
Universal Messaging Administration Guide

Version 10.7

October 2020

This document applies to Software AG Universal Messaging 10.7 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2023 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: NUM-AG-107-20230907

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Documentation...5
Online Information and Support...6
Data Protection...6

Overview..7

2 Universal Messaging Enterprise Manager...9
About the Enterprise Manager...10
Starting the Enterprise Manager..10
Tab-by-Tab Overview...11
About the Enterprise View..14
Realm Administration...15
Zone Administration..76
Cluster Administration..79
Channel Administration..94
Queue Administration...110
Data Group Administration..119
Container Administration...121
Using ACLs for Role-Based Security...123
Scheduling...129
Integration with JNDI..166
Administering TCP Interfaces, IP Multicast, and Shared Memory..170
Plugins..185
Exporting and Importing Realm XML Configurations...212
Using the Enterprise Viewer...227

3 Using Command Central to Manage Universal Messaging...229
About Using Command Central to Manage Universal Messaging..230
Managing Universal Messaging Server Instances...230
Starting, Stopping, and Restarting Universal Messaging...231
Securing Communication Between Command Central and Universal Messaging..............232
Configuring Universal Messaging...235
Securing Access to Command Central..258
Administering Universal Messaging...260
Viewing Universal Messaging Run-time Monitoring Statuses..271
Viewing Universal Messaging KPIs...271
Viewing Universal Messaging Logs..272
Viewing Universal Messaging Inventory...273
Configuration Types That the Universal Messaging Server Supports...................................273
Using the Command Line to Manage Universal Messaging...274
Lifecycle Actions for Universal Messaging Server..348
Run-time Monitoring States for Universal Messaging Server...348
Run-time Monitoring Statuses for Universal Messaging Server...349

Universal Messaging Administration Guide 10.7 iii

Deployment of Universal Messaging Assets..350
Templates for Provisioning Universal Messaging...351

4 Comparison of Enterprise Manager and Command Central Features......................................353

5 Setting up Active/Passive Clustering with Shared Storage..361
About Active/Passive Clustering...362
Overview of Active/Passive Clustering on Windows...366
Overview of Active/Passive Clustering on UNIX..368
Configuring a Universal Messaging Active/Passive Cluster on UNIX...................................369

6 Command Line Administration Tools..373
Introduction to the Administration Tools...374
Starting the Tools using the Tools Runner Application..374
Performing Standard Administration Tasks on Realms and Clusters....................................376
Running a Configuration Health Check...383
The "Realm Information Collector" Diagnostic Tool...393
The ExportEventsFromOfflineMemFile Tool...401
The RepublishEventsFromOfflineFile Tool...407
Syntax reference for command line tools..409

7 Universal Messaging Administration API...487
Introduction...488
Administration API Package Documentation..491
Namespace Objects..491
Realm Server Management...498
Security..506
Management Information...510

8 Configuring the Java Service Wrapper..519

9 Thread Pool Monitoring..525

10 Using Nginx with Universal Messaging...529
About Using Nginx with Universal Messaging...530
Configure Nginx to Direct HTTP Requests to Universal Messaging......................................530
Nginx Directives Configuration...531
Configure Nginx to Direct HTTPS Requests to Universal Messaging...................................532
Forward Requests Based on URL Matches...535

11 Migrating from IPv4 to IPv6...537

12 Data Protection and Privacy..539

iv Universal Messaging Administration Guide 10.7

Table of Contents

About this Documentation

■ Online Information and Support ... 6

■ Data Protection ... 6

Universal Messaging Administration Guide 10.7 5

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG TECHcommunity

You can finddocumentation and other technical information on the SoftwareAGTECHcommunity
website at http://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

6 Universal Messaging Administration Guide 10.7

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
http://techcommunity.softwareag.com

Overview
This administration guide covers the following areas:

“Universal Messaging Enterprise Manager” on page 9: This section describes the Enterprise
Manager, which is Universal Messaging's native graphical user interface for management of
your Universal Messaging environment. There is also a read-only version of the Enterprise
Manager, called the Enterprise Viewer, which allows unprivileged users to view the Universal
Messaging environment (see the section “Using the Enterprise Viewer” on page 227 for details).

“UsingCommandCentral toManageUniversalMessaging” on page 229: This section describes
the parts of Command Central that are specific to Universal Messaging. Command Central is
a generic tool used by many Software AG products. It provides a web browser and
command-line interface to configure and manage Universal Messaging.

“Setting upActive/Passive Clusteringwith Shared Storage” on page 361: This section describes
how to set up an active/passive cluster, using third party solutions that supply additional
hardware and software for cluster management.

“Command Line Administration Tools” on page 373: This section describes a set of command
line tools that allow you to performmany of the common actions available through Universal
Messaging.

“Universal Messaging Administration API” on page 487: This section describes the powerful
administrationAPI that allows you to build applications tomanage yourUniversalMessaging
environment programmatically.

Universal Messaging Administration Guide 10.7 7

8 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

■ About the Enterprise Manager ... 10

■ Starting the Enterprise Manager .. 10

■ Tab-by-Tab Overview .. 11

■ About the Enterprise View .. 14

■ Realm Administration ... 15

■ Zone Administration ... 76

■ Cluster Administration .. 79

■ Channel Administration .. 94

■ Queue Administration ... 110

■ Data Group Administration ... 119

■ Container Administration .. 121

■ Using ACLs for Role-Based Security .. 123

■ Scheduling .. 129

■ Integration with JNDI .. 166

■ Administering TCP Interfaces, IP Multicast, and Shared Memory 170

■ Plugins .. 185

■ Exporting and Importing Realm XML Configurations ... 212

■ Using the Enterprise Viewer ... 227

Universal Messaging Administration Guide 10.7 9

About the Enterprise Manager

The Enterprise Manager is a powerful, graphical management tool that enables the capture of
extremely granularmetrics,management, and audit information frommultipleUniversalMessaging
server realms. The Enterprise Manager also enables you to control, configure, and administer all
aspects of a Universal Messaging realm or clusters of realms.

The Enterprise Manager is based on the Universal Messaging administration API and any of its
functionality can be integrated into bespoke or third-party system management services.

The Enterprise Manager and administration API use in-band management. This ensures that the
flexibility of Universal Messaging connections is also made available from a
management/monitoring perspective. UniversalMessaging realms can bemanaged remotely over
TCP/IP sockets, SSL-enabled sockets, HTTP, and HTTPS as well as through normal and
user-authenticated HTTP/S proxies.

The Read-Only Enterprise Viewer

The Enterprise Viewer is a read-only version of the Enterprise Manager. It enables unprivileged
users to view the same information as in the EnterpriseManager, but does not allow you to change
the Universal Messaging environment in any way. For more information about the Enterprise
Viewer, see “Using the Enterprise Viewer” on page 227.

Starting the Enterprise Manager

In order to start administering andmonitoring your Universal Messaging realm servers you need
to launch the Enterprise Manager. The Enterprise Manager is capable of connecting to multiple
Universal Messaging realms at the same time, whether these are part of a cluster / federated
namespace or simple standalone realms. A configuration file called realms.cfg is created in your
homedirectorywhich stores the EnterpriseManager's connection info, however the very first time
you launch it a bootstrap RNAME environment variable can be used to override the default
connection information. Subsequent launches will not depend on the environment variable as
long as you save your connection information. For more information about saving your
configuration, see “Working with Realm Profiles” on page 30.

Launching on Windows platforms can be done by selecting the Enterprise Manager shortcut in
the Start Menu.

You can also open a client command prompt and type a command of the following form:
<InstallDir>\UniversalMessaging\java\<InstanceName>\bin\nenterprisemgr.exe

where <InstallDir> is the installation root location and <InstanceName> is the name of the Universal
Messaging server.

Launching on UNIX platforms can be done by executing the nenterprisemgr executable, which
you can find under the installation directory at the following location:

java/umserver/bin/nenterprisemgr

10 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Logging In

When you start the Enterprise Manager, there is a login dialog in which you can enter a user ID
and password. The user ID and password are only required for logging in if you have activated
basic authentication. If you have not activated basic authentication, the password is ignored, but
the user ID is still subject to the usual ACL checks in the Enterprise Manager.

See the section Basic Authentication in the Developer Guide for information about setting up basic
authentication.

Tab-by-Tab Overview

This section provides a high level overview of Enterprise Manager functionality on a tab by tab
basis, for each of the following node types (as displayed in EnterpriseManager's navigation pane).

“Enterprise Node” on page 11

“Realm Nodes” on page 11

“Container (Folder) Nodes” on page 13

“Channel Nodes” on page 13

“Queue Nodes” on page 13

Enterprise Node

Highlighting theEnterprise node in the tree provides anEnterprise Summary view of all realms
to which Enterprise Manager is connected, and includes information such the total number of
realms, clusters, channels, queues, events published and received, and more.

Realm Nodes

Highlighting a Realm node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events published
or consumed, numbers of connections, and memory usage.

Monitoring Tab

A container for multiple panels that enable you to view live information on the selected realm:

Logs

Provides a rolling view of Universal Messaging Logs and Plugin Logs including Access
and Error logs.

Connections

Universal Messaging Administration Guide 10.7 11

2 Universal Messaging Enterprise Manager

Provides a list of all current connections to the realm, along with details such as protocol,
user, and host. Allows connections to be "bounced" (forcing them to reconnect).

Threads

Provides details such as the number of idle and active threads per thread pool, task queue
size per thread pool and a total number of executed tasks for the respective thread pool.
It also provides details of scheduled operations each task has within the system.

Top

A "UNIX top"-like view of realmmemory usage, JVMgarbage collection statistics, channel
and connection usage.

Audit

Displays the contents of the remote audit file and receives real time updates as and when
audit events are generated.

Metrics

Provides metrics on current memory usage, such as on-heap event memory usage.

ACL Tab

Displays the realmACL and the list of subjects and their associated permissions for the realm.
Permits editing of ACLs.

Comms Tab

Provides access to management tools for TCP interfaces, IP Multicast and Shared Memory
communication methods:

Interfaces

Management of TCP Interfaces (creation, deletion, starting/stopping) aswell as configuration
of advanced interface properties.

Multicast

Management of IPMulticast Configurations (creation/deletion) and advanced configuration
tuning.

Shared Memory

Realms Tab

Provides a summary of memory, event and interface information for each realm to which
Enterprise Manager is connected.

Config Tab

Manage the settings for many groups of advanced realm configuration parameters.

Scheduler Tab

12 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Permits the user to view, add, delete and edit scheduler scripts.

JNDI Tab

Enables the creation of references to JMSTopicConnectionFactory andQueueConnectionFactory,
as well as references to Topics and Queues.

Container (Folder) Nodes

Totals Tab

Provides status information for resources and services containedwithin the selected container
branch of the namespace tree.

Monitor Tab

A "Unix top"-like view of the usage of Channels or Queues found within the container node.

Channel Nodes

Highlighting a Channel node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events published
or consumed, rates, and event storage usage.

Joins Tab

Permits the user to view, add, delete and edit joins between Channels.

ACL Tab

Permits the user to add, remove or modify entries within the Channel ACL.

Durables

Enables the viewing and deletion of durables , which provide state information for durable
consumers for the channel.

Snoop Tab

Permits snooping of events on the Channel

Connections

Enables the creation of references to JMSTopicConnectionFactory andQueueConnectionFactory,
as well as references to Topics and Queues.

Queue Nodes

Highlighting a Queue node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Universal Messaging Administration Guide 10.7 13

2 Universal Messaging Enterprise Manager

Status Tab

Provides a snapshot and historical view of statistics such as the number of events published
or consumed, rates, and event storage usage.

Joins Tab

Permits the user to view, add, delete and edit joins from any Channels to this Queue.

ACL Tab

Permits the user to add, remove or modify entries within the Queue ACL.

Snoop Tab

Permits snooping (a non-destructive read) of events on the Queue.

Consumer Info Tab

Provides information on currently connected queue consumers.

About the Enterprise View

The Enterprise view is the first screen you see when you start the Enterprise Manager. The screen
gives an overview of the characteristics as well as current status of the set of Universal Messaging
realms to which the Enterprise Manager is currently connected, your Universal Messaging
enterprise. This summary view includes any Universal Messaging realms you have added to your
connection informationwhether they are standalone development realms or production clustered
realms. Adding a Universal Messaging realm to the Enterprise Manager's connection info will
result in the realm's data being included in this view (see “Connecting to Multiple Realms” on
page 73 and “Disconnecting from Realms” on page 73).

As you navigate throughmore specific parts of theUniversalMessaging enterprise, you can always
return to this screen by selecting the root node of the navigation tree namedUniversal Messaging
Enterprise.

The view shows a large real time graph illustrating the total number of events published (yellow)
and consumed (red) across all Universal Messaging realms. The bottom of the screen displays
three panels named Totals, Event Status, and Connection Status.

The Totals panel displays the total number of clusters, realms and resources across all Universal
Messaging realms.

The Event Status panel displays the total number of events consumed and published, as well as
the current consume and publish rates (events per second).

TheConnection Status panel displays the total number, the current number aswell as the number
of connections (sessions) being made per second across all realms at this point in time, whether
application or administrative.

14 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Realm Administration

Creating and Starting a Realm Server
Universal Messaging provides the following tools for performing general administrative tasks on
realms, such as creating a realm, checking the status of a realm, and deleting a realm.

The Universal Messaging Instance Manager:

For related information, see the sectionUniversal Messaging Instance Manager in the Installation
Guide.

CommandCentral: If your installation ofUniversalMessaging includes the optional Command
Central component, you can use the command line tool of Command Central to perform
administrative tasks on realms.

For related information, see the section “Using the Command Line to Manage Universal
Messaging” on page 274 in the Command Central part of the documentation.

Creating a Realm Server

You can use either the Universal Messaging Instance Manager or Command Central to create the
realm server. See the examples in the corresponding documentation pages at the locations
mentioned above.

Universal Messaging Administration Guide 10.7 15

2 Universal Messaging Enterprise Manager

Starting a Realm Server

After you have created the realm server, start the realm server as follows:

On Windows systems:

1. From the Windows Start menu, navigate to the node Start Servers that is located under the
Universal Messaging node.

2. Navigate in the hierarchy to find the node labelled Start <RealmName>, and click it. Here,
<RealmName> is the name you assigned to the realm server when you created it.

On UNIX systems:

1. Start the script nserver.sh that is located in UniversalMessaging/server/<RealmName>/bin/
under the product installation directory.

Related information on starting and stopping a realm server

For additional information on starting and stopping a realm server, see the sections Starting the
Realm Server and Stopping the Realm Server in the Installation Guide.

Viewing a Realm
The Realm view provides information about the current status of the set of Universal Messaging
realms that the Enterprise Manager is monitoring. When you select a realm node from the
namespace, the status panel is displayed by default for the realm.

16 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

The top of the screen displays a panel containing the following information:

Name - The name of the selected realm.

Threads - The number of threads in the realm server's JVM.

Realm Up Time - How long the realm has been running.

Last Update - The time that the last status update was sent by the realm.

Publish state - Whether server publishing is paused.

The Status panel contains real-time graphs illustrating the total number of events published (yellow)
and consumed (red) across the Universal Messaging realm, as well as the direct memory usage
history and heap memory usage history for the selected realm.

The bottom of the screen displays four panels named Event Status, Totals, Connection Status,
and Memory Usage. These panels and the information displayed are described below.

Event Status

The Event Status section contains the following parameters:

Consumed - The total number of events consumed by all channels, queues, and services on
the realm.

Published - The total number of events published to all channels, queues, and services on the
realm.

Universal Messaging Administration Guide 10.7 17

2 Universal Messaging Enterprise Manager

Consumed/Sec - The number of events consumed per second by all channels, queues, and
services on the realm.

Published/Sec - The number of events published per second to all channels, queues, and
services on the realm.

Totals

The Totals section contains the following parameters:

Realms- The number of realms mounted within this realm's namespace.

Channels- The number of channels on the realm.

Queues- The number of queues on the realm.

Data Groups- The number of data groups on the realm.

Data Streams- The number of data streams on the realm.

Connection Status

The Connection Status section contains the following parameters:

Total - The total number of connections made to the realm.

Current - The current number of connections to the realm.

Rate - The number of connections being made per second to the realm.

Allowed - The permitted number of concurrent connections.

Memory Usage(M)

The Memory Usage section contains the following parameters:

Total - The total amount of MB allocated to the realm JVM, specified by the -Xmx value for
the JVM.

Free - The amount of JVM memory available for the realm.

Used - The amount of JVM memory used by the realm.

Change - The change in used memory for an interval of time in MB.

Direct Total - The total allocatable amount of MB that the JVM can use before an Out Of
Memory Exception occurs.

Direct Free - The total amount of free (unused) direct memory in MB.

18 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Monitoring a Realm

About Monitoring a Realm

You can view live information on a Universal Messaging realm server on the Monitoring tab for
a selected server in the Enterprise Manager.

You can monitor the server log messages in real time, the current connections, thread status,
channel and connection usage, audit events, and memory usage.

The Enterprise Manager Logs Panel

Each Universal Messaging realm server has a log file called nirvana.logwithin the directory
<InstallDir>\UniversalMessaging\server\<InstanceName>\data, where <InstallDir> is the disk
root location of yourUniversalMessaging installation and <InstanceName> is the name of the realm
server.

The Enterprise Manager provides a panel that displays real time log messages as they are written
to the log file. This enables you to remotely view the activity on a realm as it is happening. The
Universal Messaging Administration API also provides the ability to consume the log file entries
from an nRealmNode. See the code example "Monitor the Remote Realm Log and Audit File" for an
illustration of usage.

The Universal Messaging log file contains useful information about various activities, such as
connection attempts, channels being located and subscribed to, as well as status and warning
information.

About the Logs Panel

The Enterprise Manager provides a panel for each realm where you can view the realm's log file.
To view the log file, click the realm node from the namespace, select the Monitoring tab, and then
select the Logs tab. This will show the live log messages for the selected realm. The log panel
automatically replays the last 20 log entries from the realm server and then each entry thereafter.
The image below shows an example of the log panel for a selected realm.

Universal Messaging Administration Guide 10.7 19

2 Universal Messaging Enterprise Manager

The log panel also enables you to stream the log messages to a local file. Click Start Stream, and
then enter the name of the file to which you want to stream the log messages. To stop the stream,
click Stop.

Understanding the log file

Entries in the log file have the following general format:
Timestamp LogLevel ThreadName Message

Where:

Timestamp gives the date and time that the entry was created, for example:

[Fri May 18 09:03:46.610 EEST 2018]

The time of day is given in the format hh:mm:ss.ttt, representing hours, minutes, seconds,
thousandths of a second.

LogLeveldetermines the depth of information being logged. It is displayed only if the EmbedTag
logging configuration property is set to true (default is false). See the description later in this
section for details of logging levels.

ThreadName is the name of the internal processing thread that generated the log message. This
is displayed only if the DisplayCurrentThread logging configuration property is set to true
(default is true).

Message contains the actual information that is being logged.

20 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

See the section “RealmConfiguration” on page 33 for information about configuration properties.

When a server is started, the initial entries in the log file contain useful information about the
server's configuration. The following text is an excerpt from a realm server log during startup (the
entries for LogLevel and ThreadName have been suppressed here for clarity) :
[Fri May 18 09:03:46.610 EEST 2018] ==
[Fri May 18 09:03:46.610 EEST 2018] Copyright (c) Software AG Limited. All rights
reserved
[Fri May 18 09:03:46.610 EEST 2018] Start date = Fri May 18 09:03:46 EEST
2018

[Fri May 18 09:03:46.610 EEST 2018] Process ID = 9040
[Fri May 18 09:03:46.610 EEST 2018]
[Fri May 18 09:03:46.610 EEST 2018] Realm Server Details :
[Fri May 18 09:03:46.610 EEST 2018] Product = Universal Messaging
[Fri May 18 09:03:46.610 EEST 2018] Realm Server name = umserver
[Fri May 18 09:03:46.610 EEST 2018] Release Identifier = 10.3.0.0.106659
[Fri May 18 09:03:46.610 EEST 2018] Build Date = May 17 2018
[Fri May 18 09:03:46.610 EEST 2018] Data Directory =

C:\SoftwareAG\UniversalMessaging\server\umserver\data
[Fri May 18 09:03:46.610 EEST 2018] Extension Directory =

C:\SoftwareAG\UniversalMessaging\server\umserver\plugins\ext
[Fri May 18 09:03:46.610 EEST 2018] Low Latency Executor = false
[Fri May 18 09:03:46.610 EEST 2018] Has License Manager = true
[Fri May 18 09:03:46.610 EEST 2018] Interfaces Running :
[Fri May 18 09:03:46.610 EEST 2018] 0) nhp0: nhp://0.0.0.0:9000 Running
[Fri May 18 09:03:46.610 EEST 2018]
[Fri May 18 09:03:46.610 EEST 2018] Realm(s) Reloaded = 1
[Fri May 18 09:03:46.610 EEST 2018] Channels Reloaded = 0
[Fri May 18 09:03:46.610 EEST 2018] Queues Reloaded = 0
[Fri May 18 09:03:46.610 EEST 2018] Data Groups Reloaded = 0
[Fri May 18 09:03:46.610 EEST 2018] Interfaces Reloaded = 1
[Fri May 18 09:03:46.610 EEST 2018]
[Fri May 18 09:03:46.610 EEST 2018] Operating System Environment :
[Fri May 18 09:03:46.610 EEST 2018] OS Name = Windows 7
[Fri May 18 09:03:46.610 EEST 2018] OS Version = 6.1
[Fri May 18 09:03:46.610 EEST 2018] OS Architecture = amd64
[Fri May 18 09:03:46.610 EEST 2018] Available Processors = 4
[Fri May 18 09:03:46.610 EEST 2018]
[Fri May 18 09:03:46.610 EEST 2018] Java Environment :
[Fri May 18 09:03:46.610 EEST 2018] Java Vendor = Oracle Corporation
[Fri May 18 09:03:46.610 EEST 2018] Java Vendor URL = http://java.oracle.com/
[Fri May 18 09:03:46.610 EEST 2018] Java Version = 1.8.0_151
[Fri May 18 09:03:46.610 EEST 2018] Java Vendor Name =

Java HotSpot(TM) 64-Bit Server VM 1.8.0_151-b12
[Fri May 18 09:03:46.610 EEST 2018] Memory Allocation = 981 MB
[Fri May 18 09:03:46.610 EEST 2018] Memory Warning = 834 MB
[Fri May 18 09:03:46.610 EEST 2018] Memory Emergency = 922 MB
[Fri May 18 09:03:46.610 EEST 2018] Nanosecond delay = Not Supported
[Fri May 18 09:03:46.610 EEST 2018] Time Zone = Eastern European Time
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 0 = SUN version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 1 = SunRsaSign version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 2 = SunEC version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 3 = SunJSSE version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 4 = SunJCE version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 5 = SunJGSS version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 6 = SunSASL version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 7 = XMLDSig version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 8 = SunPCSC version 1.8

Universal Messaging Administration Guide 10.7 21

2 Universal Messaging Enterprise Manager

[Fri May 18 09:03:46.610 EEST 2018] Security Provider 9 = SunMSCAPI version 1.8
[Fri May 18 09:03:46.610 EEST 2018] ==
[Fri May 18 09:03:46.610 EEST 2018] Startup: Realm Server Startup sequence completed

The above sequence of log entries can be found at the beginning of the Universal Messaging log
file, and shows information such as when the realmwas started, the build number and build date
of the Universal Messaging realm server, as well as environmental information like, OS, Java
version, timezone.

Apart from the above-mentioned information, the log file on Unix provides details about the
maximum number of file descriptors.
[Thu Aug 19 02:30:50.459 EEST 2021] [main] Operating System Environment :
[Thu Aug 19 02:30:50.459 EEST 2021] [main] OS Name = Linux
[Thu Aug 19 02:30:50.459 EEST 2021] [main] OS Version = 3.10.0-1160.6.1.el7.x86_64
[Thu Aug 19 02:30:50.459 EEST 2021] [main] OS Architecture = amd64
[Thu Aug 19 02:30:50.459 EEST 2021] [main] Available Processors = 4
[Thu Aug 19 02:30:50.460 EEST 2021] [main] Physical Memory = 15885 MB
[Thu Aug 19 02:30:50.460 EEST 2021] [main] Total Swap space = 3071 MB
[Thu Aug 19 02:30:50.460 EEST 2021] [main] Max file descriptors = 4096

Log Levels

TheUniversalMessaging log level is a level from 0 to 6 that determineswhat information iswritten
to the log. Log level 0 is the most verbose level of logging and on a heavily utilized server will
produce a lot of log output. Log level 6 is the least verbose level, and will produce low levels of
log output. The log level of each log message corresponds to a value from 0 to 6. The following
list explains the log file messages levels and how they correspond to the values:

0 - TRACE (Log level 0 will output any log entries with a level in the range 0-6; this is the most
verbose level)

1 - DEBUG (Log level 1 will output any log entries with a level in the range 1-6)

2 - INFO (Log level 2 will output any log entries with a level in the range 2-6)

3 - WARN (Log level 3 will output any log entries with a level in the range 3-6)

4 - ERROR (Log level 4 will output any log entries with a level in the range 4-6)

5 - FATAL (Log level 5 will output any log entries with a level in the range 5-6)

6 - LOG (Log level 6 will output any log entries with a level of 6; this is the least verbose level)

Log levels can be changed dynamically on the server by using the Config panel (see “Realm
Configuration” onpage 33). The log file has amaximumsize associatedwith it.When themaximum
file size is reached, the log filewill automatically roll, and rename the old log file to _old and create
a new log file . The maximum size for a log file is set to 10000000 bytes (approximately 10MB).
This value can be changed within the Server_Common.conf file in the server/<InstanceName>/bin
directory of your installation, where <InstanceName> is the name of theUniversalMessaging realm.
You need to modify the -DLOGSIZE property within this file to change the size.

22 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Other Logging Frameworks

By default, UniversalMessaging uses a built-in logging framework, but there is also the capability
to use third party open source frameworks. Currently, we support the Logback (http://
logback.qos.ch/) and Log4J2 (http://logging.apache.org/log4j/2.x/) frameworks.

To configureUniversalMessaging to use one of these frameworks, you can pass a -DLOG_FRAMEWORK
parameterwith the values LOGBACKor LOG4J2. See the section Server Parameters in the Concepts
guide for further information.

These frameworks are configured using XML configuration files loaded from the classpath. The
Universal Messaging installation provides default versions of these configuration files in the lib
directory. These files can be modified in order to produce the desired logging output. For more
information on configuration see the official documentation of the relevant framework.

Note:
WhenUniversalMessaging is configured to use Logback as the logging framework, themajority
of the server startupmessages in the server's nirvana.log filewill bewrittenwith status ERROR.
This happens due to a limitation in Logback that does not provide usage of custom log levels.
Therefore, UniversalMessagingmessages loggedwith LOG level are translated to ERROR level
when Logback is used.

The Log Manager

Universal Messaging has three different log managers for archiving old log files. When a log file
reaches itsmaximum size, the logmanagerwill attempt to archive it, and a new log filewill become
active. Options such as the number of log files to keep, and the maximum size of a log file are
configurable through the logging section of the Config panel (see “Realm Configuration” on
page 33). When a log file is archived and a new log file created, realm specific information such
as Universal Messaging version number will be printed to the start of the new log in a similar way
to when a realm is started. Each log manager uses a different method to store log files once they
are not the active logs for the realm.

ROLLING_OLD : This logmanager uses 2 log files. The active log file is storedwith the default
log name, and the most recently rolled log file is stored with _old appended to the log name.
e.g. nirvana.log and nirvana.log_old

ROLLING_DATE : The rolling date manager stores a configurable number of log files
(RolledLogFileDepth). Rolled log files are stored with the date they were rolled appended to
the active log file name. e.g. nirvana.logWed-Sep-14-02-31-40-117-BST-2011.

ROLLING_NUMBER : The numbered log manager stores a configurable number of log files
(RolledLogFileDepth). Rolled log files are stored with a numbered index appended to the file
name e.g. nirvana.log3 is the 3rd oldest log file

Realm Connections

When a Universal Messaging client connects to a realm server, the server maintains information
about the connection. For more information, see “Connection Information” on page 516), which is
available through theUniversalMessagingAdministrationAPI. TheAPI also providesmechanisms

Universal Messaging Administration Guide 10.7 23

2 Universal Messaging Enterprise Manager

http://logback.qos.ch/
http://logback.qos.ch/
http://logging.apache.org/log4j/2.x/

for receiving notifications when connections are added and deleted. See the code example
"Connection Watch" for an illustration of using this in the Administration API.

The Universal Messaging Enterprise Manager enables you to view the connections on a realm as
well as to view specific information about each connection, such as the last event sent or received,
and the rate of events sent and received from each connection.

To view the current realm connections, select a realm node from the namespace, and then click
Monitoring > Connections. The Enterprise Manager displays a panel containing a table of
connections, as shown in the image below. The table lists all the clients connected to the realm
server

The connections table contains the following information:

protocol - The protocol used in the connection.

user - The name of the connected user.

host - The host machine from which the user is connecting.

connection - The local connection ID, defined as hostname:local_port.

language - The language that the client application is using.

name - The name of the operating system on which the client application is running.

build number - the build number of the client API.

24 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

To disconnect a connection and then make the client reconnect again, select a connection in the
table and click Bounce.

To view more details about a specific connection, double-click the connection in the table or click
Show Details. The connection details panel is shown in the image below.

Connection Details

The Connection Details panel contains information about the user connection, such as user name,
host, and protocol.

Client Environment

The Client Environment panel contains information about the client environment for this user.
These include API language / Platform, Host OS, and Universal Messaging build number.

The Tx Event History and Rx Event History graphs show the total (yellow) and rates (red) for
events received from the server (TX) and sent to the server (RX) for the selected connection.

Events Sent

The Events Sent section contains the following values:

Total - The total number of events sent by the realm server to this connection

Rate - The rate at which events are being sent by the realm server to this connection

Max - Themaximum rate at which events have been sent by the realm server to this connection

Universal Messaging Administration Guide 10.7 25

2 Universal Messaging Enterprise Manager

Last Event Type - The type of the last event sent from the realm server

Bytes - Total bytes sent by the realm server to this connection

Events Received

The Events Received section contains the following values:

Total - The total number of events sent by this connection to the realm server

Rate - The rate at which events are being sent by connection to the realm server

Max - Themaximum rate at which events have been sent by this connection to the realm server

Last Event Type - The type of the last event sent from the connection to the realm server

Bytes - Total bytes sent by this connection to the realm server

Status

The Status section contains the following values:

Connect Time - The amount of time this connection has been connected to the realm server

Queue Size - The number of events in the outbound queue of this connection (i.e. events
waiting to be sent to the realm server)

Last Tx - The time since the last event was received by this connection from the realm server

Last Rx - The time since the last event was sent to the server from this connection

Click Show List to go back to the connections table.

Threads Status

TheThreads tab on theMonitoring panel provides two statistical views: thread pools and scheduler
tasks.

The Pools tab shows the number of idle and active threads per thread pool, as well as the task
queue size per thread pool and the total number of executed tasks for the respective thread pool.

The Scheduler tab provides information about the number of scheduled operations each task has
within the system.

The Top Tab

The Top tab on the Monitoring panel of a selected realm node provides a view not unlike 'top' for
Unix systems or the Task Manager for Windows-based systems. The Top panel gives you a high
level view of realm usage, both from a connection perspective and a channel perspective.

You can view real-time graphs of realmmemory usage, JVMGC stats, andCPUusage. This section
also contains a summary showing the number of mounted realms, the number of resources, and
the number of services.

26 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

The bottom section of the panel displays a series of tabs showing channel and connection usage
throughout the realm.

Channel Usage

The Top Channel Usage tab shows channel usage throughout the realm. Each row in the Top
Channel Usage table represents a channel. Channel usage can be measured a number of ways.
Eachmeasurement corresponds to a column in the table.When you click one of the columnheaders,
all known channels will be sorted according to their value for the selected column. For example,
when you click the Connections column, the table will be sorted according to the number of
consumers that each channel has. The channel with the most number of consumers will appear
at the top of the table.

Channel usage measurements are described below:

Connections - The number of consumers the channel has

Published - The rate of events published per status interval

Consumed - The rate of events consumed per status interval

Memory (bytes) - The number of bytes the channel uses from the JVM memory

%Memory - The percentage of overall JVM memory used by this channel

Disk - The amount of disk space used by this channel, only relevant for persistent / mixed
channels

Connection Usage

The Top Connection Usage tab represents connection usage. Each row in the table represents a
connection. A connection corresponds to the physical aspect of a Universal Messaging Session.
Connection usage, like channel usage can bemeasured in a number of differentways. Each column
in the table represents a type ofmeasurement for a realm connection. Clicking on one of the column
headers will cause the table of connections to be sorted according to the value of the selected
column. For example, one of the columns is 'Events In', i.e. the number of events sent to the server
by the connection. By clicking on the column header labeled 'Events In', the table will be sorted
according to the number of events each connection has sent to the server. The connection with the
most 'Events In' count will appear at the top of the table.

Connection usage measurements are described below:

Queued- The number of event in the connections outbound queue

Events In - The rate of events sent by the connection to the realm server

Bytes In - The rate of bytes sent by the connection to the realm server

Events Out - The rate of events consumed by the connection from the realm server

Bytes Out - The rate of bytes consumed by the connection from the realm server

Universal Messaging Administration Guide 10.7 27

2 Universal Messaging Enterprise Manager

Latency - The measured time it takes the connection to consume events from the server, i.e.
time taken between leaving the realm server and being consumed by the connection.

Monitor Graphs

The monitor panel provides a method of graphing both channel and connection usage. It uses a
3D graph package from sourceforge (http://sourceforge.net/projects/jfreechart/) to display the
items in each table as columns in a 3D vertical bar chart. The bar charts can be update live as the
values in the tables are updated. Once a column is selected, simply click on the button labeled 'Bar
Graph' under either the channel or connections table and a graph panel will appear, as shown in
the image below showing a graph of the number of events published for channels within a realm..

Right-clicking anywherewithin the graphwill show a pop-upmenu of options. One of the options
is labeled 'Start Live Update', which will ensure the graph consumes updates as and when they
occur to the table. Once the live update is started, you can also stop the live update by once again
right clicking on the graph and selecting 'Stop Live Update'.

You can also print the graph, and save the graph image as a '.png' file, as well as alter the properties
of the graph and its axis.

The Audit Tab

Universal Messaging Realm Servers log administration operations performed on the realm to a
file. These events are called audit events and are stored in a local file called NirvanaAudit.mem.
These audit events are useful for tracking historical information about the realm andwhoperformed
what operation and when. The Universal Messaging Administration API provides the ability to
consume the audit file entries from an nRealmNodeM. See the code example "Monitor the Remote
Realm Log and Audit File" for an illustration of usage.

The Universal Messaging Enterprise Manager provides an Audit panel that displays the contents
of the remote audit file and receives real time updates as and when audit events are generated.
The audit events that are written to the audit file are determined by the configuration specified
in the Config panel (see “RealmConfiguration” on page 33) of theUniversalMessaging Enterprise
Manager.

Audit Events

Each audit event corresponds to an operation performed on an object within a realm. The audit
event contains the date on which it occurred, the object and the operation that was performed on
the object.

The list below shows the objects that audit events correspond to aswell as the operations performed
on them that are logged to the audit file:

Realm - CREATE, DELETE, ACCESS

Interfaces - CREATE, DELETE, MODIFY, START, STOP

Channels - CREATE, DELETE, MODIFY

Queues - CREATE, DELETE, MODIFY

28 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

http://sourceforge.net/projects/jfreechart/

Services - CREATE, DELETE

Joins - CREATE, DELETE

Realm

ACL - CREATE, DELETE, MODIFY

Channel ACL - CREATE, DELETE, MODIFY

Queue ACL - CREATE, DELETE, MODIFY

Service ACL - CREATE, DELETE, MODIFY

The Audit Panel

To view audit events for a realm, select the realm, and go to Monitoring > Audit.

When you first connect to a realm, the Audit panel displays the last 20 audit events from its history.
Audit files can become quite large over time on a heavily used realm, so the initial load is limited
to just the last 20. After that, all subsequent audit events are shown in the Audit panel.

Each audit event is shown as a row in a table that has the following columns:

Date - The time at which the audit event occurred on the server

Originator - Who performed the operation

Type - What type of object was the action performed on

Action - What action was performed

Object - The name of the object

If the object type is an ACL for either a realm, resource or service, selecting the entry from the
table will also display the ACL changes in the bottom section of the audit panel. For modified
ACLs, each acl permission that has been granted or removed will be displayed as a green '+', or a
red '-' respectively.

Streaming Audit Events

To stream the remote audit events from the realm to a local file, on the Audit panel, click Start
Stream, and then select a file. This provides you with the option of replaying the entire audit file
or just the last 20 audit entries.

The text below is an exert from a sample audit file than has been streamed from a server. Each
entry that relates to a modified ACL shows the permissions that have been changed, and the
permissions that are granted by either a + or -. For permissions that have remained the same, the
letter 'N' for not change will be placed after the permission.
Fri Jan 21 15:43:40 GMT 2005,CHANACL,/customer/sales:*@*,MODIFY,paul weiss@localhost,
Full(-), Last Eid(N),Purge(-),Subscribe(N),Publish(-),Named Sub(N),Modify Acls(-),
List Acls(-),

Fri Jan 21 15:43:40 GMT 2005,QUEUEACL,/partner/queries:*@*,MODIFY,

Universal Messaging Administration Guide 10.7 29

2 Universal Messaging Enterprise Manager

paul weiss@localhost,Full(-),Purge(-), Peek(N),Push(-),Pop(-),Modify Acls(-),
List Acls(-),

Fri Jan 21 15:43:40 GMT 2005,QUEUEACL,/partner/queries:paul weiss@localhost,MODIFY,
paul weiss@localhost, Full(N),Purge(N),Peek(N),Push(N),Pop(N),Modify Acls(N),
List Acls(N),

Fri Jan 21 16:13:10 GMT 2005,INTERFACE,nhp0,CREATE,paul weiss@localhost,
Fri Jan 21 16:15:31 GMT 2005,INTERFACE,nhp0,MODIFY,paul weiss@localhost,

Archive Audit

Depending on what is logged to the audit file, the file can grow quite large. Because it is an audit
and provides historical data, there is no automatic maintenance of the file and it is down to the
realm administrators when the file is archived. To archive the audit file and start a new file, on
the Audit panel, click Archive Audit.

The Metrics Tab

The Metrics tab on the Monitoring panel contains the following information:

Current Memory Usage - Current memory used by the server to store events in memory.

Maximum Available Memory - Maximum on-heap memory available.

Current Memory Percentage - Percentage of used on-heap memory at the moment.

Updating Connection Information
TheUniversalMessaging EnterpriseManager can connect tomultiple UniversalMessaging realms
at the same time and enables you to save connection information in a configuration file named
realms.cfg. By default, the file is saved to your home directory. The content of the files is updated
in the following cases:

When you select File > Save in the Enterprise Manager, the content of the configuration file
is replaced with the list of current connections.

When a connection to a configured realm fails and you opt not to retry connecting to the realm,
the failed connection is removed from the configuration file. The EnterpriseManager does not
try to connect to that Universal Messaging realm again during startup.

When you select File > Edit Details, in the Edit Realm Connection Info dialog box, you select
realms to remove from the configuration file. In theRealm field, select a realm and clickDelete.
Click OK to save the modified configuration file.

The Realm field contains all Universal Messaging realms currently shown in the Enterprise
Manager.

Working with Realm Profiles
The Universal Messaging Enterprise Manager enables administrators to group realms and their
respective connections into profiles for easy management and accessibility. You can save any

30 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

number of realms as part of a profile by clicking File > Save. The Enterprise Manager creates a
default configuration file named realms.cfg and saves it to your home directory.

You can also create several configurations (profiles) that contain different sets of realms. To do so,
click File > Save As, which enables you to choose the name and location of the configuration file.

To load a profile, click File > Open Profile. The Universal Messaging Enterprise Manager
automatically connects to all realms defined in the loaded profile.

Realm Federation
As well as clustering technology, Universal Messaging supports the concept of a federated
namespacewhich enables realm servers that are in different physical locations to be viewedwithin
one logical namespace.

Note:
Clustering and Realm Federation are mutually exclusive. If a realm is a member of a cluster,
you cannot use the realm for federation. Similarly, if a realm is part of a federation, the realm
cannot be used for clustering.

If you consider that a Universal Messaging namespace consists of a logical representation of the
objects contained within the realm, such as resources and services: a federated namespace is an
extension to the namespace that allows remote realms to be visible within the namespace of other
realms.

For example, if we had a realm located in the UK (United Kingdom), and 2 other realms located
in the US (United States) and DE (Germany), we can view the realms located in DE and USwithin
the namespace of the UK realm. Federation allows us to access the objects within the DE and US
realms from within the namespace of the UK realm.

It is possible to add realms to a Universal Messaging namespace using the Universal Messaging
Administration API or by using the Enterprise Manger as described below.

Adding Realms

The first step in order to provide federation is to add the realms. Adding a realm to another realm
can be achieved in two ways. The first way simply makes a communication connection from one
realm to another, so the realms are aware of each other and can communicate. This enables you
to create a channel join between these realms.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins. The description details the usage based on the Enterprise Manager, but
the same general principles apply if you are using the API.

The second option also makes a new communication connection, but if you specify amount point,
the realm you add will also be visible within the namespace of the realm you added it to.

Universal Messaging Administration Guide 10.7 31

2 Universal Messaging Enterprise Manager

Mount Points

Providing amount point for added realms is similar to themount point used by file systemswhen
you mount a remote file system into another. It specifies a logical name that can be used to access
the resourceswithin themounted realm. Themount point is therefore the entry point (or reference)
within the namespace for the realm's resources and services.

For example, if I have a realm in the UK, an wish to add to it a realm in the US, I could provide a
mount point of '/us' when adding the US realm to the UK realm. Using the mount point of '/us', I
can then access the channelswithin theUS realm frommy sessionwith theUK realm. For example,
if I wanted to find a channel frommy session with the UK realm, and provided the channel name
'/us/customer/sales', I would be able to get a local channel reference to the '/customer/sales' channel
within the US realm.

Using the Enterprise Manager to Add Realms

To add a realm to another realm, first of all you need to select the realm node from the namespace
that youwish to add the realm to. Then, right-click on the realm node to display themenu options
available for a realm node. One of themenu options is labelled 'AddRealm toNamespace', clicking
on this menu option will display a dialog that allows you to enter the RNAME of the realm you
wish to add and an optional mount point.

The RNAME value in the dialog corresponds to the realm interface that you want the two realms
to use for communication. The mount point corresponds to the point within the namespace that
the realm will be referenceable.

For example, you can have a realm named 'node1' that has two realms mounted within its
namespace, named 'eur' and 'us'. The resourceswithin both themounted realms are also displayed
as part of the namespace of the 'node1' realm.

Sessions connected to the 'node1' realm now have access to three channels. These channels are:

'/global/orders', which is a local channel

'/eur/orders,' which is actually a channel on another Universal Messaging realm that has been
added to this namespace under the mount point '/eur'

'/us/orders', which is actually a channel on another Universal Messaging Realm that has been
added to this namespace under the mount point '/us'

Example Use of Federation: Remote Joins

Once you have added the realms to one another, it is possible to create remote joins between the
channels of the realms. This is very useful when considering the physical distance and
communications available between the different realms. For example, if you wish all events
published to the /customer/sales channel in the UK realm to be available on the /customer/sales
channel in the US realm, one would create a join from the /customer/sales channel in the UK to
the /customer/sales channel on the US realm, so all events published onto the uk channel would
be sent to the us channel.

32 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Federation and remote joins provide a huge benefit for your organization. Firstly, any consumers
wishing to consume events from the uk channel would not need to do so over a WAN link, but
simply subscribe to their local sales channel in the us. This reduces the required bandwidth between
the us and uk for your organization, since the data is only sent by the source realm once to the
joined channel in the us, as opposed to 1...n times where n is the number of consumers in the us.
Remote joins are much more efficient in this respect, and ensure the data is available as close
(physically) to the consumers as possible.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins. The description details the usage based on the Enterprise Manager, but
the same general principles apply if you are using the API.

Realm Configuration
UniversalMessaging Realms can be configured based on a number of properties that are accessible
both through the Universal Messaging Administration API as well as the Universal Messaging
EnterpriseManager. Any changesmade to the configuration properties for a UniversalMessaging
realm are automatically sent to the realm and implemented. This functionality offersmajor benefits
to Administrators, since realms can be configured remotely, without the need to be anywhere near
the actual realm itself. More importantly, multiple realms and clustered realms can also be
automatically configured remotely.

Note:
SomeUniversalMessaging realmproperties, such as theAMQPMessage Transformation setting,
are applied on a per-connection basis, meaning that clients must re-connect to pick up a change
in the realm-wide value.

This section describes the different configuration properties that are available using the Universal
Messaging Enterprise Manager.

When you select a realm from the namespace, one of the available panels in the EnterpriseManager
is labelled 'Config'. Selecting this panel displays various groups of configuration properties, with
each group of properties relating to a specific area within the Universal Messaging Realm. Each
group of properties contains different values for specific items.

Basic and Advanced Properties

There are currently a large number of configuration properties, and they are divided into two
categories, namely Basic andAdvanced. The properties in the Basic category are themost commonly
used ones. The properties in the Advanced category will probably be less frequently used, and
are intended for special cases or expert users.

Universal Messaging Administration Guide 10.7 33

2 Universal Messaging Enterprise Manager

When the Basic andAdvanced categories are expanded, youwill see a display of the configuration
properties. Properties that have a similar effect are arranged into groups; for example, properties
that determine when a client times out are contained in the group "Client Timeout Values":

34 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Note that in the example shown, the group "Client Timeout Values" appears in both the Basic and
theAdvanced category.However, the properties "EventTimeout", "HighWaterMark" etc. belonging
to this group appear only under the Basic category,whereas the properties "QueueAccessWaitLimit"
etc. belonging to the same group appear only under the Advanced category. The properties in the
Basic category are the ones which you will probably find most useful for your day-to-day work.

Configuration Groups

The configuration groups are:

1. Audit Settings - Values relating to what information is stored by the audit process

2. Client Timeout Values - Values relating to client / server interaction

3. Cluster Config - Values specific to the clustering engine

4. Comet Config - Values relating to the configuration of Comet

5. Connection Config - Values relating to the client server connection

6. Data Stream Config - Values relating to the configuration of Data Streams

7. DurableConfig - Values relating to usage of durables

8. Environment Config - Read only configuration values that relate to the system environment.
These cannot be changed.

9. Event Storage - Values specific to how events are stored and retrieved on the server

10. Fanout Values - Values specific to the delivery of events to clients

11. Global Values - Values specific to the realm process itself

12. Inter-Realm Comms Config - Values relating to Inter-Realm communication

13. JVM Management - Values relating to the JVM the Realm Server is using

14. Join Config - Values specific to channel join management

15. Logging Config - Values specific to logging

16. Metric Config - Values relating to metric management

17. Plugin Config - Values relating to Realm Plugins

18. Protobuf Config - Values relating to Protocol Buffers

19. Protocol AMQP Config - Values relating to the use of AMQP connections

20. Protocol MQTT Config - Values relating to the use of MQTT connections

21. RecoveryDaemon - Values relating to clients that are in recovery (i.e. replaying large numbers
of events)

22. Server Protection - Values specific to server protection

Universal Messaging Administration Guide 10.7 35

2 Universal Messaging Enterprise Manager

23. Thread Pool Config - Values specific to the servers thread pools.

24. Trace Logging Config - Values specific to event lifecycle logging (trace logging).

25. TransactionManager - Values specific to the transaction engine of the RealmServer

The table below describes the properties that are available within each configuration group. It also
shows valid ranges of values for the properties and a description of what each value represents.
The “Adv. ” column shows "Y" if the property is in the Advanced category, whereas no entry
indicates that the property is in the Basic category.

Adv.DescriptionValid
values

Configuration Group/Property

Audit Settings

Log to the audit file any unsuccessful
channel ACL interactions. Default is
true.

True or
False

ChannelACL

Log to the audit file any unsuccessful
realm interactions. Default is true.

True or
False

ChannelFailure

Log to the audit file any channel
maintenance activity. Default is false.

True or
False

ChannelMaintenance

Log to the audit file any successful
channel interactions. Default is false.

True or
False

ChannelSuccess

Log to the audit file any changes to
Data Group structure

True or
False

DataGroup

Log to the audit file any failed attempts
to Data Group structure

True or
False

DataGroupFailure

Log to the audit file Data Stream add
and removes

True or
False

DataStream

Log to the audit file any added or
removed security groups

True or
False

Group

Log to the audit file any changes in
group membership

True or
False

GroupMembers

Log to the audit file any interface
management activity. Default is true.

True or
False

InterfaceManagement

Log to the audit file any unsuccessful
join interactions. Default is true.

True or
False

JoinFailure

Log to the audit file any join
maintenance activity. Default is true.

True or
False

JoinMaintenance

36 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Log to the audit file any successful join
interactions. Default is false.

True or
False

JoinSuccess

Log to the audit file any unsuccessful
queueACL interactions.Default is true.

True or
False

QueueACL

Log to the audit file any unsuccessful
queue interactions. Default is true.

True or
False

QueueFailure

Log to the audit file any queue
maintenance activity. Default is false.

True or
False

QueueMaintenance

Log to the audit file any successful
queue interactions. Default is false.

True or
False

QueueSuccess

Log to the audit file any unsuccessful
realmACL interactions. Default is true.

True or
False

RealmACL

Log to the audit file any unsuccessful
realm interactions. Default is true.

True or
False

RealmFailure

Log to the audit file any realm
maintenance activity. Default is true.

True or
False

RealmMaintenance

Log to the audit file any successful
realm interactions. Default is false.

True or
False

RealmSuccess

Log to the audit file Snoop stream add
and removes

True or
False

SnoopStream

Client Timeout Values

The amount of ms the client will wait
for a response from the server. Small

5000 to
No Max

EventTimeout

values may cause clients to abandon
waiting for responses and disconnect
prematurely. Large values may cause
clients to take an unusually long
amount of time waiting for a response
before disconnecting. Default is 60000.

The highwatermark for the connection
internal queue. When this value is

2 to
2147483647

HighWaterMark

reached the internal queue is
temporarily suspended and unable to
send events to the server. This provides

Universal Messaging Administration Guide 10.7 37

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

flow control between publisher and
server. Default is 3000.

The lowwater mark for the connection
internal queue. When this value is

1 to
2147483647

LowWaterMark

reached the outbound internal queue
will again be ready to push event to the
server. Default is 1000.

YThemaximumnumber ofmilliseconds
it should take to gain access to an

200 to
2147483647

QueueAccessWaitLimit

internal connection queue to push
events. Once this time has elapsed the
client session will inform any listeners
registered on the sessionwhichmonitor
these connection queues. Small values
may result in an excessive number of
notifications. Default is 200.

YThemaximumnumber ofmilliseconds
an internal connection queue will wait

500 to
2147483647

QueueBlockLimit

before notifying listeners after it has
reached the HighWaterMark. Small
values may result in excessive
notifications. Default is 500.

YThemaximumnumber ofmilliseconds
it should take to gain access to an

200 to
2147483647

QueuePushWaitLimit

internal connection queue and to push
events before notifying listeners. Small
values may result in excessive
notifications. Default is 200.

The default amount of time a
transaction is valid before being

1000 to
No Max

TransactionLifeTime

removed from the tx store. Default is
20000.

Cluster Config

Size of the client request queue.10 to
10000

ClientQueueSize

If this queue is small then the clients
will wait longer and performance may
drop.

38 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

If too large then client requests are
queued but not processed.

The value used when an async
consumer of type queue or durables of

1 to 1000ClientQueueWindow

types shared queue, shared, and serial
do not set an explicit value for the
window size.

Default is 100.

Important:
A small number will reduce
performance.

The number of seconds to delay the
cluster processing client requestswhen

0 to
120000

ClientStateDelay

a cluster state change occurs. A large
number will delay client requests
longer than required.

Specifies whether to allow non-admin
client connections to nodes other than
the master node in a cluster.

Active or
Replication

ClusterMode

If the value is set to Active (default
value), client connections can be made
to any node in a cluster. The clients can
also make use of the FollowTheMaster
feature.

If ClusterMode is set to Replication,
non-admin client connections can be
made to only the master node. Nodes
that are not the master node will reject
all non-admin client connections.With
this setting, attempts by clients to use
the FollowTheMaster feature will be
ignored.

Note:
Admin clients can connect to any
node in a cluster, irrespective of the
ClusterMode configuration.

Disable HTTP(s) connections between
cluster nodes. If true then the server

True or
False

DisableHTTPConnections

Universal Messaging Administration Guide 10.7 39

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

will only use nsp(s) connections
between realm nodes, and any nhp(s)
rnames will be switched to using
nsp(s).

The time (in milliseconds) to wait for
the server to join the cluster while

1000 to
120000

DisconnectWait

trying to process cluster-wide user
requests. If DisconnectWhenNotReady is
set to true, then DisconnectWait is
ignored.

When set to true, all non-admin client
sessions will be disconnected if the
node falls out of the cluster.

True or
False

DisconnectWhenNotReady

Enables cluster requests broadcast to
realms to be send through the reliable

True or
False

EnableMulticast

multicastmechanismwithinUniversal
Messaging. This setting only takes
effect if a multicast interface is
configured for all nodes within the
cluster.

YEnables/Disables the ability for the
slave to re-attempt a recovery of a store

True or
False

EnableStoreRecoveryRetry

if it detects changes to the store during
recovery. If true the slavewill continue
to attempt a cluster recovery of a store
which may be changing due to TTL or
capacity on the store attributes.

YNumber of concurrent pipeline threads
runningwithin the cluster engine. If set

1 to 32EnginePipelineSize

to 1, then all requests are pipelined
through one thread, else topics/queues
are bound to specific pipelines.

The time to wait for the state to move
from recovery to slave ormaster. If this

60000 to
300000

FormationTimeout

value is too small then recovering a
large number of events will result in
the realms dropping out of the cluster.

Heart Beat interval in milliseconds.
Default is 120000. A small value here

1000 to
120000

HeartBeatInterval

40 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

will cause excessive messages being
generated between realms.

The number of milliseconds that the
server will wait while trying to

5000 to
240000

InitialConnectionTimeout

establish a connection to a peer. A small
value may reduce the chance of a
connection in busy networks, while a
large number may delay cluster
formation.

YWhen a slave processes an
IsCommitted request and it is still

1000 to
30000

IsCommittedDelay

recovering the Transaction store, it will
block the clients request for this timeout
period. If this is set to a large value,
clients may experience a substantial
delay in response.

Specifies the amount of time in
milliseconds that themaster is going to

1000 to
900000

MasterRequestTimeout

wait for a slave to respond to a single
request before disconnecting it. This
timeoutwill prevent a slave frombeing
reconnected if it fails to respond to a
master request.

When a node has requested to be
master it will wait this timeout period

1000 to
60000

MasterVoteDelay

in milliseconds for the peers to agree.
If this number is too high the cluster
formation may take some time.

When themaster is lost from the cluster
and the remaining peers detect that the

1000 to
600000

MasterWaitTimeout

master has the latest state theywill wait
for this time period for the master to
reconnect. If the master fails to
reconnect in this time period a new
master is elected.

YIf enabled the slaveswill queue publish
requests prior to committing them to

True or
False

PublishQueueEnabled

the cluster. If enabled and a slave is
killed, any outstanding publish events
will be lost.

Universal Messaging Administration Guide 10.7 41

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Number of events outstanding to be
processed by the clusters internal queue

100 to
1000

QueueSize

before sending flow control requests
back. Increased size increases the
memory usage.

When a realm loses master or slave
state then after this timeout all cluster

10000 to
No Max

StateChangeScan

based connectionswill be disconnected.
If the realm reenters the cluster then
the disconnect timeout is aborted. If
this value is too low, all clients will be
bounced while the cluster is forming.

YNumber of events sent before a cluster
sync occurs. A small numberwill affect

100 to
10000

SyncPingSize

overall performance, a large number
may result in a cluster being too far out
of sync.

YWhen events are consumed by
synchronous durable topic or queue

True or
False

TimeoutSynchronousConsumerOnMaster

consumers, use this property to switch
the timeout operation to the master
realm in the cluster. A request times
out when no events are available for
the consumer and the specified value
for the timeout interval is a positive
number. When a synchronous event
request times out, the realm sends an
empty response to the consumer.

true - the master realm in the cluster
performs the timeout operation.

false - the timeout operation is run on
a slave realm in the cluster.

Default is false.

Important:
You must configure this property
after updating all realms in the
cluster to the fix version of the
master realm.

42 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Comet Config

YThe buffer size for Comet requests.
Large sizes will cause the realm to

1024 to
102400

BufferSize

consume more memory when reading
data from Comet clients. Small sizes
may introduce delays in the time taken
to read requests.

Enables logging of all comet queries,
will impact server performance

True or
False

EnableLogging

The timeout for a Comet connection.
Small sizes may cause Comet-based

10000 to
No Max

Timeout

connections to time out prematurely.
Large sizes may increase the time a
server holds a disconnected Comet
connection open.

Connection Config

YIf set to true then buffers will be
allocated from the buffer pool and once

True or
False

AllowBufferReuse

finished with returned to the pool. If
set to false then buffers are allocated
on the fly and then left for the system
to free them. It is best to leave this set
to true. For object creation limitation it
is best to set this to true.

YThe number of Buffer Managers that
the server will allocate. This is used

1 to 256BufferManagerCount

during startup to size and manage the
network buffers. This does not need to
be large, but a rule of thumb is 1 per
core.

YThe underlying Universal Messaging
IO utilizes buffers from a pool. By

100 to
10000

BufferPoolSize

default we pre-load the pool with this
number of buffers. As the reads/writes
require buffers they are allocated from
this pool, then once used are cleared
and returned. If the size is too small we
endup creating anddestroying buffers,
and the servermay spend time creating

Universal Messaging Administration Guide 10.7 43

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

them when needed. If the size is too
large we have a pool of buffers which
are not used taking up memory.

This specifies the default size of the
network buffers that Universal

1024 to
1048576

BufferSize

Messaging uses for its NIO. If small,
then Universal Messaging will require
more buffers (up to the maximum
specified by BufferPoolSize) to send an
event. If too large, then memory may
be wasted on large, unused buffers.

These buffers are reused automatically
by the server, and are used to transfer
data from the upper application layer
to the network. So, for example, the
server might use all BufferPoolSize
buffers to stream from 1 application
level buffer (depending on the relative
sizes of the buffers).

An efficient size would be about 40%
more than the average client event, or
5K (whichever is largest). If too small,
the serverwill sendmany small buffers.

Specifies the time the server will wait
for a client to complete sending the data

1000 to
120000

CometReadTimeout

YWhen the server has exceeded the
connection count, how long to hold on

10 to
60000

ConnectionDelay

to the connection before disconnecting.
If this is too low, the serverwill be busy
with reconnection attempts. Default is
60000.

Specifies the time in milliseconds that
a communications driver can be idle

120000 to
2147483647

IdleDriverTimeout

before being deemed as inactive.When
this happens the server will
automatically close and remove the
driver. This must be greater than the
keep alive timeout else all connections
will be closed due to inactivity.

44 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

If there has been no communication
froma client for the configured number

10000 to
No Max

IdleSessionTimeout

of milliseconds, the client is deemed
idle and is disconnected. This typically
occurs when there are network issues
between a client and the server. If the
value is too low, the chance of
disconnecting a valid session is high.

The number of milliseconds the server
will wait before sending a heartbeat. A

5000 to
No Max

KeepAlive

small number will cause undue
network traffic. Default is 60000.

The maximum buffer size in bytes that
the server will accept. Default is
20971520 (20MB).

1024 to
2147483647

MaxBufferSize

Rather than using larger buffers, it is
recommended that you compress if
possible to save bandwidth and
memory on the server.

This value exists to stop a user from
accidentally ormaliciously overloading
the server and causing excessive
memory consumption.

The MaxBufferSize connection
configuration option is propagated to
client sessionswhen they are initialized
(during the session handshake),
therefore changing this option does not
have effect for already initialized client
sessions.

The total number of concurrent
connections to the server. The default

-1 to
2147483647

MaxNoOfConnections

is -1, which indicates no limit on the
number of connections. When you set
a limit, connections that exceed the
limit are rejected. However, a userwith
both the Override Connection Count
realm permission and an admin
connection can override the limit and
still connect to the server.

Universal Messaging Administration Guide 10.7 45

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

The number of concurrent connections
to the server per user. The default is -1,

-1 to
2147483647

MaxNoOfConnectionsPerUserName

which indicates no limit on the number
of connections. When you set a limit, if
connections exceed the specified
number, the client gets
nSecurityException. However, a user
with both the Override Connection
Count realmpermission and an admin
connection can override the limit and
still connect to the server.

When writing many events to a client
the write pool thread may continue to

5 to 100MaxWriteCount

send the events before returning to the
pool to process other clients requests.
So, for example if it is set to 5, then the
thread will send 5 events from the
clients queue to the client before
returning to the pool to process another
request. If this number is small it
creates additional CPU overhead.

The number of threads to allocate to
flushing client data, Please note this

2 to 100NetworkMonitorThreads

will only take effect after a restart.
Depending on the number of
concurrent clients the latencies during
load my be higher then expected

Sets the number of queues to divide
priority levels between, up to a
maximum of 10 queues.

2 to 10PriorityQueueCount

Maximum number of clients allowed
to allocate high priority spin locks.

0 to 8PriorityReadSpinLockMaxConnections

This property is deprecated andwill be
removed in a future product release.

YThe time interval (in milliseconds),
during which the thread spin read

1 to
10000

PriorityReadSpinLockTime

handler will continuously try reading
events. The setting has effect onlywhen
PriorityReadType is set to Thread Spin.
Default value is 500milliseconds.

46 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

This property is deprecated andwill be
removed in a future product release.

If enabled then high priority sessions
will be enabled to run spin locks
waiting to read.

0 to 2PriorityReadType

This property is deprecated andwill be
removed in a future product release.

The number of events in a client output
queue before the server stops sending

100 to
2147483647

QueueHighWaterMark

events. A small number will cause
undue work on the server. Default is
3000.

The number of events in the clients
queue before the server resumes

50 to
2147483647

QueueLowWaterMark

sending events. Must be less than the
high water mark. Default is 1000.

Number of times the thread will loop
around waiting for an event to be

1 to 20ReadCount

delivered before returning. Large
values may cause read threads to be
held for long periods of time, but avoid
context switching for delivering events.

YIf true the server will allocate
DirectByteBuffers to use for network

True or
False

UseDirectBuffering

I/O, else the server will use
HeapByteBuffers. The main difference
is where the JVMwill allocate memory
for the buffers the DirectByteBuffers
perform better. For the best
performance the DirectByteBuffers are
generally better.

Specifies the type of write handler to
use

1 to 5WriteHandlerType

Number of events to exceed in the
whEventThresholdTime to detect a peak.

1 to 2000whEventThresholdCount

This number should be small enough
to trigger peaks.

Number of milliseconds to sample the
event rate to detect peaks

1 to 2000whEventThresholdTime

Universal Messaging Administration Guide 10.7 47

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Total number of events that can be sent
before a flush must be done. If this

1 to
10000

whMaxEventsBeforeFlush

number is too small then too many
flushes will result.

Specifies the total number of events per
second that a realmwill send to clients

No Min
to No
Max

whMaxEventsPerSecond

before switching modes into peak
mode. If this number is small then the
server will go into peakmode too soon
and latencies will start to increase.

Total number of milliseconds to wait
before a flush is done. If this number is
too large then latencies will increase.

1 to 1000whMaxTimeBetweenFlush

Data Stream Config

YTime interval in milliseconds to scan
the data group configuration looking

1000 to
120000

MonitorTimer

for idle / completed streams. Large
values may cause idle and inactive
datastreams to remain on datagroups
for long periods of time. Small values
may cause transient disconnections to
trigger datagroup removals for
datastreams - requiring them to be
added back into the datagroup.

YIf true then all multicast writes will be
performed by the parallel fanout
engine.

True or
False

OffloadMulticastWrite

YWhen any stream registered client
connect sends the entire Data Group
Name to ID mapping

True or
False

SendInitialMapping

DurableConfig

YIf true, the server checks the subscriber
ID header of published events. If the

True or
False

DurableNameFiltering

header is not empty, it is used to
designate that an event can be
consumed by a specific durable object,

48 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

if the subscriber ID matches the name
of the durable subscription.

If true, the server checks the state of
the store consumers once everyminute.

True or
False

EnableConsumerStateMonitor

When the server finds unhealthy
consumers, it logs diagnostic log
messages about them in the nirvana.log
file. These log entries are prefixedwith
the 'Consumer Warning:' header and
are at the WARNING log level.

On a system with thousands of stores,
disabling thismonitor helps to improve
performance. If false, the diagnosing
of consumer issues is harder. The
default value is true.

YIf true, then if the selector on a queued
durable changes, the selector is added
to the exception string.

True or
False

QueuedExtendedException

Environment Config

Number of CPUs availableREAD
ONLY

AvailableProcessors

If true, this specifies that the server is
running as an embedded server

READ
ONLY

Embedded

Universal Messaging Server
Inter-Realm Protocol Version

READ
ONLY

InterRealmProtocolVersion

Vendor of Java Virtual MachineREAD
ONLY

JavaVendor

Virtual Machine VersionREAD
ONLY

JavaVersion

Nanosecond support available through
JVM on Native OS

READ
ONLY

NanosecondSupport

Operating System ArchitectureREAD
ONLY

OSArchitecture

Operating System NameREAD
ONLY

OSName

Universal Messaging Administration Guide 10.7 49

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Operating System VersionREAD
ONLY

OSVersion

Process IDREAD
ONLY

ProcessId

UniversalMessaging Server BuildDateREAD
ONLY

ServerBuildDate

Universal Messaging Server Build
Number

READ
ONLY

ServerBuildNumber

Universal Messaging Release DetailsREAD
ONLY

ServerReleaseDetails

Universal Messaging Server Build
Version

READ
ONLY

ServerVersion

The size of theOperating System's time
quantum.

READ
ONLY

TimerAdjustment

Event Storage

YThe time in milliseconds that an active
channel will delay between scans. The

100 toNo
Max

ActiveDelay

smaller the number, themore active the
server. Default is 1000.

Specifies the number of milliseconds
between scans on AutoDelete stores to

1000 to
500000

AutoDeleteScan

see if they should be deleted. The larger
this time frame, the more AutoDelete
stores will potentially not be deleted
on the server.

Sets the percentage of free space in the
persistent disk store before the server

0 to 100AutoMaintenanceThreshold

should run auto-maintenance on the
store. It is by default 50. This means
maintenance will be performed when
50% of the number of the events in the
file are marked as dead (already
consumed and acknowledged) so they
can be deleted.

Note:

50 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

The auto-maintenance feature is
available for single-file disk stores
only. If you are using a multi-file
disk store, the auto-maintenance
feature is not available for this store,
and any realm configuration
properties that you set for
auto-maintenancewill be ignored for
this store.

YThe length of time in milliseconds that
cached events will be kept in memory.

1000 to
No Max

CacheAge

The larger the value, themorememory
will be utilized.

If true the server will try to cache
events in memory after they have been

True or
False

EnableStoreCaching

written/read. Please note the serverwill
need to be rebooted for this to take
effect.

By default, caching is disabled. To
enable caching, set both the
EnableStoreCaching and EnableCaching
configuration properties to true.

YThe time in milliseconds that an idle
channel will delay between scans. The

5000 to
No Max

IdleDelay

smaller the number, themore active the
server. Default is 10000.

YDefines the interval between clean up
of events on a JMS Engine Resource. A

5000 to
600000

JMSEngineAutoPurgeTime

large interval may result in topics with
large numbers of events waiting to be
purged.

Sets the store file size in bytes that will
trigger the auto-maintenance of the

1024000MaintenanceFileSizeThreshold

persistent disk store. With small store
file sizes, the auto-maintenance will be
run more often. With large store file
sizes, the auto-maintenance may take
longer to run. There are noperformance
issues with a big store file except on
startup when the store needs to be
reloaded.

Universal Messaging Administration Guide 10.7 51

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Note:
The auto-maintenance feature is
available for single-file disk stores
only. If you are using a multi-file
disk store, the auto-maintenance
feature is not available for this store,
and any realm configuration
properties that you set for
auto-maintenancewill be ignored for
this store.

Maximumsize inmemory for any topic
or queue to reach before maintenance
of the in-memory cache is run.

1048576MaintenanceMemoryThreshold

The page size to use for the event store.
This value sets the number of
events/page.

10 to
100000

PageSize

If set to true, the server will check the
subscriber name/host header of

True or
False

QueueSubscriberFiltering

published events and if that header is
not empty, it will be used to designate
that an event can be consumed by a
specific subscriber if the subscriber
name and/or host matches the subject
user and/or host of the subscription.
Switching on this option imposes a
minor performance penalty as the
server then performs additional
filtering.

Additionally, for clustered
subscriptions, the master realm may
need to load the event from the store
to perform the filtering, which could
have additional cost depending on the
type of store and caching used.

Default is false.

Subscriber name/host filtering is
activated at the API level by using the
setSubscriberName()method of
nConsumeEvent.

52 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

YSize of the buffer to use during reads
from the store. Note that the serverwill

1024 to
3000000

StoreReadBufferSize

need to be restarted for this to take
effect.

YSpecifies the maximum size before the
sync call is made. The lower this value,

1 to 1000SyncBatchSize

themore sync calls made and themore
overhead incurred.

If true the server will sync each file
operation for its internal files. If true,

True or
False

SyncServerFiles

this adds additional overhead to the
servermachines and can reduce overall
performance.

YSpecifies the maximum time in
milliseconds thatwill be allowed before

1 to 1000SyncTimeLimit

the sync is called. The lower this value,
the more file sync calls and the more
overhead incurred.

The number of threads allocated to
perform the management task on the

1 to 4ThreadPoolSize

channels. The more channels a server
has, the larger this number should be.

Fanout Values

YIf true allows the server to group
connections with the same selector

True or
False

ConnectionGrouping

providing improved performance. This
allows the server to optimize the way
it processes events being delivered to
the clients.

This requires a server restart to take
effect.

Delays the publisher thread when the
store capacity is exceeded. If this is not

True or
False

DelayPublishOnCapacity

set, an exception is passed back to the
client.

YIf true, the channel will check any
shared durables for capacity before

True or
False

HonourSharedDurableCapacity

accepting a published event. If any of

Universal Messaging Administration Guide 10.7 53

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

these durables are over capacity, the
server will respond as if the parent
channel is over capacity. If false, the
event will be published regardless of
the number of events on its shared
durables.

Specifies the number of events
delivered to each Channel Iterator in a

1 to
2147483647

IteratorWindowSize

prefetch. This allows the client to
perform much faster by prefetching
events on fast moving topics requiring
less client to server communication.

The default is 100.

YThemultiplier used on the HighWater
mark when processing events from a

1 to 10JMSQueueMaxMultiplier

JMS Engine Queue/Topic. If this value
is too high the serverwill consume vast
amounts of memory.

Specifies the number of threads to use
within the thread pool. If this number

2 to 64ParallelThreadPoolSize

is small then there maybe adverse
overheads. This value requires a restart
to take effect.

YWhen clients start to hit high water
mark, this specifies how long to delay

0 to No
Max

PeakPublishDelay

the publisher to allow the client time
to catch up. If this is too small the
publisher can overwhelm the server.

YHow long to delay the publisher when
the subscriber's queue start to fill, in

0 to No
Max

PublishDelay

milliseconds. If this number is 0 then
no delay.

Specifies whether to publish expired
events at server startup. Default is true.

True or
False

PublishExpiredEvents

Specifies whether to always send an
End Of Channel, even if we find no

True or
False

SendEndOfChannelAlways

matches within the topic. If set, the
subscriberwill always be informed that

54 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

the subscription request has completed
the recovery of the topic.

Specifywhether to send publish events
immediately. If true, then the server

True or
False

SendPubEventsImmediately

will send all publish events to clients
immediately, if false the server is
allowed to collect events before
publishing.

Global Values

YIf true then any userwith the full realm
access will have access to all channels
and queues.

True or
False

AllowRealmAdminFullAccess

YIf enabled we cache join key
information between events passed

True or
False

CacheJoinInfoKeys

over joins. This reduces the number of
objects created. If this property is set to
false then the server will create a new
byte[] and string for each joined event.

