service. This service does not
interpret resource domains.

For an example of setting an listener property, see the Java code example in
wm.art.dev.listener:createListenerNode.

368 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of an existing listener in the format: folder:node.listenerName

String. Required. Name of the connection in the format: folder:node.connectionAlias

IData. Required. Structure for passing the listener's property values.listenerSettings

String. Required. Internal property name.systemName

The following Java data types are supported for
connections: char, short, int, long, float,
double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. Required.Number of times that the systemmust
attempt to start the listener if the initial attempt fails.

retryLimit

String. Required. Number of seconds the system must
wait between each attempt to start the listener. This field
is irrelevant if the value of Retry Limit is 0.

retryBackoffTimeout

Output Parameters

None.

wm.art.dev.listener:updateRegisteredNotifications

This service checks listener notifications, finds the linked listener, and then checks whether the
listener notification is also registered for the same listener or not. If not, then the service registers
the listener notification with the linked listener.

Note:
A listener can be used by multiple listener notifications, but a listener notification has only one
listener node.

Input Parameters

DescriptionName

String. Specifies the name of the WmART-based listener for which the
notifications must be updated.

listenerNodeName

webMethods Adapter Development Kit Installation and User’s Guide 9.12 369

C Using the Services for Managing Namespace Nodes

DescriptionName

Specify the listener node name to update a specific listener.

Specify * to update all the WmART-based listeners .

Output Parameters

None.

Listener Notification Services

These services are located in the WmART.wm.art.dev.notification package.

DescriptionService

Logs the data for listener notifications.wm.art.dev.notification:analyzeListenerNotifications

Creates a new instance of a synchronous
or asynchronous listener notification in

wm.art.dev.notification:createListenerNotificationNode

the specified package and folder from the
specified notification template and
connection alias.

Removes a specified instance of listener
notification.

wm.art.dev.notification:deleteListenerNotificationNode

Returns all metadata for a specified
listener notification template.

wm.art.dev.notification:fetchListenerNotificationTemplateMetadata

Alters the values of an existing
synchronous or asynchronous listener
notification.

wm.art.dev.notification:updateListenerNotificationNode

wm.art.dev.notification:analyzeListenerNotifications

This service logs the data for listener notifications. The data includes the name of a listener to
which a listener notification is linked, and the class name of the listener. The service also checks
whether the listener notification is registered with the listener or not.

Note:
A listener can be used bymultiple listener notifications, but a listener notificationwill have only
one listener node.

Input Parameters

None.

370 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Output Parameters

None.

wm.art.dev.notification:createListenerNotificationNode

This service creates a new synchronous or asynchronous listener notification node in the specified
package and folder from the specified notification template and connection alias, and initializes
the listener notification node in a disabled state.

You must perform the following steps to populate the input pipeline:

1. Use wm.art.dev.notification:fetchListenerNotificationTemplateMetadata service to identify the supported
listener notification template properties and configure the notificationSettings input parameter.

Listener notification properties may or may not have default values, depending on the
specific adapter's implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Listener notification properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.notification:createListenerNotificationNode
service throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

2. The particular combination of input parameters you specify determines whether you create a
synchronous or an asynchronous listener notification as described in the section for input
parameters. This service throws an exception if you specify invalid or ambiguous combinations
of input parameters.

3. When an asynchronous listener notification is triggered, Integration Server generates a runtime
publishable output document.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 371

C Using the Services for Managing Namespace Nodes

The names and types of the data fields in the publishable output document is predefined.

Specify the names and types of the data fields in the publishable output document in the
service's publishableRecordDef input parameter.

The publishableRecordDef input parameter consists of fieldNames and fieldTypes properties.

The data types of properties in the publishableRecordDef structure are arrays of java.lang.String
type.

The fieldNames and fieldTypes properties are an array of String.

A one-to-one correspondence exists between the elements in these fieldNames and fieldTypes
arrays.

The values assigned to the fieldNames and fieldTypes properties must correspond to fields
that the listener notification class outputs in its runNotification method.

The service execution may fail if an empty publishableRecordDef is specified.

4. Activate the listener notification node using the pub.art.notification:enableListenerNotification service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

Note:

1. This service does not validate that the fields in the publishable document are actually
generated by the notification.

2. This service creates a publishable document node in a notificationNamePublishDocument
folder where notificationName is the value you specify for the notificationName input
parameter. The name of publishable document is not configurable.

The resource domains registered by the listener notification templates are set in the listener
notification's properties according to the interdependencies between the resource domains.
Knowledge of these interdependencies is adapter-specific, and beyond the scope of this service.
This service does not interpret resource domains.

Note:

1. Synchronous listener notification classes must extend the WmSyncListenerNotification class.
2. Asynchronous listener notifications must extend the WmAsyncListenerNotification class.

Input Parameters

DescriptionName

String. Required.Name of the listener notification in the format: folder:node.notificationName

String. Required. Package where the listener notification is installed.packageName

String. Required. Name of the listener in the format: folder:node.listenerNode

372 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Required. Fully qualified pathname of the listener notification
template class.

notificationTemplate

IData. Required. Structure for passing the listener notification's property
values.

notificationSettings

String. Required. Internal name of the property.systemName

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean,
java.lang.String, java.lang.Character,
java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Boolean.

Arrays of all the above data types are also
supported.

Properties applicable to synchronous listener notifications only

String. Required. Name of the service to invoke in the format: folder:node.
This parameter must not be null.

serviceName

IData. Structure to identify whether a service defined in serviceName is
invoked or a document is published.

executionMode

String. Possible values are:mode

publishAndWait. Publish the document and
wait for the response.

invokeService. Invoke the service defined
in serviceName parameter.

Boolean. Enables publishing the document
locally.

local

String. Time in millisecond to wait for the
response in an synchronous listener notification.

waitTime

IData. Structure specifying the JMS setting.jmsSettings

Boolean. Specifies whether the document is
published to a JMS provider.

isJMSConfigured

String. Required. Connection name of the JMS
provider. This field is relevant if the value of
isJMSConfigured is true.

ConnectionAliasName

webMethods Adapter Development Kit Installation and User’s Guide 9.12 373

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Required.Name of the destinationwhere
the document is published. This field is relevant
if the value of isJMSConfigured is true.

DestinationName

String. Required. Type of destinationwhere the
document is published. Possible values are:

DestinationType

Queue

Topic

This field is relevant if the value of
isJMSConfigured is true.

IData. Required. Structure specifying the definition of the request document
sent to serviceName. This parameter must not be null, but may be empty.
This property contains the following fields:

requestRecordDef

String[]. Names of the fields used in the listener
notification's request document.

fieldNames

String[]. Data types of the fields used in the
listener notification's request document.

fieldTypes

IData. Required. Structure specifying the definition of the reply document
received from serviceName. This parameter must not be null, but may be
empty. This property contains the following fields:

replyRecordDef

String[]. Names of the fields used in the listener
notification's reply document.

fieldNames

String[]. Data types of the fields used in the
listener notification's reply document.

fieldTypes

Properties applicable to asynchronous listener notifications only

IData. Required. Structure specifying the definition of the runtime
publishable output document. This property contains the following fields:

publishableRecordDef

String[]. Names of the fields used in the listener
notification's output document.

fieldNames

String[]. Data types of the fields used in the
listener notification's output document.

fieldTypes

Output Parameters

None.

374 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Example

Youmust construct notificationSettings to create a listener notification node. The value of a property's
systemName is the internal name of the property. When constructing the notificationSettings input
parameter, you must use this internal name as the key for setting a property's value. For example,
if a listener notification template defines a property named foo, then its systemName as returned
by fetchListenerNotificationTemplateMetadata service is foo. If the caller is a Java application, it might then
use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData ntfySettings = IDataFactory.create();
IDataCursor ntfyCursor = ntfySettings.getCursor();
ntfyCursor.insertAfter("foo", "bar");
.
.
.
pipeCursor.insertAfter("notificationSettings",
ntfySettings);
.
.
.

In this example, the foo property takes a java.lang.String value.

wm.art.dev.notification:deleteListenerNotificationNode

This service deletes the specified listener notification node.

You must disable the listener notification node before you delete it, using the
pub.art.notification:disableListenerNotification service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The delete action is immediate and non-reversible, and returns no output data.

Set the cascadeDelete flag to propagate the deletion across the Broker.

You may assume that the service completed successfully if it does not throw a checked
exception.

Input Parameters

DescriptionName

String. Required. Name of the listener notification node in the format:
folder:node.

notificationName

Boolean. Possible values are:cascadeDelete

webMethods Adapter Development Kit Installation and User’s Guide 9.12 375

C Using the Services for Managing Namespace Nodes

DescriptionName

true. Propagates the deletion across the Broker.

false. Default.

Output Parameters

None.

wm.art.dev.notification:fetchListenerNotificationTemplateMetadata

This service fetches all metadata supported by the listener notification template for a specified
connection alias and listener notification template class path.

This service takes a valid listener node and listener notification template class path, and returns
an array of templateProperties structure, each containing attributes such as systemName, parameterType,
defaultValue, and isRequired.

Input Parameters

DescriptionName

String. Required. Name of an existing listener in the format: folder:node.listenerNode

String. Required. Fully qualified pathname of listener notification template
class.

notificationTemplate

Output Parameters

DescriptionName

String. Required. Listener template description. Same as the value returned
by WmDescriptor.getDisplayName method.

description

String. Required. Listener template name displayed. Same as the value
returned by WmDescriptor.getDescription method.

displayName

String. Required. URL of the online help page for the listener.templateURL

IData[]. Required. An i-dimensioned array of field maps.indexMaps[i]

String. Field map name.mapName

Boolean. Specifies whether the field map is
variable length.

isVariable

376 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Disables all the buttons used for
appending the rows for a fieldmap in the Adapter
Service Editor.

disableAppendAll

IData. Required. An n-dimensioned array of properties.templateProperties[n]

String Required. Internal property name.systemName

String Required. External property name
displayed.

displayName

String Required. Property description.description

String Required. Data type of property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group to which the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name to which the
property belongs.

resourceDomain

String. Property name for which values are
displayed in the tree structure for selection.

treeView

String. Default value of the property.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

webMethods Adapter Development Kit Installation and User’s Guide 9.12 377

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifies whether the editors should
pre-fill the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifies whether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Upper bound of the sequence.maxSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

String. Specifies whether the property is available
for use.

useParam

wm.art.dev.notification:updateListenerNotificationNode

This service updates the existing synchronous or asynchronous listener notification node.

You must disable the listener notification node before updating its properties, using the
pub.art.notification:disableListenerNotification service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

You must perform the following steps to populate the input pipeline:

1. Use fetchListenerNotificationTemplateMetadata service to identify the supported service template
properties and configure the listenerNode and notificationSettings input parameter.

The value of the systemNamemetadata attribute is the internal name of a property. Use this
internal name as the key for setting a property's value when constructing the input
parameter notificationSettings.

2. Set only those properties that you want to change.

This service attempts to overlay these new values on the listener notification's current property
values. The resulting set of merged property values are used to reconfigure the listener.

378 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

3. If you are providing explicit property values in notificationSettings parameter, then the values
must conform to the underlying data types of those properties.

4. Change the listener resource that the listener notification uses by providing a new listenerNode
input parameter.

If you omit the listenerNode parameter, the listener notification continues to use its current
listener resource.

If you are changing only the listener resource, it is not necessary to provide the
notificationSettings or any other input parameter.

5. A synchronous listener notification contains three additional input parameters:

a. serviceName. Specifies the node name of a separate service that is invoked by the notification
at runtime. If you omit this parameter, the notifications still retains the current value of
the parameter.

b. requestRecordDef and replyRecordDef. Document record definitions that the notification uses
to format messages when communicating with this service. You can modify either or both
of these definitions.

The requestRecordDef and replyRecordDef input parameters consists of fieldNames and
fieldTypes properties.

The fieldNames and fieldTypes properties are an array of java.lang.String.

A one-to-one correspondence exists between the elements in these fieldNames and fieldTypes
arrays.

Note:
This service cannot verify this assertion. If you configure either record definition incorrectly,
the consequence may not manifest until runtime.

6. An asynchronous listener notification use the following input parameters:

a. publishableRecordDef. Redefine the structure of an asynchronous notification's output
document.

The publishableRecordDef input parameter consists of fieldNames and fieldTypes properties.

The fieldNames and fieldTypes properties are an array of java.lang.String.

A one-to-one correspondence exists between the elements in these fieldNames and fieldTypes
arrays.

The values assigned to the fieldNames and fieldTypes properties must correspond to fields
that the listener notification class outputs in its runNotification method.

Note:
This service cannot verify this assertion. If you configure either record definition incorrectly,
the consequence may not manifest until runtime.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 379

C Using the Services for Managing Namespace Nodes

7. The requestRecordDef, replyRecordDef, and publishableRecordDef input parameters can be replaced
in their entirety. The service does not attempt to merge the values in these parameters with
the notification's current values. For instance, if you want to redefine a synchronous
notification's reply record definition, you must define the entire record in the replyRecordDef
input parameter.

8. The two listenerNode and notificationSettings input parameters apply to both synchronous and
asynchronous listener notifications.

Note:

1. You cannot convert a synchronous notification to an asynchronous notification.
2. Similarly you cannot convert an asynchronous notification to a synchronous notification.

The resource domains registered by the listener notification templates are set in the listener
notification's properties according to the interdependencies between the resource domains.
Knowledge of these interdependencies is adapter-specific, and beyond the scope of this service.
This service does not interpret resource domains.

Input Parameters

DescriptionName

String. Required. Name of the existing listener notification in the format:
folder:node.

notificationName

String. Required. Name of the associated listener in the format: folder:node.listenerNode

IData. Required. Structure for passing the listener notification's property
values.

notificationSettings

String. Required. Internal property name.systemName

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays of all the above data types are also
supported.

Properties applicable to synchronous listener notifications only

String. Required. Name of the service to invoke in the format: folder:node.
This parameter must not be null.

serviceName

IData. Structure to identify whether a service defined in serviceName is
invoked or a document is published.

executionMode

380 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Possible values are:mode

publishAndWait. Publish the document and
wait for the response.

invokeService. Invoke the service defined in
serviceName parameter.

Boolean. Enables publishing the document
locally.

local

String. Time in millisecond to wait for the
response in an synchronous listener notification.

waitTime

IData. Structure specifying the JMS settings.jmsSettings

Boolean. Specifies whether the document is
published to a JMS provider.

isJMSConfigured

String. Required. Connection name of the JMS
provider. This field is relevant if the value of
isJMSConfigured is true.

ConnectionAliasName

String. Required.Name of the destinationwhere
the document is published. This field is relevant
if the value of isJMSConfigured is true.

DestinationName

String. Required. Type of destination where the
document is published. Possible values are:

DestinationType

Queue

Topic

This field is relevant if the value of
isJMSConfigured is true.

IData. Required. Specifies the definition of the request document sent to
serviceName. This parameter must not be null, but may be empty. This
property contains the following fields:

requestRecordDef

String[]. Names of the fields used in the listener
notification's request document.

fieldNames

String[]. Data types of the fields used in the
listener notification's request document.

fieldTypes

IData. Required. Specifies the definition of the reply document received
from serviceName. This parameter must not be null, but may be empty.

replyRecordDef

webMethods Adapter Development Kit Installation and User’s Guide 9.12 381

C Using the Services for Managing Namespace Nodes

DescriptionName

String[]. Names of the fields used in the listener
notification's reply document.

fieldNames

String[]. Data types of the fields used in the
listener notification's reply document.

fieldTypes

Properties applicable to asynchronous listener notifications only

IData. Required. Specifies the definition of the runtime publishable output
document. This property contains the following fields:

publishableRecordDef

String[]. Names of the fields used in the listener
notification's output document.

fieldNames

String[]. Data types of the fields used in the
listener notification's output document.

fieldTypes

Output Parameters

None.

Polling Notification Services

These services are located in the WmART.wm.art.dev.notification package.

DescriptionService

Creates a new instance of a polling
notification in the specified package and

wm.art.dev.notification:createPollingNotificationNode

folder from the specified notification
template and connection alias.

Removes an instance of a specified polling
notification.

wm.art.dev.notification:deletePollingNotificationNode

Returns allmetadata for a specified polling
notification template, and returns any

wm.art.dev.notification:fetchPollingNotificationTemplateMetadata

scheduling properties that are set for the
notification.

Alters the characteristics of an existing
polling notification.

wm.art.dev.notification:updatePollingNotificationNode

wm.art.dev.notification:createPollingNotificationNode

382 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

This service creates a new instance of a polling notification in the specified package and folder
from the specified notification template and connection alias, and initializes the new polling
notification in a disabled state.

You must perform the following steps to populate the input pipeline:

1. Use fetchPollingNotificationTemplateMetadata service to identify the supported polling notification
template properties and configure the input parameter notificationSettings structure.

Polling notification properties may or may not have default values, depending on the
specific adapter's implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Polling notification properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.notification:createPollingNotificationNode
service throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

2. This service creates a publishable document node in a notificationNamePublishDocument folder
where notificationName is the value you specify for the notificationName input parameter. The
name of publishable document is not configurable.

3. When a polling notification is triggered, Integration Server generates a runtime publishable
output document.

The names and types of the data fields in the publishable output document is predefined.

Specify the names and types of the data fields in the publishable output document in the
service's publishableRecordDef input parameter in notificationSettings parameter.

The fieldNamesand fieldTypes properties of publishableRecordDef are an array of String. A
one-to-one correspondence exists between the elements in these two arrays.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 383

C Using the Services for Managing Namespace Nodes

The values assigned to the fieldNames and fieldTypes properties of publishableRecordDefmust
correspond to fields that the notification class outputs in its runNotification method.

The service execution may fail if an empty publishableRecordDef is specified.

5. A newly created polling notification is not assigned a delivery schedule. You must configure
the polling notification's delivery schedule before enabling it. Provide a valid scheduleSettings
input parameter in the call to createPollingNotificationNode or updatePollingNotificationNode service.

6. You can activate the polling notification using the pub.art.notification:enablePollingNotification service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

Note:
This service does not validate that the fields in the publishable document are actually generated
by the notification.

The resource domains registered by the polling notification templates are set in the polling
notification's properties according to the interdependencies between the resource domains.
Knowledge of these interdependencies is adapter-specific, and beyond the scope of this service.
This service does not interpret resource domains.

Input Parameters

DescriptionName

String. Required.Name of the polling notification in the format: folder:node.notificationName

String. Required. Package the polling notification is installed.packageName

String. Required. Name of the connection in the format: folder:node.connectionAlias

String. Required. Fully qualified pathname of the polling notification
template class.

notificationTemplate

IData. Required. Structure for passing the polling notification's property
values.

notificationSettings

String. Required. Internal name of the property.systemName

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays of all the above data types are also
supported.

384 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

IData. Required. Structure for specifying the scheduling properties.scheduleSettings

Integer. Frequency to poll in seconds.notificationInterval

Boolean. Specifies whether notifications can
overlap.

notificationOverlap

Boolean. Specifies whether to invoke the
notification immediately.

notificationImmediate

IData[]. A k-dimensioned array of cluster properties.clusterProperties[k]

String. Required. Internal property namesystemName

String. Required. Data type of the propertyparameterType

IData. Required. Structure for specifying the definition of the runtime
publishable output document.

publishableRecordDef

String[]. Names of the fields used in the polling
notification's output document.

fieldNames

String[]. Data types of the fields used in the
polling notification's output document.

fieldTypes

IData. Structure specifying the JMS setting.jmsSettings

Boolean. Specifies whether the document is
published to a JMS provider.

isJMSConfigured

String. Required. Connection name of the JMS
provider. This field is relevant if the value of
isJMSConfigured is true.

ConnectionAliasName

String. Required. Name of the destinationwhere
the document is published. This field is relevant
if the value of isJMSConfigured is true.

DestinationName

String. Required. Type of destination where the
document is published. Possible values are:

DestinationType

Queue

Topic

This field is relevant if the value of
isJMSConfigured is true.

Output Parameters

None.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 385

C Using the Services for Managing Namespace Nodes

Example

Youmust construct notificationSettings to create a polling notification node. The value of a property's
systemName is the internal name of the property. When constructing the notificationSettings input
parameter, you must use this internal name as the key for setting a property's value. For example,
if a polling notification template defines a property named sqlCommand, then its systemName as
returned by fetchPollingNotificationTemplateMetadata service is sqlCommand. If the caller is a Java
application, it might then use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData ntfySettings = IDataFactory.create();
IDataCursor ntfyCursor = ntfySettings.getCursor();
ntfyCursor.insertAfter("sqlCommand", "SELECT * FROM fooTable");
.
.
.
pipeCursor.insertAfter("notificationSettings", ntfySettings);
.
.
.

In this example, the sqlCommand property takes a java.lang.String value.

wm.art.dev.notification:deletePollingNotificationNode

This service deletes the specified polling notification node. Youmust disable the notification before
deleting it, using the disablePollingNotificationNode service. For more information, see the webMethods
Integration Server Built-In Services Reference for your release.

You must disable the polling notification node before you delete it, using the
pub.art.notification:disablePollingNotificationNode service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The delete action is immediate and non-reversible, and returns no output data.

Set the cascadeDelete flag to propagate the deletion across Broker.

You may assume that the service completed successfully if it does not throw a checked
exception.

This action is immediate and non-reversible, and returns no output data. You may assume that
the service completed successfully if it does not throw a checked exception.

386 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of the polling notification in the format: folder:node.notificationName

Boolean. Boolean. Possible values are:cascadeDelete

true. Propagates the deletion across the Broker.

false. Default.

Output Parameters

None.

wm.art.dev.notification:fetchPollingNotificationTemplateMetadata

This service fetches all metadata supported by the polling notification template, and the scheduling
properties for a specified connection alias and the polling notification template class path.

This service takes a valid connection alias and polling notification template class path, and returns
an array of templateProperties and an array of scheduleProperties structure. Each polling notification
template properties (templateProperties structure) includes systemName, parameterType, defaultValue,
and isRequired attributes, which you can use to configure a new polling notification instance.

Input Parameters

DescriptionName

String. Required. Namespace name of an existing connection in the format:
folder:node.

connectionAlias

String. Required. Fully qualified pathname of the polling notification template
class.

notificationTemplate

Output Parameters

DescriptionName

String. Required. Polling notification template description. Same as the value
returned by WmDescriptor.getDisplayName method.

description

String. Required. Polling notification template name displayed. Same as the
value returned by WmDescriptor.getDescription method.

displayName

String. Required. URL of the online help page for the polling notification.templateURL

webMethods Adapter Development Kit Installation and User’s Guide 9.12 387

C Using the Services for Managing Namespace Nodes

DescriptionName

IData[]. Required. An i-dimensioned array of field maps.indexMaps[i]

String. Field map name.mapName

Boolean. Specifies whether the field map is
variable length.

isVariable

Boolean. Disables all the buttons used for
appending the rows for a fieldmap in theAdapter
Service Editor.

disableAppendAll

IData. Required. An n-dimensioned array of properties.templateProperties[n]

String Required. Internal property name.systemName

String Required. External property name
displayed.

displayName

String Required. Description of the property.description

String Required. Data type of property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group to which the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name to which the
property belongs.

resourceDomain

String. Property name for which values are
displayed in the tree structure for selection.

treeView

String. Default value of the property.defaultValue

388 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifies whether the editors should
pre-fill the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifieswhether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Upper bound of the sequence.maxSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

String. Specifieswhether the property is available
for use.

useParam

IData[]. A j-dimensioned array of scheduling properties.scheduleProperties[j]

String. Required. Internal property namesystemName

String. Required. Data type of the propertyparameterType

IData[]. A k-dimensioned array of cluster properties.clusterProperties[k]

String. Required. Internal property namesystemName

String. Required. Data type of the propertyparameterType

wm.art.dev.notification:updatePollingNotificationNode

This service updates the values of an existing polling notification. Youmust perform the following:

You must disable the polling notification before updating its properties, using the
pub.art.notification:disablePollingNotification service.

You can modify the following items:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 389

C Using the Services for Managing Namespace Nodes

Underlying connection resource used by the notification

Metadata property values

Schedule

Signature of its publishable output document

You must perform the following steps to populate the input pipeline:

1. Use wm.art.dev.notification:fetchPollingNotificationTemplateMetadata service to identify the supported
service template properties and configure the connectionAlias, notificationSettings, scheduleSettings,
and publishableRecordDef input parameter.

2. Configure the connectionAlias, notificationSettings, scheduleSettings input parameters.

3. Set only those properties that you want to change in connectionAlias, notificationSettings,
scheduleSettings input parameters.

This service attempts to overlay these newvalues on the polling notification's current property
values. The resulting set of merged property values are used to reconfigure the polling
notification. For instance, change the connection resource that the polling notification uses by
providing a new connectionAlias input parameter. If you omit this parameter, the polling
notification continues to use the current connection resource. If you are changing only the
connection resource, it is not necessary to provide the notificationSettings,scheduleSettings, or
publishableRecordDef input parameters.

4. If you are providing explicit property values in notificationSettings parameter, then the values
must conform to the underlying data types of those properties.

5. Configuring the publishableRecordDef.

The publishableRecordDef input parameter must be replaced in its entirety. The service does
not attempt to merge the values into the current publishable record definition. .

The fieldNames and fieldTypes properties of publishableRecordDef are an array of String. A
one-to-one correspondence exists between the elements in these two arrays.

The values assigned to the fieldNames and fieldTypes properties of publishableRecordDefmust
correspond to fields that the notification class and the invoked service use to communicate
with each other.

Note:
This service cannot verify this assertion. If you configure either record definition
incorrectly, the consequence may not manifest until runtime.

6. The value of the systemNamemetadata attribute is the internal name of a property. Use this
internal name as the key for setting a property's value when constructing the input parameter
notificationSettings.

7. Update the property depending on the data type.

If a property's data type is non-primitive (derived from java.lang.Object), you may clear a
property's current value by setting its value to null.

390 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

If a property's data type is Java primitive, then the property value cannot be cleared;
however the property can be updated.

The resource domains registered by the polling notification templates are set in the polling
notification's properties according to the interdependencies between the resource domains.
Knowledge of these interdependencies is adapter-specific, and beyond the scope of this service.
This service does not interpret resource domains.

Input Parameters

DescriptionName

String. Required. Namespace name of the existing polling notification in the
format: folder:node.

notificationName

String. Required. Namespace name of the connection in the format:
folder:node.

connectionAlias

IData. Required. Structure for passing the polling notification's property
values.

notificationSettings

String. Required. Internal property name.systemName

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays of all the above data types are also
supported.

IData. Required. Specifies the scheduling properties.scheduleSettings

Integer. Frequency to poll in seconds.notificationInterval

Boolean. Specifies whether notifications can
overlap.

notificationOverlap

Boolean. Specifies whether to invoke the
notification immediately.

notificationImmediate

IData[]. A k-dimensioned
array of cluster
properties.

clusterProperties[k]

String. Required. Internal property namesystemName

String. Required. Data type of the propertyparameterType

webMethods Adapter Development Kit Installation and User’s Guide 9.12 391

C Using the Services for Managing Namespace Nodes

DescriptionName

IData. Required. Specifies the definition of the runtime publishable output
document.

publishableRecordDef

String[]. Names of the fields used in the polling
notification's output document.

fieldNames

String[]. Data types of the fields used in the polling
notification's output document.

fieldTypes

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays of all the above data types are also
supported.

Output Parameters

None.

Connection Services

These services are located in the WmART.wm.art.dev.connection package.

DescriptionService

Creates a new connection node in the specified
package and folder.

wm.art.dev.connection:createConnectionNode

Removes the specified connection node.wm.art.dev.connection:deleteConnectionNode

Returns the connection manager metadata
properties that are predefined for all connections.

wm.art.dev.connection:fetchConnectionManagerMetadata

Queries the connection factory and returns the
metadata for all properties supported by
connections of the specified type.

wm.art.dev.connection:fetchConnectionMetadata

Alters the values of an existing connection.wm.art.dev.connection:updateConnectionNode

392 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

wm.art.dev.connection:createConnectionNode
This service creates a new connection node in the specified package and folder, and initializes the
connection in a disabled state.

You must perform the following steps to populate the input pipeline:

1. Usewm.art.dev.connection:fetchConnectionManagerMetadata service to identify the supported connection
manager properties and configure the connectionManagerSettings input parameter.

All connection manager properties have default values.

The default value is set in the defaultValuemetadata attribute.

You can use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

The connection manager properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.connection:createConnectionNode service
throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The poolable connection manager property is always required.

The remaining connection manager properties depend on the value of poolable property.

If poolable is set to true, then the remaining connection manager properties must be
assigned values as well.

If poolable is set to false, you may omit the remaining connection manager properties.

2. Use wm.art.dev.connection:fetchConnectionMetada service to identify the connection-specific properties
and configure the connectionSettings input parameter.

Connection-specific properties may or may not have default values, depending on the
specific adapter's implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a connection specific property.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 393

C Using the Services for Managing Namespace Nodes

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Connection-specific properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.connection:createConnectionNode service
throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

3. Enable the connection using the pub.art.connection:enableConnection service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The resource domains registered by the connection factories are set in the connection's properties
according to the interdependencies between the resource domains. Knowledge of these
interdependencies is adapter-specific, and beyond the scope of this service. This service does not
interpret resource domains.

Input Parameters

DescriptionName

String. Required. Name of the connection in the format: folder:node.connectionAlias

String. Required. Package where the connection is installed.packageName

String. Required. Name of the adapter. Same as the value returned by
calling WmAdapter.getAdapterName method.

adapterTypeName

String. Required. Fully qualified path of the connection factory
implementation class.

connectionFactoryType

IData. Required. Structure for passing connection'smanager property
values. The connection's manager property are predefined for all
connections

connectionManagerSettings

394 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Required. Determines whether
to pool the connection.

poolable

Note:
If poolable is false, then the following
property values are not used:

minimumPoolSize
maximumPoolSize
poolIncrementSize
blockingTimeout
expireTimeout

Integer.Minimumnumber of connections
retained in the pool.

minimumPoolSize

Integer. Maximum number of
connections retained in the pool.

maximumPoolSize

Integer. Number of connections to add
to the pool when additional connections

poolIncrementSize

are needed without exceeding the
maximumPoolSize value.

Integer. Milliseconds to wait for a
connection.

blockingTimeout

Integer. Milliseconds of inactivity that
may elapse prior to destroying the
connection.

expireTimeout

IData Required. Structure for passing a connection's property values.
The actual connection properties and their underlying data types vary

connectionSettings

from adapter to adapter. You must set a connection property's value
in accordancewith its data type. To determine the value, call the service
wm.art.dev.connection:fetchConnectionMetadata and note the parameterType
attribute for that property.

String. Internal name of the property.systemName

For more information about the predefined connection manager properties, see
wm.art.dev.connection:fetchConnectionManagerMetadata

For more information about the adapter-specific connection properties, see
wm.art.dev.connection:fetchConnectionMetadata

Output Parameters

None.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 395

C Using the Services for Managing Namespace Nodes

Example

You must construct connectionManagerSettings and connectionSettings to create a connection node.
The value of property's systemName is the internal name of the property. When constructing the
connectionSettings input parameters, use this internal name as the key for setting a property's value.
For example, if a connection defines a property named hostPort, then its systemName returned by
wm.art.dev.connection:fetchConnectionMetadata service is hostPort. If the caller is a Java application, it
might then use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData connSettings = IDataFactory.create();
IDataCursor connCursor = connSettings.getCursor();
connCursor.insertAfter("hostPort", new Integer(1234));
.
.
.
pipeCursor.insertAfter("connectionSettings", connSettings);
.
.
.

In this example, the hostPort property takes a java.lang.Integer value.

wm.art.dev.connection:deleteConnectionNode
This service deletes the specified connection node.

You must disable the connection node before you delete it, using the
pub.art.connection:disableConnection service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The delete action is immediate and non-reversible, and returns no output data.

You may assume that the service completed successfully if it does not throw a checked
exception.

Input Parameters

DescriptionName

String. Required. Name of the connection in the format: folder:node.connectionAlias

Output Parameters

None.

396 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

wm.art.dev.connection:fetchConnectionManagerMetadata
This service fetches the connectionmanager properties that are predefined for all the connections,
such as poolable, minimumPoolSize, maximumPoolSize, and others.

This service receives no inputs and returns an array of connectionManagerProperties structure. The
connectionManagerProperties structure contains all metadata associatedwith each of the connection
manager properties such as systemName, parameterType, defaultValue, and isRequired attributes,
which you can use to configure a connection node.

Input Parameters

None.

Output Parameters

DescriptionName

IData. Required. An n-dimensioned array of connectionmanager
properties.

connectionManagerProperties[n]

String. Required. Internal property name.
Values are:

systemName

poolable

minimumPoolSize

maximumPoolSize

poolIncrementSize

blockingTimeout

expireTimeout

String. Required. External property name
displayed.

displayName

String. Required. Description of the property.description

String. Required. Data type of the property.parameterType

The following Java data types are
supported for connections: char, short,
int, long, float, double, boolean,
java.lang.String, java.lang.Character,
java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Boolean.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 397

C Using the Services for Managing Namespace Nodes

DescriptionName

Arrays are not supported.

String. Not applicable to connection manager
properties.

groupURL

String. Not applicable to connection manager
properties.

groupName

String. Not applicable to connection manager
properties.

tupleName

String. Not applicable to connection manager
properties.

treeName

String. Not applicable to connection manager
properties.

treeDelimiter

String. Not applicable to connection manager
properties.

resourceDomain

String. Default value of the property.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

wm.art.dev.connection:fetchConnectionMetadata
This service fetches the adapter-specific properties.

This service receives an adapter type name and a fully qualified connection factory class path,
queries the connection factory and returns the metadata for all properties supported by the
connections of that type.

Input Parameters

DescriptionName

String. Required. Name of adapter. Same as the value returned by
WmAdapter.getAdapterName method.

adapterTypeName

String. Required. Fully qualified path of the connection factory
implementation class.

connectionFactoryType

Output Parameters

The service returns a connectionProperties array containing all metadata associated with each of
the connection properties. You can use the following attributes to configure a connection node:
systemName, parameterType, defaultValue, and isRequired.