If enabled the server will call the
Garbage Collector at regular intervals

True or
False

DisableExplicitGC

to keep memory usage down. If this is
disabled then the garbage collection
will be done solely by the JVM.

If EnableCaching is set to true, the
channel storage properties Cache On

True or
False

EnableCaching

Reload andEnable Caching are set to
the values specified by the client.

If EnableCaching is set to false, then
the channel storage properties Cache
On Reload and Enable Caching are
set to false, regardless of the values set
by the client for these storage
properties.

By default, caching is disabled. To
enable caching, set both the
EnableStoreCaching and EnableCaching
configuration properties to true.

Universal Messaging Administration Guide 10.7 55

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

If enabled the server will attempt to
perform a DNS lookup when a client

True or
False

EnableDNSLookups

connects to resolve the IP address to a
hostname. In some instances this may
slow down the initial client
connections.

YIf enabled then the serverwill hook into
the JVM's garbage collection and

True or
False

EnableWeakReferenceCleanup

release cached items when the JVM
needs memory. By enabling this, the
number of cached events storedwill be
reduced but memory will be
maintained.

If true, allows the server to use the
extended message selector syntax

True or
False

ExtendedMessageSelector

(enabling string to numeric conversions
within the message selector). Default
is true.

YThe size in bytes to be used by nhp(s)
cookies

14 to 100HTTPCookieSize

Override the *@* permission for
channels / queues with explicit ACL
entry permissions. Default is false.

True or
False

OverrideEveryoneUser

If true, the Pause Publishing feature is
activated. Default is false.

True or
False

PauseServerPublishing

This feature causes the server to block
all attempts by clients to publish events,
and such clients will receive an
nPublishPausedException. However,
events that already exist in the
publishing client queues on the server
continue to be consumed by the
subscribing clients until the queues are
emptied.

You can use the Pause Publishing
featurewhen it is necessary to clear the
client event queues on the realm server.
This could be, for example, before
performing maintenance tasks such as
increasing buffer storage or performing

56 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

a backup, or before changing the server
configuration.

If true sends the realm's status
summary updates every second.
Default is false.

True or
False

SendRealmSummaryStats

Place Universal Messaging details into
the dictionary. The default is true.

True or
False

StampDictionary

Stamps the header with the publishing
host (true/false). If true adds additional
overhead to the server/client.

True or
False

StampHost

Stamps the header with the current
time (true/false). If true, adds
additional overhead to the server/client.

True or
False

StampTime

If this is set to true, then the server will
use an accurate millisecond clock, if

True or
False

StampTimeUseHPT

available, to stamp the dictionary. This
may impact overall performancewhen
delivering events when latency is
important.

This has 3 values, milli, micro or nano
accuracy

0 to 2StampTimeUseHPTScale

Stamps the header with the publishing
user (true/false). If true, adds
additional overhead to the server/client.

True or
False

StampUser

This property has two purposes:2000 to
No Max

StatusBroadcast

The number of milliseconds
between status events being
published to any clients using
AdminAPI or EnterpriseManager.
A small value increases the server
load.

The number of milliseconds
between status messages being
written to the server log, when
periodic status logging has been
activated via the EnableStatusLog
property.

Universal Messaging Administration Guide 10.7 57

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Remember that if you change the value
of this property, it will affect the time
interval for both status events and
status log intervals.

The default is 5000, i.e. every 5 seconds.

Inter-Realm Comms Config

YTime for an inter-realm link to be
initially established. This value should
reflect the latency between nodes.

10000 to
120000

EstablishmentTime

YTime interval where if nothing is sent
a Keep Alive event is sent. This can be

1000 to
120000

KeepAliveInterval

used to detect if remote members are
still up and functioning.

YIf nothing has been received for this
time the connection is deemed closed.

10000 to
180000

KeepAliveResetTime

This value must be larger than the
KeepAliveInterval.

YThemaximumnumber ofmilliseconds
to wait before trying to re-establish a

1000 to
50000

MaximumReconnectTime

connection. If this value is too large,
cluster formation will be delayed. The
reconnect will be attempted at a
random amount of time between
MinimumReconnectTime and
MaximumReconnectTime.

YThe minimum time to wait before
trying to re-establish a connection. If

100 to
10000

MinimumReconnectTime

this number is too high then it may
impact the network during outages.
The reconnect will be attempted at a
random amount of time between
MinimumReconnectTime and
MaximumReconnectTime.

YIf no events are received within this
time limit, the link is assumeddead and

60000 to
180000

Timeout

will be closed. If this limit is less than
the keep alive time then the link will
be closed.

58 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

YThe maximum time to wait on a write
if the link has dropped. If a realm

1000 to
60000

WriteDelayTimeout

disconnects when we are able to write
to it, we wait for a set amount of time
for the link to come back before
abandoning the write and resetting
altogether. This insulates the cluster
against some transitive network
conditions.

JVMManagement

If the amount of memory used exceeds
the EmergencyThreshold value, the

50 to 99EmergencyThreshold

connection is paused for a long
duration (24 days).

If the value of EmergencyThreshold is
too large, the server may run out of
memory. Default is 94, i.e. 94%.

Enable/disable JMXMBeanswithin the
server. If enabled the server will

True or
False

EnableJMX

present JMX MBeans so it can be
monitored by any JMX client.

Default is false.

Note:
This property activates or deactivates
the JMXMBeanswhich are available
from Universal Messaging v10.7
onwards. EnableJMX and
EnableLegacyJMX can have the value
true at the same time, meaning that
Universal Messaging will activate
JMX beans for the old and new
versions in the same session.

Enable/disable JMXMBeanswithin the
server. If enabled the server will

True or
False

EnableLegacyJMX

present JMX MBeans so it can be
monitored by any JMX client. Default
is false.

Default is false.

Universal Messaging Administration Guide 10.7 59

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Note:
This property activates or deactivates
the JMX MBeans which were
available up to and including
Universal Messaging v10.5.
EnableJMX and EnableLegacyJMX can
have the value true at the same time,
meaning that Universal Messaging
will activate JMX beans for the old
and new versions in the same
session.

YIf true, the server will exit if it gets an
I/OException. Setting this to falsemay

True or
False

ExitOnDiskIOError

result in lost events if the server runs
out of disk space. Default is true.

YIf true and for any reason an interface
cannot be started when the realm
initializes, the realm will shut down.

True or
False

ExitOnInterfaceFailure

Defineswhether JMX topics andqueues
have flat namespaces. Default is false.

True or
False

FlatStoreJMXBeanNamespace

If you set the property to true, a JMX
queue namespace, for example, will
have the format
destinationName=/q1/q2/q3.

YNumber of times a file I/O operation
will be attempted before aborting

2 to 100IORetryCount

YTime between disk I/O operations if an
I/O operation fails. If this time is large

100 to
60000

IOSleepTime

then the server may become
unresponsive for this time.

The port number to be used for JMX
RMI connections. Set the property to a

0 to No
Max

JMXRMIPort

valid, not boundport number. Changes
will take effect immediately and no
server restart is required. If the port is
not available for some reason, the realm
server will go through the next 10
consecutive ports andwill book the first
free port. In order to disable the RMI,
set the property to 0.

60 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Describes the URL at which you can
remotely connect to the Bean Server.

StringJMXRMIServerURLString

Its default value isNot Bound. The field
is read-only.

Number of milliseconds between
monitoring memory usage on the

60 to
30000

MemoryMonitoring

realm. If this value is too large then the
realm will be slow to handle memory
usage. Default is 2000.

Thememory thresholdwhen the server
starts to scan for objects to release. If

40 to 95WarningThreshold

this value is small then the server will
release objects too soon, resulting in a
lower performing realm. Default is 85,
i.e. 85%.

Join Config

The number of threads to be assigned
for the join recovery. Default is 2.

1 to No
Max

ActiveThreadPoolSize

The number of threads to manage the
idle and reconnection to remote servers.

1 to
2147483647

IdleThreadPoolSize

This number should be kept small.
Default is 1.

YNumber of events that will be sent to
the remote server in one run. A low

1 to
2147483647

MaxEventsPerSchedule

number will increase the time to
recover the remote server, a large
number will impact other joins which
are also in recovery. Default is 50.

YThe maximum events that will be
queued on behalf of the remote server.

1 to
2147483647

MaxQueueSizeToUse

A low number increases the time for
the remote server to recover, a large
number increases thememory used for
this server. Default is 100.

YEvents received through remote joins
are acknowledged in batches. This
property configures the batch size.

RemoteJoinAckBatchSize

Universal Messaging Administration Guide 10.7 61

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

YIn addition to the batch
acknowledgment, remote join events

RemoteJoinAckInterval

get acknowledged everynmilliseconds.
This property configures this interval.

YSpecifies whether to use a queued join
event handler. truewill enable source

True or
False

UseQueuedLocalJoinHandler

channels and destination channels to
be process events independently.

Logging Config

The default size of the log in bytes100 to
2147483647

DefaultLogSize

If enabled will display the current
thread in the log message.

True or
False

DisplayCurrentThread

Default: true

If enabled will intercept log messages
and pass to Log4J aswell. This requires
a restart before it will take effect.

True or
False

EnableLog4J

Used to control if the message tag is
displayed in log messages.

True or
False

EmbedTag

Default: false

If true, periodic logging of the
Universal Messaging server status is

True or
False

EnableStatusLog

activated. Themessages will be logged
at time intervals given by the
StatusBroadcast configuration
property described in the Global Values
section.

The default is true.

The server logging level, between 0 and
6, with 0 indicating very verbose, and

0 to 6fLoggerLevel

6 indicating very quiet. The more
logging requested, the more overhead
on the server. Default is 4.

The Log manager to use.0 to 2LogManager

62 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

0 = ROLLING_OLD, 1 = ROLLING_DATE, 2 =
ROLLING_NUMBER

Default: ROLLING_DATE

The number of log files to keep on disk
when using log rolling. Oldest log files

0 to
2147483647

RolledLogFileDepth

will be deleted when new files are
created.

Note:
For further information about using
the log file, see “The Enterprise
Manager Logs Panel” on page 19.

Metric Config

If this is set to true, the server will
make available memory usage.

True or
False

EnableEventMemoryMonitoring

If this is set to true, the server will
make available system metrics (e.g.
memory usage).

True or
False

EnableMetrics

Plugin Config

Defines if plugin access log is producedTrue or
False

EnableAccessLog

Defines if plugin error log is producedTrue or
False

EnableErrorLog

Defines if plugin status log is producedTrue or
False

EnablePluginLog

YMaximum number of threads to
allocate to the plugin manager

10 to
10000

MaxNumberOfPluginThreads

YTime in milliseconds that the plugin
will read from a client. If too small, the

1000 to
30000

PluginTimeout

plugin may not load all of the clients
requests

Protobuf Config

Universal Messaging Administration Guide 10.7 63

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

YHold the Protocol Buffer filter cache in
memory. Default true

True or
False

CacheEventFilter

Protocol AMQP Config

The user name to use for anonymous
users

StringAnonymousUser

The size of the buffer that will be used
to read/write on the AMQP connection

1000 to
60000

BufferSize

The type of node if it is not able to
detect it.

0 to 1DefaultNodeMode

0=Queue, 1=Topic

If true the server will accept incoming
AMQP connections

0 to No
Max

Enable

YEnables the off loading of the physical
write to a thread pool

True or
False

EnableWriteThread

YHow many times the AMQP state
engine will cycle per thread pool
allocation

4 to 100EngineLoopCount

YMaximum size of an AMQP frame10000 to
2147483647

MaxFrameSize

Largest number of threads the pool can
have.

2 to 100MaxThreadPoolSize

Smallest number of threads for the
dedicated AMQP thread pool

1 to 10MinThreadPoolSize

The address prefix for specifying topic
nodes as required by some clients

StringQueuePrefix

Enable Anonymous SASLTrue or
False

SASL_Anonymous

Enable CRAM-MD5 SASLTrue or
False

SASL_CRAM-MD5

Enable DIGEST-MD5 SASLTrue or
False

SASL_DIGEST-MD5

64 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

Enable Plain SASLTrue or
False

SASL_Plain

Sets the subscriber (receiver) credit100 to
2147483647

SubscriberCredit

YSets the network timeout10000 to
300000

Timeout

The address prefix for specifying topic
nodes as required by some clients

StringTopicPrefix

Selects the type of transformation to
use from AMQP style events to native
UM events.

0 to 3TransformToUse

0 - No transformation, 1 - Basic
Transformation, 2 - Complete
Transformation, 3 - User Configurable

Protocol MQTT Config

Sets the spindle size for automatically
createdMQTT stores. The default value
is 50 000.

0 to 100
000

AutoCreatedStoreSpindleSize

Defines whether the server should
disconnect clients to inform them that

True or
False

DisconnectClientsOnPublishFailure

publishing has failed. The default is
true.

If true, the server will accept incoming
MQTT connections. The default is true

True or
False

Enable

if this feature is enabled in the product
licence.

If true, the server will auto-generate
Topics for MQTT clients for

True or
False

EnableAutoCreateTopics

subscriptions and publishing. The
default is true.

Note:
This property is only applicable for
client IDs with no wildcard.

Universal Messaging Administration Guide 10.7 65

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

YIf true, the Client IDmust consist solely
of alphanumeric characters. The default
is false.

True or
False

EnforceAlphaNumericClientID

Note:
This property is only applicable for
MQTT 3.1.1.

YIf true, ignore the standard Client ID
maximum length check of 23 characters.
The default is true.

True or
False

IgnoreClientIDLength

Note:
This property is only applicable for
MQTT 3.1.1.

Sets the maximum number of events
that the serverwill send beforewaiting

100 to
64000

MaxOutstanding

for the client to acknowledge them
(QoS:1 and above). The default is 64000.

YIf true, the server will not recover
publish events with QoS greater than
or equal to 0. The default is false.

True or
False

QoS0AsTransient

Note:
This property is only applicable for
MQTT 3.1.1.

YThe number of milliseconds the state
of a Client ID is kept between

0 to No
Max

SessionStateTTL

connections. The default value is set to
3 days. Setting this value to 0will store
the Client ID state until a clean session
is received.

YIf true, the server will auto-generate
the Client ID if it has zero length. The
default is true.

True or
False

SupportZeroLength

Note:
This property is only applicable for
MQTT 3.1.1.

YTo be compliant with MQTT, stores
must use the JMS Engine. This flag
enforces this check. The default is true.

True or
False

Strict

66 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

RecoveryDaemon

YThe number of events to send in one
block to a recovering connection. Small

1 to
2147483647

EventsPerBlock

values may slow down the overall
speed of recovery, however large
valuesmay saturate the recovery thread
and keep it busy from performing
recovery tasks for other stores and
connections.

Number of threads to use for client
recovery

1 to
2147483647

ThreadPool

Server Protection

YEnables the disk free space scan, using
values defined by

True or
False

DiskScanEnable

DiskUsageFreeThreshold and
DiskUsageScanInterval. Default is true.

The scan checks whether there is
sufficient free disk space for the
UniversalMessaging server to continue
normal processing. If the disk space
available is less than the
DiskUsageFreeThreshold value, the
server logs an errormessage. The server
will initiate a clean shutdown with an
appropriate error message if the disk
space available is less than 500 MB.

Note:
If the server startup parameter
DISK_USAGE_SCAN_ENABLE is set to true
or false, the setting of
DiskScanEnable is ignored. If
DISK_USAGE_SCAN_ENABLE is undefined
(i.e. set to neither true nor false), the
setting of DiskScanEnable is used.

See the section Server Parameters in the
Concepts guide for information on
DISK_USAGE_SCAN_ENABLE.

Universal Messaging Administration Guide 10.7 67

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

YSpecifies the minimum percentage
amount of free disk space required for

1 to 50DiskUsageFreeThreshold

the realm server to continue processing.
When the percentage of free disk space
drops below this value, the server will
shut down. Default is 5.

Note:

This property is only activated in the
following circumstances:

if DISK_USAGE_SCAN_ENABLE is set
to true, or
if DISK_USAGE_SCAN_ENABLE is
undefined (i.e. set to neither true
nor false) and DiskScanEnable
is set to true.

See the description of
DiskScanEnable for further
information on
DISK_USAGE_SCAN_ENABLE.

YThe interval in milliseconds between
one disk usage scan and the next disk
usage scan. Default is 1000.

1000 to
600000

DiskUsageScanInterval

Note:
This property is only activated if the
same circumstances apply as for
DiskUsageFreeThreshold.

Enables flow control of producer
connections. Default is false.

True or
False

EnableFlowControl

See the sectionOut-of-Memory Protection
in theConcepts guide for further details.

YThe time in milliseconds to hold a
producing connectionbeforeprocessing

1000 to
120000

FlowControlWaitTimeOne

its events. This is the first level of
waiting and the shortest wait time.
Default is 2000. Only activated if
EnableFlowControl is set to true.

YThe time in milliseconds to hold a
producing connectionbeforeprocessing

1000 to
120000

FlowControlWaitTimeTwo

68 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

its events. This is the second level of
waiting. Default is 4000. Only activated
if EnableFlowControl is set to true.

YThe time in milliseconds to hold a
producing connectionbeforeprocessing

1000 to
120000

FlowControlWaitTimeThree

its events. This is the third level of
waiting and the longest wait time.
Default is 10000. Only activated if
EnableFlowControl is set to true.

Thread Pool Config

Maximum number of threads to
allocate to the common thread pool.

5 to 1000CommonPoolThreadSize

The maximum number of threads
allocated to establish client connections.

10 to
2147483647

ConnectionThreadPoolMaxSize

If this number is too small then
connections may be left waiting for a
thread to process it.

The minimum number of threads
allocated to establish client connections.

4 to 100ConnectionThreadPoolMinSize

If too large then the server will have
many idle threads.

YThe time for the thread to wait for the
client to finalize the connection. If too

10000 to
300000

ConnectionThreadWaitTime

low then slow linked clients may not
be able to establish a connection.

YIf true then if NIO is available it will
be available for interfaces to use it and

True or
False

EnableConnectionThreadPooling

then all reads/writes will be done via
the Read/Write thread pools. If NIO is
not available then a limited used write
thread pool is used. This requires a
realm restart before it takes effect.

The maximum number of threads to
allocate to the multiplex thread pool to
readmultiplex sessions. Default is 100.

4 to
2147483647

MultiplexReadThreadPoolMaxSize

Universal Messaging Administration Guide 10.7 69

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

The minimum number of threads to
allocate to the multiplex thread pool to
read multiplex sessions. Default is 4.

4 to
2147483647

MultiplexReadThreadPoolMinSize

YThe maximum outstanding
unauthorized connections per host

10 to
10000

MaxUnauthorisedCount

name (or IP address if host name is
unavailable). Default is 1000.

YThe threshold atwhich the server starts
to warn about the number of pending

100 to
100000

PendingTaskWarningThreshold

tasks. When the number of pending
tasks is below the threshold, but over
100, the server logs a WARNING
message. When the number is above
the threshold, the server logs an
ERRORmessage.When the server does
not find available threads, it logs a
message that the thread pool is
exhausted. Default is 1000.

The maximum number of threads that
will be allocated to the read pool. If

4 to
2147483647

ReadThreadPoolMaxSize

NIO is not available this should be set
to themaximumnumber of clients that
are expected to connect. If NIO is
available then it's best to keep this
number under 20.

This is the number of threads that will
always be present in the read thread

4 to
2147483647

ReadThreadPoolMinSize

pool. If this is too small then the thread
pool will be requesting new threads
from the idle queue more often. If too
large then the server will have many
idle threads.

The number of threads assigned to the
scheduler, default is 10.

10 to 100SchedulerPoolSize

YThe time in milliseconds before
reporting a slow-running task. The

1000 to
30000

SlowTaskWarningTime

server logs the information at the
WARNING log level and generates a
thread dump. Default is 5000.

70 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

YThe time in milliseconds before
reporting a stalled task. The system

10000 to
60000

StalledTasksWarningTime

writes the information at the
WARNING log level and generates a
thread dump. When you change this
configuration, the thread pool monitor
interval is updated to monitor at the
same time interval as the value you
specify for this property. Default is
60000.

YThe interval in milliseconds at which a
thread dump is generated when the

1000 to
600000

ThreadDumpInterval

system reports slow or stalled tasks, or
when the number of pending tasks
exceeds the value of
PendingTaskWarningThreshold. The
thread dump interval applies across all
thread pools in the JVM instance.
Default is 60000.

YWhether to generate a thread dump
when the system reports a slow task.
Default is false.

True or
False

ThreadDumpOnSlowTask

When threads are released fromvarious
pools since they no longer need them

5 to 50ThreadIdleQueueSize

they end up in the idle queue. If this
idle queue exceeds this number the
threads are destroyed. Specify this
number to be large enough to
accommodate enough idle threads, so
that if any thread pool requires to
expand then it can be reused. If the
number is too large then the servermay
have many idle threads.

The maximum number of threads that
will be allocated to the write pool. If

5 to
2147483647

WriteThreadPoolMaxSize

NIO is not available this should be set
to themaximumnumber of clients that
are expected to connect. If NIO is
available then it's best to keep this
number under 20.

This is the number of threads that will
always be present in the write thread

5 to
2147483647

WriteThreadPoolMinSize

Universal Messaging Administration Guide 10.7 71

2 Universal Messaging Enterprise Manager

Adv.DescriptionValid
values

Configuration Group/Property

pool. If this is too small then the thread
pool will be requesting new threads
from the idle queue more often. If too
large then the server may have many
idle threads.

Trace Logging Config

If you set the event tracing log level of
a store to INFO, the system logs

OFF,
INFO or
TRACE

TraceStoreLogLevel

high-level event operations. If you set
the level to TRACE, the system logs a
verbose event trace.

A comma-separated list of stores for
which to enable event trace logging. Set

TraceStores

'*' to trace all stores or '*!a' to trace all
stores except a specific one (a). You can
also trace all stores in a specific folder
- 'wm/Group/' or just a single store - 'a'

Specifies the size of a single trace log
file for a store in MB.

1 to 100TraceStoreLogSize

Specifies the size of the directory that
contains the trace log files for the store
in MB.

1024 to
102400

TraceFolderLogSize

TransactionManager

The maximum number of events per
transaction, a 0 indicates no limit.

0 to
2147483647

MaxEventsPerTransaction

Time in milliseconds that a transaction
will be kept active. A large numberwill

1000 to
No Max

MaxTransactionTime

cause the server to retain these
transactions in memory.

YThe minimum time in milliseconds,
below which the server will not store
the Transaction ID.

1000 to
60000

TTLThreshold

Double-clicking on the property you wish to modify in the configuration group will provide you
with a dialogwindowwhere the new value can be entered. The values of configuration properties

72 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

will be validated to check whether they are within the correct range of values. If you enter an
incorrect value you will be notified.

Connecting to Multiple Realms
An Enterprise Manager can connect to multiple Universal Messaging realms at the same time.
These realms can be standalone or clustered, so developers and administrators can now manage
and monitor the whole Universal Messaging enterprise infrastructure from a single instance of
the Enterprise Manager. After you connect to a set of Universal Messaging realms, you can save
the connection information, so that the Enterprise Manager automatically connects to all those
realms each time it starts.

A bootstrapRNAMEenvironment variable is needed the first time you run the EnterpriseManager
or if your connection info file is empty. If you use the shortcut / link created by the installation
process, this will be automatically set to point to the locally installed realm's bootstrap interface,
so you do not need to take any additional action. If, however, you open a client command prompt
and youwant to initially connect to a realm other than the local one, youmust change your RNAME
environment variable.

Formore information about how to set the RNAMEvariable, see the sectionCommunication Protocols
and RNAMEs in the Developer Guide.

Note that after your realm connection information is saved, the RNAME environment variable is
ignored.

To connect to a realm server in the Enterprise Manager:

1. Select Connections > Connect To Realm.

2. In the RNAME field of the Connect to a realm dialog box, specify the RNAME that points to
the interface of the Universal Messaging realm to which you want to connect. Click OK.

If the connection is successful, a new realm node is rendered on the tree with the unique name of
that realm. You canmanage andmonitor the new realm by selecting the newly rendered tree node.
The name displayed for the realm uses the syntax: realmname(host:port), for example
realm1(MyHost:11010).

When you connect to a realm server that is part of a cluster or zone, the Enterprise Manager
automatically connects to and displays the other realms in the cluster or zone.

If you enter an incorrect RNAME, if the realm to which you want to connect is not running, or if
the realm is running but the particular interface is not started, the connection will fail.

Tomake this connection get attempted each time you start the EnterpriseManager, youmust save
your connection information.

Disconnecting from Realms
When the Enterprise Manager connects to multiple realms, its startup time increases slightly each
time you add a Universal Messaging realm to your connection list. If you connect from a different
location or network, if the development phase of a Universal Messaging application completes,

Universal Messaging Administration Guide 10.7 73

2 Universal Messaging Enterprise Manager

or if you want to have faster startup times for the Enterprise Manager, you may want to stop
connecting to one or more of your Universal Messaging realms.

To disconnect from a realm in the Enterprise Manager:

1. Select Connections > Disconnect from Realm.

2. In the Disconnect From Realm dialog box, select the realm fromwhich youwant to disconnect
and click OK.

The disconnected realm node and any other realm nodes that were added by it when the node
was created disappear from the namespace tree.

Disconnecting from a realm is not necessarily a permanent operation. If you disconnect from a
realm that was listed in your connection information, the disconnect is applicable only for this
Enterprise Manager session. Next time you start up, the connection will be attempted again. To
make the disconnect permanent, click File > Save to save your connection information after you
disconnect.

Interface Status
Universal Messaging interfaces (see “Administering TCP Interfaces, IP Multicast, and Shared
Memory” on page 170) enables you to connect to a realm using various protocols and ports on
specific physical network interfaces on the host machine. Interfaces are also available through the
Universal Messaging Administration API and can provide useful status information regarding
user connections.

The Enterprise Manager provides a summary of this status information for each interface.

To view status information for an interface, select the Comms tab for the realm you want to view.
Then click the Interfaces tab and select the interface from the list of interfaces. The following
image shows the Status panel for a selected interface.

74 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Details Panel

The interface status panel has a section that describes the details of the interface status information.
The status information contains the following parameters:

Idle Threads- The number of idle threads, calculated as the total threads from the interface
accept threads pool - the number of threads from the pool currently accepting connections.
Corresponds to available threads

Total Connections - The total number of successful connections made to this interface

Total Failed - The total number of failed connection attempts made to this interface

Ave Authorisation - The average time it takes a connection to authenticate with the realm
server

Pool ExhaustedCount - The number of times that the interface thread pool has had no threads
left to service incoming connection requests. When this count increases, you should increase
the number of accept threads (see “Basic Attributes for an Interface” on page 173) for the
interface

Ave Pool Wait - The average time that a client connection has to wait for the accept thread
pool to provide an available thread. Like the Pool Exhausted count, this is a good indicator
that the number of accept threads for an interface is too low and needs to be increased

Universal Messaging Administration Guide 10.7 75

2 Universal Messaging Enterprise Manager

The status panel also shows two graphs that depict connection attempts (successful connections
are shown in yellow, failed connection attempts are shown in red) and authentication times (average
authentication times are shown in yellow, and the last authentication time is shown in red).

Zone Administration

Overview of Zone Administration

The Enterprise Manager provides menu items for performing the administrative functions on
zones. In a zone,messages that are published to a channel on one realm are automatically forwarded
to a channel of the same name on other realms in the zone.

Note:
Messages on queues are not forwarded between realms in a zone; the zone functionality applies
only to channels.

For general information about using zones, refer to theArchitecture section of theUniversalMessaging
Concepts guide.

Zone administrative functionality is offered in the Enterprise Manager menu bar and in the
navigation tree:

The Zone tab in the menu bar allows you to perform operations on zones, such as creating and
deleting zones.

The Zones node in the navigation tree is the parent node of any zones you create.

The zone administration operations that you can perform are described in the following sections.

76 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Creating a Zone

To create a zone and define it with an initial set of realms or clusters, proceed as follows:

1. Open the dialog for creating a zone.

You can do this in one of the following ways:

In the Menu bar, select Zone > Create Zone, or

In the navigation tree, select the Zones node, and from the context menu choose Create
Zone.

2. In the dialog, specify a name that will be assigned to the zone.

3. Add realms or clusters to the zone.

If you select the radio button for realms, you see all of the realms that you can add to the zone.
If you select the radio button for clusters, you see all of the clusters that you can add to the
zone.

Specify the realms or clusters you want to add to the zone, then click Add.

4. Click OK to create the zone and close the dialog.

The newly created zone is now displayed under the Zones node in the navigation tree.

If you expand the node of the new zone, you will see the realms that belong to the zone.

Note:

1. A zone can contain either realms or clusters, but not a mixture of realms and clusters.
2. A zone cannot be empty; it must contain at least one realm or cluster.

Modifying the set of realms or clusters in a zone

To modify the set of realms or clusters in a zone, proceed as follows:

1. Under the Zones node in the navigation tree, select the node representing the required zone.
In the context menu, select Modify Zone Members.

This displays the realms/clusters that are currently members of the zone, and also the
realms/clusters that are currently not members but which are available to become members.

2. As required, add realms/clusters to the zone's existingmembers, or remove existingmembers.

3. Click OK to save the modified zone and close the dialog.

Deleting a zone

To delete a zone, proceed as follows:

1. Select the Zones node in the navigation tree, then in the context menu, select Delete Zone.

Universal Messaging Administration Guide 10.7 77

2 Universal Messaging Enterprise Manager

Alternatively, select Zone > Delete Zone from the menu bar.

2. Select the required zone from the displayed list and click OK to delete the zone.

Creating a channel in a zone

You can create a channel for a zone, and the channel will be automatically created on all
realms/clusters in the zone.

To create a channel in a zone, proceed as follows:

1. Select the node for the zone in the navigation pane. Then, in the context menu of the node,
select Create Channel.

2. In the Add Channel dialog, specify the attributes of the channel that you wish to create.

3. Click OK to complete the dialog and create the channel.

The Enterprise Manager now creates the channel on all realms or channels in the zone.

Modifying a channel in a zone

If you wish to modify the attributes of a channel that was created in a zone via Create Channel,
you must modify the attributes for the channel in each of the zone members (realms, clusters)
individually.

Note:
Any changes youmake to the channel definition for a realm/cluster in a zone areNOTpropagated
automatically to the other zone members. If you wish to keep all zone members in sync, you
have to update the other zone members individually.

To modify a channel on one realm/cluster in a zone, proceed as follows:

1. Select the node for the channel under the node for the realm/cluster on which the channel is
defined.

2. In the context menu of the channel, select Edit Channel.

3. In the Modify Channel dialog, make your changes and click OK to complete the dialog.

Channel interface attributes for use in zones

For the message forwarding mechanism between realms in a zone, Universal Messaging requires
each affected realm to use an interface that has the attribute Allow for InterRealm activated. See
the section “Basic Attributes for an Interface” on page 173 for a description of this attribute.

General notes on using zones

This section summarizes some operational aspects of using zones.

If a zone member (a realm or cluster) is not active (e.g. the server is down), no Enterprise
Manager operations will be allowed on the zone until all zone members are available again.

78 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Any given realm or cluster cannot be a member of more than one zone at the same time.

Cluster Administration

Viewing the Available Clusters

When you select theClusters node in the EnterpriseManager, the Clusters Summary viewdisplays
details about the current status of all Universal Messaging clusters and clustered realms known
to the Enterprise Manager.

If you use the Enterprise Manager to connect to a realm that is a member of an existing cluster,
the cluster is automatically displayed in the Clusters node. When a cluster node is found, the
Enterprise Manager also automatically connects to all the cluster member realms. For more
information, see “Connecting to Multiple Realms” on page 73.

The top of the screen displays a real-time graph illustrating the total number of events published
(yellow) and consumed (red) across all Universal Messaging clusters.

The bottom of the screen displays the Totals, Event Status, and Connection Status panels.

Totals

The Totals panel contains the following information:

Clusters- The number of clusters defined in the Enterprise Manager and its realm nodes

Realms- The number of realms known by the enterprise manager

Universal Messaging Administration Guide 10.7 79

2 Universal Messaging Enterprise Manager

Channels- The number of channels that exist across all known realms

Queues- The number of queues that exist across all known realms

Data Groups- The number of data groups that exist across all known realms

Event Status

The Event Status contains the following information:

Published - The total number of events published to all channels and queues across all realms
in all known clusters

Consumed - The total number of events consumed from all channels and queues across all
realms in all known clusters

Published/Sec - The number of events published to all channels and queues per second across
all realms in all known clusters

Consumed/Sec - The number of events consumed from all channels and queues per second
across all realms in all known clusters

Connection Status

The Connection Status panel contains the following information:

Total - The total number of connections made to all realms in all known clusters

Current - The current number of connections across all realms in all known clusters

Rate - The number of connections beingmade per second across all realms in all known clusters

Viewing Information for a Cluster

You can view information for an individual cluster by expanding the Clusters node in the
navigation pane and selecting the node for the required cluster. The view displays information
about the cluster members and the current status of the selected cluster.

80 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

The top of the view shows the realms that have been defined for the cluster.

The view includes a real-time graph illustrating the total number of events published (yellow)
and consumed (red) across all realms in the cluster.

The bottom of the screen displays the Totals, Event Status, and Connection Status panels.

Totals

The Totals panel describes the following:

Realms- The number of realms in the cluster

Channels- The number of channels across all realms in the cluster

Queues- The number of queues across all realms in the cluster

Event Status

The Event Status panel describes the following:

Published - The total number of events published to all channels and queues across all realms
in the cluster

Consumed - The total number of events consumed from all channels and queues in the cluster

Published/Sec - The number of events published to all channels and queues per second across
all realms in the cluster

Consumed/Sec - The number of events consumed from all channels and queues per second
across all realms in the cluster

Universal Messaging Administration Guide 10.7 81

2 Universal Messaging Enterprise Manager

Connection Status

The Connection Status panel describes the following:

Total - The total number of connections made to all realms in the cluster

Current - The current number of connections across all realms in the cluster

Rate - The number of connections being made per second across all realms in the cluster

In addition, you can view information about the cluster on the following tabs:

Cluster Summary - Provides an overview of all realms in the cluster. It identifies the current
master realm and also shows each realm's perception of the state of all other realms.

Connections - Shows all connections to realms in the cluster.

Remote Cluster Connections - Shows all remote cluster connections for this cluster. Clusters
can be remotely connected together, thus providing the ability to create joins between channels
in different clusters.

Logfile - Shows a real-time cluster-specific log and provides the option to stream the log output
to a file.

Sites - Shows any site configurations for the cluster. For more information about clusters with
sites, see “Creating Clusters with Sites” on page 90.

Creating Clusters

Tip:
As the underlying purpose of a cluster is to provide resilience and high availability, we advise
against running all the servers in a cluster on a single physical or virtualmachine in a production
environment.

Before Creating a Cluster

Before you create a cluster, the Enterprise Manager must connect to the realms that will form the
cluster. For information about how to connect to realms, see “Connecting to Multiple Realms” on
page 73.

If you cannot connect to a realm or you receive a 'Security Alert' messagewhen you click the realm
node, you should check if the realm is running, and check the permissions on the realm. If the
realms to which you want to connect are running on different machines, you must ensure that all
realmmachines are given full permissions to connect to the other realms in the cluster. Each realm
communicates with the other cluster realms by using its own connection. For more information
about realm permissions, see “About Realm ACL Permissions” on page 123.

For example, assume that there are three realms that will form a cluster, and the subject of each
connection has the format: realm-<realmname>@<ip_address>. Each realm subject must exist in the
ACLs of the other realms, so the following realm subjects must be added to the ACL for each
realm:

82 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

realm-realm1@10.140.1.1 realm-realm2@10.140.1.2 realm-realm3@10.140.1.3

The permissions given for each realmmust be 'Access Realm'. Also, each realmmust have a valid
entry for the user@host that corresponds to the user thatwill create the cluster using the Enterprise
Manager. The permissions for this user must be sufficient in order to create the cluster object.
Temporarily, it is often better to give 'Full' privileges to the *@* default subject in order to facilitate
setting up a realm and clusters.

Creating a Cluster

To create a cluster in the Enterprise Manager

1. Right-click the Clusters node and select Create Cluster.

2. In the Create New Cluster dialog box, specify a name for the new cluster.

Important:
The Enterprise Manager does not support working with two clusters that have the same
name.

3. Add cluster members by selecting realms from the Available Realms list. Click OK.

Important:
Acluster cannot contain two realmnodeswith the same node name, even if their host names
and port numbers are different.

One of the selected realms becomes the master realm during the creation of the cluster. The
master realm controls synchronizing the state between the other realms and acts as the
authoritative source for this information.

4. Select whether to migrate local stores to cluster-wide stores.

Click Yes to convert any local stores, such as channels and queues, on the realms you
added to the cluster into cluster-wide stores. These stores will be present on all realms in
the cluster.

Note:
If the name of a local store is the same as the name of an existing cluster store, the cluster
creation will fail due to a name clash.

Click No to keep the stores local to the realms. The stores will not be present on other
realms in the cluster.

The Enterprise Manager displays the new cluster and its realms in the Clusters node tree. When
you select the new cluster node, you can monitor its state on the Cluster Summary tab. The tab
shows the state of all cluster members and which realm is the current master.

Universal Messaging Administration Guide 10.7 83

2 Universal Messaging Enterprise Manager

Deleting a Cluster

To delete a cluster in the Enterprise Manager

1. Right-click the Clusters node and select Delete Cluster.

2. In the Cluster field, select the cluster node you want to delete. Click OK.

3. Choose whether to delete all existing cluster resources or convert them to local resources:

Click Migrate Cluster Stores to delete cluster stores from each realm in the cluster. This
action does not remove any local stores, such as local channels or queues.

Click Delete Cluster Stores to convert cluster stores to local stores on each realm in the
cluster. This action will keep any data contained in the stores.

Adding and Removing Cluster Members
Consider the following information before adding or removing cluster members in the Enterprise
Manager:

Before adding a new realm to a cluster, you must connect to the realm. For more information
about how to connect to a realm, see “Connecting to Multiple Realms” on page 73.

If the realm you want to add has local stores with names matching any store on the cluster,
the realm will not be added to the cluster. This prevents naming clashes in the cluster.

You can add and remove cluster members in the same operation.

To modify a cluster in the Enterprise Manager

1. Expand the Clusters node.

2. Select the cluster you want to modify and right-click it.

3. Click Modify Cluster Members.

4. Do any of the following:

From the Available Realms list, select realms to add to the cluster. Click OK.

Any existing cluster resources are also created on the newly added realms.

From the Cluster Members list, select realms to remove from the cluster and click OK.
Then specify whether to delete all cluster-wide resources on the realms that you removed
or whether to convert the cluster resources to local ones.

84 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Converting the cluster resources to local ones keeps any data contained in the cluster
resources.

Creating Cluster Channels
Each channel that is created in a cluster consists of a physical object within each Universal
Messaging realm in the cluster as well as its logical reference in the namespace of each realm. You
can obtain references to the cluster channels by using the Universal Messaging Client and Admin
APIs, in the sameway aswhen you have non-clustered channels. You can alsomonitor andmanage
cluster channels in the Enterprise Manager.

To create a cluster channel

1. Expand the Clusters node.

2. Select a cluster and right-click it.

3. Click Create Cluster Channel.

4. Specify the channel attributes. For the values to specify, see

5. Click OK.

The channel is created on all realms in the cluster and you can see it in the namespace tree of each
realm.

Creating Cluster Queues
Each queue that is created in a cluster consists of a physical object within eachUniversalMessaging
realm in the cluster as well as its logical reference in the namespace of each realm. You can obtain
references to the cluster queues by using the Universal Messaging Client and Admin APIs, in the
same way as when you have non-clustered queues. You can also monitor and manage cluster
queues in the Enterprise Manager.

To create a cluster queue

1. Expand the Clusters node.

2. Select a cluster and right-click it.

3. Click Create Cluster Queues.

4. Specify the queue attributes. For the values to specify, see

5. Click OK.

Universal Messaging Administration Guide 10.7 85

2 Universal Messaging Enterprise Manager

The queue is created on all realms in the cluster and you can see it in the namespace tree of each
realm.

Setting Up Inter-Realm Communication
Communication between realms can occur in various configurations:

between realms in the same cluster.

between realms in a zone.

between realms in connected clusters.

The communication between realms can be secure (encrypted) or non-secure (non-encrypted).
The communication is implemented by defining one ormore interfaces on each realm. The required
setup of the interfaces is the same, regardless of which of the above configurations you use for the
communication between realms. For example, the attributeAllow for InterRealmmust be activated
on the interface that you use, otherwise the communication between realms is not possible.

The following description uses some examples from working with a cluster, but the principles
apply to all configurations.

Since all realms in a cluster are required to have the same configuration (so that for example if the
master realm goes offline, one of the other realms can become the new master), you must ensure
that any interface definitions on one realm match the interface definitions on all other realms in
the cluster.

For non-encrypted inter-realm communication, you can set up the interfaces to use either NSP
(Socket Protocol) or NHP (HTTP Protocol). In general, we recommend you to use NSP rather than
NHP for non-encrypted inter-realm communication.

For encrypted inter-realm communication, you can set up the interfaces to use eitherNSPS (Secure
Socket Protocol) or NHPS (Secure HTTP Protocol). In general, we recommend you to use NSPS
rather than NHPS for encrypted inter-realm communication.

Information about using the Enterprise Manager to manage a cluster is contained in the section
Cluster Administration. Information about managing realm interfaces is contained in the section
TCP Interfaces, IP Multicast and Shared Memory. Managing zones is described in the section Zone
Administration. Setting up an inter-cluster connection is described in the section Interconnecting
Two Clusters, and conceptual details are provided in the section Data Routing using Channel Joins
in the Concepts Guide.

Setting Up Non-Encrypted Inter-Realm Communication

Each realm contains by default one predefined interface, and this interface uses the NSP protocol
(i.e. socket protocol without encryption). Also by default, the interface is configured to be usable
for inter-realm communication as well as for communication between realm and clients.

If you do not define any additional interfaces on the realm, all communication between the realm
and other realms, and between the realm and clients, will use this interface. You can set up a cluster
consisting of multiple realms, each of them having just this one default interface defined.

86 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

However, in general we recommend you to set up two NSP interfaces on each realm for
non-encrypted communication, namely one interface for only inter-realm communication and one
interface for only client communication to the realm. The options for setting up this configuration
are available in the EnterpriseManager, under theComms > Interfaces > Basic tab of each realm.

On the interface that you will use for inter-realm communication, use the following settings:

Allow for InterRealm: yes

Allow Client Connections: no

Similarly, on the interface that you will use for client communication with the realm, use the
following settings:

Allow for InterRealm: no

Allow Client Connections: yes

After you make these changes, restart all of the realms, to ensure that the new interfaces are
activated.

When you form the cluster, communication between realms in the clusterwill use theNSP interface
that you have configured for inter-realm communication.

Setting Up Encrypted Inter-Realm Communication

The assumed starting point in this scenario is that there is no cluster formed yet. All of the realms
that will later form the cluster need to be configured.

The steps required are as follows:

1. If you intend to use self-signed certificates, or if you intend to use a custom truststore (which
contains the public certificates associated with each Universal Messaging realm's private
certificate), the keystore and the truststore must be added to the Universal Messaging JVM
process.

In the file Server_Common.conf on each realm, provide details of the truststore and keystore,
according to the following pattern:
wrapper.java.additional.7="-Djavax.net.ssl.trustStore=<TRUSTSTORE>
wrapper.java.additional.8=-Djavax.net.ssl.trustStorePassword=<TRUSTSTORE_PWD>
wrapper.java.additional.9="-Djavax.net.ssl.keyStore=<KEYSTORE>
wrapper.java.additional.10=-Djavax.net.ssl.keyStorePassword=<KEYSTORE_PWD>

for example
wrapper.java.additional.7="-Djavax.net.ssl.trustStore=

/webmethods/truststores/um_truststore.jks"
wrapper.java.additional.8=-Djavax.net.ssl.trustStorePassword=nirvana
wrapper.java.additional.9="-Djavax.net.ssl.keyStore=

/webmethods/keystores/um_keystore.jks"
wrapper.java.additional.10=-Djavax.net.ssl.keyStorePassword=nirvana

See the section Server Parameters in the Concepts guide for general information about setting
up such parameters.

Universal Messaging Administration Guide 10.7 87

2 Universal Messaging Enterprise Manager

2. On each realm in the cluster, add two secure interfaces:

a. Add one interface using theNSPS protocol, to be used only for inter-realm communication.

Note:
The demo certificates generated by the Universal Messaging Certificate Generator tool
(see the section “How to Generate Certificates for Use” on page 180) are only valid for
the loopback interface (localhost / 127.0.0.1). Therefore, if you use these demo certificates,
ensure that the adapter that you add is bound only on the loopback interface.

For this interface, set the following options (in the Enterprise Manager, they are located
under the Basic or Certificates tabs of the interface definition screen):

Allow for InterRealm: yes

Allow Client Connections: no

Enable client certificate validation: no

The reason for disabling client certificate validation is because Universal Messaging
does a certificate exchange between realms already when constructing a cluster, so
doing another certificate exchange at the SSL layer would be redundant.

Specify Certificates and Truststore on the interface as you would normally.

If you want to use a certain level of SSL / TLS (eg. TLS 1.2)

1. Pick the right algorithms for that interface.

2. Enforce the SSL level in the realm (using a JVM argument in Server_Common.conf).
Example: to enforce TLS1.2 globally on the Universal Messaging server, set:
wrapper.java.additional.XX=-DSSLProtocols=TLSv1.2

b. Add one more interface using the NSPS protocol, to be used only by clients for
communication with the realm. For this interface, set the following options:

Allow for InterRealm: no

Allow Client Connections: yes

Enable client certificate validation: no

3. Disable the setting for inter-realm communication on the original, non-encrypted, interface.

4. Close and restart the Enterprise Manager.

5. Restart all Universal Messaging realms (to make sure all JVM arguments are activated).

6. Use the Enterprise Manager to form the cluster.

Switching from Non-Encrypted to Encrypted Inter-Realm Communication

88 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

The assumed starting point in this scenario is that there is already a cluster inwhich the inter-realm
communication is not encrypted, i.e. the interface protocol is NHP orNSP, and youwant to change
this to encrypted communication, i.e. using the interface protocol NHPS or NSPS.

Here are the steps to follow to switch fromnon-encrypted to encrypted inter-realm communication
in a Universal Messaging cluster:

1. Close the cluster and stop any running realms.

2. In the file Server_Common.conf on each realm, provide details of the truststore and keystore,
as described in “Setting Up Encrypted Inter-Realm Communication” on page 87.

3. Restart all realms.

4. On each realm, create two NSPS interfaces, as described in the previous section.

5. Under the Certificates tab for each of the NSPS interfaces, add a reference to the custom
truststore and the keystores containing the server signed certificates, for example:
Key store path : /webmethods/keystores/um_keystore.jks
Trust store path : /webmethods/truststores/um_truststore.jks

6. Close Enterprise Manager.

7. Set the environment variables CAKEYSTORE and CAKEYSTOREPWD for each realm to
reference the truststore containing the CA root chain, and the truststore's password. You can
set up these variables as follows:

a. Open the file Admin_Tools_Common.conf that is located in
UniversalMessaging/java/<instanceName>/bin, where <instanceName> is the name of the
realm server.

b. Locate the lines
set.default.CAKEYSTORE=
set.default.CAKEYSTOREPASSWD=

c. Set these variables to the required values, for example:
set.default.CAKEYSTORE=/webmethods/keystores/um_keystore.jks
set.default.CAKEYSTOREPASSWD=nirvana

d. If you choose not to enable client certificate validation, youmust comment out the unused
SSL keystore properties in the nenterprisemgr.conf file using a hash (#).

Note that if these variables have already been assigned a value elsewhere in the session, for
example in a startup script, the values defined here in Admin_Tools_Common.confwill be ignored.

8. Restart Enterprise Manager.

By restarting the Enterprise Manager after setting values for CAKEYSTORE and
CAKEYSTOREPASSWD, the EnterpriseManagerwill be able to connect over a secured interface.

9. Disable the inter-realm connection option on each realm's non-encrypted interfaces.

10. Form the cluster.

Universal Messaging Administration Guide 10.7 89

2 Universal Messaging Enterprise Manager

Note on Public/Private Keys Used for Inter-Realm Handshake

When a Universal Messaging realm starts for the first time, it automatically generates a
public/private key pair for encryption purposes and stores it in the internal keystore server.jks
file in the realm's data/RealmSpecific directory. The public keys of other nodes are also added to
this file whenever the realms are added to form a cluster.

These auto-generated keys are used for server identification only; basically whenever two realms
establish a connection, theywill exchange a single signedmessage as part of the handshake routine,
in order to confirm they know each other.

After this initial handshake has taken place, all encrypted communication between realms in a
cluster uses separate keys and keystores.

Interconnecting Two Clusters
Before you create a connection between two clusters, connect to a realm in each cluster so that
both clusters are displayed in the Enterprise Manager

To interconnect two clusters in the Enterprise Manager

1. Expand the Clusters node and select one of the clusters you want to connect.

2. Go to the Remote Cluster Connections tab and click Add.

3. In the To Cluster field, select the remote cluster to which you want to connect, and then click
OK.

After the connection is established, you can create inter-cluster joins, either in the Enterprise
Manager or programmatically.

Creating Clusters with Sites
A Universal Messaging cluster with sites can operate with as few as half of the active cluster
members, compared with a required quorum of 51% for a cluster without sites. A cluster with
sites includes two sites: a primary site and a backup site. The primary site gets allocated an
additional vote to achieve the required cluster quorum of 51%. In a cluster with a production site
and a disaster recovery site, you can make either site the primary site, but we recommend that
you make the production site the primary site.

Formore information about clusterswith sites and a discussion onwhether tomake the production
site or the disaster recovery site the primary site, see Clusters with Sites in the Concepts guide..

Use the following procedure to create sites for an existing cluster in the Enterprise Manager and
to select a primary site.

To create sites for a cluster in the Enterprise Manager

90 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

1. Go to Clusters > cluster_name > Sites.

2. On the Sites tab, click New.

3. Specify a name for the site, and then select a realm to add to the site.

The site is displayed on the Sites tab. You can add other cluster realms to the site or remove
realms, as required.

4. Repeat the previous two steps to create a second site.

5. In the IsPrime column, select the primary site.

Case Study: Migrating Between Single-Node and Multi-Node
Active/Active Cluster
This case study examines the following scenarios:

Migrating from a single node setup to a multi-node active/active cluster.

Migrating from an active/active cluster to a single-node setup ("declustering").

Migrating from a single-node setup to amulti-node active/active setup is a procedure that requires
variousmanual steps. A "live"migration from a single node to a cluster is not currently supported.
The current migration procedure enables you to migrate all the non-cluster-wide resources to
cluster-wide resources.

The steps outlined belowdescribe behaviours of realms and their local stores (channels and queues)
before and after clustering/ declustering.

Before you start, check through the description in the section “Creating Clusters” on page 82 for
general information about creating a cluster.

Preparation

1. Currently,migrating from a single-node setup to amulti-node active/active setup is a procedure
that requires various manual steps. It is therefore recommended to have proper downtime for
this cluster setup and not migrate from a LIVE node.

2. Stop all publishers, so that no new events arrive. Also ensure that all channels and queues are
completely drained, i.e. that there are no pending events, by waiting until the subscribers
consume all pending messages.

This step is needed as currently, Universal Messaging doesn't support live migration. By
stopping publishers and consuming all eventswe are ensuring no event losswill be experienced.
Our currentmigration allows themigration of all non-cluster wide resources into cluster-wide
ones, and vice-versa, but does not take care of the system dynamics, such as transactions and
in-flight events from a durable object. Durable subscriber objects will not be re-created after
the migration, so client applications need to take care of this.

Universal Messaging Administration Guide 10.7 91

2 Universal Messaging Enterprise Manager

3. When all channels and queues are completely drained, stop all subscribers.

4. If you are working with a virtual machine (VM), create a snapshot of the existing virtual
machine, in case you need to revert to this snapshot at a later stage.

5. Update the Universal Messaging license file with "clustering" capability (if applicable).

6. Ensure that the other UniversalMessaging nodes that youwill beworkingwith in the clustered
environment are at a software level that is identical with your existing node. If possible, update
your existing node to the latest released fix level issued by Software AG, and ensure that the
same fix level is installed on the other nodes.

Migrating from Single-Node to Multi-Node Active/Active Cluster

Here there are two possible scenarios:

The cluster does not already exist, so you must create a new cluster containing your node and
other nodes.

The cluster exists already, so you will add your single node to the existing cluster.

Scenario 1: Create a new cluster and add your node to it

If the cluster does not already exist, then follow these steps to create the cluster and add the single
node to the cluster:

1. Create a new cluster, as described in “Creating Clusters” on page 82.

2. Add your single node and the other required nodes to the cluster.

3. After you have specified all of the nodes to be added to the cluster, choose the option to convert
local stores to cluster stores.

If you choose not to migrate the local stores, then they will not be available in the cluster and
will continue to act as stand-alone local stores for their respective realms.

4. Verify successful migration by the following steps:

a. Ensure that all nodes joined the cluster, i.e. are in Master or Slave state.

b. Ensure that all connection factories are enabled with the new URL for the Universal
Messaging realm cluster.

c. Ensure that JMS / webMethods Messaging triggers (durable subscribers) are enabled by
selecting the "ClusterWide" checkbox on the durable subscription in the EnterpriseManager.
If this is not already the case, youwill need to delete the non-clustered durable subscribers,
then manually synchronize documents using the Software AG Designer.

d. Update the realmURL in all affectedUniversalMessaging clients (webMethods Integration
Server,MywebMethods Server, etc.) to point to the newUniversalMessaging cluster URL.
Enable Universal Messaging client connections (webMethods Integration Server, My
webMethods Server, etc.) and enable publishers / subscribers.

e. Start the publishers and subscribers.

92 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Scenario 2: Add your node to an existing cluster

If the cluster already exists, then follow these steps to add the single node to the cluster:

1. Add your realm from the list of available realms to the list of existing cluster members.

2. Ensure that all connection factories are extended with the Universal Messaging realm URL of
the newly added node.

3. Update the realm URL in all affected Universal Messaging clients (webMethods Integration
Server, My webMethods Server, etc.) to point to the new Universal Messaging cluster URL.

4. Start publishers and subscribers.

Declustering a Single Node from an Active/Active Cluster

Here there are two possible scenarios:

Deleting the cluster and allowing the individual nodes to continue as non-clustered nodes;

Removing a single node from a cluster, while allowing the cluster to continue operating with
the other cluster nodes.

Scenario 1: Delete the cluster

Follow these steps to delete the cluster and allow the individual nodes to continue as non-clustered
nodes:

1. Delete the cluster, as described in “Deleting a Cluster” on page 84.

You can choosewhether youwant to copy the cluster stores into local stores on the declustered
nodes.

2. Ensure that all connection factories are enabled with the Universal Messaging realm URL.

3. Integration Server: Ensure that the "Cluster-Wide" settings for the JMS / webMethods Native
Message triggers (DS) are disabled. Documents need to be synchronized from Software AG
Designer so all durable objects are re-created. Ensure they have the "Cluster-Wide" option
deselected.

4. Update the realm URL in the Universal Messaging clients (webMethods Integration Server,
My webMethods Server, etc.) to point to the Universal Messaging realm URL.

5. Enable the Universal Messaging client connections.

6. Start the publishers and subscribers.

Scenario 2: Remove a single node from a cluster

Follow these steps to remove a single node from a cluster, while retaining the rest of the cluster:

1. Remove the realm from the list of cluster members, as described in “Adding and Removing
Cluster Members” on page 84.

Universal Messaging Administration Guide 10.7 93

2 Universal Messaging Enterprise Manager

You can choosewhether youwant to copy the cluster stores into local stores on the declustered
node.

2. Connection factories:

For the declustered node: Modify all connection factories so that they refer to only the
realm URL of the newly declustered node.

For the remaining nodes in the cluster: Modify all connection factories so that the realm
URL of the declustered node is removed.

3. Client URLs:

For the declustered node: Update the realm URL in the Universal Messaging clients
(webMethods Integration Server, My webMethods Server, etc.) by providing only the
Universal Messaging URL of the newly declustered node.

For the remaining nodes in the cluster: Update the realm URL in the Universal Messaging
clients (webMethods Integration Server, My webMethods Server, etc.) by removing the
Universal Messaging URL of the newly declustered node.

4. Start the publishers and subscribers.

Rollback strategy

For a rollback strategy if any severe issues occur during clustering/declustering that cannot be
resolved, below are some options:

Delete the cluster and migrate to local nodes.

In the worst case, if there are still any potential issue with the local node after deleting the
cluster, then roll back to the virtual machine snapshot.

Channel Administration

About Channel Administration
The Enterprise Manager enables you to configure, administer, and monitor Universal Messaging
channels.

Channel Status

The EnterpriseManager enables you tomonitor a channel's status in terms of publish and consume
event totals / rates as well as connection total / rates and persistent store / memory.

Channel Access Control List (ACL)

Universal Messaging offers complete control over security policies. Universal Messaging stores
security policies locally or can be driven by any external entitlements service. UniversalMessaging's
rich set of entitlements ensure that everything from a network connection through to a

94 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

channel/queue creation can be controlled on a per user and/or host basis. For more information,
see the Universal Messaging ACL's FAQ.

Channel Joins

Universal Messaging allows channels to be joined to other channels or queues creating server side
routing tableswith the possibility to apply filters based onmessage content on the local or a remote
Universal Messaging realm.

Channel Connections

Channel subscribers are reported as channel connections and can bemonitored ormanaged through
the Universal Messaging Enterprise Manager.

Channel Durables

Channel subscribers can manage their subscription's event id manually or they can become a
named subscriber and let that be managed by the Universal Messaging realm. The Universal
Messaging Enterprise Manager allows complete management of channel durables.

Channel Event Snooping

The Universal Messaging Enterprise Manager provides the ability to inspect the contents of
messages remotely using the Snoop panel.

Viewing the Channel Status
When you select a channel object from the namespace, the first panel to be displayed on the right
hand side of the EnterpriseManager panel is the Status panel. Configuration information is always
displayed at the top section of the EnterpriseManagerwhen a channel is selected. This configuration
information shows channel type, TTL (age), capacity as well as any channel key information
available. The Status tab shows real-time management information for the selected channel.

The top section of the Status panel shows real-time graphs representing the events published and
consumed on the channel, both in terms of rates (per status interval) as well as the totals.

The bottom section of the Status panel shows the actual values plotted in the graphs for events
published and consumed, as well as information about the actual channel store at the server.

The image below shows the Status panel for an active cluster channel.

Universal Messaging Administration Guide 10.7 95

2 Universal Messaging Enterprise Manager

The top graph in the panel shows the event history for events consumed from the channel. The
red line graphs the rates at which events are being consumed, while the yellow line graphs the
total events consumed from the channel.

The bottomgraph shows the event history for events published to the channel. The red line graphs
the rates atwhich events are being published,while the yellow line graphs the total events published
to the channel. As the status events are consumed, and the channel (nLeafNode) is updated with
the new values for events consumed and published, the status panel and its graphs are updated.

The bottom section of the Status panel shows three types of information: Totals, Rates, and Event
Store.

Totals

The Totals section shows the following values:

Published - The total number of events published to the channel when the last status events
was consumed

Consumed - The total number of events consumed from the channelwhen the last status event
was consumed

Event ID - The event id of the last event published to the channel

Current Connections - The current number of consumers on the channel

Total Connections - Total number of consumers on the channel. The total number includes
the current consumers.

96 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Rates

The Rates section shows the following values:

Published - The current rate of events published to the channel, calculated as (total - previous
total) / (interval 1000 milliseconds)

Consumed - The current rate of events consumed from the channel, calculated as (total -
previous total) / (interval 1000 milliseconds)

Connections - The current rate of subscriptions being made to the channel

Event Store

The Event Store section shows the following values:

Used Space - The amount of space in KB used by the channel on the server (either memory,
or disk for persistent / mixed channels)

Events - The current number of events on the channel

Memory Usage - The amount of memory used in MB

% Free - The amount of free space in the channel store calculated as used space minus total
space used by all purged or aged events

Cache Hit - The percentage of events consumed from the channel event cache as opposed to
from the actual physical store, if the channel is persistent or mixed

Creating Channels
Channels are the logical meeting points for data that is published and subscribed to. If you are
using Universal Messaging Provider for JMS, channels are the equivalent of JMS topics.

Each channel consists of a physical channel on the UniversalMessaging realm aswell as its logical
reference in a namespace that may comprise resources that exist across multiple Universal
Messaging realm servers. When you create a channel in the Enterprise Manager, a physical object
is created on the realm. You can also obtain references to the channel by using the Universal
Messaging Client and Admin APIs. You can create a channel in the following ways:

Create the new channel directly under the realm node.

Create a container node (folder) that contains the new channel.

Add the new channel to an already existing container node.

When you connect to a Universal Messaging realm in the Enterprise Manager, all resources and
services found in the realm namespace are displayed in a tree structure under the realm node.

To create a channel in the Enterprise Manager

Universal Messaging Administration Guide 10.7 97

2 Universal Messaging Enterprise Manager

1. Expand the Realms node.

2. Select a realm, right-click it, and then select Create Channel.

3. In the Add channel dialog box, specify a name for the channel.

If youwant to create a new container node, youmust specify the absolute name of the channel.
For example, to create a channel named "rates" in a new container named "eur", type eur/rates.
Formore information about the valid channel names, see “ValidChannel andQueueNames” on
page 98.

4. Specify the other channel attributes to configure the behavior of the channel.

For more information about the channel attributes and values to specify, see the summary of
Channel Attributes in the Commonly Used Features section of the Universal Messaging Concepts
guide.

5. (Optional) To configure the operational environment of the channel, edit the storage properties
associated with the channel.

For more information about the storage properties, see the summary of Storage Properties in
the Commonly Used Features section of the Universal Messaging Concepts guide.

6. (Optional) If youwant to publish Protobuf events on the channel, upload a Protobuf descriptor.

For general information about Google protocol buffers, see the section Google Protocol Buffers
in the Universal Messaging Concepts guide.

7. (Optional) To create a channel key, under Channel Keys, click New and specify the key name
and depth.

Channel keys enable a channel to automatically purge old eventswhen new events of the same
type are received. For more information about working with channel keys, see the summary
of Channel Publish Keys in the Commonly Used Features section of the Universal Messaging
Concepts guide.

8. Click OK.

Valid Channel and Queue Names

The channel and queue names can contain any of the following characters:

All letters and digits

Slash "/"

Hyphen "-"

Underscore "_"

98 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Hash symbol "#"

Certain character strings are replaced:

Backslash "\" is replaced by slash "/"

Two colons "::" are replaced by slash "/"

Two slashes "//" are replaced by one slash "/"

Valid names have the following length restrictions:

Channel and queue names have a maximum limit of 235 characters.

Namespace names have a maximum limit of 255 characters.

The full path containing the data directory folder pathwith a channel or queue path appended
to it has a maximum limit of 4096 characters.

If your channel or queue name contains slash characters, for example "a/b/c", this is represented
in the Enterprise Manager view as a hierarchy, with "a" being the top node, "b" being the child
node of "a", and "c" being the child node of "b". This virtual hierarchy is just a visual aid to help
you to keep track of your channels and queues, but the store itself is not divided internally into
hierarchical parts and can only be referenced by the full name, which in this example is "a/b/c".

Note:
There is a restriction that a channel or queue name cannot be the same as an existing folder
name. So if you have named a channel "a/b/c", you cannot name a different channel "a" or "a/b".
This would lead to a display conflict in Enterprise Manager, since we would have a folder "a"
as the root of the path "a/b/c", as well as a channel "a" at the same position in the display.
Similarly, trying to assign the name "a/b" to a new channel would conflict in the display with
the folder named "a/b". You can however name a different channel "a/c", since "a" is used here
again as a virtual folder. Similarly, you can name another channel "a/b/d", since both "a" and
"a/b" are used here as virtual folders.

Editing Channels
Editing channels using the Enterprise Manager enables you to change specific attributes of a
channel, such as its name, event time-to-live (TTL), capacity, channel keys , or the realm on which
the channel exists.

When you edit a channel, its attributes and any events found on the channel are copied to a
temporary channel. The old channel is then deleted, the new channel is created, and the original
events are copied from the temporary channel to the new channel. The only exception is when
you update theGoogle protocol buffer (Protobuf) descriptor uploaded on the channel. In this case,
the channel is not deleted and then re-created.

Since editing a channel involves deleting the old channel, certain activities and objects associated
with the old channel are also terminated and should be recreated. For more information about
deleting channels, see “Deleting Channels and Queues” on page 109.

Universal Messaging Administration Guide 10.7 99

2 Universal Messaging Enterprise Manager

As far as possible, channel events are held in memory for performance reasons. The temporary
channel is also held in memory, and requires the same amount of memory as the channel being
edited. The realm server must be able to allocate sufficient memory to store the temporary copy,
otherwise the channel edit operation will be terminated and an error will be logged. If such a
situation occurs, you can resolve it by allocating additional heap size, so that the temporary copy
can exist in memory at the same time as the channel being edited.

To edit a channel in the Enterprise Manager

1. Expand the Realms node, and then expand the realm on which you want to edit the channel.

2. Select the channel and right-click it.

3. From the drop-down menu, select Edit channel channel_name.

4. Modify the channel attributes as required.

Tomove the channel to another available realm, in the Parent Realm field, select a realm from
the list.

For more information about the channel attributes and values to specify, see the summary of
Channel Attributes in the CommonlyUsed Features section of theUniversalMessaging Concepts
guide.

For information about updating the Protobuf descriptor uploaded on the channel, see .

5. (Optional) Edit the storage properties associated with the channel as required.

For more information about the storage properties, see the summary of Storage Properties in
the Commonly Used Features section of the Universal Messaging Concepts guide.

6. Click OK.

Updating Protobuf Descriptors
The protocol buffer (Protobuf) definition files associated with a store (a channel or a queue) can
be updatedwithout requiring the store to be deleted and re-created. After you update the Protobuf
descriptor, all filtering will be done with the new Protobuf definitions.

To update protocol buffer definitions in the Enterprise Manager

1. Select the store whose descriptors you want to update and right-click it.

2. From the drop-down menu, select Update Protocol Buffers.

3. Select the file or files that contain the descriptors you want to set on the store (multi-select is
enabled for loading multiple file descriptor sets). Then click Open.

100 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

The new Protobuf definitions are applied to the store.

For information about updating protocol buffer definitions programmatically, for example in Java,
see the section Google Protocol Buffers in the Developer Guide.

Exporting Protobuf Descriptors
You can export the protocol buffer (Protobuf) definitions associated with a store (a channel or a
queue) to a folder.

To export protocol buffer definitions in the Enterprise Manager

1. Select the store whose Protobuf descriptors you want to export and right-click it.

2. From the drop-down menu, select Export Protobuf Definitions.

3. Select the folder where you want the descriptors from the store to be exported. Then click
Open.

The Protobuf definitions are exported from the store.

Copying Channels
Copying channels using the Enterprise Manager enables you to duplicate channels automatically
across realms. When you copy a channel, its attributes and any events found on the channel are
copied to the new channel.

To copy a channel in the Enterprise Manager

1. Expand theRealms node, and then expand the realm fromwhich youwant to copy the channel.

2. Select the channel and right-click it.

3. From the drop-down menu, select Copy channel channel_name.

4. In the Copy channel dialog box, in the Parent Realm field, select the realm to which youwant
to copy the channel.

5. (Optional) Modify any channel attributes and storage properties.

6. Click OK.

The channel is displayed in the namespace tree of the selected target realm.

Universal Messaging Administration Guide 10.7 101

2 Universal Messaging Enterprise Manager

Creating Channel Joins
Joining channels using the Enterprise Manager creates a physical link between a source channel
and a destination store (a channel or a queue). After you create a join, any events published to the
source channel are republished to the destination store. You can create a join between the following
sources and destinations:

A channel on a realm and a store on another realm federated with the source realm.

A channel on a clustered realm and a store in the same cluster. A non-cluster-wide channel
can be joined to a cluster-wide store, but not the other way round.

A channel in one cluster and a channel in another cluster by using an inter-cluster join. You
must first create an inter-cluster connection between the two clusters.

A source channel and a destination queue. Universal Messaging does not support joins where
the source is a queue.

You can join channels programmatically or by using the Enterprise Manager.

To create a channel join in the Enterprise Manager

1. In the namespace tree of a realm, select the channel that you want to use as a source and
right-click it.

2. From the drop-down menu, select Join channel channel_name.

3. Specify the following join attributes:

a. In the To Realm field, select the realm that holds the destination store.

b. In the To Store field, type the name of the destination store.

c. Click OK.

4. (Optional) Specify any of the following additional join attributes:

In theFilterfield, specify a filter, so that only specific events published to the source channel,
which match certain search criteria, will be routed to the destination store. For example,
if you type CCY='EUR', only events with the event property CCY equal to 'EUR' occurring
on the source channel will be published to the destination store.

In theHop Count field, specify the number of join hops throughwhich an event can travel.
The default is 10.

Select the Allow Purge option to purge events when the source channel is purged.

102 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Select theArchival option to create an archival join, which is created only between a channel
and a destination queue. With an archival join, events on the queue are not checked for
duplication, which may result in duplicate events if the queue has multiple sources.

5. Click OK.

The Enterprise Manager creates an outgoing join on the source channel and an incoming join on
the destination store. You can view the newly created joins and any existing joins on the Joins
tab of a channel or queue.

Viewing Channel Connections
When a Universal Messaging client connects to a realm server, the server maintains information
about the connection, which is available through the Universal Messaging Administration API.
The API also provides mechanisms for receiving notifications when connections are added and
deleted (See the code example "Connection Watch" that uses the Administration API).

Connection information is alsomaintainedwhenUniversalMessaging clients subscribe to channels.

The Universal Messaging Enterprise Manager enables you to view the connections (channel
subscriptions) on a realm as well as more detailed information about each connection, such as the
last event sent or received, and the rate of events sent by and received from each connection.

You view connections for a channel on the Connections tab for the channel. Connections have
the following attributes:

Protocol - The protocol used in the connection.

User - The username of the connected user.

Host - The host machine from which the user has connected.

Connection - The local connection ID, defined as hostname:local_port.

Sub-Name - The durable reference, if one is provided. For more information about channel
durables, see “ Viewing and Managing Durables for a Channel” on page 109.

Filter - The filter string for the subscription, if one is provided.

To view details for a channel connection, select the connection and click Show Details. You can
view the following information:

Connection Details

The Connection Details panel shows information about the user connection, such as user name,
host, protocol, connection ID, and whether multicast is enabled.

Client Environment

The Client Environment panel shows information about the client environment for this user, such
as API language/version, host operating system, and Universal Messaging build number.

Universal Messaging Administration Guide 10.7 103

2 Universal Messaging Enterprise Manager

The Tx Event History and Rx Event History graphs show the total (yellow) and rates (red) for
events received from the server (TX) and sent to the server (RX), respectively, for the selected
connection.

Events Sent

The Events Sent panel shows the following information:

Total - The total number of events sent by the realm server to this connection.

Rate - The rate at which events are sent by the realm server to this connection.

Max - Themaximum rate at which events have been sent by the realm server to this connection.

Last Event Type - The type of the last event sent from the realm server.

Bytes - Total bytes sent by the realm server to this connection.

Events Received

The Events Received panel shows the following information:

Total - The total number of events sent by this connection to the realm server.

Rate - The rate at which events are sent by connection to the realm server.

Max - Themaximum rate at which events have been sent by this connection to the realm server.

Last Event Type - The type of the last event sent from the connection to the realm server.

Bytes - Total bytes sent by this connection to the realm server.

Status

The Events Sent panel shows the following information:

Connect Time - The amount of time this connection has been connected to the realm server.

Queue Size - The number of events in the outbound queue of this connection, that is events
waiting to be sent to the realm server.

Last Tx - The time since the last event was received by this connection from the realm server.

Last Rx - The time since the last event was sent to the server from this connection.

Snooping on a Channel
Snooping on a channel in the Enterprise Manager enables you to view the contents of events
published on the channel. You can view details about all events on the channel or about a specific
set of events, based on their event IDs or additional filtering criteria.