398 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Required. Adapter specific property name. Same as the value
returned by WmDescriptor.getDisplayName method.

displayName

String. Required. Adapter specific property description. Same as the value
returned by WmDescriptor.getDescription method.

description

String. Required. URL of online help page for the connection.templateURL

IData[]. Required. An n-dimensioned array of properties.connectionProperties[n]

String. Required. Adapter specific internal
property name.

systemName

String. Required. External property name
displayed.

displayName

String. Required. Description of the property.description

String. Required. Data type of the property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group towhich the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name to which the
property belongs.

resourceDomain

String. Default property value.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

webMethods Adapter Development Kit Installation and User’s Guide 9.12 399

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifies whether the editors must
pre-fill the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifieswhether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

String. Specifieswhether the property is available
for use.

useParam

Example

For example, a Java client might invoke this service as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
pipeCursor.insertAfter("adapterTypeName",
"FooAdapter");
pipeCursor.insertAfter("connectionFactoryType",

"com.wm.adapters.FooConnFactory");
ExtendedConnectionUtils.fetchConnectionMetadata(pipeline);
.
.
.

wm.art.dev.connection:updateConnectionNode
This service updates the values of an existing connection.

You must disable the connection node before you update it, using the
pub.art.connection:disableConnection service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

400 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

You must perform the following steps to populate the input pipeline:

1. Usewm.art.dev.connection:fetchConnectionManagerMetadata service to identify the supported connection
manager properties and configure the connectionManagerSettings input parameter.

2. Use wm.art.dev.connection:fetchConnectionMetadata service to identify the connection-specific
properties and configure the connectionSettings input parameter.

3. Provide values for the properties you want to change.

This service attempts to overlay these new values on the connection's current property values.
The resulting set of merged property values are used to reconfigure the connection.

If you are not changing any connection manager or connection-specific properties, it is not
necessary to pass in that container parameter. For example, if you are not changing any
connection manager properties, you must not build and pass in the connectionManagerSettings
parameter.

4. If you are providing explicit property values in connectionManagerSettings and connectionSettings
parameter, then the values must conform to the underlying data types of those properties.

For an example of setting a connection property, see the Java code example in
wm.art.dev.connection:createConnectionNode.

Input Parameters

DescriptionName

String. Required. Name of the connection in the format: folder:node.connectionAlias

IData. Required. Structure for passing connection'smanager property
values. The connection's manager property are predefined for all
connections.

connectionManagerSettings

Boolean. Required. Determines whether
to pool the connection.

poolable

Note:
If poolable is false, then the following
property values are not used:

minimumPoolSize
maximumPoolSize
poolIncrementSize
blockingTimeout
expireTimeout

Integer. Minimumnumber of connections
retained in the pool.

minimumPoolSize

Integer.Maximumnumber of connections
retained in the pool.

maximumPoolSize

webMethods Adapter Development Kit Installation and User’s Guide 9.12 401

C Using the Services for Managing Namespace Nodes

DescriptionName

Integer. Number of connections to add to
the pool when additional connections are

poolIncrementSize

needed and must not exceed
maximumPoolSize.

Integer. Milliseconds to wait for a
connection.

blockingTimeout

Integer.Milliseconds of inactivity thatmay
elapse prior to destroying the connection.

expireTimeout

IData. Required. Structure for passing a connection's property values.
The actual connection properties and their underlying data types vary

connectionSettings

from adapter to adapter. You must set a connection property's value
in accordancewith its data type. To determine the value, call the service
wm.art.dev.connection:fetchConnectionMetadata and note the parameterType
attribute for that property.

String. Internal name of the property.systemName

For more information about the predefined connection manager properties, see
wm.art.dev.connection:fetchConnectionManagerMetadata

For more information about the adapter-specific connection properties, see
wm.art.dev.connection:fetchConnectionMetadata

Output Parameters

None.

Adapter Service Services

These services are located in the WmART.wm.art.dev.service package.

DescriptionService

Creates a new adapter service node in the
specified package and folder from the specified
service template and connection alias.

wm.art.dev.service:createAdapterServiceNode

Removes a specified adapter service node.wm.art.dev.service:deleteAdapterServiceNode

Returns all metadata for a specified adapter
service template.

wm.art.dev.service:fetchAdapterServiceTemplateMetadata

Alters the values of an existing adapter service.wm.art.dev.service:updateAdapterServiceNode

402 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

wm.art.dev.service:createAdapterServiceNode
This service creates a new adapter service node in the specified package and folder from the
specified service template and connection alias.

You must perform the following steps to populate the input pipeline:

1. Use wm.art.dev.service:fetchAdapterServiceTemplateMetadata service to identify the supported service
template properties and configure the adapterServiceSettings input parameter.

The service's inputFieldNames, inputFieldTypes, outputFieldNames, and outputFieldTypes
parameters in the adapterServiceSettings structure define the properties that comprise the
adapter service's input and output signatures.

The data types of properties in the adapterServiceSettings structure are arrays of java.lang.String
type.

A one-to-one correspondence exists between the elements in the *FieldNames and *FieldTypes
arrays. For example, if the property names abc, xyz, and foo are inserted into the
outputFieldNames parameter, then the service expects that exactly three data types will be
inserted into outputFieldTypes, and that those data types correspond to the same element
in outputFieldNames.

Adapter service properties may or may not have default values, depending on the specific
adapter's implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Adapter service properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.service:createAdapterServiceNode service
throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 403

C Using the Services for Managing Namespace Nodes

The resource domains registered by the adapter service template are set in the adapter service's
properties according to the interdependencies between the resource domains. This includes input
and output signatures since they are supported through resource domains. This service provides
the properties inputFieldNames, inputFieldTypes, outputFieldNames, and outputFieldTypes for this
purpose. Knowledge of these interdependencies is adapter-specific, and beyond the scope of this
service. This service does not interpret resource domains.

Input Parameters

DescriptionName

String. Required.Namespace name of the newadapter service in the format:
folder:node.

serviceName

String. Required. Package in which to install the adapter service.packageName

String. Required. Namespace name of the connection in the format:
folder:node.

connectionAlias

String. Required. Fully qualified pathname of the adapter service template
class.

serviceTemplate

IData. Required. Structure for passing the adapter's property values.adapterServiceSettings

String. Required. Adapter service specific internal
property name.

systemName

String[]. Names of the fields used in the adapter's
input signature.

inputFieldNames

String[]. Data types of the fields used in the
adapter's input signature.

inputFieldTypes

Note:

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean,
java.lang.String, java.lang.Character,
java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Boolean.
Arrays are supported.

String[]. Names of the fields used in the adapter's
output signature.

outputFieldNames

String[]. Data types of the fields used in the
adapter's output signature.

outputFieldTypes

Note:

404 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName
The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean,
java.lang.String, java.lang.Character,
java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Boolean.
Arrays are supported.

Output Parameters

None.

Example

Youmust construct adapterServiceSettings to create an adapter service node. The value of a property's
systemName is the internal name of the property. When constructing the input parameter
adapterServiceSettings, you must use this internal name as the key for setting a property's value.
For example, if a service template defines a property named sqlCommand, then its systemName as
returned by fetchAdapterServiceTemplateMetadata service is sqlCommand. If the caller is a Java application,
it might then use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData svcSettings = IDataFactory.create();
IDataCursor svcCursor = svcSettings.getCursor();
svcCursor.insertAfter("sqlCommand", "SELECT * FROM fooTable");
.
.
.
pipeCursor.insertAfter("adapterServiceSettings", svcSettings);
.
.
.

In this example, the sqlCommand property takes a java.lang.String value.

wm.art.dev.service:deleteAdapterServiceNode
This service deletes the specified adapter service node.

The delete action is immediate and non-reversible, and returns no output data.

You may assume that the service completed successfully if it does not throw a checked
exception.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 405

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of the adapter service in the format: folder:node.serviceName

Output Parameters

None.

wm.art.dev.service:fetchAdapterServiceTemplateMetadata
This service fetches all metadata for an adapter service template for a specified connection alias
and adapter service template class path.

This service receives a connection and a fully qualified adapter service template class path, and
returns the metadata for all properties supported by the adapter service template.

This service returns an array of templateProperties structure each containing attributes such as
systemName, parameterType, defaultValue, and isRequired.

Input Parameters

DescriptionName

String. Required. Name of the connection in the format: folder:node.connectionAlias

String. Required. Fully qualified pathname of the adapter service template class.serviceTemplate

Output Parameters

DescriptionName

String. Required. Adapter service template description. Same as the value
returned by WmDescriptor.getDisplayName method.

description

String. Required. Adapter service template name displayed. Same as the
value returned by WmDescriptor.getDescription method.

displayName

String. Required. URL of the online help page for the adapter service.templateURL

IData[]. Required. An i-dimensioned array of field maps.indexMaps[i]

String. Field map name.mapName

Boolean. Specifies whether the field map is of
variable length.

isVariable

406 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Disables all the buttons used for
appending the rows for a fieldmap in theAdapter
Service Editor.

disableAppendAll

IData. Required. An n-dimensioned array of properties.templateProperties[n]

String Required. Internal property name.systemName

String Required. External property name.displayName

String Required. Description of the property.description

String Required. Data type of property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group to which the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name and dependencies.resourceDomain

String. Property name for which values are
displayed in the tree structure for selection.

treeView

String. Default value of the property.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

webMethods Adapter Development Kit Installation and User’s Guide 9.12 407

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Specifieswhether the editorsmust pre-fill
the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifieswhether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Upper bound of the sequence.maxSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

String. Specifieswhether the property is available
for use.

useParam

wm.art.dev.service:updateAdapterServiceNode
This service updates an existing adapter service node.

You must perform the following steps to populate the input pipeline:

1. Use wm.art.dev.service:fetchAdapterServiceTemplateMetadata service to identify the supported service
template properties and configure the adapterServiceSettings input parameter.

The value of the systemNamemetadata attribute is the internal name of a property. Use this
internal name as the key for setting a property's value when constructing the
adapterServiceSettings input parameter.

2. Set only those properties that you want to change.

This service attempts to overlay these new values on the adapter service's current property
values. The resulting set ofmerged property values are used to reconfigure the adapter service.

3. Update the properties depending on the data type.

If a property's data type is non-primitive (derived from java.lang.Object), you may clear a
property's current value by setting its value to null.

If a property's data type is Java primitive, then the property value cannot be cleared;
however the property can be updated.

4. If you are providing explicit property values in the adapterServiceSettings parameter, then the
values must conform to the underlying data types of those properties.

408 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

5. Change the connection resource that the adapter service uses by providing a new connectionAlias
input parameter.

If you omit the connectionAliasparameter, the adapter servicewill continue to use its current
connection resource.

If you are changing only the connection resource, it is not necessary to provide the
adapterServiceSettings input parameter.

The resource domains registered by the adapter service template are set in the adapter service's
properties according to the interdependencies between the resource domains. This includes input
and output signatures since they are supported through resource domains. This service provides
the properties inputFieldNames, inputFieldTypes, outputFieldNames, and outputFieldTypes for this
purpose. Knowledge of these interdependencies is adapter-specific, and beyond the scope of this
service. This service does not interpret resource domains.

For an example of setting an adapter service property, see the Java code example in
wm.art.dev.service:createAdapterServiceNode.

Input Parameters

DescriptionName

String. Required. Name of the existing adapter service in the format:
folder:node.

serviceName

String. Required. Name of the connection in the format: folder:node.connectionAlias

IData. Required. Structure for passing the adapter's property values.adapterServiceSettings

String. Required. Adapter service specific internal
property name.

systemName

String[]. Names of the fields used in the adapter's
input signature.

inputFieldNames

String[]. Data types of the fields used in the adapter's
input signature.

inputFieldTypes

The following Java data types are supported for
connections: char, short, int, long, float,
double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are supported.

String[]. Names of the fields used in the adapter's
output signature.

outputFieldNames

webMethods Adapter Development Kit Installation and User’s Guide 9.12 409

C Using the Services for Managing Namespace Nodes

DescriptionName

String[]. Data types of the fields used in the adapter's
output signature.

outputFieldTypes

The following Java data types are supported for
connections: char, short, int, long, float,
double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are supported.

Output Parameters

None.

Listener Services

These services are located in the WmART.wm.art.dev.listener package.

DescriptionService

Logs the data for listeners.wm.art.dev.listener:analyzeListenerNodes

Creates a new instance of a listener in the specified
package and folder from the specified listener
template and connection alias.

wm.art.dev.listener:createListenerNode

Removes a specified instance of a listener.wm.art.dev.listener:deleteListenerNode

Returns all metadata supported by that listener
template.

wm.art.dev.listener:fetchListenerTemplateMetadata

Alters the values of an existing listener.wm.art.dev.listener:updateListenerNode

Checks the registration of listener notifications.wm.art.dev.listener:updateRegisteredNotifications

wm.art.dev.listener:analyzeListenerNodes
This service logs the data for listeners in the server log file. The data includes the names of associated
listener notifications, the class name of listener notifications, their status (active or disabled), and
whether the associated listener notification is linked with the same listener or not.

Note:
A listener can be used bymultiple listener notifications, but a listener notificationwill have only
one listener node.

410 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Input Parameters

None.

Output Parameters

None.

wm.art.dev.listener:createListenerNode
This service creates a new listener node in the specified package and folder from the specified
listener template and connection alias, and initializes the new listener in a disabled state.

You must perform the following steps to populate the input pipeline:

1. Usewm.art.dev.service:fetchListenerTemplateMetadata service to identify the supported listener template
properties and configure the listenerSettings input parameter.

Listener propertiesmay ormay not have default values, depending on the specific adapter's
implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Listener properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.listener:createListenerNode service throws
an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

2. Activate the listener using the pub.art.listener:enableListener service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 411

C Using the Services for Managing Namespace Nodes

The resource domains registered by the listener service template are set in the listener's properties
according to the interdependencies between the resource domains. Knowledge of these
interdependencies is adapter-specific, and beyond the scope of this service. This service does not
interpret resource domains.

Input Parameters

DescriptionName

String. Required. Name of the listener in the format: folder:node.listenerName

String. Required. Package where the listener is installed.packageName

String. Required. Name of the connection in the format: folder:node.connectionAlias

String. Required. Fully qualified pathname of the listener template class.listenerTemplate

IData. Required. Structure for passing the listener's property values.listenerSettings

String. Required. Internal name of the property.systemName

The following Java data types are supported for
connections: char, short, int, long, float,
double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

String. Required. Number of times that the system
must attempt to start the listener if the initial attempt
fails.

retryLimit

String. Required.Number of seconds the systemmust
wait between each attempt to start the listener. This
field is irrelevant if the value of Retry Limit is 0.

retryBackoffTimeout

Output Parameters

None.

Example

You must construct listenerSettings to create a listener node. The value of a property's systemName
is the internal name of the property. When constructing the input parameter listenerSettings, you
must use this internal name as the key for setting a property's value. For example, if a listener
template defines a property named portNumber, then its systemName as returned by
wm.art.dev.listener:fetchListenerTemplateMetadata service is portNumber. If the caller is a Java application,
it might then use this information to set this property's value as follows:

412 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData lstnrSettings = IDataFactory.create();
IDataCursor lstnrCursor = lstnrSettings.getCursor();
lstnrCursor.insertAfter("portNumber", new Integer((int)8888));
.
.
.
pipeCursor.insertAfter("listenerSettings", lstnrSettings);
.
.
.

In this example, the portNumber property takes a java.lang.Integer value.

wm.art.dev.listener:deleteListenerNode
This service deletes a specified listener node.

You must disable the listener node before you delete it, using the pub.art.listener:disableListener
service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The delete action is immediate and non-reversible, and returns no output data.

You may assume that the service completed successfully if it does not throw a checked
exception.

Input Parameters

DescriptionName

String. Required. Name of the listener in the format: folder:node.listenerName

Output Parameters

None.

wm.art.dev.listener:fetchListenerTemplateMetadata
This service fetches allmetadata supported by the listener template for a specified connection alias
and listener template class path.

This service takes a valid connection alias and listener template class path, and returns an array
of templateProperties structure each containing attributes such as systemName, parameterType,
defaultValue, and isRequired.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 413

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of an existing connection in the format: folder:node.connectionAlias

String. Required. Fully qualified pathname of listener template class.listenerTemplate

Output Parameters

DescriptionName

String. Required. Listener template description. Same as the value returned
by WmDescriptor.getDisplayName method.

description

String. Required. Listener template name displayed. Same as the value
returned by WmDescriptor.getDescription method.

displayName

String. Default template metadatalistAllConnection

String. Required. URL of the online help page for the listener.templateURL

Boolean. Specifies whether the listener requires a connection.requiresConnection

IData[]. Required. An i-dimensioned array of field maps.indexMaps[i]

String. Field map name.mapName

Boolean. Specifies whether the field map is
variable length.

isVariable

Boolean. Disables all the buttons used for
appending the rows for a fieldmap in theAdapter
Service Editor.

disableAppendAll

IData[]. Required. An n-dimensioned array of properties.templateProperties[n]

String. Required. Internal property name.systemName

String. Required. External displayable property
name.

displayName

String. Required. Description of the property.description

String. Required. Data type of property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,

414 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group to which the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name to which the
property belongs.

resourceDomain

String. Property name for which values are
displayed in the tree structure for selection.

treeView

String. Default value of the property.defaultValue

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifies whether the editors should
pre-fill the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifieswhether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Upper bound of the sequence.maxSeqLength

String. Minimum string length.minStringLength

webMethods Adapter Development Kit Installation and User’s Guide 9.12 415

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Maximum string length.maxStringLength

String. Specifieswhether the property is available
for use.

useParam

wm.art.dev.listener:updateListenerNode
This service updates an existing listener node.

Youmust disable the listener before updating its properties, using the pub.art.listener:disableListener
service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

You must perform the following steps to populate the input pipeline:

1. Usewm.art.dev.listener:fetchListenerTemplateMetadata service to identify the supported service template
properties and configure the listenerSettings input parameter.

The value of the systemNamemetadata attribute is the internal name of a property. Use this
internal name as the key for setting a property's value when constructing the input
parameter listenerSettings.

2. Set only those properties that you want to change.

Note:
This service attempts to overlay these new values on the listener's current property values.
The resulting set of merged property values are used to reconfigure the listener.

3. Update the property depending on the data type.

If a property's data type is non-primitive (derived from java.lang.Object), you may clear a
property's current value by setting its value to null.

If a property's data type is Java primitive, then the property value cannot be cleared;
however the property can be updated.

4. If you are providing explicit property values in listenerSettingsparameter, then the valuesmust
conform to the underlying data types of those properties.

5. Change the connection resource that the listener uses by providing a new connectionAlias input
parameter.

If you omit the connectionAliasparameter, the listener continues to use its current connection
resource.

If you are changing only the connection resource, it is not necessary to provide the
listenerSettings input parameter.

416 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

The resource domains registered by the listener templates are set in the listener's properties
according to the interdependencies between the resource domains. Knowledge of these
interdependencies is adapter-specific, and beyond the scope of this service. This service does not
interpret resource domains.

For an example of setting an listener property, see the Java code example in
wm.art.dev.listener:createListenerNode.

Input Parameters

DescriptionName

String. Required. Name of an existing listener in the format: folder:node.listenerName

String. Required. Name of the connection in the format: folder:node.connectionAlias

IData. Required. Structure for passing the listener's property values.listenerSettings

String. Required. Internal property name.systemName

The following Java data types are supported for
connections: char, short, int, long, float,
double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. Required.Number of times that the systemmust
attempt to start the listener if the initial attempt fails.

retryLimit

String. Required. Number of seconds the system must
wait between each attempt to start the listener. This field
is irrelevant if the value of Retry Limit is 0.

retryBackoffTimeout

Output Parameters

None.

wm.art.dev.listener:updateRegisteredNotifications
This service checks listener notifications, finds the linked listener, and then checks whether the
listener notification is also registered for the same listener or not. If not, then the service registers
the listener notification with the linked listener.

Note:
A listener can be used by multiple listener notifications, but a listener notification has only one
listener node.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 417

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Specifies the name of the WmART-based listener for which the
notifications must be updated.

listenerNodeName

Specify the listener node name to update a specific listener.

Specify * to update all the WmART-based listeners .

Output Parameters

None.

Listener Notification Services

These services are located in the WmART.wm.art.dev.notification package.

DescriptionService

Logs the data for listener notifications.wm.art.dev.notification:analyzeListenerNotifications

Creates a new instance of a synchronous
or asynchronous listener notification in

wm.art.dev.notification:createListenerNotificationNode

the specified package and folder from the
specified notification template and
connection alias.

Removes a specified instance of listener
notification.

wm.art.dev.notification:deleteListenerNotificationNode

Returns all metadata for a specified
listener notification template.

wm.art.dev.notification:fetchListenerNotificationTemplateMetadata

Alters the values of an existing
synchronous or asynchronous listener
notification.

wm.art.dev.notification:updateListenerNotificationNode

wm.art.dev.notification:analyzeListenerNotifications
This service logs the data for listener notifications. The data includes the name of a listener to
which a listener notification is linked, and the class name of the listener. The service also checks
whether the listener notification is registered with the listener or not.

Note:
A listener can be used bymultiple listener notifications, but a listener notificationwill have only
one listener node.

418 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Input Parameters

None.

Output Parameters

None.

wm.art.dev.notification:createListenerNotificationNode
This service creates a new synchronous or asynchronous listener notification node in the specified
package and folder from the specified notification template and connection alias, and initializes
the listener notification node in a disabled state.

You must perform the following steps to populate the input pipeline:

1. Use wm.art.dev.notification:fetchListenerNotificationTemplateMetadata service to identify the supported
listener notification template properties and configure the notificationSettings input parameter.

Listener notification properties may or may not have default values, depending on the
specific adapter's implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Listener notification properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.notification:createListenerNotificationNode
service throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

2. The particular combination of input parameters you specify determines whether you create a
synchronous or an asynchronous listener notification as described in the section for input

webMethods Adapter Development Kit Installation and User’s Guide 9.12 419

C Using the Services for Managing Namespace Nodes

parameters. This service throws an exception if you specify invalid or ambiguous combinations
of input parameters.

3. When an asynchronous listener notification is triggered, Integration Server generates a runtime
publishable output document.

The names and types of the data fields in the publishable output document is predefined.

Specify the names and types of the data fields in the publishable output document in the
service's publishableRecordDef input parameter.

The publishableRecordDef input parameter consists of fieldNames and fieldTypes properties.

The data types of properties in the publishableRecordDef structure are arrays of java.lang.String
type.

The fieldNames and fieldTypes properties are an array of String.

A one-to-one correspondence exists between the elements in these fieldNames and fieldTypes
arrays.

The values assigned to the fieldNames and fieldTypes properties must correspond to fields
that the listener notification class outputs in its runNotification method.

The service execution may fail if an empty publishableRecordDef is specified.

4. Activate the listener notification node using the pub.art.notification:enableListenerNotification service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

Note:

1. This service does not validate that the fields in the publishable document are actually
generated by the notification.

2. This service creates a publishable document node in a notificationNamePublishDocument
folder where notificationName is the value you specify for the notificationName input
parameter. The name of publishable document is not configurable.

The resource domains registered by the listener notification templates are set in the listener
notification's properties according to the interdependencies between the resource domains.
Knowledge of these interdependencies is adapter-specific, and beyond the scope of this service.
This service does not interpret resource domains.

Note:

1. Synchronous listener notification classes must extend the WmSyncListenerNotification class.
2. Asynchronous listener notifications must extend the WmAsyncListenerNotification class.

Input Parameters

DescriptionName

String. Required.Name of the listener notification in the format: folder:node.notificationName

420 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Required. Package where the listener notification is installed.packageName

String. Required. Name of the listener in the format: folder:node.listenerNode

String. Required. Fully qualified pathname of the listener notification
template class.

notificationTemplate

IData. Required. Structure for passing the listener notification's property
values.

notificationSettings

String. Required. Internal name of the property.systemName

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean,
java.lang.String, java.lang.Character,
java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float,
java.lang.Double, java.lang.Boolean.

Arrays of all the above data types are also
supported.

Properties applicable to synchronous listener notifications only

String. Required. Name of the service to invoke in the format: folder:node.
This parameter must not be null.

serviceName

IData. Structure to identify whether a service defined in serviceName is
invoked or a document is published.

executionMode

String. Possible values are:mode

publishAndWait. Publish the document and
wait for the response.

invokeService. Invoke the service defined
in serviceName parameter.

Boolean. Enables publishing the document
locally.

local

String. Time in millisecond to wait for the
response in an synchronous listener notification.

waitTime

IData. Structure specifying the JMS setting.jmsSettings

Boolean. Specifies whether the document is
published to a JMS provider.

isJMSConfigured

webMethods Adapter Development Kit Installation and User’s Guide 9.12 421

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Required. Connection name of the JMS
provider. This field is relevant if the value of
isJMSConfigured is true.

ConnectionAliasName

String. Required.Name of the destinationwhere
the document is published. This field is relevant
if the value of isJMSConfigured is true.

DestinationName

String. Required. Type of destinationwhere the
document is published. Possible values are:

DestinationType

Queue

Topic

This field is relevant if the value of
isJMSConfigured is true.

IData. Required. Structure specifying the definition of the request document
sent to serviceName. This parameter must not be null, but may be empty.
This property contains the following fields:

requestRecordDef

String[]. Names of the fields used in the listener
notification's request document.

fieldNames

String[]. Data types of the fields used in the
listener notification's request document.

fieldTypes

IData. Required. Structure specifying the definition of the reply document
received from serviceName. This parameter must not be null, but may be
empty. This property contains the following fields:

replyRecordDef

String[]. Names of the fields used in the listener
notification's reply document.

fieldNames

String[]. Data types of the fields used in the
listener notification's reply document.

fieldTypes

Properties applicable to asynchronous listener notifications only

IData. Required. Structure specifying the definition of the runtime
publishable output document. This property contains the following fields:

publishableRecordDef

String[]. Names of the fields used in the listener
notification's output document.

fieldNames

String[]. Data types of the fields used in the
listener notification's output document.

fieldTypes

422 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Output Parameters

None.

Example

Youmust construct notificationSettings to create a listener notification node. The value of a property's
systemName is the internal name of the property. When constructing the notificationSettings input
parameter, you must use this internal name as the key for setting a property's value. For example,
if a listener notification template defines a property named foo, then its systemName as returned
by fetchListenerNotificationTemplateMetadata service is foo. If the caller is a Java application, it might then
use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData ntfySettings = IDataFactory.create();
IDataCursor ntfyCursor = ntfySettings.getCursor();
ntfyCursor.insertAfter("foo", "bar");
.
.
.
pipeCursor.insertAfter("notificationSettings",
ntfySettings);
.
.
.

In this example, the foo property takes a java.lang.String value.

wm.art.dev.notification:deleteListenerNotificationNode
This service deletes the specified listener notification node.

You must disable the listener notification node before you delete it, using the
pub.art.notification:disableListenerNotification service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The delete action is immediate and non-reversible, and returns no output data.

Set the cascadeDelete flag to propagate the deletion across the Broker.

You may assume that the service completed successfully if it does not throw a checked
exception.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 423

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of the listener notification node in the format:
folder:node.

notificationName

Boolean. Possible values are:cascadeDelete

true. Propagates the deletion across the Broker.

false. Default.

Output Parameters

None.

wm.art.dev.notification:fetchListenerNotificationTemplateMetadata
This service fetches all metadata supported by the listener notification template for a specified
connection alias and listener notification template class path.

This service takes a valid listener node and listener notification template class path, and returns
an array of templateProperties structure, each containing attributes such as systemName, parameterType,
defaultValue, and isRequired.

Input Parameters

DescriptionName

String. Required. Name of an existing listener in the format: folder:node.listenerNode

String. Required. Fully qualified pathname of listener notification template
class.

notificationTemplate

Output Parameters

DescriptionName

String. Required. Listener template description. Same as the value returned
by WmDescriptor.getDisplayName method.

description

String. Required. Listener template name displayed. Same as the value
returned by WmDescriptor.getDescription method.

displayName

String. Required. URL of the online help page for the listener.templateURL

424 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

IData[]. Required. An i-dimensioned array of field maps.indexMaps[i]

String. Field map name.mapName

Boolean. Specifies whether the field map is
variable length.

isVariable

Boolean. Disables all the buttons used for
appending the rows for a fieldmap in theAdapter
Service Editor.

disableAppendAll

IData. Required. An n-dimensioned array of properties.templateProperties[n]

String Required. Internal property name.systemName

String Required. External property name
displayed.

displayName

String Required. Property description.description

String Required. Data type of property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group to which the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name to which the
property belongs.

resourceDomain

String. Property name for which values are
displayed in the tree structure for selection.

treeView

String. Default value of the property.defaultValue

webMethods Adapter Development Kit Installation and User’s Guide 9.12 425

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifies whether the editors should
pre-fill the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifies whether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Upper bound of the sequence.maxSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

String. Specifies whether the property is available
for use.

useParam

wm.art.dev.notification:updateListenerNotificationNode
This service updates the existing synchronous or asynchronous listener notification node.

You must disable the listener notification node before updating its properties, using the
pub.art.notification:disableListenerNotification service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

You must perform the following steps to populate the input pipeline:

1. Use fetchListenerNotificationTemplateMetadata service to identify the supported service template
properties and configure the listenerNode and notificationSettings input parameter.

The value of the systemNamemetadata attribute is the internal name of a property. Use this
internal name as the key for setting a property's value when constructing the input
parameter notificationSettings.

426 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

2. Set only those properties that you want to change.

This service attempts to overlay these new values on the listener notification's current property
values. The resulting set of merged property values are used to reconfigure the listener.

3. If you are providing explicit property values in notificationSettings parameter, then the values
must conform to the underlying data types of those properties.

4. Change the listener resource that the listener notification uses by providing a new listenerNode
input parameter.

If you omit the listenerNode parameter, the listener notification continues to use its current
listener resource.

If you are changing only the listener resource, it is not necessary to provide the
notificationSettings or any other input parameter.

5. A synchronous listener notification contains three additional input parameters:

a. serviceName. Specifies the node name of a separate service that is invoked by the notification
at runtime. If you omit this parameter, the notifications still retains the current value of
the parameter.

b. requestRecordDef and replyRecordDef. Document record definitions that the notification uses
to format messages when communicating with this service. You can modify either or both
of these definitions.

The requestRecordDef and replyRecordDef input parameters consists of fieldNames and
fieldTypes properties.

The fieldNames and fieldTypes properties are an array of java.lang.String.

A one-to-one correspondence exists between the elements in these fieldNames and fieldTypes
arrays.

Note:
This service cannot verify this assertion. If you configure either record definition incorrectly,
the consequence may not manifest until runtime.

6. An asynchronous listener notification use the following input parameters:

a. publishableRecordDef. Redefine the structure of an asynchronous notification's output
document.

The publishableRecordDef input parameter consists of fieldNames and fieldTypes properties.

The fieldNames and fieldTypes properties are an array of java.lang.String.

A one-to-one correspondence exists between the elements in these fieldNames and fieldTypes
arrays.

The values assigned to the fieldNames and fieldTypes properties must correspond to fields
that the listener notification class outputs in its runNotification method.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 427

C Using the Services for Managing Namespace Nodes

Note:
This service cannot verify this assertion. If you configure either record definition incorrectly,
the consequence may not manifest until runtime.

7. The requestRecordDef, replyRecordDef, and publishableRecordDef input parameters can be replaced
in their entirety. The service does not attempt to merge the values in these parameters with
the notification's current values. For instance, if you want to redefine a synchronous
notification's reply record definition, you must define the entire record in the replyRecordDef
input parameter.

8. The two listenerNode and notificationSettings input parameters apply to both synchronous and
asynchronous listener notifications.

Note:

1. You cannot convert a synchronous notification to an asynchronous notification.
2. Similarly you cannot convert an asynchronous notification to a synchronous notification.

The resource domains registered by the listener notification templates are set in the listener
notification's properties according to the interdependencies between the resource domains.
Knowledge of these interdependencies is adapter-specific, and beyond the scope of this service.
This service does not interpret resource domains.

Input Parameters

DescriptionName

String. Required. Name of the existing listener notification in the format:
folder:node.

notificationName

String. Required. Name of the associated listener in the format: folder:node.listenerNode

IData. Required. Structure for passing the listener notification's property
values.

notificationSettings

String. Required. Internal property name.systemName

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays of all the above data types are also
supported.

Properties applicable to synchronous listener notifications only

String. Required. Name of the service to invoke in the format: folder:node.
This parameter must not be null.

serviceName

428 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

IData. Structure to identify whether a service defined in serviceName is
invoked or a document is published.

executionMode

String. Possible values are:mode

publishAndWait. Publish the document and
wait for the response.

invokeService. Invoke the service defined in
serviceName parameter.

Boolean. Enables publishing the document
locally.

local

String. Time in millisecond to wait for the
response in an synchronous listener notification.

waitTime

IData. Structure specifying the JMS settings.jmsSettings

Boolean. Specifies whether the document is
published to a JMS provider.

isJMSConfigured

String. Required. Connection name of the JMS
provider. This field is relevant if the value of
isJMSConfigured is true.

ConnectionAliasName

String. Required.Name of the destinationwhere
the document is published. This field is relevant
if the value of isJMSConfigured is true.

DestinationName

String. Required. Type of destination where the
document is published. Possible values are:

DestinationType

Queue

Topic

This field is relevant if the value of
isJMSConfigured is true.

IData. Required. Specifies the definition of the request document sent to
serviceName. This parameter must not be null, but may be empty. This
property contains the following fields:

requestRecordDef

String[]. Names of the fields used in the listener
notification's request document.

fieldNames

String[]. Data types of the fields used in the
listener notification's request document.

fieldTypes

webMethods Adapter Development Kit Installation and User’s Guide 9.12 429

C Using the Services for Managing Namespace Nodes

DescriptionName

IData. Required. Specifies the definition of the reply document received
from serviceName. This parameter must not be null, but may be empty.

replyRecordDef

String[]. Names of the fields used in the listener
notification's reply document.

fieldNames

String[]. Data types of the fields used in the
listener notification's reply document.

fieldTypes

Properties applicable to asynchronous listener notifications only

IData. Required. Specifies the definition of the runtime publishable output
document. This property contains the following fields:

publishableRecordDef

String[]. Names of the fields used in the listener
notification's output document.

fieldNames

String[]. Data types of the fields used in the
listener notification's output document.

fieldTypes

Output Parameters

None.

Polling Notification Services

These services are located in the WmART.wm.art.dev.notification package.