To start snooping on a channel

104 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

1. In the namespace tree of a realm, select the channel on which you want to snoop and click the
Snoop tab.

2. Do any of the following:

To snoop on all events published on the channel, click Start.

To snoop on a range of events, in the From field, specify the ID of the first event in the
range, and in the To field, specify the ID of the last event in the range. Click Start.

Note:
If you do not specify a value in the From field, the range of events starts with the first
event on the channel and ends with the event specified in the To field. If you do not
specify a value in the To field, the range of events starts with the event specified in the
From field and ends with the last event on the channel.

To snoop on events thatmatch specific filtering criteria based on the properties of the event,
in the Filter field, specify a selector string that will be used for filtering. Click Start.

The Enterprise Manager populates the snooped events table with the events published on the
channel. You can view details about the events.

You can pause the snoop temporarily or stop the snoop altogether. Stopping the channel snoop
clears the snooped events table.

Viewing Details About Snooped Events on a Channel

After you start snooping on a channel in the Enterprise Manager, any events published on the
channel are added to the snooped events table on the Snoop tab. The table displays information
about each event including the event ID, tag, time to live (TTL), andwhether the event is persistent.

When you select an event in the table, you can view additional details about the event including
a hexadecimal view of the event data and an ASCII representation of the event data, the header
and properties of the event.

Purging Events from a Channel

After you start snooping on a channel, you can purge snooped events from the channel. You can
purge a single event, a range of events, or all events.

To purge events from a channel in the Enterprise Manager

1. In the namespace tree of a realm, select the channel from which you want to purge events.

2. Perform any of the following actions:

To purge all events, right-click the channel and select Purge All Events.

Universal Messaging Administration Guide 10.7 105

2 Universal Messaging Enterprise Manager

To purge a range of events, right-click the channel and select Purge Events. In the Start
EID field specify the ID of the first event in the range, and in the End EID field, specify the
ID of the last event in the range. In addition, you can specify filtering criteria based on the
properties of the event, so that only events that match these criteria are purged.

Note:
If you do not specify a value in the Start EID field, the range of events to purge starts
with the first event on the channel and ends with the event specified in the End EID
field. If you do not specify a value in the End EID field, the range of events starts with
the event specified in the Start EID field and ends with the last event on the channel.

To purge a single event, go to the Snoop tab and select the event in the snooped events
table. Right-click the event and select Purge Event.

Publishing Events on a Channel

Publishing a New Event on a Channel

Use the following procedure to create a new event and publish it on a channel in the Enterprise
Manager.

To publish a new event on a channel in the Enterprise Manager

1. In the namespace tree of a realm, select the channel on which you want to publish an event
and right-click it.

2. From the drop-down menu, select Publish.

3. In the Event Data field of the Publish event to Channel dialog box, specify the content of the
event in one of the following ways:

Type a string.

Click File to add an XML file or any other binary file as event content.

When you add an XML file, the contents of the file are displayed in the Event Data field
and are non-editable. When you add a non-XML fille, the contents of the file are not
displayed in the Event Data field, but the file is read in binary format.

4. (Optional) Specify any of the following event details:

DescriptionField

The tag of the event.Event Tag

The time-to-live (TTL) of the event in milliseconds. Defines how
long the event remains available on the channel. The default is 0,
which means the event remains on the channel indefinitely.

Event TTL

106 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionField

Note:
You can publish an event with a specified TTL only on queues
and channels of type Mixed. Events on queues and channels
of type Persistent or Reliable use the TTL set on store level and
ignore any event-level TTL.

The number of times to publish the event. The default is 1.Num Of Publishes

Whether the event is persistent.Is Persistent

5. (Optional) Under Property Input, add any event properties:

a. Specify the event key and value.

b. Select the event type.

c. Click Add.

The property is added to the property display table. To edit an entry in the table, double-click
it, make your changes, and then press Enter. To remove a property, select the property,
right-click it, and then select Remove Property.

6. Click OK.

When you start snooping on events on the channel, the Enterprise Manager displays the event in
the snooped events table.

Example of Creating a New Event

The following graphic shows the Publish events to Channel dialog box and the values specified
for the event with content "Corporate Sale", published on the channel "rates" on the realm
"umserver".

Universal Messaging Administration Guide 10.7 107

2 Universal Messaging Enterprise Manager

Republishing Events on a Channel

Use the following procedure to duplicate an already published event or to edit and republish an
event on a channel. You can also choose to purge the original event.

Before republishing an event on a channel, you must start snooping on the channel. For more
information about snooping on a channel, see “Snooping on a Channel” on page 104.

To republish en event

1. In the namespace tree of a realm, select the channel on which you want to republish the event
and click the Snoop tab.

2. In the snooped events table, select the event, right-click it, and then select Edit & Republish
Event.

3. Modify the event properties as required.

4. (Optional) Select the Purge Original Event option.

108 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

5. Click OK.

Viewing and Managing Durables for a Channel
Durables (named objects) are channel objects stored by a realm server, which provide state
information for durable consumers. Depending on its type, a durable can have one ormore durable
consumers connected to it. Each time a consumer connects to a durable, the consumer starts
consuming events from the last event ID successfully consumed by the previous consumer
connected to the durable. The consumed events include all events sent to the channel after the
previous consumer disconnected and before the new consumer connected.

To viewdurables for a channel in EnterpriseManager, select the channel and click theDurables
tab.

The durables table lists all durables present on the channel. Each row of the table shows a
separate durable. The columns of the table show the attributes of a durable, such as the name
and current event ID, the number of outstanding events, whether the durable is cluster-wide
and whether it is persistent, and what its type is.

When a durable is added or removed, or the attributes of a durable are changed, Enterprise
Manager updates the table automatically.

Note:
When the attributes of a durable are changed, Enterprise Manager updates the durables
table with a delay of several seconds.

To delete a durable from the durables table, select the durable and click Delete Durable.

Deleting Channels and Queues
To delete a store (i.e., a channel or queue), proceed as follows:

1. Select the store in the namespace of the Enterprise Manager,

2. Select Delete in the context menu of the store.

Note:
Since editing a store involves deleting the existing store before creating the new store, all of the
points mentioned below for deleting a store apply also for editing a store.

Upon deletion of a store, all assets dependent on it will be deleted and all content in the store will
be deleted. All active subscriptions to the store will be terminated, as well as all shared durables
attached to the store, along with the associated messages. Such subscriptions or shared durables
need to be recreated by the original creator of those objects after you have finished deleting the
channel.

Deleting a store which serves as a dead event store for another store will cause that reference to
be removed, therefore the user should re-create the reference.

Any joins from or to this store will need to be recreated as they are now disabled.

Universal Messaging Administration Guide 10.7 109

2 Universal Messaging Enterprise Manager

Before you delete a store, we suggest that you observe the following procedure:

Drain the store and its durable subscriptions, otherwise anymessages in-flight within the store
or related to the store will now be lost and transactions will not be deterministic.

Prevent all publishing activity on the store while it is being deleted; see the section Pause
Publishing in the Concepts guide for related information.

Queue Administration

Creating Queues
Each queue consists of a physical object on the Universal Messaging realm as well as its logical
reference in a namespace that may comprise resources that exist across multiple Universal
Messaging realm servers. You can also obtain references to the queue by using the Universal
Messaging Client and Admin APIs. You can create a queue in the following ways:

Create the new queue directly under the realm node.

Create a container node (folder) that contains the new queue.

Add the new queue to an already existing container node.

When you connect to a Universal Messaging realm in the Enterprise Manager, all resources and
services found in the realm namespace are displayed in a tree structure under the realm node.

To create a queue in the Enterprise Manager

1. Expand the Realms node.

2. Select a realm, right-click it, and then select Create Queue.

3. In the Add queue dialog box, specify a name for the queue.

If you want to create a new container node, you must specify the absolute name of the queue.
For example, to create a queue named "requests" in a new container named "eur", type
eur/requests.

The set of valid characters that you can use for queue names is the same as the valid character
set for channel names. For more information, see “Valid Channel and Queue Names” on
page 98.

4. Specify the other queue attributes to configure the behavior of the queue.

For more information about the queue attributes and values to specify, see the summary of
Queue Attributes in the Commonly Used Features section of the Universal Messaging Concepts
guide.

110 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

5. (Optional) To configure the operational environment of the queue, edit the storage properties
associated with the queue.

For more information about the storage properties, see the summary of Storage Properties in
the Commonly Used Features section of the Universal Messaging Concepts guide.

6. (Optional) If you want to publish Protobuf events on the queue, upload a Protobuf descriptor.

For general information about Google protocol buffers, see the section Google Protocol Buffers
in the Universal Messaging Concepts guide.

7. Click OK.

Viewing Queues

Viewing the Queue Status

Whenyou select a queue object from the namespace, the first panel to be displayed on the right-hand
side of the Enterprise Manager panel is the Status panel. Configuration information is always
displayed at the top section of the EnterpriseManagerwhen a queue is selected. This configuration
information shows the queue type, TTL (age), and capacity. The Status tab shows real-time
management information for the selected queue.

The top section of the Status panel shows real-time graphs representing the events pushed and
popped from the queue, both in terms of rates (status interval) as well as the totals.

The bottom section of the Status panel shows the values plotted in the graphs for events pushed
and popped, as well as information about the actual queue store at the server.

The image below shows the Status panel for an active queue.

Universal Messaging Administration Guide 10.7 111

2 Universal Messaging Enterprise Manager

The top graph in the panel shows the event history for events popped from the queue. The red
line graphs the rates at which events are being poppedwhile the yellow line graphs the total events
popped from the queue.

The bottom graph shows the event history for events pushed onto the queue. The red line graphs
the rates at which events are being pushed, while the yellow line graphs the total events pushed
to the queue. As the status events are consumed, and the queue nLeafNode () is updated with the
new values for events popped and pushed, the status panel and its graphs are updated.

The bottom section of the Status panel shows three types of information : Totals, Rates, and Event
Store.

Totals

The Totals section contains the following values:

Pushed - The total number of events pushed to the queue when the last status event was
consumed

Popped - The total number of events popped from the queue when the last status event was
consumed

Event ID - The event id of the last event pushed to the queue

Current Connections - The current number of asynchronous consumers on the queue

Total Connections - The total number of asynchronous consumers that have subscribed to the
queue

Rates

112 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

The Rates section contains the following values:

Pushed - The current rate of events pushed to the queue, calculated as (total - previous total)
/ (interval 1000 milliseconds)

Popped - The current rate of events popped from the queue, calculated as (total - previous
total) / (interval 1000 milliseconds)

Connections - The current rate of asynchronous subscriptions being made to the queue

Event Store

The Event Store section contains the following values:

Used Space - The amount of space in KB used by the queue on the server (either memory, or
disk for persistent / mixed queues)

Events - The current number of events stored on the queue, which may include already
consumed events. The exact number of delivered and available-for-delivery events on the
queue can be seen on the Consumer Info tab.

Memory Usage - The amount of memory used in MB

%Free - The amount of free space in the queue store calculated as used spaceminus total space
used by all purged or aged events

Cache Hit - The percentage of events popped from the queue event cache as opposed to from
the actual physical store, if the queue is persistent or mixed

Viewing Queue Joins

Universal Messaging enables you to join a source channel to a destination queue, creating
server-side routing tables with the possibility to apply filters based on message content on the
local or a remote Universal Messaging realm. You can view any joins on the Joins tab for a queue.
Formore information aboutworkingwith channel joins, see “Creating Channel Joins” on page 102.

Viewing Consumer Information

The Consumer Info tab shows the following information.

The Status section gives the following details:

Total Pending - Current count of events waiting to be acknowledged or rolled back.

Queue Depth - The outstanding events for delivery on the queue.

Last Read - The timestamp of the last event that was read (consumed).

Last Write - The timestamp of the last event that was written to the queue (published).

The Connection Details section gives the following details:

ID - The ID of the queue consumer (in most cases, host and port).

Universal Messaging Administration Guide 10.7 113

2 Universal Messaging Enterprise Manager

Mode - The client subscription mode (either asynchronous or synchronous).

Max Pending - The window size for this subscription.

Acknowledged - The total number of acknowledged events for this subscription.

Rolled Back - The total number of rolled back events for this subscription.

Pending - The events queued,waiting to be acknowledged or rolled back for this subscription.

Last Read - The last time the session acknowledged, rolled back or read an event for this
subscription.

Editing Queues
Editing queues using the EnterpriseManager enables you to change specific attributes of a queue,
such as its name, event time-to-live (TTL), capacity, or the realm on which the queue exists.

When you edit a queue, its attributes and any events found on the queue are copied to a temporary
queue. The old queue is then deleted, the new queue is created, and the original events are copied
from the temporary queue to the new queue.

Since editing a queue involves deleting the old queue, certain activities and objects associatedwith
the old queue are also terminated and should be recreated. For more information about deleting
queues, see “Deleting Channels and Queues” on page 109.

As far as possible, queue events are held in memory for performance reasons. The temporary
queue is also held inmemory, and requires the same amount ofmemory as the queue being edited.
The realm servermust be able to allocate sufficientmemory to store the temporary copy, otherwise
the queue edit operation will be terminated and an error will be logged. If such a situation occurs,
you can resolve it by allocating additional heap size, so that the temporary copy can exist in
memory at the same time as the queue being edited.

To edit a queue in the Enterprise Manager

1. Expand the Realms node, and then expand the realm on which you want to edit the queue.

2. Select the queue and right-click it.

3. From the drop-down menu, select Edit queue queue_name.

4. Modify the queue attributes as required.

To move the queue to another available realm, in the Parent Realm field, select a realm from
the list.

For more information about the queue attributes and values to specify, see the summary of
Queue Attributes in the Commonly Used Features section of theUniversal Messaging Concepts
guide.

For information about updating the Protobuf descriptor uploaded on the queue, see .

114 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

5. (Optional) Edit the storage properties associated with the queue as required.

For more information about the storage properties, see the summary of Storage Properties in
the Commonly Used Features section of the Universal Messaging Concepts guide.

6. Click OK.

Copying Queues
Copying queues using the Enterprise Manager enables you to duplicate queues automatically
across realms.When you copy a queue, its attributes and any events found on the queue are copied
to the new queue.

To copy a queue in the Enterprise Manager

1. Expand theRealms node, and then expand the realm fromwhich youwant to copy the queue.

2. Select the queue and right-click it.

3. From the drop-down menu, select Copy queue queue_name.

4. In the Copy queue dialog box, in the Parent Realm field, select the realm to which you want
to copy the queue.

5. (Optional) Modify any queue attributes and storage properties.

6. Click OK.

The queue is displayed in the namespace tree of the selected target realm.

Snooping on a Queue
Snooping on a queue in the Enterprise Manager enables you to view the contents of events
published on the queue. You can view details about all events on the queue or about a specific set
of events, based on their event IDs or additional filtering criteria.

To start snooping on a queue

1. In the namespace tree of a realm, select the queue on which you want to snoop and click the
Snoop tab.

2. Do any of the following:

To snoop on all events published on the queue, click Start.

Universal Messaging Administration Guide 10.7 115

2 Universal Messaging Enterprise Manager

To snoop on a range of events, in the From field, specify the ID of the first event in the
range, and in the To field, specify the ID of the last event in the range. Click Start.

Note:
If you do not specify a value in the From field, the range of events starts with the first
event on the queue and endswith the event specified in theTofield. If you do not specify
a value in the To field, the range of events starts with the event specified in the From
field and ends with the last event on the queue.

To snoop on events thatmatch specific filtering criteria based on the properties of the event,
in the Filter field, specify a selector string that will be used for filtering. Click Start.

The Enterprise Manager populates the snooped events table with the events published on the
queue. You can view details about the events.

You can pause the snoop temporarily or stop the snoop altogether. Stopping the queue snoop
clears the snooped events table.

Viewing Details About Snooped Events on a Queue

After you start snooping on a queue in the EnterpriseManager, any events published on the queue
are added to the snooped events table on the Snoop tab. The table displays information about
each event including the event ID, tag, time to live (TTL), and whether the event is persistent.

When you select an event in the table, you can view additional details about the event including
a hexadecimal view of the event data and an ASCII representation of the event data, the header
and properties of the event.

Purging Events from a Queue

After you start snooping on a queue, you can purge snooped events from the queue. You can
purge a single event, a range of events, or all events.

To purge events from a queue in the Enterprise Manager

1. In the namespace tree of a realm, select the queue from which you want to purge events.

2. Perform any of the following actions:

To purge all events, right-click the queue and select Purge All Events.

To purge a range of events, right-click the queue and select Purge Events. In the Start
EID field specify the ID of the first event in the range, and in the End EID field, specify the
ID of the last event in the range. In addition, you can specify filtering criteria based on the
properties of the event, so that only events that match these criteria are purged.

Note:
If you do not specify a value in the Start EID field, the range of events to purge starts
with the first event on the queue and ends with the event specified in the End EID field.

116 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

If you do not specify a value in the End EID field, the range of events starts with the
event specified in the Start EID field and ends with the last event on the queue.

To purge a single event, go to the Snoop tab and select the event in the snooped events
table. Right-click the event and select Purge Event.

Publishing Events on a Queue

Publishing a New Event on a Queue

Use the following procedure to create a new event and publish it on a queue in the Enterprise
Manager.

To publish a new event on a queue in the Enterprise Manager

1. In the namespace tree of a realm, select the queue on which you want to publish an event and
right-click it.

2. From the drop-down menu, select Publish.

3. In the Event Data field of the Publish event to Queue dialog box, specify the content of the
event in one of the following ways:

Type a string.

Click File to add an XML file or any other binary file as event content.

When you add an XML file, the contents of the file are displayed in the Event Data field
and are non-editable. When you add a non-XML fille, the contents of the file are not
displayed in the Event Data field, but the file is read in binary format.

4. (Optional) Specify any of the following event details:

DescriptionField

The tag of the event.Event Tag

The time-to-live (TTL) of the event in milliseconds. Defines how
long the event remains available on the queue. The default is 0,
which means the event remains on the queue indefinitely.

Event TTL

Note:
You can publish an event with a specified TTL only on queues
and channels of type Mixed. Events on queues and channels
of type Persistent or Reliable use the TTL set on store level and
ignore any event-level TTL.

The number of times to publish the event. The default is 1.Num Of Publishes

Universal Messaging Administration Guide 10.7 117

2 Universal Messaging Enterprise Manager

DescriptionField

Whether the event is persistent.Is Persistent

5. (Optional) Under Property Input, add any event properties:

a. Specify the event key and value.

b. Select the event type.

c. Click Add.

The property is added to the property display table. To edit an entry in the table, double-click
it, make your changes, and then press Enter. To remove a property, select the property,
right-click it, and then select Remove Property.

6. Click OK.

When you start snooping on events on the queue, the Enterprise Manager displays the event in
the snooped events table.

Republishing Events on a Queue

Use the following procedure to duplicate an already published event or to edit and republish an
event on a queue in the Enterprise Manager. You can also choose to purge the original event.

Before republishing an event on a queue, you must start snooping on the queue. For more
information about snooping on a queue, see “Snooping on a Queue” on page 115.

To republish en event

1. In the namespace tree of a realm, select the queue on which you want to republish the event
and click the Snoop tab.

2. In the snooped events table, select the event, right-click it, and then select Edit & Republish
Event.

3. Modify the event properties as required.

4. (Optional) Select the Purge Original Event option.

5. Click OK.

118 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Data Group Administration

About Data Groups
UniversalMessaging data groups provide a lightweight grouping structure that enables developers
to manage user subscriptions remotely and transparently. Data groups provide an alternative to
channels (JMS topics).

Each data group is a resource that exists on a Universal Messaging realm server or in a cluster of
realm servers. When you create a data group, the Enterprise Manager creates a physical object on
the realm. After you create a data group, you can obtain references to the data group by using the
Universal Messaging Client and Admin APIs. You can also manage and monitor the data group
in the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all resources and
services found in the realm namespace are displayed in a tree structure under the realm node.

Creating Data Groups

You can create a data group directly under theData Groups node in the namespace tree of a realm
or add a nested data group to an existing data group.

To create a data group in the Enterprise Manager

1. In the namespace tree of a realm, do one of the following:

To create a data group under the Data Groups node, right-click the Data Groups node
and select Create Data Group.

To create a nested data group, expand the Data Groups node, right-click an existing data
group, and select Add A Data Group to data_group_name.

2. Specify a name for the new data group.

3. (Optional) Specify values for any of the following fields:

DescriptionField

Whether multicast is supported on the data group.Multicast

The default message priority for events on the data group.Priority

Whether to merge events when multiple events arrive for this
data group.

Merge

Whether to drop events that are made obsolete by newer events.Drop

The interval in milliseconds at which events are sent.Interval (ms)

Universal Messaging Administration Guide 10.7 119

2 Universal Messaging Enterprise Manager

4. Click OK.

Publisherswith the Publish to DataGroupsACL permission can nowpublishmessages to the new
data group programmatically.

Viewing the Data Group Status

When you select theData Groups node in the namespace tree of a realm in the EnterpriseManager,
on theStatus tab, you can view information about the published and consumed events on all data
groups, as well as the number of data groups and data streams currently connected.

The Event History graph shows the rates at which events are published (red) and consumed
(yellow) across all data groups in the current realm. The graph is updated each time a status event
is received from the realm in which data groups are actively used.

In addition, you can view information on the Event Status and Totals panels.

Event Status

The Event Status panel contains the following information:

Total Consumed - The total number of events consumed by all data groups on the realm,
including the default data group.

Total Published - The total number of events published to all data groups on the realm,
including the default data group.

Consumed/Sec - The rate at which events are consumed across all data groups on the realm,
including the default data group.

Published/Sec - The rate at which events are published across all data groups on the realm,
including the default data group.

Totals

The Totals panel contains the following information:

Current Groups - The number of data groups on the realm, excluding the default data group.

Current Streams - The number of currently connected data streams.

Total Streams - The total number of streams that have been added to all data groups since
the last start of the realm.

Adding Existing Data Groups to Data Groups

To add an existing data group to another data group in the Enterprise Manager

1. In the namespace tree of a realm, expand the Data Groups node.

120 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

2. Select the data group to which you want to add an existing data group and right-click it.

3. Select Add A Data Group to data_group_name.

4. In the Add Data Group dialog box, type the name of the existing data group and click OK.

Any events published to the parent data group will be delivered to any data streams that are
members of the newly-added data group.

Removing Data Groups from data Groups

To remove an existing data group from another data group in the Enterprise Manager

1. In the namespace tree of a realm, expand the Data Groups node and locate the parent data
group.

2. Right-click the data group you want to remove and select Remove data_group_name from
data_group_name.

3. Click OK.

If the removed data group has no other parent data groups, it appears under the top-level Data
Groups node. If the removed data group has other parent data groups, it remains in them.

Deleting Data Groups
To delete a data group in the Enterprise Manager, perform any of the following actions in the
namespace tree of a realm:

Right-click the Data Groups node, select Delete A Data Group, and then type the name of
the data group you want to delete.

Expand the Data Groups node and locate the data group you want to delete. Right-click the
data group and select Delete data_group_name.

Container Administration

Viewing the Container Status

When you select a container (folder) in the namespace tree of a realm and go to the Totals tab,
you can view status information about the resources in the container.

The Event History graph shows the rates at which events are published (red) and consumed
(yellow) across all channels and queues in the container. The Storage Usage History graph shows
the total amount of storage space used by each channel and queue in the container. Both graphs
are updated each time a status event is received from the realm in which the container exists.

Universal Messaging Administration Guide 10.7 121

2 Universal Messaging Enterprise Manager

You can view additional details in the Event Status, Totals, Connection Status, and Storage Usage
panels.

Event Status

The Event Status panel contains the following information:

Consumed - The total number of events consumed by all channels and queues in the container.

Published - The total number of events published to all channels and queues in the container.

Consumed/Sec - The number of events per second consumed by all channels and queues in
the container.

Published/Sec - The number of events per second published to all channels and queues in the
container.

Totals

The Totals panel contains the following information:

Realms- The number of realms mounted in the container.

Channels- The number of channels that exist in the container.

Queues- The number of queues that exist in the container.

Connection Status

The Connection Status panel contains the following information:

Total - The total number of connections made to channels and queues in the container.

Current - The current number of connections made to channels and queues in the container.

Rate - The number of connections being made per second to channels and queues in the
container.

Storage Usage (K)

The Storage Usage panel contains the following information:

Total - The total amount of memory and disk space in KB used by all events, both consumed
and unconsumed, on all channels and queues in the container.

Free - The amount of disk space inKB occupied by consumed andpurged events on all channels
and queues in the container, which can be reclaimed by auto-maintenance.

Used - The amount of memory and disk space used by unconsumed events on all channels
and queues in the container.

Used/Sec - The rate per second at which the total amount of used storage space changes.

122 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Monitoring Container Usage

When you select a container (folder) in the namespace tree of a realm and go to the Monitor tab,
you can find usage information, such as heap memory usage history, CPU and disk space usage,
and JVM GC stats, based on the channels and queues in the container. In addition, you can view
the number of mounted realms, channels, and queues in the container.

For each channel and queue, you can also find the following details in the usage details table:

Name - The name of the channel or queue.

Connections - The number of consumers the channel or queue has.

Published - The rate of events published per status interval.

Consumed - The rate of events consumed per status interval.

Memory (bytes) - The number of bytes the channel or queue uses from the JVM memory.

%Memory - The percentage of overall JVM memory used by the channel or queue.

Disk (KB) - The amount of disk space in KB used by the channel or queue when the channel
or queue is of persistent or mixed type.

Creating Monitor Graphs

On the Monitor tab, you can also create a graph of channel and queue usage. The graph uses a 3D
graph package from SourceForge (http://sourceforge.net/projects/jfreechart/) to display the items
in the usage details table as columns in a 3D vertical bar chart. You can create a graph for each
usage metric and update the graph in real time.

To create a graph, select a column in the usage details table and click the Bar Graph button.

To update a graph in real time, right-click anywhere in the graph and selectStart Live Update.

To stop live updates, right-click in the graph and select Stop Live Updates.

Using ACLs for Role-Based Security

About Realm ACL Permissions
To perform operations within a realm, clients connecting to the realm must have the correct ACL
(Access Control List) permissions. A realmACL contains a list of subjects, which can be username
and host pairs, or security groups, andwhat operations each subject can performwithin the realm.

You canmanageACL permissions for a realm in the EnterpriseManager or by using the Universal
Messaging Administration API. You can add, remove, and modify ACL entries, and view ACL
permissions on the Security > ACL tab for a realm in the Enterprise Manager. A green check icon
indicates the permissions given to each subject.

A subject in the ACL list can have the following permissions to perform operations on the realm:

Universal Messaging Administration Guide 10.7 123

2 Universal Messaging Enterprise Manager

http://sourceforge.net/projects/jfreechart/

Manage ACL - Can get and manage the list of ACL entries.

Note:
This permission is a combination of two permissions at the Administration API level. The
boolean setModify() API function allows or denies permission to change an ACL value, and
the boolean setList() API function allows or denies permission to access the current list of
ACLs. If both of these functions return the value true, Manage ACL is allowed, otherwise
Manage ACL is not allowed. If the green check icon is displayed in the Manage ACL field,
the corresponding two API functions for this field are set to true. You cannot modify the
value of this permission in the Enterprise Manager.

Full - Has complete access to the secured object.

Access - Can connect to this realm.

Configure - Can set run-time parameters on the realm.

Channels - Can add and delete channels on the realm.

Realm - Can add and remove realms from the realm.

Admin API - Can use the nAdminAPI package.

Manage DataGroups - Can add and remove data groups from the realm.

Pub DataGroups - Can publish to data groups, including the default one, on the realm.

Own DataGroups - Can add, delete, and publish to data groups even when they were not
created by the user.

The green check icon shows that a subject is permitted to perform the operation. The minimum
requirement for a client to use a realm is the Access permission. Without this permission for the
default *@* subject, any Universal Messaging client whose subject does not appear in the ACL list
cannot establish a session to the realm server.

About Channel ACL Permissions
After a client has established a session to a Universal Messaging realm and is successfully
authenticated, and the subject has the correct user entitlements, in order to perform operations on
a channel, the subject must have the appropriate ACL permissions for the channel. Each channel
has an associated ACL that contains a list of subjects and a set of permissions the subject is given
for operations on the channel.

You can add, remove, and modify ACL entries, and view ACL permissions on the ACL tab for a
channel in the Enterprise Manager. A green check icon indicates the permissions given to each
subject.

A subject in theACL list can have the following permissions to perform operations on the channel:

Manage ACL - Can get and manage the list of ACL entries.

Note:

124 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

This permission is a combination of two permissions at the Administration API level. The
boolean setModify() API function allows or denies permission to change an ACL value, and
the boolean setList() API function allows or denies permission to access the current list of
ACLs. If both of these functions return the value true, Manage ACL is allowed, otherwise
Manage ACL is not allowed. If the green check icon is displayed in the Manage ACL field,
the corresponding two API functions for this field are set to true. If you remove the green
check icon, this sets the corresponding two API functions for this field to false.

Full - Has complete access to the secured object.

Purge - Can delete events on the channel.

Subscribe - Can subscribe to events on the channel.

Publish - Can publish events to the channel.

Named - Can connect using a durable subscriber.

The green check icon shows that a subject is permitted to perform the operation. For example, if
the subject *@* has only Subscribe permissions for a channel, this means that any client that has
successfully established a session and has obtained a reference to this channelwithin its application
code can only subscribe to the channel and read events.

About Queue ACL Permissions
After a client has established a session to a Universal Messaging realm and is successfully
authenticated, and the subject has the correct user entitlements, in order to perform operations on
a queue, the subject must have the appropriate ACL permissions for the queue. Each queue has
an associated ACL that contains a list of subjects and a set of permissions the subject is given for
operations on the queue.

You can add, remove, and modify ACL entries, and view ACL permissions on the ACL tab for a
queue in the Enterprise Manager. A green check icon indicates the permissions given to each
subject.

A subject in the ACL list can have the following permissions to perform operations on the queue:

Manage ACL - Can get and manage the list of ACL entries.

Note:
This permission is a combination of two permissions at the Administration API level. The
boolean setModify() API function allows or denies permission to change an ACL value, and
the boolean setList() API function allows or denies permission to access the current list of
ACLs. If both of these functions return the value true, Manage ACL is allowed, otherwise
Manage ACL is not allowed. If the green check icon is displayed in the Manage ACL field,
the corresponding two API functions for this field are set to true. If you remove the green
check icon, this sets the corresponding two API functions for this field to false.

Full - Has complete access to the secured object.

Purge - Can delete events on the queue.

Universal Messaging Administration Guide 10.7 125

2 Universal Messaging Enterprise Manager

Peek - Can snoop on the queue (non-destructive read).

Push - Can publish events to the queue.

Pop - Can consume events on the queue (destructive read).

The green check icon shows that a subject is permitted to perform the operation. For example, if
the subject *@* has only Peek permissions for a queue, thismeans that any client that has successfully
established a session and has obtained a reference to this queue within its application code can
only snoop on the queue and read events.

Adding and Removing ACL Subjects
You add and remove subjects and security groups to the Access Control List (ACL) of a Universal
Messaging realm on the Security > ACL tab in the Enterprise Manager. You perform the same
operations for a store (a channel or queue) on the ACL tab of the store.

To add or remove an ACL subject for a realm or store in the Enterprise Manager

1. Select the realm or store and go to the ACL tab.

2. Perform one of the following actions:

To add a subject to the ACL table, click Add, specify the subject, and click OK.

To add an existing security group to the ACL table, click Add Group, select a group, and
click OK.

To remove an entry from the ACL table, select the entry in the table and click Delete.

Modifying ACL Permissions
Consider the following information when you make changes to ACL permission for a subject in
the Enterprise Manager:

Any ACL changes made by other Enterprise Manager users, or by any programs using the
UniversalMessagingAdminAPI tomodifyACLs, are received by all other EnterpriseManagers.
The reason for this is that ACL changes are automatically sent to all Universal Messaging
Admin API clients, including the Enterprise Manager.

Any changes made to a realm or store ACL where the realm or store is part of a cluster are
replicated to all other cluster realms or stores.

To modify the ACL permissions for a subject in the Enterprise Manager

1. Select the realm or store where you want to modify the ACL permissions and go to the ACL
tab.

2. To add or remove a permission for a subject, click in the respective cell in the ACL table.

126 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

3. Click Apply.

Creating Security Groups
Security groups can contain a list of subjects (username and host pairs) as well as other security
groups. After you create a security group, you can add it to the ACL list of a realm or store. In this
way, you can assign ACL permissions to a set of users through a single entry in the ACL list.

Membership of security sroups can be altered dynamically, and the changes are reflected in the
permissions for all ACLs where the security group is an entry in the ACL list.

Aswith all ACLs inUniversalMessaging, permissions are cumulative. Thismeans that, for example,
if a user is in a group that has publish permissions on a channel, but not subscribe permissions,
the user cannot subscribe on the channel. Then, if an ACL entry is added on the channel for this
specific username/host pair with subscribe permissions but no publish permissions, the user will
be able to both subscribe and publish on the channel.

To create a security group in the Enterprise Manager

1. Select the realm forwhich youwant to create a security group and go to theSecurity > Groups
tab.

2. Click Add Group and specify a name for the new group.

3. Do any of the following to add members to the group:

To add a subject, click Add Member and specify the subject.

To add an existing group, click Add Group To Group and select a group from the list.

About Interface VIA Lists
Each interface defined on a Universal Messaging realm server can have an associated ACL list,
known as a VIA list. The VIA list enables you to define users who can connect to the Universal
Messaging realm using a specific protocol via a specific interface.

For example, if a realm has an HTTP (nhp) interface running on port 10000 and a sockets (nsp)
interface running on port 15000, and youwant all external clients to connect using the nhp interface,
and all internal clients to connect using the nsp interface, you can create separate lists of subjects
(username and host pairs) associated with the nhp and nsp interfaces.

This ensures that any user who tries to connect using the nsp interface, who is not part of the nsp
interface VIA list, but exists in the nhp VIA list, will be rejected and will not be able to establish a
connection via nsp. The same applies for the nhp interface. This enables you to tie specific users
to specific interfaces.

The default behavior for all interfaces is that when no VIA lists exist on any defined interfaces, all
users can connect on any interface. When a user subject exists on an interface, that subject cannot
use any other interface other than the one in which they are listed.

Universal Messaging Administration Guide 10.7 127

2 Universal Messaging Enterprise Manager

VIA lists offer an extra level of security that enables server administrators to define a strict approach
to who can connect to the realm via specific protocols. This is particularly useful if, for example,
you run many services on a single Universal Messaging realm and want to ensure that specific
clients or groups of clients use completely separate interfaces.

Managing Interface VIA Lists

To view and manage the VIA list for an interface in the Enterprise Manager

1. Select the realm on which the interface is running and go to the Comms > Interfaces tab.

2. Select the interface in the table of interfaces and click the VIA tab.

3. Perform any of the following actions:

To add a subject to the VIA list, click Add and specify the subject as a username and host
pair.

To delete a subject from the VIA list, select the subject in the list and click Delete.

4. Click Apply for the changes to take effect.

VIA List Example

The following image shows the result of adding the user "johnsmith@192.168.1.2" to the VIA list
of the interface "nsp0" that uses the sockets protocol on port "11010".

As with all Universal Messaging ACLs, wildcards are fully supported so that, for example,
@192.168.1.2 or johnsmith@ are both valid VIA rules.

128 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Scheduling

About Scheduling
UniversalMessaging provides a scheduling engine that enables tasks to be executed as server-side
scripts on a realm server at specific times or when certain conditions occur within the realm. This
enables realm servers to automate important tasks, enabling them to self-managewithout the need
for intervention by administrators or externally scheduled tasks. The scripts consist of initial tasks,
triggered tasks and/or calendar tasks.

Administrators ofUniversalMessaging realm servers can provide scripts that outline the conditions
and tasks to be performed,which are then interpreted by the server. The server converts the scripts
into the actual tasks to be completed, and executes them under the correct conditions.

This topic guides you through the basic tasks that can be executed by a realm server, time-based
scheduling and conditional triggers, as well as how to write, modify, and deploy scheduling
scripts.

Note:
The Scheduler feature of the Enterprise Manager is deprecated in Universal Messaging version
10.2 and will be removed in a subsequent release.

Creating and Editing Scheduler Scripts

Creating Scheduler Scripts

Universal Messaging Administration Guide 10.7 129

2 Universal Messaging Enterprise Manager

You view, add, delete, and edit scheduler scripts on theScheduler tab for a realm in the Enterprise
Manager.

Note:
The Scheduler feature of the Enterprise Manager is deprecated in Universal Messaging version
10.2 and will be removed in a subsequent release.

To add a new realm schedule

1. Expand the Realms node, select a realm, and go to the Scheduler tab.

2. Click Add New.

3. In the Runtime Subject field, specify the user name of the Enterprise Manager user who
deploys the script, for example administrator@*.

4. (Optional) Specify whether the schedule is deployed cluster-wide.

5. Add the schedule script.

For information about the scheduling grammar, see “Scheduling Script Language Summary” on
page 131, as well as the calendar, triggers, and tasks sections.

6. Click OK.

If an error occurs in the script, the Enterprise Manager returns an error describing the issue.

The new scheduler script is added to the scheduler table. Click the script to view, edit, or delete
it.

Viewing and Editing Scheduler Scripts

The Scheduler panel displays all scripts that have been deployed to a realm server. For each script,
you can view the name of the script, the user name of the Enterprise Manager user who deployed
the script, and whether the script is deployed cluster-wide.

To edit a script, select the script and on the Script Editor panel, modify the scheduler triggers and
tasks. After you make your changes, click Apply Changes.

In addition, you can view the initial, triggered, and calendar tasks for the script.

Initial Tasks Panel

The Initial Tasks panel displays the tasks defined in the initialisation section of the scheduler script.
The Task column shows the task object. The Function / Object column shows the details of the
task, for example, if the task purges a channel, the columnwill showpurge. TheParameter column
shows any parameters listed in the scheduler script for the given task.

130 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Triggered Tasks

The Triggered Tasks panel displays the tasks that are triggered based on some conditional triggers.
Each conditional trigger is shown as a row in the table on the panel. Selecting a trigger displays
the tasks to be executed when this trigger is fired.

Calendar Tasks

TheCalendar Tasks panel shows the tasks that are scheduled to run at specific times. Each calendar
task is shown as a row in a table. The first two columns show the frequency and time. The frequency
is either 'Hourly', 'Daily', 'Weekly', 'Monthly', or 'Yearly' and the time is specified as HH:MM. For
hourly schedules, the HH (hours) will be displayed as XX, which denotes every hour.

Columns three to nine represent which days of the week the task will run, starting fromMonday
('Mo'). A green circle means the task will run on that day. The last two columns represent the date
and month the when task will run.

Selecting one of the rows in the table will display the actual tasks that will be executed in a similar
table to that found on the Triggered Tasks panel.

Scheduling Script Language Summary
Universal Messaging scheduling works by interpreting scripts written using a simple grammar.
Administrators of realms can deploy asmany scheduling scripts as theywish to each Realm Server.

This section will cover the basic structure of a Universal Messaging scheduling script, and then
show how to write a script and deploy it to the Realm Server.

Follow the links below to view the guide for each of these:

“Scheduling Grammar” on page 131

“Declarations” on page 133

“Initial Tasks” on page 134

“Every Clause” on page 134

“When Clause” on page 135

“Else Clause” on page 135

Scheduling Grammar

The grammar for scheduling scripts is extremely simple to understand. The script must conform
to a predefined structure and include elements that map to the grammar expected by the Realm
Server Scheduler Engine.

In its simplest form theUniversalMessaging scheduler syntax startswith the command 'scheduler'.
This tells the parser that a new scheduler task is being defined. This is followed by the name of
the scheduler being defined, this is a user defined name. For example:

Universal Messaging Administration Guide 10.7 131

2 Universal Messaging Enterprise Manager

scheduler myScheduler {
}

Within this structure, triggers and tasks are defined. A task is the actual operation the server will
perform, and it can be executed at a certain time or frequency, or when a condition occurs. Within
the scheduler context the following verbs can be used to define tasks to be executed.

declare : Used to define the name of a trigger for later user

initialise : Is the first thing run when a scheduler is started (also run when the realm server
starts up)

every : Used to define a time/calendar based event

when : Used to define a conditional trigger and the list of tasks to execute when it fires

else : Used after a conditional trigger that will fire if the condition evaluates to false

The following shows the basic grammar and structure of a scheduling script.
/*
Comment block
*/
scheduler <User defined Name> {
declare <TRIGGER_DECLARATION>+
initialise {
<TASK_DECLARATION>+
}
/*
Time based tasks
*/
every <TIME_EXPRESSION> {
<TASK_DECLARATION>+
}
when (<TRIGGER_EXPRESSION>) {
<TASK_DECLARATION>+
} else {
<TASK_DECLARATION>+
}

where :

TRIGGER_DECLARATION ::= <TRIGGER> <NAME> (<TRIGGER_ARGUMENT_LIST>)

TRIGGER ::= Valid trigger. Learn more about triggers at “Conditional Triggers for Executing
Tasks” on page 137.

TRIGGER_ARGUMENT_LIST ::= Valid comma separated list of arguments for the trigger

TASK_DECLARATION ::= Valid task. Learn more about tasks at “Scheduling Tasks” on
page 148.

TRIGGER_EXPRESSION ::=

<TRIGGER_EXPRESSION><LOGICAL_OPERATOR><TRIGGER_EXPRESSION>|<TRIGGER>
| <NAME> <COMPARISON_OPERATOR> <VALUE>

TIME_EXPRESSION ::=

132 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

<HOURLY_EXPRESSION> | <DAILY_EXPRESSION> | <WEEKLY_EXPRESSION> |
<MONTHLY_EXPRESSION> | <YEARLY_EXPRESSION>

HOURLY_EXPRESSION ::= <MINUTES>

DAILY_EXPRESSION ::= <HOUR> <COLON> <MINUTES>

WEEKLY_EXPRESSION ::= <DAYS_OF_WEEK> <SPACE> <HOUR> <COLON> <MINUTES>

MONTHLY_EXPRESSION::= <DAY_OF_MONTH><SPACE><HOUR><COLON><MINUTES>

YEARLY_EXPRESSION ::= <DAY_OF_MONTH> <HYPHEN> <MONTH> <SPACE> <HOUR>
<COLON> <MINUTES>

MINUTES ::= Minutes past the hour, i.e. a value between 00 and 59

HOUR ::= Hour of the day, i.e. a value between 00 and 23

DAYS_OF_WEEK ::=

<DAY_OF_WEEK> | <DAY_OF_WEEK> <SPACE> <DAY_OF_WEEK>

DAY_OF_WEEK ::= Mo | Tu | We | Th | Fr | Sa | Su

DAY_OF_MONTH ::= Specific day of the month to perform a task, i.e. a value between 01 and
28

MONTH ::= The month of the year, JAN, FEB, MAR etc.

NAME ::= The variable name for a trigger

COMPARISON_OPERATOR ::= > | => | < | <= | == | !=

LOGICAL_OPERATOR ::= AND | OR

COLON ::= The ":" character

SPACE ::= The space character

HYPHEN ::= The "-" character

+ ::= indicates that this can occur multiple times

VALUE ::= Any valid string or numeric value.

Declarations

The declarations section of the script defines any triggers and assigns them to local variable names.
The grammar notation defined above specifies that the declaration section of a schedule script can
contain multiple declarations of triggers. For example, the following declarations section would
be valid based on the defined grammar:
declare Config myGlobalConfig ("GlobalValues");
declare Config myAuditConfig ("AuditSettings");
declare Config myTransConfig ("TransactionManager");

Universal Messaging Administration Guide 10.7 133

2 Universal Messaging Enterprise Manager

The above declarations define 3 variables that refer to the the Config trigger. The declared objects
can be used in a time based trigger declaration, conditional triggers and to perform tasks on.

Initialise

The initialise section of the schedule script defines what tasks are executed straight away by the
server when the script is deployed. These initial tasks are also executed every time the Realm
Server is started. An example of a valid initialise section of a schedule script is shown below:
initialise {
Logger.report("Realm optimisation script and monitor startup initialising");
myAuditConfig.ChannelACL("false");
myAuditConfig.ChannelFailure("false");
myGlobalConfig.MaxBufferSize(2000000);
myGlobalConfig.StatusBroadcast(2000);

myTransConfig.MaxTransactionTime(3600000);
Logger.setlevel(4);
}

The example above ensures that each time a server starts, the tasks declared are executed. Using
the variables defined in the declarations section, as well as the Logger task, the server will always
ensure that the correct configuration values are set on the server whenever it starts.

Every Clause

The every clause defines those tasks that are executed at specific times and frequencies as defined
in the grammar above. Tasks can be executed every hour at a specific time pas the hour, every
day at a certain time, every week on one or more days at specific times or day, every month on a
specific day of the month and a specific day of the year.

The grammar above defines how to declare an every clause. Based on this grammar the following
examples demonstrate how to declare when to perform tasks :
Hourly Example (Every half past the hour, log a message to the realm server log)
every 30 {
Logger.report("Hourly - Executing Tasks");
}
Daily Example (Every day at 18:00, perform maintenance on the customerSales channel
)
every 18:00 {
Logger.report("Daily - performing maintenance");
Store.maintain("/customer/sales");
}
Weekly Example (Every week, on sunday at 17:30, purge the customer sales channel)
every Su 17:30 {
Logger.report("Weekly - Performing Purge");
Store.purge("/customer/sales");
}
Monthly Example (Every 1st of the month, at 21:00, stop all interfaces and start them
again)
every 01 21:00 {
Logger.report("Monthly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();

134 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

}
Yearly Example (Every 1st of the January, at 00:00, stop all interfaces and start them
again)

every 01-Jan 00:00 {
Logger.report("Yearly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}

When Clause

Thewhen clause defines a trigger that evaluates a specific value and executes a task if the evaluation
result is 'true'. The grammar for the when clause is defined above. The following example shows
a valid when clause :
when (MemoryManager.FreeMemory < 30000000) {
Logger.report("Memory below 30M, performing some clean up");
FlushMemory(true);
}

The above example will trigger the Realm Server JVM to call garbage collection when the amount
of free memory drops to below 30MB.

Else Clause

The else clause defines an alternative action to the when clause if the when clause evaluates to
'false'. The grammar for the else clause is defined above. The following example shows a valid
when clause :
when (MemoryManager.FreeMemory < 30000000) {
Logger.report("Memory below 30M, performing some clean up");
FlushMemory(true);
} else {
Logger.report("Memory not below 30M, no clean up required");
}

The above example will trigger the Realm Server JVM to call garbage collection when the amount
of free memory drops to below 30MB.

To view a sample scheduling script, see the section “Scheduler Examples” on page 160.

Calendar Schedules (Time-based Triggers)
Calendar schedules are triggered at specific times, either hourly, daily, weekly, monthly or yearly.
Each calendar trigger is declared using the 'every' keyword. For basic information on the grammar
for calendar schedules, please read the section on time based triggers in the writing scripts help
file (see “Scheduling Script Language Summary” on page 131). The calendar, or time based triggers
are signified by using the 'every' keyword. The values entered after the keyword represent hourly,
daily, weekly, monthly or yearly frequency that the defined tasks will be executed. See “Hourly
Triggers” on page 136, “Daily Triggers” on page 136, “Weekly Triggers” on page 136, “Monthly
Triggers” on page 137, “Yearly Triggers” on page 137.

This section will describe in more detail the variations of the calendar trigger grammar.

Universal Messaging Administration Guide 10.7 135

2 Universal Messaging Enterprise Manager

Hourly Triggers

Hourly triggers have the simplest grammar. The value after the 'every' keyword represents the
minutes past the hour that the tasks will be executed. For example, specifying '00' means that the
tasks are executed on the hour, every hour. If you specify '30' the tasks will be executed at half
past the hour every hour:
/*
Execute every hour on the hour
*/
every 00 {
}

/*
Execute every hour at half past the hour
*/
every 30 {
}

Daily Triggers

Daily triggers are executed every day at a specific time. The time of day is written as 'HH:MM',
in a 24 hour clock format and represents the exact time of day that the tasks are executed. For
example, specifying '18:00' means the tasks are executed every day at 6pm. If you specify '08:30'
the tasks will be executed at 8.30am every morning.
/*
Execute day at 6pm
*/
every 18:00 {
}

/*
Execute day at 8.30am
*/
every 08:30 {
}

Weekly Triggers

Weekly triggers are executed on specific days of the week at a specific time, in the format 'DD
HH:MM' . The days are represented as a 2 character string being one of : Su; Mo; Tu; We; Th; Fr;
Sa, and you can specify more than one day. The time of day is written as 'HH:MM', in a 24 hour
clock format and represents the exact time on each given day that the tasks are executed. For
example, specifying 'Fr 18:00' means the tasks are executed every friday at 6pm. If you specify 'Mo
Tu We Th Fr 18:30' the tasks will be executed every week day at 6.30pm.
/*
Execute every friday at 6pm
*/
every Fr 18:00 {
}

/*

136 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Execute every week day at 6.30pm
*/
every Mo Tu We Th Fr 18:30 {
}

Monthly Triggers

Monthly triggers are executed on a specific day of the month at a specific time, in the format 'DD
HH:MM' . The day is represented as a 2 digit number between 1 and 28. The time of day is written
as 'HH:MM', in a 24 hour clock format and represents the exact time on the given day of themonth
that the tasks are executed. For example, specifying '01 18:00' means the tasks are executed on the
1st of every month at 6pm.
/*
Execute on the first of every month at 6pm

*/
every 01 18:00 {
}

Yearly Triggers

Yearly triggers are executed on a specific day andmonth of the year at a specific time, in the format
'DD-MMMHH:MM'. The day of the month is represented as a 2 digit number between 1 and 31,
and the month is represented as a 3 character string being one of : Jan; Feb; Mar; Apr; May; Jun;
Jul; Aug; Sep; Oct; Nov; Dec. The time of day is written as 'HH:MM', in a 24 hour clock format
and represents the exact time on the given day and month of the year that the tasks are executed.
For example, specifying '01-Jan 18:00' means the tasks are executed on the 1st of January every
year at 6pm.
/*
Execute on the first of january every year at 6pm
*/

every 01-Jan 18:00 {
}

Conditional Triggers for Executing Tasks
Conditional triggers execute tasks when specific conditions occur. Each defined trigger has a
number of attributes that can be used as part of the trigger expression and evaluated to determine
whether the tasks are executed. For basic information on the grammar for conditional triggers,
please read the section on conditional triggers in the writing scripts help file (see “Scheduling
Script Language Summary” on page 131). The conditional triggers are signified by using the 'when'
keyword. The expression entered after the keyword represent the trigger object(s) and the values
to be checked against.

This section describes in detail the triggers that are available and how to use themwithin a trigger
expression :

“Trigger Expressions” on page 138

“Store Triggers” on page 138

Universal Messaging Administration Guide 10.7 137

2 Universal Messaging Enterprise Manager

“Interface Triggers” on page 139

“Memory Triggers” on page 140

“Realm Triggers” on page 140

“Cluster Triggers” on page 141

“Counter Triggers” on page 141

“Timer Triggers” on page 142

“Config Triggers” on page 142

To view examples of scheduling scripts, see “Scheduler Examples” on page 160.

Trigger Expressions

A trigger expression is constructed from the definition of the trigger object(s) to be evaluated and
the values that will be used in the comparison. The trigger used in the expression can be either
the actual trigger object, or the declared name of the trigger from the declarations section of the
script (see “Scheduling Script Language Summary” on page 131). Multiple triggers can be used in
the expression using conditional operators (AND | OR).

For example, the following expression can be used to evaluate when a Realm's Interface accept
threads are exhausted 5 times.When this happens, the accept threads will be increased by 10. This
schedule will continually monitor the state of the interface and self-manage the accept threads so
the realm server is always able to accept connections from clients.
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter >= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}

The above schedule will monitor the number of times the accept threads are exhausted and when
the counter trigger hits 5 times, the number of threads will be increased by 10.

The next section will describe the available trigger objects and the available triggers on those
objects that can be used within

Store Triggers - Channel / Queue based triggers

Store triggers are declared using the following syntax as an example:
declare Store myChannel("/customer/sales");

138 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

The table below lists those triggers that can be evaluated on a Store object, such that the trigger
expression will look like :
when (myChannel.connections > 100) {
}

DescriptionParametersTrigger Object

Trigger on the number of
connections for the channel or
queue

Noneconnections

Trigger on the amount of free
space available in the store

NonefreeSpace

(used space - size of all purged
events)

Trigger on the amount of used
space available in the store (size
of all event on disk or memory)

usedSpace

Trigger on the number of events
on the channel / queue

NonenumOfEvents

Trigger when an event that
matches the filter is published
to the channel / queue

Valid filter Stringfilter

Interface Triggers - Universal Messaging Interface based triggers

Interface triggers are declared using the following syntax as an example:
declare Interface myNHP("nhp0");

The table below lists those triggers that can be evaluated on an Interface object, such that the trigger
expression will look like :
when (myNHP.connections > 100) {
}

DescriptionParametersTrigger Object

Trigger on the number of
connections for the interface

Noneconnections

Trigger on the average
authentication time for clients
on an interface

Noneauthentication

Trigger on the number of failed
authentication attempts

NonefailedConnections

Universal Messaging Administration Guide 10.7 139

2 Universal Messaging Enterprise Manager

DescriptionParametersTrigger Object

Trigger on the average amount
of time the interface accept
thread pool has been exhausted

NoneexhaustedTime

Trigger on the number of idle
interface accept pool threads

NoneidleThreads

Trigger on the number of times
an interface accept thread pool
is exhausted (i.e. idle == 0)

NoneexhaustedCount

Trigger when an interface is in
a certain state

Nonestate

MemoryManager Triggers - Universal Messaging JVM Memory Management based
triggers

MemoryManager triggers are declared using the following syntax as an example:
declare MemoryManager mem;

The table below lists those triggers that can be evaluated on thememorymanagement object, such
that the trigger expression will look like :
when (mem.freeMemory < 1000000) {
}

DescriptionParametersTrigger Object

Trigger when the realm server's
JVM has a certain amount of
free memory

NonefreeMemory

Trigger when the realm server's
JVM has a certain amount of
total memory

NonetotalMemory

Trigger when the realm server
JVM runs out of memory

NoneoutOfMemory

Realm Triggers - Universal Messaging Realm based triggers

Realm triggers are declared using the following syntax as an example:
declare Realm myRealm("productionmaster");

The table below lists those triggers that can be evaluated on the realm object, such that the trigger
expression will look like :

140 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

when (realm.connections > 1000) {
}

DescriptionParametersTrigger Object

Trigger when the realm server
current connections reaches a
certain number

Noneconnections

Trigger when the realm server's
events per second sent rate
reaches a certain value

NoneeventsSentPerSecond

Trigger when the realm server's
events per second sent received
reaches a certain value

NoneeventsReceivedPerSecond

Cluster Triggers - Universal Messaging Cluster based triggers

Cluster triggers are declared using the following syntax as an example, assuming a cluster ismade
up of 4 realms:
declare Cluster myNode1("realm1");
declare Cluster myNode2("realm2");
declare Cluster myNode3("realm3");
declare Cluster myNode4("realm4");

The table below lists those triggers that can be evaluated on the cluster object, such that the trigger
expression will look like :
when (Cluster.nodeOnline("realm1") == true){
}

DescriptionParametersTrigger Object

Trigger when cluster has
quorum == true or false

NonehasQuorum

Trigger when a cluster realm is
voted master

NoneisMaster

Trigger when a cluster realm is
online or offline

NonenodeOnline

Counter Triggers - Counter value based triggers

Counter triggers allow you to keep a local count of events occurringwith the UniversalMessaging
scheduler engine. The values of the Counters can be incremented / decremented and reset within
the tasks section of a trigger declaration. Counter triggers are declared using the following syntax
as an example:

Universal Messaging Administration Guide 10.7 141

2 Universal Messaging Enterprise Manager

declare Counter counter1 ("myCounter");

The counter trigger can be evaluated by referencing the Counter object itself, such that the trigger
expression will look like :
when (counter1 > 5) {
}

Timer Triggers - Timer based triggers

Timer triggers allow you to start a timer that will keep track of how long (in seconds) it has been
running and then evaluate the running timewithin a trigger expression. Time triggers are declared
using the following syntax as an example:
declare Timer reportTimer ("myTimer");

The timer trigger can be evaluated by referencing the timer object itself, such that the trigger
expression will look like :
when (reportTimer == 60) {
}

Config Triggers - Universal Messaging configuration triggers

Config triggers refer to any of the configuration values available in the Config panel for a realm.
Any configuration value can be used as part of a trigger expression. Config triggers are declared
using the following syntax as an example (the example refers to the 'Global Values' configuration
group):
declare Config myGlobal ("Global Values");

The table below lists the triggers that can be evaluated on a Config object, such that the task
expression will look like :
when (myGlobal.MaxNoOfConnections == -1) {
}

DescriptionParametersTrigger Object

Global Values

The number of threads assigned
to the scheduler

NoneSchedulerPoolSize

Sets the maximum concurrent
connections to the server, -1
indicates no restriction

NoneMaxNoOfConnections

The number of ms between
status events being published

NoneStatusBroadcast

142 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionParametersTrigger Object

The number ofmilliseconds the
server will wait for client
authentication

NoneNHPTimeout

The number ofmilliseconds that
the server will wait before
scanning for client timeouts

NoneNHPScanTime

Place Universal Messaging
details into the dictionary
(true/false)

NoneStampDictionary

If true, allows the server to use
the extended message selector
syntax (true/false)

NoneExtendedMessageSelector

When the server has exceeded
the connection count, how long

NoneConnectionDelay

to hold on to the connection
before disconnecting

Allow the server to support
older clients (true/false)

NoneSupportVersion2Clients

If true sends the realms status
summary updates (true/false)

NoneSendRealmSummaryStats

Audit Settings

Log to the audit file any realm
maintenance activity

NoneRealmMaintenance

Log to the audit file any
interface management activity

NoneInterfaceManagement

Log to the audit file any channel
maintenance activity

NoneChannelMaintenance

Log to the audit file any queue
maintenance activity

NoneQueueMaintenance

Log to the audit file any service
maintenance activity

NoneServiceMaintenance

Log to the audit file any join
maintenance activity

NoneJoinMaintenance

Log to the audit file any
successful realm interactions

NoneRealmSuccess

Universal Messaging Administration Guide 10.7 143

2 Universal Messaging Enterprise Manager

DescriptionParametersTrigger Object

Log to the audit file any
successful channel interactions

NoneChannelSuccess

Log to the audit file any
successful queue interactions

NoneQueueSuccess

Log to the audit file any
successful realm interactions

NoneServiceSuccess

Log to the audit file any
successful join interactions

NoneJoinSuccess

Log to the audit file any
unsuccessful realm interactions

NoneRealmFailure

Log to the audit file any
unsuccessful channel
interactions

NoneChannelFailure

Log to the audit file any
unsuccessful queue interactions

NoneQueueFailure

Log to the audit file any
unsuccessful service interactions

NoneServiceFailure

Log to the audit file any
unsuccessful join interactions

NoneJoinFailure

Log to the audit file any
unsuccessful realm acl
interactions

NoneRealmACL

Log to the audit file any
unsuccessful channel acl
interactions

NoneChannelACL

Log to the audit file any
unsuccessful queue acl
interactions

NoneQueueACL

Log to the audit file any
unsuccessful service acl
interactions

NoneServiceACL

Client Timeout Values

The amount ofms the clientwill
wait for a response from the
server

NoneEventTimeout

144 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionParametersTrigger Object

The maximum amount of time
to wait when performing an

NoneDisconnectWait

operation when disconnected
before throwing session not
connected exception

The default amount of time a
transaction is valid before being
removed from the tx store

NoneTransactionLifeTime

The amount of time the client
will wait for keep alive

NoneKaWait

interactions between server
before acknowledging
disconnected state

The low water mark for the
connection internal queue.

NoneLowWaterMark

When this value is reached the
outbound internal queue will
again be ready to push event to
the server

The high water mark for the
connection internal queue.

NoneHighWaterMark

When this value is reached the
internal queue is temporarily
suspended and unable to send
events to the server. This
provides flow control between
publisher and server.

The maximum number of
milliseconds a queue will have

NoneQueueBlockLimit

reached HWMbefore notifying
listeners

The maximum number of
milliseconds it should take to

NoneQueueAccessWaitLimit

gain access to a queue to push
events before notifying listeners

The maximum number of
milliseconds it should take to

NoneQueuePushWaitLimit

gain access to a queue and to
push events before notifying
listeners

Universal Messaging Administration Guide 10.7 145

2 Universal Messaging Enterprise Manager

DescriptionParametersTrigger Object

Cluster Config

Heart Beat interval in
milliseconds

NoneHeartBeatInterval

Number of events outstandingNoneEventsOutStanding

Event Storage

The time in ms that cached
events will be kept in memory
for

NoneCacheAge

The number of threads allocated
to perform the management
task on the channels

NoneThreadPoolSize

The time inmilliseconds that an
active channel will delay
between scans

NoneActiveDelay

The time inmilliseconds that an
idle channel will delay between
scans

NoneIdleDelay

Fanout Values

The number of client threads
allowed to execute concurrently
in the server

NoneConcurrentUser

The number of milliseconds
between the server will wait
before sending a heartbeat

NoneKeepAlive

The number of events in a client
output queue before the server
stops sending events

NoneQueueHighWaterMark

The number of events in the
clients queue before the server
resumes sending events

NoneQueueLowWaterMark

The maximum buffer size that
the server will accept

NoneMaxBufferSize

146 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionParametersTrigger Object

How long to delay the publisher
when subscribers queue start to
fill, in milliseconds

NonePublishDelay

Publish expired events at server
startup (true/false)

NonePublishExpiredEvents

JVMManagement

Number of milliseconds
between monitoring memory
usage on the realm

NoneMemoryMonitoring

The memory threshold when
the server starts to scan for
objects to release

NoneWarningThreshold

The memory threshold when
the server starts to aggressively
scan for objects to release

NoneEmergencyThreshold

If true, the server will exit if it
gets a I/O Exception

NoneExitOnDiskIOError

Join Config

Number of events that will be
sent to the remote server in one
run

NoneMaxEventsPerSchedule

The maximum events that will
be queued on behalf of the
remote server

NoneMaxQueueSizeToUse

The number of threads to be
assigned for the join recovery

NoneActiveThreadPoolSize

The number of threads to
manage the idle and
reconnection to remote servers

NoneIdleThreadPoolSize

Logging Config

The server logging levelNonefLoggerLevel

Universal Messaging Administration Guide 10.7 147

2 Universal Messaging Enterprise Manager

DescriptionParametersTrigger Object

RecoveryDaemon

Number of threads to use for
client recovery

NoneThreadPool

The number of events to send
in one block

NoneEventsPerBlock

TransactionManager

Time in milliseconds that a
transaction will be kept active

NoneMaxTransactionTime

The maximum number of
events per transaction, a 0
indicates no limit

NoneMaxEventsPerTransaction

The minimum time in
milliseconds, below which the

NoneTTLThreshold

server will not store the
Transaction ID

Scheduling Tasks
Tasks are executed by either time based (calendar, see “Calendar Schedules (Time-based
Triggers)” on page 135) or conditional triggers (see “Conditional Triggers for Executing Tasks” on
page 137). There are a number of tasks that can be executed by theUniversalMessaging Scheduling
engine. Each task corresponds to a unit of work that performs an operation on the desired object
within a Universal Messaging realm.

This section will discuss the available tasks that can be declared within a Universal Messaging
scheduling script :

“Task Expressions” on page 149

“Store Tasks” on page 149

“Interface Tasks” on page 150

“Memory Tasks” on page 151

“Counter Tasks” on page 151

“Timer Tasks” on page 152

“Config Tasks” on page 152

To view examples of scheduling scripts, see “Scheduler Examples” on page 160.

148 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Task Expressions

Task expressions are comprised of the object on which you wish to perform the operation, and
the required parameters. For more information on the grammar for task expressions, please see
the section (see “Scheduling Script Language Summary” on page 131). The following sectionswill
describe the task objects and the parameters required to perform them. The example below
demonstrates both Interface, Logger and Counter tasks.
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter >= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}

Store Tasks - Channel / Queue operations

Store tasks can be used by first of all declaring the desired object as in the following syntax:
declare Store myChannel("/customer/sales");

The table below lists those tasks available on a Store object, such that the task expression will look
like :
when (myChannel.numOfEvents < 100) {
myChannel.maintain();
}

DescriptionSyntaxTask Object

Perform maintenance on a
channel so that any purged

Store.maintain("*");
Store.maintain("/customer/sales");
myChannel.maintain();

maintain

events are removed from the
channel or queue event
store.

Publish an event to the
channel / queue, using the

myChannel.publish("Byte array data",
"tag", "key1=value1:key2:value2");publish

given byte array, event tag
and event dictionary values.

Purge all events on a
channel, or events between

myChannel.purge();
myChannel.purge(0, 100000);
myChannel.purge(0, 10000,

"key1 = 'value1'");

purge

a start and end eid, or using
a purge filter.

Universal Messaging Administration Guide 10.7 149

2 Universal Messaging Enterprise Manager

DescriptionSyntaxTask Object

Create the channel using the
name itwas declared as, and

myChannel.createChannel(0, 0, "P");createChannel

the ttl, capacity and type
specified in the parameters

Create the queue using the
name itwas declared as, and

myChannel.createQueue(0, 0, "P");createQueue

the ttl, capacity and type
specified in the parameters

Interface Tasks - Universal Messaging Interface operations

Interface tasks are operations that can be performed on all interfaces or individually declared
interfaces. To declare an interface use the following syntax as an example:
declare Interface myNHP("nhp0");

The table below lists those tasks that can be executed on an Interface object, such that the task
expression will look like :
when (myNHP.connections > 1000) {
myNHP.threads("+10");
}

DescriptionSyntaxTask Object

Stop the interfacemyNHP.stop();
Interface.stop("nhp0");stop

Start The interfacemyNHP.start();
Interface.start("nhp0");start

Stop all interfaces on
the realm

Interface.stopAll();stopAll

Start all interfaces on
the realm

Interface.startAll();startAll

Set the interface
authentication time to

myNHP.authTime(20000);
myNHP.authTime("+10000");authTime

a value, or increase /
decrease it by a value.

Set the interface
backlog time to a value,

myNHP.backlog(200);
myNHP.backlog("+100");backlog

or increase / decrease it
by a value.

150 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionSyntaxTask Object

Set whether an
interface is

myNHP.autoStart("true");
myNHP.autoStart("false");autoStart

automatically started
when the realm is
started.

Set whether an
interface is available to

myNHP.advertise("true");
myNHP.advertise("false");advertise

clients using the admin
API.

Set whether an
interface (SSL) requires

myNHP.certificateValidation("true");
myNHP.certificateValidation("false");certificateValidation

clients to provide a
certificate to
authenticate.

Set the interface accept
threads to a value or

myNHP.threads(10);
myNHP.threads("+10");threads

increase / decrease it by
a value.

MemoryManager Triggers - Universal Messaging JVM Memory Management
operations

MemoryManager triggers are declared using the following syntax as an example:
declare MemoryManager mem;

The table below lists those triggers that can be evaluated on thememorymanagement object, such
that the task expression will look like :
when (mem.freeMemory < 1000000) {
}

DescriptionSyntaxTask Object

Cause the JVM to call garbage
collection, and optionally
release used memory

mem.flush(true);
mem.flush(false);flush

Counter Tasks - Counter tasks

Counter tasks allow you to increment, decrement, set and reset a local counterwithin theUniversal
Messaging scheduling engine. Counter tasks are declared using the following syntax as an example:
declare Counter counter1 ("myCounter");

Universal Messaging Administration Guide 10.7 151

2 Universal Messaging Enterprise Manager

The counter task can be executing by referencing the Counter object itself, and calling one of a
number of available tasks. The basic counter task expression will look like :
when (counter1 > 5) {
counter1.reset();
}

The table below shows the tasks that can be executed on the Counter task.

DescriptionSyntaxTask Object

Decrement the counter by 1counter1.dec()dec

Increment the counter by 1counter1.inc()inc

Set the counter to a valuecounter1.set(5)set

Reset the counter to 0counter1.reset()reset

Timer Tasks - Timer operations

Timer tasks allow you to start, stop and reset the timer. Time tasks are declared using the following
syntax as an example:
declare Timer reportTimer ("myTimer");

The timer task can be executed by referencing the timer object itself, such that the task expression
will look like :
when (reportTimer == 60) {
reportTimer.reset();
}

The table below shows the tasks that can be executed on the Counter task.

DescriptionSyntaxTask Object

Start the timerreportTimer.start()start

Stop the timerreportTimer.stop()inc

Reset the timerreportTimer.reset()reset

Config Tasks - Channel / Queue based triggers

Config tasks can be used to set any configuration value available in the Config panel for a realm.
Any configuration value can be used as part of a trigger task expression. Config tasks are declared
using the following syntax as an example (below example refers to the 'Global Values' configuration
group):
declare Config myGlobal ("Global Values");
declare Config myAudit ("Audit Settings");

152 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

declare Config myClientTimeout ("Client Timeout Values");
declare Config myCluster ("Cluster Config");
declare Config myEventStorage ("Event Storage");
declare Config myFanout ("Fanout Values");
declare Config myJVM ("JVM Management");
declare Config myJoinConfig ("Join Config");
declare Config myLoggingConfig ("Logging Config");
declare Config myRecovery ("RecoveryDaemon");
declare Config myTXMgr ("TransactionManager");

The table below lists those tasks that can be evaluated on a config object, such that the task
expression will look like :
when (myGlobal.MaxNoOfConnections == -1) {
myGlobal.MaxNoOfConnections(1000);
}

DescriptionSyntaxTrigger Object

Global Values

The number of threads
assigned to the
scheduler

myGlobal.SchedulerPoolSize(10);SchedulerPoolSize

Sets the maximum
concurrent connections

myGlobal.MaxNoOfConnections(-1);MaxNoOfConnections

to the server, -1
indicates no restriction

The number of ms
between status events
being published

myGlobal.StatusBroadcast(2000);StatusBroadcast

The number of
milliseconds the server

myGlobal.NHPTimeout(2000);NHPTimeout

will wait for client
authentication

The number of
milliseconds that the

myGlobal.NHPScanTime(10000);NHPScanTime

server will wait before
scanning for client
timeouts

Place Universal
Messaging details into

myGlobal.StampDictionary(true);StampDictionary

the dictionary
(true/false)

If true, allows the server
to use the extended

myGlobal.ExtendedMessageSelector (true);ExtendedMessageSelector

Universal Messaging Administration Guide 10.7 153

2 Universal Messaging Enterprise Manager

DescriptionSyntaxTrigger Object

message selector syntax
(true/false)

When the server has
exceeded the connection

myGlobal.ConnectionDelay(2000);ConnectionDelay

count, how long to hold
on to the connection
before disconnecting

Allow the server to
support older clients
(true/false)

myGlobal.SupportVersion2Clients (true);SupportVersion2Clients

If true sends the realms
status summaryupdates
(true/false)

myGlobal.SendRealmSummaryStats (true);SendRealmSummaryStats

Audit Settings

Log to the audit file any
realm maintenance
activity

myAudit.RealmMaintenance (false);RealmMaintenance

Log to the audit file any
interface management
activity

myAudit.InterfaceManagement (false);InterfaceManagement

Log to the audit file any
channel maintenance
activity

myAudit.ChannelMaintenance (false);ChannelMaintenance

Log to the audit file any
queue maintenance
activity

myAudit.QueueMaintenance (false);QueueMaintenance

Log to the audit file any
service maintenance
activity

myAudit.ServiceMaintenance (false);ServiceMaintenance

Log to the audit file any
join maintenance
activity

myAudit.JoinMaintenance(false);JoinMaintenance

Log to the audit file any
successful realm
interactions

myAudit.RealmSuccess(false);RealmSuccess

154 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionSyntaxTrigger Object

Log to the audit file any
successful channel
interactions

myAudit.ChannelSuccess(false);ChannelSuccess

Log to the audit file any
successful queue
interactions

myAudit.QueueSuccess(false);QueueSuccess

Log to the audit file any
successful realm
interactions

myAudit.ServiceSuccess(false);ServiceSuccess

Log to the audit file any
successful join
interactions

myAudit.JoinSuccess(false);JoinSuccess

Log to the audit file any
unsuccessful realm
interactions

myAudit.RealmFailure(false);RealmFailure

Log to the audit file any
unsuccessful channel
interactions

myAudit.ChannelFailure(false);ChannelFailure

Log to the audit file any
unsuccessful queue
interactions

myAudit.QueueFailure(false);QueueFailure

Log to the audit file any
unsuccessful service
interactions

myAudit.ServiceFailure(false);ServiceFailure

Log to the audit file any
unsuccessful join
interactions

myAudit.JoinFailure(false);JoinFailure

Log to the audit file any
unsuccessful realm acl
interactions

myAudit.RealmACL(false);RealmACL

Log to the audit file any
unsuccessful channel acl
interactions

myAudit.ChannelACL(false);ChannelACL

Log to the audit file any
unsuccessful queue acl
interactions

myAudit.QueueACL(false);QueueACL

Universal Messaging Administration Guide 10.7 155

2 Universal Messaging Enterprise Manager

DescriptionSyntaxTrigger Object

Log to the audit file any
unsuccessful service acl
interactions

myAudit.ServiceACL(false);ServiceACL

Client Timeout Values

The amount of ms the
client will wait for a

myClientTimeout.EventTimeout (10000);EventTimeout

response from the
server

The maximum amount
of time to wait when

myClientTimeout.DisconnectWait (30000);DisconnectWait

performing anoperation
when disconnected
before throwing session
not connected exception

The default amount of
time a transaction is

myClientTimeout.TransactionLifeTime
(10000);

TransactionLifeTime

valid before being
removed from the tx
store

The amount of time the
client will wait for keep

myClientTimeout.KaWait(10000);KaWait

alive interactions
between server before
acknowledging
disconnected state

The low water mark for
the connection internal

myClientTimeout.LowWaterMark (200);LowWaterMark

queue. When this value
is reached the outbound
internal queue will
again be ready to push
event to the server

The highwatermark for
the connection internal

myClientTimeout.HighWaterMark (500);HighWaterMark

queue. When this value
is reached the internal
queue is temporarily
suspended and unable
to send events to the
server. This provides

156 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionSyntaxTrigger Object

flow control between
publisher and server.