DescriptionService

Creates a new instance of a polling
notification in the specified package and

wm.art.dev.notification:createPollingNotificationNode

folder from the specified notification
template and connection alias.

Removes an instance of a specified polling
notification.

wm.art.dev.notification:deletePollingNotificationNode

Returns allmetadata for a specified polling
notification template, and returns any

wm.art.dev.notification:fetchPollingNotificationTemplateMetadata

scheduling properties that are set for the
notification.

Alters the characteristics of an existing
polling notification.

wm.art.dev.notification:updatePollingNotificationNode

430 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

wm.art.dev.notification:createPollingNotificationNode
This service creates a new instance of a polling notification in the specified package and folder
from the specified notification template and connection alias, and initializes the new polling
notification in a disabled state.

You must perform the following steps to populate the input pipeline:

1. Use fetchPollingNotificationTemplateMetadata service to identify the supported polling notification
template properties and configure the input parameter notificationSettings structure.

Polling notification properties may or may not have default values, depending on the
specific adapter's implementation.

Depending on the underlying data type of the property, it might not be possible to
assign a default value to a property.

You may use the default values or override them with values that conform to the
underlying data types of the properties.

The property values are not automatically set to their default values; youmust explicitly
set all the required properties.

If you omit a property, then no attempt is made to locate and assign default values to
the property.

Polling notification properties may be optional or a required property.

A required property is identified when the isRequiredmetadata attribute is set to true.

The absence of the isRequired attribute implies that the property is not required.

If you fail to set a required property, the wm.art.dev.notification:createPollingNotificationNode
service throws an exception.

You may have properties that might be required, based on the current value of some
other property.

The number of properties to be configured is adapter-dependent. At a minimum, set
those properties whose isRequired attribute is set to true.

2. This service creates a publishable document node in a notificationNamePublishDocument folder
where notificationName is the value you specify for the notificationName input parameter. The
name of publishable document is not configurable.

3. When a polling notification is triggered, Integration Server generates a runtime publishable
output document.

The names and types of the data fields in the publishable output document is predefined.

Specify the names and types of the data fields in the publishable output document in the
service's publishableRecordDef input parameter in notificationSettings parameter.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 431

C Using the Services for Managing Namespace Nodes

The fieldNamesand fieldTypes properties of publishableRecordDef are an array of String. A
one-to-one correspondence exists between the elements in these two arrays.

The values assigned to the fieldNames and fieldTypes properties of publishableRecordDefmust
correspond to fields that the notification class outputs in its runNotification method.

The service execution may fail if an empty publishableRecordDef is specified.

5. A newly created polling notification is not assigned a delivery schedule. You must configure
the polling notification's delivery schedule before enabling it. Provide a valid scheduleSettings
input parameter in the call to createPollingNotificationNode or updatePollingNotificationNode service.

6. You can activate the polling notification using the pub.art.notification:enablePollingNotification service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

Note:
This service does not validate that the fields in the publishable document are actually generated
by the notification.

The resource domains registered by the polling notification templates are set in the polling
notification's properties according to the interdependencies between the resource domains.
Knowledge of these interdependencies is adapter-specific, and beyond the scope of this service.
This service does not interpret resource domains.

Input Parameters

DescriptionName

String. Required.Name of the polling notification in the format: folder:node.notificationName

String. Required. Package the polling notification is installed.packageName

String. Required. Name of the connection in the format: folder:node.connectionAlias

String. Required. Fully qualified pathname of the polling notification
template class.

notificationTemplate

IData. Required. Structure for passing the polling notification's property
values.

notificationSettings

String. Required. Internal name of the property.systemName

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

432 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

Arrays of all the above data types are also
supported.

IData. Required. Structure for specifying the scheduling properties.scheduleSettings

Integer. Frequency to poll in seconds.notificationInterval

Boolean. Specifies whether notifications can
overlap.

notificationOverlap

Boolean. Specifies whether to invoke the
notification immediately.

notificationImmediate

IData[]. A k-dimensioned array of cluster properties.clusterProperties[k]

String. Required. Internal property namesystemName

String. Required. Data type of the propertyparameterType

IData. Required. Structure for specifying the definition of the runtime
publishable output document.

publishableRecordDef

String[]. Names of the fields used in the polling
notification's output document.

fieldNames

String[]. Data types of the fields used in the
polling notification's output document.

fieldTypes

IData. Structure specifying the JMS setting.jmsSettings

Boolean. Specifies whether the document is
published to a JMS provider.

isJMSConfigured

String. Required. Connection name of the JMS
provider. This field is relevant if the value of
isJMSConfigured is true.

ConnectionAliasName

String. Required. Name of the destinationwhere
the document is published. This field is relevant
if the value of isJMSConfigured is true.

DestinationName

String. Required. Type of destination where the
document is published. Possible values are:

DestinationType

Queue

Topic

This field is relevant if the value of
isJMSConfigured is true.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 433

C Using the Services for Managing Namespace Nodes

Output Parameters

None.

Example

Youmust construct notificationSettings to create a polling notification node. The value of a property's
systemName is the internal name of the property. When constructing the notificationSettings input
parameter, you must use this internal name as the key for setting a property's value. For example,
if a polling notification template defines a property named sqlCommand, then its systemName as
returned by fetchPollingNotificationTemplateMetadata service is sqlCommand. If the caller is a Java
application, it might then use this information to set this property's value as follows:
IData pipeline = IDataFactory.create();
IDataCursor pipeCursor = pipeline.getCursor();
.
.
.
IData ntfySettings = IDataFactory.create();
IDataCursor ntfyCursor = ntfySettings.getCursor();
ntfyCursor.insertAfter("sqlCommand", "SELECT * FROM fooTable");
.
.
.
pipeCursor.insertAfter("notificationSettings", ntfySettings);
.
.
.

In this example, the sqlCommand property takes a java.lang.String value.

wm.art.dev.notification:deletePollingNotificationNode
This service deletes the specified polling notification node. Youmust disable the notification before
deleting it, using the disablePollingNotificationNode service. For more information, see the webMethods
Integration Server Built-In Services Reference for your release.

You must disable the polling notification node before you delete it, using the
pub.art.notification:disablePollingNotificationNode service.

For more information, see the webMethods Integration Server Built-In Services Reference for your
release.

The delete action is immediate and non-reversible, and returns no output data.

Set the cascadeDelete flag to propagate the deletion across Broker.

You may assume that the service completed successfully if it does not throw a checked
exception.

This action is immediate and non-reversible, and returns no output data. You may assume that
the service completed successfully if it does not throw a checked exception.

434 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

Input Parameters

DescriptionName

String. Required. Name of the polling notification in the format: folder:node.notificationName

Boolean. Boolean. Possible values are:cascadeDelete

true. Propagates the deletion across the Broker.

false. Default.

Output Parameters

None.

wm.art.dev.notification:fetchPollingNotificationTemplateMetadata
This service fetches all metadata supported by the polling notification template, and the scheduling
properties for a specified connection alias and the polling notification template class path.

This service takes a valid connection alias and polling notification template class path, and returns
an array of templateProperties and an array of scheduleProperties structure. Each polling notification
template properties (templateProperties structure) includes systemName, parameterType, defaultValue,
and isRequired attributes, which you can use to configure a new polling notification instance.

Input Parameters

DescriptionName

String. Required. Namespace name of an existing connection in the format:
folder:node.

connectionAlias

String. Required. Fully qualified pathname of the polling notification template
class.

notificationTemplate

Output Parameters

DescriptionName

String. Required. Polling notification template description. Same as the value
returned by WmDescriptor.getDisplayName method.

description

String. Required. Polling notification template name displayed. Same as the
value returned by WmDescriptor.getDescription method.

displayName

String. Required. URL of the online help page for the polling notification.templateURL

webMethods Adapter Development Kit Installation and User’s Guide 9.12 435

C Using the Services for Managing Namespace Nodes

DescriptionName

IData[]. Required. An i-dimensioned array of field maps.indexMaps[i]

String. Field map name.mapName

Boolean. Specifies whether the field map is
variable length.

isVariable

Boolean. Disables all the buttons used for
appending the rows for a fieldmap in theAdapter
Service Editor.

disableAppendAll

IData. Required. An n-dimensioned array of properties.templateProperties[n]

String Required. Internal property name.systemName

String Required. External property name
displayed.

displayName

String Required. Description of the property.description

String Required. Data type of property.parameterType

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays are not supported.

String. URL of the group's help page.groupURL

String. Name of the group to which the property
belongs.

groupName

String. Name of the tuple to which the property
belongs.

tupleName

String. Name of the tree to which the property
belongs.

treeName

String. Delimiter character used in the tree.treeDelimiter

String. Resource domain name to which the
property belongs.

resourceDomain

String. Property name for which values are
displayed in the tree structure for selection.

treeView

String. Default value of the property.defaultValue

436 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

DescriptionName

Boolean. Specifies whether the property is
required.

isRequired

Boolean. Specifies whether the property is
displayable.

isHidden

Boolean. Specifies whether the property can be
modified.

isReadOnly

Boolean. Specifies whether the editors should
pre-fill the property.

isFill

Boolean. Specifies whether the property is a
password.

isPassword

Boolean. Specifieswhether the property traverses
multiple lines.

isMultiline

Boolean. Specifies whether the property is a key
field.

isKey

String. Lower bound of the sequence.minSeqLength

String. Upper bound of the sequence.maxSeqLength

String. Minimum string length.minStringLength

String. Maximum string length.maxStringLength

String. Specifieswhether the property is available
for use.

useParam

IData[]. A j-dimensioned array of scheduling properties.scheduleProperties[j]

String. Required. Internal property namesystemName

String. Required. Data type of the propertyparameterType

IData[]. A k-dimensioned array of cluster properties.clusterProperties[k]

String. Required. Internal property namesystemName

String. Required. Data type of the propertyparameterType

wm.art.dev.notification:updatePollingNotificationNode
This service updates the values of an existing polling notification. Youmust perform the following:

You must disable the polling notification before updating its properties, using the
pub.art.notification:disablePollingNotification service.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 437

C Using the Services for Managing Namespace Nodes

You can modify the following items:

Underlying connection resource used by the notification

Metadata property values

Schedule

Signature of its publishable output document

You must perform the following steps to populate the input pipeline:

1. Use wm.art.dev.notification:fetchPollingNotificationTemplateMetadata service to identify the supported
service template properties and configure the connectionAlias, notificationSettings, scheduleSettings,
and publishableRecordDef input parameter.

2. Configure the connectionAlias, notificationSettings, scheduleSettings input parameters.

3. Set only those properties that you want to change in connectionAlias, notificationSettings,
scheduleSettings input parameters.

This service attempts to overlay these newvalues on the polling notification's current property
values. The resulting set of merged property values are used to reconfigure the polling
notification. For instance, change the connection resource that the polling notification uses by
providing a new connectionAlias input parameter. If you omit this parameter, the polling
notification continues to use the current connection resource. If you are changing only the
connection resource, it is not necessary to provide the notificationSettings,scheduleSettings, or
publishableRecordDef input parameters.

4. If you are providing explicit property values in notificationSettings parameter, then the values
must conform to the underlying data types of those properties.

5. Configuring the publishableRecordDef.

The publishableRecordDef input parameter must be replaced in its entirety. The service does
not attempt to merge the values into the current publishable record definition. .

The fieldNames and fieldTypes properties of publishableRecordDef are an array of String. A
one-to-one correspondence exists between the elements in these two arrays.

The values assigned to the fieldNames and fieldTypes properties of publishableRecordDefmust
correspond to fields that the notification class and the invoked service use to communicate
with each other.

Note:
This service cannot verify this assertion. If you configure either record definition
incorrectly, the consequence may not manifest until runtime.

6. The value of the systemNamemetadata attribute is the internal name of a property. Use this
internal name as the key for setting a property's value when constructing the input parameter
notificationSettings.

7. Update the property depending on the data type.

438 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

If a property's data type is non-primitive (derived from java.lang.Object), you may clear a
property's current value by setting its value to null.

If a property's data type is Java primitive, then the property value cannot be cleared;
however the property can be updated.

The resource domains registered by the polling notification templates are set in the polling
notification's properties according to the interdependencies between the resource domains.
Knowledge of these interdependencies is adapter-specific, and beyond the scope of this service.
This service does not interpret resource domains.

Input Parameters

DescriptionName

String. Required. Namespace name of the existing polling notification in the
format: folder:node.

notificationName

String. Required. Namespace name of the connection in the format:
folder:node.

connectionAlias

IData. Required. Structure for passing the polling notification's property
values.

notificationSettings

String. Required. Internal property name.systemName

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays of all the above data types are also
supported.

IData. Required. Specifies the scheduling properties.scheduleSettings

Integer. Frequency to poll in seconds.notificationInterval

Boolean. Specifies whether notifications can
overlap.

notificationOverlap

Boolean. Specifies whether to invoke the
notification immediately.

notificationImmediate

IData[]. A k-dimensioned
array of cluster
properties.

clusterProperties[k]

String. Required. Internal property namesystemName

webMethods Adapter Development Kit Installation and User’s Guide 9.12 439

C Using the Services for Managing Namespace Nodes

DescriptionName

String. Required. Data type of the propertyparameterType

IData. Required. Specifies the definition of the runtime publishable output
document.

publishableRecordDef

String[]. Names of the fields used in the polling
notification's output document.

fieldNames

String[]. Data types of the fields used in the polling
notification's output document.

fieldTypes

The following Java data types are supported
for connections: char, short, int, long,
float, double, boolean, java.lang.String,
java.lang.Character, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Float, java.lang.Double,
java.lang.Boolean.

Arrays of all the above data types are also
supported.

Output Parameters

None.

440 webMethods Adapter Development Kit Installation and User’s Guide 9.12

C Using the Services for Managing Namespace Nodes

D Using the Sample Adapter

■ Overview .. 442

■ The Sample Server .. 442

■ Banking Services, Queries and Alerts .. 444

■ Prerequisites for Code Compilation .. 445

■ Phase 1: Creating an Adapter Definition .. 446

■ Phase 2: Adding a Connection ... 449

■ Phase 3: Adding Adapter Services ... 454

■ Phase 4: Adding Polling Notifications ... 461

■ Phase 5: Adding Listener Notifications ... 470

webMethods Adapter Development Kit Installation and User’s Guide 9.12 441

Overview

The ADK provides an example adapter package named WmSampleAdapter. You can use this
adapter as a model for developing your own adapters. This adapter enables you to exchange data
with a simulated backend resource providedwith theADK, named Sample Server. Youwill configure
this adapter to perform a banking application. All of the underlying Sample Adapter class files
are located in the Integration Server_directory \instances\<instance_name>\packages\WmSampleAdapter
directory. This appendix describes how the Sample Adapter was developed, and how you can
configure and run it. The adapter is provided in five phases. Each phase is a standalone adapter,
delivered in its own source files; you can build, configure, and run each phase separately. Each
phase includes new functionality such that the first phase consists of just the basic framework of
the adapter, and the final phase is the fully functional adapter. These phases are as follows:

1. Phase 1: Creating the adapter definition.

An adapter definition is recognized as an adapter by Integration Server, but lacks functionality.
In the next four phases of development, you add new functionality to create an adapter
connection, an adapter service template, a polling notification template, and a listener
notification template.

2. Phase 2: Adding a connection that connects clients to the Sample Server.

3. Phase 3: Adding adapter services that perform operations such as depositing, clearing, and
bouncing checks, withdrawing and transferring funds, and other operations. For more
information, see “Banking Services, Queries and Alerts” on page 444.

4. Phase 4: Adding polling notifications and configuring polling notification nodes that query
the Sample Server and publish documents when the following events occur:

The Clear Check service or the Bounce Check service clears (approves) or bounces
(disapproves) a deposited check.

The Withdraw service or the Transfer service causes a negative account balance.

5. Phase 5: Adding listener and listener notifications. This phase includes the following:

Configuring a listener tomonitor the Sample Server for alerts generated by the Sample Server.
An alert is a Sample Servermechanism that informs the adapter that an event has occurred.

Configuring the listener notification nodes to publish notification documents when the
Sample Server generates the following alerts:

TheDeposit service successfully deposits a check. You can then invoke the Clear Check
service or the Bounce Check service to approve or disapprove the check.

The Withdraw service or the Transfer service causes a negative account balance.

This phase represents the adapter with all its functionality.

The Sample Server

The Sample Adapter provides the following:

442 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

1. Sample Server. Backend resource delivered as a Java executable.

Simulates a banking system.

Communicates with the Sample Adapter using the TCP/IP protocol.

Uses a document-based messaging scheme to exchange data with the SampleAdapter.

Executes as a separate process on any networked computer.

2. SampleClient.jar. Provides the classes necessary to perform the following:

Implement a document-basedmessaging scheme to exchange datawith the Sample Adapter.
These messages provide access to a set of business services, queries, and alerts that are
supported by the Sample Server.

Provide a metadata repository lookup feature that allows the Sample Adapter to retrieve a
list of the available services, queries, and alerts, and to obtain details of the data fields used
in each one.

Sample Server Client APIs

WmSampleConnection communicateswith the Sample Serverusing the Sample Server clientAPI. Javadocs
for theAPI are available in the Integration Server_directory \instances\<instance_name>\packages\
WmSampleAdapter\backendResource\doc directory.

Transaction Control

You can configure the client connection for either no transaction control (auto commit mode) or
local transaction control acrossmultiple service invocations. The SampleAdapter allows the adapter
user to select the transaction type for each WmSampleConnection node.

Customizing Sample Server

You can control the behavior of the Sample Server using SampleServer.properties property file,
located in the Integration Server_directory \instances\<instance_name>\packages\WmSampleAdapter\
backendResource\doc directory. You can edit the file to suit your needs, and then restart the server.

You can move the SampleServer.jar and the SampleServer.properties file to any platform that
has a JVM installed so that these files can be accessed through a network connection.

Starting the Sample Server

To start the Sample Server

1. Navigate to Integration Server_directory
\instances\<instance_name>\packages\WmSampleAdapter\backendResource directory.

2. Start Sample Adapter.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 443

D Using the Sample Adapter

Execute the script startSampleServer.sh.

Execute the following:

Navigate to Integration Server_directory \instances\<instance_name>\packages\
WmSampleAdapter\backendResource\doc directory.

Run the command: java -jar SampleServer.jar

Banking Services, Queries and Alerts

Banking Services

The Sample Serverprovides the following banking services. You can use the adapter service template
to create adapter service nodes that use these services:

DescriptionService Name

Creates multiple cash and check deposits. When the check number is equal to or
less than 0, the deposit is considered to be a cash deposit.

Deposit

Bounces (disapproves) a check deposit.Bounce Check

Clears (approves) a check deposit.Clear Check

Retrieves the current balance of the specified account.Get Balance

Retrieves the service history of the specified account.Get History

Transfers funds between two accounts. The user ID and Personal Identification
Number (PIN) are authenticated against both accounts.

Transfer

Withdraws funds from the specified account. A negative amount cannot be
withdrawn.

Withdraw

Banking Event Queries

Banking event queries retrieve information about specific activities that occur in the Sample Server
as a result of banking service requests. Each occurrence of a banking event is returned only once.
The Sample Server uses polling notifications to retrieve these events and to generate notification
documents.

The Sample Server supports the following banking event queries:

DescriptionEvent Query

Requests a list of checks that have cleared or bounced since the last
time the query wasmade. These events occur as a result of the Clear
Check or Bounce Check services.

CheckDepositStatusChange

444 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

DescriptionEvent Query

Requests a list of accounts that have been overdrawn since the last
time the querywasmade. These events occur as a result ofWithdraw
or Transfer services that result in a negative account balance.

UnderBalance

Note:
The Withdraw or Transfer service request is successful if the
request had been rejected because the debit exceeded the account's
credit limit. In this case, no UnderBalance event is recorded.

Note:
The Sample Server client cannot acknowledge the polling message from the receiving side as no
protocol support exists. Consequently a document is not published with the same message
twice. For example, if a document reports that an account has fallen to -10, no other document
is published until the amount changes.

Banking Alerts

Banking alerts are generated when specified events occur on the Sample Server. Unlike banking
event queries, banking alerts are generated and delivered in real time to a configured address.
The Sample Adapter implements listeners to monitor these addresses and to retrieve the alert data.
Listener notifications are then used to distribute the alert information to Integration Server services.
There is no queuing mechanism for alerts, so if no listener is ready to retrieve the alert data, it will
be lost.

The Sample Server supports the following types of alerts:

DescriptionAlerts

Generated for each check that is successfully deposited with the
Deposit service.

CheckDepositNotification

Generated for each Withdraw or Transfer service that results in a
negative account balance. This alert is identical to the UnderBalance
banking event, but is delivered as an alert.

UnderBalanceNotification

Prerequisites for Code Compilation

The prerequisites for compiling the Sample Adapter package are as follows:

Java SDK is installed with Integration Server.

Update your jcode script in the Integration Server_directory \instances\<instance_name>\bin
directory as follows:

In the very last line of the command that executes the NodeUtil class, you must add the
following paths to the classpath in order to compile the code correctly:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 445

D Using the Sample Adapter

Software AG_directory \common\lib\glassfish\gf.jakarta.resource.jar

where Software AG_directory is the directory in which you installed Integration Server.

Phase 1: Creating an Adapter Definition

An adapter definition simply defines the adapter in your Integration Server. To create the adapter
definition, include the following classes:

DescriptionClass

Represents the main class of the adapter. In the Sample Adapter
package's main source code directory, the adapter definition
extends the com.wm.adk.WmAdapter base class.

WmSampleAdapter

Contains all the string constants used by the adapter including
themajor code, group names, parameter names, bean property
names, and resource domain names.

WmSampleAdapterConstants

Contains all display strings and messages used by the adapter
at runtime and at design time.

WmSampleAdapterResourceBundle

Registers and delists the adapter when the adapter package
starts up and shuts down.

admin

The first three classes are located in the com.wm.adapter.wmSampleAdapter Java package. The admin
class is located in the wm.wmSampleAdapter Java package.

This section describes how to:

Disable the Sample Adapter Package

Create the MyWmSampleAdapter package

Compile the MyWmSampleAdapter package

Test the MyWmSampleAdapter package

Disable the MyWmSampleAdapter package

Disabling Sample Adapter Package

Before you begin, make sure you disable the WmSampleAdapter package.

To disable the sample adapter package

1. Start Integration Server Administrator.

2. Navigate to Packages > Management screen.

446 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

3. Click Yes in the Enabled column of WmSampleAdapter package.

The Enabled column now shows No (disabled).

Important:
You must disable the WmSampleAdapter and all MyWmSampleAdapterN packages before you
proceed. All of these packages have the same adapter major code and conflict with each
other if they are not disabled.

4. Refresh Integration Server Administrator.

TheSample Adapter is no longer listed on theAdapters in the Integration ServerAdministrator
screen.

Creating the MyWmSampleAdapter Package

To create the WmSampleAdapter1 package

1. Start Designer.

2. Go to File > New.

3. Select Package from the list of elements.

4. Assign the name MyWmSampleAdapter to the package and click Finish.

5. In the Package Navigator, select the MyWmSampleAdapter package.

6. Select File > Properties.

7. In the Package Dependencies section, click to add a row and specify values for the following
fields:

ValueField

WmARTPackage

*.*Version

Click OK.

8. Click OK.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 447

D Using the Sample Adapter

Compiling the MyWmSampleAdapter Package

To compile the MyWmSampleAdapter package

1. Copy all the source code from the WmSampleAdapter\code\sourcePhase1 directory to the
MyWmSampleAdapter\code\source directory.

Important:
You must maintain the proper subdirectory structure when copying the source code files.

2. Copy the SampleClient.jar file from the WmSampleAdapter\code\jars directory to the
MyWmSampleAdapter\code\jars directory.

If the MyWmSampleAdapter\code\jars directory does not exist, you must create it.

3. Copy all the files in WmAdapterSample\pub directory toMyWmSampleAdapter\pub directory except
the index.html file .

4. Execute the following commands from a command prompt:

a. jcode makeall MyWmSampleAdapter

b. jcode fragall MyWmSampleAdapter

5. Restart Integration Server.

6. Start Integration Server Administrator.

7. Navigate to Packages > Management screen.

The MyWmSampleAdapter package is now available.

Adding the MyWmSampleAdapter's Startup and ShutDown
Services

To add the MyWmSampleAdapter's startup and shutDown services

1. Using Designer, click File > Refresh.

2. In the Package Navigator, select the MyWmSampleAdapter package.

3. Click File > Properties.

4. Navigate to Properties > Startup/Shutdown Services and assign the following services:

448 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

ValueField

wm.wmSampleAdapter.admin:startUpStartup Services

wm.wmSampleAdapter.admin:shutDownShutdown Services

Click Apply and Close.

Testing the MyWmSampleAdapter Package

To test the MyWmSampleAdapter package

1. In Integration Server Administrator, navigate to Packages > Management and reload the
MyWmSampleAdapter package.

2. Refresh Integration Server Administrator.

The Sample Adapter is listed on the Adapters screen.

Disabling the Phase 1 Implementation

After you compile and test the Phase 1 code, you must disable or delete the MyWmSampleAdapter
package before you compile and test Phase 2. Not disabling or deleting the package results in a
conflict of major codes when you compile and test Phase 2.

Phase 2: Adding a Connection

In this phase, the sample provides a connection template that connects clients to the Sample Server.
This section describes how to:

Implement the connection template.

Revise the adapter definition classes.

Compile the phase 2 implementation.

Create the TestMyWmSampleAdapter package.

Configure a connection node.

Enable the connection node.

Disable the phase 2 implementation.

Implementing the Connection Template
To define the connection template, the adapter includes the following classes in the
com.wm.adapter.wmSampleAdapter.connection package:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 449

D Using the Sample Adapter

WmSampleConnection class, which extends the com.wm.adk.connectionWmManagedConnection class

WmSampleConnectionFactory class, which extends the
com.wm.adk.connectionWmManagedConnectionFactory class

The bean properties declared in theWmSampleConnectionFactory class are:

DescriptionProperty

IP host name for the computer where the Sample Server is running.sampleServerHostName

TCP/IP port number that Sample Server accepts client connection. Default
value is 4444.

sampleServerPortNumber

Number of milliseconds that the Integration Server waits to obtain a
connectionwith the Sample Server before it times out and returns an error.
Default value is 20000.

timeout

Flag indicatingwhether the connection requests local transaction control
or an auto commit mode. Possible values are:

transactionType

true.

false.

TheWmSampleLocalTransaction class is implemented to support the configurable local transaction
control for theWmSampleConnection connection.

Revising Adapter Definition Classes From Phase 1
In Phase 2, the existing classes from Phase 1 are modified to include the following revisions. The
classes contain comments that detail the following changes:

RevisionClass

Added a reference toWmSampleConnectionFactory class in the
fillAdapterTypeInfo method.

WmSampleAdapter

Added string constants for the connection property names.WmSampleAdapterConstants

Added entries for the connection property configuration.WmSampleAdapterResourceBundle

Compiling the Phase 2 Implementation
To compile the Phase 2 implementation, perform the following:

Disable the WmSampleAdapter and MyWmSampleAdapter packages.

Important:

450 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

The WmSampleAdapter and MyWmSampleAdapter packages have the same adapter major code
and conflict with each other if they are not disabled.

Copy all the source code from the WmSampleAdapter\code\sourcePhase2 directory to the
MyWmSampleAdapter\code\source directory.

Compile using the procedure in “Compiling theMyWmSampleAdapter Package” on page 448.

Restart Integration Server.

Creating the TestMyWmSampleAdapter Package

To create the TestMyWmSampleAdapter package

1. Start Designer.

2. Go to File > New.

3. Select Package from the list of elements.

4. Assign the name TestMyWmSampleAdapter to the package and click Finish.

Configuring the Connection Node
Perform the following procedure to configure the connection node.

To configure the connection node

1. In Integration Server Administrator, navigate to Adapters > Sample Adapter.

The Sample Adapter management screen appears.

2. Select Connections.

3. Click Configure New Connection.

4. In the Connection Types screen, click Sample Server Connection.

5. In the Configure Connection Type screen, provide values for the connection's parameters.

a. Complete the Configure Connection Type > Sample Adapter section as follows:

webMethods Adapter Development Kit Installation and User’s Guide 9.12 451

D Using the Sample Adapter

DescriptionField

Select the namespace node package in which you create the
connection. For example, TestMyWmSampleAdapter package.

Package

Name of the folder in which you create the connection. For example,
connections folder.

Folder Name

Name of the connection. For example, sampleConnection.Connection Name

b. Complete the Connection Properties section as follows:

DescriptionField

Sample Server host name. For example, localhost.Sample Server Host
Name

Sample Server port number. Default value is 4444.Sample Server Port
Number

Sample Server user id. Type the suid value.User Id

Note:
The user ids and passwords for the Sample Server are set in
the SampleServer.jar file located in Integration Server_directory
\instances\<instance_name>\packages\WmSampleAdapter\
backendResource directory.

Sample Server password. Type the spin value.Password

Note:
The user ids and passwords for the Sample Server are set in
the SampleServer.jar file located in Integration Server_directory
\instances\<instance_name>\packages\WmSampleAdapter\
backendResource directory.

Determines if you want to control the local transaction. Possible
values:

Local Transaction
Control?

true.

false. Default.

Select false.

Timeout in milliseconds for the connection. Default value is
20000.

Sample Connector
Timeout

c. Complete the Connection Management Properties section as follows:

452 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

DescriptionField

Enables the connection to use connection pooling. Default value
is true.

Enable Connection
Pooling

Specifies the number of connections to createwhen the connection
is enabled. Default value is 1.

Minimum Pool Size

Specifies the maximum number of connections that can exist at
one time in the connection pool. Default value is 10.

Maximum Pool Size

Specifies the number of connections by which the pool will be
incremented if connections are needed, up to the maximum pool
size. Default value is 1.

Pool Increment Size

Specifies the number of milliseconds that the Integration Server
waits to obtain a connectionwith the Sample Server before it times
out and returns an error. Default value is 20000.

Block Timeout

Specifies the number of milliseconds that inactive connections
can remain in the pool before they are closed and removed from
the pool. Default value is 20000.

Expire Timeout

Specifies the number of times that the system attempts to initialize
the connection pool at startup if the initial attempt fails, before

Startup Retry Count

issuing an AdapterConnectionException. Default value is 0. If the value
is 0, then the system makes a single attempt.

Specifies the number of seconds to wait between each attempt to
initialize the connection pool. Default value is 10.

Startup Backoff
Timeout

Note:
This field is irrelevant if the value of Startup Retry Count is
set to 0.

6. Click Test Connection.

The connection is tested based on the settings provided.

Note:
Ensure that the Sample Server is up and running before you test the connection.

7. Click Save Connection.

The connection name is now listed on the adapter's Connections screen and in the Designer.

Enabling the Connection Node

To enable the connection node

webMethods Adapter Development Kit Installation and User’s Guide 9.12 453

D Using the Sample Adapter

1. Start the Sample Server froma commandprompt, as described in “Starting the Sample Server” on
page 443.

2. To enable the connection node, on the adapter's Connections screen, click No in the Enabled
column, the value changes to Yes (enabled).

The server initializes a connection pool based on the provided settings.

Note:
If a connection node is enabled when the Integration Server shuts down, it is enabled at
Integration Server startup.

Disabling the Phase 2 Implementation

After you compile and test the Phase 2 code, you must disable or delete the MyWmSampleAdapter
package before you compile and test Phase 3. Not disabling or deleting the package results in a
conflict of major codes when you compile and test Phase 3.

Phase 3: Adding Adapter Services

In this phase, the sample provides an adapter service template that you can configure to execute
the banking services in the Sample Server. This section describes how to:

Implement the adapter service template.

Revise adapter definition, and adapter connection classes.

Compile the phase 3 implementation.

Configure and enabling a connection node.

Test the connection node.

Disable the phase 3 implementation

Implementing the Adapter Service Template

Define an adapter service template by extending the com.wm.adk.cci.interaction.WmAdapterService base
class. The following packages, classes, and methods are added in the Sample Adapter; thereby
allowing you to configure and execute the services against the Sample Server:

The adapter service templates are created in the com.wm.adapter.wmSampleAdapter.service package.

The AccountEnquiry, and AccountTransaction are the adapter service template classes added in the
com.wm.adapter.wmSampleAdapter.service Java package.

A DocumentHelp utility class is added in the com.wm.adapter.wmSampleAdapter.util Java package. This
utility facilitates the data structure conversion from a Sample Server document to the Integration
Server's IData, and helps to decipher the adapter service and notification signature metadata
received from the Sample Server repository.

454 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

The bean properties declared in the AccountEnquiry adapter service template class are as follows:

DescriptionProperty

Service name. For a list of the services, see “Banking Services, Queries
and Alerts” on page 444.

serviceName

Fully qualified suggested input parameter signature names, including
all the record structures and array indicators.

inputFieldNames

Note:
If you set the Boolean flag to true in the createFieldMapmethod, the
adapter user has the option to overwrite the suggested names. In
this implementation, the user cannot change the names.