The maximum number
of milliseconds a queue

myClientTimeout.QueueBlockLimit (5000);QueueBlockLimit

will have reachedHWM
before notifying
listeners

The maximum number
ofmilliseconds it should

myClientTimeout.QueueAccessWaitLimit
(10000);

QueueAccessWaitLimit

take to gain access to a
queue to push events
before notifying
listeners

The maximum number
ofmilliseconds it should

myClientTimeout.QueuePushWaitLimit
(12000);

QueuePushWaitLimit

take to gain access to a
queue and to push
events before notifying
listeners

Cluster Config

Heart Beat interval in
milliseconds

myCluster.HeartBeatInterval (60000);HeartBeatInterval

Number of events
outstanding

myCluster.EventsOutStanding (10);EventsOutStanding

Event Storage

The time in ms that
cached events will be
kept in memory for

myEventStorage.CacheAge(360000);CacheAge

The number of threads
allocated to perform the

myEventStorage.ThreadPoolSize(2);ThreadPoolSize

management task on the
channels

The time inmilliseconds
that an active channel

myEventStorage.ActiveDelay(1000);ActiveDelay

will delay between
scans

Universal Messaging Administration Guide 10.7 157

2 Universal Messaging Enterprise Manager

DescriptionSyntaxTrigger Object

The time inmilliseconds
that an idle channel will
delay between scans

myEventStorage.IdleDelay(60000);IdleDelay

Fanout Values

The number of client
threads allowed to

myFanout.ConcurrentUser(5);ConcurrentUser

execute concurrently in
the server

The number of
milliseconds between

myFanout.KeepAlive(60000);KeepAlive

the server will wait
before sending a
heartbeat

The number of events in
a client output queue

myFanout.QueueHighWaterMark(500);QueueHighWaterMark

before the server stops
sending events

The number of events in
the clients queue before

myFanout.QueueLowWaterMark(200);QueueLowWaterMark

the server resumes
sending events

The maximum buffer
size that the server will
accept

myFanout.MaxBufferSize(1024000);MaxBufferSize

How long to delay the
publisher when

myFanout.PublishDelay(100);PublishDelay

subscribers queue start
to fill, in milliseconds

Publish expired events
at server startup
(true/false)

myFanout.PublishExpiredEvents(true);PublishExpiredEvents

Join Config

Number of events that
will be sent to the
remote server in one run

myJoinConfig.MaxEventsPerSchedule
(200);

MaxEventsPerSchedule

158 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionSyntaxTrigger Object

The maximum events
that will be queued on

myJoinConfig.MaxQueueSizeToUse (50);MaxQueueSizeToUse

behalf of the remote
server

The number of threads
to be assigned for the
join recovery

myJoinConfig.ActiveThreadPoolSize (4);ActiveThreadPoolSize

The number of threads
to manage the idle and

myJoinConfig.IdleThreadPoolSize (2);IdleThreadPoolSize

reconnection to remote
servers

Logging Config

The server logging levelmyLoggingConfig.fLoggerLevel(4);fLoggerLevel

RecoveryDaemon

Number of threads to
use for client recovery

myRecovery.ThreadPool(5);ThreadPool

The number of events to
send in one block

myRecovery.EventsPerBlock(300);EventsPerBlock

TransactionManager

Time in milliseconds
that a transactionwill be
kept active

myTXMgr.MaxTransactionTime (1000);MaxTransactionTime

The maximum number
of events per

myTXMgr.MaxEventsPerTransaction
(1000);

MaxEventsPerTransaction

transaction, a 0 indicates
no limit

The minimum time in
milliseconds, below

myTXMgr.TTLThreshold(1000);TTLThreshold

which the server will
not store the
Transaction ID

Universal Messaging Administration Guide 10.7 159

2 Universal Messaging Enterprise Manager

Scheduler Examples
Below is a list of example scheduling scripts that can help you become accustomed to writing
Universal Messaging Scheduling scripts.

“Generic Example” on page 160

“Store Triggers” on page 161

“Interface Triggers” on page 162

“Memory Triggers” on page 162

“Realm Triggers” on page 163

“Cluster Triggers” on page 163

“Counter Triggers” on page 164

“Timer Triggers” on page 165

“Config Triggers” on page 165

Universal Messaging Scheduling : Example Realm Script
/*
Comments must be enclosed in /* and */ sections
This is an example scheduler script
*/
scheduler realmSchedule {
declare Config myGlobalConfig ("GlobalValues");
declare Config myAuditConfig ("AuditSettings");
declare Config myTransConfig ("TransactionManager");
initialise {
Logger.report("Realm optimisation script and monitor startup initialising");
myAuditConfig.ChannelACL("false");
myAuditConfig.ChannelFailure("false");
myGlobalConfig.MaxBufferSize(2000000);
myGlobalConfig.StatusBroadcast(2000);

myTransConfig.MaxTransactionTime(3600000);
Logger.setlevel(4);
}
every 30 {
Logger.report("Hourly - Executing Tasks");
}
every 18:00 {
Logger.report("Daily - performing maintenance");
Store.maintain("/customer/sales");
}
every We 17:30 {
Logger.report("Weekly - Performing Purge");
Store.purge("/customer/sales");
}
every 01 21:00 {
Logger.report("Monthly - Stopping interfaces and restarting");

160 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Interface.stopAll();
Interface.startAll();
}
every 01-Jan 00:00 {
Logger.report("Yearly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}
when (MemoryManager.FreeMemory <30000000) {
Logger.report("Memory below 30M, performing some clean up");
MemoryManager.FlushMemory("true");
} else {
Logger.report("Memory not below 30M, no clean up required");
}

}

Universal Messaging Scheduling : Store Triggers Example
scheduler myStore {
declare Store myPubChannel("myChannel");
declare Store myPubQueue("myQueue");

/*
Create the channels if they do not exist on the server
*/
initialise{
myPubChannel.createChannel(0, 0, "P");
myPubQueue.createQueue(0, 0, "M");
myPubChannel.publish("Data to store in the byte array", "tag info",

"key1=value1:key2=value2");
myPubQueue.publish("Data to store in the byte array", "tag info",

"key1=value1:key2=value2");
}

/*
At 4:30 each morning perform maintenance on the stores to release unused space
*/
every 04:30 {
myPubQueue.maintain();
myPubChannel.maintain();
}

/*
Every hour publish an event to the Channel
*/
every 0 {
myPubChannel.publish("Data to store in the byte array", "tag info",

"key1=value1:key2:value2");
myPubQueue.publish("Data to store in the byte array", "tag info",

"key1=value1:key2:value2");
}

/*
Every 1/2 hour purge the channels/queue
The purge takes 3 optional parameters
StartEID
EndEID
Filter string

So it could be
myPubChannel.purge(0, 100000);

or
myPubChannel.purge(0, 10000, "key1 = 'value1'");

Universal Messaging Administration Guide 10.7 161

2 Universal Messaging Enterprise Manager

*/
every 0 {
myPubChannel.purge();
myPubQueue.purge();
}
/*
When the number of events == 10 we purge the channel
*/
when(myPubChannel.numOfEvents == 10){
myPubChannel.purge();
}
/*
When the free space is greater then 60% perform maintenance
*/
when(myPubChannel.freeSpace> 60){
myPubChannel.maintain();
}
/*
When the number of connections on a channel reach 20 log an entry
*/
when(myPubChannel.connections == 20){
Logger.report("Reached 20 connections on the channel");
}
/*
Maintain all channels and queues at midnight every night
*/
every 00:00 {
Store.maintain("*");
}
}

Universal Messaging Scheduling : Interface Triggers Example
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter>= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}
}

Universal Messaging Scheduling : Memory Triggers Example
scheduler myMemory {
/*
Declare the MemoryManager task/trigger. Not really required to do
*/
declare MemoryManager mem;
/*
Just using the MemoryManager task / trigger and not the declared mem as an example.

162 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

*/
when (MemoryManager.freeMemory <10000000){
MemoryManager.flush(false);
}

/*
Now when the Free Memory on the realm drops below 1000000 bytes force the
realm to release ALL available memory

*/
when (mem.freeMemory <1000000){
mem.flush(true);
}

/*
This is the same as the one above, except not using the declared name.

*/
when (MemoryManager.freeMemory <1000000){
MemoryManager.flush(true);
}

/*
totalMemory available on the realm

*/
when (MemoryManager.totalMemory <20000000){
Logger.report("Declared Memory too small for realm");
}

/*
Out Of Memory counter, increments whenever the realm handles an out of memory exception
*/
when (MemoryManager.outOfMemory> 2){
Logger.report("Realm has run out of memory more then the threshold allowed");
}

}

Universal Messaging Scheduling : Realm Triggers Example
scheduler realmSchedule {
declare Realm myRealm ("productionmaster");
declare Config myGlobalConfig ("GlobalValues");
when (Realm.connections> 1000) {
Logger.report("Reached 1000 connections, setting max connections");
myGlobalConfig.MaxNoOfConnections(1000);
}
when (Realm.eventsSentPerSecond> 10000) {
Logger.report("Reached 10000 events per second, reducing max connection count by

100");
myGlobalConfig.MaxNoOfConnections("-100");
}

}

Universal Messaging Scheduling : Cluster Triggers Example
/*
This script tests the cluster triggers. It is assumed the cluster is created with 4
realms
named realm1, realm2, realm3, realm4
*/
scheduler myCluster{
declare Cluster myNode1("realm1");
declare Cluster myNode2("realm2");

Universal Messaging Administration Guide 10.7 163

2 Universal Messaging Enterprise Manager

declare Cluster myNode3("realm3");
declare Cluster myNode4("realm4");
/*
This will trigger when realm1 is online to the cluster
*/
when (myNode1.nodeOnline == true){
Logger.report("Realm1 online");
}
/*
This can also be written as
*/
when (Cluster.nodeOnline("realm1") == true){
Logger.report("Realm1 online");
}
when (myNode2.nodeOnline == true){
Logger.report("Realm2 online");
}
when (myNode3.nodeOnline ==true){
Logger.report("Realm3 online");
}
when (myNode4.nodeOnline == true){
Logger.report("Realm4 online");
}
when (Cluster.hasQuorum == true){
Logger.report("Cluster now has quorum and is running");
}
when (Cluster.isMaster("realm1") == true){
Logger.report("This local realm is the master realm of the cluster");
}
}

Universal Messaging Scheduling : Counter Trigger Example
scheduler myCounter{
/*
Define some new counters
*/
declare Counter counter1 ("myCounter");
declare Counter counter2 ("myAdditional");
/*
When the counter reaches 5 reset it to 0;
*/
when(counter2> 5){
counter2.reset();
}
/*
If counter1 is less then 3 then increment the value
*/
when(counter1 <3){
counter1.inc();
counter2.dec();
}
/*
if Counter2 equals 0 then set counter1 to 5
*/
when(counter2 == 0){
counter1.set(5);
}

164 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

}

Universal Messaging Scheduling :Time Triggers Example
scheduler myTimers{
/*
Define some new timers

*/
declare Timer reportTimer ("myTimer");
declare Timer testTimer ("myDelay");

initialise{
testTimer.stop();

}
/*
In 60 seconds log a report and start the second timer
*/
when(timer == 60){
Logger.report("Timer has fired!");
testTimer.start();
}

/*
When the second timer hits 30 seconds, log it and reset all timers to do it again
*/
when(testTimer == 30){
Logger.report("Test dela fired, resetting timers");
testTimer.reset();
testTimer.stop();
timer.reset();
}

}

Universal Messaging Scheduling : Configuration Example
scheduler myConfig {
/*
Declare local names for the Connection Config and the Logging Config configuration

groups.
Can be used for both triggers and tasks

*/
declare Config myConnectionConfig ("Connection Config");
declare Config myLoggingConfig ("Logging Config");

/*
When this scheduler task is initialised, set the Realms log level to 2

*/
initialise{
myLoggingConfig.fLoggerLevel(2);
}

/*
Then if the log level is ever set to 0, automatically reset it to 2.

*/
when(myLoggingConfig.fLoggerLevel == 0){
myLoggingConfig.fLoggerLevel(2);
}

/*
If the maximum number of connections on the realm is less than 0,
implying no limit, then set it to 100.

*/

Universal Messaging Administration Guide 10.7 165

2 Universal Messaging Enterprise Manager

when(myConnectionConfig.MaxNoOfConnections <0){
myConnectionConfig.MaxNoOfConnections(100);
}
}

Integration with JNDI

About Integration with JNDI
Universal Messaging supports integration with JNDI through its own provider for JNDI. The
Universal Messaging provider for JNDI enables clients usingUniversal Messaging Provider for JMS
to locate references to JMS administered objects.

As with all Java APIs that interface with host systems, JNDI is independent of the system's
underlying implementation. The Universal Messaging provider for JNDI stores object references
in the Universal Messaging channel /naming/defaultContext. The channel represents the initial
context for JNDI and locates references to the objects using a channel iterator. Note that if a realm
is part of a cluster, the channel is created on all cluster realm servers. This ensures that any object
references bound into the context are available on each realm server in the cluster.

You manage the provider for JNDI on the JNDI tab for a realm in the Enterprise Manager. On the
JNDI tab, you can create the provider and initial context for JNDI, TopicConnectionFactory and
QueueConnectionFactory references for JMS, as well as references to topics and queues.

The following image shows the JNDI namespace tree on the JNDI panel for a clustered realm after
the initial context was created.

The Initial JNDI Context and the JNDI Namespace

When you select the JNDI tab for a realm in the Enterprise Manager, if the initial JNDI context
does not exist, you are prompted to create it. The Enterprise Manager creates the channel

166 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

/naming/defaultContext in the namespace tree of the realm and, if the realm is part of a cluster,
on all other cluster realms. When the channel is initially created, full permissions are assigned to
the first client who creates it and to all other users and clients who want to use the channel.

Important:
If you delete the /naming/defaultContext channel, the JNDI context is destroyed and all existing
JNDI references are lost.

After you create the JNDI context, you can view the JNDI namespace tree. The root of the tree is
the JNDI provider URL. In the case of a cluster, the root shows a comma-separated list of RNAME
values for each server in the cluster.

If you are using a horizontal scalability connection factory, the URL syntax enables you to specify
multiple connection URLs, where each connection URL can specify either a standalone realm or
a cluster.

The JNDI namespace tree also contains the following folders:

Connection Factories

Queue Connection Factories

Queues

Topic Connection Factories

Topics

XA Connection Factories

To update the contents of the JNDI namespace tree with any changes done outside the current
Enterprise Manager instance, click Refresh.

Creating Connection Factories
You can create the following types of connection factories in the JNDI namespace of a realm in
the Enterprise Manager:

Connection factory - connects to both topics and queues

Topic connection factory - connects to topics

Queue connection factory - connects to queues

XA connection factory

To create any type of connection factory in the Enterprise Manager

1. Select a realm and go to the JNDI tab.

2. Right-click the relevant connection factory node, and then select the context menu to create a
new connection factory.

Universal Messaging Administration Guide 10.7 167

2 Universal Messaging Enterprise Manager

3. In the Add JNDI Connection Factory dialog box, specify values for the following fields:

DescriptionField

Required. The name of the new connection factory, for example
connectionFactory1.

Name

Required. The Universal Messaging realm URL for binding the
connection factory, for example nsp://localhost:9000. You can specify

Connection URL
(RNAME)

a cluster of realms by typing a comma-separated list of connection
URLs, for example nsp://localhost:9000,nsp://localhost:9010.

To use a horizontal scalability connection factory for round-robin
message delivery, you can specify several connection URLs, where
each connection URL can point to a standalone realm or a cluster. For
information about the URL syntax, see “The URL Syntax of a
Horizontal Scalability Connection Factory” on page 168.

Note:
Round-robin delivery is not supported for XA connection factories.

Supported only for the connection factory and topic connection factory
types. The durable type for durable consumers. Values are:

Durable Type

Named - Only one active consumer can exist at a time.

Shared - Multiple durable consumers can connect to the same
durable subscription and can consumemessages in a round-robin
manner.

Serial - Multiple durable consumers can connect to the same
durable subscription and can consumemessages in a serialmanner.

4. Click OK.

The URL Syntax of a Horizontal Scalability Connection Factory

Horizontal scalability connection factories enable clients to publish messages to a set of servers or
consume messages from a set of servers in a round-robin manner. The following rules apply to
the round-robin URL syntax:

Each connection URL must be enclosed in round brackets.

Each set of brackets must contain at least one valid connection URL.

There is no limit to the number of sets of brackets in the URL.

Each set of brackets indicates a unique connection, and the realm names in each set of brackets
are supplied unchanged to the underlying implementation.

Consider the following examples:

168 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

(UM1)(UM2)(UM3)(UM4) - Indicates four standalone realms, UM1, UM2, UM3, and UM4, so
four connections will be constructed here.

(UM1,UM2)(UM3,UM4) - Indicates two clusters, one consisting of UM1 and UM2, and the
other consisting of UM3 and UM4, so only two connections will be constructed here.

(UM1)(UM2,UM3)(UM4) - Indicates one cluster consisting of UM2 and UM3, and two
standalone realms: UM1 and UM4. A total of three connections will be constructed here.

Note:
Round-robin delivery is not supported for XA connection factories.

For more information about horizontal scalability connection factories, see the section "Overview
of the Provider for JMS" in the Developer Guide.

Creating References to Topics and Queues
When JMS clients use the Universal Messaging initial context for JNDI, they also reference the
topics and queues from the same initial context. In order for the clients to access these objects, you
must create references to each topic and queue. Creating such references also creates the underlying
channel or queue if it does not already exist, or you can create a reference that corresponds to a
channel or queue that already exists. Note that channels or queues created in this way have the
same default permissions as channels or queues created manually.

To create a reference to a channel or queue on the JNDI tab of a realm, right-click the Queues or
Topics node, then select New Queue or New Topic and specify a name for the queue or topic.

For example, if you create a topic named rates, and no corresponding channel existed previously,
the Enterprise Manager creates the rate topic under the Topics node in the JNDI namespace as
well as a new channel named rates that corresponds to it.

Viewing and Editing JNDI Settings of a Connection Factory

To view and edit JNDI setting for any type of connection factory

1. Go to the JNDI tab of a realm and expand the connection factory node.

2. Double-click the connection factory you want to edit.

The Edit JNDI Connection Factory dialog box displays the required JNDI settings including
the connection factory name, connectionURL, anddurable type for topic and generic connection
factories. You can also view any optional parameters defined for the connection factory.

3. Edit the connection factory settings as necessary:

For the required JNDI connection factory parameters, edit the value of the parameter.

For optional parameters, edit the key, value, or data type in the optional parameter table.

Universal Messaging Administration Guide 10.7 169

2 Universal Messaging Enterprise Manager

To add a new optional parameter, under Property Input, specify a key, value, and type
for the parameter, then click Add. The new parameter is added to the optional parameter
table.

To remove an optional parameter, select the parameter in the optional parameter table,
right-click it, and select Remove Property.

4. Click OK.

The Enterprise Manager publishes an event that contains the new JNDI settings to the
/naming/defaultContext channel and purges the old event that contained the previous settings.

Using Channel Snoop to View JNDI Settings
JNDI settings are stored as events on the /naming/defaultContext channel. You can use the channel
snoop functionality to view the individual events on the channel.

To snoop on the /naming/defaultContext channel in the Enterprise Manager, select the channel,
go to the Snoop tab, and click Start. The Snoop panel displays the events representing any JNDI
entries that have been created. When you select an event, you can see the event content and the
corresponding JNDI context information given to the JMS applications that require it.

Note:
You cannot use the snoop functionality to edit and republish JNDI settings on the
/naming/defaultContext channel. You can edit JNDI settings only on the JNDI tab of a realm.
If an old event on the channel is purged while you are viewing the Snoop panel, you must stop
the snoop and then start it again to see the changes reflected on the panel.

For more information about channel snooping, see “Snooping on a Channel” on page 104.

Administering TCP Interfaces, IP Multicast, and Shared Memory

About Working with Interfaces
Interfaces within a Universal Messaging realm server define a protocol, a network interface, and
a port number. When a Universal Messaging client connects to a realm using an RNAME, the
client actually connects to an interface that has been created on the Universal Messaging realm.

If amachine that is running aUniversalMessaging realm hasmultiple physical network interfaces,
with different IP addresses, you can bind specific protocols to specific ports. This way you can
segment incoming network traffic to specific clients. For example, if a realm is running on amachine
that has an external Internet-facing network interface, as well as an internal interface, you can
create a Universal Messaging interface that uses nhp or nhps on port 80 or 443, respectively, using
the external facing interface. However, if you do not want to segment network traffic for specific
protocols, you can choose to bind to all known network interfaces to the specified protocol and
port.

The default Universal Messaging interface is nhp. The default nhp interface enables clients to
connect to it using not only the nhp protocol, but also the nsp protocol. If you do not specify a

170 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

port for the default interface when you install or create a Universal Messaging server instance,
the default port is 9000.

You create, configure, and manage interfaces on the Comms > Interfaces tab for a realm in the
Enterprise Manager, as shown in the following image.

Creating Interfaces
The default Universal Messaging interface is nhp. The nhp interface enables clients to connect to
it using not only the nhp protocol, but also the nsp protocol. If you do not specify a port for the
default interface when you install or create a Universal Messaging server instance, the default
port is 9000. The default interface binds to 0.0.0.0, or to all known interfaces.

If you plan to add an SSL-enabled interface, either nsps or nhps, you must perform additional
steps. For more information, see “Creating an SSL-Enabled Interface” on page 178.

To add a new interface in the Enterprise Manager

1. Expand the Realms node and select the realm on which you want to create the interface.

2. Go to the Comms > Interfaces tab and click Add Interface.

3. Specify values for the following interface attributes:

Universal Messaging Administration Guide 10.7 171

2 Universal Messaging Enterprise Manager

ValueAttribute

The protocol of the interface. Values are:Interface Protocol

NSP (Socket Protocol)

NHP (HTTP Protocol)

NSPS (Secure Socket Protocol)

NHPS (Secure HTTP Protocol)

RDMA Protocol. Requires network adapters that support remote
direct memory access (RDMA).

The port on which the interface binds.Interface Port

The physical network towhich to bind, expressed either as an IP address
or a hostname. The default is 0.0.0.0, or all known interfaces. You can

Interface Adapter

use the hostname if you want the interface to be independent of the
underlying IP address. For details about using the 0.0.0.0 IP address,
see “Usage of 0.0.0.0 When Defining Interfaces” on page 172.

Whether the interface starts automatically after it is created, and after
the server is restarted.

Auto Start

4. Click OK.

The Enterprise Manager adds the new interface to the interfaces table. The interfaces table
shows the following attributes for an interface:

Name - Defined as protocol + n, where n is a unique sequence number for the interfaces
for that protocol.

Status - Shows whether the interface is in status 'Running', 'Stopped', or 'Error'. The error
status indicates that the interface did not start due to an error.

Adapter - The interface adapter.

Port - The interface port.

Threads - An indicator for the number of threads that the interface has free to accept
connections. A full green bar denotes all threads are free.

5. Define basic attributes for the interface.

Various default attributes for the interface are displayed in the Comms > Interfaces > Basic
panel. You may wish to modify these default values to suit your requirements. The attributes
are described in the section “Basic Attributes for an Interface” on page 173.

Usage of 0.0.0.0 When Defining Interfaces

172 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

When a client connects to a server, the server will deliver all interfaces that are marked as
"advertised" (this is, set using the check box Advertise Interface on the Comms > Interfaces >
Basic tab). If you have interfaces bound to 0.0.0.0 (that is all known interfaces), then this will
include both 127.0.0.1 (localhost) and any IP address that the server node has. This means that
the client will receive at least two interfaces that it will use to reconnect to the realm.

If the client connection is restarted, the client will attempt to iterate through this list of interfaces
until it is successful on reconnection. However, the order of iterating through this list is not
deterministic.

On a successful connection, the Universal Messaging realm server will construct a client principal
name in the format <userName>@<IP-Address> used to check permissions on realm resources, such
as channels or queues, where <IP-Address> is the IP address of the machine where the client is
running. The IP address of the client in turn depends on the network interface the client used to
connect to the server. In the example with a server adapter bound on all network interfaces
(0.0.0.0), a local client (on the samemachine as the server)may connect over the loopback interface
to the server (localhost) so the connection will come from 127.0.0.1, but that same client may also
connect over the real network interface, in which case the IP address will be the address of this
network interface. Thus one and the same client may end upwith different principal names when
reconnecting to the realm server. This may lead to permission issues if a resource's default ACL
has been established using one principal name, and is subsequently accessed with a different
principal name after a reconnection.

To avoid this, you should either create the interface for an external IP address (not "localhost") or
ensure that required ACLs are configured.

Basic Attributes for an Interface
Each interface on a Universal Messaging realm has a number of configurable attributes that
determine the interface behavior. The following sections describe the attributes that you can
configure on the Basic tab for an nsp, nsps, nhp, or nhps interface.

Accept Threads

Each Universal Messaging realm interface contains a server socket. TheAccept Threads attribute
corresponds to the number of threads that are able to perform the accept() for a client connection.
The accept() operation on a Universal Messaging interface performs the handshake and
authentication for the client connection. For more heavily utilised interfaces, the accept threads
will need to be increased. For example, on an nhp (http) or nhps (https) interface, each client
request corresponds to a socket accept() on the interface, and so the more requests being made,
the busier the interface will be, so the accept threads needs to be much higher than that of say an
nsp (socket) interface. Socket interfaces maintain a permanent socket connection, and so the
accept() is only performed once when the connection is first authenticated.

Advertise Interface

All interfaces that are advertised by a realm server are available to users (with the correct
permissions) of theUniversalMessagingAdminAPI. This property specifieswhether the interface
is indeed advertised to such users.

Universal Messaging Administration Guide 10.7 173

2 Universal Messaging Enterprise Manager

Alias

Each interface on a Universal Messaging realm server can have an associated alias in the form of
host:port. This alias can be specified here.

For information on interface plugins, see “Plugins” on page 185.

For information on adding VIA rules for an interface, see “About Interface VIA Lists” on page 127.

Allow Client Connections

If this attribute is activated, clients are allowed to connect to the realm over this interface.

If this attribute is deactivated, clients are not allowed to connect to the realm over this interface.
Note that Administration API connections, such as the Enterprise Manager, count as client
connections, so at least one of the available interfaces should allow such Administration API
connections. If a realm has been defined with only one interface and you deactivate the Allow
Client Connections attribute on the interface, this settingwill be ignored. This is because essential
administration tools like the Enterprise Manager would not otherwise be able to access the realm.

Allow for InterRealm

If this attribute is activated, the interface can be used for any of the following kinds of internal
communication (i.e. Universal Messaging's own message passing) between realms:

Inter-realm communication: between realms in the same cluster.

Inter-zone communication: between realms in a zone.

Inter-cluster communication: between realms in connected clusters.

Important:
If you do not activate this attribute for the interface, the interface cannot be used for any of the
above scenarios.

If you activate Allow for InterRealm and deactivate Allow Client Connections for the same
interface, the interface can only be used for internal communication between realms, so no
communication with an external client is possible using such an interface. There are situations in
which this configuration can be useful. For more information, see the section “Setting Up Inter-
Realm Communication” on page 86.

Autostart Interface

TheAutostart attribute specifieswhether the interface is started automaticallywhen theUniversal
Messaging realm server is started. When this option is not selected, the interface must be started
manually in order for it to be used by connecting clients. Please note that if Autostart is not set it
must be started either manually or using the Universal Messaging Administration API whenever
after the realm is started.

If Autostart is selected then the interface will be started once the Apply button is pressed.

174 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Auth Time

TheAuth Time attribute corresponds to the amount of time a client connection using this interface
can take to perform the correct handshake with the realm server. For example, the default is 10000
milliseconds, but for some clients connecting on slowmodems, andwho are using the nhps (https)
protocol, this defaultAuth Timemay need to be increased. If any client connection fails to perform
the handshake in the correct timeframe, the connection is closed by the realm server.

Backlog

The Backlog attribute specifies the maximum size of the incoming IP socket request queue. The
operating system that the realm server is running on may specify a maximum value for this
property. When the maximum queue size is reached the operating system will refuse incoming
connections until the request queue reduces in size and more requests can be serviced. For more
information on this value, please see the systemadministration documentation for yourOperating
System.

Enable HTTP 1.1

Enable the usage of HTTP 1.1 protocol on this interface.

Enable NIO

Specify whether NIO should be used for this interface.

Receive Buffersize

This specifies the size of the receive buffer on the socket.

Select Threads

TheSelect Threads option specifies the number of threads allocated tomonitor socket reads/writes
on the interface if NIO is enabled. When a socket needs to be read, these threads will fire and pass
on the request to the read thread pool. If the socket is blocked during awrite, thenwhen the socket
is available to be written to, these threads will fire and the request will be passed on to the write
thread pool. The number of select threads should not typically exceed the number of cores available.

Send Buffersize

This specifies the size of the send buffer on the socket.

Starting and Stopping Interfaces

To start or stop an interface for a realm in the Enterprise Manager, go to the Comms > Interfaces
tab for the realm and in the interfaces table, double-click in the interface row or, alternatively, click
in the Status column. In the dialog box that opens, click the Start or Stop button.

Universal Messaging Administration Guide 10.7 175

2 Universal Messaging Enterprise Manager

Modifying Interface Attributes
Each interface within a Universal Messaging realm has a number of common configuration
attributes that you can modify using the Enterprise Manager.

To modify the attributes for an interface

1. On the Comms > Interfaces tab for a realm, select the interface that you want to modify.

2. Click the Basic tab for the interface and modify the interface attributes as required.

For a description of each attribute, see “Basic Attributes for an Interface” on page 173.

3. Click Apply for the changes to take effect.

The interface is restarted. Any clients connected to the interface automatically reconnect to it after
the restart.

JavaScript Configuration Properties
Universal Messaging HTTP and HTTPS (nhp and nhps) interfaces have configuration properties
specific to their communication with web clients using JavaScript. You configure these properties
on the JavaScript tab for an nhp or nhps interface.

JavaScript Interface Properties

DescriptionProperty Name

Recommended Setting: EnabledEnable JavaScript

Allows JavaScript clients to connect on this interface.

Recommended Setting: EnabledEnable WebSockets

Toggles the ability for clients to communicate with the server using
the HTMLWebSocket Protocol on this interface.

Recommended Setting: EnabledCORS Allow Credentials

Toggles the server sending an "Access-Control-Allow-Credentials:
true" header in response to XHR-with-CORS requests from the client.
This is required if the application, orwebsite hosting the application,
or intermediate infrastructure such as reverse proxy servers or load
balancers, uses cookies.

Leave this enabled unless recommended otherwise by support.
Disabling this will in most environments prevent all CORS-based
drivers from working correctly.

176 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

DescriptionProperty Name

Recommended Setting: *CORS Allowed Origins

A comma-separated list of the host names (and IP addresses, if they
appear inURLs) of the server/s that host your JavaScript application's
HTML. Use an * (asterisk) as a wildcard value if you do not want to
limit the hosts that can serve applications to clients. This server will
accept and respondwith the requiredAccess-Control-Allow-Origin
header when requests originate from a hostname in this list. This
header allows CORS enabled transport mechanism to bypass cross
site security restrictions in modern browsers.

It is important that this is set appropriately, or approximately half
of the communication drivers available to JavaScript clientswill fail.

Recommended Setting: EnabledEnable GZIP for LongPoll

This will allow the server to gzip responses sent to LongPoll clients.
This can reduce network utilization on servers with many LongPoll
clients. It increases CPU resource utilization.

Recommended Setting: 1000GZIP Minimum Threshold

Theminimummessage size is bytes required for the server to begin
compressing data sent to LongPoll clients.

Recommended Setting: 100Long Poll Active Delay

The time between clients sending long poll requests to the server in
milliseconds. Reducing this may reduce latency up to a certain
threshold butwill increase both client and servermemory, CPU and
network usage.

Recommended Setting: 25000Long Poll Idle Delay

The time between clients sending long poll when the client is in idle
mode. A client is put in idle mode when no communication takes
place between client and server for a period of time. Reducing this
may be necessary if a client is timing out owing to local TCP/IP
settings, proxy settings, or other infrastructure settings, but will
result in higher memory, CPU and network usage on both the client
and the server. It is however vital that this value is lower than the
timeouts used in any intermediate proxy server, reverse proxy server,
load balancer or firewall. Sincemany such infrastructure components
have default timeouts of as little as 30 seconds, a value of less than
30000 would be prudent. If long polling client sessions continually
disconnect and reconnect, then lower this value.

Header Key/Value pairs which are sent in the HTTP packets to the
client.

Custom Header Config

Universal Messaging Administration Guide 10.7 177

2 Universal Messaging Enterprise Manager

About SSL Interfaces
Universal Messaging supports SSL encryption by providing the nsps and nhps SSL-enabled
protocols. These protocols enable clients to connect to a UniversalMessaging realm server running
a specific protocol on a port using all or specific physical network interfaces.

Defining an SSL-enabled interface ensures that clients can connect to a realm server only after
presenting the correct SSL credentials and authenticating with the server.

SSL authentication occurs within the Universal Messaging handshake, which uses the JVM's JSSE
provider. This ensures that any unauthorized connections are SSL-authenticated before any
Universal Messaging specific operations can be performed.

You create an SSL-enabled interface in the same way as you create a non-SSL interface, but you
must configure several SSL-related attributes in addition to the basic attributes.

For information about how to create an SSL interface using the Universal Messaging Enterprise
Manager, see “Creating an SSL-Enabled Interface” on page 178.

Creating an SSL-Enabled Interface
To add an SSL-enabled interface using the EnterpriseManager, first create an nsps or nhps interface
as described in “Creating Interfaces” on page 171.

The following image shows an nhps (HTTPS) interface listening on port 9443.

178 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Click the Certificates tab. You can see that the values for the Key store path and Trust store
pathfields are automatically specified. In theUniversalMessaging download,we provide a utility
called Certificate Generator that can generate sample .jks files containing certificates bound to
localhost, for the server, the client, and the truststore used by JSSE. In this example, we use the
sample jks files to demonstrate how to create an SSL interface. For detailed information about
generating certificates, see “How to Generate Certificates for Use” on page 180.

The Key store path field should contain something similar to:
c:\SoftwareAG_directory\UniversalMessaging\server\umserver\bin\server.jks

which should be the path to the sample Java keystore for the server, bound to localhost.

The Trust store path field should contain something similar to the following:
c:\SoftwareAG_directory\UniversalMessaging\server\umserver\bin\nirvanacacerts.jks

Then specify the value password forKey Store Passwd andCA Store Passwd. This is the password
for both the server keystore and the CA (truststore) keystore.

Next, go to the Basic tab and select the Autostart Interface option to start the interface
automatically when the Universal Messaging realm server starts.

Note:
If you intend to use an SSL interface for inter-realm communication, you should ensure that
theAllow for InterRealm option is selected and theAllow Client Connections option is cleared.
Alternatively, if you intend to use an SSL interface for communication between clients and the
realm, you should ensure that the Allow for InterRealm option is cleared and the Allow Client
Connections option is selected. For information about inter-realm communication, see “Setting
Up Inter-Realm Communication” on page 86.

Click Apply to save your changes and start the interface. If the network interface fails to start,
inspect the Universal Messaging log file.

There is no limit to the number of network interfaces that can be added to a realm and each can
have its own configuration, such as SSL chains, applied. This enables you to isolate customers
from each other while still using only one Universal Messaging realm server.

In this example we have used our own sample Java keystores, which will only work when using
the loopback interface of your realm server host. If youwant to provide SSL capabilities for remote
connections, you must ensure you have your own keystores and valid certificate chains.

Connecting to an NHPS Interface

To connect to an nhps interface on a Universal Messaging server in the Enterprise Manager, you
configure the following truststore and client keystore properties in the Software AG_directory
\UniversalMessaging\java\instance_name\bin\Admin_Tools_Common.conf file of the server:

set.default.CAKEYSTORE=<path_to_truststore> - Required.

set.default.CAKEYSTOREPASSWD=<truststore_password> - Required.

Universal Messaging Administration Guide 10.7 179

2 Universal Messaging Enterprise Manager

set.default.CKEYSTORE=<path_to_client_keystore> - Required onlywhen client authentication
is enabled.

set.default.CKEYSTOREPASSWORD=<keystore_password> - Required only when client
authentication is enabled.

The certificates must be in .jks (Java keystore) or PKCS12 format.

If you choose not to specify a client keystore certificate and а kesystore password, you must
comment out these properties using a hash (#) in the nenterprisemgr.conf and
Admin_Tools_Common.conf files.

Important:
If you have these properties configured both in the Software AG_directory
\UniversalMessaging\java\instance_name\bin\nenterprisemgr.conf file and
Admin_Tools_Common.conf file, the values in nenterprisemgr.conf override the values in
Admin_Tools_Common.conf. Software AG recommends that you configure the properties in
the Admin_Tools_Common.conf file.

In addition, optionally, you can configure an nhps url to which clients connect by default. You
specify the url as a value of the -DRNAME property in the nenterprisemgr.conf file of the server,
for example:
wrapper.java.additional.3=-DRNAME=nhps://umserver:8000

Enabling Client Authentication

You use the Enable Client Cert Validation check box on the Interfaces > Certificates tab to
enable or disable client authentication for an nhps or an nsps interface on a Universal Messaging
server. If you enable client authentication, you must specify the client keystore certificate and
kesystore password as properties in the nenterprisemgr.conf or the Admin_Tools_Common.conf
file of the server instance.

How to Generate Certificates for Use

Generating Demo / Development Certificates

To generate a demo SSL certificate, you can use the Java keytool utility or the UniversalMessaging
Certificate Generator utility.

Note:
TheCertificateGenerator utility is deprecated inUniversalMessaging v10.2 andwill be removed
in a future version of the product.

The third-party Java keytool utility can be used to create and handle certificates. Keytool stores
all keys and certificates in a keystore.

The Universal Messaging Certificate Generator utility can be used to generate a self signed server
certificate, a self signed client certificate, and a trust store for the above two.

180 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

You can run the Certificate Generator from the Start Menu on Windows by selecting the
server/<realm name>/Create Demo SSL Certificates.

Alternatively, you can open a server command prompt and run the utility as required for your
platform:

Windows systems:

CertificateGenerator.exe

UNIX-based systems:

./CertificateGenerator

OS X:

./CertificateGenerator.command

This will generate three files:

client.jks : Self signed certificate you could use if you have client certificate authentication
enabled.

server.jks : Self signed certificate with a CN=localhost . Please note: You can only connect to
interfaces using this by specifying a localhost RNAMEdue to the HTTPS protocol restrictions.

nirvanacacerts.jks: Keystore that contains the public certificate part of the 2 key pairs above.
This should be used as a trust store by servers and clients.

It is also possible to customize some elements of these certificates stores such as the password, the
host bound to the server CN attribute and they key size. This can be done by passing the following
optional command line arguments to the Certificate Generator:

Windows systems:

CertificateGenerator.exe <password> <host> <key size>

UNIX-based systems:

./CertificateGenerator <password> <host> <key size>

OS X:

./CertificateGenerator.command <password> <host> <key size>

Generating Production Certificates

Tto obtain a real SSL certificate, you must first generate a CSR (Certificate Signing Request). A
CSR is a body of text that contains information specific to your company and domain name. This
is a public key for your server.

The Java keytool utility can be used to create and handle certificates. Keytool stores all keys and
certificates in a keystore. For a detailed description of keytool please see its documentation.

Step 1: Create a keystore

Universal Messaging Administration Guide 10.7 181

2 Universal Messaging Enterprise Manager

Use the keytool to create a keystore with a private/public keypair.

keytool -genkey -keyalg "RSA" -keystore keystore -storepass password -validity 360

You will be prompted for information about your organization. Please note that when it asks for
"User first and last name", please specify the hostname that Universal Messaging will be running
on (e.g. www.yoursite.com).

Step 2: Create a certificate request

Use the keytool to create a certificate request.

keytool -certreq -keyalg "RSA" -file your.host.com.csr -keystore keystore

This will generate a file containing a certificate request in text format. The request itself will look
something like this :
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBtTCCAR4CAQAwdTELMAkGA1UEBhMCVVMxDzANBgNVBAgTBmxvbmRvbjEPMA0GA1UEBxMGbG9u
ZG9uMRQwEgYDVQQKEwtteS1jaGFubmVsczEMMAoGA1UECxMDYml6MSAwHgYDVQQDExdub2RlMjQ5
Lm15LWNoYW5uZWxzLmNvbTCBnzANBeddiegkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAycg0MJ7PXkQM9sLj
1vWa8+7Ce0FDU4tpcMXlL647dwok3uUGXuaz72DmFtb8OninjawingsjxrMBDK9fXG9hqfDvxWGyU0DEgbn+Bg

O3XqmUbyI6eMzGdf0vTyBFSeQIinigomontoyaU9Ahq1T7C6zlryJ9n6XZTW79E5UcbSGjoNApBOgVOCPKBs7/CR
hZECAwEAAaAAMA0GCSqGSIb3DQEBBAUAA4GBAB7TkFzQr+KvsZCV/pP5IT0c9tM58vMXkds2J7TY
Op3AueMVixRo14ruLq1obbTudhc385pPgHLzO7QHEKI9gJnM5pR9yLL72zpVKPQ9XOImShvO05Tw
0os69BjZeW8LTV60v4w3md47IeGE9typGGxBWscVbXzB4sgVlv0JtE7b
-----END NEW CERTIFICATE REQUEST-----

Step 3: Submit your certificate request to a certificate supplier

Certificate vendors will typically ask you to paste the certificate request into a weborder form.
This will be used as a public key to generate you private key. Please include the (BEGIN and END)
tags when you paste the certificate request.

Please note that a cert of PKCS #7 format is required so that it can be imported back into keytool.
(step 4)

The certificate vendor will then provide you with a certificate which that will look something like
this:

Please paste this certificate into a file called your.host.com.cer [Note. please include the (BEGIN
and END) tags]
-----BEGIN PKCS #7 SIGNED DATA-----
MIIFpAYJKoZIhvcNAQcCoIIFlTCCBZECAQExADALBgkqhkiG9w0BBwGgggV5MIIC
2DCCAkGgAwIBAgICErYwDQYJKoZIhvcNAQEEBQAwgYcxCzAJBgNVBAYTAlpBMSIw
IAYDVQQIExlGT1IgVEVTVElORyBQVVJQT1NFUyBPTkxZMR0wGwYDVQQKExRUaGF3
dGUgQ2VydGlmaWNhdGlvbjEXMBUGA1UECxMOVEVTVCBURVNUIFRFU1QxHDAaBgNV
BAMTE1RoYXd0ZSBUZXN0IENBIFJvb3QwHhcNMDQwOTA2MTYwOTIwWhcNMDQwOTI3
MTYwOTIwWjB1MQswCQYDVQQGEwJVUzEPMA0GA1UECBMGbG9uZG9uMQ8wDQYDVQQH
EwZsb25kb24xFDASBgNVBAoTC215LWNoYW5uZWxzMQwwCgYDVQQLEwNiaXoxIDAe
BgNVBAMTF25vZGUyNDkubXktY2hhbm5lbHMuY29tMIGfMA0GCSqGSIb3DQEBAQUA
A4GNADCBiQKBgQDJyDQwns9eRAz2wuPW9Zrz7sJ7QUNTi2lwxeUvrjt3CiTe5QZe
5rPvYOYW1vw6PGswEMr19cb2Gp8O/FYbJTQMSBuf4GA7deqZRvIjp4zMZ1/S9PIE
VJ5AhT0CGrVPsLrOWvIn2fpdlNbv0TlRxtIaOg0CkE6BU4I8oGzv8JGFkQIDAQAB
o2QwYjAMBgNVHRMBAf8EAjAAMDMGA1UdHwQsMCowKKAmoCSGImh0dHA6Ly93d3cu

182 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

dGhhd3RlLmNvbS90ZXN0Y2VydC5jcmwwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG
AQUFBwMCMA0GCSqGSIb3DQEBBAUAA4GBAHGPR6jxU/h1U4yZGt1BQoydQSaWW48e
r7slod/2ff66LwC4d/fymiOTZpWvbiYFH1ZG98XjAvoF/V9iNpF5ALfIkeyJjNj4
ZryYjxGnbBa77GFiS4wvUk1sngnoKpaxkQh24t3QwQJ8BRHWnwR3JraNMwDWHM1H
GaUbDBI7WyWqMIICmTCCAgKgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBhzELMAkG
A1UEBhMCWkExIjAgBgNVBAgTGUZPUiBURVNUSU5HIFBVUlBPU0VTIE9OTFkxHTAb
BgNVBAoTFFRoYXd0ZSBDZXJ0aWZpY2F0aW9uMRcwFQYDVQQLEw5URVNUIFRFU1Qg
VEVTVDEcMBoGA1UEAxMTVGhhd3RlIFRlc3QgQ0EgUm9vdDAeFw05NjA4MDEwMDAw
MDBaFw0yMDEyMzEyMTU5NTlaMIGHMQswCQYDVQQGEwJaQTEiMCAGA1UECBMZRk9S
IFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEChMUVGhhd3RlIENlcnRpZmlj
YXRpb24xFzAVBgNVBAsTDlRFU1QgVEVTVCBURVNUMRwwGgYDVQQDExNUaGF3dGUg
VGVzdCBDQSBSb290MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC1fZBvjrOs
fwzoZvrSlEH81TFhoRPebBZhLZDDE19mYuJ+ougb86EXieZ487dSxXKruBFJPSYt
tHoCin5qkc5kBSz+/tZ4knXyRFBO3CmONEKCPfdu9D06y4yXmjHApfgGJfpA/kS+
QbbiilNz7q2HLArK3umk74zHKqUyThnkjwIDAQABoxMwETAPBgNVHRMBAf8EBTAD
AQH/MA0GCSqGSIb3DQEBBAUAA4GBAIKM4+wZA/TvLItldL/hGf7exH8/ywvMupg+
yAVM4h8uf+d8phgBi7coVx71/lCBOlFmx66NyKlZK5mObgvd2dlnsAP+nnStyhVH
FIpKy3nsDO4JqrIgEhCsdpikSpbtdo18jUubV6z1kQ71CrRQtbi/WtdqxQEEtgZC
JO2lPoIWMQA=
-----END PKCS #7 SIGNED DATA-----

Step 4: Store the certificate in your keystore

Use the keytool to store the generated certificate :

keytool -keystore keystore -keyalg "RSA" -import -trustcacerts -file your.host.com.cer

Once step 4 is completed you now have a Universal Messaging server keystore and can add an
SSL interface (see “Creating an SSL-Enabled Interface” on page 178).

Note that if you completed steps 1 to 4 for test certificates then you will also need to create a store
for the CA root certificate as Universal Messaging will not be able to start the interface until it
validates where it came from. Certificate vendors typically provide test root certificates which are
not recognized by browsers etc. In this case you will need to add that cert to another store and use
that as your cacert.When specifying certificates for aUniversalMessaging SSL interface thiswould
be specified as the Trust Store Path in the certificates tab.

If you are using anonymous SSL then you will have to provide this cacert to clients also as this
will not be able to validate the Universal Messaging certificate without it. Please see the Security
section of our Concepts guide for more information on configuring Universal Messaging clients
to use certificates.

Adding a Multicast Configuration
The IP multicast functionality provides ultra-low latency to a large number of connected clients
for both the delivery of events to data group consumers and between inter-connected realms in a
Universal Messaging cluster.

For more information about multicast messaging, see the sectionMulticast: An Overview in the
Concepts guide.

To add a multicast configuration in the Enterprise Manager

Universal Messaging Administration Guide 10.7 183

2 Universal Messaging Enterprise Manager

1. Expand the Realms node and select the realm to which you want to add a multicast
configuration.

2. Go to the Comms > Multicast tab and click Add Multicast Config.

3. Specify values for the following multicast attributes:

DescriptionAttribute

The multicast IP address.Multicast Address

The address of the network adapter that you configured formulticast.Adapter Address

4. Click OK.

You can view the new multicast configuration in the multicast configurations table.

5. Click the Basic tab of the multicast configuration and do any of the following:

To use the configuration for data groups, select Use for DataGroups.

To use the configuration for inter-realm communication in a cluster, selectUse for Clusters.

6. Click Apply.

Considerations When Using Multicast

Depending on the purpose of your multicast configuration, consider the following information:

To use your multicast configuration for data groups, when you create a data group in the
Enterprise Manager, you must select the Multicast option. For more information about how
to create a data group, see “CreatingData Groups” on page 119. If you create your data groups
programmatically, when you call nSession.createDataGroup, you must pass an additional
boolean that marks the data group as multicast-enabled.

To use your multicast configuration for inter-realm communication in a cluster, you must set
theUse for Clusters option on each cluster realm that hasmulticast configured. Themulticast
address can be the same for all realms, or you can choose a different multicast address for each
realm. With this feature enabled, each realm will know the multicast address for each of the
other realms in the cluster and will listen on these addresses for inter-realm cluster
communication.

Advanced Multicast Settings

The default settings for the multicast configurations you create are aimed at providing the lowest
possible latency. With this in mind, the configuration is such that the multicast client will ack
every one second, and the server will maintain a list of un-acked events (default 9000). If the
publish rate exceeds 9000 per second, the delivery rates might be quite irregular. This is due to
the fact that the clientwill only acknowledge every one second, and so the serverwill automatically

184 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

back off the delivery until it receives an acknowledgement from the client and can therefore clear
its unacknowledged queue. If this happens, you can change both the UnackedWindow Size to be
greater than 9000 and the Keep Alive Interval (ack interval) to be less than one second.

Adding a Shared Memory Configuration

To add a shared memory (SHM) configuration in the Enterprise Manager

1. Expand the Realms node and select the realm to which you want to add a shared memory
configuration.

2. Go to the Comms > Shared Memory tab and click Add SHM Config.

3. Specify values for the following shared memory attributes:

DescriptionAttribute

The directory in which the files required for SHM communication are
created. When choosing a path, ensure that the local user id of the

Path

server can access this directory, for example, /dev/shm requires root /
super user access, otherwise SHM communication will not work. The
default value is /dev/shm.

The size of the allocated memory in bytes that a connection will use.
Creates a file of the same size, which is used for mapping. The default
value is 1024000.

Buffer Size

The idle timeout for a connection in milliseconds. If no activity is
detected on the connection, the connection is closed. The default value
is 20000.

Timeout

4. Click OK.

You can view and edit the new SHM configuration in the shared memory configurations table.
To edit an attribute, double-click in the row and type a new value, then click Apply.

Plugins

The Universal Messaging realm server supports the concept of plugins within the context of the
NHPorNHPSprotocol. The plugins are initiatedwhen the underlyingUniversalMessaging driver
receives an HTTP/S packet that is not part of the standard Universal Messaging protocol. At this
point, it passes the request over to the plugin manager to see if there is any registered plugin
interested in the packet's URL. If there is such a plugin, the request is forwarded to this plugin for
processing. Universal Messaging supports several plugins.

Note:

Universal Messaging Administration Guide 10.7 185

2 Universal Messaging Enterprise Manager

The following server plugins are deprecated in UniversalMessaging v10.2 andwill be removed
in a future version of the product: Graphics, XML, Proxy passthrough, Servlet.

Configuring a Plugin

You can configure a plugin using both the Administration API and the Enterprise Manager.

Before adding a plugin, you must create the nhp or nhps interface that will use the plugin on the
realm where you want to run the plugin. For more information, see “Creating Interfaces” on
page 171.

After you create the interface, proceed as follows to add a plugin using the Enterprise Manager:

1. In the navigation frame, select the realm where you want to add the plugin.

2. In the Realm Details frame, navigate to the list of defined interfaces for the realm, using
Comms > Interfaces.

3. Select the interface from the table of configured interfaces.

4. Select the tab Plugins from the interface configuration panel.

5. Click Add Plugin. This displays the plugin configuration dialog, which enables you to choose
which plugin you want to add.

The URL Path

When you configure a plugin, you are required to add a URL path. The URL path is what the
realm server uses to determine if the request is destined for a plugin. If the server name and path
within theURL supplied in the plugin configuration dialogmatch the server name and pathwithin
the request to a configured plugin, the request is passed to the correct configured plugin for
processing.

For example, if a request with a URL of http://realmServer/pluginpath/index.html is made to
the server, the file path will be extracted, i.e. pluginpath/index.html, and the configured plugins
will be scanned for a match. If there is a file plugin configured with a URL path pluginpath, then
this plugin will get a request for index.html.

Similarly, if a requestwith aURLof http://realmServer/pluginpath/pictures/pic1.jpg is received,
then the same file plugin will get a request for pictures/pic1.jpg.

When adding the HealthMonitor plugin, the URL path should always include a trailing slash, for
example http://localhost:9000/test/.

File Plugin
The file plugin enables the Universal Messaging realm server to serve static web pages. This can
be used for example to have the realm server serve applets and supported files without the need
for a dedicatedweb server. For example, if you are running a file plugin on your realm server host
called webhost, on an nhp interface running on port 80, you could type in a URL within a web

186 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

browser http://webhost:80/index.htmlwhich will return the index page defined within the file
plugin's base path directory.

This enables the realm server to act as a web server and can even be used to serve applets to client
browsers that may directly communicate with the realm server and publish and consume events
from channels.

Important:
The root file directory that the file plugin points to using the BasePath parameter can be any
disk location. All files under that location are potentially visible to any HTTP client that can
connect to the Universal Messaging realm server. We would recommend that you do not point
the file plugin to a directory that contains any sensitive data, without also configuring suitable
access controls. These could be at the network level (restricting network access to the server),
in the file plugin configuration (it supportsHTTPbasic authenticationwith a username/password
file) or by using file permissions at the Operating System level (so that sensitive data cannot be
read by the realm server process). Or of course a combination of these.

Configuration

Once you have created the file plugin on the interface you require it on, you can then select it from
the Plugins panel for the selected interface and enter values as you wish for the configuration
parameters.

The file plugin requires configuration information defining its behavior as well as the location of
the files it is required to serve to the clients. Below is a table that shows each configuration parameter
and describes what it is used for.

Default ValueDescriptionParameter Name

1024Size of the internal buffer to use to
send the data.

BufferSize

The UniversalMessaging/doc
directory under the product
installation directory.

Path used to locate the files.BasePath

index.htmlIf no file name is specified which file
should be returned.

DefaultName

None.Name of the file to send when file
cannot be located

FileNotFoundPage

None.Name of the file containing the
usernames and passwords.

UserFile

None.Name of the authentication realmSecurity Realm

Built in types used.Name of the file to load themime type
information from. The format of this
file is : <mimetype> <fileExtension>

MimeType

Universal Messaging Administration Guide 10.7 187

2 Universal Messaging Enterprise Manager

Default ValueDescriptionParameter Name

100Number of objects to store in the
cache

CachedObjects

20KSize in bytes that can be stored in the
cache

CacheObjectSize

FALSEChoose true to have separate log files
for the access and error logs.

SeparateAccessandErrorLogs

For example, on the Comms > Interfaces tab, you can have an nhp interface running on port
9000. This interface has a file plugin configured with the default settings and its URL path is /.
The default BasePath setting is the UniversalMessaging/doc directory in the file hierarchy for your
local product installation, which is where the default product installation places the Universal
MessagingAPI docs. Once the plugin is created, you can click theApply button, whichwill restart
the interface and enable the new file plugin.

From a browser, it is now possible to enter the URL http://localhost:9000/which will then
render the default index.html page from the UniversalMessaging/doc directory for the API docs.

XML Plugin
You can use the XML plugin to query the realm server, its queues and channels. It returns the data
in XML format. This plugin also supports style sheets, so the XML can be transformed into HTML
or any format required. For example, a client can publish XML data onto a Universal Messaging
realm's channel, then using a standard web browser, get the server to transform the XML into
HTML via a stylesheet, thereby enabling the web browser to view events on the realm.

This functionality enables realm data to be viewed from a channel without any requirement for a
Java client. All that is required is for the client to have a browser.

Important:
Never include XSL code from untrusted sources into the plugin's XSL code, as this can lead to
a security risk for the client browser (or other client application) accessing the plugin. The
Universal Messaging realm server itself is not at risk, since it does not execute the plugin's XSL
code.

Configuration

Once you have created the XML plugin on the interface you require it on, you can then select it
from thePlugins panel for the selected interface and enter values as youwish for the configuration
parameters.

The XML plugin requires configuration information relating to its behavior as well as the entry
point in the namespace for the channels you wish to make available to serve to the clients. Below
is a table that shows each configuration parameter and describes what it is used for.

188 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Default ValueDescriptionParameter Name

/Name of the channel or folder to render.ChannelRoot

None.Name of the authentication realmSecurity Realm

None. If you specify a filename
without a path, the default path is

Name of the style sheet file to use to
process the resulting XML.

StyleSheet

UniversalMessaging/server/<InstanceName>/bin
under the product installation root
location.

None.Name of the file containing the
usernames and passwords

UserFile

Note:
As a starting point for creating your own stylesheet, you can use the stylesheet xml2html.xsl
that is supplied in the UniversalMessaging/doc/style directory in the file hierarchy for your
local product installation.

For example, on the Comms > Interfaces tab, you can have an nhp interface running on port
9005. This interface has an XML plugin configured to use the xml2html.xsl stylesheet and its URL
path as /xml. The default ChannelRoot setting is /, which is the root of the namespace, i.e. all
channels. Once the plugin is created, you can click theApply button, whichwill restart the interface
and enable the new XML plugin.

From a browser, you can now enter the URL http://localhost:9005/xml/which will render the
realm information page using the stylesheet.

The XML plugin will determine whether the events on the channel contain byte data, dictionaries
or XML documents and return the relevant elements within the XML document. The stylesheet
applied to the XML document then examines each element to find out how to render it within the
browser. Each event on the channel or queue is shown in the table with event ID, its size in bytes
and links to either the byte data, the dictionary or the XML data. These links are generated by the
stylesheet. Clicking on the data or dictionary links will again return an XML document from the
XML plugin that will be rendered to show either the base64 encoded event data or the event
dictionary.

If any events contain XML documents, these will be returned directly from the XML plugin. The
stylesheet providedwill not render event XMLdocuments, since the structure of these is unknown.
You will need to provide your own stylesheet to render your own XML event documents.

Proxy Passthrough Plugin
The Proxy Passthrough Plugin can be used to forward http(s) requests from specific URLs to
another host. For example, if you want to forward requests from one realm to another realm, or
to another web server, you can use the proxy passthrough plugin.

This functionality enables realms to act as a proxy to forwardURL requests to any host that accepts
http(s) connections.

Universal Messaging Administration Guide 10.7 189

2 Universal Messaging Enterprise Manager

Configuration

Once you have created the proxy passthrough plugin on the interface you require it on, you can
then select it from the plugins panel for the selected interface and enter values as you wish for the
configuration parameters.

The proxy passthrough plugin requires configuration information relating to the host and port
that requests will be forwarded to. Below is a table that shows each configuration parameter and
describes what it is used for.

Default ValueDescriptionParameter Name

Host name of the process that requests
for the URL will be forwarded to

HostName

80Port on which the requests will be sent
to the host

Port

For example, on the Comms > Interfaces tab, you can have an nhp interface running on port
9000. This interface has a proxy passthrough plugin configured to redirect requests from this
interface using the URL path of /proxy and will forward these requests to any File Plugins and
XML Plugins located on the productionmaster realm's nhp interface running on port 9005.

From a browser, it is now possible to enter the URL http://localhost:9000/proxy/which will
redirect this request to the interface on the productionmaster realm interface running on port 9005.
This will display the details of the productionmaster realm as if you had specified the URL
http://productionmaster:9005/ in your browser.

REST Plugin
The REST plugin allows access to the Universal Messaging REST API, and can be enabled on any
HTTP or HTTPS (NHP or NHPS) interface. The Universal Messaging REST API is designed for
publishing, purging and representing events published on channels and queues in 2 initial
representations: JSON and XML.

The Universal Messaging REST API supports three different HTTP commands. GET is used for
representations of events, POST for publishing andPUT for purging. BothXMLand JSONsupport
byte arrays, XML andDictionary events for publishing, whichmap to native UniversalMessaging
event types. There are two MIME types available: text and application.

Configuration

Once you have created the REST plugin on the interface you require it on, you can then select it
from the plugins panel for that interface and enter values as desired for the configuration
parameters.

190 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Default ValueDescriptionParameter Name

BlankAdd the username to the session's cookies.AddUserAsCookie

BlankA list of key=value strings, which are passed to the
Authenticator's init() function.

AuthParameters

BlankClassname of Authenticator to use. If blank, no
authentication is used.

Authenticator

FalseEnables Realm status details. Default is disabled, for
security reasons.

EnableStatus

BlankA comma separated list of groups. The user must be
amember of at least one in order to be granted access.

GroupNames

FalseIncludes type information for event dictionaries.IncludeTypeInfo

BlankName of the namespace folder to be used as root.NamespaceRoot

TrueIf set to true and authentication is enabled,
fAuthenticator.reload() is called on each request.

ReloadUserFileDynamically

BlankA comma-separated list of names. The user must
have at least one to gain access.

RoleNames

BlankName of the authentication realm.Security Realm

300Time in seconds to time-out inactive http sessions.SessionTimeout

The REST plugin supportsWADLdocumentationwhich is accessible through theHTTPOPTIONS
command. Once you have completed setting up your REST plugin, you can verify it works by
opening a browser to the NHP interface in the mount URL path, and appending the query string
?method=options. For example, for anNHP interface running on port 9000 on localhost, and having
the pluginmounted on "/rest", open a browser to http://localhost:9000/rest/API?method=options.

Following this will display an HTML version of the full Universal Messaging REST API
documentation which is generated by applying an XSL processor to the WADL XML document.
TheXMLdocument itself can be obtained by accessing the pluginURLwithout the ?method=options
query string. For example, the curl command line tool can be used as follows:
curl -XOPTIONS http://localhost:9000/rest/API

What follows is a summary of the three HTTP commands for both XML and JSON, and what
functionality each provides, as well as detailed examples of requests and responses for each
command.

XML: GET

Provides XML representations of channels/queues or events in a channel or queue as specified by
the ChannelOrQueue parameter. The parameter is represented by the URI Path following the
REST Plugin mount.

Universal Messaging Administration Guide 10.7 191

2 Universal Messaging Enterprise Manager

If the value supplied corresponds to aUniversalMessaging namespace container, the representation
returned is a list of channels and queues present in the container. If the value supplied corresponds
to a channel or queue then the representation returned is a list of events. Finally if the value
supplied does not correspond to either a container or a channel / queue a 404 response will be
returned with no body.

Available response representations:

“text/xml” on page 193

“application/xml” on page 193

XML: POST

Allows publishing of an event to a channel or queue specified by the ChannelOrQueue parameter,
which is represented by the URI Path following the REST Plugin mount. For example http://
localhost:9000/rest/API/xml/testchannel expects an XML byte, XML or dictionary event to be
published to channel testchannel.

Acceptable request representations:

“text/xml” on page 198

“application/xml” on page 198

Available response representations:

“text/xml” on page 202

“application/xml” on page 202

XML: PUT

Allows purging of 1 or more events already published on a channel or queue specified by the
ChannelOrQueue parameter, which is represented by the URI Path following the REST Plugin
mount. For example http://localhost:9000/rest/API/xml/testchannel expects a request to purge
events to be published to channel testchannel. Purging can be specified by EID and selector.

Acceptable request representations:

“text/xml” on page 202

“application/xml” on page 202

Available response representations:

“text/xml” on page 202

“application/xml” on page 202

192 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

JSON: GET

Provides JSON representations of channels/queues or events in a channel or queue as specified
by the ChannelOrQueue parameter. The parameter is represented by the URI Path following the
REST Plugin mount.

If the value supplied corresponds to aUniversalMessaging namespace container, the representation
returned is a list of channels and queues present in the container. If the value supplied corresponds
to a channel or queue then the representation returned is a list of events. Finally if the value
supplied does not correspond to either a container or a channel / queue a 404 response will be
returned with no body.

Available response representations:

“application/json” on page 203

JSON: POST

Allows publishing of an event to a channel or queue specified by the ChannelOrQueue parameter,
which is represented by the URI Path following the REST Plugin mount. For example http://
localhost:9000/rest/API/json/testchannel expects a JSON byte, XML or dictionary event to be
published to channel testchannel.

Acceptable request representations:

“application/json” on page 206

Available response representations:

“application/json” on page 207

JSON: PUT

Allows purging of 1 or more events already published on a channel or queue specified by the
ChannelOrQueue parameter, which is represented by the URI Path following the REST Plugin
mount. For example http://localhost:9000/rest/API/json/testchannel expects a request to
purge events to be published to channel testchannel. Purging can be specified by EID and selector.

Acceptable request representations:

“application/json” on page 208

Available response representations:

“application/json” on page 208

Representation: XML

XML REPRESENTATION : An XML representation of channels/queues or events in a channel or
queue as specified by the ChannelOrQueue parameter.

Universal Messaging Administration Guide 10.7 193

2 Universal Messaging Enterprise Manager

Should the parameter point to an existing container, the response code is 200 and the response
looks like this:
<Nirvana-RealmServer-ChannelList NumberOfChannels="2">

<!--Constructed by my-channels Nirvana REST-Plugin :
Wed Mar 02 16:07:28 EET 2011-->

<Channel EventsConsumed="0" EventsPublished="0" LastEventID="-1"
Name="testqueue" NumberEvents="0"
fqn="http://localhost:8080/rest/API/xml/testqueue"/>

<Channel EventsConsumed="0" EventsPublished="2" LastEventID="223"
Name="testchannel" NumberEvents="2"
fqn="http://shogun:8080/rest/API/xml/testchannel"/>

</Nirvana-RealmServer-ChannelList>

If the REST plugin is configured to include realm status, some additional information about the
realm is presented:
<Nirvana-RealmServer-ChannelList NumberOfChannels="2">

<!--Constructed by my-channels Nirvana REST-Plugin :
Wed Mar 02 16:07:28 EET 2011-->

<Channel EventsConsumed="0" EventsPublished="0" LastEventID="-1"
Name="testqueue" NumberEvents="0"
fqn="http://localhost:8080/rest/API/xml/testqueue"/>

<Channel EventsConsumed="0" EventsPublished="2" LastEventID="223"
Name="testchannel" NumberEvents="2"
fqn="http://shogun:8080/rest/API/xml/testchannel"/>

<RealmStatus FreeMemory="498101048" RealmName="nirvana6" Threads="87"
TotalConnections="0" TotalConsumed="0"
TotalMemory="530186240" TotalPublished="2"/>

</Nirvana-RealmServer-ChannelList>

Should the parameter point to an existing channel or queue, the response code is 200 and the
response looks like this:
<Nirvana-RealmServer-EventList>

<!--Constructed by my-channels Nirvana REST-Plugin :
Wed Mar 02 16:10:57 EET 2011-->

<Details ChannelName="http://localhost:8080/rest/API/xml/testsrc"
FirstEvent=

"http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=first"

LastEID="223"
LastEvent=

"http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=last"
NextLink="http://localhost:8080/rest/API/xml/testsrc?EID=224" StartEID="222"/>

<Event ByteLink="http://localhost:8080/rest/API/xml/testsrc?Data=Byte&EID=222"

DataSize="9" EID="222" Tag="Test Tag" hasByte="true"/>
<Event

DictionaryLink=
"http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=223"

EID="223" hasDictionary="true"/>
</Nirvana-RealmServer-EventList>

You can follow the provided links to view individual events. If you choose to look at an individual
byte event, the response code is 200 and the response looks like this:
<Nirvana-RealmServer-RawData>

<!--Constructed by my-channels Nirvana REST-Plugin :

194 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Wed Mar 02 16:13:17 EET 2011-->
<EventData ChannelName="http://localhost:8080/rest/API/xml/testsrc" EID="222">

<Data>
<![CDATA[VGVzdCBCb2R5]]>

</Data>
<Tag>

<![CDATA[Test Tag]]>
</Tag>

</EventData>
</Nirvana-RealmServer-RawData>

If you choose to look at an individual XML event, the response code is 200 and the response looks
like this:
<Nirvana-RealmServer-XMLData>

<!--Constructed by my-channels Nirvana REST-Plugin :
Wed Mar 02 16:13:17 EET 2011-->

<EventData ChannelName="http://localhost:8080/rest/API/xml/testsrc" EID="222"
isDOM="true">
<Data>

<myUserDataTag>
Some User Data

</myUserDataTag>
</Data>
<Tag>

<![CDATA[Test Tag]]>
</Tag>

</EventData>
</Nirvana-RealmServer-XMLData>

If you choose to look at an individual Dictionary event, the response code is 200 and the response
looks like this:
<DictionaryData isPersistent="true" TTL="0">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>
<Dictionary Key="testdictionary">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>
<Data Key="testlong">

<![CDATA[1]]>
</Data>
<Data Key="testfloat">

<![CDATA[1.0]]>
</Data>

Universal Messaging Administration Guide 10.7 195

2 Universal Messaging Enterprise Manager

<Data Key="testcharacter">
<![CDATA[a]]>

</Data>
<Data Key="testboolean">

<![CDATA[true]]>
</Data>

</Dictionary>
<Data Key="testlong">

<![CDATA[1]]>
</Data>
<Data Key="testfloat">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter">

<![CDATA[a]]>
</Data>
<Data Key="testboolean">

<![CDATA[true]]>
</Data>
<DataArray Key="teststringarray">

<ArrayItem Index="0">
<![CDATA[one]]>

</ArrayItem>
<ArrayItem Index="1">

<![CDATA[two]]>
</ArrayItem>
<ArrayItem Index="2">

<![CDATA[three]]>
</ArrayItem>

</DataArray>
<DataArray Key="testbytearray">

<ArrayItem Index="0">
<![CDATA[YSBib2R5]]>

</ArrayItem>
</DataArray>
<DataArray Key="testdictionaryarray">

<ArrayItem Index="0">
<Data Key="testdouble">

<![CDATA[1.0]]>
</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
<ArrayItem Index="1">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
</DataArray>

</DictionaryData>

196 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

If the rest plugin is configured to include type information in representations, dictionary event
representations will include them. In this case, responses looks like this:
<DictionaryData isPersistent="true" TTL="0">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>
<Dictionary Key="testdictionary">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>
<Data Key="testlong" Type="1">

<![CDATA[1]]>
</Data>
<Data Key="testfloat" Type="5">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter" Type="6">

<![CDATA[a]]>
</Data>
<Data Key="testboolean" Type="3">

<![CDATA[true]]>
</Data>

</Dictionary>
<Data Key="testlong" Type="1">

<![CDATA[1]]>
</Data>
<Data Key="testfloat" Type="5">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter" Type="6">

<![CDATA[a]]>
</Data>
<Data Key="testboolean" Type="3">

<![CDATA[true]]>
</Data>
<DataArray ArrayType="0" Key="teststringarray">

<ArrayItem Index="0">
<![CDATA[one]]>

</ArrayItem>
<ArrayItem Index="1">

<![CDATA[two]]>
</ArrayItem>
<ArrayItem Index="2">

<![CDATA[three]]>
</ArrayItem>

</DataArray>

Universal Messaging Administration Guide 10.7 197

2 Universal Messaging Enterprise Manager

<DataArray ArrayType="7" Key="testbytearray">
<ArrayItem Index="0">

<![CDATA[YSBib2R5]]>
</ArrayItem>

</DataArray>
<DataArray ArrayType="9" Key="testdictionaryarray">

<ArrayItem Index="0">
<Data Key="testdouble" Type="2">

<![CDATA[1.0]]>
</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
<ArrayItem Index="1">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
</DataArray>

</DictionaryData>

Finally, should the parameter point to a non existing container or channel / queue, the response
code is 404 without a response body

XML PUBLISH REQUEST

XML Byte events can be represented as follows:
<EventData isDom="false" isPersistent="true" TTL="0">

<Data>
<![CDATA[YSBib2R5]]>

</Data>
<Tag>

<![CDATA[YSB0YWc=]]>
</Tag>

</EventData>

Important:
data and tag should always be submitted in base64 encoded form.