Input parameter data types, including all the array indicators.inputFieldTypes

Hidden input parameter signature names, including all the record
structures and array indicators.

hiddenInputFieldNames

Fully qualified output parameter names, including all the record
structures and array indicators.

outputParameterNames

Fully qualified suggested output parameter signature names,
including all the record structures and array indicators. You cannot
change these names.

outputFieldNames

Output parameter data types, including all the array indicators.outputFieldTypes

Hidden output parameter data types, including all the array
indicators.

hiddenOutputFieldTypes

The resource domains declared in the AccountEnquiry class are as follows:

DescriptionResource Domain Name

Looks up the list of service names. For a list of the services, see
“Banking Services, Queries and Alerts” on page 444.

serviceName

Looks up the fully qualified input parameter names, including all
the record structures and array indicators.

inputFieldNames

Looks up the input parameter data types, including all the array
indicators.

inputFieldTypes

Looks up the fully qualified output parameter names, including
all the record structures and array indicators.

outputParameterNames

Looks up the output parameter data types, including all the array
indicators.

outputFieldTypes

webMethods Adapter Development Kit Installation and User’s Guide 9.12 455

D Using the Sample Adapter

DescriptionResource Domain Name

Looks up the hidden output parameter data types, including all
the array indicators.

hiddenOutputFieldTypes

The bean properties declared in the AccountTransaction adapter service template class are as
follows:

DescriptionProperty

Service name. For a list of the services, see “Banking Services, Queries
and Alerts” on page 444.

serviceName

Fully qualified input parameter names, including all the record
structures and array indicators.

inputParameterNames

Fully qualified suggested input parameter signature names, including
all the record structures and array indicators.

inputFieldNames

Input parameter data types, including all the array indicators.inputFieldTypes

Hidden input parameter signature names, including all the record
structures and array indicators.

hiddenInputFieldNames

Fully qualified output parameter names, including all the record
structures and array indicators.

outputParameterNames

Fully qualified suggested output parameter signature names,
including all the record structures and array indicators. You cannot
change these names.

outputFieldNames

Output parameter data types, including all the array indicators.outputFieldTypes

Hidden output parameter data types, including all the array
indicators.

hiddenOutputFieldTypes

The resource domains declared in the AccountTransaction adapter service template class are as
follows:

DescriptionResource Domain Name

Looks up the list of service names. For a list of the services, see
“Banking Services” on page 444.

serviceName

Looks up the fully qualified input parameter names, including all
the record structures and array indicators.

inputParameterNames

Looks up the hidden input parameter data types, including all the
array indicators.

hiddenInputFieldTypes

456 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

DescriptionResource Domain Name

Looks up the input parameter data types, including all the array
indicators.

inputFieldTypes

Looks up the fully qualified output parameter names, including
all the record structures and array indicators.

outputParameterNames

Looks up the output parameter data types, including all the array
indicators.

outputFieldTypes

Looks up the hidden output parameter data types, including all
the array indicators.

hiddenOutputFieldTypes

Implementing the execute Method in the AccountEnquiry and AccountTransaction
Class

When the flow service invokes an adapter service node, the service calls theWmAdapterService.execute
method. This method receives a WmManagedConnection object and a WmRecord object, and returns a
WmRecord object.

TheWmAdapterService.executemethod uses the Sample Server client API to create a request document
with the input parameters and sends it to the Sample Server. The request can receive one of three
possible responses:

Success with output: The service succeeds, and receives an acknowledgment document and
output. For example, a getBalance service returns an account balance.

Success with no output: The service succeeds, and receives an acknowledgment document,
but there is no output. For example, a Deposit service simply deposits an amount, but returns
no output.

Failure. The service fails and receives a negative acknowledgment document; an AdapterException
is thrown with the appropriate error message.

Revising Code From Phases 1 and 2
In Phase 3, the existing classes from Phase 1 and Phase 2 are modified to include the following
revisions. The classes contain comments that detail the changes.

RevisionClass

Added string constants for the service property names.WmSampleAdapterConstants

Added entries for the service property configuration.WmSampleAdapterResourceBundle

Added a reference to AccountEnquiry and AccountTransaction class in
the fillResourceAdapterMetadataInfo method.

WmSampleConnectionFactory

webMethods Adapter Development Kit Installation and User’s Guide 9.12 457

D Using the Sample Adapter

RevisionClass

In the registerResourceDomainmethod, the sample code registers all
resource domains declared by the AccountEnquiry and
AccountTransaction service template classes.

WmSampleConnection

In the adapterResourceDomainLookupmethod, the sample code includes
resource domain lookup code to request the servicemetadata from
the Sample Server repository.

Compiling the Phase 3 Implementation
To compile the Phase 3implementation perform the following:

Disable the WmSampleAdapter and MyWmSampleAdapter packages.

Important:
The WmSampleAdapter and MyWmSampleAdapter packages have the same adapter major code
and conflict with each other if they are not disabled.

Copy all the source code from the WmSampleAdapter\code\sourcePhase3 directory to the
MyWmSampleAdapter\code\source directory.

Compile using the procedure in “Compiling theMyWmSampleAdapter Package” on page 448.

Restart Integration Server.

Note:
If the following error appears when compiling,

\code\source\com\wm\adapter\wmSampleAdapter\util\DocumentHelper.java uses unchecked
or unsafe operations. Recompile with -Xlint:unchecked for details.

then perform the following:

1. Check if the classes for all Java files are created in code\classes directory.
2. If the classes are created, ignore the error and run the command: jcode fragall

MyWmSampleAdapter
3. If the classes are not created, redo the steps.

You can use the AccountEnquiry and AccountTransaction adapter service template classes to create
adapter service nodes that use any of the banking services includingDeposit, GetBalance,Withdraw.
At a minimum, configure nodes for Deposit and either Withdraw or Transfer. You must execute
these nodes later, when you test the notifications.

The following procedures describe how to configure and test the Deposit adapter service node.
To configure and test other nodes, repeat these procedures, substituting the appropriate service
name in each node.

458 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

Configuring the Adapter Service Nodes
Perform the following procedure to configure the Deposit adapter service node.

Configuring and Enabling a Connection Node

To create a connection node for the Deposit adapter service:

1. Start Integration Server Administrator.

2. Navigate to Adapters > Sample Adapter.

The Sample Adapter management screen appears.

3. Select Connections.

4. Configure the sampleConnection connection node in the TestMyWmSampleAdapter package, and
enable the connection, as described in “Configuring the Connection Node” on page 451.

5. Navigate to Package > Management and reload the MyWmSampleAdapter package.

Configuring the Adapter Service Node

To configure a Deposit adapter service:

1. Start Designer.

2. Select File > Refresh.

3. In the Package Navigator, navigate to the TestMyWmSampleAdapter package.

4. Create a services folder.

5. Select File > New.

6. Select Adapter Service from the list of elements.

7. In theCreate a New Adapter Service screen, type EnquiryService in theElement name field
and click Next.

8. In the Select Adapter Type screen, select Sample Adapter and click Next.

9. In the Select an Adapter Connection Alias screen, select connections:sampleConnection
and click Next.

10. In the Select a Template screen, select Enquiry and click Finish.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 459

D Using the Sample Adapter

11. Repeat the procedure to create another adapter service DepositService using the template
Transaction.

Testing the Adapter Service Nodes
Perform the following procedure to test the adapter service node.

To test the adapter service node

1. Start Designer.

2. In the Package Navigator, navigate to the TestMyWmSampleAdapter > services folder.

3. Click the EnquiryService service.

4. In the Run menu, select Run As > Run Service .

5. Enter data in the fields of the pop-up menu that appears as follows, and click OK.

ValueField

1AccountNumber

In the Results section, the following details appear.

ValueField

1AccountNumber

1000.0Balance

6. Click the DepositService service.

7. In the Adapter Service Editor's TRANSACTION tab, selectDeposit in theService Name field.

8. Select File > Save.

Note:
To create additional adapter service nodes, repeat this procedure, selecting the appropriate
service names, such as Transfer, Withdraw or Clear Cheque.

9. In the Run menu, select Run As > Run Service .

10. Enter data in the fields of the pop-up menu that appears as follows, and click OK.

460 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

ValueField

1ToAccount

29Amount

0CheckNumber

Note:
Any value less than or equal to 0 specifies a cash deposit. Specify 0 for this
test because a check deposit amount is not added to the balance until the
check deposit is cleared (approved).

11. Run the EnquiryService service with AccountNumber value as 1.

In the Results section, the following details appear.

ValueField

1AccountNumber

1029.0Balance

Disabling the Phase 3 Implementation

After you compile and test the Phase 3 code, you must disable or delete the MyWmSampleAdapter
package before you compile and test Phase 4. Not disabling or deleting the package results in a
conflict of major codes when you compile and test Phase 4.

Phase 4: Adding Polling Notifications

In this phase, the sample provides a polling notification template that you can configure polling
notification nodes to poll the Sample Server and determine whether the checks have cleared or
bounced, or whether accounts have negative balances. This section describes how to:

Implement the polling notification template.

Revise adapter definition, and adapter connection classes.

Compile the phase 4 implementation.

Configure twopolling notification nodes (one for check clearing/bouncing, the other for negative
balances).

Each node generates a document that will be used to contain the affected portion of the Sample
Server data, and to inform the Integration Server of the changes.

Create an Integration Server trigger and a flow service for each polling notification node.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 461

D Using the Sample Adapter

The notifications publish the resulting documents to the triggers. Upon receiving a document
generated by the polling notification, the trigger causes the Integration Server to invoke a flow
service registered with the trigger to process the document's data. In the Sample Adapter, the
flow service invokes the pub.flow:savePipelineToFile service. This service simply saves the contents
of the pipeline from the polling notification event to a file. This service is used as a debugging
tool. It is provided here simply to demonstrate the use of the notification. In a real adapter,
you perform some kind of action with the notification data.

Schedule and enabling the polling notification nodes.

Test the polling notification nodes.

Disable the phase 4 implementation

Implementing the Polling Notification Template

Define a polling notification by extending the com.wm.adk.notification.WmPollingNotification base class.
The following packages, classes, and methods are added in the Sample Adapter; thereby allowing
you to configure and monitor events

A MessagePolling class created by extending the com.wm.adk.notification.WmPollingNotification base
class.

You can monitor the following types of events using the polling notifications:

CheckDepositStatusChange

The Sample Server records this event when a Clear Check or Bounce Check service clears
(approves) or bounces (disapproves) a deposited check.

UnderBalance

The Sample Server records this event when a Withdraw or Transfer service causes a negative
account balance. The document is not published if the account's negative balance is greater
than the available credit limit amount. For example, if the credit limit amount is 1000, and the
account balance falls to -1001, the document is not published; an error is issued.

The bean properties declared in the MessagePolling class are as follows:

DescriptionProperty

Event to poll in the Sample Server.pollingName

Fully qualified input parameter names, including all the record structures
and array indicators.

inputParameterNames

Unlike adapter services, polling notifications accept no runtime input data,
other than the configured property values specified here.

inputFieldValues

Input parameter data types, including all the array indicators.inputFieldTypes

462 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

DescriptionProperty

Fully qualified output parameter names, including all the record structures
and array indicators.

outputParameterNames

Fully qualified suggested output parameter signature names, including
all the record structures and array indicators. You cannot change these
names.

outputFieldNames

Output parameter data types, including all the array indicators.outputFieldTypes

The resource domains declared in the MessagePolling class are as follows:

DescriptionResource Domain

Looks up the list of Sample Serverpolling notification event names described
in “Banking Event Queries” on page 444.

pollingNames

Looks up the fully qualified input parameter names, including all the
record structures and array indicators.

inputParameterNames

Looks up the input parameter data types, including all the array indicators.inputFieldTypes

Looks up the fully qualified output parameter names, including all the
record structures and array indicators.

outputParameterNames

Looks up the output parameter data types, including all the array
indicators.

outputFieldTypes

Implementing the runNotification Method

The template includes the runNotificationmethod, which is called by the Integration Server based on
the polling notification node's schedule. This method has no arguments and no return values; it
merely publishes documents.

This method constructs an event query document with the query criteria input, and sends it to
the Sample Server, and then waits for the reply document from the Sample Server. The query can
produce one of three possible responses:

Success with output: The notification succeeds, and receives a notification document.

Success with no output: The notification succeeds, but no event has occurred. The notification
receives an acknowledgment document.

Failure: The notification fails and receives a negative acknowledgment document; an
AdapterException is thrown with the appropriate error message.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 463

D Using the Sample Adapter

Revising Code From Phases 1, 2, and 3
In Phase 4, the existing classes from Phases 1, 2, and 3 are modified to include the following
revisions. The classes contain comments that detail the changes.

RevisionClass

Added string constants for the polling property names.WmSampleAdapterConstants

Added entries for the polling property configuration.WmSampleAdapterResourceBundle

In the registerResourceDomainmethod, the adapter code registers
all the resource domains declared by the MessagePolling class.

WmSampleConnection

In the adapterResourceDomainLookup method, the adapter code
includes resource domain lookup code to request the polling
metadata from Sample Server repository.

Compiling the Phase 4 Implementation
To compile the Phase 4 implementation, perform the following:

Disable the WmSampleAdapter and MyWmSampleAdapter packages.

Important:
The WmSampleAdapter and MyWmSampleAdapter packages have the same adapter major code
and conflict with each other if they are not disabled.

Copy all the source code from the WmSampleAdapter\code\sourcePhase4 directory to the
MyWmSampleAdapter\code\source directory.

Compile using the procedure in “Compiling theMyWmSampleAdapter Package” on page 448.

Restart Integration Server.

Note:
On running the command jcode makeall MyWmSampleAdapter, if the error
\code\source\com\wm\adapter\wmSampleAdapter\util\DocumentHelper.java uses unchecked
or unsafe operations. Recompile with -Xlint:unchecked for details. appears, perform the
following:

1. Check if the classes for all Java files are created in code\classes directory.
2. If the classes are created, ignore the error and run the command: jcode fragall

MyWmSampleAdapter
3. If the classes are not created, redo the steps.

464 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

Configuring and Testing the Polling Notification Nodes
You can create polling notification nodes to send banking event queries to the Sample Server. To
create these nodes, you use theMessagePolling polling notification template. The two banking event
query types are:

UnderBalance

CheckDepositStatusChange

The following procedures describe how to configure and test a node forUnderBalance. To configure
and test a node for CheckDepositStatusChange, repeat these procedures, substituting the polling
name CheckDepositStatusChange for UnderBalance.

This section contains the following procedures:

Configuring and enabling a connection node

Configuring the underBalancePolling notification node

Creating the Flow Service for the underBalancePolling notification node

Creating the trigger for the underBalancePolling notification node

Scheduling and enabling the underBalancePolling notification node

Testing the underBalancePolling notification node

Configuring and Enabling a Connection Node

To create a connection node for the Deposit adapter service:

1. Start Integration Server Administrator.

2. Navigate to Adapters > Sample Adapter.

The Sample Adapter management screen appears.

3. Select Connections.

4. Configure the sampleConnection connection node in the TestMyWmSampleAdapter package, and
enable the connection, as described in “Configuring the Connection Node” on page 451.

5. Navigate to Package > Management and reload the MyWmSampleAdapter package.

Configuring the underBalancePolling Notification Node

Perform the following procedure to configure the underBalancePolling notification node.

To configure the underBalancePolling notification node

webMethods Adapter Development Kit Installation and User’s Guide 9.12 465

D Using the Sample Adapter

1. Start Designer.

2. Go to File > Refresh.

3. In the Package Navigator, navigate to the TestMyWmSampleAdapter package.

4. Create a pollingNotifications folder.

5. Go to File > New.

6. Select Adapter Notification from the list of elements.

7. In the Create a New Adapter Notification screen, type underBalancePolling in the Element
name field and click Next.

8. In the Select Adapter Type screen, select Sample Adapter and click Next.

9. In the Select a Template screen, select Message Polling and click Next.

10. In the Select an Adapter Connection Alias screen, select connections:sampleConnection
and click Next.

11. In the Publish Document Name screen, click Finish.

Designer creates the notification and the publish document named
underBalancePollingPublishDocument.

12. In the Package Navigator, navigate to underBalancePolling.

13. In the Adapter Notification Editor's Message Polling tab, select the polling event
UnderBalance from the Polling Name field.

14. Specify values for the following fields in the Input Field Value column for the corresponding
Input Parameters, and click Save.

ValueField

Super user ID. Value is suid.User ID

Super user PIN. Value is spin.PIN

Specify the account number or use 0 to enable polling against all accounts.Account Number

Note:
These values are specified for every account. For more information, see the
SampleServer.properties property file, located in the Integration Server_directory \
instances\<instance_name>\packages\WmSampleAdapter\backendResource\doc directory.

466 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

Creating the Flow Service for the underBalancePolling Notification Node

Perform the following procedure to create the flow service for the underBalancePolling notification
node.

To create the flow service for the underBalancePolling notification node

1. Start Designer.

2. In thePackage Navigator, navigate to theTestMyWmSampleAdapter >pollingNotifications
folder.

3. Go to File > New.

4. Select Flow Service from the list of elements.

5. In theCreate a New Adapter Service screen, type underBalancePollingService in theElement
name field and click Next.

6. In the Select the Source Type screen, select Empty Flow and click Finish.

7. Click to insert a flow step.

8. Navigate to the pub.flow:savePipelineToFile service.

Note:
The savePipelineToFile service saves the polling notification event (the contents of the pipeline)
to the file that you specify in the fileName parameter.

9. Click the Pipeline tab.

10. Open the fileName parameter in the pipeline and set its value to underBalancePolling.log.

Click OK.

11. Click File > Save.

Creating the Trigger for the underBalancePolling Notification Node

Perform the following procedure to create the trigger for the underBalancePolling notification
node.

To create the trigger for the underBalancePolling notification node

1. Start Designer.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 467

D Using the Sample Adapter

2. In thePackage Navigator, navigate to theTestMyWmSampleAdapter >pollingNotifications
folder.

3. Go to File > New.

4. Select webMethods Messaging Trigger from the list of elements.

5. In the Create a New webMethods Messaging Trigger screen, type
underBalancePollingTrigger in the Element name field and click Finish.

6. In the trigger editor, in the Conditions section, accept the default Condition1.

7. In the Condition detail section, in the Service field, select or type the flow service name
pollingNotifications:underBalancePollingService.

8. Click to insert document types. Select underBalancePollingPublishDocument and click
OK.

9. Click to save your trigger.

Scheduling and Enabling the underBalancePolling Notification Node

Perform the following procedure to schedule and enable the underBalancePolling notification
node.

To schedule and enable the underBalancePolling notification node

1. Start Integration Server Administrator.

2. Navigate to Adapters > Sample Adapter.

The Sample Adapter management screen appears.