XML DOM events can be represented as follows:
<EventData isDom="true" isPersistent="true" TTL="0">

<Data>
<![CDATA[YSBib2R5]]>

</Data>
<Tag>

<![CDATA[YSB0YWc=]]>
</Tag>

198 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

</EventData>

Important:
data and tag should always be submitted in base64 encoded form.

XML Dictionary events can be represented as follows:
<DictionaryData isPersistent="true" TTL="0">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>
<Dictionary Key="testdictionary">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>
<Data Key="testlong">

<![CDATA[1]]>
</Data>
<Data Key="testfloat">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter">

<![CDATA[a]]>
</Data>
<Data Key="testboolean">

<![CDATA[true]]>
</Data>

</Dictionary>
<Data Key="testlong">

<![CDATA[1]]>
</Data>
<Data Key="testfloat">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter">

<![CDATA[a]]>
</Data>
<Data Key="testboolean">

<![CDATA[true]]>
</Data>
<DataArray Key="teststringarray">

<ArrayItem Index="0">
<![CDATA[one]]>

</ArrayItem>
<ArrayItem Index="1">

<![CDATA[two]]>
</ArrayItem>

Universal Messaging Administration Guide 10.7 199

2 Universal Messaging Enterprise Manager

<ArrayItem Index="2">
<![CDATA[three]]>

</ArrayItem>
</DataArray>
<DataArray Key="testbytearray">

<ArrayItem Index="0">
<![CDATA[YSBib2R5]]>

</ArrayItem>
</DataArray>
<DataArray Key="testdictionaryarray">

<ArrayItem Index="0">
<Data Key="testdouble">

<![CDATA[1.0]]>
</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
<ArrayItem Index="1">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
</DataArray>

</DictionaryData>

Optionally, dictionary events can include type information (see “Types” on page 208). This allows
the Universal Messaging REST API to preserve these types when publishing the event. The types
are defined as byte constants to keep typed dictionary events compact in size.

XML Dictionary events (with type information) can be represented as follows:
<DictionaryData isPersistent="true" TTL="0">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>
<Dictionary Key="testdictionary">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

200 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

<![CDATA[teststringvalue]]>
</Data>
<Data Key="testlong" Type="1">

<![CDATA[1]]>
</Data>
<Data Key="testfloat" Type="5">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter" Type="6">

<![CDATA[a]]>
</Data>
<Data Key="testboolean" Type="3">

<![CDATA[true]]>
</Data>

</Dictionary>
<Data Key="testlong" Type="1">

<![CDATA[1]]>
</Data>
<Data Key="testfloat" Type="5">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter" Type="6">

<![CDATA[a]]>
</Data>
<Data Key="testboolean" Type="3">

<![CDATA[true]]>
</Data>
<DataArray ArrayType="0" Key="teststringarray">

<ArrayItem Index="0">
<![CDATA[one]]>

</ArrayItem>
<ArrayItem Index="1">

<![CDATA[two]]>
</ArrayItem>
<ArrayItem Index="2">

<![CDATA[three]]>
</ArrayItem>

</DataArray>
<DataArray ArrayType="7" Key="testbytearray">

<ArrayItem Index="0">
<![CDATA[YSBib2R5]]>

</ArrayItem>
</DataArray>
<DataArray ArrayType="9" Key="testdictionaryarray">

<ArrayItem Index="0">
<Data Key="testdouble" Type="2">

<![CDATA[1.0]]>
</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
<ArrayItem Index="1">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

Universal Messaging Administration Guide 10.7 201

2 Universal Messaging Enterprise Manager

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
</DataArray>

</DictionaryData>

Important:
byte[] types should always be submitted in base64 encoded form.

XMLPUBLISHRESPONSE : A XML representation to indicate the status of attempting to publish
an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the publish call be successful, the response code is 201 and the response looks like this:
<Nirvana-RealmServer-PublishRequest>

<response value="ok"/>
</Nirvana-RealmServer-PublishRequest>

Should the publish call fail for any reason, the response code is 400 and the response looks like
this:
<Nirvana-RealmServer-Error>

<response value="failInput"/>
<errorcode value="ErrorCode"/>
<errormessage value="Error Message"/>

</Nirvana-RealmServer-Error>

XML PURGE REQUEST : A XML representation of a Purge Request that indicates the event(s)
to purge.

A XML purge request looks as follows:
<Nirvana-RealmServer-PurgeRequest startEID="10" endEID="20" purgeJoins="false">

<selector>
<![CDATA[]]>

</selector>
</Nirvana-RealmServer-PurgeRequest>

XML PURGE RESPONSE : A XML representation to indicate the status of attempting to purge
an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the purge call be successful, the response code is 200 and the response looks like this:
<Nirvana-RealmServer-PurgeRequest>

<response value="ok"/>
</Nirvana-RealmServer-PurgeRequest>

Should the purge call fail for any reason, the response code is 400 and the response looks like this:
<Nirvana-RealmServer-Error>

<response value="failInput"/>
<errorcode value="ErrorCode"/>
<errormessage value="Error Message"/>

</Nirvana-RealmServer-Error>

202 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Representation: JSON

JSON REPRESENTATION : A JSON representation of channels/queues or events in a channel
or queue as specified by the ChannelOrQueue parameter.

Should the parameter point to an existing container, the response code is 200 and the response
looks like this:
{

"Channels":
[{

"EventsConsumed": "0",
"EventsPublished": "0",
"LastEventID": "-1",
"Name": "testqueue",
"NumberEvents": "0",
"fqn": "http://localhost:8080/rest/API/json/testqueue"

}, {
"EventsConsumed": "0",
"EventsPublished": "0",
"LastEventID": "212",
"Name": "testchannel",
"NumberEvents": "0",
"fqn": "http://localhost:8080/rest/API/json/testchannel"

}],
"Comment": "Constructed by my-channels Nirvana REST-Plugin :

Wed Mar 02 11:38:30 EET 2011",
"Name":
"Nirvana-RealmServer-ChannelList",
"NumberOfChannels": "2",

}

If the REST plugin is configured to include realm status, some additional information about the
realm is presented:
{

"Channels":
[{

"EventsConsumed": "0",
"EventsPublished": "0",
"LastEventID": "-1",
"Name": "testqueue",
"NumberEvents": "0",
"fqn": "http://localhost:8080/rest/API/json/testqueue"

}, {
"EventsConsumed": "0",
"EventsPublished": "0",
"LastEventID": "212",
"Name": "testchannel",
"NumberEvents": "0",
"fqn": "http://localhost:8080/rest/API/json/testchannel"

}],
"Comment": "Constructed by my-channels Nirvana REST-Plugin :

Wed Mar 02 11:38:30 EET 2011",
"Name": "Nirvana-RealmServer-ChannelList",
"NumberOfChannels": "2",
"Realm": {

Universal Messaging Administration Guide 10.7 203

2 Universal Messaging Enterprise Manager

"FreeMemory": "503291048",
"RealmName": "nirvana6",
"Threads": "104",
"TotalConnections": "1",
"TotalConsumed": "0",
"TotalMemory": "530186240",
"TotalPublished": "0"

}
}

Should the parameter point to an existing channel or queue, the response code is 200 and the
response looks like this:
{

"ChannelName": "http://localhost:8080/rest/API/json/testsrc",
"Comment": "Constructed by my-channels Nirvana REST-Plugin : Wed
Mar 02 12:19:22 EET 2011",
"Events":
[{

"ByteLink": "http://localhost:8080/rest/API/json/testsrc?Data=Byte&EID=213",
"DataSize": "9",
"EID": "213",
"Tag": "Test Tag",
"hasByte": "true"

}, {
"DictionaryLink":

"http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=214",
"EID": "214",
"hasDictionary": "true"

}],
"FirstEvent":

"http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=first",
"LastEID": "214",
"LastEvent": "http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=last",
"Name": "Nirvana-RealmServer-EventList",
"NextLink": "http://localhost:8080/rest/API/json/testsrc?EID=215",
"StartEID": "213"

}

You can follow the provided links to view individual events. If you choose to look at an individual
byte event, the response code is 200 and the response looks like this:
{

"ChannelName": "http://localhost:8080/rest/API/json/testsrc",
"Comment": "Constructed by my-channels Nirvana REST-Plugin :

Wed Mar 02 12:21:46 EET 2011",
"Data": "VGVzdCBCb2R5",
"EID": "213",
"Name": "Nirvana-RealmServer-RawData",
"Tag": "Test Tag"

}

If you choose to look at an individual XML event, the response code is 200 and the response looks
like this:
{

"ChannelName": "http://localhost:8080/rest/API/json/testsrc",
"Comment": "Constructed by my-channels Nirvana REST-Plugin :

Wed Mar 02 12:21:46 EET 2011",

204 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

"Data": "VGVzdCBCb2R5",
"EID": "213",
"Name": "Nirvana-RealmServer-XMLData",
"Tag": "Test Tag"

}

If you choose to look at an individual Dictionary event, the response code is 200 and the response
looks like this:
{

"dictionary":
{

"testboolean": [true],
"testcharacter": ["a"],
"testdictionary": [
{

"testboolean": [true],
"testcharacter": ["a"],
"testdouble": [1],
"testfloat": [1],
"testinteger": [1],
"testlong": [1],
"teststring": ["teststringvalue"]

}],
"testdouble": [1],
"testfloat": [1],
"testinteger": [1],
"testlong": [1],
"teststring": ["teststringvalue"],
"teststringarray": [[

"one",
"two",
"three"

]]
},
"isPersistent": true

}

If the rest plugin is configured to include type information in representations, dictionary event
representations will include them. In this case, responses looks like this:
{

"dictionary":
{

"testboolean": [true, 3],
"testcharacter": ["a", 6],
"testdictionary":
[{

"testboolean": [true, 3],
"testcharacter": ["a", 6],
"testdouble": [1, 2],
"testfloat": [1, 5],
"testinteger": [1, 4],
"testlong": [1, 1],
"teststring": ["teststringvalue", 0]

}, 9],
"testdouble": [1, 2],
"testfloat": [1, 5],
"testinteger": [1, 4],

Universal Messaging Administration Guide 10.7 205

2 Universal Messaging Enterprise Manager

"testlong": [1, 1],
"teststring": ["teststringvalue", 0],
"teststringarray":
[[

"one",
"two",
"three"

], 100, 0]
},
"isPersistent": true

}

Finally, should the parameter point to a non existing container or channel / queue, the response
code is 404 without a response body

JSON PUBLISH REQUEST

JSON Byte events can be represented as follows:
{

"data": "VGVzdCBCb2R5",
"isPersistent": true,
"tag": "VGVzdCBUYWc="

}

Important:
data and tag should always be submitted in base64 encoded form.

JSON DOM events can be represented as follows:
{

"data": "VGVzdCBCb2R5",
"isDOM": true,
"isPersistent": true,
"tag": "VGVzdCBUYWc="

}

Important:
data and tag should always be submitted in base64 encoded form.

JSON Dictionary events can be represented as follows:
{

"dictionary":
{

"testboolean": [true],
"testcharacter": ["a"],
"testdictionary":
[{

"testboolean": [true],
"testcharacter": ["a"],
"testdouble": [1],
"testfloat": [1],
"testinteger": [1],
"testlong": [1],
"teststring": ["teststringvalue"]

}],
"testdouble": [1],

206 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

"testfloat": [1],
"testinteger": [1],
"testlong": [1],
"teststring": ["teststringvalue"],
"teststringarray":
[[

"one",
"two",
"three"

]]
},
"isPersistent": true

}

Optionally, dictionary events can include type information (see “Types” on page 208). This allows
the Universal Messaging REST API to preserve these types when publishing the event. The types
are defined as byte constants to keep typed dictionary events compact in size.

Dictionary events (with type information) can be represented as follows:
{

"dictionary":
{

"testboolean": [true, 3],
"testcharacter": ["a", 6],
"testdictionary":
[{

"testboolean": [true, 3],
"testcharacter": ["a", 6],
"testdouble": [1, 2],
"testfloat": [1, 5],
"testinteger": [1, 4],
"testlong": [1, 1],
"teststring": ["teststringvalue", 0]

}, 9],
"testdouble": [1, 2],
"testfloat": [1, 5],
"testinteger": [1, 4],
"testlong": [1, 1],
"teststring": ["teststringvalue", 0],
"teststringarray":
[[

"one",
"two",
"three"

], 100, 0]
},
"isPersistent": true

}

Important:
byte[] types should always be submitted in base64 encoded form.

JSON PUBLISH RESPONSE : A JSON representation to indicate the status of attempting to
publish an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the publish call be successful, the response code is 201 and the response looks like this:

Universal Messaging Administration Guide 10.7 207

2 Universal Messaging Enterprise Manager

{
"Response": "OK"

}

Should the publish call fail for any reason, the response code is 400 and the response looks like
this:
{

"errorcode": "ErrorCode",
"errormessage": "Error Message",
"response": "failInput"

}

JSON PURGE REQUEST : A JSON representation of a Purge Request that indicates the event(s)
to purge.

A JSON purge request looks as follows:
{

"endEID": 20,
"purgeJoins": false,
"selector": "",
"startEID": 10

}

JSON PURGE RESPONSE : A JSON representation to indicate the status of attempting to purge
an event to the channel or queue specified by the ChannelOrQueue parameter

Should the purge call be successful, the response code is 200 and the response looks like this:
{

"Response": "OK"
}

Should the purge call fail for any reason, the response code is 400 and the response looks like this:
{

"errorcode": "ErrorCode",
"errormessage": "Error Message",
"response": "failInput"

}

Types

IDType

0String

1Long

2Double

3Boolean

4Integer

208 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

IDType

5Float

6Character

7Byte

8Short

9Dictionary

100Array

Servlet Plugin
The servlet plugin enables the Universal Messaging realm server to serve Java servlets.

Configuration

Once you have created the servlet plugin on an interface, you can then select it from the Plugins
panel for the interface and configure the plugin parameters.

The servlet plugin requires configuration information relating to its behavior, aswell as the location
of the servlets it is required to serve to the clients. Below is a table that shows each configuration
parameter and describes what each is used for.

To ensure security, the EnforceConfigFile option can be set to true; this allows only those classes
specified in the configuration file to be loaded. Alternatively, the EnforceStrictClassLoader option
can be set; this prevents classes being loaded from different class loaders to that of the servlet, and
thereby also prevents arbitrary classes from being loaded.

DefaultValueDescriptionParameter Name

falseAdd the username to the session cookies.AddUserAsPlugin

List of key=value string which is passed to
authenticators init function.

AuthParameters

(default)Classname of authenticator to use, leave blank
for default

AddUserAsPlugin

trueAutomatically reload servlet class if it changesEnableClassReload

trueIf true, only servlets within the
ServletConfigFile will be executed.

EnforceConfigFile

trueIf true, only servlets loaded by the initial class
loader will be executed. Any classes loaded by
parent loader will be ignored.

EnforceStrictClassLoader

Universal Messaging Administration Guide 10.7 209

2 Universal Messaging Enterprise Manager

DefaultValueDescriptionParameter Name

A comma separated list of groups to which a
user must be a member of to be granted access.

GroupNames

Name of the file to load the mime type
information from. The format of the file is same
as the apache mime types.

MimeType

File containing the servlet properties. The file
should be a java properties file that contains

Properties

one property per line prefixedwith the full class
name. For example for a servlet class
com.example.Servlet defining a property called
RNAME you should have a line as follows:
com.example.Servlet.RNAME=nsp://localhost:9000

trueIf true, the user file will get reloaded on each
auth request.

ReloadUserFileDynamically

A comma separated list of groups to which a
user must have one to be granted access.

RoleNames

Name of the authentication realm.Security Realm

File which contains all the valid servlets which
will run. The file should be a text file containing

Servlet Config File

one full servlet class name per line, indicating
only these should be allowed to run. For
example having a single line
com.example.Servletwouldmean that only that
servlet will be allowed to run irrespective of
how many exist in the server classpath.

Directory in which to locate servlet classesServlet Path

Time in seconds before timeout of servlet
session not in use.

SessionTimeout

Health Monitor Plugin
The Health Monitor plugin adds an HTTP REST endpoint to the URL of the session to which the
realm server is connected. This allows clients to query the current state of the realm server. The
endpoint defines the "liveness" of the server. The plugin returns the result of the health checks
that run on the server at periodic intervals.

Adding the plugin to the realm server

The plugin can be added to a realm server using either of the following methods:

210 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Using the Add Plugin feature in the Comms > Interfaces > Plugins dialog of the Enterprise
Manager. In this case, you define the name of the new URL endpoint in the URL Path field of
the Add Plugin dialog.

See the section “Plugins” on page 185 for details.

Using the command line tool AddHealthMonitorPlugin. In this case, you define the name of the
new URL endpoint using the -mountpath argument of the tool.

For details of running this command line tool, see the section “Syntax:Miscellaneous Tools” on
page 476.

Server monitoring tasks

The realm server runs four different tasks at regular intervals on the server to monitor the health
status of the server:

Memory monitor Task (MemoryHealthMonitor):

This task monitors the memory status of the server and will produce an alert/error as soon as
anymemory related issues are found. The task checks the heap and direct memory usage, and
if the usage exceeds a threshold value of 95%, then it is considered as an error and the error
will be reported and logged.

The server is not considered to be unhealthy when the first such error occurs; instead a server
is considered unhealthy only if thememorymonitor task returns an error 3 times consecutively.

Stalled-Tasks Monitor Task (StalledTasksMonitor):

If any thread pool has more than 5 stalled tasks, this is considered an error, but the status is
only reported as unhealthy if the error occurs 5 times consecutively.

Cluster state monitor Task (ClusterStateMonitor):

If a server is configured to be part of a cluster, and the last time that the server successfully
joined the cluster is more than 600000 milliseconds (10 minutes) ago, then the server is
considered to be unhealthy.

Server round trip Task (ServerRoundTripMonitor):

The server round trip checks the processing time in a cluster. nClusterRoundTripEvent events
are synchronous events that measure the processing time in a cluster. The realm server sends
these events into the cluster and records the time it takes to complete the processing in cluster.
If the event takes more than 30 seconds to complete processing and get acknowledged, then
that is considered to be an error. Not getting an acknowledgement back for this event is also
considered to be an error. If 5 consecutive such errors, the server is considered to be unhealthy.

Server responses

If the server is fully operational, and is an active member of the cluster (if a cluster is configured),
the query returns a response "OK" of the following form:
{"ServerStatus":"OK","ServerStatusDetails":"{}"}

Universal Messaging Administration Guide 10.7 211

2 Universal Messaging Enterprise Manager

Even if the return code is "OK", the response can contain additional information (in JSON format).
This information can be in the form of useful statistics, or as an indication that the server is
approaching certain limits.

If the server is not fully operational, the query returns a status "ERROR" with an appropriate
description of the problem, for example:
{"ServerStatus":"ERROR","ServerStatusDetails":
{"MemoryHealthMonitor":

"Max threshold of used Heap memory is exceeded, Heap memory used - 338 MB"
}

}

Exporting and Importing Realm XML Configurations

You can export a realm configuration into an XML representation, and then import the XML
representation into another realm, using the Enterprise Manager. The XML export and import
functionality enables you to automatically configuremultiple realms based on a standard structure,
for example when you want to clone realms and their internal structure.

You can export specific elements of a realm or the entire realm structure. The exported XML can
contain any or all of the following elements:

Clusters

Realm access control lists (ACLs)

Channels

Channel ACLs

Queues

Queue ACLs

Configuration parameters

JNDI assets

Durables

Interfaces

Plugins

Scheduling information

After you exported the realm configuration, you can import the XML into another realm. Importing
the XML automatically creates and configures the objects selected for import from the XML file.
The export and import marshal the realm objects from their Administration API representation
into XML and back again.

212 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

Exporting a Realm Configuration into an XML File
Use the following procedure to export a realm or specific elements of a realm into an XML file.

To export a realm configuration into an XML file

1. In the Enterprise Manager, go to Realms and select the realm that you want to export.

2. Right-click the realm node and select Export Realm to XML.

3. In the Export to field, specify the path to the file to which you want to export the realm
configuration.

4. Select the realm elements to export:

Select Export all to export the entire realm structure.

Select one or more options under Realm Export, Channels, Cluster Export, Interfaces,
Queues, and Data Groups to export specific elements of the realm structure.

5. Click OK.

Importing a Realm Configuration from an XML File
Before importing an XML representation of a realm configuration to another realm, you must
export the realm configuration as described in “Exporting a Realm Configuration into an XML
File” on page 213.

Use the following procedure to import a realm or specific elements of a realm from an XML file
into another realm.

To import a realm configuration from an XML file

1. In the Enterprise Manager, go to Realms and select the realm into which you want to import
the XML configuration.

2. Right-click the realm node and select Import Realm from XML.

3. In the Import from field, specify the path to the file from which you want to import the realm
configuration.

4. Select the realm elements to import:

Select Import all to import the entire realm structure.

Universal Messaging Administration Guide 10.7 213

2 Universal Messaging Enterprise Manager

Select one or more options under Realm Export, Channels, Cluster Export, Interfaces,
Queues, and Data Groups to import specific elements of the realm structure.

5. Click OK.

Using the clusterWide Attribute for Channels and Queues

When you export channels or queues to an XML file, each channel or queue in the XML file has a
clusterWide attribute. If you export a clustered channel or queue, the attribute is set to true. If
you export a non-clustered channel or queue, the attribute is set to false.

Before you import the XML file into a realm, you can manually edit the XML file and modify the
clusterWide attribute of each channel or queue, depending on howyouwant to import the channel
or queue. To import a channel or queue as clustered while doing an import on a clustered realm,
set clusterWide to true. To import a channel or queue as non-clustered, set clusterWide to false.

Version compatibility issues

Store types

InUniversalMessaging v10.5, the store types Simple, Paged, Transient andOffheapwere removed.

For details of how v10.5 deals with these store types, refer to the section Removed Features in v10.5
in the v10.5 Release Notes.

Sample XML File for Import
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<NirvanaRealm name="realm0" exportDate="2021-01-12+02:00" comment="Realm configuration
from realm0"
version="BuildIdentifier" buildInfo="BuildIdentifier">

<RealmConfiguration>
<ConfigGroup name="Audit Settings">

<ConfigItem name="ChannelACL" value="true"/>
<ConfigItem name="ChannelFailure" value="true"/>
<ConfigItem name="ChannelMaintenance" value="false"/>
<ConfigItem name="ChannelSuccess" value="false"/>
<ConfigItem name="DataGroup" value="false"/>
<ConfigItem name="DataGroupFailure" value="false"/>
<ConfigItem name="DataStream" value="false"/>
<ConfigItem name="Group" value="true"/>
<ConfigItem name="GroupMembers" value="true"/>
<ConfigItem name="InterfaceManagement" value="true"/>
<ConfigItem name="JoinFailure" value="true"/>
<ConfigItem name="JoinMaintenance" value="true"/>
<ConfigItem name="JoinSuccess" value="false"/>
<ConfigItem name="QueueACL" value="true"/>
<ConfigItem name="QueueFailure" value="true"/>
<ConfigItem name="QueueMaintenance" value="false"/>
<ConfigItem name="QueueSuccess" value="false"/>
<ConfigItem name="RealmACL" value="true"/>
<ConfigItem name="RealmFailure" value="true"/>
<ConfigItem name="RealmMaintenance" value="true"/>

214 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

<ConfigItem name="RealmSuccess" value="false"/>
<ConfigItem name="SnoopStream" value="false"/>

</ConfigGroup>
<ConfigGroup name="Client Timeout Values">

<ConfigItem name="EventTimeout" value="60000"/>
<ConfigItem name="HighWaterMark" value="3000"/>
<ConfigItem name="LowWaterMark" value="1000"/>
<ConfigItem name="QueueAccessWaitLimit" value="200"/>
<ConfigItem name="QueueBlockLimit" value="500"/>
<ConfigItem name="QueuePushWaitLimit" value="200"/>
<ConfigItem name="TransactionLifeTime" value="20000"/>

</ConfigGroup>
<ConfigGroup name="Cluster Config">

<ConfigItem name="ClientQueueSize" value="1000"/>
<ConfigItem name="ClientQueueWindow" value="100"/>
<ConfigItem name="ClientStateDelay" value="5000"/>
<ConfigItem name="ClusterMode" value="0"/>
<ConfigItem name="DisableHTTPConnections" value="true"/>
<ConfigItem name="DisconnectWait" value="30000"/>
<ConfigItem name="DisconnectWhenNotReady" value="false"/>
<ConfigItem name="EnableMulticast" value="true"/>
<ConfigItem name="EnableStoreRecoveryRetry" value="true"/>
<ConfigItem name="EnginePipelineSize" value="2"/>
<ConfigItem name="FormationTimeout" value="120000"/>
<ConfigItem name="HeartBeatInterval" value="120000"/>
<ConfigItem name="InitialConnectionTimeout" value="30000"/>
<ConfigItem name="IsCommittedDelay" value="5000"/>
<ConfigItem name="MasterRequestTimeout" value="60000"/>
<ConfigItem name="MasterVoteDelay" value="10000"/>
<ConfigItem name="MasterWaitTimeout" value="10000"/>
<ConfigItem name="PublishQueueEnabled" value="true"/>
<ConfigItem name="QueueSize" value="1000"/>
<ConfigItem name="StateChangeScan" value="60000"/>
<ConfigItem name="SyncPingSize" value="1000"/>

</ConfigGroup>
<ConfigGroup name="Comet Config">

<ConfigItem name="BufferSize" value="5120"/>
<ConfigItem name="EnableLogging" value="false"/>
<ConfigItem name="Timeout" value="60000"/>

</ConfigGroup>
<ConfigGroup name="Connection Config">

<ConfigItem name="AllowBufferReuse" value="true"/>
<ConfigItem name="BufferManagerCount" value="16"/>
<ConfigItem name="BufferPoolSize" value="100"/>
<ConfigItem name="BufferSize" value="102400"/>
<ConfigItem name="CometReadTimeout" value="20000"/>
<ConfigItem name="ConnectionDelay" value="60000"/>
<ConfigItem name="IdleDriverTimeout" value="300000"/>
<ConfigItem name="IdleSessionTimeout" value="300000"/>
<ConfigItem name="KeepAlive" value="60000"/>
<ConfigItem name="MaxBufferSize" value="20971520"/>
<ConfigItem name="MaxNoOfConnections" value="-1"/>
<ConfigItem name="MaxWriteCount" value="30"/>
<ConfigItem name="NetworkMonitorThreads" value="4"/>
<ConfigItem name="PriorityQueueCount" value="10"/>
<ConfigItem name="PriorityReadSpinLockMaxConnections" value="2"/>
<ConfigItem name="PriorityReadSpinLockTime" value="500"/>
<ConfigItem name="PriorityReadType" value="1"/>
<ConfigItem name="QueueHighWaterMark" value="3000"/>
<ConfigItem name="QueueLowWaterMark" value="1000"/>

Universal Messaging Administration Guide 10.7 215

2 Universal Messaging Enterprise Manager

<ConfigItem name="ReadCount" value="10"/>
<ConfigItem name="UseDirectBuffering" value="true"/>
<ConfigItem name="WriteHandlerType" value="3"/>
<ConfigItem name="whEventThresholdCount" value="350"/>
<ConfigItem name="whEventThresholdTime" value="500"/>
<ConfigItem name="whMaxEventsBeforeFlush" value="100"/>
<ConfigItem name="whMaxEventsPerSecond" value="100000"/>
<ConfigItem name="whMaxTimeBetweenFlush" value="2"/>

</ConfigGroup>
<ConfigGroup name="Data Stream Config">

<ConfigItem name="MonitorTimer" value="10000"/>
<ConfigItem name="OffloadMulticastWrite" value="false"/>
<ConfigItem name="SendInitialMapping" value="true"/>

</ConfigGroup>
<ConfigGroup name="DurableConfig">

<ConfigItem name="DurableNameFiltering" value="false"/>
<ConfigItem name="QueuedExtendedException" value="false"/>

</ConfigGroup>
<ConfigGroup name="Environment Config">

<ConfigItem name="AvailableProcessors" value="4"/>
<ConfigItem name="Embedded" value="false"/>
<ConfigItem name="InterRealmProtocolVersion" value="1"/>
<ConfigItem name="JavaVendor" value="Oracle Corporation"/>
<ConfigItem name="JavaVersion" value="1.8.0_271"/>
<ConfigItem name="NanosecondSupport" value="true"/>
<ConfigItem name="OSArchitecture" value="amd64"/>
<ConfigItem name="OSName" value="Windows 10"/>
<ConfigItem name="OSVersion" value="10.0"/>
<ConfigItem name="ProcessId" value="44816"/>
<ConfigItem name="ServerBuildDate" value="12-Feb-1964"/>
<ConfigItem name="ServerBuildNumber" value="BuildNumberHere"/>
<ConfigItem name="ServerReleaseDetails" value="BuildIdentifier"/>
<ConfigItem name="ServerVersion" value="RealmServerVersion"/>

</ConfigGroup>
<ConfigGroup name="Event Storage">

<ConfigItem name="ActiveDelay" value="1000"/>
<ConfigItem name="AutoDeleteScan" value="5000"/>
<ConfigItem name="AutoMaintenanceThreshold" value="50"/>
<ConfigItem name="CacheAge" value="60000"/>
<ConfigItem name="EnableStoreCaching" value="false"/>
<ConfigItem name="IdleDelay" value="10000"/>
<ConfigItem name="JMSEngineAutoPurgeTime" value="5000"/>
<ConfigItem name="MaintenanceFileSizeThreshold" value="104857600"/>
<ConfigItem name="MaintenanceMemoryThreshold" value="104857600"/>
<ConfigItem name="PageSize" value="5000"/>
<ConfigItem name="QueueSubscriberFiltering" value="false"/>
<ConfigItem name="StoreReadBufferSize" value="32768"/>
<ConfigItem name="SyncBatchSize" value="50"/>
<ConfigItem name="SyncServerFiles" value="false"/>
<ConfigItem name="SyncTimeLimit" value="20"/>
<ConfigItem name="ThreadPoolSize" value="4"/>

</ConfigGroup>
<ConfigGroup name="Fanout Values">

<ConfigItem name="ConnectionGrouping" value="true"/>
<ConfigItem name="DelayPublishOnCapacity" value="true"/>
<ConfigItem name="HonourSharedDurableCapacity" value="true"/>
<ConfigItem name="IteratorWindowSize" value="100"/>
<ConfigItem name="JMSQueueMaxMultiplier" value="10"/>
<ConfigItem name="ParallelThreadPoolSize" value="2"/>
<ConfigItem name="PeakPublishDelay" value="1"/>

216 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

<ConfigItem name="PublishDelay" value="1"/>
<ConfigItem name="PublishExpiredEvents" value="true"/>
<ConfigItem name="SendEndOfChannelAlways" value="false"/>
<ConfigItem name="SendPubEventsImmediately" value="true"/>

</ConfigGroup>
<ConfigGroup name="Global Values">

<ConfigItem name="AllowRealmAdminFullAccess" value="true"/>
<ConfigItem name="CacheJoinInfoKeys" value="true"/>
<ConfigItem name="DisableExplicitGC" value="true"/>
<ConfigItem name="EnableCaching" value="false"/>
<ConfigItem name="EnableDNSLookups" value="true"/>
<ConfigItem name="EnableWeakReferenceCleanup" value="true"/>
<ConfigItem name="ExtendedMessageSelector" value="true"/>
<ConfigItem name="HTTPCookieSize" value="14"/>
<ConfigItem name="NHPScanTime" value="5000"/>
<ConfigItem name="NHPTimeout" value="120000"/>
<ConfigItem name="OverrideEveryoneUser" value="false"/>
<ConfigItem name="PauseServerPublishing" value="false"/>
<ConfigItem name="SendRealmSummaryStats" value="false"/>
<ConfigItem name="StampDictionary" value="true"/>
<ConfigItem name="StampHost" value="true"/>
<ConfigItem name="StampTime" value="true"/>
<ConfigItem name="StampTimeUseHPT" value="false"/>
<ConfigItem name="StampTimeUseHPTScale" value="0"/>
<ConfigItem name="StampUser" value="true"/>
<ConfigItem name="StatusBroadcast" value="5000"/>

</ConfigGroup>
<ConfigGroup name="Inter-Realm Comms Config">

<ConfigItem name="EstablishmentTime" value="30000"/>
<ConfigItem name="KeepAliveInterval" value="10000"/>
<ConfigItem name="KeepAliveResetTime" value="35000"/>
<ConfigItem name="MaximumReconnectTime" value="20000"/>
<ConfigItem name="MinimumReconnectTime" value="1000"/>
<ConfigItem name="Timeout" value="120000"/>
<ConfigItem name="WriteDelayTimeout" value="30000"/>

</ConfigGroup>
<ConfigGroup name="JVM Management">

<ConfigItem name="EmergencyThreshold" value="94"/>
<ConfigItem name="EnableJMX" value="false"/>
<ConfigItem name="EnableLegacyJMX" value="false"/>
<ConfigItem name="ExitOnDiskIOError" value="true"/>
<ConfigItem name="ExitOnInterfaceFailure" value="false"/>
<ConfigItem name="IORetryCount" value="10"/>
<ConfigItem name="IOSleepTime" value="500"/>
<ConfigItem name="JMXRMIPort" value="0"/>
<ConfigItem name="JMXRMIServerURLString" value="Not bound"/>
<ConfigItem name="MemoryMonitoring" value="2000"/>

</ConfigGroup>
<ConfigGroup name="Join Config">

<ConfigItem name="ActiveThreadPoolSize" value="2"/>
<ConfigItem name="IdleThreadPoolSize" value="1"/>
<ConfigItem name="MaxEventsPerSchedule" value="1000"/>
<ConfigItem name="MaxQueueSizeToUse" value="100"/>
<ConfigItem name="RemoteJoinAckBatchSize" value="100"/>
<ConfigItem name="RemoteJoinAckInterval" value="1000"/>
<ConfigItem name="UseQueuedLocalJoinHandler" value="false"/>

</ConfigGroup>
<ConfigGroup name="Logging Config">

<ConfigItem name="DefaultLogSize" value="10000000"/>
<ConfigItem name="DisplayCurrentThread" value="true"/>

Universal Messaging Administration Guide 10.7 217

2 Universal Messaging Enterprise Manager

<ConfigItem name="EmbedTag" value="false"/>
<ConfigItem name="EnableLog4J" value="false"/>
<ConfigItem name="EnableStatusLog" value="true"/>
<ConfigItem name="LogManager" value="1"/>
<ConfigItem name="RolledLogFileDepth" value="10"/>
<ConfigItem name="fLoggerLevel" value="0"/>

</ConfigGroup>
<ConfigGroup name="Metric Config">

<ConfigItem name="EnableEventMemoryMonitoring" value="true"/>
<ConfigItem name="EnableMetrics" value="true"/>

</ConfigGroup>
<ConfigGroup name="Plugin Config">

<ConfigItem name="EnableAccessLog" value="true"/>
<ConfigItem name="EnableErrorLog" value="true"/>
<ConfigItem name="EnablePluginLog" value="true"/>
<ConfigItem name="MaxNumberOfPluginThreads" value="200"/>
<ConfigItem name="PluginTimeout" value="30000"/>

</ConfigGroup>
<ConfigGroup name="Protobuf Config">

<ConfigItem name="CacheEventFilter" value="true"/>
</ConfigGroup>
<ConfigGroup name="Protocol AMQP Config">

<ConfigItem name="AnonymousUser" value="anonymous_amqp"/>
<ConfigItem name="BufferSize" value="10240"/>
<ConfigItem name="DefaultNodeMode" value="0"/>
<ConfigItem name="Enable" value="true"/>
<ConfigItem name="EnableWriteThread" value="false"/>
<ConfigItem name="EngineLoopCount" value="50"/>
<ConfigItem name="MaxFrameSize" value="10000000"/>
<ConfigItem name="MaxThreadPoolSize" value="10"/>
<ConfigItem name="MinThreadPoolSize" value="1"/>
<ConfigItem name="QueuePrefix" value="queue://"/>
<ConfigItem name="SASL_Anonymous" value="true"/>
<ConfigItem name="SASL_CRAM-MD5" value="false"/>
<ConfigItem name="SASL_DIGEST-MD5" value="false"/>
<ConfigItem name="SASL_Plain" value="false"/>
<ConfigItem name="SubscriberCredit" value="1000"/>
<ConfigItem name="Timeout" value="60000"/>
<ConfigItem name="TopicPrefix" value="topic://"/>
<ConfigItem name="TransformToUse" value="2"/>

</ConfigGroup>
<ConfigGroup name="Protocol MQTT Config">

<ConfigItem name="DisconnectClientsOnPublishFailure" value="true"/>
<ConfigItem name="Enable" value="true"/>
<ConfigItem name="EnableAutoCreateTopics" value="true"/>
<ConfigItem name="EnforceAlphaNumericClientID" value="false"/>
<ConfigItem name="IgnoreClientIDLength" value="true"/>
<ConfigItem name="MaxOutstanding" value="64000"/>
<ConfigItem name="QoS0AsTransient" value="false"/>
<ConfigItem name="SessionStateTTL" value="259200000"/>
<ConfigItem name="Strict" value="true"/>
<ConfigItem name="SupportZeroLength" value="true"/>

</ConfigGroup>
<ConfigGroup name="RecoveryDaemon">

<ConfigItem name="EventsPerBlock" value="500"/>
<ConfigItem name="ThreadPool" value="4"/>

</ConfigGroup>
<ConfigGroup name="Server Protection">

<ConfigItem name="DiskScanEnable" value="true"/>
<ConfigItem name="DiskUsageFreeThreshold" value="5"/>

218 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

<ConfigItem name="DiskUsageScanInterval" value="1000"/>
<ConfigItem name="EnableFlowControl" value="false"/>
<ConfigItem name="FlowControlWaitTimeOne" value="2000"/>
<ConfigItem name="FlowControlWaitTimeThree" value="10000"/>
<ConfigItem name="FlowControlWaitTimeTwo" value="4000"/>

</ConfigGroup>
<ConfigGroup name="Thread Pool Config">

<ConfigItem name="CommonPoolThreadSize" value="5"/>
<ConfigItem name="ConnectionThreadPoolMaxSize" value="10"/>
<ConfigItem name="ConnectionThreadPoolMinSize" value="4"/>
<ConfigItem name="ConnectionThreadWaitTime" value="120000"/>
<ConfigItem name="EnableConnectionThreadPooling" value="true"/>
<ConfigItem name="MaxUnauthorisedCount" value="1000"/>
<ConfigItem name="PendingTaskWarningThreshold" value="1000"/>
<ConfigItem name="ReadThreadPoolMaxSize" value="100"/>
<ConfigItem name="ReadThreadPoolMinSize" value="4"/>
<ConfigItem name="SchedulerPoolSize" value="10"/>
<ConfigItem name="SlowTaskWarningTime" value="5000"/>
<ConfigItem name="StalledTasksWarningTime" value="60000"/>
<ConfigItem name="ThreadDumpInterval" value="60000"/>
<ConfigItem name="ThreadDumpOnSlowTask" value="false"/>
<ConfigItem name="ThreadIdleQueueSize" value="10"/>
<ConfigItem name="WriteThreadPoolMaxSize" value="1000"/>
<ConfigItem name="WriteThreadPoolMinSize" value="5"/>

</ConfigGroup>
<ConfigGroup name="Trace Logging Config">

<ConfigItem name="TraceFolderLogSize" value="1024"/>
<ConfigItem name="TraceStoreLogLevel" value="2"/>
<ConfigItem name="TraceStoreLogSize" value="10"/>
<ConfigItem name="TraceStores" value=""/>

</ConfigGroup>
<ConfigGroup name="TransactionManager">

<ConfigItem name="MaxEventsPerTransaction" value="0"/>
<ConfigItem name="MaxTransactionTime" value="300000"/>
<ConfigItem name="TTLThreshold" value="1000"/>

</ConfigGroup>
</RealmConfiguration>

<RealmPermissionSet>
<RealmACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="true"
connectToRealm="false" changeRealmConfig="false" addremoveChannels="false"
addremoveJoins="false"
addremoveRealms="false" overrideConnectionCount="false" useAdminAPI="false"
manageDatagroups="false" publishDatagroups="false" ownDatagroups="false"
host="0:0:0:0:0:0:0:1"
name="rgav"/>

<RealmACLEntry listACLEntries="false" modifyACLEntries="false"
fullControl="true"
connectToRealm="false" changeRealmConfig="false" addremoveChannels="false"
addremoveJoins="false"
addremoveRealms="false" overrideConnectionCount="false" useAdminAPI="false"
manageDatagroups="false" publishDatagroups="false" ownDatagroups="false"
host="127.0.0.1"
name="rgav"/>

<RealmGroupACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
connectToRealm="true" changeRealmConfig="true" addremoveChannels="true"
addremoveJoins="true"
addremoveRealms="true" overrideConnectionCount="true" useAdminAPI="true"
manageDatagroups="true"

Universal Messaging Administration Guide 10.7 219

2 Universal Messaging Enterprise Manager

publishDatagroups="true" ownDatagroups="true" groupname="Everyone"/>
</RealmPermissionSet>
<ClusterSet>

<ClusterEntry name="cluster_1">
<ClusterMember name="realm0" rname="nsp://localhost:11000"

canBeMaster="true"/>
<ClusterMember name="realm1" rname="nsp://localhost:11010"

canBeMaster="true"/>
<ClusterMember name="realm2" rname="nsp://localhost:11020"

canBeMaster="true"/>
</ClusterEntry>

</ClusterSet>
<RealmSet>

<RealmEntry name="realm1" rname="nhp://10.248.27.186:11010"/>
<RealmEntry name="realm2" rname="nhp://10.248.27.186:11020"/>

</RealmSet>
<ChannelSet>

<ChannelEntry>
<ChannelAttributesEntry name="/customer/sales/JMSTopic" TTL="0" capacity="0"

EID="0"
clusterWide="true" jmsEngine="true" mergeEngine="false" type="MIXED_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<ChannelPermissionSet>
<ChannelACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false" getLastEID="true" purgeEvents="false" subscribe="true"
publish="true"
useNamedSubcription="false" host="*" name="user"/>

<ChannelACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
getLastEID="true" purgeEvents="true" subscribe="true" publish="true"
useNamedSubcription="true"
host="192.168.1.2" name="user"/>

<ChannelGroupACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false" getLastEID="true" purgeEvents="false" subscribe="true"
publish="false"
useNamedSubcription="true" groupname="Everyone"/>

</ChannelPermissionSet>
</ChannelEntry>
<ChannelEntry>

<ChannelAttributesEntry name="/naming/defaultContext" TTL="0" capacity="0"
EID="2"
clusterWide="true" jmsEngine="false" mergeEngine="false" type="MIXED_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<ChannelPermissionSet>
<ChannelACLEntry listACLEntries="true" modifyACLEntries="true"

fullControl="true"
getLastEID="true" purgeEvents="true" subscribe="true" publish="true"
useNamedSubcription="true"
host="10.248.27.186" name="rgav"/>

220 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

<ChannelGroupACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true" getLastEID="true" purgeEvents="true" subscribe="true" publish="true"

useNamedSubcription="true" groupname="Everyone"/>
</ChannelPermissionSet>
<ChannelKeySet>

<ChannelKeyEntry keyName="alias" keyDepth="1"/>
</ChannelKeySet>
<EventsSet>

<Event id="0">
<EventAttribSet>

<EventAttrib name="nrvpub.time" type="Long"
value="1610454161489"/>

<EventAttrib name="nrvpub.host" type="String"
value="10.248.27.186"/>

<EventAttrib name="nrvpub.name" type="String" value="rgav"/>
<EventAttrib name="JMSDeliveryMode" type="String"

value="PERSISTENT"/>
<EventAttrib name="JMSPriority" type="Byte" value="4"/>

</EventAttribSet>
<EventPropSet>

<EventProp name="JMS_my-channels_EnableMultiplexedConnections"

type="Boolean" value="true"/>
<EventProp name="JMS_my-channels_RandomRNames" type="Boolean"

value="false"/>
<EventProp name="JMS_my-channels_RetryCommit" type="Boolean"

value="false"/>
<EventProp name="JMS_my-channels_ConxExceptionOnRetryFailure"

type="Boolean" value="false"/>
<EventProp name="JMS_my-channels_MaxReconnectAttempts"

type="Integer"
value="-1"/>

<EventProp name="JMS_my-channels_EnableSharedDurable"
type="Boolean"
value="true"/>

<EventProp name="JMS_my-channels_EnableSerialDurable"
type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_EnableSingleSharedDurableAck"

type="Boolean" value="false"/>
<EventProp name="JMS_my-channels_EnableSingleQueueAck"

type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_SyncWritesToDisc"
type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_SyncSendPersistent"
type="Boolean"
value="true"/>

<EventProp name="JMS_my-channels_InitialConnectionRetryCount"

type="Integer" value="2"/>
<EventProp name="JMS_my-channels_SyncBatchSize" type="Integer"

value="50"/>

Universal Messaging Administration Guide 10.7 221

2 Universal Messaging Enterprise Manager

<EventProp name="JMS_my-channels_SyncTime" type="Integer"
value="20"/>

<EventProp name="JMS_my-channels_GlobalStoreCapacity"
type="Integer"
value="0"/>

<EventProp name="JMS_my-channels_AutoAckCount" type="Integer"
value="50"/>

<EventProp name="JMS_my-channels_WindowSize" type="Integer"
value="100"/>

<EventProp name="JMS_my-channels_useInfiniteWindowSize"
type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_UnAckedSize" type="Integer"
value="100"/>

<EventProp name="JMS_my-channels_RedliveredSize" type="Integer"

value="100"/>
<EventProp name="JMS_my-channels_ThreadPoolSize" type="Integer"

value="30"/>
<EventProp name="JMS_my-channels_AutoReconnectAfterACL"

type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_ImmediateReconnect"
type="Boolean"
value="true"/>

<EventProp name="JMS_my-channels_ReconnectInterval" type="Long"

value="2000"/>
<EventProp name="JMS_my-channels_UseJMSEngine" type="Boolean"

value="true"/>
<EventProp name="JMS_my-channels_DisconnectAfterClusterFailure"

type="Boolean" value="true"/>
<EventProp name="JMS_my-channels_ConnectionTimeout" type="Long"

value="10000"/>
<EventProp name="JMS_my-channels_PermittedKeepAlivesMissed"

type="Integer"
value="2"/>

<EventProp name="JMS_my-channels_SyncNamedTopicAcks"
type="Boolean"
value="true"/>

<EventProp name="JMS_my-channels_AdapterBuffer" type="Integer"

value="1310720"/>
<EventProp name="JMS_my-channels_WriteHandler" type="Integer"

value="3"/>
<EventProp name="JMS_my-channels_SyncQueueAcks" type="Boolean"

value="true"/>
<EventProp name="JMS_my-channels_SyncTopicAcks" type="Boolean"

value="true"/>
<EventProp name="JMS_my-channels_AutoCreateResource"

type="Boolean"
value="true"/>

222 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

<EventProp name="JMS_my-channels_FollowMaster" type="Boolean"

value="false"/>
<EventProp name="alias.type" type="Integer" value="1"/>
<EventProp name="alias" type="String"

value="ExampleConnectionFactory"/>
<EventProp name="alias.reference.classname" type="String"

value="javax.jms.ConnectionFactory"/>
<EventProp name="alias.reference.factoryclass" type="String"

value="com.pcbsys.nirvana.nJMS.ConnectionFactoryFactory"/>
<EventProp name="alias.reference.url" type="String"

value="{"JMS_my-channels_EnableMultiplexedConnections":[3,true],"
JMS_my-channels_RandomRNames":[3,false],"JMS_my-channels_RetryCommit"
:[3,false],"JMS_my-channels_ConxExceptionOnRetryFailure":[3,false],"
JMS_my-channels_MaxReconnectAttempts":[4,-1],"JMS_my-channels_EnableSharedDurable"
:[3,true],"JMS_my-channels_EnableSerialDurable":[3,false],"
JMS_my-channels_EnableSingleSharedDurableAck":[3,false],"
JMS_my-channels_EnableSingleQueueAck":[3,false],"JMS_my-channels_SyncWritesToDisc"
:[3,false],"JMS_my-channels_SyncSendPersistent":[3,true],"
JMS_my-channels_InitialConnectionRetryCount":[4,2],"JMS_my-channels_SyncBatchSize"
:[4,50],"JMS_my-channels_SyncTime":[4,20],"JMS_my-channels_GlobalStoreCapacity"
:[4,0],"JMS_my-channels_AutoAckCount":[4,50],"JMS_my-channels_WindowSize"
:[4,100],"JMS_my-channels_useInfiniteWindowSize":[3,false],"
JMS_my-channels_UnAckedSize":[4,100],"JMS_my-channels_RedliveredSize":[4,100],"
JMS_my-channels_ThreadPoolSize":[4,30],"JMS_my-channels_AutoReconnectAfterACL"
:[3,false],"JMS_my-channels_ImmediateReconnect":[3,true],"
JMS_my-channels_ReconnectInterval":[1,2000],"JMS_my-channels_UseJMSEngine"
:[3,true],"JMS_my-channels_DisconnectAfterClusterFailure":[3,true],"
JMS_my-channels_ConnectionTimeout":[1,10000],"
JMS_my-channels_PermittedKeepAlivesMissed":[4,2],"
JMS_my-channels_SyncNamedTopicAcks":[3,true],"JMS_my-channels_AdapterBuffer"
:[4,1310720],"JMS_my-channels_WriteHandler":[4,3],"
JMS_my-channels_SyncQueueAcks":[3,true],"JMS_my-channels_SyncTopicAcks"
:[3,true],"JMS_my-channels_AutoCreateResource":[3,true],"
JMS_my-channels_FollowMaster":[3,false]}"/>

<EventProp name="alias.stringRefAddr.type" type="String"
value="ConnectionFactory"/>

<EventProp name="alias.stringRefAddr.addr" type="String"
value="nsp://localhost:11000,nsp://localhost:11010,nsp://localhost:11020"/>

</EventPropSet>
<EventData>RXhhbXBsZUNvbm5lY3Rpb25GYWN0b3J5</EventData>

</Event>
<Event id="1">

<EventAttribSet>
<EventAttrib name="nrvpub.time" type="Long"

value="1610454171673"/>
<EventAttrib name="nrvpub.host" type="String"

value="10.248.27.186"/>
<EventAttrib name="nrvpub.name" type="String" value="rgav"/>
<EventAttrib name="JMSDeliveryMode" type="String"

value="PERSISTENT"/>
<EventAttrib name="JMSPriority" type="Byte" value="4"/>

</EventAttribSet>
<EventPropSet>

<EventProp name="alias.type" type="Integer" value="1"/>
<EventProp name="alias" type="String"

value="/customer/sales/JMSTopic"/>
<EventProp name="alias.reference.classname" type="String"

value="javax.jms.Topic"/>

Universal Messaging Administration Guide 10.7 223

2 Universal Messaging Enterprise Manager

<EventProp name="alias.reference.factoryclass" type="String"

value="com.pcbsys.nirvana.nJMS.TopicFactory"/>
<EventProp name="alias.reference.url" type="String" value=""/>
<EventProp name="alias.stringRefAddr.type" type="String"

value="Topic"/>
<EventProp name="alias.stringRefAddr.addr" type="String"

value="/customer/sales/JMSTopic"/>
</EventPropSet>
<EventData>L2N1c3RvbWVyL3NhbGVzL0pNU1RvcGlj</EventData>

</Event>
<Event id="2">

<EventAttribSet>
<EventAttrib name="nrvpub.time" type="Long"

value="1610454193768"/>
<EventAttrib name="nrvpub.host" type="String"

value="10.248.27.186"/>
<EventAttrib name="nrvpub.name" type="String" value="rgav"/>
<EventAttrib name="JMSDeliveryMode" type="String"

value="PERSISTENT"/>
<EventAttrib name="JMSPriority" type="Byte" value="4"/>

</EventAttribSet>
<EventPropSet>

<EventProp name="alias.type" type="Integer" value="1"/>
<EventProp name="alias" type="String"

value="/customer/sales/JMSQueue"/>
<EventProp name="alias.reference.classname" type="String"

value="javax.jms.Queue"/>
<EventProp name="alias.reference.factoryclass" type="String"

value="com.pcbsys.nirvana.nJMS.QueueFactory"/>
<EventProp name="alias.reference.url" type="String" value=""/>
<EventProp name="alias.stringRefAddr.type" type="String"

value="Queue"/>
<EventProp name="alias.stringRefAddr.addr" type="String"

value="/customer/sales/JMSQueue"/>
</EventPropSet>
<EventData>L2N1c3RvbWVyL3NhbGVzL0pNU1F1ZXVl</EventData>

</Event>
</EventsSet>

</ChannelEntry>
<ChannelEntry>

<ChannelAttributesEntry name="/partner/sales" TTL="0" capacity="0" EID="0"

clusterWide="true" jmsEngine="false" mergeEngine="false" type="MIXED_TYPE"/>
<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<ChannelPermissionSet>
<ChannelACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false" getLastEID="true" purgeEvents="false" subscribe="true"
publish="true"
useNamedSubcription="false" host="*" name="user"/>

<ChannelACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
getLastEID="true" purgeEvents="true" subscribe="true" publish="true"
useNamedSubcription="true"

224 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

host="192.168.1.2" name="user"/>
<ChannelGroupACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false" getLastEID="true" purgeEvents="false" subscribe="true"
publish="false"
useNamedSubcription="true" groupname="Everyone"/>

</ChannelPermissionSet>
<DurableSet>

<durableEntry name="serial_durable" EID="-1" outstandingEvents="0"
clusterWide="true" persistent="true" shared="false" serial="true"/>

<durableEntry name="shared_durable" EID="-1" outstandingEvents="0"
clusterWide="true" persistent="true" shared="true" serial="false"/>

</DurableSet>
</ChannelEntry>

</ChannelSet>
<QueueSet>

<QueueEntry>
<ChannelAttributesEntry name="/customer/sales/JMSQueue" TTL="0" capacity="0"

EID="0"
clusterWide="true" jmsEngine="false" mergeEngine="false" type="MIXED_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<QueuePermissionSet>
<QueueACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false"
purge="false" peek="true" push="true" pop="true" host="*" name="user"/>

<QueueACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
purge="true" peek="true" push="true" pop="true" host="192.168.1.2" name="user"/>

<QueueGroupACLEntry listACLEntries="false" modifyACLEntries="false"
fullControl="false" purge="false" peek="true" push="false" pop="false"
groupname="Everyone"/>

</QueuePermissionSet>
</QueueEntry>
<QueueEntry>

<ChannelAttributesEntry name="/partner/queries" TTL="0" capacity="0"
EID="0"
clusterWide="true" jmsEngine="false" mergeEngine="false" type="MIXED_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<QueuePermissionSet>
<QueueACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false"
purge="false" peek="true" push="true" pop="true" host="*" name="user"/>

<QueueACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
purge="true" peek="true" push="true" pop="true" host="192.168.1.2" name="user"/>

<QueueGroupACLEntry listACLEntries="false" modifyACLEntries="false"
fullControl="false" purge="false" peek="true" push="false" pop="false"
groupname="Everyone"/>

</QueuePermissionSet>
</QueueEntry>

Universal Messaging Administration Guide 10.7 225

2 Universal Messaging Enterprise Manager

</QueueSet>
<DataGroupSet/>
<RealmInterfaces>

<RealmNHPInterface>
<RealmInterface name="nhp0" port="11000" adapter="0.0.0.0" autostart="true"

advertise="true" authtime="10000" backlog="100" acceptThreads="10" selectThreads="2"

sendbuffersize="1310720" receivebuffersize="1310720" allowforinterrealm="true"
allowclientconnections="true" EnableNIO="true"/>

<RealmInterfacePlugin mountPoint="/" name="File Plugin">
<NirvanaFilePlugin>

<PluginConfigEntry name="AddUserAsCookie" value=""
description="Add the username to the sessions cookies"/>

<PluginConfigEntry name="AuthParameters" value=""
description="List of key=value string which is passed to the authenticators init
function"/>

<PluginConfigEntry name="Authenticator" value=""
description="Name of authenticator to use, leave to use default, else classname to
use"/>

<PluginConfigEntry name="BasePath"
value="C:\Users\RGAV\dev\NUM-15094\ide\realmDirectories\realm0\plugins\htdocs"
description="Path used to locate the files"/>

<PluginConfigEntry name="BufferSize" value=""
description="Size of the internal buffer to use to send the data"/>

<PluginConfigEntry name="Cache-Control" value=""
description="Specifies the cache control for the plugin"/>

<PluginConfigEntry name="CacheObjectSize" value=""
description="Size in bytes that can be stored in the cache"/>

<PluginConfigEntry name="CachedObjects" value=""
description="Number of objects to store in the cache"/>

<PluginConfigEntry name="DefaultName" value="index.html"
description="If no file name is specified which file should be returned"/>

<PluginConfigEntry name="EnableURLRewrite" value=""
description="If the plugin will scan the source and rewrite the urls"/>

<PluginConfigEntry name="FileNotFoundPage" value=""
description="name of the file to send when file can not be located"/>

<PluginConfigEntry name="GroupNames" value=""
description="A comma seperated list of groups which the user must be a member of at
least one to
be granted access"/>

<PluginConfigEntry name="MimeType" value="" description="Name of
the file to
load the mime type information from"/>

<PluginConfigEntry name="ReloadUserFileDynamically" value=""
description="Choose true to have the user file get reloaded on each auth request"/>

<PluginConfigEntry name="RoleNames" value="" description="A comma
seperated
list of roles which the user must have at least one of to be granted access"/>

<PluginConfigEntry name="Security Realm" value="" description="Name
of the
authentication realm"/>

<PluginConfigEntry name="SeparateAccessandErrorLogs" value=""
description="Choose true to have separate log files"/>

</NirvanaFilePlugin>
</RealmInterfacePlugin>
<JavascriptConfigEntry CORSAllowedOrigins="*" EnableJavaScript="true"

EnableWebSockets="true" CORSAllowCredentials="true" EnableGZipLP="true"
MinimumBytesBeforeGZIP="1000" AjaxLPIdleDelay="60000" AjaxLPActiveDelay="100"/>

</RealmNHPInterface>

226 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

</RealmInterfaces>
<RealmSecurityGroupSet/>
<RealmSchedulerSet>

<Scheduler
source="c2NoZWR1bGVyIHJlYWxtTG9nU2NoZWR1bGUgewoJaW5pdGlhbGlzZSB7CgogCQlMb2dnZXI
ucmVwb3J0KCJEZWZhdWx0IHJlYWxtIGxvZyBmaWxlIGF1dG8gcm9sbCBpbml0aWFsaXNlZCIpOwoKCSB9CgoJZXZlcnkgMDow
MCB7CgoJCUxvZ2dlci5yb2xsKCk7CgkJTG9nZ2VyLnJlcG9ydCgiTG9nIGF1dG9tYXRpY2FsbHkgcm9sbGVkIGJ5IGRlZmF1b
HQgc2NoZWR1bGVkIHNjcmlwdC4gSWYgdGhpcyBpcyBub3QgcmVxdWlyZWQgcGxlYXNlIHJlbW92ZSB0aGUgc2NyaXB0IGZyb2
0gdGhlIHNlcnZlciIpOwoKCX0KfQ==" subject="[rgav@0:0:0:0:0:0:0:1, rgav@127.0.0.1]"
clusterWide="false"/>

</RealmSchedulerSet>
</NirvanaRealm>

Using the Enterprise Viewer

The Enterprise Viewer is a read-only version of the Enterprise Manager. Its purpose is to allow
clients to view the Universal Messaging environment without the need for special administration
rights.

Basically, it offers the same views as the Enterprise Manager, but you cannot use it to modify your
Universal Messaging environment in any way. This means, for example, that you cannot create
or delete channels and queues, and you cannot publish any events.

Starting the Enterprise Viewer

Windows platforms

Windows users can start the Enterprise Viewer by selecting the appropriate component from the
Universal Messaging group in the Windows Start menu.

You can also type a command of the following form on the command line:
<InstallDir>\UniversalMessaging\java\<InstanceName>\bin\nenterpriseview.exe

where <InstallDir> is the installation root location and <InstanceName> is the name of the Universal
Messaging server.

UNIX-based platforms

You can launch the Enterprise Viewer on UNIX-based platforms by starting the nenterpriseview
executable, which you can find at the following location:
<InstallDir>/UniversalMessaging/java/umserver/bin/nenterpriseview

Universal Messaging Administration Guide 10.7 227

2 Universal Messaging Enterprise Manager

228 Universal Messaging Administration Guide 10.7

2 Universal Messaging Enterprise Manager

3 Using Command Central to Manage Universal

Messaging

■ About Using Command Central to Manage Universal Messaging 230

■ Managing Universal Messaging Server Instances ... 230

■ Starting, Stopping, and Restarting Universal Messaging ... 231

■ Securing Communication Between Command Central and Universal Messaging 232

■ Configuring Universal Messaging ... 235

■ Securing Access to Command Central .. 258

■ Administering Universal Messaging ... 260

■ Viewing Universal Messaging Run-time Monitoring Statuses 271

■ Viewing Universal Messaging KPIs .. 271

■ Viewing Universal Messaging Logs .. 272

■ Viewing Universal Messaging Inventory ... 273

■ Configuration Types That the Universal Messaging Server Supports 273

■ Using the Command Line to Manage Universal Messaging .. 274

■ Lifecycle Actions for Universal Messaging Server .. 348

■ Run-time Monitoring States for Universal Messaging Server 348

■ Run-time Monitoring Statuses for Universal Messaging Server 349

■ Deployment of Universal Messaging Assets .. 350

■ Templates for Provisioning Universal Messaging ... 351

Universal Messaging Administration Guide 10.7 229

About Using Command Central to Manage Universal Messaging

The topics in Using Command Central to Manage Universal Messaging provide information about
how to manage Universal Messaging server instances, and how to configure and administer
UniversalMessaging from the CommandCentral web-user interface and command-line interface.

For general information aboutworkingwith CommandCentral , see Software AGCommandCentral
Help.

Managing Universal Messaging Server Instances

You can create and delete Universal Messaging server instances using the Command Central
web-user interface.

Creating a Universal Messaging Server Instance

To create a server instance in Command Central

1. In the Environments pane, select the environment in which youwant to create the new server
instance.

2. Click the Installations tab and select an installation in which to create the instance.

3. Click the Instances tab of the installation.

4. Click and select Universal Messaging Server.

5. Specify the following instance properties:

DescriptionProperty

Required.Name of the newUniversalMessaging server instance.
The name is case-insensitive and can include upper and lower

Instance name

case alphabetic characters, digits (0-9), underscores (_), and
non-leading hyphens (-).

Specific host or IP address to bind. If you do not specify a value,
the instance binds to all available interfaces.

NHP interface binding

Port number for the Universal Messaging server instance.NHP interface port

Absolute path to the data directory of the Universal Messaging
server instance. If you do not specify a value, the default "

Data directory

Software AG_directory /UniversalMessaging/server/instance_name"
directory is used.

230 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionProperty

The registered Universal Messaging license file. Select one of the
registered license files from the list.

License file

Initial configuration settings for the Universal Messaging server
instance. Values are:

Configuration profile

webMethods suite use cases

Standalone use cases

Custom

6. Click Next, and then click Finish.

Deleting a Universal Messaging Server Instance

To delete a server instance in Command Central

1. In the Environments pane, select the environment in which you want to delete the server
instance.

2. Click the Installations tab and select an installation.

3. Click the Instances tab if the installation.

4. Select the Universal Messaging server instance to delete, and then click .

5. Click OK to confirm the deletion, and then click Finish.

The Windows service associated with the instance is automatically deleted when you delete the
instance.

Starting, Stopping, and Restarting Universal Messaging

You can start, stop, and restart a Universal Messaging server instance on the Instances tab in
Command Central or from the dashboard of the server instance.

Command Central does not support other lifecycle actions for a Universal Messaging server
instance.

Universal Messaging Administration Guide 10.7 231

3 Using Command Central to Manage Universal Messaging

Securing Communication Between Command Central and
Universal Messaging

How does Command Central Connect to Universal Messaging?
Command Central uses one of the Universal Messaging ports (interfaces) for configuration and
administration. Command Central checks the interfaces of a Universal Messaging server instance
in the following order and chooses the first available interface to connect to the server:

1. Interfaces that use the HTTP protocol (nhp).

2. Interfaces that use the socket protocol (nsp).

3. Interfaces that use the HTTPS protocol (nhps).

4. Interfaces that use the SSL protocol (nsps).

5. Interfaces that use the shared memory protocol (shm).

If Command Central disconnects from the Universal Messaging server, Command Central uses
the same order to connect to a new Universal Messaging port.

About Securing Communication Between Command Central
and Universal Messaging

Important:
To guarantee secure communication betweenCommandCentral andUniversalMessaging, you
must have only an nhps or nsps port (interface) configured on the Universal Messaging server.
For information about how to create a port and how to configure an nhps or nsps port specifically,
see “Working with Universal Messaging Configuration Types” on page 236, “NHPS Ports” on
page 249, and “NSPS Ports” on page 252, respectively.

When the Universal Messaging server instance is configured with a single nhps or nsps interface,
Command Central uses this interface to connect automatically to the Universal Messaging server.
By default, CommandCentral uses the same truststore file and, in case of client-side authentication,
the same keystore file that are configured in the nhps or nsps interface.

If you want to specify truststore and keystore files that are different from the ones configured in
the nhps or nsps interface, you can use either the standard Java Secure Socket Extension (JSSE)
system properties or the Universal Messaging client system properties for secure communication.
For information about how to configure the properties, see “ Configuring the JSSE System
Properties” on page 233 and “Configuring theUniversalMessagingClient Properties” on page 234.

232 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Considerations When Using System Properties to Specify
Truststore and Keystore Files
Consider the following information before you use system properties to specify custom truststore
and keystore files for secure communication betweenCommandCentral and aUniversalMessaging
server instance:

If you want to connect to a Universal Messaging server instance that is part of a cluster or a
zone, or that you plan to add to a cluster or a zone, ensure that the custom truststore contains
the certificates of all server instances that are part of the cluster or zone.

Configuring the standard JSSE system properties might impact all product instances that use
secure sockets layer (SSL) in the same Platform Manager installation.

Configuring the JSSE System Properties
Use the following procedure to configure the JSSE system properties for a custom truststore and
keystore to secure communication between Command Central and Universal Messaging.

Important:
Setting the JSSE system properties might impact all run-time components that use SSL in the
same Platform Manager installation.

To configure the JSSE system properties

1. In the Command Central web user interface, go to the Platform Manager instance that is in
the same installation as the Universal Messaging server.

2. Click Configuration > Java System Properties > Edit.

3. Add the following properties:

com.softwareag.um.plugin.use.ssl.system.properties=true

javax.net.ssl.keyStore=<path to the custom keystore> - Required only if client
authentication is enabled on the nsps or nhps interface.

javax.net.ssl.keyStorePassword=<password of the custom keystore> - Required only if
client authentication is enabled on the nsps or nhps interface.

javax.net.ssl.trustStore=<path to the custom truststore>

javax.net.ssl.trustStorePassword=<password of the custom truststore>

4. Click Apply.

5. Restart Platform Manager.

Universal Messaging Administration Guide 10.7 233

3 Using Command Central to Manage Universal Messaging

Configuring the Universal Messaging Client Properties
Use the following procedure to configure the Universal Messaging client system properties for a
custom truststore and keystore to secure communication betweenCommandCentral andUniversal
Messaging.

To configure the Universal Messaging client system properties

1. In the Command Central web user interface, go to the Platform Manager instance that is in
the same installation as the Universal Messaging server.

2. Click Configuration > Java System Properties > Edit.

3. Add the following properties:

com.softwareag.um.plugin.use.ssl.system.properties=true

com.softwareag.um.client.ssl.keystore_path=<path to the custom keystore> - Required
only if client authentication is enabled on the nsps or nhps interface.

com.softwareag.um.client.ssl.keystore_password=<password of the custom keystore>
- Required only if client authentication is enabled on the nsps or nhps interface.

com.softwareag.um.client.ssl.certificate_alias=<the alias of the certificate in
the keystore that Command Central should use> - Required only if client authentication
is enabled on the nsps or nhps interface and the keystore containsmore than one certificate.

com.softwareag.um.client.ssl.truststore_path=<path to the custom truststore>

com.softwareag.um.client.ssl.truststore_password=<password of the custom
truststore>

4. Click Apply.

5. Restart Platform Manager.

Switching Off the System Properties Mode
To stop using custom truststore and keystore files for secure communication between Command
Central and a Universal Messaging server instance, you must set
com.softwareag.um.plugin.use.ssl.system.properties to false.

To stop using custom truststore and keystore files

1. In the Command Central web user interface, go to the Platform Manager instance that is in
the same installation as the Universal Messaging server instance.

234 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

2. Click Configuration > Java System Properties > Edit.

3. Set com.softwareag.um.plugin.use.ssl.system.properties to false.

4. Click Apply.

5. Restart Platform Manager.

Configuring Universal Messaging

About Configuring Universal Messaging
This topic provides general information about how to work with the configuration types that
UniversalMessaging supports. You can also find reference information about the fields and values
to specify when you create an instance of each configuration type.

You can create instances of the following configuration types for a Universal Messaging server
instance in the Command Central web-user interface:

Channels

Clustering

General Properties

Groups

Internal Users

JNDI Connection Factories

JNDI Destinations

JVM Options

Java System Properties

License Keys

Memory

Ports

Queues

Realm ACL

Zones

For detailed reference information about the configuration properties and their values, see the
topics under Concepts.

Universal Messaging Administration Guide 10.7 235

3 Using Command Central to Manage Universal Messaging

Working with Universal Messaging Configuration Types
You create, edit, and delete instances of configuration types for a Universal Messaging server on
the Universal-Messaging-instanceName > Configuration page in Command Central.

The Universal Messaging server instance must be running during configuration.

To create, edit, or delete an instance of a Universal Messaging configuration type

1. In Command Central, go to Environments > All> Instances >
Universal-Messaging-instanceName.

2. Click the Configuration tab.

3. Select the configuration type from the drop-down list.

Universal Messaging displays the available or default values for the selected Universal
Messaging configuration type.

4. Perform any of the following actions:

To create an instance of a configuration type, click . Specify the required values for the
fields and click Save. Optionally, you can test the configuration before saving it.

To edit an instance of a configuration type, click the instance and then click Edit. Make the
necessary changes and clickSave. Optionally, you can test the configuration before saving
it.

To delete an instance of a configuration type, click .

Channels
The following tables show the properties you can configurewhen you create a channel inCommand
Central.

Channel Properties

DescriptionProperty

Required. Name of the channel.Name

Note:
After a channel is created, you cannot edit the channel name.

Type of the channel. TheUniversalMessaging channel types are:Type

Reliable

236 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionProperty

Persistent

Mixed (default)

Specifies how long (in milliseconds) each event is retained on
the channel after being published. For example, if you specify a

TTL (ms)

TTL of 10000, the events on the channel will be automatically
removed by the server after 10000 milliseconds. Specify 0 for
events to remain on the channel indefinitely.

Event capacity of the channel. Specifies the maximum number
of events that can be on a channel, once published. Specify 0 to

Capacity

store unlimited events. The maximum channel capacity is
2147483646.

Channel or queue to be used to store events that are purged
before being consumed.

Dead event store

Type of engine to be used for the channel. By default, Universal
Messaging retains all events on the channel for a specified TTL,

Engine

modify the retention behavior by selecting JMS engine orMerge
engine.

Selected automatically if theUniversalMessaging server instance
is part of a cluster.

Cluster-wide

Absolute path to the Protocol Buffer (protobuf) descriptor file
that is stored on the machine where Software AG Platform
Manager is installed.

Protobuf descriptor

Storage Properties

DescriptionProperty

Select to retain events till they reach their TTL. Cancel the
selection to purge events from the channel storage file.

Auto-maintenance

Select to prevent publishing of data when the channel is full.
Cancel the selection to purge the oldest published event.

Honor capacity

Select for the events to be stored in the cachememory and reused.
Cancel the selection to read and stored in the file store.

Enable caching

Select to enable caching during reload.Cache on reload

Select to enable read buffering for the store on the Universal
Messaging server.

Enable read buffering

Select to enable multicast client to receive events over multitask
connections.

Enable multicast

Universal Messaging Administration Guide 10.7 237

3 Using Command Central to Manage Universal Messaging

DescriptionProperty

Read buffer size in bytes.Read buffer size

Select to sync each write to the file system.Sync each write

Configurable only when Sync each write is selected. Number
of events that is to be synced with the file system at once.

Sync batch size

Configurable only when Sync each write is selected. Time in
milliseconds (ms) between syncs with the file system.

Sync batch time

Target number of events that are written to an archive after
fanout.

Fanout archive target

Priority range. 0 (lowest) to 9 (highest).Priority

Maximum number of events allowed per file.Events per spindle

Select to stamp events on the channel by the server.Stamp dictionary

Channel Keys

DescriptionColumn

Name of the channel publish key.Key name

Depth of the channel publish key. Depth is themaximumnumber
of events that can exist on a channel for a specific key name.

Depth

Channel ACL

DescriptionColumn

User name in the format user@host or the name of an existing
group.

Subject

Select to allow the user or group to manage ACLs.Manage ACL

Select to grant full privileges to the user or group.Full

Select to allow the user or group to delete events.Purge

Select to allow the user or group to subscribe to events.Subscribe

Select to allow the user or group to publish events.Publish

Select to allow the user or group to connect to this channel using
durable subscriptions.

Named (durable)

Joins

You can add and delete joins, but you cannot edit channel join properties.

238 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionColumn

Type of join. Outgoing: channel is source. Incoming: channel is
destination.

Type

Destination channel or queue.Destination name

Name of the target instance. Required only if the channel or
queue is in a remote Universal Messaging server instance.

Target instance name

URL of the target Universal Messaging server instance that has
the destination channel or queue for the join.

Target instance URL

Type the filtering criteria, a string or a regular expression. Events
will be routed to the destination channel based on the filtering
criteria.

Filter

Type the maximum number of subsequent joins.Hop count

Last retrieved event ID.Event ID

Select to allow purging of events on the channel.Allow purge

Select to enable archival join. Archival join is a join between a
channel and a queue where events will not be checked for
duplication.

Archival

Clustering

Before You Create a Universal Messaging Cluster

Before you create or update a Universal Messaging cluster, perform the following tasks:

Ensure that the server instances that you want to add to the cluster are running.

Verify that the permissions on the server machines allow connections to the other servers in
the cluster.

Ensure that the /naming/defaultContext channel exists only on one or none of the nodes that
will form the cluster. The Universal Messaging server instance used as a JNDI provider uses
the /naming/defaultContext channel to store JMS references and JNDI objects. If the
/naming/defaultContext channel exists on multiple nodes, you cannot create the cluster.

Ensure that the keystore and truststore of each server instance in the cluster contain the
certificates required for communicating with the rest of the server instances. This is required
when the server instances that youwant to add to the cluster have only nsps or nhps interfaces.
Perform the following steps for a server instance:

1. Create a keystore and a truststore.

2. Import the certificate of the server instance into the keystore.

Universal Messaging Administration Guide 10.7 239

3 Using Command Central to Manage Universal Messaging

3. Import the certificates of all servers that you want to add to the cluster into the truststore.

4. Add the paths to the keystore and truststore, and the keystore and truststore passwords,
to the corresponding JSSE system properties in the Server_Common.conf file of the server
instance. The file is located in the Software AG_directory
\UniversalMessaging\server\instanceName\bin directory.

Cluster Configuration Properties

The following tables show the properties you configure when you create a Universal Messaging
cluster in Command Central.

DescriptionProperty

A unique name for the cluster.Cluster Name

The server URL (for example, nsp://127.0.0.1:9002) of each server node.Server URL

When you save the cluster details, the Server Name field is populated with
the name of the server corresponding to the specified server URL.

The name of the site (Optional) to which the server node belongs.Cluster Site

The name of the primary site (Optional), if you have configured sites in the
cluster.

Prime Site

Supported Cluster Configuration Tasks

You can perform the following cluster configuration tasks:

Create a cluster of two ormore server instances. The cluster create operation converts the local
stores to cluster-wide stores for the selected master node. For the other nodes, the stores must
be empty for the cluster create operation to be successful.

Add one or more server instances to an existing cluster.

Remove one or more server instances from an existing cluster.

Upgrade a cluster.

Create sites and assign server instances to the sites.

Assign a site as the prime site of a cluster.

Remove one or more server instances from a cluster site.

Remove sites from a cluster.

Delete a cluster. The cluster delete operation does not delete any stores on the nodes.

Migrate a cluster.

240 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Cluster Migration

You can now automatically migrate Universal Messaging clusters using Command Central
composite templates. Use Command Central composite templates to migrate all the Universal
Messaging server instances that are part of the cluster, and add the following property to resolve
the cluster node connections successfully after migration:

Add the following property to the um-cluster section of the composite template YAML file
present in the following directory: <InstallDir>/profiles/CCE/data/templates/composite :

<ClusterSettings>
...

<ExtendedProperties>
<Property name="migrationType">SAME_HOST or CROSS_HOST</Property>

</ExtendedProperties>
</ClusterSettings>

Note:
A Universal Messaging server instance mapping file called remote_realms_bootstrap.conf
containing information about the newUniversalMessaging hosts is automatically generated
in each of the Universal Messaging server instances. The mapping file is used to identify
the new hosts, and to form the new cluster.

General Properties
You can configure a Universal Messaging server instance by editing the server configuration
parameters. The Universal Messaging configuration parameters are organized into groups. The
parameters in each group are organized in two categories: Basic and Advanced. The properties
in the Basic category are commonly used. The properties in the Advanced category are less
frequently used and are intended for special cases or expert users.

You can view and configure properties only when the Universal Messaging server instance is
running.

The following table lists the property groups and which properties you can configure in each
group.

DescriptionProperty Group

Parameters to configure what gets logged in the audit file.Audit Settings

Parameters to configure client-server communication timeout
settings.

Client Timeout Values

Parameters to configure clustering.Cluster Config

Parameters to configure Comet communication protocol
connection.

Comet Config

Parameters to configure client-server connection.Connection Config

Universal Messaging Administration Guide 10.7 241

3 Using Command Central to Manage Universal Messaging

DescriptionProperty Group

Parameters to configure data streams.Data Stream Config

System environment configuration parameters. You cannot
modify the environment configuration parameters, the
parameters are read-only.

Environment Config

Parameters to configure how events are stored, and retrieved
from the server.

Event Storage

Parameters to configure delivery of events to the clients.Fanout Values

Parameters to configure various global Universal Messaging
server instance properties, for example,
AllowRealmAdminFullAccess.

Global Values

Parameters to configure communication across Universal
Messaging server instances.

Inter-Realm Comms Config

Parameters to configure the JVM used by the Universal
Messaging server.

JVMManagement

Parameters to modify join properties.Join Config

Parameters to modify logging configuration.Logging Config

Parameters to enable or disable system metrics such as
memory usage.

Metric Config

Parameters to configure MQTT.MQTT Config

Parameters for Universal Messaging server plugin
configuration.

Plugin Config

Parameters to configure Google protocol buffers.Protobuf Config

Parameters to configure AMQP connections.Protocol AMQP Config

Parameters to configure MQTT connections.Protocol MQTT Config

Parameters to configure clients that are in recovery and
replaying large number of events.

RecoveryDaemon

Parameters to configure server protection such as flow control
of producer connections.

Server Protection

Parameters for server thread pools.Thread Pool Config

Parameters for Universal Messaging transaction engine.TransactionManager

For more information about the server configuration properties and their values, see “Realm
Configuration” on page 33.

242 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Groups
You can add, edit, or delete a security group using the Command Central web user interface.

When you create a group, you must specify a name for the group and add subjects. The subjects
can be an existing group or an individual user in the format user@host.

Internal Users
You can add new users, list existing users, change the password of a user, and delete a user from
the user repository of a Universal Messaging server instance.

Information to authenticate the users of a Universal Messaging server instance is stored in the
user repository users.txt file. The default location of the users.txt file is Software AG_directory
\common\conf. The users.txt file is generated only after you create a new internal user.

The path to the users.txt file is added to the jaas.conf file present in the Software AG_directory
\UniversalMessaging\server\instanceName\bin directory. If you specify a relative path in the
jaas.conf file, the users.txt file is created in a directory relative to the bin directory of the Universal
Messaging server instance. You can specify a custom file name instead of the default users.txt and
a custom path in the jaas.conf file.

You can also use the Command Central command-line interface or the internaluserrepo.bat and
internaluserrepo.sh scripts in Software AG_directory \common\bin to configure users.

JNDI Connection Factories
You can perform create, get, update, and delete operations on the following connection factory
types:

Connection Factory

Topic Connection Factory

Queue Connection Factory

XA Connection Factory

The following table describes the fields an values to specifywhen you create or update a connection
factory.

DescriptionField

Required. Unique name of the new connection factory, for
example, connectionfactory1. You cannot edit the name after
you create the connection factory.

Name

Type of the connection factory. You cannot edit this field.Type

Universal Messaging Administration Guide 10.7 243

3 Using Command Central to Manage Universal Messaging

DescriptionField

Required. Universal Messaging server URL for binding the
connection factory, for example, nsp://localhost:9000. To specify

Connection URL

a cluster of server instances, use a comma-separated list of
connection URLs, for example,
nsp://localhost:9000,nsp://localhost:9010. You can use a
horizontal scalability connection factory to specify several
connection URLs, where each connection URL can point to a
standalone realm or a cluster.

Horizontal scalability connection factories enable clients to publish
messages to a set of servers or consume messages from a set of
servers in a round-robin manner:

For round-robin publishing, onemessage or transaction gets
published to the first realm node or cluster, the next message
to the next realm node or cluster, and so on.

For round-robin consuming, there is no guarantee about the
order in which the events are delivered.

For a horizontal scalability connection factory, you specify several
connection URLs, using the horizontal scalability URL syntax.

For information about the syntax, see the sectionURL Syntax for
Horizontal Scalability in the Concepts guide.

Consider the following example:

(UM1,UM2)(UM3,UM4) - Indicates 2 clusters, one consisting of
UM1 and UM2 and the other consisting of UM3 and UM4, so
only two connections are constructed here.

Note:
Round-robin delivery is not supported for XA Connection
Factory.

Select the durable type for Connection Factory and Topic
Connection Factory. The default type is Named.

Durable type

JNDI Destinations
You can perform create, get, and delete operations on topic and queue JNDI destination types.

Consider the following information when you create a JNDI destination:

Creating a connection factory anddestinationwith the same name is not allowed for aUniversal
Messaging server instance.

Updating a JNDI destination is not supported.

244 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Deleting a JNDI destination does not delete the channel or queue that exists on the Universal
Messaging server instance.

The following table describes the fields and values to specify when you create a JNDI destination.

DescriptionField

Required. Unique name of the JNDI destination. Once created,
you cannot edit the JNDI destination name. The name can include

Lookup name

upper and lower case alphabetic characters, digits (0-9), a double
colon (::), slash (/), and periods (.), for example, destination1.
Use a double colon (::) to specify a nested name space, for
example, destination1::destination2.

Type of destination. You cannot edit this field.Destination type

Required. Unique name of the JMS channel or queue. Once
created, you cannot edit the store name. The store name can

Store name

include upper and lower case alphabetic characters, digits (0-9),
a double colon (::), and slash (/).

Select to enable auto-creation of the JMS channel.Auto-create JMS channel

Select to enable auto-creation of the JMS queue.Auto-create JMS queue

JVM Options
You can add, view, edit, and delete JVM options in the Command Central web-user interface.
Restart the Universal Messaging instance for the changes to take effect.

The JVM options are stored in the Server_ Common.conf file located in the Software AG_directory
\UniversalMessaging\server\instanceName\bin directory. If you add a custom JVM option, it is
added to the Custom_Server_Common.conf file. These options are given to the Java Service
Wrapper when it launches the JVM.

Formore information about the Java ServiceWrapper, see Software AG Infrastructure Administrator's
Guide.

To export the JVM options in XML format, click Export. To add a custom JVM option, click Edit.

Note:
You can edit, but you cannot delete the default JVM options that are already present.

Java System Properties
You can add, view, edit, and delete Java system properties in the Command Central web-user
interface. Restart the Universal Messaging instance for the changes to take effect.

You can perform the following actions:

Universal Messaging Administration Guide 10.7 245

3 Using Command Central to Manage Universal Messaging

To add a custom property or update the value of an existing property, click Edit.

To export the Java system properties in XML format, click Export.

To restore the default value of a property, pass an empty value for the property.

Note:
You cannot delete the default Java system properties that are already present.

The following table shows the Java system properties you can edit.

DescriptionProperty

Name of the license file.LICENCE_FILE

Absolute path to the location of the license file.LICENCE_DIR

Absolute path to the location of the data directory.DATADIR

Note:
Modifying the DATADIR property does not copy the existing
data directory to the new location.

License Keys
You can view license details, update the license key, and retrieve the location of the license file for
a Universal Messaging server.

Note:
You cannot change the location of a Universal Messaging license file.

Memory
You can view and update the initial memory size and maximum memory size of a Universal
Messaging server instance.

Ports
In the Command Central web user interface, you can view, create, enable, disable, and edit all
types of Universal Messaging server ports (interfaces).

On the Configuration > Ports page, you can view all the ports configured for aUniversalMessaging
server instance and the basic port attributes described in the following table.

DescriptionField

Whether the port is enabled or disabled.Enabled

246 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionField

An alias used to recognize the port. Each port on a Universal
Messaging server instance has an associated alias.

Alias

Address The number of an NSP, NHP, NHPS, or NSPS port. The port
number is unique.

The path of an SHM port.

The type of the port. The port uses one of the following protocols:Protocol

NSP (Socket protocol)

NHP (HTTP protocol)

NHPS (HTTPS protocol)

NSPS (SSL protocol)

SHM (shared memory protocol)

NSP Ports

The following table shows the fields and values to specify when you configure an NSP port
(interface) in Command Central.

DescriptionField

Whether to enable or disable the port.Enabled

An alias for the port. Each Universal Messaging server instance
can have an associated alias in the form of host:port. The alias is

Adapter alias

used to inform other servers how to contact the server, if the
server is behind a NAT or a Proxy Server. This alias is not the
same as the Universal Messaging assigned interface alias.

Required. A unique port number for the server.Number

The size of the Internet Protocol (IP) socket queue.Backlog

The IP address to which to bind this port, if your machine has
multiple IP addresses and you want the port to use this specific
address.

Bind address

You cannot change this attribute after you create the port.

Whether to automatically start this port when you start the
Universal Messaging server instance.

Autostart interface

Allow the Universal Messaging server instance to send
information about this port to the client.

Advertise interface

Universal Messaging Administration Guide 10.7 247

3 Using Command Central to Manage Universal Messaging

DescriptionField

Allow port communication between two or more Universal
Messaging server instances. For example, enable communication
between clusters or joins.

Allow for inter-realm

Allow clients to connect to this port.Allow client connections

Enable NIO (Network Input/Output) on this port.Enable NIO

Enable the port to respond to policy requests. You can run a
policy file server on a socket interface that automatically handles

Enable policy server

these requests. Then youmust set up a client access policy in the
clientaccesspolicy.xml file in the
/install/server/name/plugins/htdocs directory of the server.

The time inmilliseconds (ms) that theUniversalMessaging server
instance waits for the client to complete the authentication
process. The default value is 10000.

Auth time

The number of threads that process the accepted sockets.Accept threads

The number of threads allocated for selection.Select threads

The size of the socket send buffer.Send buffer size

The size of the socket receive buffer.Receive buffer size

NHP Ports

The following table shows the fields and values to specify when you configure an NHP port
(interface) in Command Central.

DescriptionField

Whether to enable or disable the port.Enabled

An alias for the port. Each interface on a Universal Messaging
server instance can have an associated alias in the format host:port.

Adapter alias

The alias is used to tell other servers how to contact the server,
if the server is behind a NAT or a Proxy Server. This alias is not
the same as the Universal Messaging assigned interface alias.

Required. A unique port number for the server.Number

The size of the Internet Protocol (IP) socket queue.Backlog

The IP address to which to bind this port, if your machine has
multiple IP addresses and you want the port to use this specific
address.

Bind address

248 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionField

You cannot change this attribute after you create the port.

Whether to automatically start the port when you start the
Universal Messaging server instance.

Autostart interface

Allow the Universal Messaging server instance to send
information about this port to the client.

Advertise interface

Allow port communication between two or more Universal
Messaging server instances. For example, allow communication
between clusters or joins.

Allow for inter-realm

Allow clients to connect to the port.Allow client connections

Enable NIO (Network Input/Output) on the port.Enable NIO

Enable the usage of HTTP 1.1 protocol on the port.Enable HTTP 1.1

The time inmilliseconds (ms) that theUniversalMessaging server
instance waits for the client to complete the authentication
process. Default is 10000milliseconds.

Auth time

The number of threads that process the accepted sockets.Accept threads

The number of threads allocated for selection.Select threads

The size of the socket send buffer.Send buffer size

The size of the socket receive buffer.Receive buffer size

NHPS Ports

The following tables show the fields and values to specify when you configure an NHPS port
(interface) in Command Central.

Connection Basics

DescriptionField

Whether to enable or disable the port.Enabled

An alias for the port. Each Universal Messaging server instance
can have an associated alias in the form of host:port. The alias is

Adapter alias

used to tell other servers how to contact this server, if this server
is behind a NAT or a Proxy Server. This alias is not the same as
the Universal Messaging assigned interface alias.

Required. A unique port number.Number

The size of the Internet Protocol (IP) socket queue.Backlog

Universal Messaging Administration Guide 10.7 249

3 Using Command Central to Manage Universal Messaging

DescriptionField

The IP address to which to bind this port, if your machine has
multiple IP addresses and you want the port to use this specific
address.

Bind address

You cannot change this attribute after you create the port.

Whether to automatically start this port when you start the
Universal Messaging server instance.

Autostart interface

Allow the Universal Messaging server instance to send
information about this port to the client.

Advertise interface

Allow port communication between two or more Universal
Messaging server instances. For example, allow communication
between clusters, or joins.

Allow for inter-realm

Allow clients to connect to the port.Allow client connections

Enable NIO (Network Input/Output) on the port.Enable NIO

Enable the usage of HTTP 1.1 protocol on the port.Enable HTTP 1.1

The time inmilliseconds (ms) that theUniversalMessaging server
instance waits for the client to complete the authentication
process. The default value is 10000.

Auth time

The number of threads processing the accepted sockets.Accept threads

The number of threads allocated for selection.Select threads

The size of the socket send buffer.Send buffer size

The size of the socket receive buffer.Receive buffer size

JavaScript Interface Properties

Set these properties to configure communication with web clients using JavaScript.

DescriptionField

Enale JavaScript client connections using this port.Enable JavaScript

Toggle the ability for clients to communicate with the server
using the HTMLWebSocket Protocol on this interface.

Enable WebSockets

Enable GZIP compression on HTTP long poll connections.Enable GZIP for long poll

Allow Cross-Origin Resource Sharing (CORS) credentials.CORS allow credentials

250 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionField

A comma-separated list of the host names (and IP addresses if
they appear in URLs) of the servers that host your JavaScript
application's HTML files.

CORS allowed origins

Important:
If this property is not set correctly, many communication
drivers available to JavaScript clients may fail.

The time between clients sending long poll requests to the server
in milliseconds. Reducing this may reduce latency but will
increase both client and servermemory, CPU, and network usage.

Long poll active delay

The minimum message size is bytes required for the server to
begin compressing data sent to long poll clients.

GZIP minimum threshold

The time between clients sending long poll when the client is in
idle mode.

Long poll idle delay

Custom Headers

Custom headers are paired with Header Key/Value pairs that are sent in the HTTP packets to the
client.

Security Configuration

DescriptionField

Whether or not Universal Messaging requires client certificates
for all requests. Select:

Client authentication

None if Universal Messaging does not require client
certificates for all requests.

REQUIRE_CERTIFICATE if you want Universal Messaging
to require client certificates for all requests.

File type of the keystore file. Universal Messaging supports the
JKS and PKCS12 file types.

Keystore type

Location of the keystore file.Keystore server location

Password required to access the SSL certificate in the keystore
file.

Keystore password

Password required to access a specific private key in the keystore
file.

Keystore key password

File type of the truststore file. Universal Messaging supports the
JKS and PKCS12 file types.

Truststore type

Universal Messaging Administration Guide 10.7 251

3 Using Command Central to Manage Universal Messaging

DescriptionField

Location of the truststore file.Truststore server location

Password required to access the SSL certificate in the truststore
file.

Truststore password

NSPS Ports

The following tables show the fields and values to specify when you configure an NSPS port
(interface) in Command Central.

Connection Basics

DescriptionField

Whether to enable or disable the port.Enabled

An alias for the port. Each Universal Messaging server instance
can have an associated alias in the form of host:port. The alias is

Adapter alias

used to tell other servers how to contact the server if the server
is behind a NAT or a Proxy Server. This alias is not the same as
the Universal Messaging assigned interface alias.

Required. A unique port number.Number

The size of the Internet Protocol (IP) socket queue.Backlog

The IP address to which to bind this port, if your machine has
multiple IP addresses and you want the port to use this specific
address.

Bind address

You cannot change this attribute after you create the port.

Whether to automatically start the port when you start the
Universal Messaging server instance.

Autostart interface

Allow the Universal Messaging server instance to send
information about this port to the client.

Advertise interface

Allow port communication between two or more Universal
Messaging server instances. For example, allow communication
between clusters or joins.

Allow for inter-realm

Allow clients to connect to the port.Allow client connections

Enable NIO (Network Input/Output) on the port.Enable NIO

Enable the port to respond to policy requests. You can run a
policy file server on a socket interface that will automatically

Enable policy server

handle these requests. Then youmust set up a client access policy

252 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionField

in the clientaccesspolicy.xml file in the
/install/server/name/plugins/htdocs directory of the server.

The time inmilliseconds (ms) that theUniversalMessaging server
instance waits for the client to complete the authentication
process. The default value is 10000.

Auth time

The number of threads that process the accepted sockets.Accept threads

The number of threads allocated for selection.Select threads

The size of the socket send buffer.Send buffer size

The size of the socket receive buffer.Receive buffer size

Security Configuration

DescriptionField

Whether or not Universal Messaging requires client certificates
for all requests. Select:

Client authentication

None if Universal Messaging does not require client
certificates for all requests.

REQUIRE_CERTIFICATE if you want Universal Messaging
to require client certificates for all requests.

File type of the keystore file. Universal Messaging supports the
JKS and PKCS12 file types.

Keystore type

Location of the keystore file.Keystore server location

Password required to access the SSL certificate in the keystore
file.

Keystore password

Password required to access a specific private key in the keystore
file.

Keystore key password

File type of the truststore file. Universal Messaging supports the
JKS and PKCS12 file types.

Truststore type

Location of the truststore file.Truststore server location

Password required to access the SSL certificate in the truststore
file.

Truststore password

SHM Ports

Universal Messaging Administration Guide 10.7 253

3 Using Command Central to Manage Universal Messaging

The following table shows the fields and values to specify when you configure an SHM port
(interface) in Command Central.

DescriptionField

Whether to enable or disable the port.Enabled

The directory in which the files required for SHM (shared
memory) communication are created. The default value is
/dev/shm.

Path

Note:
When you choose a path, ensure that the local ID of the server
can access this directory.

The size in bytes of the allocatedmemory that a connection uses.
The default value is 1024000. A file of the same size is also created
for mapping.

Buffer size

The idle time in milliseconds before a connection is closed. The
default value is 20000.

Timeout

Queues
The following tables show the properties you can configurewhen you create a queue inCommand
Central.

Queue Properties

DescriptionProperty

Required. Name of the queue to be created. You cannot edit the
queue name.

Name

Type of the queue. The Universal Messaging queue types are:Type

Reliable

Persistent

Mixed (default)

Specifies how long (inmilliseconds) each event is retained in the
queue after being published. For example, if you specify a TTL

TTL (ms)

of 10000, the events on the queue will be automatically removed
by the server after 10000 milliseconds. Specify 0 for events to
remain on the queue indefinitely.

Event capacity of the queue. Specifies the maximum number of
events that can be on a queue once published. Specify 0 to store
unlimited events. The maximum queue capacity is 2147483646.

Capacity

254 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionProperty

Channel or queue to be used to store events that are purged
before being consumed.

Dead event store

Selected automatically if theUniversalMessaging server instance
is part of a cluster.

Cluster-wide

Absolute path to the Protocol Buffer descriptor file that is stored
on themachinewhere SoftwareAGPlatformManager is installed.

Protobuf descriptor

Storage Properties

DescriptionProperty

Select to retain events till they reach their TTL. Cancel the
selection to purge events from the queue storage file.

Auto-maintenance

Select to prevent publishing of datawhen the queue is full. Cancel
the selection to purge the oldest published event.

Honor capacity

Select for the events to be stored in the cachememory and reused.
Cancel the selection to read and stored in the file store.

Enable caching

Select to enable caching during reload.Cache on reload

Select to enable read buffering for the store on the Universal
Messaging server.

Enable read buffering

Select to enable multicast client to receive events over multitask
connections.

Enable multicast

Read buffer size in bytes.Read buffer size

Select to sync each write to the file system.Sync each write

Configurable only when Sync each write is selected. Number
of events that is to be synced with the file system at once.

Sync batch size

Configurable only when Sync each write is selected. Time in
milliseconds (ms) between syncs with the file system.

Sync batch time

Target number of events that are written to an archive after
fanout.

Fanout archive target

Priority range. 0 (lowest) to 9 (highest).Priority

Maximum number of events allowed per file.Events per spindle

Select to stamp events on the channel by the server.Stamp dictionary

Queue ACL

Universal Messaging Administration Guide 10.7 255

3 Using Command Central to Manage Universal Messaging

DescriptionColumn

User name in the format user@host or the name of an existing
group.

Name

Select to allow the user or group to manage ACLs.Manage ACL

Select to grant full privileges to the user or group.Full

Select to allow the user or group to purge events.Purge

Select to allow the user or group to peek events.Peek

Select to allow the user or group to push events.Push

Select to allow the user or group to pop events.Pop

Joins

You can view the following join properties:

DescriptionColumn

Type of join.Type

Destination channel.Destination name

Name of the target instance. Required only if the target channel
is in a remote Universal Messaging server instance.

Target instance name

URL of the target Universal Messaging server instance that has
the destination channel for the join.

Target instance URL

Destination channel.Remote node

Maximum number of subsequent joins.Hop count

Last retrieved event ID.Event ID

Allow purging of events in the queue.Allow purge

Archival join is a join between a channel and a queue where
events will not be checked for duplication.

Archival

Realm ACL
The following table describes the fields and values to specify when you configure permissions for
a Universal Messaging server instance.

256 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionField

User name in the format user@host or name of an existing group
in the format groupname.

Subject

Allow ACL management.Manage ACL

Grant full privileges to the user or group.Full

Allow access to the realm.Access

Allow realm configuration.Configure

Allow channel configuration and administration.Channels

Allow realm configuration and management.Realm

Allow use of Universal Messaging Admin API.Admin API

Allow management of data groups.Manage data groups

Allow ownership of data groups.Own data groups

Allow publishing to global data groups.Publish to data groups

Zones
Zones are a logical grouping of one or more Universal Messaging server instances (realms) that
maintain active connections to each other. Each Universal Messaging server instance can be a
member of zero or one zone, but a server instance cannot be a member of more than one zone. For
more information about zones, see the Zones section in the Universal Messaging Concepts guide.

You can create, edit, or delete a zone using the Command Central web user interface. You can
create either a Zone with Realms consisting of one or more reams, or a Zone with Clusters
consisting of one or more Universal Messaging clusters. You can export the zone configuration
using the Export option.

Important:
If the server instances that youwant to add to the zone have only nsps or nhps interfaces, ensure
that the keystore and truststore of each server instance contain the certificates required for
communicating with the rest of the server instances. To do so for a server instance:

1. Create a keystore and a truststore.
2. Import the certificate of the server instance into the key store.
3. Import the certificates of all servers that you want to add to the zone into the truststore.
4. Add the paths to the keystore and truststore, aswell as the keystore and truststore passwords,

to the corresponding JSSE system properties in the Server_Common.conf file of the server
instance. The file is located in the Software AG_directory
\UniversalMessaging\server\instanceName\bin directory.

The table following table describes the fields and values to specify when you create a zone with
realms or a zone with clusters.

Universal Messaging Administration Guide 10.7 257

3 Using Command Central to Manage Universal Messaging

DescriptionField

Required. Name of the zone used to uniquely identify this zone.Zone name

Required. Server URL and name if you are creating a Zone with
Realms, or one or all of the cluster nodes if you are creating a
Zone with Clusters.

Servers (for Zonewith Realms)

or

Clustered servers (for Zone
with Clusters)

Server URL: Universal Messaging server URL.

Server name: Name of the Universal Messaging server.

Cluster configuration: Automatically populated with the
cluster name.

Note:
You can provide any cluster node and all the running nodes
of the cluster are added to the zone.

Securing Access to Command Central

Changing the Authentication Mode

1. Click the Instances tab to view all the available Universal Messaging server instances.

2. Click an Universal Messaging instance name to access the Dashboard.

The Dashboard contains information about the specific Universal Messaging server instance
such as status, alerts, and KPIs.

3. In the Details section of the Dashboard, click in the Authentication field to change the
authentication mode.

The Authentication Mode dialog box appears.

4. Select one of the following authentication modes:

System default: Use default authentication method.

None: No authentication method is used.

Trusted: Password-less authentication for predefined administrative user account.

Delegated: SAML-based authentication and authorization for the currently logged in user.

Fixed user: Authenticate the specified administrative user credentials. Provide a user
name and password for the user.

Note:

258 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

To use basic authentication, you must change the authentication mode for a run-time
component to Fixed User. Command Central uses basic authentication with a fixed user
to communicatewith PlatformManager.WithFixed User authentication, the authentication
credentials for the Platform Manager will be fixed.

Verifying the Outbound Authentication Settings
Use the following steps to verify that Command Central is configured with the correct outbound
authentication settings.

To verify that Command Central is configured with the correct user credentials

1. In Command Central, on the Overview tab for the product component, click . Check that
the product status is Online and the JVM KPIs are updated.

2. On the Logs tab, check the product log for authentication errors.

Using Unix Shell Scripts to Change Connection Credentials for
Managed Products
You can use the following sample UNIX shell script to configure basic authentication credentials
for product components managed by Command Central.
NODE_ALIAS=local
USERNAME=Administrator
PASSWORD=secret
RCID=integrationServer-default
RCID=MwsProgramFiles-default
RCID=Universal-Messaging-nirvana
RCID=OSGI-CTP
RCID=OSGI-InfraDC

sagcc get configuration data $NODE_ALIAS $RCID COMMON-LOCAL-USERS-Administrator

-o administrator.xml
sed "s,/>,><Password>${PASSWORD}</Password></User>,g" administrator.xml >

administrator_new.xml
sagcc update configuration data $NODE_ALIAS $RCID COMMON-LOCAL-USERS

-Administrator -o administrator_new.xml

verify connection
sagcc get monitoring runtimestatus $NODE_ALIAS $RCID -e ONLINE

Universal Messaging Administration Guide 10.7 259

3 Using Command Central to Manage Universal Messaging

Enabling Basic Authentication for Universal Messaging Users
Perform the following steps to enable basic authentication for UniversalMessaging server instance
users. For more information about authentication, see the Authentication Overview section in the
Universal Messaging Concepts guide.

Important:
JAAS Authentication with Software AG Security infrastructure component is required for
completing basic authentication configuration, for more information see the Server JAAS
Authentication with Software AG Security infrastructure component section in the Universal
Messaging Concepts guide.

1. Use the Internal Users configuration type inCommandCentral if youwant to add new internal
users.

2. Use the Realm ACL configuration type to add internal users in the format username@host and
configure the Access Control Lists (ACLs) of the server. For more information about how to
manage ACLs, see “Realm ACL” on page 256.

3. Change the default Authentication Mode from None to Fixed User and provide a new user
name and password. For more information about how to change the authenticationmode, see
“Changing the Authentication Mode” on page 258.

Administering Universal Messaging

You can administer and monitor channels, durable subscribers, and queues on the
Universal-Messaging-instanceName > Administration page in Command Central.

In addition, you can publish events and snoop on events on a channel or queue.

Administering Channels
You can view the following details about a channel on the Universal-Messaging-instanceName >
Administration > Channels page in Command Central:

DescriptionAttribute

The name of the channel.Name

The event ID of the last event that was consumed from the
channel. The event ID is -1when the channel is empty.

Event ID

The number of events on the channel that are yet to be consumed.Events

The number of current connections to the channel.Current connections

The percentage of free storage available on the channel.% Free

260 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Select a channel to view detailed information about the status of the channel and the durable
subscribers (named objects) subscribed to the channel. You can also delete a durable subscriber
subscribed to the channel.

Administering Durable Subscribers
You can search,monitor, and delete durable subscribers on theUniversal-Messaging-instanceName
> Administration > Durable Subscribers page in Command Central. You can also browse events
on a specific durable subscriber and purge events for shared durable subscribers.

The table displays the following durable subscriber attributes.

DescriptionAttribute

The name of the durable subscriber.Name

The name of the channel towhich the durable subscriber belongs.Channel

The type of durable subscriber (Shared, Serial, or Durable).Durable type

The event ID of the last successfully consumed event.Last event ID

The number of events outstanding for a particular durable
subscriber.

Outstanding events

Note:
The outstanding event count displayed for a non-shared
durable is only an estimate.

The last date and time when the durable subscriber read,
committed, or rolled back an event.

Last read time

Select a durable subscriber to perform the following operations:

View durable details.

Browse events.

Bulk purge.

The Durable details page contains the following information about a durable subscriber:

Details

DescriptionAttribute

The name of the durable subscriber.Name

The name of the channel towhich the durable subscriber belongs.Channel

The type of durable subscriber (Shared, Serial, or Durable).Durable type

Universal Messaging Administration Guide 10.7 261

3 Using Command Central to Manage Universal Messaging

DescriptionAttribute

Whether the durable subscriber is on a channel that is part of a
Universal Messaging cluster.

Cluster-wide

Whether the durable subscriber is persistent. Persistent durable
subscribers retrieve the last event ID consumed before the
Universal Messaging server instance was restarted.

Persistent

Events are filtered based on the defined selector.Selector

Status

DescriptionAttribute

The event ID of the last successfully consumed event.Last event ID

The number of outstanding events for the durable subscriber.Total events

The number of outstanding events waiting for a commit or a
rollback.

Pending events

The last date and time when the durable subscriber read,
committed, or rolled back an event.

Last read time

The last time the durable was written to. Typically, this is the
last time an event was added to the durable subscriber.

Last write time

Connections

DescriptionAttribute

The connection ID.ID

The client subscription mode (subscription based or getNext).Mode

The window size specified by the client.Max pending

The total acknowledged events.Acknowledged

The total rolled-back events.Rolled back

The event queues waiting to be acknowledged or rolled back.Pending

The last time the session acknowledged, rolled back, or read an
event from the durable subscriber.

Last read time

The Browse events page displays the event list and lets you to browse events for a durable
subscriber. Events are displayed in the order of old to new.Amaximumof 1000 events are displayed
in the table with a maximum combined size of 10 MB. For example, if two events of size 10 MB
and 100 MB are present for the durable subscriber, only the event of size 10 MB is displayed, and
no other events are displayed. Click Browse events to refresh the events displayed in the table.

262 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionAttribute

A unique ID to identify the event.Event ID

Specifies how long (in milliseconds) each event is retained.TTL (ms)

Note:
You can publish an event with a specified TTL only on queues
and channels of type Mixed. Events on queues and channels
of type Persistent or Reliable use the TTL set on store level and
ignore any event-level TTL.

The tag information of the event if an event tag exists.Tag

The content of the event. For Protobuf events, the content is a
JSON string.

Event data

The size of the event in bytes. The event size is the total size of
the event that is the sum of the event data and event properties.

Event size (bytes)

The event properties represented as key-value pairs.Event properties

Whether the event is persistent or not.Persistent

When you select an event ID in the table, you can view additional details about the event including
the type of event (persistent, transient, or Protobuf event), a hexadecimal view of the event data,
an ASCII representation of the event data, the header and properties of the event. If the event is
a Protobuf event and its tag matches the name of a Protobuf file descriptor that has already been
uploaded on the channel, the ASCII representation of the event is the decoded Protobuf content
in JSON format.

Use the Bulk purge option to purge events in bulk for a durable subscriber. You can purge events
by providing an event range and event filter, or purge all the events.

Administering Queues
You can view the following details about a queue on the Universal-Messaging-instanceName >
Administration > Queues page in Command Central:

DescriptionAttribute

The name of the queue.Name

The event ID of the last event that was popped from the queue.
The event ID is -1 if the queue is empty.

Event ID

The number of events in the queue that are yet to be consumed.Events

The number of current connections to the queue.Current connections

The percentage of free storage available on the queue.% Free

Universal Messaging Administration Guide 10.7 263

3 Using Command Central to Manage Universal Messaging

Select a queue to view detailed information about the status of the queue.

Snooping on Channels
When you select a channel on theUniversal-Messaging-instanceName >Administration > Channels
page in Command Central, you can perform the following operations:

Start snooping on events on the channel.

Stop snooping on events on the channel.

View details about a snooped event.

Purge one or more events from the channel.

Considerations When Snooping on Channels

Consider the following information when you want to snoop on events on a channel:

Snooping on events on a channel is performed per user. Only the user who started snooping
can stop it. However, CommandCentral allowsmore than one person to log in asAdministrator
at the same time, which might result in simultaneous attempts to perform various snooping
operations on the same channel.

When snooping is inactive for five minutes, for example, because the user logged off or
navigated away from the channel details page, the snoop stops automatically.

If the Universal Messaging server becomes unavailable after the snoop on the channel started,
Command Central stops snooping on all channels on that Universal Messaging server for all
Command Central users. If you try to start snooping while the Universal Messaging server is
still unavailable, Command Central returns an error.

Starting the Channel Snoop

To start snooping on events on a channel

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instanceName > Administration > Channels.

2. Select the channel on which you want to start snooping on events, and then click the Snoop
tab.

3. Do one of the following:

To snoop on all events published on the channel, click Start.

To snoop on a range of events, in the From Event ID field specify the ID of the first event
in the range, and in the To Event ID field, specify the ID of the last event in the range. Click
Start. You can also specify additional filtering criteria based on the properties of the event.

264 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Note:
If you do not specify a value in the From Event ID field, the range of events starts with
the first event on the channel and ends with the event specified in the To Event ID field.
If you do not specify a value in the To Event ID field, the range of events starts with the
event specified in the From Event ID field and ends with the last event on the channel.

Command Central populates the snooped events table with the events published on the channel.

Stopping the Channel Snoop

To stop snooping on events on a channel

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instanceName > Administration > Channels.

2. Select the channel on which you want to stop snooping.

3. Click the Snoop tab, and then click Stop.

Viewing Channel Event Details

After you start snooping on a channel in the Command Central web user interface, the snooped
events table on the channel details page displays information about each event including the event
ID, tag, time to live (TTL), and data, as well as whether the event is persistent.

When you select an event in the table, you can view additional details about the event including
the type of event (persistent, transient, or Protobuf event), a hexadecimal view of the event data,
anASCII representation of the event data, the header and properties of the event, and the Protobuf
descriptor for Protobuf events.

If the event is a Protobuf event and its Protobuf descriptor matches the name of a Protobuf file
descriptor that has already been uploaded on the channel, the ASCII representation of the event
is the decoded Protobuf content in JSON format.

Purging Snooped Events from a Channel

After you start snooping on a channel, you can purge snooped events from the channel. You can
purge a single event, a range of events, or all events.

For information about how to start snooping, see “Starting the Channel Snoop” on page 264.

To purge events

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instanceName > Administration > Channels.

2. Select the channel on which you want to purge snooped events, and then click the Snoop tab.

Universal Messaging Administration Guide 10.7 265

3 Using Command Central to Manage Universal Messaging

3. (Optional) To purge a single event directly from the snooped events table, click .

4. Click Purge Events and on the Purge Events page, do one of the following:

To purge all events, click Purge.

To purge a range of events, in the From Event ID field specify the ID of the first event in
the range, and in the To Event ID field, specify the ID of the last event in the range. Then
click Purge.

Note:
If you do not specify a value in the From Event ID field, the range of events to purge
starts with the first event on the channel and ends with the event specified in the To
Event ID field. If you do not specify a value in the To Event ID field, the range of events
to purge starts with the event specified in the From Event ID field and ends with the
last event on the channel.

Snooping on Queues
When you select a queue on the Universal-Messaging-instanceName > Administration > Queues
page in Command Central, you can perform the following operations:

Start snooping on events on the queue.

Stop snooping on events on the queue.

View details about a snooped event.

Purge all events from the queue.

Considerations When Snooping on Queues

Consider the following information when you want to snoop on events on a queue:

Snooping on events on a queue is performed per user. Only the user who started snooping
can stop it. However, CommandCentral allowsmore than one person to log in asAdministrator
at the same time, which might result in simultaneous attempts to perform various snooping
operations on the same queue.

When snooping is inactive for five minutes, for example, because the user logged off or
navigated away from the queue details page, the snoop stops automatically.

If the Universal Messaging server becomes unavailable after the snoop on the queue started,
Command Central stops snooping on all queues on that Universal Messaging server for all
Command Central users. If you try to start snooping while the Universal Messaging server is
still unavailable, Command Central returns an error.

Starting the Queue Snoop

266 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

To start snooping on events on a queue

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instanceName > Administration > Queues.

2. Select the queue onwhich youwant to start snooping on events, and then click the Snoop tab.

3. Do one of the following:

To snoop on all events published on the queue, click Start.

To snoop on a range of events, in the From Event ID field specify the ID of the first event
in the range, and in the To Event ID field, specify the ID of the last event in the range. Click
Start. You can also specify additional filtering criteria based on the properties of the event.

Note:
If you do not specify a value in the From Event ID field, the range of events starts with
the first event on the queue and ends with the event specified in the To Event ID field.
If you do not specify a value in the To Event ID field, the range of events starts with the
event specified in the From Event ID field and ends with the last event on the queue.

Command Central populates the snooped events table with the events published on the queue.

Stopping the Queue Snoop

To stop snooping on events on a queue

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instanceName > Administration > Queues.

2. Select the queue on which you want to stop snooping.

3. Click the Snoop tab, and then click Stop.

Viewing Queue Event Details

After you start snooping on a queue in the Command Central web user interface, the snooped
events table on the queue details page displays information about each event including the event
ID, tag, time to live (TTL), and data, as well as whether the event is persistent.

When you select an event in the table, you can view additional details about the event including
the type of event (persistent or Protobuf event), a hexadecimal view of the event data, an ASCII
representation of the event data, the header and properties of the event, and the Protobuf descriptor
for Protobuf events.

Universal Messaging Administration Guide 10.7 267

3 Using Command Central to Manage Universal Messaging

If the event is a Protobuf event and its Protobuf descriptor matches the name of a Protobuf file
descriptor that has already been uploaded on the queue, the ASCII representation of the event is
the decoded Protobuf content in JSON format.

Purging Snooped Events from a Queue

After you start snooping on a queue, you can purge all snooped events from the queue.

For information about how to start snooping, see “Starting the Queue Snoop” on page 266.

To purge events

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instanceName > Administration > Queues.

2. Select the queue on which you want to purge snooped events, and then click the Snoop tab.

3. (Optional) To purge a single event directly from the snooped events table, click .

4. Click Purge Events and on the Purge Events page, do one of the following:

To purge all events, click Purge.

To purge a range of events, in the From Event ID field specify the ID of the first event in
the range, and in the To Event ID field, specify the ID of the last event in the range. Then
click Purge.

Note:
If you do not specify a value in the From Event ID field, the range of events to purge
starts with the first event on the queue and endswith the event specified in the To Event
ID field. If you do not specify a value in the To Event ID field, the range of events to
purge starts with the event specified in the From Event ID field and ends with the last
event on the queue.

Publishing Events

Publishing Events on a Channel or Queue

Use the following procedure to create a new event and publish it on aUniversalMessaging channel
or queue, using the Command Central web user interface.

To publish an event on a channel or queue

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instanceName > Administration.

268 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

2. Do one of the following:

To publish an event on a channel, from the drop-down menu, select Channels and then
select the channel on which you want to publish the event.

To publish an event on a queue, from the drop-downmenu, select Queues and then select
the queue on which you want to publish the event.

3. Click the Publish tab and specify values for the following fields as required:

ValueProperty

Required. The content of the event.Event data

Optional. The tag of the event.Tag

Optional. The time-to-live (TTL) of the event in milliseconds.
Defines how long the event remains available on the channel or

TTL (ms)

queue. If you specify a TTL of 0, the event remains on the channel
or queue indefinitely.

Note:
You can publish an event with a specified TTL only on queues
and channels of type Mixed. Events on queues and channels
of type Persistent or Reliable use the TTL set on store level and
ignore any event-level TTL.

Optional. Whether the event is persistent.Persistent

Optional. Supported only for channels. Whether the event is
transient.

Transient

Optional. Click to add event properties. For each property,
specify the name, type, and value.

Properties

Optional. The number of times to publish the event. If you do not
select the option, it defaults to 1.

Number of publishes

Optional.Whether to send the event as a Protobuf event. Formore
information about how to publish Protobuf events, see
“Publishing Protobuf Events” on page 270.

Publish as a Protobuf
event

Required only for Protobuf events. The Protobuf file descriptor
that defines the message schema used for converting the event
data to a Protobuf event.

Protobuf descriptor

4. Click Publish.

When you start snooping on events on the channel or queue, CommandCentral displays the event
in the snooped events table.

Universal Messaging Administration Guide 10.7 269

3 Using Command Central to Manage Universal Messaging

For information about how to snoop on channels and queues, see “Snooping on Channels” on
page 264 and “Snooping on Queues” on page 266.

Publishing Protobuf Events

Perform the following actions to publish a Protobuf event, using the Command Central web user
interface:

1. Before publishing the Protobuf event, upload on the channel or queue the Protobuf file
descriptor that defines the Protobuf schema, as part of a file descriptor set. For information
about uploading a Protobuf file descriptor set on a channel or queue, see “Channels” onpage 236
or “Queues” on page 254.

2. When you create the event on the Publish tab for a channel or queue, do the following:

a. In the Event data field, specify a JSON string that represents the Protobuf event.

b. Select the Publish as a Protobuf event option.

c. In the Protobuf descriptor field, specify the name of the Protobuf file descriptor that
defines the message schema.

Important:
If you do not specify a Protobuf descriptor or if the specified Protobuf descriptor value
does not correspond to any Protobuf file descriptor on the channel or queue, the system
returns an error that no Protobuf descriptor was found on the channel or queue and
does not create a Protobuf event.

For information about how to publish events, see “Publishing Events on aChannel orQueue” on
page 268.

For more information about working with Protobuf events, see the "Google Protocol Buffers"
section in the Universal Messaging Concepts guide.

Republishing Events on a Channel or Queue

Before republishing a snooped event, you must start snooping on the channel or queue. For
information about how to start snooping, see “Snooping onChannels” on page 264 and “Snooping
on Queues” on page 266.

To republish an event

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instanceName > Administration.

2. Do one of the following:

To republish an event on a channel, from the drop-downmenu, select Channels and then
select the channel on which you want to republish the event.

270 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

To republish an event on a queue, from the drop-down menu, select Queues and then
select the queue on which you want to republish the event.

3. Click the Snoop tab and then click the snooped event that you want to republish.

4. Click Republish and modify the event fields as required.

5. Optionally, select Purge Original Event.

6. Click Publish.

Viewing Universal Messaging Run-time Monitoring Statuses

TheCommandCentral instances page displays the run-time status of aUniversalMessaging server
instance in the status column. The Universal Messaging can have one of the following run-time
status:

Online : Server instance is online.

Failed : Server instance failed. For example, the Universal Messaging server instance
stopped unexpectedly due an error or system failure.

Stopped : Server instance is not running.

Stopping : Server instance is stopping.

Unresponsive : Server instance is running, but it is unresponsive. When none of the server
interfaces are connected to the server.

Unknown : Server instance status cannot be determined.

When you have set up a Universal Messaging cluster, the run-time status indicates if a server
instance is:

Online Master : Server instance is online and it is the master node in the cluster.

Online Slave : Server instance is online and it is the slave node in the cluster.

Error : Server instance is part of a cluster that does not satisfy the requisite quorum.

Viewing Universal Messaging KPIs

You can view the following key performance indicators (KPIs) to monitor the performance of the
Universal Messaging servers:

Universal Messaging Administration Guide 10.7 271

3 Using Command Central to Manage Universal Messaging

DescriptionKPI

Indicates the utilization of JVM memory.JVMMemory

Themarginal, critical, andmaximum values for this KPI depend
on the maximum memory size of the JVM.

Marginal is 80% of the maximum JVMmemory.

Critical is 95% of the maximum JVMmemory.

Maximum is 100% of the maximum JVMmemory.

Indicates the total number of events currently waiting to be
processed by the fanout engine. If the fanout backlog is more

Fanout Backlog

than the critical value, there is a possibility that the subscribers
receive the published events after some delay.

The KPI uses the following marginal, critical, and maximum
values:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water mark) of
fanout backlog. Default is 100.

Indicates the total number of tasks in the read,write, and common
read/write pools. If the number of read and write tasks queued

Queued Tasks

is more than the critical value, it indicates that the Universal
Messaging server is unable to match the speed of the publishers
and subscribers.

The KPI uses the following marginal, critical, and maximum
values:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water mark) of
read and write tasks queued. Default is 100.

Viewing Universal Messaging Logs

You can view, search, and download all Universal Messaging logs on the Logs tab for a server
instance in the Command Central web-user interface. You can view the alias and size of a log, and
when it was last updated. You can also click a log to view and search its contents.

272 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Viewing Universal Messaging Inventory

When you view installations in an environment, Command Central displays the Universal
Messaging server instances listed in the Software AG_directory \UniversalMessaging\server
directory of an installation. Command Central lists all the folders (except the templates) in the
server directory.

Configuration Types That the Universal Messaging Server
Supports

The Universal Messaging realm server run-time component supports creating instances of the
configuration types listed in the following table.

Use to...Configuration Type

Configure and manage users of a Universal Messaging
server instance. COMMON-LOCAL-USERS-userId

COMMON-LOCAL-USERS

supports configuring the user ID and password of each
user. By default, the users have administrator privileges
for the Universal Messaging server instance.

Configure the Universal Messaging-specific SagLic
license file.

COMMON-LICENSE

View the location of a Universal Messaging server
instance’s license file.

COMMON-LICLOC

You cannot change the location of the license file.

Extended Java system properties.COMMON-JAVASYSPROPS

Extended JVM options.COMMON-JVM-OPTIONS

Configure the following JNDI connection factories:UM-JNDI-CF

Connection Factory

Topic Connection Factory

Queue Connection Factory

XA Connection Factory

Configure the following JNDI destinations:UM-JNDI-DEST

Topics

Queues

Configure an active/active Universal Messaging cluster.COMMON-CLUSTER

Universal Messaging Administration Guide 10.7 273

3 Using Command Central to Manage Universal Messaging

Use to...Configuration Type

Configure the initialmemory size andmaximummemory
size of a Universal Messaging server instance.

COMMON-MEMORY

Configure the Universal Messaging server interfaces.COMMON-PORTS

Note:

You cannot change the protocol, bind address,
port number, or alias of a port of an existing server
interface.
If you change the SSL certificates of a secured
interface, you must restart the interface.

Create and manage Universal Messaging zones.UM-ZONE

Create and manage Universal Messaging channels.UM-CHANNELS

Create and manage Universal Messaging queues.UM-QUEUES

ManageUniversalMessagingAccess Control List (ACL).UM-REALM-ACL

Manage Universal Messaging security groups.UM-GROUPS

DEPRECATED. Use COMMON-JAVASYSPROPS.COMMON-SYSPROPS

Using the Command Line to Manage Universal Messaging

The information about the Command Central commands that Universal Messaging supports is
organized into topics based on functionality. You can find reference information about how to
perform the following tasks from the command line:

Manage Universal Messaging server instances.

Configure Universal Messaging.

Administer Universal Messaging.

Deploy Universal Messaging assets.

For general information about using the commands, see Software AG Command Central Help.

Universal Messaging Instance Management

Create Instances

Creates an instance of a Universal Messaging realm server, Enterprise Manager, or Template
Applications.

274 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Syntax
sagcc create instances nodeAlias
NUMRealmServer|NUMEnterpriseManager|NUMTemplateApplications instance.name=name
[instance.ip=ipAddress] [instance.port=portNumber] [instance.dataDir=directoryPath]
[license.file=filePath] [instance.config.profile={wM|TC|CUSTOM}]
[instance.config.file=filePath] [install.service={true|false}]

Arguments and Options

nodeAlias
Required. The alias name of the installation in which you want to create a server instance.

NUMRealmServer|NUMEnterpriseManager|NUMTemplateApplications
Required. The product ID of the Universal Messaging realm server, Enterprise Manager, or
Template Applications instance, respectively.

instance.name=name
Required. The name of the new instance. The name of a Universal Messaging server instance
can contain case-insensitive upper-case and lower-case alphabetic characters, digits (0-9),
underscores, and non-leading hyphens.

Important:
You cannot rename a Universal Messaging instance.

[instance.ip=ipAddress]
Optional. The IP address of the Universal Messaging server interface. If you do not specify a
value, the default value is 0.0.0.0.

[instance.port=portNumber]
Optional. The port number of the Universal Messaging server. If you do not specify a value,
the default value is 9000.

[instance.dataDir=directoryPath]
Optional. The absolute path to the Universal Messaging server data directory. If you do not
specify a path, the default directory location is used: Software AG_directory
\UniversalMessaging\server/\nstanceName

[license.file=filePath]
Optional. The absolute path to theUniversalMessaging license file. If you do not specify a path,
the default license is used, which is located in the Software AG_directory
\UniversalMessaging\server\instanceName directory.

[instance.config.profile={wM|TC|CUSTOM}]
Optional. Initial configuration settings for the Universal Messaging server instance. Values are:

wM - for webMethods suite use cases.

TC - for standalone use cases.

CUSTOM - for a custom configuration.

[instance.config.file=filePath]

Universal Messaging Administration Guide 10.7 275

3 Using Command Central to Manage Universal Messaging

Required if the value of instance.config.profile is CUSTOM. The absolute path to the custom
configuration XML file.

[install.service={true|false}]
Optional. Whether aWindows service is registered for the server instance. The default is false.

Usage Notes

If you register a Windows service for a new Universal Messaging server instance, the service
is automatically deleted when you delete the server instance.

Use theUniversalMessaging InstanceManager tool to delete EnterpriseManager andTemplate
Applications instances. You cannot use the CommandCentral command-line interface because
such instances are not listed in the product inventory.

Examples

To check if UniversalMessaging supports instancemanagement operations for the installation
with alias name “sag01”:
sagcc list instances sag01 supportedproducts

To create a new instance for an installed Universal Messaging server, with instance name
“umserver” and default port number “9000”, in the installation with alias name “sag01”:
sagcc create instances sag01 NUMRealmServer instance.name=umserver

To create a new instance for an installed Universal Messaging server, with instance name
“umserver” and port number “9001”, and with a custom data directory path and license file,
in the installation with alias name “sag01”:
sagcc create instances sag01 NUMRealmServer instance.name=umserver
instance.port=9001 instance.dataDir=C:\UM\data
license.file=C:\Licenses\licenseUM.xml

To create a new instance for an installed Universal Messaging realm server, with instance
name "umserver" and port number “9001”, in the installation with alias name “sag01”, and
use "wM" initial configuration settings:
sagcc create instances sag01 NUMRealmServer instance.name=umserver
instance.port=9001 instance.config.profile=wM

To create a new instance for an installed Universal Messaging server, with instance name
"umserver" and port number “9001”, in the installation with alias name “sag01”, and use
custom configuration settings:
sagcc create instances sag01 NUMRealmServer instance.name=umserver
instance.port=9001 instance.config.profile=CUSTOM
instance.config.file=C:\configurations\UMconfig.xml

To register a Windows service when creating the Universal Messaging server instance named
“umserver” in the installation with alias name “sag01”:
sagcc create instances sag01 NUMRealmServer instance.name=umserver
install.service=true

276 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

To read the following properties of theUniversalMessaging server instance named “umserver"
in the installation with alias name “sag01”:

Port number

License path

Interface IP address

Server data directory path

Service status
sagcc list instances sag01 Universal-Messaging-umserver

To create an Enterprise Manager instance named “em1” in the installation with alias name
“sag01”:
sagcc create instances sag01 NUMEnterpriseManager instance.name=em1

To create a Template Applications instance named “ta1” in the installation with alias name
“sag01”:
sagcc create instances sag01 NUMTemplateApplications instance.name=ta1

Update Instances

Updates a Universal Messaging server instance. You can change only whether aWindows service
is registered for the server instance.

Syntax
sagcc update instances nodeAlias Universal-Messaging-instanceName
install.service={true|false}

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance you want to update.

install.service={true|false}
Required. Whether a Windows service is registered for the instance. The default is false.

Examples

To update the server instance with ID "Universal-Messaging-umserver" that is installed in the
installation with alias name "sag01":
sagcc delete instances sag01 Universal-Messaging-umserver install.service=false

Universal Messaging Administration Guide 10.7 277

3 Using Command Central to Manage Universal Messaging

Delete Instances

Deletes a Universal Messaging server instance.

Note:
Use theUniversalMessaging InstanceManager tool to delete EnterpriseManager and Template
Applications instances. You cannot use the Command Central command-line interface because
such instances are not listed in the product inventory.

Syntax
sagcc delete instances nodeAlias Universal-Messaging-instanceName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance you want to delete.

Examples

To delete the server instance with ID "Universal-Messaging-umserver" that is installed in the
installation with alias name "sag01":
sagcc delete instances sag01 Universal-Messaging-umserver

Migrate Instances

Ensure that the targetUniversalMessaging server has themigration utility installed. For information
about the migration utility, see Upgrading Software AG Products.

Important:
You must run the commands in the context and order documented in Upgrading Software AG
Products. Otherwise, you may experience unpredictable results, possibly including corruption
of your installation and data.

View the command line help for the migration utility using the sagcc list administration
product node_alias NUMRealmServer migration help command.

Migrate all Universal Messaging server instances present in a source installation using the
sagcc exec administration product node_alias NUMRealmServer migration migrate
srcDir=SAG_Installation_directory command.

Note:
Use this command when migrating from Universal Messaging server version 9.8 and later.

278 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Start migration by providing the source Universal Messaging instance name using the sagcc
exec administration product node_alias NUMRealmServer migration migrate
srcDir=SAG_Installation_directory
instanceName=instance_name[,instance_name,instance_name...] command .

Note:
Use this command when migrating from Universal Messaging server version 9.8 and later.

Start migration by passing arguments and using the migrate.dat file using the sagcc exec
administration product node_alias NUMRealmServer migration migrate
srcDir=SAG_Installation_directory importFile=migrate.dat command.

Note:
Use this command when migrating from Universal Messaging server 9.0 through 9.7. The
argument silent is set to true and continueOnError is set to false by default.

Start migration using the zip file from the old product installation using the sagcc exec
administration product node_alias NUMRealmServer migration migrate
srcFile=old_installation.zip importFile=migrate.dat command.

Start migration using the zip file from the old product installation and specifying the source
UniversalMessaging instance nameusing the sagcc exec administration product node_alias
NUMRealmServer migration migrate srcFile=old_installation.zip
instanceName=instance_name[,instance_name,instance_name...] command.

View APIs under the migration namespace using the sagcc list administration product
node_alias NUMRealmServer migration command.

View if Universal Messaging supports migration as a custom API using the sagcc list
administration product node_alias NUMRealmServer command.

Examples

To view the command line help:
sagcc list administration product sag01 NUMRealmServer migration help

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. Help is the
command to view the migration tool's command line help.

To migrate all Universal Messaging server instances present in a source installation:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. migrate is the
command to access themigration tool. scrDir is the source Software AG installation directory.

To startmigrating an older server instance to a new NUMRealmServer server instance by providing
the source instance name:

Universal Messaging Administration Guide 10.7 279

3 Using Command Central to Manage Universal Messaging

sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG
instanceName=umserver1,umserver2

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. migrate is the
command to access themigration tool. scrDir is the source Software AG installation directory.
instanceName contains the comma-separated names of the Universal Messaging instances that
will be migrated.

To start migrating an older server instance to a new NUMRealmServer server instance using the
migrate.dat file:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG
silent=true importFile=migrate.dat

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. migrate is the
command to access themigration tool. scrDir is the source Software AG installation directory.
importFile specifies the data file containing the migration settings.

To start migration using the zip file from the old product installation:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcFile=99Src.zip importFile=migrate.dat

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. migrate is the
command to access the migration tool. scrFile argument is used to provide the name of the
zip file from the source Universal Messaging instance. importFile specifies the archive file
path containing migration settings.

To view APIs under the migration namespace for the NUMRealmServer server instance:
sagcc list administration product sag01 NUMRealmServer migration

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running.

To view if Universal Messaging supports migration as a custom API:
sagcc list administration product sag01 NUMRealmServer

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running.

User Configuration

Create Users

Creates new users in the user repository of a Universal Messaging server instance.

280 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Syntax
sagcc create configuration data nodeAlias Universal-Messaging-instanceName
COMMON-LOCAL-USERS {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to create a
user.

COMMON-LOCAL-USERS
Required. The ID of the configuration type of which you want to create an instance.

{--input|-i} file.xml
Required. The absolute path to the XML file that contains the user ID and password.

Usage Notes

Information to authenticate the users of a Universal Messaging server instance is stored in the
user repository (users.txt file) of the Universal Messaging server instance. The users.txt file is
generated only after you create an internal user. While creating the user repository, if you specify
a relative path in the jaas.conf file, the users.txt file is created in a directory relative to the bin
directory of the Universal Messaging server instance.

The path to the users.txt file is added to the jaas.conf file in the Software AG_directory
/UniversalMessaging/server/instanceName/bin directory. If you specify a relative path in the jaas.conf
file, the users.txt is created in a directory relative to the bin directory of the Universal Messaging
server instance.

Examples

To create a user with ID "user2" on the server instance with ID "Universal-Messaging-umserver"
that is installed in the installation with alias name "sag01", using the "user2.xml" file that contains
the user ID and password:
sagcc create configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS --input c:\inputxmls\user2.xml

The user2.xml file has the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<User id="user2">
<Password>test</Password>
</User>

List Users

Universal Messaging Administration Guide 10.7 281

3 Using Command Central to Manage Universal Messaging

Lists all users in the user repository of a Universal Messaging server instance or retrieves
information about a specific user.

Syntax

To list all users of a Universal Messaging server instance and the path to the user repository :
sagcc get configuration instances nodeAlias Universal-Messaging-instanceName

To retrieve information about a user:
sagcc get configuration instances nodeAlias Universal-Messaging-instanceName
COMMON-LOCAL-USERS-userName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
user information.

COMMON-LOCAL-USERS-userName
Optional. The ID of the user for whom you want to retrieve information.

Examples

To list the path of the user repository and the users of the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01":
sagcc get configuration instances sag01 Universal-Messaging-umserver

To retrieve information about the user with ID "user1" on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01":
sagcc get configuration instances sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user1

Update Users

Updates the password of an existing user.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
COMMON-LOCAL-USERS-userName {--input|-i} file.xml

Arguments and Options

nodeAlias
282 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to update the
user password.

COMMON-LOCAL-USERS-userName
Required. The ID of the user whose password you want to update.

{--input|-i} file.xml
Required. The absolute path to the XML file that contains the user ID and the new password.

Examples

To update the password of the user with ID "user2" in the "user2.xml" file on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installationwith alias name "sag01":
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user2 --input c:\inputxmls\user2.xml

The user2.xml file has the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<User id="user2">
<Password>test</Password>
</User>

Delete Users

Deletes a user from the user repository of a Universal Messaging server instance.

Syntax
sagcc delete configuration data nodeAlias Universal-Messaging-instanceName
COMMON-LOCAL-USERS-userName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to delete a
user.

COMMON-LOCAL-USERS-userName
Required. The ID of the user you want to delete.

Universal Messaging Administration Guide 10.7 283

3 Using Command Central to Manage Universal Messaging

Examples

Todelete the userwith ID "user2" from the server instancewith ID "Universal-Messaging-umserver"
that is installed in the installation with alias name "sag01":
sagcc delete configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user2

License Configuration

Add License Keys

Adds a Universal Messaging license key file with the specified alias to the Command Central
license key manager.

Syntax
sagcc add license-tools keys licenseKeyAlias
{--input|-i} filename

Arguments and Options

licenseKeyAlias
Required. The alias of the license key file to add. Specify an alias that is unique across all license
keys in the license key manager.

{--input|-i} filename
Required. The absolute path to the license file.

Examples

To add the Universal Messaging license key file "new_license.xml" with alias "um_lic" to the
Command Central license key manager:
sagcc add license-tools keys um_lic -i C:\umlicense\new_license.xml

Get License Details

Retrieves license details and the license location for a Universal Messaging server instance.

Syntax

To retrieve the license details for a Universal Messaging server instance:
sagcc get configuration data nodeAlias
Universal-Messaging-instanceName COMMON-LICENSE-Universal-Messaging

To retrieve the license location for a Universal Messaging server instance:

284 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

sagcc get configuration data nodeAlias
Universal-Messaging-instanceName COMMON-LICLOC-Universal-Messaging

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
license information.

COMMON-LICENSE-Universal-Messaging
Required for retrieving license details. The ID of the configuration type.

COMMON-LICLOC-Universal-Messaging
Required for retrieving the license location. The ID of the configuration type.

Examples

To view the license details for a server instance with ID "Universal-Messaging-umserver"
installed in the installation with alias name “sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging

To view the license file location for a server instance with ID "Universal-Messaging-umserver"
installed in the installation with alias name “sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-LICLOC-Universal-Messaging

Update License Keys

Updates a license key file assigned to the specified license key alias.

Syntax
sagcc update configuration license nodeAlias
Universal-Messaging-instanceName COMMON-LICENSE-Universal-Messaging
licenseKeyAlias

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName

Universal Messaging Administration Guide 10.7 285

3 Using Command Central to Manage Universal Messaging

Required. The ID of the Universal Messaging server instance for which you want to update the
license key.

COMMON-LICENSE-Universal-Messaging
Required. The ID of the configuration type.

licenseKeyAlias
Required. The alias of the license key file that you want to update.

Examples

To update the license key file assigned to the license key alias "um_lic" of the server instance with
ID "Universal-Messaging-umserver" that is installed in the installation with alias name “sag01” :
sagcc update configuration license sag01 Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging um_lic

Port Configuration

Create Ports

Creates a port for a Universal Messaging server instance.

Syntax
sagcc create configuration data nodeAlias Universal-Messaging-instanceName COMMON-PORTS
{--input|-i} filename.xml --password password

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to create a
port.

COMMON-PORTS
Required. The ID of the configuration type of which you want to create an instance.

--input|-i filename.xml
Required. The XML file that contains the port configuration data.

--password password
Required. Your Command Central password.

286 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Examples

To create a port for the server instance with ID "Universal-Messaging-umserver" installed in the
installation with alias name “sag01”, using the port configuration file "port_data.xml":
sagcc create configuration data sag01 Universal-Messaging-umserver
COMMON-PORTS --input port_data.xml --password secret

Because the {--server | -s} and {--username | -u} options are not specified, the command uses
the default server and user name. For more information about these options, see Software AG
Command Central Help. The command specifies "secret" for the user's password.

The XML port configuration file must have the following format:
<PortSettings>

<Port alias="nhp1">
<Enabled>true</Enabled>
<Type>STANDARD</Type>
<Number>9001</Number>
<Protocol>NHP</Protocol>
<Backlog>100</Backlog>
<ExtendedProperties>

<Property name="autostart">true</Property>
<Property name="allowforinterrealm">true</Property>
<Property name="authtime">1000</Property>
<Property name="EnableNIO">true</Property>
<Property name="acceptThreads">2</Property>
<Property name="receivebuffersize">1310721</Property>
<Property name="SelectThreads">4</Property>
<Property name="advertise">true</Property>
<Property name="allowclientconnections">true</Property>
<Property name="Backlog">100</Property>
<Property name="Alias"/>
<Property name="keyAlias"/>
<Property name="sendbuffersize">1310721</Property>
<Property name="EnableHTTP11">true</Property>
<Property name="EnableJavaScript">true</Property>
<Property name="CORSAllowCredentials">true</Property>
<Property name="CORSAllowedOrigins">*</Property>
<Property name="AjaxLPActiveDelay">100</Property>
<Property name="EnableWebSockets">true</Property>
<Property name="EnableGZipLP">true</Property>
<Property name="MinimumBytesBeforeGZIP">1000</Property>
<Property name="AjaxLPIdleDelay">60000</Property>
<Property name="header1Name">foo</Property>
<Property name="header1Value">bar</Property>
<Property name="header1UserAgent">mozilla</Property>

</ExtendedProperties>
</Port>

</PortSettings>

Update Ports

Updates the configuration of a port for a Universal Messaging server instance.

Universal Messaging Administration Guide 10.7 287

3 Using Command Central to Manage Universal Messaging

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
COMMON-PORTS-portAlias
{--input|-i} filename.xml --password password

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to update a
port.

COMMON-PORTS-portAlias
Required. The ID of the port instance that you want to update.

--input|-i filename.xml
Required. The XML file that contains the port configuration data.

--password password
Required. Your Command Central password.

Examples

Toupdate the portwith alias "nhp1" for the server instancewith ID "Universal-Messaging-umserver"
installed in the installation with alias name “sag01”, using the port configuration file
"port_data.xml":
sagcc update configuration data sag01 Universal-Messaging-umserver COMMON-PORTS-nhp1
--input port_data.xml --password secret

Because the {--server | -s} and {--username | -u} options are not specified, the command uses
the default server and user name. For more information about these options, see Software AG
Command Central Help. The command specifies "secret" for the user's password.

The XML port configuration file must have the following format:
<PortSettings>

<Port alias="nhp1">
<Enabled>true</Enabled>
<Type>STANDARD</Type>
<Number>9001</Number>
<Protocol>NHP</Protocol>
<Backlog>100</Backlog>
<ExtendedProperties>

<Property name="autostart">true</Property>
<Property name="allowforinterrealm">true</Property>
<Property name="authtime">1000</Property>
<Property name="EnableNIO">true</Property>
<Property name="acceptThreads">2</Property>
<Property name="receivebuffersize">1310721</Property>

288 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

<Property name="SelectThreads">4</Property>
<Property name="advertise">true</Property>
<Property name="allowclientconnections">true</Property>
<Property name="Backlog">100</Property>
<Property name="Alias"/>
<Property name="keyAlias"/>
<Property name="sendbuffersize">1310721</Property>
<Property name="EnableHTTP11">true</Property>
<Property name="EnableJavaScript">true</Property>
<Property name="CORSAllowCredentials">true</Property>
<Property name="CORSAllowedOrigins">*</Property>
<Property name="AjaxLPActiveDelay">100</Property>
<Property name="EnableWebSockets">true</Property>
<Property name="EnableGZipLP">true</Property>
<Property name="MinimumBytesBeforeGZIP">1000</Property>
<Property name="AjaxLPIdleDelay">60000</Property>
<Property name="header1Name">foo</Property>
<Property name="header1Value">bar</Property>
<Property name="header1UserAgent">mozilla</Property>

</ExtendedProperties>
</Port>

</PortSettings>

Delete Ports

Deletes a port for a Universal Messaging server instance.