3. Select Polling Notifications.

4. Click Edit Schedule.

5. Set the Interval to 10 and click the Save Schedule button.

6. Enable the node by selecting Enabled in the State column.

Testing the underBalancePolling Notification Node

468 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

Invoke a Withdraw service or a Transfer service against an account to cause a negative account
balance. You create a Withdraw service or a Transfer service similarly to the Deposit service.
Perform the following procedure to test the underBalancePolling notification node.

Invoke the Transfer service against an account to cause a negative account balance.

1. Start Designer.

2. In the Package Navigator, navigate to the TestMyWmSampleAdapter > services folder.

3. Click the EnquiryService service.

4. In the Run menu, select Run As > Run Service .

5. Enter data in the fields of the pop-up menu that appears as follows, and click OK.

ValueField

1AccountNumber

In the Results section, the following details appear.

ValueField

1AccountNumber

1000.0Balance

6. Click the DepositService service.

7. In the Adapter Service Editor's TRANSACTION tab, select Withdraw in the Service Name
field.

8. Select File > Save.

Note:
To create additional adapter service nodes, repeat this procedure, selecting the appropriate
service names, such as Transfer, Withdraw or Clear Cheque.

9. In the Run menu, select Run As > Run Service .

10. Enter data in the fields of the pop-up menu that appears as follows, and click OK.

ValueField

1AccountNumber

webMethods Adapter Development Kit Installation and User’s Guide 9.12 469

D Using the Sample Adapter

ValueField

1020Amount

11. Search “Creating the Flow Service for the underBalancePollingNotificationNode” on page 467.

The underBalancePolling.log file is created in the Integration Server_directory \
instances\<instance_name>\pipeline directory for the notification message.

This is the file name specified in the fileName parameter in the flow service.

This polling notification uses the savePipelineToFile service to save the polling notification event
to a file.

A new polling notification event of the same type will overwrite the contents of the
corresponding log file.

Note:
No banking event is generated.

Disabling the Phase 4 Implementation

After you compile and test the Phase 4 code, you must disable or delete the MyWmSampleAdapter
and TestMyWmSampleAdapter package before you compile and test Phase 5. Not disabling or deleting
the package results in a conflict of major codes when you compile and test Phase 4.

Phase 5: Adding Listener Notifications

In this phase, the sample provides a listener and listener notification template that you can use to
configure listener and listener notification nodes. The listener nodes receive alerts immediately
from the Sample Serverwhen checks are deposited and when the accounts have negative balances.
This section describes how to:

Implement the listener.

A listener object is connected to the adapter resource, waiting for the system to deliver
notifications.

Implement an asynchronous listener notification template.

An asynchronous listener notification publishes a document to a webMethods Broker queue,
using the doNotify method. You must create a trigger that receives the document and executes
an Integration Server flow service to process the document's data.

Revise adapter definition, and adapter connection classes.

Compile the phase 5 implementation.

Note:

470 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

The Phase 5 implementation is not compiled as the WmSampleAdapter package contains
the Phase 5 (final) implementation.

Configure the listener node.

Configure two asynchronous listener notification nodes (one for check deposits, the other for
negative balances).

Each node generates a document that will be used to contain the affected portion of the Sample
Server data, and to inform the Integration Server of the changes.

Create an Integration Server trigger and a flow service for each listener notification node.

The notifications publish the resulting documents to the triggers. Upon receiving a document
generated by the listener notification, the trigger causes the Integration Server to invoke a flow
service registered with the trigger to process the document's data. In the Sample Adapter, the
flow service invokes the pub.flow:savePipelineToFile service. This service simply saves the contents
of the pipeline from the listener notification event to a file. This service is used as a debugging
tool. It is provided here simply to demonstrate the use of the notification. In a real adapter,
you perform some kind of action with the notification data.

Schedule and enabling the listener notification nodes.

Test the listener notification nodes.

Implementing the Listener

Define a listener by extending the com.wm.adk.notification.WmConnectedListener base class. The following
packages, classes, andmethods are added in the Sample Adapter; thereby allowing you to configure
and monitor events

AWmSampleListener class created by extending the com.wm.adk.notification.WmConnectedListener base
class.

Features of the listener created for Sample Server are as follows:

The listener is a Sample Server client that uses a connection in the passive listening mode.

The listener calls the retrieveConnection method to retrieve a connection object that you specify
when you configure the listener instead of creating a native connection to the backend system.

In the waitForData method, the connection object waits and return the following: .

Returns the notification event if the listener is successful.

Returns null if the listener times out.

Note:
The time out of the connectionwhile in the blocked readingmode is an important feature
of the connection object. This enables the adapter to shut down the listener if it is disabled.

The WmSampleListener class contains no bean properties.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 471

D Using the Sample Adapter

Implementing the Asynchronous Listener Notification Template

Define an asynchronous listener notification template by extending the
com.wm.adk.notification.WmAsyncListenerNotification base class. The following packages, classes, and
methods are added in the Sample Adapter; thereby allowing you to configure and take actionwhen
the event occur.

A AsyncListening class created by extending the com.wm.adk.notification.WmAsyncListenerNotification
base class.

You will use the template to configure a node for each of the following alert types:

CheckDepositNotification

The systempublishes this notification documentwhen theDeposit service successfully deposits
a check. You can then invoke the Clear Check service or the Bounce Check service to approve
or disapprove the check.

UnderBalanceNotification

This notification operates under the same criteria as the UnderBalance polling notification.

The following WmAsyncListenerNotificationmethods are implemented:

DescriptionMethod Name

Compares the notification event name with the configured notification name to
determine whether it must claim the event or not. Returns true if appropriate,
else returns false.

supports

Processes the notification event and publishes the event to thewebMethods Broker
queue.

runNotification

TheWmSampleListener class contains no bean properties. The properties declared in the AsyncListening
class are as follows:

DescriptionProperty

Event notification type name.eventName

Fully qualified output parameter names, including all the record structures
and array indicators.

outputParameterNames

Fully qualified suggested output parameter signature names, including
all the record structures and array indicators.

outputFieldNames

Note:
If you set the Boolean flag to true in the createFieldMap method, the
adapter user is provided with the option to overwrite the suggested
names. In this implementation, the user cannot change the names.

472 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

DescriptionProperty

Output parameter data types, including all the array indicators.outputFieldTypes

The resource domains declared in the AsyncListening class are as follows:

DescriptionResource Domain

Looks up the list of the Sample Server listener notification event names
described in “Banking Alerts” on page 445.

notificationNames

Looks up the fully qualified output parameter names, including all the
record structures and array indicators.

outputParameterNames

Looks up the output parameter data types, including all the array
indicators.

outFieldTypes

Revising the Code from Phases 1, 2, 3, and 4
In Phase 5, the existing classes from Phases 1 through 4 are modified to include the following
revisions. The classes contain comments that detail the changes.

RevisionClass

Added string constants for the polling property names.WmSampleAdapterConstants

Added entries for the polling property configuration.WmSampleAdapterResourceBundle

In the registerResourceDomainmethod, the sample code registers
all the resource domains declared by the AsyncListening template.

WmSampleConnection

In the adapterResourceDomainLookup method, the sample code
includes resource domain lookup code to request the listener
notification metadata from the Sample Server repository.

Configuring and Testing the Listener and the Listener
Notification Nodes

You can use the AsyncListening listener notification template to create listener notification nodes that
monitor the alert types generated by the Sample Server. The two alert types are:

CheckDepositNotification

UnderBalanceNotification

The following procedures describe how to configure and test a node for CheckDepositNotification.
To configure and test a node for UnderBalanceNotification, repeat these procedures, substituting
the polling name UnderBalanceNotification for CheckDepositNotification.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 473

D Using the Sample Adapter

This section describes the following tasks:

Configuring and enabling a connection node

Configuring the listener node

Configuring the checkDepositListener notification node

Creating the flow service for the checkDepositListener notification node

Creating the trigger for the checkDepositListener notification node

Enabling the checkDepositListener notification node and the listener node

Testing the checkDepositListener notification node

Configuring and Enabling a Connection Node

To create a connection node for the Deposit adapter service:

1. Start Integration Server Administrator.

2. Navigate to Adapters > Sample Adapter.

The Sample Adapter management screen appears.

3. Select Connections.

4. Configure the listenerConnection connection node in the TestMyWmSampleAdapter package,
and enable the connection, as described in “Configuring the Connection Node” on page 451.

Configuring the Listener Node

Perform the following procedure to configure the listener node.

To configure the listener node

1. Start Integration Server Administrator.

2. Navigate to Adapters > Sample Adapter.

The Sample Adapter management screen appears.

3. Click Configure New Listener.

4. In the Listener Types screen, click Sample Server Listener.

5. Complete the Configure Listener Type > Sample Adapter section as follows:

474 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

DescriptionParameter

Package in which you create the listener. Select the namespace node
package TestSampleAdapter.

Package

Folder in which you create the listener. Type the folder name
listeners.

Folder Name

Listener name. Type the listener name sampleListener.Listener Name

Select the connection node. For example,
connections:listenerConnection.

Connection

Specifies the number of times that the system should attempt to start
the listener if the initial attempt fails which is specifying the how

Retry Limit

many times to retry the listenerStartup method before issuing an
AdapterConnectionException. The value 0means that the systemmakes a
single attempt. Accept the default value 5.

Specifies the number of seconds the system must wait between each
attempt to start the listener. Accept the default value 10.

Retry Backoff Timeout

6. Click Save Listener.

Note:
Enabling the listener before you configure and enable its corresponding listener notification
node produces a warning.

Configuring the checkDepositListener Notification Node

Perform the following procedure to configure the checkDepositListener notification node.

To configure the checkDepositListener notification node

1. In the Select an Adapter Connection Alias screen, select connections:sampleConnection
and click Next.

2. Start Designer.

3. Go to File > Refresh.

4. In the Package Navigator, navigate to the TestMyWmSampleAdapter package.

5. Create a listenerNotifications folder.

6. Go to File > New.

7. Select Adapter Notification from the list of elements.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 475

D Using the Sample Adapter

8. In the Create a New Adapter Notification screen, type checkDepositListener in the Element
name field and click Next.

9. In the Select Adapter Type screen, select Sample Adapter and click Next.

10. In the Select a Template screen, select Asynchronous Listener Notification and click Next.

11. In the Select an Adapter Notification Listener screen, select listeners:sampleListener and
click Next.

12. In the Publish Document Name screen, click Finish.

Designer creates the notification and the publish document named
checkDepositListenerPublishDocument.

13. Click Finish.

14. On the Listener Notification tab in the Adapter Notification Editor, select
CheckDepositNotification in the Monitor field.

15. Select File > Save.

Creating the Flow Service for the checkDepositListener Notification Node

Perform the following procedure to create the flow service for the checkDepositListener notification
node.

To create the flow service for the checkDepositListener notification node

1. Start Designer.

2. In thePackage Navigator, navigate to theTestMyWmSampleAdapter > listenerNotifications
folder.

3. Go to File > New.

4. Select Flow Service from the list of elements.

5. In the Create a New Adapter Service screen, type checkDepositListenerService in the
Element name field and click Next.

6. In the Select the Source Type screen, select Empty Flow and click Finish.

7. Click to insert a flow step.

8. Navigate to the pub.flow:savePipelineToFile service.

476 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

Note:
The savePipelineToFile service saves the listener notification event (the contents of the pipeline)
to the file that you specify in the fileName parameter.

9. Click the Pipeline tab.

10. Open the fileName parameter in the pipeline and set its value to checkDepositListener.log.

Click OK.

11. Click File > Save.

Creating the Trigger for the checkDepositListener Notification Node

Perform the following procedure to create the trigger for the checkDepositListener notification
node.

To create the trigger for the checkDepositListener notification node

1. Start Designer.

2. In thePackage Navigator, navigate to theTestMyWmSampleAdapter > listenerNotifications
folder.

3. Go to File > New.

4. Select webMethods Messaging Trigger from the list of elements.

5. In the Create a New webMethods Messaging Trigger screen, type
checkDepositListenerTrigger in the Element name field and click Finish.

6. In the trigger editor, in the Conditions section, accept the default Condition1.

7. In the Condition detail section, in the Service field, select or type the flow service name
listenerNotifications:checkDepositListenerService.

8. Click to insert document types. Select checkDepositListenerPublishDocument and click
OK.

9. Click File > Save to save your trigger.

Enabling the checkDepositListener Notification Node and the Listener Node

Perform the following procedure to enable the checkDepositListener notification node and the
listener node.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 477

D Using the Sample Adapter

To enable the checkDepositListener notification node and the listener node

1. Start Integration Server Administrator.

2. Navigate to Adapters > Sample Adapter.

The Sample Adapter management screen appears.

3. Select Listener Notifications.

4. Enable the checkDepositListener notification by clicking No in the Enabled column.

The Enabled column now shows Yes (enabled).

5. Click Listeners.

6. Enable the sampleListener by selecting Enabled in the State column.

Testing the checkDepositListener Notification Node

Invoke a Deposit service on an account o produce a check deposit event.

Invoke the Deposit service on an account to produce a check deposit event.

1. Start Designer.

2. In the Package Navigator, navigate to the TestMyWmSampleAdapter > services folder.

3. Click the DepositService service.

4. In the Adapter Service Editor's TRANSACTION tab, selectDeposit in theService Name field.

5. Select File > Save.

Note:
To create additional adapter service nodes, repeat this procedure, selecting the appropriate
service names, such as Transfer, Withdraw or Clear Cheque.

6. In the Run menu, select Run As > Run Service .

7. Enter data in the fields of the pop-up menu that appears as follows, and click OK.

Click to add a row and specify values for the field as follows:

478 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

ValueField

1Deposit To Account

10Deposit Amount

1Check Number

The data you entered appears in the Results tab.

The checkDepositListener.log file is created in the Integration Server_directory \
instances\<instance_name>\pipeline directory for the check deposit notification message.

This is the file name specified in the fileName parameter in the flow service.

This listener notification uses the savePipelineToFile service to save the polling notification event
to a file.

A new listener notification event of the same type will overwrite the contents of the
corresponding log file.

webMethods Adapter Development Kit Installation and User’s Guide 9.12 479

D Using the Sample Adapter

480 webMethods Adapter Development Kit Installation and User’s Guide 9.12

D Using the Sample Adapter

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	1 Overview
	What is the Adapter Development Kit?
	Points of Integration
	Development Time Tasks and Support
	Design Time Tasks
	The Runtime Conceptual Model

	2 Installing and Uninstalling the Sample Adapter
	Overview
	Requirements
	The Integration Server Home Directory
	Installing Sample Adapter
	Uninstalling Sample Adapter

	3 The Adapter Definition
	Overview
	Creating an Adapter Package
	Adapter Definition Classes
	Adapter Definition Implementation Classes (Example MyAdapter)
	Creating a WmAdapter Implementation Class
	Creating Resource Bundles
	Deploying the adapter
	Package Management

	4 Connections
	Overview
	Adapter Connection Classes
	Adapter Connection Implementation Classes
	Creating a WmManagedConnection Implementation Class
	Creating a WmManagedConnectionFactory Implementation Class
	Updating the Resource Bundle
	Registering Connection Factories in the Adapter
	Connection Class Interactions
	Configuring and Testing Connection Nodes

	5 Adapter Services
	Overview
	Adapter Service Classes
	Metadata Model for Adapter Services
	Adapter Service Template Interactions
	Adapter Service Implementation
	Configuring and Testing Adapter Service Nodes

	6 Polling Notifications
	Overview
	Polling Notification Classes
	Polling Notification Callbacks
	Metadata Model for Polling Notifications
	Polling Notification Interactions
	Polling Notification Implementation
	Configuring and Testing Polling Notification Nodes
	Cluster Support for Polling Notifications

	7 Listener Notifications
	Overview
	Listener Classes
	Asynchronous Listener Notification Classes
	Synchronous Listener Notification Classes
	Listener and Listener Notification Interactions
	Listener Implementation
	Listener Notification Implementation
	Configuring and Testing Listener Nodes and Listener Notification Nodes

	8 Runtime Activities
	Overview
	Retry and Recovery Architecture
	Runtime Connection Allocation for Adapter Services

	9 Usage Scenarios
	How to register an adapter with the Integration Server?
	How to create an adapter connection implementation?
	How to create an adapter service implementation?
	How to create a polling notification implementation?
	How to create an adapter listener implementation?

	A Alternative Approaches to Metadata
	Overview
	Implementing Metadata Parameters Using External Classes
	An Alternative Approach to Organizing Resource Domains
	Using Resource Bundles with Resource Domain Values

	B Integration Server Transaction Support
	Overview
	Simple Transactions
	More Complex Transactions
	Implicit Transaction Usage Cases
	Explicit Transaction Usage Cases
	Built-In Services For Explicit Transactions
	Transaction Error Situations
	Specifying Transaction Support in Connections

	C Using the Services for Managing Namespace Nodes
	Overview
	Connection Services
	Adapter Service Services
	Listener Services
	Listener Notification Services
	Polling Notification Services

	D Using the Sample Adapter
	Overview
	The Sample Server
	Banking Services, Queries and Alerts
	Prerequisites for Code Compilation
	Phase 1: Creating an Adapter Definition
	Phase 2: Adding a Connection
	Phase 3: Adding Adapter Services
	Phase 4: Adding Polling Notifications
	Phase 5: Adding Listener Notifications