Syntax
sagcc delete configuration data nodeAlias Universal-Messaging-instanceName
COMMON-PORTS-portAlias --password password

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to delete a
port.

COMMON-PORTS-portAlias
Required. The ID of the port instance that you want to delete.

--password password
Required. Your Command Central password.

Examples

To delete the portwith alias "nhp1 for the server instancewith ID "Universal-Messaging-umserver"
installed in the installation with alias name “sag01”:
sagcc delete configuration data sag01 Universal-Messaging-umserver COMMON-PORTS-nhp1

Universal Messaging Administration Guide 10.7 289

3 Using Command Central to Manage Universal Messaging

--password secret

Because the {--server | -s} and {--username | -u} options are not specified, the command uses
the default server and user name. For more information about these options, see Software AG
Command Central Help. The command specifies "secret" for the user's password.

Security Group Configuration

Get Security Group Configuration Data

Retrieves configuration data about a specific security group for a Universal Messaging server
instance.

Syntax
sagcc get configuration data nodeAlias
Universal-Messaging-instanceName UM-GROUPS-groupName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
security group information.

UM-GROUPS-groupName
Required. The ID of the security group for which you want to retrieve information.

Examples

To retrieve information about the security group "Everyone" on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name “sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-GROUPS-Everyone

Realm ACL Configuration

Get Realm ACL Configuration Data

Retrieves configuration data about realm ACLs for a Universal Messaging server instance.

Syntax
sagcc get configuration data nodeAlias

290 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Universal-Messaging-instanceName UM-REALM-ACL

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
realm ACL information.

UM-REALM-ACL
Required. The ID of the configuration type for which you want to retrieve information.

Examples

To retrieve the realm ACL configuration information for the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name “sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-REALM-ACL

General Properties Configuration

Get Configuration Properties

Retrieves the configuration properties for a specific configuration property group.

For information about the configuration properties that the Universal Messaging server supports,
see “General Properties” on page 241.

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName
COMMON-SYSPROPS-propertyGroupName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
configuration property information.

COMMON-SYSPROPS-propertyGroupName
Required. The ID of the configuration type and the name of the property group for which you
want to retrieve information.

Universal Messaging Administration Guide 10.7 291

3 Using Command Central to Manage Universal Messaging

Usage Notes

When the name of the property group contains two or more words, you must join each word by
an underscore (_) when you specify propertyGroupName. For example, for the Data Stream Config
property group, you will type COMMON-SYSPROPS-Data_Stream_Config.

Examples

To retrieve the configuration properties for the Cluster Config property group of the server instance
with ID "Universal-Messaging-umserver" installed in the installation with alias "sag01":
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-SYSPROPS-Cluster_Config

Update Configuration Properties

Updates the configuration properties for a specific configuration property group.

For information about the configuration properties that the Universal Messaging server supports,
see “General Properties” on page 241.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
COMMON-SYSPROPS-propertyGroupName {--input|-i} file.properties

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to update the
configuration properties.

COMMON-SYSPROPS-propertyGroupName
Required. The ID of the configuration type and the name of the property group for which you
want to update the configuration properties.

{--input|-i} file.properties
Required. The absolute path to the properties file that contains the modified configuration
properties.

Usage Notes

When the name of the property group contains two or more words, you must join each word
by an underscore (_) when you specify propertyGroupName. For example, for the Data Stream
Config property group, you will type COMMON-SYSPROPS-Data_Stream_Config.

292 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Configuration parameter names are case-sensitive. For parameter values of the enumeration
type, specify values ranging from 0 to n to map to the corresponding enumeration values in
the Command Central user interface.

The sagcc update configuration data command exits and displays an error when it first
meets an incorrectly defined parameter. For example, the command will exit and display an
error if the MonitorTimer property has a string value.

Examples

To modify configuration properties in the Data Stream Config property group for the server
instance with ID "Universal-Messaging-umserevr" installed in the installation with alias "sag01",
using the properties file "datastreamconfig.properties":
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-SYSPROPS-Data_Stream_Config --input c:\datastreamconfig.properties

The properties file contains parameter-value pairs in the following format:

MonitorTimer=10000
OffloadMulticastWrite=false

SendInitialMapping=true

JNDI Connection Factories Configuration

Create Connection Factories

Creates a JNDI connection factory for a Universal Messaging server instance. You can create the
following types of connection factory:

Connection factory

Topic connection factory

Queue connection factory

XA connection factory

Syntax
sagcc create configuration data nodeAlias Universal-Messaging-instanceName
UM-JNDI-CF {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName

Universal Messaging Administration Guide 10.7 293

3 Using Command Central to Manage Universal Messaging

Required. The ID of the Universal Messaging server instance for which you want to create a
JNDI connection factory.

UM-JNDI-CF
Required. The ID of the configuration type of which you want to create an instance.

--input|-i file.xml
Required. The absolute path to the XML file that contains configuration information about the
connection factory.

Usage Notes

The input XML file must contain configuration parameters in the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
<name>connection_factory_name</name>
<type>connection_factory_type</type>
<url>connection_factory_binding_url</url>
<durableType>type_of_durable</durableType>

</connectionFactory>

The name, type, and url parameters are required. The durableType parameter is optional.

Creating a JNDI connection factory and JNDI destination with the same name is not allowed
for a Universal Messaging server instance.

Examples

To create a connection factory for the server instance with ID "Universal-Messaging-umserver"
that is installed in the installation with alias name "sag01", using the "connection_factory.xml" file:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF -i C:\jndi\connecton_factory.xml

The XML file contains the following parameters:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
<name>connectionFactory1</name>
<type>ConnectionFactory</type>
<url>nhp://124.597.890:9100</url>
<durableType>Shared</durableType>
</connectionFactory>

Get Connection Factory Data

Retrieves information about a specific JNDI connection factory for a Universal Messaging server
instance.

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName
UM-JNDI-CF-connectionFactoryName

294 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
connection factory information.

UM-JNDI-CF-connectionFactoryName
Required. The ID of the connection factory for which you want to retrieve information.

Examples

To retrieve information about the connection factory with name "connectionFactory1" for the
server instance with ID "Universal-Messaging-umserver" installed in the installation with alias
name "sag01":
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionFactory1

Update Connection Factories

Updates a JNDI connection factory for a Universal Messaging server instance. You can update the
name, url, and durableType parameters for a connection factory. You cannot update the type of the
connection factory.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
UM-JNDI-CF-connectionFactoryName {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to update a
JNDI connection factory.

UM-JNDI-CF-connectionFactoryName
Required. The ID of the connection factory that you want to update.

--input|-i file.xml
Required. The absolute path to the XML file that contains configuration information about the
connection factory.

Universal Messaging Administration Guide 10.7 295

3 Using Command Central to Manage Universal Messaging

Usage Notes

The input XML file must contain configuration parameters in the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
<name>connection_factory_name</name>
<type>connection_factory_type</type>
<url>connection_factory_binding_url</url>
<durableType>type_of_durable</durableType>

</connectionFactory>

The name, type, and url parameters are required. The durableType parameter is optional.

Creating a JNDI connection factory and JNDI destination with the same name is not allowed
for a Universal Messaging server instance.

Examples

To update the connection factory with name "connectionFactory1" for the server instance with ID
"Universal-Messaging-umserver" that is installed in the installationwith alias name "sag01", using
the "connection_factory.xml" file:
sagcc update configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionFactory1 -i C:\jndi\connecton_factory.xml

The XML file contains the following parameters:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
<name>connectionFactory2</name>
<type>ConnectionFactory</type>
<url>nhp://124.597.890:9100</url>
<durableType>Serial</durableType>
</connectionFactory>

Delete Connection Factories

Deletes a JNDI connection factory for a Universal Messaging server instance.

Syntax
sagcc delete configuration data nodeAlias Universal-Messaging-instanceName
UM-JNDI-CF-connectionFactoryName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName

296 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Required. The ID of the Universal Messaging server instance for which you want to delete a
connection factory.

UM-JNDI-CF-connectionFactoryName
Required. The ID of the connection factory you want to delete.

Examples

To delete the connection factory with name "connectionFactory1" for the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc delete configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionFactory1

JNDI Destinations Configuration

Create Destinations

Creates a JNDI destination for a Universal Messaging server instance. You can create topic and
queue destinations.

Important:
Updating a JNDI destination, using the command-line interface, is not supported.

Syntax
sagcc create configuration data nodeAlias Universal-Messaging-instanceName
UM-JNDI-DEST {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to create a
JNDI destination.

UM-JNDI-DEST
Required. The ID of the configuration type of which you want to create an instance.

--input|-i file.xml
Required. The absolute path to the XML file that contains configuration information about the
destination.

Usage Notes

The input XML file must have the following format:

Universal Messaging Administration Guide 10.7 297

3 Using Command Central to Manage Universal Messaging

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<destination>
<name>destination_name</name>
<type>destination_type</type>
<storeName>jms_channel_or_queue_name</storeName>
<autoCreateDest>true|false</autoCreateDest>

</destination>

The name parameter can include upper-case and lower-case alphabetic characters, digits (0-9),
a double colon (::), slash (/), and periods (.), for example, destination1. Use a double colon (::)
to specify a nested namespace, for example, destination1::destination2. A combination of
special characters is not allowed, for example, destination1::destination2/destination3.

The storeName parameter can include upper-case and lower-case alphabetic characters, digits
(0-9), a double colon (::), slash (/), and underscores (_), but cannot include periods (.).

Creating a JNDI connection factory and JNDI destination with the same name is not allowed
for a Universal Messaging server instance.

Examples

To create a destination for the server instance with ID "Universal-Messaging-umserver" that is
installed in the installation with alias name "sag01", using the "destination.xml" file:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST -i C:\jndi\destination.xml

The XML file contains the following parameters:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<destination>
<name>destination1</name>
<type>Topic</type>
<storeName>topic1</storeName>
<autoCreateDest>true</autoCreateDest>
</destination>

Get Destination Data

Retrieves information about a specific JNDI destination for aUniversalMessaging server instance.

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName
UM-JNDI-DEST-destinationName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName

298 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Required. The ID of the Universal Messaging server instance for which you want to retrieve
destination information.

UM-JNDI-DEST-destinationName
Required. The ID of the destination for which you want to retrieve information.

Examples

To retrieve information about the destination with name "destination1" for the server instance
with ID "Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST-destination1

Delete Destinations

Deletes a JNDI destination for a Universal Messaging server instance.

Note:
Deleting a JNDI destination does not delete the channel or queue that exists on the Universal
Messaging server instance.

Syntax
sagcc delete configuration data nodeAlias Universal-Messaging-instanceName
UM-JNDI-DEST-destinationName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to delete a
JNDI destination.

UM-JNDI-DEST-destinationName
Required. The ID of the destination you want to delete.

Examples

To delete the destination with name "destination1" for the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc delete configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST-destination1

Universal Messaging Administration Guide 10.7 299

3 Using Command Central to Manage Universal Messaging

Channel Configuration

Create Channels

Creates a channel on a Universal Messaging server instance.

Syntax
sagcc create configuration data nodeAlias Universal-Messaging-instanceName
UM-CHANNELS {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to create a
channel.

UM-CHANNELS
Required. The ID of the configuration type of which you want to create an instance.

--input|-i file.xml
Required. The absolute path to the XML file that contains the configuration properties of the
channel.

Examples

To create a channel on the server instancewith ID "Universal-Messaging-umserver" that is installed
in the installation with alias name "sag01", using the "channel_create.xml" file:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-CHANNELS -i C:\Channels\channel_create.xml

The XML file contains the channel attributes and has the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Channel>

<name>channel1</name>
<type>Persistent</type>
<ttl>0</ttl>
<capacity>0</capacity>

.......
</Channel>

Get Channel Data

Retrieves configuration information about a specific channel on a Universal Messaging server
instance.

300 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName
UM-CHANNELS-channelName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
channel information.

UM-CHANNELS-channelName
Required. The ID of the channel for which you want to retrieve information.
For channels inside a folder, you must use two hyphens, "--", to separate the name of the folder
and the channel. For example, if you have a channel named "test/myChannel", the argument
will have the value UM-CHANNELS-test--myChannel.

Examples

To retrieve information about the channel with name "channel2" on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get configuration data sag01 Universal-Messaging-umserver UM-CHANNELS-channel2

Update Channels

Updates a channel on a Universal Messaging server instance.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
UM-CHANNELS-channelName {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to update a
channel.

UM-CHANNELS-channelName
Required. The ID of the channel you want to update.

Universal Messaging Administration Guide 10.7 301

3 Using Command Central to Manage Universal Messaging

For channels inside a folder, you must use two hyphens, "--", to separate the name of the folder
and the channel. For example, if you have a channel named "test/myChannel", the argument
will have the value UM-CHANNELS-test--myChannel.

--input|-i file.xml
Required. The absolute path to the XML file that contains the configuration properties of the
channel.

Examples

To update the channel "channel2" on the server instancewith ID "Universal-Messaging-umserver"
that is installed in the installation with alias name "sag01", using the "channel_update.xml" file:
sagcc update configuration data sag01 Universal-Messaging-umserver
UM-CHANNELS-channel2 -i C:\Channels\channel_update.xml

The XML file contains the channel attributes and has the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Channel>

<name>channel2</name>
<type>Persistent</type>
<ttl>50000</ttl>
<capacity>50000</capacity>
<deadEventStore/>
<engine>JMS Engine</engine>

......
</Channel>

Queue Configuration

Create Queues

Creates a queue on a Universal Messaging server instance.

Syntax
sagcc create configuration data nodeAlias Universal-Messaging-instanceName
UM-QUEUES {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to create a
queue.

UM-QUEUES
Required. The ID of the configuration type of which you want to create an instance.

302 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

--input|-i file.xml
Required. The absolute path to the XML file that contains the configuration properties of the
queue.

Examples

To create a queue on the server instance with ID "Universal-Messaging-umserver" that is installed
in the installation with alias name "sag01", using the "queue_create.xml" file:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-QUEUES -i C:\Queues\queue_create.xml

The XML file contains the queue attributes and has the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Queue>

<name>queue1</name>
<type>Persistent</type>
<ttl>78</ttl>
<capacity>99</capacity>
<parent>umserver</parent>

......
</Queue>

Get Queue Data

Retrieves configuration information about a specific queue on a Universal Messaging server
instance.

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName
UM-QUEUES-queueName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
queue information.

UM-QUEUES-queueName
Required. The ID of the queue for which you want to retrieve information.

Examples

To retrieve information about the queue with name "queue1" on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":

Universal Messaging Administration Guide 10.7 303

3 Using Command Central to Manage Universal Messaging

sagcc get configuration data sag01 Universal-Messaging-umserver UM-QUEUES-queue1

Update Queues

Updates a queue on a Universal Messaging server instance.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
UM-QUEUES-queueName {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to update a
queue.

UM-QUEUES-queueName
Required. The ID of the queue you want to update.

--input|-i file.xml
Required. The absolute path to the XML file that contains the configuration properties of the
queue.

Examples

To update the queue "queue1" on the server instance with ID "Universal-Messaging-umserver"
that is installed in the installation with alias name "sag01", using the "queue_update.xml" file:
sagcc update configuration data sag01 Universal-Messaging-umserver
UM-QUEUES-queue1 -i C:\Queues\queue_update.xml

The XML file contains the queue attributes and has the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Queue>

<name>queue1</name>
<type>Persistent</type>
<ttl>50000</ttl>
<capacity>50000</capacity>
<parent>umserver</parent>
<deadEventStore/>

......
</Queue>

304 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Zone Configuration

Create Zones

Creates a zone of Universal Messaging servers.

Syntax
sagcc create configuration data nodeAlias Universal-Messaging-instanceName
UM-ZONE {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to create a
zone.

UM-ZONE
Required. The ID of the configuration type of which you want to create an instance.

--input|-i file.xml
Required. The path to the XML file that contains the zone configuration information. Specify
the absolute path to the XML file if the file is not in the same directory from which you run the
command.

Examples

To create a zone for the server instance with ID "Universal-Messaging-umserver" that is installed
in the installation with alias name "sag01", using the "zone_create.xml" file:
sagcc create configuration data sag01 Universal-Messaging-umserver UM-ZONE
-i=C:\zones\zone_create.xml

The zone_create.xml file has the following format for a zone with realms:
<?xml version="1.0" encoding="UTF-8"?>
<Zone>
<name>RealmZone</name>
<type>Realm</type>
<realms>
<server name="um_realm1">
<url>nsp://localhost:9701</url>

</server>
<server name="um_realm2">
<url>nsp://localhost:9702</url>

</server>
</realms>

Universal Messaging Administration Guide 10.7 305

3 Using Command Central to Manage Universal Messaging

<clusters/>
</Zone>

The zone_create.xml file has the following format for a zone with clusters:
<?xml version="1.0" encoding="UTF-8"?>
<Zone>
<name>ClusterZone</name>
<type>Cluster</type>
<realms />
<clusters>
<server name="um_cluster1">
<url>nsp://localhost:9704</url>
<clusterName />
<status />

</server>
<server name="um_cluster2">
<url>nsp://localhost:9705</url>
<clusterName />
<status />

</server>
</clusters>
</Zone>

Get Zone Data

Retrieves configuration information about a zone for a specific server instance.

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName UM-ZONE

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
information.

UM-ZONE
Required. The ID of the configuration type for which you want to retrieve information.

Examples

To retrieve zone information for the server instancewith ID "Universal-Messaging-umserver" that
is installed in the installation with alias name "sag01":
sagcc get configuration data sag01 Universal-Messaging-umserver UM-ZONE

Update Zones

306 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Updates a zone of Universal Messaging servers.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
UM-ZONE {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to update a
zone.

UM-ZONE
Required. The ID of the configuration type of which you want to update an instance.

--input|-i file.xml
Required. The path to the XML file that contains the zone configuration information. Specify
the absolute path to the XML file if the file is not in the same directory from which you run the
command.

Examples

To update a zone for the server instance with ID "Universal-Messaging-umserver" that is installed
in the installation with alias name "sag01", using the "zone_update.xml" file:
sagcc update configuration data sag01 Universal-Messaging-umserver UM-ZONE
-i=C:\zones\zone_update.xml

The zone_update.xml file has the following format for a zone with realms:
<?xml version="1.0" encoding="UTF-8"?>
<Zone>
<name>RealmZone</name>
<type>Realm</type>
<realms>
<server name="um_realm1">
<url>nsp://localhost:9701</url>

</server>
<server name="um_realm2">
<url>nsp://localhost:9702</url>

</server>
</realms>
<clusters/>

</Zone>

The zone_update.xml file has the following format for a zone with clusters:
<?xml version="1.0" encoding="UTF-8"?>
<Zone>

Universal Messaging Administration Guide 10.7 307

3 Using Command Central to Manage Universal Messaging

<name>ClusterZone</name>
<type>Cluster</type>
<realms />
<clusters>
<server name="um_cluster1">
<url>nsp://localhost:9704</url>
<clusterName />
<status />

</server>
<server name="um_cluster2">
<url>nsp://localhost:9705</url>
<clusterName />
<status />

</server>
</clusters>
</Zone>

Delete Zones

Deletes the zone to which the specified Universal Messaging server instance belongs.

Syntax
sagcc delete configuration data nodeAlias Universal-Messaging-instanceName UM-ZONE

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to delete a
zone.

UM-ZONE
Required. The ID of the configuration type of which you want to delete an instance.

Usage Notes

You can remove specific server instances from a zone by removing the server instances from the
zone configuration XML file, and then using the update zone command. For information about
the update zone command, see “Update Zones” on page 306.

Examples

To delete a zone for the server instance with ID "Universal-Messaging-umserver" that is installed
in the installation with alias name "sag01":
sagcc delete configuration data sag01 Universal-Messaging-umserver UM-ZONE

308 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Java System Properties Configuration

Get Java System Properties

Retrieves the Java system properties for a Universal Messaging server instance.

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName
COMMON-JAVASYSPROPS

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
the Java system properties.

COMMON-JAVASYSPROPS
Required. The ID of the configuration type for which you want to retrieve information.

Examples

To retrieve the Java system properties for the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get configuration data sag01 Universal-Messaging-umserver COMMON-JAVASYSPROPS

Update Java System Properties

Updates the Java system properties for a Universal Messaging server instance.

Important:
After you run the command, you must restart the Universal Messaging server for the changes
to take effect.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
COMMON-JAVASYSPROPS {--input|-i} file.xml

Arguments and Options

nodeAlias

Universal Messaging Administration Guide 10.7 309

3 Using Command Central to Manage Universal Messaging

Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to update the
Java system properties.

COMMON-JAVASYSPROPS
Required. The ID of the configuration type of which you want to update an instance.

--input|-i file.xml
Required. The absolute path to the XML file that contains the updated system properties.

Examples

To update the Java system properties for the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01", using the
file "jvmoptions.xml":
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-JAVASYSPROPS -i C:\jvmoptions.xml

JVM Options Configuration

Get JVM Options

Retrieves the JVM options for a Universal Messaging server instance.

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName
COMMON-JVM-OPTIONS

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
the JVM options.

COMMON-JVM-OPTIONS
Required. The ID of the configuration type for which you want to retrieve information.

Examples

To retrieve the JVM options for the server instance with ID "Universal-Messaging-umserver"
installed in the installation with alias name "sag01":

310 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-JVM-OPTIONS

Update JVM Options

Updates the JVM options for a Universal Messaging server instance.

Important:
After you run the command, you must restart the Universal Messaging server for the changes
to take effect.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
COMMON-JVM-OPTIONS {--input|-i} file.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to update the
JVM options.

COMMON-JVM-OPTIONS
Required. The ID of the configuration type of which you want to update an instance.

--input|-i file.xml
Required. The absolute path to the XML file that contains the updated JVM options.

Examples

To update the JVM options for the server instance with ID "Universal-Messaging-umserver"
installed in the installation with alias name "sag01", using the file "javasysprop.xml":
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-JVM-OPTIONS -i C:\javasysprop.xml

The XML file has the following format:
<?xml version="1.0"?>
-<jvmOptions>
<option>-XX:+TraceClassLoading</option>
</jvmOptions>

Cluster Configuration

Before You Create or Update a Cluster

Universal Messaging Administration Guide 10.7 311

3 Using Command Central to Manage Universal Messaging

Make sure the server instances that you want to add to the cluster are running.

Verify that the permissions on the server machines allow connections to the other servers in
the cluster.

Make sure the /naming/defaultContext channel exists only on one or none of the nodes that
will form the cluster. The Universal Messaging server instance used as a JNDI provider uses
the /naming/defaultContext channel to store JMS references and JNDI objects. If the channel
exists on multiple nodes, you cannot create the cluster.

If you have a custom composite template for CommandCentral 9.9 or earlier, youmust remove
the Universal Messaging server instance.name suffix from the COMMON-CLUSTER configuration
type in the template when you apply the composite template in Command Central 9.10 or
later.

In the following example, you have a composite template created in Command Central 9.9
and earlier, and then the same template in Command Central 9.10 and later.

In Command Central 9.9 and earlier:
um-cluster:

description: Cluster configuration for two UM instances
products:

NUMRealmServer:
${node.host}:
instance.port: ${um.instance.port}
instance.ip: ${um.host}
runtimeComponentId: Universal-Messaging-${instance.name}
configuration:

Universal-Messaging-${instance.name}:
COMMON-CLUSTER:

COMMON-CLUSTER-${instance.name}: &umClusterConfig
Name: ${um.cluster}
Servers: # two UM instances cluster
Server:

-
"@name": ${um.host}
URL: "nsp://${um.host}:${um.instance.port}"

-
"@name": ${um.host2}
URL: "nsp://${um.host2}:${um.instance.port2}"

In Command Central 9.10 and later:
um-cluster:

description: Cluster configuration for two UM instances
products:

NUMRealmServer:
${node.host}:
instance.port: ${um.instance.port}
instance.ip: ${um.host}
runtimeComponentId: Universal-Messaging-${instance.name}
configuration:

Universal-Messaging-${instance.name}:
COMMON-CLUSTER:

COMMON-CLUSTER: &umClusterConfig
Name: ${um.cluster}
Servers: # two UM instances cluster

312 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Server:
-

"@name": ${um.host}
URL: "nsp://${um.host}:${um.instance.port}"

-
"@name": ${um.host2}
URL: "nsp://${um.host2}:${um.instance.port2}"

Create Clusters

Creates an active/active cluster of Universal Messaging servers.

Syntax
sagcc create configuration data nodeAlias Universal-Messaging-instanceName
COMMON-CLUSTER {--input|-i} filename.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of theUniversalMessaging server instance running in the specified installation.

COMMON-CLUSTER
Required. The ID of the configuration type of which you want to create an instance.

--input|-i filename.xml
Required. The XML file that contains the cluster configuration data.

Usage Notes

The XML input file must contain the following cluster configuration properties:

Cluster name (required). A cluster name that is unique to the installation.

Server instances (required). The name, URL, and port of each server node in the cluster.

Sites (optional). The name of the site to which each server node belongs. siteName is a
server-level property.

Primary site (optional). The name of the primary site, if you have configured sites in the
cluster. primeSite is a cluster-level property that holds the name of the site that is flagged
as isPrime.

A Universal Messaging server instance can be part of only one cluster.

If you remove all the server instances from a site, the site will be deleted. Server instance
deletion is not allowed if the deletion operation leaves fewer than two server instances in the
cluster.

Universal Messaging Administration Guide 10.7 313

3 Using Command Central to Manage Universal Messaging

Examples

The example creates a cluster with the following configuration properties specified in the
umSalesClusterConfig.xml file:

Cluster name: umSales

Cluster sites: site1 and site2

Primary site: site1

Server instances in site1: um9000, um9001

Server instances in site2: um9002, um9003

To create the cluster "umSales" on the server instance with ID "Universal-Messaging-um9001",
installed in the installation with alias name "sag01", using the file "umSalesClusterConfig.xml":
sagcc create configuration data sag01 Universal-Messaging-um9001
COMMON-CLUSTER --input C:\inputxmls\umSalesClusterConfig.xml

The umSalesClusterConfig.xml file has the following format:
<?xml version="1.0" encoding="UTF-8"?>
<ClusterSettings>
<Name>umSales</Name>
<Servers>
<Server name="um9000">

<URL>nsp://127.0.0.1:9000</URL>
<ExtendedProperties>

<Property name="siteName">site1</Property>
</ExtendedProperties>

</Server>
<Server name="um9001">

<URL>nsp://127.0.0.1:9001</URL>
<ExtendedProperties>

<Property name="siteName">site1</Property>
</ExtendedProperties>

</Server>
<Server name="um9002">

<URL>nsp://127.0.0.1:9002</URL>
<ExtendedProperties>

<Property name="siteName">site2</Property>
</ExtendedProperties>

</Server>
<Server name="um9003">

<URL>nsp://127.0.0.1:9003</URL>
<ExtendedProperties>

<Property name="siteName">site2</Property>
</ExtendedProperties>

</Server>
</Servers>
<ExtendedProperties>

<Property name="primeSite">site1</Property>
</ExtendedProperties>

</ClusterSettings>

314 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

View Cluster Details

Retrieves details about a Universal Messaging cluster. You can retrieve the following information:

The name of the cluster.

The name, URL, and port of each Universal Messaging server instance in the cluster.

Site information, if sites are configured.

Syntax
sagcc get configuration data nodeAlias Universal-Messaging-instanceName COMMON-CLUSTER

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance that is part of the cluster and runs
in the specified installation.

COMMON-CLUSTER
Required. The ID of the configuration type for which youwant to retrieve instance information.

Examples

To retrieve information about the cluster in which the server instance with ID
"Universal-Messaging-um9001", installed in the installation with alias "sag01", participates:
sagcc get configuration data sag01 Universal-Messaging-um9001 COMMON-CLUSTER

Update Clusters

Updates an existing Universal Messaging cluster.

You can make the following changes in the input configuration XML file for the cluster:

To add one or more server instances to the cluster, include the name, URL, and port of the
server instances.

To remove one or more server instances from the cluster, remove the configurations of the
server instances.

To create sites and assign server instances to sites, set the siteName extended property of the
server instances.

To make a site the prime site of the cluster, specify the name of the prime site as a value of the
primeSite cluster-level property.

Universal Messaging Administration Guide 10.7 315

3 Using Command Central to Manage Universal Messaging

To remove one or more server instances from a cluster site, remove the siteName extended
property of the server instances.

To remove sites from the cluster, remove the site definitions of all the server instances in the
cluster.

Syntax
sagcc update configuration data nodeAlias Universal-Messaging-instanceName
COMMON-CLUSTER {--input|-i} filename.xml

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of theUniversalMessaging server instance that runs in the specified installation
and is part of the cluster you want to update.

COMMON-CLUSTER
Required. The ID of the configuration type of which you want to update an instance.

--input|-i filename.xml
Required. The XML file that contains the cluster configuration data.

Usage Notes

The XML input file must contain the following cluster configuration properties:

Cluster name (required). A cluster name that is unique to the installation.

Server instances (required). The name, URL, and port of each server node in the cluster.

Sites (optional). The name of the site to which each server node belongs. siteName is a
server-level property.

Primary site (optional). The name of the primary site, if you have configured sites in the
cluster. primeSite is a cluster-level property that holds the name of the site that is flagged
as isPrime.

When you update a cluster, you edit only the parameters that specify the change. Other
parameters in the cluster configuration file must not be changed.

A Universal Messaging server instance can be part of only one cluster.

If you remove all the server instances from a site, the site will be deleted. Server instance
deletion is not allowed if the deletion operation leaves fewer than two server instances in the
cluster.

316 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Examples

To update the cluster "umSales" for the server instance with ID "Universal-Messaging-um9001",
installed in the installation with alias name "sag01", using the file "umSalesClusterConfig.xml":
sagcc update configuration data sag01 Universal-Messaging-um9001
COMMON-CLUSTER --input C:\inputxmls\umSalesClusterConfig.xml

The umSalesClusterConfig.xml file has the following format:
<?xml version="1.0" encoding="UTF-8"?>
<ClusterSettings>
<Name>umSales</Name>
<Servers>
<Server name="um9000">

<URL>nsp://127.0.0.1:9000</URL>
<ExtendedProperties>

<Property name="siteName">site1</Property>
</ExtendedProperties>

</Server>
<Server name="um9001">

<URL>nsp://127.0.0.1:9001</URL>
<ExtendedProperties>

<Property name="siteName">site1</Property>
</ExtendedProperties>

</Server>
<Server name="um9002">

<URL>nsp://127.0.0.1:9002</URL>
<ExtendedProperties>

<Property name="siteName">site2</Property>
</ExtendedProperties>

</Server>
<Server name="um9003">

<URL>nsp://127.0.0.1:9003</URL>
<ExtendedProperties>

<Property name="siteName">site2</Property>
</ExtendedProperties>

</Server>
</Servers>
<ExtendedProperties>

<Property name="primeSite">site1</Property>
</ExtendedProperties>

</ClusterSettings>

Delete Clusters

Deletes a Universal Messaging cluster.

Syntax
sagcc delete configuration data nodeAlias Universal-Messaging-instanceName
COMMON-CLUSTER

Arguments and Options

nodeAlias
Universal Messaging Administration Guide 10.7 317

3 Using Command Central to Manage Universal Messaging

Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of theUniversalMessaging server instance that runs in the specified installation
and is part of the cluster you want to delete.

COMMON-CLUSTER
Required. The ID of the configuration type of which you want to delete an instance.

Examples

To delete the cluster that contains the server instance with ID "Universal-Messaging-um9001"
installed in the installation with alias name "sag01":
sagcc delete configuration data sag01 Universal-Messaging-um9001 COMMON-CLUSTER

Migrate Clusters

You can migrate a Universal Messaging cluster automatically even if the nodes are installed on
multiple hosts.

To automatically migrate a Universal Messaging cluster:

1. Add the following extended property to the source UniversalMessaging cluster configuration
XML file:
<ExtendedProperties>

<Property name="crossHostMigration">true</Property>
</ExtendedProperties>

2. Run the sagcc update configuration data command.

A remote realms bootstrap configuration file is created in theUniversalMessaging_directory/bin
directory.

Channel and Queue Monitoring

List Administration Namespaces

Retrieves a list of the administration namespaces for a Universal Messaging server instance.

Syntax
sagcc get administration component nodeAlias Universal-Messaging-instanceName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

318 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
the administration namespaces.

Examples

To retrieve the administration namespaces for the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver

List Monitoring Options

Retrieves information about the options available for monitoring channels and queues on a
Universal Messaging server instance.

Syntax

To list the options for monitoring channels:
sagcc get administration component nodeAlias Universal-Messaging-instanceName
channels

To list the options for monitoring queues:
sagcc get administration component nodeAlias Universal-Messaging-instanceName
queues

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
the monitoring options.

Examples

To retrieve the options for monitoring channels on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver channels

To retrieve the options for monitoring queues on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver queues

List Channels or Queues

Universal Messaging Administration Guide 10.7 319

3 Using Command Central to Manage Universal Messaging

Lists all the channels or queues on a Universal Messaging server instance.

Syntax

To list the channels on a server instance:
sagcc get administration component nodeAlias Universal-Messaging-instanceName
channels list

To list the queues on a server instance:
sagcc get administration component nodeAlias Universal-Messaging-instanceName
queues list

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to list the
channels or queues.

Examples

To list the channels on the server instance with ID "Universal-Messaging-umserver" installed
in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver channels list

To list the queues on the server instance with ID "Universal-Messaging-umserver" installed
in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver queues list

Get Channel or Queue Status

Retrieves the status of a specific channel or queue in TSV format for a Universal Messaging server
instance.

Syntax

To retrieve the status of a channel:
sagcc get administration component nodeAlias Universal-Messaging-instanceName
channels status name=channelName

To retrieve the status of a queue:
sagcc get administration component nodeAlias Universal-Messaging-instanceName
queues status name=queueName

320 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
the channel or queue status.

name={channelName|queueName}
Required. The name of the channel or queue for which you want to retrieve status information.

Examples

To view the status of channel "channel3" on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver channels
status name=channel3

To view the status of queue "queue1" on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver queues
status name=queue1

Durable Subscribers Monitoring

View Administration Namespaces

Retrieves a list of the administration namespaces for a Universal Messaging server instance.

Syntax
sagcc get administration component nodeAlias Universal-Messaging-instanceName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
the administration namespaces.

Universal Messaging Administration Guide 10.7 321

3 Using Command Central to Manage Universal Messaging

Examples

To retrieve the administration namespaces for the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver

View Monitoring Options

Retrieves information about the options available formonitoring durable subscribers on aUniversal
Messaging server instance.

Syntax
sagcc get administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
the monitoring options.

Examples

To retrieve the options for monitoring durable subscribers on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver durablesubscribers

List Durable Subscribers

Lists the durable subscribers on a Universal Messaging server instance in XML, TSV, or CSV
format.

Syntax
sagcc get administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers list {--format|-f} {tsv|xml|csv}

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

322 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to list the
durable subscribers.

{--format|-f} {tsv|xml|csv}
Required. The format in which to retrieve the list of durable subscribers. Values are:

tsv

xml

csv

Examples

To list the durable subscribers in XML format on the server instance with ID
"Universal-Messaging-umserver" installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver durablesubscribers
list -f xml

List Durable Subscriber Attributes

Retrieves the attributes of a specific durable subscriber or a set of attributes for all durable
subscribers on a Universal Messaging server instance.

Syntax

To retrieve the attributes of a specific durable subscriber:
sagcc get administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers details channel=channelName name=durableSubscriberName
{--format|-f} {xml|tsv|csv}

To retrieve a set of attributes for all durable subscribers:
sagcc get administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers list {--format|-f} {tsv|csv} properties=commaSeparatedList

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve a
set of durable-subscriber attributes.

{--format|-f} {xml|tsv|csv}
Required. The format in which to retrieve the attributes of the durable subscribers. Values are:

xml - Can be used only for retrieving the attributes of a specific durable subscriber.

Universal Messaging Administration Guide 10.7 323

3 Using Command Central to Manage Universal Messaging

tsv

csv

[properties=commaSeparatedList]
Required for retrieving a set of attributes. A comma-separated list of the attributes you want
to retrieve.

Examples

To list in XML format the attributes of durable subscriber "dsubscriber1" on channel "channel2",
on the server instance with ID "Universal-Messaging-umserver", installed in the installation
with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers details channel=channel2 name=dsubscriber1 -f xml

To list in TSV format the attributes "name", "channel", "lastEventID", and "outstandingEvents"
of the durable subscribers on the server instance with ID "Universal-Messaging-umserver",
installed in the installation with alias name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f tsv properties=name,channel,lastEventID,outstandingEvents

List Events

Retrieves a list of events for a durable subscriber.

Syntax
sagcc get administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers getDurableEvents durableName=durableSubscriberName
chanName=channelName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve a
list of events.

durableName=durableSubscriberName
Required. The name of the durable subscriber for which you want to retrieve a list of events.

chanName=channelName
Required. The name of the channel to which the durable subscriber is subscribed.

324 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Examples

To retrieve the list of events for durable subscriber "dsubscriber1" on channel "channel2", on the
server instance with ID "Universal-Messaging-umserver", installed in the installation with alias
name "sag01":
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers getDurableEvents durableName=dsubscriber1 chanName=channel2

Purge Events

Purges a set of events or all events for a durable subscriber.

Syntax

To purge a range fo events:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers purgeStartEndID startEID=startEventID endEID=endEventID
durableName=durableSubscriberName chanName=channelName

To purge all events:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers purgeAll durableName=durableSubscriberName chanName=channelName

To purge specific events using filtering criteria:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers purgeFilter durableName=durableSubscriberName chanName=channelName
filter=filterExpression

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to purge
events.

durableName=durableSubscriberName
Required. The name of the durable subscriber for which you want to purge events.

chanName=channelName
Required. The name of the channel to which the durable subscriber is subscribed.

[startEID=startEventID]
Required for purging a range of events. The ID of the first event in the range.

[endEID=endEventID]
Required for purging a range of events. The ID of the last event in the range

Universal Messaging Administration Guide 10.7 325

3 Using Command Central to Manage Universal Messaging

[filter=filterExpression]
Required when using a filter to purge events. The criteria used to purge events.

Examples

To purge the eventswith IDs from "10" to "20" for durable subscriber "dsubscriber1" on channel
"channel2", on the server instance with ID "Universal-Messaging-umserver", installed in the
installation with alias name "sag01":
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeStartEndID startEID=10 endEID=20 durableName=dsubscriber1
chanName=channel2

To purge all events for durable subscriber "dsubscriber1" on channel "channel2", on the server
instancewith ID "Universal-Messaging-umserver", installed in the installationwith alias name
"sag01":
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeAll durableName=dsubscriber1 chanName=channel2

To purge the events with a size between "10.0" and "12.0" for durable subscriber "dsubscriber1"
on channel "channel2", on the server instancewith ID "Universal-Messaging-umserver", installed
in the installation with alias name "sag01":
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeFilter durableName=dsubscriber1 chanName=channel2
filter=size BETWEEN 10.0 AND 12.0

Delete a Durable Subscriber

Deletes a durable subscriber on a specific channel.

Syntax
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
durablesubscribers delete channel=channelName name=durableSubscriberName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to delete a
durable subscriber.

channel=channelName
Required. The name of the channel on which you want to delete a durable subscriber.

name=durableSubscriberName
Required. The name of the durable subscriber you want to delete.

326 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Examples

To delete durable subscriber "dsubscriber1" on channel "channel3", on the server instance with ID
"Universal-Messaging-umserver", installed in the installation with alias name "sag01":
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers delete channel=channel3 name=dsubscriber1

Channel Snoop

Start Snooping on a Channel

Starts snooping on events on a channel for a specific user.

Syntax

To start snooping on events on a channel for a specific user:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels startSnoop name=channelName user=userName

To start snooping on events on a channel for a specific user with filtering criteria:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels startSnoop name=channelName user=userName [fromeid=firstEventId]
[toeid=lastEventId] [filter=filterString]

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to start
snooping.

name=channelName
Required. The name of the channel on which you want to snoop.

user=userName
Required. The username of the user for whom you want to start snooping.

[fromeid=firstEventId]
Optional. The ID of the first event in the event range on which you want to start snooping.

[toeid=lastEventId]
Optional. The ID of the last event in the event range on which you want to start snooping.

[filter=filterString]
Optional. Additional filtering criteria based on the properties of the event.

Universal Messaging Administration Guide 10.7 327

3 Using Command Central to Manage Universal Messaging

Usage Notes

When you want to start snooping on a range of events:

If you do not specify fromeid, the range of events starts with the first event on the channel and
ends with the event specified for toeid.

If you do not specify toeid, the range of events starts with the event specified for fromeid and
ends with the last event on the channel.

Examples

To start snooping on events on channel "channel2", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01",
for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels startSnoop name=channel2 user=Administrator

To start snooping on the events with IDs from "2" to "10" on channel "channel2", created on
the server instancewith ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels startSnoop name=channel2 user=Administrator fromid=2 toid=10

List Snooped Events on a Channel

Lists the snooped events on a channel for a specific user in TSV, XML, or JSON format.

Syntax

To list the snooped events on a channel for a specific user in TSV format:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels snoop name=channelName user=userName

To list the snooped events on a channel for a specific user in XML or JSON format:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels snoop name=channelName user=userName {--format|-f} {xml|json}

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of theUniversalMessaging server instance forwhich youwant to list snooped
events.

328 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

name=channelName
Required. The name of the channel for which you want to list snooped events.

user=userName
Required. The username of the user for whom you want to list snooped events.

[{--format|-f} {xml|json}]
Optional. Whether to list the snooped events in XML or JSON format.

Usage Notes

If the Universal Messaging server becomes unavailable after the snoop on the channel started,
CommandCentral stops snooping all channels on thatUniversalMessaging server for all Command
Central users. If you run the command that lists snooped events while the Universal Messaging
server is unavailable, the system returns "snoopStarted=false" and an empty list of events.

Examples

To list the snooped events in TSV format on channel "channel2", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels snoop name=channel2 user=Administrator

To list the snooped events in JSON format on channel "channel2", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels snoop name=channel2 user=Administrator --format json

View Details of a Snooped Event on a Channel

Retrieves the details of a snooped event on a channel for a specific user in TSV, XML, or JSON
format.

Syntax

To retrieve the details of a snooped event on a channel for a specific user in TSV format:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels snoop name=channelName user=userName id=eventId

To retrieve the details of a snooped event on a channel for a specific user in XML or JSON
format:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels snoop name=channelName user=userName id=eventId {--format|-f} {xml|json}

Universal Messaging Administration Guide 10.7 329

3 Using Command Central to Manage Universal Messaging

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve a
snooped event.

name=channelName
Required. The name of the channel on which the snooped event is published.

user=userName
Required. The username of the user for whom you want to retrieve the snooped event.

id=eventId
Required. The ID of the event that you want to view.

[{--format|-f} {xml|json}]
Optional. Whether to view the snooped event in XML or JSON format.

Usage Notes

The TSV format is tabular and does not display the header and properties of an event. To see the
header and properties of an event, use the XML or JSON format.

Examples

To view details of a snooped event with ID "2" in TSV format on channel "channel2", created
on the server instance with ID "Universal-Messaging-umserver" that is installed in the
installation with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels event name=channel2 user=Administrator id=2

To view details of a snooped event with ID "2" in XML format on channel "channel2", created
on the server instance with ID "Universal-Messaging-umserver" that is installed in the
installation with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels event name=channel2 user=Administrator id=2 --format xml

Purge Snooped Events from a Channel

Purges a snooped event or a range of snooped events from a channel for a specific user.

Syntax

To purge a snooped event from a channel and the snooped events list for a specific user:

330 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels purgeEvent name=channelName user=userName id=eventId

To purge a range of snooped events from a channel and the snooped events list for a specific
user:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels purgeEvents name=channelName user=userName
[fromeid=firstEventId] [toeid=lastEventId]

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to purge
snooped events.

name=channelName
Required. The name of the channel from which you want to purge events.

user=userName
Required. The username of the user for whom you want to purge events.

id=eventId
Required with the sagcc exec administration component purgeEvent command. The ID of the
event to purge.

[fromeid=firstEventId]
Optional. The ID of the first event in the event range that you want to purge.

[toeid=lastEventId]
Optional. The ID of the last event in the event range that you want to purge.

Usage Notes

When you want to purge a range of snooped events:

If you do not specify fromeid, all events from the first one on the channel to the one with ID
smaller than or equal to toeid are purged.

If you do not specify toeid, all events from the one with ID greater than or equal to fromeid
to the last one on the channel are purged.

If you do not specify both fromeid and toeid, all events on the channel are purged.

Examples

To purge a snooped event with ID "2" from channel "channel2", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":

Universal Messaging Administration Guide 10.7 331

3 Using Command Central to Manage Universal Messaging

sagcc exec administration component sag01 Universal-Messaging-umserver
channels purgeEvent name=channel2 user=Administrator id=2

To purge the snooped events with IDs from "2" to "6" from channel "channel2", created on the
server instance with ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels purgeEvents name=channel2 user=Administrator fromid=2 toid=6

Stop Snooping on a Channel

Stops snooping on events on a channel for a specific user.

Syntax
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
channels stopSnoop name=channelName user=userName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to stop
snooping.

name=channelName
Required. The name of the channel on which you want to stop snooping.

user=userName
Required. The username of the user for whom you want to stop snooping.

Examples

To stop snooping on events on channel "channel2", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01", for
user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels stopSnoop name=channel2 user=Administrator

Queue Snoop

Start Snooping on a Queue

Starts snooping on events on a queue for a specific user.

332 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Syntax

To start snooping on events on a queue for a specific user:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
queues startSnoop name=queueName user=userName

To start snooping on events on a queue for a specific user with filtering criteria:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
queues startSnoop name=queueName user=userName [fromeid=firstEventId]
[toeid=lastEventId] [filter=filterString]

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to start
snooping.

name=queueName
Required. The name of the queue on which you want to snoop.

user=userName
Required. The username of the user for whom you want to start snooping.

[fromeid=firstEventId]
Optional. The ID of the first event in the event range on which you want to start snooping.

[toeid=lastEventId]
Optional. The ID of the last event in the event range on which you want to start snooping.

[filter=filterString]
Optional. Additional filtering criteria based on the properties of the event.

Usage Notes

When you want to start snooping on a range of events:

If you do not specify fromeid, the range of events starts with the first event on the queue and
ends with the event specified for toeid.

If you do not specify toeid, the range of events starts with the event specified for fromeid and
ends with the last event on the queue.

Universal Messaging Administration Guide 10.7 333

3 Using Command Central to Manage Universal Messaging

Examples

To start snooping on events on queue "queue1", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01",
for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues startSnoop name=queue1 user=Administrator

To start snooping on the events with IDs from "2" to "10" on queue "queue1", created on the
server instance with ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues startSnoop name=queue1 user=Administrator fromid=2 toid=10

List Snooped Events on a Queue

Lists the snooped events on a queue for a specific user in TSV, XML, or JSON format.

Syntax

To list the snooped events on a queue for a specific user in TSV format:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
queues snoop name=queueName user=userName

To list the snooped events on a queue for a specific user in XML or JSON format:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
queues snoop name=queueName user=userName {--format|-f} {xml|json}

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of theUniversalMessaging server instance forwhich youwant to list snooped
events.

name=queueName
Required. The name of the queue for which you want to list snooped events.

user=userName
Required. The username of the user for whom you want to list snooped events.

[{--format|-f} {xml|json}]
Optional. Whether to list the snooped events in XML or JSON format.

334 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Usage Notes

If the Universal Messaging server becomes unavailable after the snoop on the queue started,
Command Central stops snooping on all queues on that Universal Messaging server for all
Command Central users. If you run the command that lists snooped events while the Universal
Messaging server is unavailable, the system returns "snoopStarted=false" and an empty list of
events.

Examples

To list the snooped events in TSV format on queue "queue1", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues snoop name=queue1 user=Administrator

To list the snooped events in JSON format on queue "queue1", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues snoop name=queue1 user=Administrator --format json

View Details of a Snooped Event on a Queue

Retrieves the details of a snooped event on a queue for a specific user in TSV, XML, or JSON
format.

Syntax

To retrieve the details of a snooped event on a queue for a specific user in TSV format:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
queues event name=queueName user=userName id=eventId

To retrieve the details of a snooped event on a queue for a specific user in XMLor JSON format:
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
queues event name=queueName user=userName id=eventId {--format|-f} {xml|json}

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve a
snooped event.

name=queueName
Universal Messaging Administration Guide 10.7 335

3 Using Command Central to Manage Universal Messaging

Required. The name of the queue on which the snooped event is published.

user=userName
Required. The username of the user for whom you want to retrieve the snooped event.

id=eventId
Required. The ID of the event that you want to view.

[{--format|-f} {xml|json}]
Optional. Whether to view the snooped event in XML or JSON format.

Usage Notes

The TSV format is tabular and does not display the header and properties of an event. To see the
header and properties of an event, use the XML or JSON format.

Examples

To view details of a snooped event with ID "2" in TSV format on queue "queue1", created on
the server instancewith ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues event name=queue1 user=Administrator id=2

To view details of a snooped event with ID "2" in XML format on queue "queue1", created on
the server instancewith ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues event name=queue1 user=Administrator id=2 --format xml

Purge Snooped Events from a Queue

Purges all snooped events from a queue and the snooped events list for a specific user.

Syntax
sagcc exec administration component nodeAalias Universal-Messaging-instanceName
queues purgeEvents name=queueName user=userName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to purge
snooped events.

name=queueName

336 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Required. The name of the queue from which you want to purge events.

user=userName
Required. The username of the user for whom you want to purge events.

Usage Notes

You cannot purge a single event or a range of events from a queue.

Examples

To purge all snooped events from queue "queue1", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01", for
user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues purgeEvents name=queue1 user=Administrator

Stop Snooping on a Queue

Stops snooping on events on a queue for a specific user.

Syntax
sagcc exec administration component nodeAlias Universal-Messaging-instanceName
queues stopSnoop name=queueName user=userName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to stop
snooping.

name=queueName
Required. The name of the queue on which you want to stop snooping.

user=userName
Required. The username of the user for whom you want to stop snooping.

Examples

To stop snooping for events on queue "queue1", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01", for
user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues stopSnoop name=queue1 user=Administrator

Universal Messaging Administration Guide 10.7 337

3 Using Command Central to Manage Universal Messaging

Event Publishing

Publish Events

Publishes an event on a channel or queue.

Syntax

To publish an event on a channel:
cc exec administration component nodeAlias Universal-Messaging-instanceName
channels publish name=channelName data=eventContent [tag=eventTag] [ttl=ttlValue]
[persistent={true|false}] [transient={true|false}] [properties=propertiesString]
[pubcount=publishCount] [sendasprotobuf={true|false}]
[protobufdescriptor=protobufDescriptor]

To publish an event on a queue:
cc exec administration component nodeAlias Universal-Messaging-instanceName
queues publish name=queueName data=eventContent [tag=eventTag] [ttl=ttlValue]
[persistent={true|false}] [properties=propertiesString]
[pubcount=publishCount] [sendasprotobuf={true|false}]
[protobufdescriptor=protobufDescriptor]

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to publish an
event.

name=channelName
Required for publishing an event on a channel. The name of the channel on which you want to
publish an event.

name=queueName
Required for publishing an event on a queue. The name of the queue on which you want to
publish an event.

data=eventContent
Required. The content of the event.

[tag=eventTag]
Optional. The tag of the event.

[ttl=ttlValue]
Optional. The time-to-live (TTL) of the event inmilliseconds. Defines how long the event remains
available on the channel or queue. If you specify a TTL of 0, the event remains on the channel
or queue indefinitely.

338 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

[persistent={true|false}]
Optional. Whether the event is persistent. Values are:

true

false (default)

[transient={true|false}]
Optional. Supported only for channels. Whether the event is transient. Values are:

true

false (default)

[properties=propertiesString]
Optional. A string that contains event properties in the following JSON format:
[{ name: "property1_name", type: "property1_type", value: property1_value }, { name:
"property2_name", type: "property2_type", value: property2_value }, …]

where

propertyX_name is the name of the property.

propertyX_type is the type of the property and can have one of the following values: int,
byte, long, short, float, double, boolean, char, string, int[], byte[], long[], short[],
float[], double[], boolean[], char[], and string[].

propertyX_value is the value of the property.

[pubcount=publishCount]
Optional. The number of times to republish an event. If you omit pubcount, the option defaults
to 1.

[sendasprotobuf={true|false}]
Optional. Whether to convert the event content in the data option to a Protobuf event that
matches a Protobuf schema specified in the protobufdescriptor option and already uploaded
on the channel or queue. Values are:

true

false (default)
For more information about working with Protobuf events, see the "Google Protocol Buffers"
section in the Universal Messaging Concepts guide.

[protobufdescriptor=protobufDescriptor]
Required for Protobuf events. The Protobuf file descriptor that defines the messaging schema
to be used for converting the event content in the data option to a Protobuf event.
For more information about working with Protobuf events, see the "Google Protocol Buffers"
section in the Universal Messaging Concepts guide.

Usage Notes

When you use the properties option, consider the following information:

Universal Messaging Administration Guide 10.7 339

3 Using Command Central to Manage Universal Messaging

Include the -f json option to specify the format of the properties string.

Enclose char and string property values, and values with spaces in double quotes ("). If
the value contains double quotes, replace them with a backslash and double quotes (\").

For array values, specify a valid JSON array of the corresponding type.

When you want to publish a Protobuf event, consider the following information:

Before publishing a Protobuf event, youmust upload on the channel or queue the Protobuf
file descriptor that defines the Protobuf schema, as part of a file descriptor set. For
information about uploading a Protobuf file descriptor set on a channel or queue, see
“Channels” on page 236 or “Queues” on page 254.

The value of the data option is a JSON string that represents the Protobuf event.

The value of the protobufdescriptor option is the name of the Protobuf file descriptor that
defines the message schema.

Examples

To publish an event with event data "CustomerOrders" and event tag "COrders" on channel
"channel2" that is created on the server instance with ID "Universal-Messaging-umserver",
installed in the installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver channels
publish name=channel2 data=CustomerOrders tag=COrders

To publish a persistent event with event data "CustomerOrders", event tag "COrders", and
TTL "10000" three times on queue "queue1" that is created on the server instance with ID
"Universal-Messaging-umserver", installed in the installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver queues
publish name=queue1 data=CustomerOrders tag=COrders ttl=10000
persistent=true pubcount=3

To publish an event with event data "CustomerOrders", event tag "COrders", and custom
properties in JSON format on queue "queue1" that is created on the server instance with ID
"Universal-Messaging-umserver", installed in the installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver queues
publish name=queue1 data=CustomerOrders tag=COrders
properties="[{ name: \"orderNumber\", type: \"string\", value: \"F18LP\" },
{ name: \"items\", type: \"int\", value: 3 },
{ name: \"itemIds\", type:\"int[]\", value: [509, 19, 100] }]" -f json

To publish a Protobuf event on channel "channel2" that is created on the server instance with
ID "Universal-Messaging-umserver", installed in the installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver channels
publish name=channel2
data="{ header: { id: 1, time: 1541163198345 },
contents: { intData: 124, doubleData: 3.141593, stringData: \"Software AG\" } }"
protobufdescriptor=Event sendasprotobuf=true

340 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

The example assumes that a Protobuf file descriptor set containing the following descriptors
has already been uploaded on "channel2". The Protobuf event in the example is created from
the "Event"message type in the file descriptor set. The event data is a valid JSON string that
represents a message of type "Event" and has the same fields as the "Event"message type.
file {
name: "EventWrapper"
package: "um"
dependency: "HeaderWrapper"
dependency: "ContentsWrapper"
message_type {

name: "Event"
field {

name: "header"
number: 1
label: LABEL_REQUIRED
type: TYPE_MESSAGE
type_name: "Header"

}
field {

name: "contents"
number: 2
label: LABEL_REQUIRED
type: TYPE_MESSAGE
type_name: "Contents"

}
}

}
file {
name: "HeaderWrapper"
package: "um"
message_type {

name: "Header"
field {

name: "id"
number: 1
label: LABEL_REQUIRED
type: TYPE_INT32

}
field {

name: "time"
number: 2
label: LABEL_REQUIRED
type: TYPE_SINT64

}
}

}
file {
name: "ContentsWrapper"
package: "um"
message_type {

name: "Contents"
field {

name: "intData"
number: 1
label: LABEL_REQUIRED
type: TYPE_SINT32

}
field {

Universal Messaging Administration Guide 10.7 341

3 Using Command Central to Manage Universal Messaging

name: "doubleData"
number: 4
label: LABEL_REQUIRED
type: TYPE_DOUBLE

}
field {

name: "stringData"
number: 5
label: LABEL_REQUIRED
type: TYPE_STRING

}
}

}

Republish Events

Republishes a snooped event on a channel or queue.

Syntax

To republish a snooped event on a channel:
cc exec administration component nodeAlias Universal-Messaging-instanceName
channels publish name=channelName data=eventContent id=originalEventId
user=userName republish=true [tag=eventTag] [ttl=ttlValue]
[persistent={true|false}] [transient={true|false}] [properties=propertiesString]
[pubcount=publishCount] [sendasprotobuf={true|false}]
[protobufdescriptor=protobufDescriptor] [purgeoriginal={true|false}]

To republish a snooped event on a queue:
cc exec administration component nodeAlias Universal-Messaging-instanceName
queues publish name=queueName data=eventContent republish=true [tag=eventTag]
[ttl=ttlValue] [persistent={true|false}]
[properties=propertiesString] [pubcount=publishCount]
[sendasprotobuf=[true|false}] [protobufdescriptor=protobufDescriptor]

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance on which you want to republish
a snooped event.

name=channelName
Required for republishing an event on a channel. The name of the channel on which you want
to republish a snooped event.

name=queueName
Required for republishing an event on a queue. The name of the queue on which you want to
republish a snooped event.

342 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

data=eventContent
Required. The content of the event.

id=originalEventId
Required when republishing an event on a channel. The ID of the original event.

user=userName
Required when republishing an event on a channel. The username of the user who started
snooping on the event on the channel.

republish={true|false}
Required. Whether to republish the snooped event. Values are:

true

false (default)

[purgeoriginal={true|false}]
Optional. Whether to purge the original event from the channel. Values are:

true

false (default)

[tag=eventTag]
Optional. The tag of the event.

[ttl=ttlValue]
Optional. The time-to-live (TTL) of the event inmilliseconds. Defines how long the event remains
available on the channel or queue. If you specify a TTL of 0, the event remains on the channel
or queue indefinitely.

[persistent={true|false}]
Optional. Whether the event is persistent. Values are:

true

false (default)

[transient={true|false}]
Optional. Supported only for channels. Whether the event is transient. Values are:

true

false (default)

[properties=propertiesString]
Optional. A string that contains event properties in the following JSON format:
[{ name: "property1_name", type: "property1_type", value: property1_value }, { name:
"property2_name", type: "property2_type", value: property2_value }, …]

where

propertyX_name is the name of the property.

Universal Messaging Administration Guide 10.7 343

3 Using Command Central to Manage Universal Messaging

propertyX_type is the type of the property and can have one of the following values: int,
byte, long, short, float, double, boolean, char, string, int[], byte[], long[], short[],
float[], double[], boolean[], char[], and string[].

propertyX_value is the value of the property.

[pubcount=publishCount]
Optional. The number of times to republish an event. If you omit pubcount, the option defaults
to 1.

[sendasprotobuf={true|false}]
Optional. Whether to convert the event content in the data option to a Protobuf event that
matches a Protobuf schema specified in the protobufdescriptor option and already uploaded
on the channel or queue. Values are:

true

false (default)
For more information about working with Protobuf events, see the "Google Protocol Buffers"
section in the Universal Messaging Concepts guide.

[protobufdescriptor=protobufDescriptor]
Required for Protobuf events. The Protobuf file descriptor that defines the messaging schema
to be used for converting the event content in the data option to a Protobuf event.
For more information about working with Protobuf events, see the "Google Protocol Buffers"
section in the Universal Messaging Concepts guide.

Usage Notes

When you use the properties option, consider the following information:

Include the -f json option to specify the format of the properties string.

Enclose char and string property values, and values with spaces in double quotes ("). If
the value contains double quotes, replace them with a backslash and double quotes (\").

For array values, specify a valid JSON array of the corresponding type.

Before republishing a snooped event on a channel or queue, you must start snooping on the
channel or queue and obtain the event ID.

Examples

To republish an eventwith ID "3",modified event data "CancelledCustomerOrders", andmodified
event tag "CCOrders", snooped by user "Administrator", on channel "channel2" that is created on
the server instance with ID "Universal-Messaging-umserver", installed in the installation with
alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver channels
publish name=channel2 data=CnacelledCustomerOrders tag=CCOrders
republish=true id=3 user=Administrator

344 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Server Inventory Commands

Get Server Inventory

Retrieves information about a Universal Messaging server instance. The following list shows the
information you can view and the value the command returns for each property:

Display name - Universal-Messaging-instanceName

Run-time component ID - Universal-Messaging-instanceName

Product ID - NUMRealmServer

Run-time component category - PROCESS

Syntax
sagcc get inventory components nodeAlias Universal-Messaging-instanceName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
information.

Examples

To retrieve information about the server instancewith ID "Universal-Messaging-umserver" installed
in the installation with alias name "sag01":
sagcc get inventory components sag01 Universal-Messaging-umserver

List Server Inventory

Lists information about a Universal Messaging server instance. The following list shows the
information you can view and the value the command returns for each property:

Display name - Universal-Messaging-instanceName

Run-time component ID - Universal-Messaging-instanceName

Product ID - NUMRealmServer

Run-time component category - PROCESS

Universal Messaging Administration Guide 10.7 345

3 Using Command Central to Manage Universal Messaging

Syntax
sagcc list inventory components nodeAlias Universal-Messaging-instanceName

Arguments and Options

nodeAlias
Required. The alias name of the installation in which the Universal Messaging server instance
is installed.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
information.

Examples

To retrieve information about the server instancewith ID "Universal-Messaging-umserver" installed
in the installation with alias name "sag01":
sagcc list inventory components sag01 Universal-Messaging-umserver

Asset Deployment

List Assets

Lists the assets that are installed on the specified installation for the specifiedUniversalMessaging
server instance.

Important:
The asset inventory commands are a preview feature that is subject to change in the future. This
preview has limited functions and is not intended for use in a production environment. If you
want to provide feedback for this preview feature, go to the Command Central area on the
Software AG TechCommunity website.

Syntax
sagcc list inventory assets nodeAlias Universal-Messaging-instanceName

Arguments and Options

nodeAlias
Required. The alias name of the installation for which you want to retrieve asset information.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to retrieve
asset information.

346 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

Examples

To list the assets for the server instance with ID "Universal-Messaging-umserver" that is installed
in the installation with alias name "sag01":
sagcc list inventory assets sag01 Universal-Messaging-umserver

Install Assets

Installs Universal Messaging assets from an asset repository into a target node.

Important:

Universal Messaging does not support the sagcc exec provisioning assets uninstall
command for uninstalling assets.
The asset inventory commands are a preview feature that is subject to change in the future.
This preview has limited functions and is not intended for use in a production environment.
If you want to provide feedback for this preview feature, go to the Command Central area
on the Software AG TechCommunity website.

Syntax
sagcc exec provisioning assets install nodeAlias repoName
Universal-Messaging-instanceName [assets=AssetId1,AssetId2,...]

Arguments and Options

nodeAlias
Required. The alias name of the target node on which you want to install assets.

repoName
Required. The name of the asset repository from which you want to install assets.

Universal-Messaging-instanceName
Required. The ID of the Universal Messaging server instance for which you want to install
assets.

[assets=AssetId1,AssetId2,...]
Optional. A comma-separated list of the IDs of the assets you want to install. You can omit this
argument if you install assets from a repository that contains only assets for a single Universal
Messaging server instance. If the asset repository has assets for several run-time components,
you must include the argument and list only the assets for the Universal Messaging server
instance specified in the command.

Usage Notes

Command Central supports installing only composite assets created with the Asset Build
Environment and stored in an asset repository registered in Command Central.

Universal Messaging Administration Guide 10.7 347

3 Using Command Central to Manage Universal Messaging

Examples

The asset repository with name "repo1" contains assets only for the server instance with ID
"Universal-Messaging-umserver". To install the assets from "repo1" for the
"Universal-Messaging-umserver" server instance on the target installationwith alias name "sag01":
sagcc exec provisioning assets install sag01 repo1 Universal-Messaging-umserver

Lifecycle Actions for Universal Messaging Server

The following table lists the actions that Universal Messaging supports with the sagcc exec
lifecycle command and the operation taken against a UniversalMessaging serverwhen an action
is executed.

Important:
When a Universal Messaging server instance is running as a service, you cannot perform
administrative tasks such as check the status, or start and stop the server instance.

DescriptionAction

Starts theUniversal Messaging server instance. When successful, the
Universal Messaging server instance run-time status is set to ONLINE.

start

Stops theUniversalMessaging server instance. TheUniversalMessaging
server run-time status is STOPPED.

stop

Stops, then restarts the Universal Messaging server instance. The
Universal Messaging server run-time status is set to ONLINE.

restart

Run-time Monitoring States for Universal Messaging Server

The sagcc get monitoring runtimestate and sagcc get monitoring state commands provide
information about the following key performance indicators (KPIs) for a Universal Messaging
server instance.

DescriptionKPI

Indicates the utilization of JVM memory.JVM memory usage

TheKPI uses the followingmarginal, critical, andmaximumvalues:

Marginal is 80% of the maximum JVMmemory.

Critical is 95% of the maximum JVMmemory.

Maximum is 100% of the maximum JVMmemory.

Indicates the total number of events currentlywaiting to be processed
by the fanout engine. If the fanout backlog is more than the critical

Fanout backlog

348 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionKPI

value, there is a possibility that the subscribers receive the published
events after some delay.

The KPI uses the followingmarginal, critical, andmaximumvalues:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-watermark) of fanout
backlog. Default is 100.

Indicates the total number of tasks in the read, write, and common
read/write pools. If the number of read and write tasks queued is

Tasks queued for read and
write

more than the critical value, it indicates that theUniversalMessaging
server instance is unable to match the speed of the publishers and
subscribers.

The KPI uses the followingmarginal, critical, andmaximumvalues:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water mark) of read
and write tasks queued. Default is 100.

Run-time Monitoring Statuses for Universal Messaging Server

The following table lists the run-time statuses that a Universal Messaging server instance can
return in response to the sagcc get monitoring state command, and the meaning of each status.

Important:
When a Universal Messaging server instance is running as a service, you cannot perform
administrative tasks such as check the status, or start and stop the server instance.

Note:
The Universal Messaging server instance does not return the STOPPING and STARTING
statuses.

MeaningRun-time Status

Universal Messaging server instance is running.ONLINE

Universal Messaging server instance is not running due
to some failure. LOCK file exists.

FAILED

Universal Messaging Administration Guide 10.7 349

3 Using Command Central to Manage Universal Messaging

MeaningRun-time Status

Universal Messaging server instance is not running
because it was shut down normally. LOCK file does not
exist.

STOPPED

Universal Messaging server instance does not respond
to a ping operation. LOCK file exists and the Universal
Messaging server instance is running.

UNRESPONSIVE

The status ofUniversalMessaging server instance cannot
be determined.

UNKNOWN

Server instance is online and it is the master node in the
cluster.

ONLINE_MASTER

Server instance is online and it is the slave node in the
cluster.

ONLINE_SLAVE

Server instance is part of a cluster that does not satisfy
the requisite quorum.

ERROR

Deployment of Universal Messaging Assets

On-Premise Deployment of Assets
You candeployUniversalMessaging assets on-premise, using theCommandCentral command-line
interface. On-premise deployment is based on a push model. For information about the asset
deployment commands, see “Asset Deployment” on page 346.

Asset Deployment in the Cloud
For cloud-based deployment, the cloud and container deployments require a pull-model approach
for asset deployment.

The pull model is based on Landscape Asset Registry (LAR) and its change listeners. Universal
Messaging needs to integrate with the LAR-based updatemechanism for deployment of its assets.

Configuration types supported for cloud deployment

The following table lists the configuration types supported for cloud deployment.

DescriptionConfiguration type

On JNDI look-up for the connection factory, the connection factoryURL
is set to the value used while building the JNDI context
(java.naming.provider.url)

JNDI connection factory

350 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

DescriptionConfiguration type

For native messaging, Integration Server creates the channel or queue
as soon as the publishable document type is created. Thiswould include
the protocol buffer definitions.

JNDI destinations

Only JMS destination deployment is supported for cloud-based
deployment as native ones are created by Integration Server. All the
JNDI destinations are exported with the parameter autoCreateDest set
to true, so that all the channels or queues are created automatically. The
newly created channel or queueswill have default UniversalMessaging
configurations. For more information about JNDI destinations, see
“JNDI Destinations Configuration” on page 297.

The durables will be created automatically after the Integration Server
triggers are started for the first time.

Basic authentication is enabled by default, and the default ACL setting
has full privileges.

Realm ACLs and groups

Universal Messaging users are migrated, and the users are created
(stored in users.txt file) with custom passwords.

Common users

Templates for Provisioning Universal Messaging

You can provision and configureUniversalMessaging servers usingCommandCentral templates.
You can start with the sample micro templates available in the sagdevops-templates.git project,
which you can adapt for your own use case:

sag-um-cluster - provisionUniversalMessaging clusters. You can use the template as a sample
to provision a cluster with two nodes, a cluster with three nodes, as well as a four-node cluster
with two sites.

sag-um-config - configure Universal Messaging queues.

Note:
Universal Messaging no longer supports transient, simple, offheap, and paged queues. If
you created a custom template, based on the sag-um-config template, which contains any
of these queue types as a value for the um.q.type parameter, youmust update the parameter
value and re-import the template in Command Central.

sag-um-server - provision a Universal Messaging server.

You can also export an installed Universal Messaging instance to a micro template and use it to
create a Universal Messaging layer in a stack. If you are familiar with template development in
Command Central, you can also create a custom micro template from scratch.

For details about creating and using the Command Central templates, see Software AG Command
Central Help and the readmes of the Universal Messaging sample templates in sagdevops-
templates.git.

Universal Messaging Administration Guide 10.7 351

3 Using Command Central to Manage Universal Messaging

https://github.com/SoftwareAG/sagdevops-templates
https://github.com/SoftwareAG/sagdevops-templates/tree/master/templates/sag-um-cluster
https://github.com/SoftwareAG/sagdevops-templates/tree/master/templates/sag-um-config
https://github.com/SoftwareAG/sagdevops-templates/tree/master/templates/sag-um-server
https://github.com/SoftwareAG/sagdevops-templates
https://github.com/SoftwareAG/sagdevops-templates

352 Universal Messaging Administration Guide 10.7

3 Using Command Central to Manage Universal Messaging

4 Comparison of Enterprise Manager and Command

Central Features

Supported in Command
Central

Enterprise Manager FeatureArea

NoView audit log entries:Audit

Order by user, type etc. Stream or archive
audit file

YesCreate a join form a channel ...Channel/Queue

set name

source channel

remote realm/cluster for inter-cluster joins

filter

hop count

purge forward

archival

YesView and/or delete named objectsChannel/Queue

View outstanding events, configuration,
etc.

view messages

purge messages

view status e.g. last eventID

YesCreate channel ...Channel/Queue

name, type, TTL, capacity, dead event
store

Universal Messaging Administration Guide 10.7 353

Supported in Command
Central

Enterprise Manager FeatureArea

JMS engine and merge engine

protobuf descriptor

channel key (with name and depth)

full storage properties

YesUpdate protocol buffer definitionChannel/Queue

YesView/modify incoming/outgoing joinsChannel/Queue

YesView and modify ACLsChannel/Queue

PartialEdit channel/queueChannel/Queue

Properties can be changed but
any messages on the

Full storage properties dialogue

channel/queue will not be
retained

NoPublish to any channel/queueChannel/Queue

Full message properties dialogue

NoCreate a copy of any channel/queue with
option to edit specific fields/settings

Channel/Queue

YesView store-level connection lists and statsChannel/Queue

Find under:

Consumer Info tab, along with
other durable details

PartialBounce and redirect connectionsChannel/Queue

Find under:

durables stats page, along with
other durable details

NoBulk apply ACL changes to folders of
channels or queues

Channel/Queue

YesPurge eventsChannel/Queue

from EID

to EID

filter

354 Universal Messaging Administration Guide 10.7

4 Comparison of Enterprise Manager and Command Central Features

Supported in Command
Central

Enterprise Manager FeatureArea

purge all

NoPerform maintenanceChannel/Queue

NoSnoop events on storeChannel/Queue

Edit and republish events with full message
edit dialogue

NoSnoop (edit and republish) message content
of events encoded as protocol buffers

Channel/Queue

YesCreate/delete clustersCluster

Set name of cluster at creation time

YesModify Cluster membershipCluster

PartialSee Clusterwide stats:Cluster

cluster members and their state
can be viewed

cluster matrix (state of each node as seen
by other nodes)

event rates

connections

etc.

NoOptionally choose tomigrate stores at cluster
migration and warn of conflicts

Cluster

YesAllow creating, deleting, starting, stopping
of interfaces

Comms

YesView and edit all configuration options
available on interfaces, including JavaScript
configuration

Comms

NoView live per-interface level stats
(connections, idle threads, etc.)

Comms

NoSet up via lists on interfacesComms

NoConfigure, add, delete and view multicast
configuration and state

Comms

Multicast configuration:

view configuration and state

Universal Messaging Administration Guide 10.7 355

4 Comparison of Enterprise Manager and Command Central Features

Supported in Command
Central

Enterprise Manager FeatureArea

configure, add. delete

YesShared memoryComms

View configuration

Configure, add and delete

NoBounce and redirect connectionsComms

NoView details per connectionConnection

NoAdd datagroup and their properties:DataGroups

name

multicast

priority

conflation:merge/drop/interval

NoDelete datagroupDataGroups

NoPublish to any datagroup (including default
datagroup)

DataGroups

Full message properties dialogue

NoAdd/remove datagroups from other
datagroups

DataGroups

NoAdd, modify, view inter-cluster connectionsInter-cluster
connections

NoAdd joins between stores in different clusters
or on remote realms (unclustered)

Inter-cluster, joins

YesEnterprise Manager tab ConfigRealm

Viewand change realm configuration options

YesConnect to realmsRealm

Auto-discover other realms in cluster

YesDisplay IP/host and port of realms/clustersRealm

Yes, with some additional
options

View logs:

UM log

Realm

356 Universal Messaging Administration Guide 10.7

4 Comparison of Enterprise Manager and Command Central Features

Supported in Command
Central

Enterprise Manager FeatureArea

stream log to file

filter log

force roll log

YesApply namespace filter to see only partial list
of resources on realm

Realm

... but separate for channels and
queues

PartialView all channels/queues/datagroupsRealm

Exception:

DataGroups

PartialView graphs of ...Realm

Limited to:event history/rate

Fanout backlogheap memory usage

JVM memorydirect memory usage

Queued tasks of a server

No graphs

PartialEvent statusRealm

Find under:consumed

channelspublished

memory configconsumed/published rates

connection rates

numbers

current

total numbers of channels

datagroups

data streams

Memory usage

total free used change

Universal Messaging Administration Guide 10.7 357

4 Comparison of Enterprise Manager and Command Central Features

Supported in Command
Central

Enterprise Manager FeatureArea

direct total

direct free

PartialBulk apply ACLs to all channels or queues.Realm

... available using templates

PartialView all known connected realms and their
state

Realms

Stats are only shown in the
channels

NoView ...Realm

current connections

rate of connections

total connections

And for each connection see ...

protocol

user

host

connection description, including
ephemeral port, language and name

YesEnterprise Manager tab JNDIRealm

View and modify JNDI on the realm

NoAdd/Remove realms from each otherRealm

Mount realms in namespace

NoImport/Export full/partial realmXMLRealm

... but most configurations can
be exported

NoRequest ...Realm

maintenance

thread dump

release of cached memory

358 Universal Messaging Administration Guide 10.7

4 Comparison of Enterprise Manager and Command Central Features

Supported in Command
Central

Enterprise Manager FeatureArea

roll of server log

PartialEnterprise Manager tabMonitoring > TopRealm

View ...

CPU usage

garbage collection

heap usage

per channel stats on disk and memory
usage

YesSet resource specific ACLs on realm, channel
and queue.

Security

Add/removeACLs including security groups.

YesDefine user security groups with name and
member IP

Security

Add/remove members to groups, including
other groups

YesAdd/remove, modify sitesSites

Modify prime site membership

NoView all threadpool:Threads

YesZones:Zones

Add

Modify

Configure

Universal Messaging Administration Guide 10.7 359

4 Comparison of Enterprise Manager and Command Central Features

360 Universal Messaging Administration Guide 10.7

4 Comparison of Enterprise Manager and Command Central Features

5 Setting up Active/Passive Clustering with Shared

Storage

■ About Active/Passive Clustering ... 362

■ Overview of Active/Passive Clustering on Windows ... 366

■ Overview of Active/Passive Clustering on UNIX ... 368

■ Configuring a Universal Messaging Active/Passive Cluster on UNIX 369

Universal Messaging Administration Guide 10.7 361

About Active/Passive Clustering

Active/passive clustering is a solution that uses clustering software and special purpose hardware
to minimize system downtime. Active/passive clusters are groups of computing resources that
are implemented to provide high availability of software and hardware computing services.
Active/passive clusters operate by having redundant groups of resources (such as CPU, disk
storage, network connections, and software applications) that provide service when the primary
system resources fail.

In a high availability active/passive clustered environment, one of the nodes in the cluster will be
active and the other nodes will be inactive. When the active node fails, the cluster fails over to one
of the inactive nodes automatically. As a part of this failover process, clustering software will start
the resources on the redundant node in a predefined order (or resource dependency) to ensure
that the entire node comes back up correctly.

Universal Messaging can run in an active/passive cluster environment, underWindows or UNIX.
This approach does not provide load balancing or scalability.

Active/Passive Clustering Requirements
You need the following to configure a Software AG Universal Messaging active/passive cluster:

Cluster control software to manage the clusters on Windows or UNIX.

Shared Storage for sharing data files.

IP address for running the Universal Messaging cluster service.

Universal Messaging installed on the cluster nodes in the same directory path (for example,
C:\SoftwareAG_UM). In the installations, the data directory path for the shared storage must
be the same.

Important:UniversalMessaging installationmust be identical on all cluster nodes. All instances
of Universal Messagingmust point to the sameUniversal Messaging storage files on the shared
storage.

Universal Messaging Capabilities for Active/Passive Clustering
The following capabilities of Universal Messaging enable the vendor-specific cluster control
software to monitor and manage Universal Messaging in an active/passive cluster.

Functionality to start, stop, and monitor the servers.

Ability to store the server’s state information and data on a shared disk.

Ability to survive a crash and restart itself in a known state.

Ability to meet license requirements and host name dependencies.

362 Universal Messaging Administration Guide 10.7

5 Setting up Active/Passive Clustering with Shared Storage

Virtual IP Address of an Active/Passive Cluster
A virtual IP address is like any other IP address except it does not have a specific host or node to
resolve to. It resolves at run time to a server wherever the IP is physically bound and reachable
on the network.

For client applications to access the services in an active/passive cluster in a transparent way, the
virtual IP address of the cluster must be supplied to the client applications. This virtual IP address
is usually referred to as the "logical host." This logical host identity is a network address (or host
name) and is not tied to a single cluster server.

When there is a failover, the cluster control software will resolve the virtual IP address to the
physical IP address of the current active server in the cluster. The client application is not affected
in any way other than experiencing a brief outage of the services.

Failover Mechanism in an Active/Passive Cluster
Universal Messaging runs as a service in a cluster. Within an active/passive cluster, there only be
a single instance of Universal Messaging server running at any given time. The other Universal
Messaging servers are inactive.

In a clustered environment, when a client makes a request to a server, the server handles the
request much the same as in an unclustered environment, except that the server writes the client
information to a shared disk instead of a private data store.

The following diagram illustrates the flow of documents through a typical clustered environment.

Universal Messaging Administration Guide 10.7 363

5 Setting up Active/Passive Clustering with Shared Storage

DescriptionSteps

Universal Messaging clients use the virtual IP address of the cluster to connect
to the active/passive Universal Messaging cluster.

1

Cluster control software forwards the client request to the active server in the
cluster.

2

The active server reads data from or writes data to the shared storage.3

Universal Messaging returns the results to the client application.4

The following diagram illustrates the failover in a clustered environment. If a server fails,
subsequent requests for the session are redirected to a spare server in the cluster that is currently
active and running.

364 Universal Messaging Administration Guide 10.7

5 Setting up Active/Passive Clustering with Shared Storage

DescriptionSteps

Universal Messaging clients use the virtual IP address of the cluster to connect
to the active/passive Universal Messaging cluster.

1

The active server experiences failure and shuts down.2

The cluster software returns the error code to the client.3

Cluster control software marks the spare server as active.4

Cluster control software forwards the client request to the active server in the
cluster.

5

The active server reads data from or writes data to the shared storage.6

Universal Messaging returns the results to the client application.7

Cluster Verification
A cluster installation consultant will typically perform the cluster installation for you; however,
verify the following to make sure that the cluster is installed properly:

Universal Messaging Administration Guide 10.7 365

5 Setting up Active/Passive Clustering with Shared Storage

The shared drive can be accessed from the cluster nodes.

The virtual IP address of the cluster is accessible on the public network.

Only one Universal Messaging server instance in the cluster can access the shared drive at any
given time.

Roles and Responsibilities for Configuring an Active/Passive
Cluster
ConfiguringUniversalMessaging in a high-availability cluster requires the efforts of the following
people:

System administrator

Cluster vendor’s installation consultant

Universal Messaging administrator

ResponsibilitiesRole

Perform system and network administration tasks.System administrator

Install cluster hardware and software (for example,
Windows Server, Veritas, HP ServiceGuard, IBM HACMP,
or Oracle Solaris Cluster) installation.

Cluster vendor’s installation
consultant

Install Universal Messaging and high availability (HA)
scripts.

Universal Messaging
administrator

Overview of Active/Passive Clustering on Windows

This section describes how to configure Universal Messaging with shared storage on Windows
Server 2008 R2, Windows Server 2012 R2, and Windows Server 2016.

How Does Universal Messaging Run in a Windows Cluster?
In a Windows cluster environment, Universal Messaging runs as a service or as an application
defined within a Windows cluster group. You use the Failover Cluster Manager to configure and
monitor the Universal Messaging servers and all the associated resources. For more information
about the settings in Failover Cluster Manager, see the Microsoft Windows Failover Cluster
Manager manuals.

Active/Passive Cluster Configuration on Windows Server
Perform the following steps to configure Universal Messaging for high availability.

366 Universal Messaging Administration Guide 10.7

5 Setting up Active/Passive Clustering with Shared Storage

1. Mount and configure the shared drive, and add the shared drive to the cluster. For more
information about adding and configuring a shared drive, see the Microsoft Server
documentation for your Microsoft Server version.

2. Install Universal Messaging on the cluster nodes.

Use the same directory name on all cluster nodes. Ensure that the data directory paths for the
shared storage and the log file are the same in all the installations (for example,
C:\SoftwareAG_UM).

The data directory path in the Server_Common.conf configuration files must correctly refer to
the same shared storage path. For example, the data directory path in all the nodes is specified
as wrapper.java.additional.4="-DDATADIR=H:\UMSharedStorage\Data".

The log file path in the Server_Common.conf configuration files must correctly refer to the same
shared log directory path. For example, the log file path in all the nodes is specified as
wrapper.java.additional.22="-DLOGFILE=H:\UMSharedStorage\Data\nirvana.log".

If you are using the Software AG default internal user repository, ensure the user database
file is located in the shared location. By default, the location is Universal Messaging_directory
/common/conf/users.txt. The user database file is defined in the jaas.conf configuration file:
{com.softwareag.security.jaas.login.internal.InternalLoginModule sufficient
template_section=INTERNAL internalRepository="../../../../common/conf/users.txt";}

Note:

If youwant tomake changes that are automaticallymigrated in a future upgrade/migration,
set the corresponding properties in the Custom_Server_Common.conf file as described in the
section “JVM Options” on page 245.

3. Create the Universal Messaging cluster in Windows Server. See the Microsoft Server
documentation for instructions to create a failover cluster.

4. Create the Universal Messaging cluster group. Define all the resources and dependencies
required to run Universal Messaging.

5. Configure Universal Messaging as a clustered service.

You can run Universal Messaging as a service or an application.

6. Customize theUniversalMessaging startup behavior. For instructions to configure the startup
behavior, see the relevant Microsoft Server documentation.

You can configure the number of possible attempts for starting theUniversalMessaging server
before failover.

7. Verify failover in the cluster using Windows Server tools.

You or a system administrator can verify failover when there is a hardware failure.

Universal Messaging Administration Guide 10.7 367

5 Setting up Active/Passive Clustering with Shared Storage

8. Ensure that the installation and configuration enables theUniversalMessaging server to failover
correctly from one cluster node to the other.

Overview of Active/Passive Clustering on UNIX

This section describes how to configure Universal Messaging with shared storage on UNIX.

Cluster Monitoring Scripts
The cluster control software determines the health of the servers by periodically probing the servers
using the monitor scripts. When the cluster control software determines that one of the servers in
the cluster has failed, it will shut down that server and start the server on the spare node.

You must incorporate the UNIX shell scripts for starting, stopping, and monitoring the servers in
the cluster control software's infrastructure. Youmight have to customize code to enable the cluster
control software to invoke these UNIX shell scripts.

Summary of Active/Passive Cluster Configuration on UNIX
This section is written primarily to a Universal Messaging administrator to gain a better
understanding of the configuration process.

To configure Universal Messaging in an active/passive cluster

1. Ask the cluster vendor’s installation consultant to perform these tasks:

a. Install the HA cluster environment.

b. Configure the HA cluster environment including the shared disk storage.

2. Ask the system administrator to perform these tasks:

a. Administer the HA cluster environment so it is ready for software installation.

b. Configure the external network connection to the HA cluster and create the virtual host
(virtual IP address) for the HA cluster.

3. Ask the cluster vendor’s installation consultant and the system administrator to test the basic
HA installation to ensure it functions properly.

4. Install and configure Universal Messaging on the cluster nodes with the help of the cluster
vendor’s installation consultant.

For information about how to install the cluster nodes and configure the cluster, see
“Configuring a Universal Messaging Active/Passive Cluster on UNIX” on page 369.

368 Universal Messaging Administration Guide 10.7

5 Setting up Active/Passive Clustering with Shared Storage

5. Verify that Universal Messaging runs on the cluster node. For instructions, see “Verify the
Universal Messaging Server Installation” on page 370.

6. Make sure the cluster is installed properly and configured. For information, see “Verify Failover
in the Cluster” on page 371.

7. Configure and test the scripts according to the cluster vendor’s specification for starting,
stopping, and monitoring the Universal Messaging servers. For instructions, see “Configure
the Start, Stop, and Status Scripts” on page 370.

8. Verify failover in the cluster. For instructions, see “Verify Failover in the Cluster” on page 371.

Configuring a Universal Messaging Active/Passive Cluster on
UNIX

Install Universal Messaging on Cluster Nodes
When you install Universal Messaging on cluster nodes, you must:

Follow the instructions in the Using Software AG Installer guide.

Work with the cluster vendor's installation consultant to prepare the cluster node to respond
to the virtual IP address and have access to the storage files on the shared storage.

To install Universal Messaging on cluster nodes

1. Install Universal Messaging on the first cluster node and configure to use the shared storage
and log file.

Use the same directory name on all cluster nodes. Ensure that the data directory paths for the
shared storage and the log file are the same in all the installations (for example,
opt/SoftwareAG_UM).

The data directory path in the Server_Common.conf configuration files must correctly refer to
the same shared storage path. For example, the data directory path in all the nodes is specified
as wrapper.java.additional.4="-DDATADIR=opt/UMSharedStorage/data".

The log file path in the Server_Common.conf configuration files must correctly refer to the same
shared log directory path. For example, the log file path in all the nodes is specified as
wrapper.java.additional.22="-DLOGFILE=opt/UMSharedStorage/data/nirvana.log".

If you are using the Software AG default internal user repository, ensure the user database
file is located in the shared location. By default, the location is Universal Messaging_directory
/common/conf/users.txt. The user database file is defined in the jaas.conf configuration file:
{com.softwareag.security.jaas.login.internal.InternalLoginModule sufficient
template_section=INTERNAL internalRepository="../../../../common/conf/users.txt";}

Universal Messaging Administration Guide 10.7 369

5 Setting up Active/Passive Clustering with Shared Storage

Note:

If youwant tomake changes that are automaticallymigrated in a future upgrade/migration,
set the corresponding properties in the Custom_Server_Common.conf file as described in the
section “JVM Options” on page 245.

2. Unmount the shared storage from cluster node 1 and mount it on cluster node 2.

3. Make the first cluster node inactive.

4. Install Universal Messaging on the second cluster node and configure it to use the shared
storage and log file, following the configuration instructions for the first cluster.

5. Make the second cluster node active so that it will respond to the virtual IP address and have
access to the storage files on the shared storage.

Verify the Universal Messaging Server Installation
Use the Universal Messaging Enterprise Manager to verify that the Universal Messaging server
is properly installed and working.

To verify that the servers are installed properly

1. Start the Enterprise Manager.

2. Connect to the servers that are part of the cluster.

3. Verify the status of the servers in the cluster.

Configure the Start, Stop, and Status Scripts
Incorporate the scripts of each cluster node into the cluster control software with the help of the
cluster vendor’s installation consultant.

To configure the start, stop, and status scripts of a server

1. Provide the location of the start and stop scripts to the cluster vendor consultant.

The scripts to start and stop a Universal Messaging server are located here:

Universal Messaging_directory /server/server_name/bin/nserver to start the server.

Universal Messaging_directory /server/server_name/bin/nstopserver to stop the server.

370 Universal Messaging Administration Guide 10.7

5 Setting up Active/Passive Clustering with Shared Storage

2. Implement a status script using the Universal Messaging API and provide the script to the
cluster vendor consultant. For example, to return the server time stamp, you can use:
Universal Messaging_directory /java/server_name/bin/ngetservertime.

Important:
When you have basic authentication enabled on the server, you must configure the
UM_PASSWORD or PASS_PASSWORD_IN_CONSOLE property before running the ngetservertime
command. Formore information about UM_PASSWORD and PASS_PASSWORD_IN_CONSOLE, see the
sectionRunning the Java Sample Applicationswhen Basic Authentication is Enabled in theDeveloper
Guide.

a. Modify env.sh and change last command from “$SHELL” to “$SHELL $*”.

b. Run this command to monitor the server status:

./env.sh -c "ngetservertime" | grep "Server Time"

Verify Failover in the Cluster
Test the entire cluster with an application to make sure that the cluster functions properly. With
the help of the system administrator and the cluster vendor’s installation consultant, you can verify
the cluster configuration and installation by causing a failover.

To verify failover in a cluster

1. In the EnterpriseManager, provide the virtual IP address of the cluster to connect to the server
and view the status.

2. Shut down the server on cluster node 1.

3. Start the server on cluster node 2 or let the cluster software start the server on cluster node 2.

4. Verify the status of the servers.

Universal Messaging Administration Guide 10.7 371

5 Setting up Active/Passive Clustering with Shared Storage

372 Universal Messaging Administration Guide 10.7

5 Setting up Active/Passive Clustering with Shared Storage

6 Command Line Administration Tools

■ Introduction to the Administration Tools .. 374

■ Starting the Tools using the Tools Runner Application ... 374

■ Performing Standard Administration Tasks on Realms and Clusters 376

■ Running a Configuration Health Check .. 383

■ The "Realm Information Collector" Diagnostic Tool .. 393

■ The ExportEventsFromOfflineMemFile Tool ... 401

■ The RepublishEventsFromOfflineFile Tool .. 407

■ Syntax reference for command line tools ... 409

Universal Messaging Administration Guide 10.7 373

Introduction to the Administration Tools

Universal Messaging provides a set of command line tools that allow you to performmany of the
common actions available through Universal Messaging. Examples of how to use the tools are
also provided.

The tools can in general be grouped into the following categories:

DescriptionCategory

This is a set of tools for performing many of the common
administration actions available through Universal Messaging.

General administration
tasks

For example, the CreateChannel tool allows you to create a channel
on a specified realm,with a number of optional arguments - including
TTL,ACLs, andmanymore - available through the parameters passed
to the tool.

This tool allows you to check your configuration setup for either a
single realm or for a cluster. The tool notifies you of any errors or
inconsistencies in your setup.

Configuration health
checker

You can run the health check on a running system (realm or cluster).
You can also run the health check offline on the basis of XML files
containing the configuration of a realm or cluster (one XML
configuration file per realm).

This is a command-line diagnostic tool that gathers files and data
from one or more Universal Messaging realm servers. The servers

Realm information collector

can be live or offline. The tool makes it easier for you to collect
information that SoftwareAG supportmay require to diagnose issues
with Universal Messaging, but the information collected may also
be useful for internal support within your organization.

These tools are described in the following sections.

Starting the Tools using the Tools Runner Application

To run a tool, you start the Tools Runner application and pass the name of the required tool as a
parameter to this application, as well as any additional parameters required by the tool.

The Tools Runner application is located in <InstallDir>/UniversalMessaging/tools/runner.

To start the Tools Runner application, use the appropriate command for Windows or Linux:

Windows:
runUMTool.bat

Linux:

374 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

runUMTool.sh

If you run Tools Runner with no arguments, this displays a list of installed tools, as well as
instructions for using the Tools Runner, as shown in the following image.

Running a Tool

To run a specific tool, you pass the name of the tool as the first argument to the Tools Runner
application. Doing so without any additional arguments will print the usage for the specific tool.
For example, running
runUMTool.bat CreateChannel

will print the usage for the CreateChannel tool. The usage contains a description of the tool, and
a list of the required and optional arguments that you can supply. Argumentswhich have a specific
set of legal values will have these values displayed here. Also included in the usage are command
line examples of running the tool.

To run a tool with additional arguments, each of the required arguments must be specified in the
command. For example, the CreateChannel tool requires both a realm name and channel name to
be specified:
runUMTool.bat CreateChannel -rname=nsp://localhost:9000 -channelname=channel

Universal Messaging Administration Guide 10.7 375

6 Command Line Administration Tools

Additional optional arguments can be appended to the command in the same way; adding a
channel type to the CreateChannel tool command would then be:
runUMTool.bat CreateChannel -rname=nsp://localhost:9000 -channelname=channel
-type=R

Using the Debug Logging option

You can use the optional enableDebug argument on the command line to create a log file that shows
the progress of the tool while it is running. It will log most of the exceptions that can occur during
the tool execution. For example:
runUMTool.bat DumpACL -rname=nhp://localhost:11000 -enableDebug

The log file is called toolsLog.log and is located in the same directory as the Tools Runner
application.

Performing Standard Administration Tasks on Realms and
Clusters

Using the Tools Runner application, you can launch command line tools for performing standard
administration tasks on realms and clusters.

Tools are available to perform tasks such as:

Creating, deleting and monitoring channels and queues

Creating and deleting clusters

Adding, modifying and deleting interfaces (HTTP, HTTPS, SSL, Sockets)

Adding and deleting ACL entries for channels, queues and realms

For example, the CreateChannel tool allows you to create a channel on a specified realm, with a
number of optional arguments - including TTL, ACLs, and many more - available through the
parameters passed to the tool.

To see the complete set of administration tools available, start the Tools Runner applicationwithout
any parameters, as described in the section “Starting the Tools using the Tools Runner
Application” on page 374.

The following table lists the available tools. The tools are organized into categories, according to
the general purpose for which the tools are used.

DescriptionTool name / Category

For the command line syntax of the tools in this category,
see the section “Syntax: Store Tools” on page 409.

Category: Store tools

376 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

DescriptionTool name / Category

Creates a channelwith the specified name on the specified
server. A single permission can be set during channel

CreateChannel

creation using optional arguments. For adding a set of
permissions use the client API.

Creates a Durable with the specified name and type on
the specified channel.

CreateDurable

Joins two channels.CreateJoin

Creates a queue with the specified name on the specified
server. A single permission can be set during queue

CreateQueue

creation using optional arguments. For adding a set of
permissions use the client API.

Deletes a channelwith the specified name on the specified
session.

DeleteChannel

Deletes aDurablewith the specified name on the specified
channel.

DeleteDurable

Deletes a join between two channels.DeleteJoin

Deletes a queue with the specified name on the specified
session.

DeleteQueue

Gets the attributes and storage properties of a specified
channel in a specified realm.

GetChannelInfo

Displays the durables details saved in a .nsb file.GetDurablesInfo

Gets the attributes of a specific Durable in a specific
channel.

GetDurableInfo

Gets the current state of durables on a realm, sorted by a
given field.

GetDurableStatus

Displays the event details present in the memory file(s).GetEventsInfo

Note:
This tool has been deprecated in Universal Messaging
v10.7 andwill be removed from the product in a future
release. The functionality of GetEventsInfo is covered
by the new command line tool
ExportEventsFromOfflineMemFile introduced in v10.7.

Identifies channels containing Durables with a large
number of outstanding events.

IdentifyLargeDurableOutstandingEvents

Lists details of the channels on the specified server.ListChannels

Universal Messaging Administration Guide 10.7 377

6 Command Line Administration Tools

DescriptionTool name / Category

Lists joins on a given realm.ListJoins

Monitors the channels and queues in a realm and prints
totals.

MonitorChannels

Purges events from a channel with the specified name on
the specified session.

PurgeEvents

For the command line syntax of the tools in this category,
see the section “Syntax: Cluster Tools” on page 422.

Category: Cluster tools

Checks the cluster state by a given RNAME,which is part
of a cluster.

ClusterState

Creates a cluster with the specified name, consisting of
the specified realms.

CreateCluster

Deletes the cluster that has the specified cluster name and
that contains a server with the given RNAME.

DeleteCluster

Dumps the state of named objects (durables) on channels
present on the specified cluster servers.

DumpClusterNamedObjectsState

For the command line syntax of the tools in this category,
see the section “Syntax: Interface Tools” on page 424.

Category: Interface tools

Adds an HTTP interface on the specified adapter and
port, on the specified realm.

AddHTTPInterface

Adds an HTTPS interface on the specified adapter and
port, on the specified realm.

AddHTTPSInterface

Adds a sharedmemory interface with the specified path,
buffer size and timeout, on the specified realm.

AddSHMInterface

Adds an SSL interface on the specified adapter and port,
on the specified realm.

AddSSLInterface

Adds a socket interface on the specified adapter and port,
on the specified realm.

AddSocketInterface

Deletes the specified interface from the specified realm.DeleteInterface

Lists details of the interfaces on the specified realm.ListInterfaces

Modifies the specified interface on the specified realm.ModifyInterface

378 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

DescriptionTool name / Category

For the command line syntax of the tools in this category,
see the section “Syntax: DataGroupTools” on page 434.

Category: Data group tools

Adds a child data group to a parent data group. Both of
these data groups must exist.

AddDataGroup

Creates a data group with the specified name on the
specified server. Additionally, conflation attributes and
other options of the data group can be set.

CreateDataGroup

Removes the data group with the specified name from
the server.

DeleteDataGroup

Listens for data group events on a realm.ListenDataGroup

Publishes messages to a data group.PublishDataGroup

For the command line syntax of the tools in this category,
see the section “Syntax: Publish Tools” on page 436.

Category: Publish tools

Publishes events to a channel.PublishChannel

Publishes an XML document to a channel.PublishChannelXML

Publishes events to a store, using compression.PublishCompressed

Publishes events to a queue.PublishQueue

Publishes events, as a part of a transaction, to a channel
or queue.

PublishTX

For the command line syntax of the tools in this category,
see the section “Syntax: Subscribe Tools” on page 440.

Category: Subscribe tools

Peeks all events on a queue and prints statistics for the
bandwidth rates.

PeekQueue

Reads all the messages from a channel.SubscribeChannel

Listens for messages on a channel.SubscribeChannelAsync

Listens for messages on a channel. Running the tool with
the same "-name" argument will continue reading from
the last unconsumed event.

SubscribeChannelAsyncDurable

Listens for messages on a channel. Running the tool with
the same "-name" argument will continue reading from
the last unconsumed event.

SubscribeChannelDurable

Universal Messaging Administration Guide 10.7 379

6 Command Line Administration Tools

DescriptionTool name / Category

Listens for compressed messages on a channel.SubscribeCompressed

Reads all the messages from a queue.SubscribeQueue

Listens for messages on a queue.SubscribeQueueAsync

For the command line syntax of the tools in this category,
see the section “Syntax: Security Tools” on page 445.

Category: Security tools

Adds an ACL entry on the specified channel for the
specified user and host, on the specified session.

AddChannelACLEntry

Adds an ACL entry on the specified container for the
specified user and host.

AddContainerACLEntry

Adds an ACL entry on the specified queue for the
specified user and host, on the specified session.

AddQueueACLEntry

Adds an ACL entry on the specified realm for the
specified user and host.

AddRealmACLEntry

Adds a security group to the specified realm with the
specified name.

AddSecurityGroup

Adds a specified user and host subject to a given security
group on a specified realm.

AddUserToSecurityGroup

Deletes the ACL entry from the specified channel with
the specified user and host.

DeleteChannelACLEntry

Removes an ACL entry from the specified container with
the specified user and host.

DeleteContainerACLEntry

Deletes an ACL entry from the specified queue with the
specified user and host.

DeleteQueueACLEntry

Removes an ACL entry from the specified realmwith the
specified user and host.

DeleteRealmACLEntry

Removes a security group from the specified realm with
the specified name.

DeleteSecurityGroup

Dumps all the ACL data for a realm.DumpACL

Updates an ACL entry on the specified channel for the
specified user and host, on the specified session.

ModifyChannelACLEntry

AddContainerACLEntry adds an ACL entry on the
specified container for the specified user and host.

ModifyContainerACLEntry

380 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

DescriptionTool name / Category

Updates an ACL entry on the specified queue for the
specified user and host, on the specified session.

ModifyQueueACLEntry

Modifies an ACL entry on the specified realm for the
specified user and host.

ModifyRealmACLEntry

Removes a specified user from a given security group on
the specified realm.

RemoveUserFromSecurityGroup

For the command line syntax of the tools in this category,
see the section “Syntax: Zone Tools” on page 458.

Category: Zone tools

Adds a realm to a specified realm's zone.AddMemberToZone

Creates a zone with the specified name containing the
specified realms.

CreateZone

Deletes a zone with the specified name on the specified
session.

DeleteZone

Removes a realm from its current zone.RemoveMemberFromZone

For the command line syntax of the tools in this category,
see the section “Syntax: JMS Tools” on page 459.

Category: JMS tools

Creates a JMS connection factorywith the specified server.CreateConnectionFactory

Creates a JMS queue with the specified name on the
specified session.

CreateJMSQueue

Creates a JMS topic with the specified name on the
specified session.

CreateJMSTopic

Publishes one or more messages to a JMS queue or topic.JMSPublish

Reads messages arriving to a JMS destination.JMSSubscribe

Modifies settings of a JMS connection factory on the
specified server.

ModifyConnectionFactory

Views settings of a JMS connection factory on the specified
server.

ViewConnectionFactory

For the command line syntax of the tools in this category,
see the section “Syntax: Recovery Tools” on page 470.

Category: Recovery tools

Adds a new interface to an offline realm.AddInterfaceOffline

Universal Messaging Administration Guide 10.7 381

6 Command Line Administration Tools

DescriptionTool name / Category

Removes an interface from an offline realm using
configuration data.

DeleteInterfaceOffline

Dumps the list of interfaces for a specified offline realm.DumpInterfacesOffline

Dumps events from the specified offline .mem file to an
XML or JSON file. Events can be filtered in several ways
when dumping.

ExportEventsFromOfflineMemFile

For more details, see the section “The
ExportEventsFromOfflineMemFile Tool” on page 401 .

Modifies an interface of an offline realm.ModifyInterfaceOffline

Modifies the prime flag of a sitewhile the realm is offline.ModifyPrimeFlagOffline

Imports events from an XML, JSON or .mem file,
optionally using a filter and protocol buffered descriptor

RepublishEventsFromOfflineFile

file set, and republishes it to the specified store. For more
details, see the section “The
RepublishEventsFromOfflineFile Tool” on page 407.

For the command line syntax of the tools in this category,
see the section “Syntax: Durable Tools” on page 475.

Category: Durable tools

Gets all events for all durables or all events for a specific
durable.

ViewDurableEvent

For the command line syntax of the tools in this category,
see the section “Syntax: Miscellaneous Tools” on
page 476.

Category: Miscellaneous

Edits realm configuration parameters.EditRealmConfiguration

Exports a selected realm to an XML file.ExportRealmXML

Runs theHealthChecker tool for analysing configuration
items and highlighting robustness improvements.

HealthChecker

Formore details, see the section “Running aConfiguration
Health Check” on page 383.

Imports a realm from an XML file.ImportRealmXML

For the command line syntax of the tools in this category,
see the section “Syntax: Site Tools” on page 482.

Category: Site tools

382 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

DescriptionTool name / Category

Creates a site with the specified name, consisting of the
specified nodes.

CreateSite

Deletes a site with the specified name from all the nodes
associated with it.

DeleteSite

Toggles the specified site's prime status.SetPrimeSite

Displays the configuration of the sites.ShowSites

For the command line syntax of the tools in this category,
see the section “Syntax: Diagnostic Tools” on page 484.

Category: Diagnostic tools

Collects diagnostic information from a realm server
installation and stores it in a zip archive.

RealmInformationCollector

Formore details, see the section “The "Realm Information
Collector" Diagnostic Tool” on page 393.

Running a Configuration Health Check

Overview

The HealthChecker is a tool for checking the correctness of a realm or cluster configuration.

The tool is primarily intended for use by SoftwareAG support staff for analyzing possible problems
in customer configurations, but you might also find it useful for checking your configuration.

The tool can be used in the following ways:

To check the configuration of a live realm (which can be a single entity or a node of a cluster)
or a cluster. If the realm is a node of the cluster, the checks will also be automatically executed
against all the other cluster members.

To do an offline check of the configuration of a realm or cluster, based on configuration
information that has been exported to XMLfiles. Each such XMLfile contains the configuration
data of a realm, regarding channels, queues, durables, datagroups, etc. The tool will only run
the checks against all the cluster members if their XML paths are given explicitly in the call of
the tool.

Typical configuration aspects that can be checked in a clustered realm are:

Datagroups:

Datagroups belonging to a clustermust be present on all nodes of the cluster and their attributes
must be the same.

Durables:

Universal Messaging Administration Guide 10.7 383

6 Command Line Administration Tools

Durables belonging to clusterwide channels should also be clusterwide. Theymust be present
on all nodes of the cluster and their attributes must be the same.

Joins:

Joins between clusterwide channels must be present on all nodes of the cluster and their
attributes have to be the same.

Stores:

Stores belonging to a cluster must be present on all nodes of the cluster and their attributes
and properties must be the same.

Typical configuration aspects that can be checked in a non-clustered realm are:

Durables:

Durables belonging to a non-clustered realm must be non-clusterwide and must be attached
to a non-clusterwide channel.

Stores:

Some store configurations may impact the performance of the system and they need to be
highlighted.

Checks against a live realm

The checks that can be run against a live realm are the following:

Default
check?

DescriptionName of Check

Check if datagroups are coherent across all nodes
of the cluster.

DataGroupMismatchCheck

YCheck if durables are coherent across all nodes of
the cluster.

DurableMismatchCheck

YCheck the number of remaining events to be
consumed in a shared durable. If the number is

DurableSubscriberLargeStoreCheck

greater than the threshold a warning will be
displayed. The default value for the threshold is
1000.

This check takes an additional parameter
-threshold that allows you to specify a custom
value for the threshold.

YCheck durable which has no JMSEngine and no
active consumer.

DurableWarningCheck

YCheck and display the status of a running
environment.

EnvironmentStateCheck

384 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Default
check?

DescriptionName of Check

The HealthChecker first checks if the server
configuration property Enable Flow Control in the
configuration group Server Protection (see the
note after this table) is set to true. If it is set to true
then theHealthCheckerwill checkwhat percentage
of memory is taken by events from thewhole heap
memory. If the percentage exceeds a certain value,
an appropriate log message will be displayed (see
details below).

The general idea is that the Server Protection
mechanism gradually slows the consumption of
events from clients when certain thresholds are
reached.

The degree of slowing down is marked by these
three server configuration properties:
FlowControlWaitTimeOne, FlowControlWaitTimeTwo
and FlowControlWaitTimeThree. These represent a
period of time,measured inmilliseconds, bywhich
client publishing requests will be delayed when
the corresponding threshold has been reached.

Threshold 70%-80%: A log message is displayed
that client publishing requests will be delayed by
FlowControlWaitTimeOnemilliseconds.

Threshold 80%-90%: A log message is displayed
that client publishing requests will be delayed by
FlowControlWaitTimeTwomilliseconds.

Threshold 90%-94%: A log message is displayed
that client publishing requests will be delayed by
FlowControlWaitTimeThreemilliseconds.

Threshold higher than 94%: A log message is
displayed that client publishing requests will be
delayed by a long duration (24 days).

See the section Out-of-Memory Protection in the
Concepts guide for further details.

YCheck if all nodes of a cluster are on the same fix
level. It is strongly recommended they are.

FixLevelCheck

YCheck JNDI status and mismatches for stores.JNDIStatusCheck

Universal Messaging Administration Guide 10.7 385

6 Command Line Administration Tools

Default
check?

DescriptionName of Check

YCheck if joins are coherent across all nodes of the
cluster.

JoinMismatchCheck

YCheck if join is out of sync on the cluster.JoinSyncWarningCheck

Check the realm ACL access control list.RealmACLCheck

YCheck the realm configuration with default
configuration list.

RealmConfigurationChecks

Check that channel/queue resources have either
TTL or Capacity configured to a non-zero value. If

ResourcesSafetyLimitsCheck

both of these values are zero, this means that the
channel/queue is not configured with any safety
limits.

Check if the server configuration properties in the
configuration group Server Protection group (see

ServerProtectionConsistencyCheck

the note after this table) are coherent across the
nodes of a cluster against a running environment.

Check store ACL warnings.StoreACLCheck

YCheck the memory usage of stores.StoreMemoryCheck

YCheck if stores are coherent across all nodes of the
cluster.

StoreMismatchCheck

YCheck store warnings on the specified realm.StoreWarningsCheck

A "Y" in the column "Default check?" indicates that the check is included in the -mode=default
setting (see the topic The -mode parameter below).

Important:
When the tool checks for outstanding durable events or event ID mismatches in a live
environment, there is a chance of gettingwarningmessages, even though the cluster is working
correctly. This is because the check is not atomic for the live cluster, so a small synchronization
discrepancy can be expected.

Note:
For further information about the server configuration parameters and the configuration group
Server Protectionmentioned in the table above, see the section “Realm Configuration” on
page 33.

Checks against a realm's stored XML configuration

The checks that can be run against a stored XML configuration are the following:

386 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Default
check?

DescriptionName of Check

Check if datagroups are coherent across all the
nodes of the cluster.

DataGroupMismatchCheck

YCheck if durables are coherent across all nodes
of the cluster.

DurableMismatchCheck

YCheck if all nodes of a cluster are on the same
fix level. It is strongly recommended they are.

FixLevelCheck

YCheck JNDI status and mismatches for stores
on all the nodes of the cluster.

JNDIStatusCheck

YCheck if joins are coherent across all nodes of
the cluster.

JoinMismatchCheck

Check realm ACL warnings.RealmACLCheck

YCheck realm configuration property warnings.RealmConfigurationCheck

Check that channel/queue resources have either
TTL or Capacity (maximum number of events)

ResourcesSafetyLimitsCheck

configured to a non-zero value. If both of these
values are zero, this means that the
channel/queue is not configuredwith any safety
limits.

Check if the server configuration properties in
the configuration group Server Protection are

ServerProtectionConsistencyCheck

coherent across the nodes of a cluster against
the exported configurations from the nodes.

Check store ACL security checks.StoreACLCheck

YCheck if stores are coherent across all nodes of
the cluster.

StoreMismatchCheck

YCheck store warnings on the specified realm.StoreWarningsCheck

Command Usage

Displaying help text

To display a help text showing a summary of the command usage, call the HealthChecker without
parameters:
runUMTool HealthChecker

Command Syntax

Universal Messaging Administration Guide 10.7 387

6 Command Line Administration Tools

The HealthChecker requires either the -rname parameter, which offers checks against a live realm,
or the -xml parameter, which offers checks against a realm's stored XML configuration. Note that
you cannot use these two parameters in the same invocation of the HealthChecker.

The syntax is as follows:
runUMTool HealthChecker {-rname=<rname> | -xml=/path/to/xml1,...}

[-check=<checktype>[,<checktype> ...]]
[-mode=<modetype>]
[-include=<checktype>[,<checktype> ...]]
[-exclude=<checktype>[,<checktype> ...]]
[-<additionalParameter1>=<value>] [-<additionalParameter2>=<value>] ...

Running a health check of a running realm
runUMTool HealthChecker -rname=–rname=nsp://localhost:11000

This will run the HealthChecker tool against the given running realm.

Running a health check of a stored realm configuration
runUMTool HealthChecker -xml=/path/to/xml1.xml, /path/to/xml2.xml

This will run the HealthChecker tool against the realm configurations stored in the given XML
files.

The -check parameter

This parameter allows you to explicitly specify the check or checks that you want to be executed.
No other checks will be included. This parameter can only be used together with the -rname or
-xml parameter; the other additional parameters have nomeaning in the context of -check so they
can't be used.

Example - Execute only the Store Warnings Check check against the running realm:
runUMTool HealthChecker –rname=nsp://localhost:11000

-check=StoreWarningsCheck

Example - Execute only the Store Warnings Check and Fix Level Check checks against the running
realm:
runUMTool HealthChecker –rname=nsp://localhost:11000

-check=StoreWarningsCheck, FixLevelCheck

The -mode parameter

This parameter allows you to select a predefined set of checks without having to name the checks
explicitly. The -mode and -check parameters are mutually exclusive.

The mode parameter can take one of the following values:

default - this value selects the recommended minimal subset of checks. This is the default
option.

all - this mode selects all checks.

388 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

You can use the -include and -exclude parameters to modify the set of checks selected by the
-mode parameter.

If neither -mode nor -check is specified, the default set of checks will be executed.

The -include and -exclude parameters

You can use the -include and -exclude parameters to further refine the set of checks that have
been selected by the -mode parameter. You can use -include and -exclude in the same call of the
health checker, as long as they do not specify the same check.

include - Run all checks from the set defined by the -mode parameter, and additionally include
the check or checks specified by this parameter. The parameter may contain a single check or
a comma-separated list of checks.

exclude - Run all checks from the set defined by the -mode parameter, except the specified
check or checks. The parametermay contain a single check or a comma-separated list of checks.

The -<additionalParameter> parameters

Some of the health checks allow you to specify one or more additional parameters when calling
theHealthChecker. The name andpurpose of each additional parameter is specific to the individual
health check being run.

For example, the DurableSubscriberLargeStoreCheck check allows you to specify the additional
parameter -threshold=<value>, which defines a threshold for the number of remaining events to
be consumed in a shared durable.

The following general rules apply:

Each additional parameter has a default value, so if you do not specify the additional parameters
explicitly, the default values will be taken.

If multiple additional parameters and multiple checks are specified, each individual check
uses only its own additional parameters.

The additional parameters can be given in any order.

Checks that do not require additional parameters will ignore the additional parameters.

Syntax Examples

Example - Execute all available checks for a live realm check:
runUMTool HealthChecker –rname=nsp://localhost:11000 -mode=all

Example - Execute all the available checks for a live realm check, except the ones mentioned.
runUMTool HealthChecker –rname=nsp://localhost:11000

-mode=all –exclude=JNDIStatusCheck, FixLevelCheck, JoinMismatchCheck

Example - Execute the default set of checks for a live realm check, adding the StoreWarningsCheck
which is not part of the default set.
runUMTool HealthChecker –rname=nsp://localhost:11000

Universal Messaging Administration Guide 10.7 389

6 Command Line Administration Tools

-mode=default –include= StoreWarningsCheck

Example - Execute the default set of checks for a live realm check, but excluding the
JNDIStatusCheck, FixLevelCheck and adding the StoreWarningsCheck.
runUMTool HealthChecker –rname=nsp://localhost:11000

-mode=default –include= StoreWarningsCheck
–exclude=JNDIStatusCheck, FixLevelCheck

Note:
The previous examples are based on live checks using the -rname parameter. The same logic
applies if you use the -xml parameter instead.

Full Example

The following example compares the XML configuration files of two realms in a cluster. The realms
are named realm0 and realm1, and their configuration files are named clustered_realm0.xml and
clustered_realm1.xml.

XML configuration file clustered_realm0.xml for realm0:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<NirvanaRealm name="realm0" exportDate="2016-11-08Z"
comment="Realm configuration from realm0" version="BuildIdentifier"
buildInfo="BuildIdentifier">
<ClusterSet>

<ClusterEntry name="cluster1">
<ClusterMember name="realm1" rname="nsp://localhost:11010/"

canBeMaster="true"/>
<ClusterMember name="realm0" rname="nsp://localhost:11000/"

canBeMaster="true"/>
</ClusterEntry>

</ClusterSet>
<ChannelSet>

<ChannelEntry>
<ChannelAttributesEntry name="channel1" TTL="0" capacity="5" EID="0"

clusterWide="true" jmsEngine="false" mergeEngine="false"
type="PERSISTENT_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="false" EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

<ChannelJoinSet>
<ChannelJoinEntry filter="" hopcount="50" to="channel2"

from="channel1" allowPurge="false" archival="false"/>
</ChannelJoinSet>

</ChannelEntry>
<ChannelEntry>

<ChannelAttributesEntry name="channel2" TTL="0" capacity="0" EID="0"
clusterWide="true" jmsEngine="false" mergeEngine="false"
type="RELIABLE_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false"
SyncMaxBatchSize="0" SyncBatchTime="0"

390 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

PerformAutomaticMaintenance="false"
EnableCaching="true" CacheOnReload="true"
EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

<DurableSet>
<durableEntry name="durable1" EID="-1" outstandingEvents="0"

clusterWide="true" persistent="true"
priorityEnabled="false" shared="true"/>

</DurableSet>
</ChannelEntry>

</ChannelSet>
<QueueSet>

<QueueEntry>
<ChannelAttributesEntry name="queue1" TTL="0" capacity="0" EID="0"

clusterWide="true" jmsEngine="false" mergeEngine="false"
type="RELIABLE_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="true" EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

</QueueEntry>
</QueueSet>

</NirvanaRealm>

XML configuration file clustered_realm1.xml for realm1:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<NirvanaRealm name="realm1" exportDate="2016-11-16Z"
comment="Realm configuration from realm1"
version="BuildIdentifier" buildInfo="BuildIdentifier">
<ClusterSet>

<ClusterEntry name="cluster1">
<ClusterMember name="realm1" rname="nsp://localhost:11010/"

canBeMaster="true"/>
<ClusterMember name="realm0" rname="nsp://localhost:11000/"

canBeMaster="true"/>
</ClusterEntry>

</ClusterSet>
<ChannelSet>

<ChannelEntry>
<ChannelAttributesEntry name="channel1" TTL="0" capacity="5" EID="0"

clusterWide="true" jmsEngine="false" mergeEngine="false"
type="RELIABLE_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="false" EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

<ChannelJoinSet>
<ChannelJoinEntry filter="" hopcount="10" to="channel2"

from="channel1" allowPurge="false" archival="false"/>
</ChannelJoinSet>

</ChannelEntry>
<ChannelEntry>

<ChannelAttributesEntry name="channel2" TTL="0" capacity="0" EID="0"

Universal Messaging Administration Guide 10.7 391

6 Command Line Administration Tools

clusterWide="true" jmsEngine="false" mergeEngine="false"
type="RELIABLE_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="false" EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

</ChannelEntry>
</ChannelSet>
<DataGroupSet>

<DataGroupEntry>
<DataGroupAttributesEntry name="dg1" id="3422373812" priority="1"

multicastenabled="false"/>
</DataGroupEntry>

</DataGroupSet>
</NirvanaRealm>

From a first analysis we can say that these two realms belong to the same cluster (cluster1) and
that they both contain various stores, joins and data groups. But let's see what happens when we
run the HealthChecker tool specifying both XML files and running all the checks. Note that we
need to exclude the ServerProtectionConsistencyCheck since the specifiedXMLfiles do not contain
the RealmConfiguration section.

Here is the call of the tool (using Windows syntax) and the result:
runUMTool.bat HealthChecker -xml=clustered_realm0.xml,clustered_realm1.xml

-exclude=ServerProtectionConsistencyCheck
HealthChecker Tool - Version: 1.0

XML JOIN MISMATCHES CHECK
ERROR: Join from (channel1) to (channel2) HopCount mismatch [realm1] does not

equal [realm0]

XML JNDI PROPERTIES CHECK
WARN: Realm realm0: No JNDI entry for store channel1
WARN: Realm realm0: No JNDI entry for store channel2
WARN: Realm realm0: No JNDI entry for store queue1
WARN: Realm realm1: No JNDI entry for store channel1
WARN: Realm realm1: No JNDI entry for store channel2

XML DURABLE STATUS CHECK
ERROR: Could not find durable (durable1) on realm [realm1] but it is present

on [realm0]

XML STORE MISMATCHES CHECK
WARN: Store (channel1) Type mismatch [realm1] does not equal [realm0]
ERROR: Could not find store (queue1) on realm [realm1] but it is present

on realm [realm0]

XML DATAGROUP MISMATCHES CHECK
ERROR: Could not find Data Group (dg1) on realm [realm0] but it is present

on realm [realm1]

392 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

These errors and warnings tell us:

Joins: a join between two clusterwide channels has to be the same on all the nodes - in our case
there is a mismatch in the HopCount;

JNDIs: these simplewarnings are saying: "Are you sure that you don't need any JNDI for these
stores?";

Durables: if a durable is clusterwide, then it has to be present on all the other nodes (and it
has to be the same);

Stores: if a store is clusterwide, then it has to be the same on all the other nodes.

Datagroups: the same rule applies for datagroups, which are always clusterwide and have to
be present on all the other nodes.

The "Realm Information Collector" Diagnostic Tool

Overview

RealmInformationCollector is a command-line diagnostic tool that gathers files and live data from
one or more Universal Messaging realm servers. The tool makes it easier for you to collect
information that Software AG support may require to diagnose issues with Universal Messaging,
but the information collected may also be useful for internal support within your organization.

The tool can be executed in live and offline mode:

Live mode: In live mode, the specified Universal Messaging realm server(s) must be running.

The tool will collect files that contain operational data for each running realm server, but will
also attempt to connect to and gather information directly from each running server process.

Offline mode: In offline mode, the specified Universal Messaging realm server(s) must be
offline.

In this mode, the tool will only collect files that contain operational data for each realm server.

The mode of operation (either offline or live) is a mandatory argument and must be specified
when running the tool. Youmust ensure that the specified Universal Messaging realm servers are
stopped when -mode=offline, or running when -mode=live.

Depending on the mode, the tool will collect different files. For example, in live mode, it will not
collect the content of realm server's "data" directory, because thismight cause failures on the server.

The tool collects information by executing a list of collectors. Each collector is responsible for
gathering a specific subset of the realm's information.

Universal Messaging Administration Guide 10.7 393

6 Command Line Administration Tools

Collectors for a live realm server

The collectors that can be run against a live realm server are shown in the following table. Path
names of files and directories given in the table are the installation defaults.

Default
collector?

DescriptionName of Collector

Collects client connection information from a running realm
server.

clientinfo

Collects consumer connection information from a running
realm server.

consumerinfo

YCollects environment information froma running realm server.env

This includes all JVM system properties and the list of
Universal Messaging interfaces.

YAcquires health information froma running realm server using
the HealthChecker tool. See the section “Running a
Configuration Health Check” on page 383 for details.

healthchecker

Acquires a heap dump from a running realm server.heapdump

Note:
This collector is not available on all platforms. See the
section Operational Issues below for related information.

Collects the heap dump directory of a realm server.heapdumps

The location of this directory is
<InstallDir>/UniversalMessaging/server/<realmname>/heap_dumps.

See the section TheDump file for Out-of-Memory Errors (OOME)
in the Installation Guide for related information about heap
dumps.

YCollects the product's installation log files.installlogs

These files are located in <InstallDir>/install/logs.

YCollects the realm server's manager log.instancemgr

This file is located in
<InstallDir>/UniversalMessaging/tools/InstanceManager/instanceLog.txt.

YCollects the JAAS configuration of a realm server.jaas

This file is located in
<InstallDir>/UniversalMessaging/server/<realmname>/bin/jaas.conf.

394 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Default
collector?

DescriptionName of Collector

Collects the license file of a realm server.license

This file is located in
<InstallDir>/UniversalMessaging/server/<realmname>/licence.xml.

YCollects logs of a realm server.logs

The location of the file is
<InstallDir>/UniversalMessaging/server/<realmname>/data/nirvana.log.
If there are any rolled log files in addition to the current log
file, for example nirvana.log_<timestamp1> and
nirvana.log_<timestamp2>, these are collected also.

Additionally, it collects logs created by the trace logger, if
present. The location of the trace logging directory is
<InstallDir>/UniversalMessaging/server/<realmname>/data/traceLogging
by default. If this directory is changed via the
com.softwareag.um.server.log.TraceLoggerPath system
property, this will also be taken into account when the Realm
Information Collector is executed and the log files will be
collected.

Collects Software AG migration logs.migrationlogs

YCollects operating system and hardware information. The
collectorwill gather hardware, processor,memory, file system,

osinfo

and network information from the operating system. The data
will be stored in the file generated/osinfo.txt in the generated
archive.

The osinfo tool runs on Windows, Apple macOS, Red Hat
Enterprise Linux, and Solaris operating systems.

YCollects the plugins directory of a realm server.plugins

This directory is located at
<InstallDir>/UniversalMessaging/server/<realmname>/plugins.

YCollects information about processes in the operating system.
The collector records the top 20 processes in terms of CPU

psinfo

consumption and stores the data in the generated/osinfo.txt
file in the generated archive.

The psinfo collector runs together with the osinfo collector,
which is selected by default. If you try to run psinfowithout
osinfo, the system returns an error.

The psinfo tool runs on Windows, Apple macOS, Red Hat
Enterprise Linux, and Solaris operating systems.

Universal Messaging Administration Guide 10.7 395

6 Command Line Administration Tools

Default
collector?

DescriptionName of Collector

YCollects the realm configuration properties of a realm server.
The properties are listed in the section “Realm

realmconfig

Configuration” on page 33. The collector delivers the
configuration properties as a serialized XML file.

YCollects the security file of a realm server.secfile

This file is located at
<InstallDir>/UniversalMessaging/server/<realmname>/bin/secfile.conf.

Collects SoftwareAG spm logs.spmlogs

YCollects the Tanuki service wrapper configuration of a realm
server.

tanukiconf

This includes the files nserverdaemon.conf, Server_Common.conf
and Custom_Server_Common.conf, located at
<InstallDir>/UniversalMessaging/server/<realmname>/bin.

YCollects Tanuki service wrapper logs of a realm server.tanukilogs

This file is located at
<InstallDir>/UniversalMessaging/server/<realmname>/bin/UMRealmService.log.
If there are any rolled log files in addition to the current log
file, for example UMRealmService.log.1 and
UMRealmService.log.2, these are collected also.

YGenerates three thread dumps of a realm server. The dumps
are taken at 15-second intervals. Having three dumps instead
of one canmake it easier to analyze time-related thread issues.

threaddump

A "Y" in the column "Default collector?" indicates that the collector is included by default when
you run the RealmInformationCollector tool.

Collectors for an offline realm server

The collectors that can be run against an offline realm server are the following (collectors that can
be used also against a live realm server are indicated). Path names of files and directories given
in the table are the installation defaults.

Default
collector?

DescriptionName of Collector

Collects the data directory of a realm server.data

The location of this directory is
<InstallDir>/UniversalMessaging/server/<realmname>/data.

396 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Default
collector?

DescriptionName of Collector

(Same as the live collector)heapdumps

Y(Same as the live collector)installlogs

Y(Same as the live collector)instancemgr

Y(Same as the live collector)jaas

(Same as the live collector)license

Y(Same as the live collector)logs

(Same as the live collector)migrationlogs

Y(Same as the live collector)osinfo

Y(Same as the live collector)plugins

Y(Same as the live collector)psinfo

Y(Same as the live collector)secfile

(Same as the live collector)spmlogs

Y(Same as the live collector)tanukiconf

Y(Same as the live collector)tanukilogs

Collects the realm server version from a non-running UM
server instance. The version will be stored in the file

version

UniversalMessaging/lib/nServer.jar_version.txt in the
generated archive.

Command Usage

The syntax is as follows:
runUMTool RealmInformationCollector

-mode=live|offline [-username=<username> -password=<password>]
-instance=*|<instanceName>[,<instanceName> ...]
[-include=<collectorName>[,<collectorName> ...]]
[-exclude=<collectorName>[,<collectorName> ...]]
[-outputfile=<dir_or_file>]
[-logsduration=<duration>]

Displaying help text

To display a help text showing a summary of the command usage, call the
RealmInformationCollector tool without parameters:
runUMTool RealmInformationCollector

Universal Messaging Administration Guide 10.7 397

6 Command Line Administration Tools

The -mode parameter

This parameter allows you to select the execution mode of the tool. The mode parameter is
mandatory and can take one of the following values:

live - the RealmInformationCollector tool will collect operational data files for each running
realm server and also attempt to connect and gather information directly from each running
realm server

offline - the tool will collect operational data files only

In live mode, all specified realm servers (see the -instance parameter) must be running, whereas
in offline mode, all specified realm servers must be stopped.

Also in live mode, the following collectors will connect to each specified running realm server to
gather information, and will store the information in the following files under
UniversalMessaging/server/<InstanceName>/generated in the generated archive:

Generated fileCollector name

envinfo.txtenv

RealmConfig.xmlrealmconfig

healthchecker.txthealthchecker

Three thread dump files, generated at 15-second intervals, named
threaddump_<timestamp>.txt

threaddump

The -username and -password parameters

When establishing the connection to a live realm server, the RealmInformationCollector tool will
authenticate using the current operating system user. It is therefore recommended to run the
RealmInformationCollector tool using the same user as the one used to run the realm server.

You can specify a different user using the -username and -password arguments.

The -instance parameter

This parameter allows you to select the set of realm servers to collect information from. The
parameter ismandatory andmust contain either a single realm server name or a comma-separated
list of realm server names. The specified realm servers must be available in the installation where
the RealmInformationCollector tool is run from. You can specify -instance=* to select all installed
realm servers.

The -include and -exclude parameters

You can use the -include and -exclude parameters to further refine the set of collectors that have
been selected by the -mode parameter. You can use -include and -exclude in the same call of the
RealmInformationCollector tool as long as they do not specify the same collector name.

398 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

include - Run all default collectors availablewith the specified -modeparameter, and additionally
include the collector or collectors specified by this parameter. The parameter may contain a
single collector name or a comma-separated list of collector names.

exclude - Run all default collectors available with the specified -mode parameter, except the
specified collector or collectors. The parameter may contain a single collector name or a
comma-separated list of collector names.

The -outputfile parameter

Specifies the path where the generated zip archive will be stored.

If the path specifies a directory without a filename, the directory must already exist. The archive
file will be generated in the specified directory using the following naming convention:
<InstallDir>_<mode>_<timestamp>.zip

For example, if the product installation directory is C:\SoftwareAG and the
RealmInformationCollector tool is executedwith -mode=live, the generated archivewill be named
for example SoftwareAG_live_20171120100757940.zip

If the path specifies a directory with a filename, the directory must already exist but the file must
not already exist, and the tool will use the filename you specify.

If the parameter is not specified, the tool will generate an archive with a name corresponding to
the naming convention mentioned above, and store the archive under the directory
<InstallDir>/UniversalMessaging/tools/runner.

The -logsduration parameter

Specifies the age of the oldest log that is to be returned, relative to the current time. The age can
be specified in days or hours or both.

For example, if the logs are required for the past 2 days and 4 hours, the option can be specified
as:
-logsduration=2d4h

Syntax Examples

Example: Execute default collectors in offline mode against the umserver instance:
runUMTool RealmInformationCollector -mode=offline -instance=umserver

Example: Execute default collectors and also optional collectors data and heapdumps in offlinemode
against the umserver instance:
runUMTool RealmInformationCollector

-mode=offline -instance=umserver -include=data,heapdumps

Example: Execute default collectors and the optional collectors data and heapdumps, excluding the
jaas collector, in offline mode against all realm server instances:
runUMTool RealmInformationCollector

-mode=offline -instance=* -include=data,heapdumps -exclude=jaas

Universal Messaging Administration Guide 10.7 399

6 Command Line Administration Tools

Example: Execute default collectors in live mode against the umserver instance:
runUMTool RealmInformationCollector -mode=live -instance=umserver

Example: Execute the default collectors and optional collectors heapdump and heapdumps in live
mode against the umserver instance:
runUMTool RealmInformationCollector

-mode=live -instance=umserver -include=heapdump,heapdumps

Example: Execute the default collectors and optional collectors heapdump and heapdumps, excluding
the jaas collector, in live mode against the umserver and umserver2 instances:
runUMTool RealmInformationCollector

-mode=live -instance=umserver,umserver2 -include=heapdump,heapdumps -exclude=jaas

Example: Execute the default collectors and optional collectors heapdump and heapdumps in live
mode against the umserver instance and specify a custom location of the generated zip archive:
runUMTool RealmInformationCollector

-mode=live -instance=umserver -include=heapdump,heapdumps
-outputfile=C:/SoftwareAG_umserver_live.zip

Example: Execute default and logs collectors in live mode against all realm servers and collect
logs for a specific duration:
runUMTool RealmInformationCollector

-mode=live -instance=* -include=logs -logsDuration=2d4h

Example: Execute default and clientinfo and consumerinfo collectors in live mode against the
umserver server instance:
runUMTool RealmInformationCollector

-mode=live -instance=umserver -include=clientinfo,consumerinfo

Operational Issues

OnWindows, if the product installation directory path is too long, acquiring a live heap dump
may fail with the error "CreateProcess error=267, The directory name is invalid". You canwork
around this error by configuring the -outputFile parameter to use a shorter directory/file path,
for example C:/SoftwareAG_live.zip.

The RealmInformationCollector tool does not support connecting via SSL-secured network
interfaces to the realm server. If all realm server network interfaces are secured using SSL, live
collectors which need to connect to the server (env, realmconfig, healthchecker, threaddump)
will fail to connect to the server. You canwork around this by configuring a temporary non-SSL
secured network interface.

Live heap dump generation using the heapdump collector is only available with the JVM that
is delivered with the Universal Messaging distribution kit onWindows and Solaris machines.
This feature is currently not available for use with other JVMs.

The RealmInformationCollector toolmight fail to acquire a live heap dump if the tool runwith
a different operating system user than the one used for running the realm server. It is

400 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

recommended to run the tool with the same operating system user that was used to run the
realm server.

The ExportEventsFromOfflineMemFile Tool

Overview

The ExportEventsFromOfflineMemFile tool is a command-line recovery tool that dumps events
frommemfiles of UniversalMessaging realm server stores to XMLor JSON format. Event filtering
can be applied while dumping with the tool. Events can also be dumped to both XML and JSON
format in a single run of the tool, resulting in two output files that have a common structure.

The output file will contain a first element describing the export details and then a list of events.
The ExportDetails element contains the tool version number and the protocol buffer file descriptor
set in base64-encoded format, if the protocol buffer file descriptor set was specified by the user
when starting the export tool.

Event structure in the output file

In XML and JSON output files, the Event element contains the following information:
id: event EID (nPublished.getKey());
size: event size (nPublished.getSize());
chanID: event ChannelAttributesId (nPublished.getChannelAttributesId());
ttl: event TTL (nPublished.getTTL());
tag: event tag (nPublished.getTag());
eventData: event data;
persistent: event isPersistent property (nPublished.isPersistant());
transient: event isTransientPropery(nPublished.isTransient());
headerProps: event header attributes;
dictionaryProps: event dictionary properties;

For now, the XML output file event eventData value is base64-encoded.

In the JSONoutput file, the event element contains an additional property eventDataFormatwhich
can contain the value "Base64" or "GoogleProtobufJson".

In the JSON output file event element eventData, the value can be base64-encoded or can be a
JSON node containing protocol buffer data.

XML output file example
<?xml version="1.0" encoding="utf-8"?>
<EventsDetails>

<ExportDetails>
<ToolVersion>1.0</ToolVersion>

<Descriptor>CtwCCgxTY2hvb2wucHJvdG8i7gEKBlBlcnNvbhISCgRuYW1lGAEgAigJUgRuYW1lEg4KAmlkGAIgAigFUgJpZBIUCgVlbWFpbBgDIAEoCVIFZW1haWwSKQoFcGhvbmUYBCADKAsyEy5QZXJzb24uUGhvbmVOdW1iZXJSBXBob25lGlIKC1Bob25lTnVtYmVyEhYKBm51bWJlchgBIAIoCVIGbnVtYmVyEisKBHR5cGUYAiABKA4yES5QZXJzb24uUGhvbmVUeXBlOgRIT01FUgR0eXBlIisKCVBob25lVHlwZRIKCgZNT0JJTEUQABIICgRIT01FEAESCAoEV09SSxACIk4KBlNjaG9vbBIhCgdzdHVkZW50GAEgAygLMgcuUGVyc29uUgdzdHVkZW50EiEKB3RlYWNoZXIYAiACKAsyBy5QZXJzb25SB3RlYWNoZXJCC0IJU2Nob29sU3Vi</Descriptor>
</ExportDetails>
<Events>

<Event>
<id>0</id>
<size>306</size>

Universal Messaging Administration Guide 10.7 401

6 Command Line Administration Tools

<chanID>63565653663178134</chanID>
<ttl>0</ttl>
<tag>tag0</tag>
<eventData>dGVzdGRhdGFib2R5MCBkYXRh</eventData>
<persistent>true</persistent>
<transient>false</transient>
<dictionaryProps>

<item>
<name>string_key</name>
<value>value0</value>
<type>String</type>

</item>
<item>

<name>boolean_key</name>
<value>true</value>
<type>Boolean</type>

</item>
<item>

<name>int_key</name>
<value>0</value>
<type>Integer</type>

</item>
<item>

<name>long_key</name>
<value>0</value>
<type>Long</type>

</item>
<item>

<name>short_key</name>
<value>0</value>
<type>Short</type>

</item>
<item>

<name>byte_key</name>
<value>0</value>
<type>Byte</type>

</item>
<item>

<name>char_key</name>
<value>0</value>
<type>Character</type>

</item>
<item>

<name>byte_arr_key</name>
<value>dGVzdDA=</value>
<type>byte[]</type>

</item>
<item>

<name>float_key</name>
<value>0.0</value>
<type>Float</type>

</item>
<item>

<name>double_key</name>
<value>0.0</value>
<type>Double</type>

</item>
</dictionaryProps>
<headerProps>

<item>

402 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

<name>nrvpub.time</name>
<value>1588946429779</value>
<type>Long</type>

</item>
<item>

<name>nrvpub.host</name>
<value>127.0.0.1</value>
<type>String</type>

</item>
<item>

<name>nrvpub.name</name>
<value>ekob</value>
<type>String</type>

</item>
<item>

<name>JMSDeliveryMode</name>
<value>PERSISTENT</value>
<type>String</type>

</item>
<item>

<name>JMSPriority</name>
<value>4</value>
<type>Byte</type>

</item>
</headerProps>

</Event>
</Events>

</EventsDetails>

JSON output file example
[
{

"toolVersion": "1.0",
"descriptor":

"CtwCCgxTY2hvb2wucHJvdG8i7gEKBlBlcnNvbhISCgRuYW1lGAEgAigJUgRuYW1lEg4KAmlkGAIgAigFUgJpZBIUCgVlbWFpbBgDIAEoCVIFZW1haWwSKQoFcGhvbmUYBCADKAsyEy5QZXJzb24uUGhvbmVOdW1iZXJSBXBob25lGlIKC1Bob25lTnVtYmVyEhYKBm51bWJlchgBIAIoCVIGbnVtYmVyEisKBHR5cGUYAiABKA4yES5QZXJzb24uUGhvbmVUeXBlOgRIT01FUgR0eXBlIisKCVBob25lVHlwZRIKCgZNT0JJTEUQABIICgRIT01FEAESCAoEV09SSxACIk4KBlNjaG9vbBIhCgdzdHVkZW50GAEgAygLMgcuUGVyc29uUgdzdHVkZW50EiEKB3RlYWNoZXIYAiACKAsyBy5QZXJzb25SB3RlYWNoZXJCC0IJU2Nob29sU3Vi"
},
{

"eventData": {
"encodedData": "dGVzdGRhdGFib2R5MCBkYXRh"

},
"eventDataFormat": "Base64",
"id": 0,
"size": 306,
"chanID": 63565653663178136,
"ttl": 0,
"tag": "tag0",
"isPersistent": true,
"isTransient": false,
"type": 0,
"dictionaryProps": [

{
"name": "string_key",
"value": "value0",
"type": "String"

},
{

"name": "boolean_key",
"value": "true",

Universal Messaging Administration Guide 10.7 403

6 Command Line Administration Tools

"type": "Boolean"
},
{
"name": "int_key",
"value": "0",
"type": "Integer"

},
{
"name": "long_key",
"value": "0",
"type": "Long"

},
{
"name": "short_key",
"value": "0",
"type": "Short"

},
{
"name": "byte_key",
"value": "0",
"type": "Byte"

},
{
"name": "char_key",
"value": "0",
"type": "Character"

},
{
"name": "byte_arr_key",
"value": "dGVzdDA=",
"type": "byte[]"

},
{
"name": "float_key",
"value": "0.0",
"type": "Float"

},
{
"name": "double_key",
"value": "0.0",
"type": "Double"

}
],
"headerProps": [

{
"name": "nrvpub.time",
"value": "1588946429779",
"type": "Long"

},
{
"name": "nrvpub.host",
"value": "127.0.0.1",
"type": "String"

},
{
"name": "nrvpub.name",
"value": "ekob",
"type": "String"

},
{

404 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

"name": "JMSDeliveryMode",
"value": "PERSISTENT",
"type": "String"

},
{

"name": "JMSPriority",
"value": "4",
"type": "Byte"

}
]

}
]

Difference between XML and JSON export formats

The JSON output file event element can have eventData as a JSON node and "eventDataFormat"
: "GoogleProtobufJson" if events are dumped from the mem file of a protobuf channel and the
export tool had the input parameter protobufdescriptor specified.

Here is an example of a JSON event dumped from a protobuf channel with protobufdescription
specified :
{

"eventData": {
"student": [

{
"name": "StudentName0",
"id": 1,
"email": "StudentName0@softwareag.com",
"phone": [

{
"number": "19150",
"type": "HOME"

}
]

}
],
"teacher": {

"name": "TeacherName0",
"id": 2,
"email": "TeacherName0@softwareag.com",
"phone": [
{

"number": "77430",
"type": "HOME"

}
]

}
},
"eventDataFormat": "GoogleProtobufJson",
"id": 0,
"size": 215,
"chanID": 39103550381024424,
"ttl": 0,
"tag": "tag0",
"isPersistent": true,
"isTransient": false,
"type": 0,

Universal Messaging Administration Guide 10.7 405

6 Command Line Administration Tools

"headerProps": [
{
"name": "nrvpub.time",
"value": "1588946429899",
"type": "Long"

},
{
"name": "nrvpub.host",
"value": "127.0.0.1",
"type": "String"

},
{
"name": "nrvpub.name",
"value": "ekob",
"type": "String"

},
{
"name": "JMSType",
"value": "School",
"type": "String"

},
{
"name": "JMSDeliveryMode",
"value": "PERSISTENT",
"type": "String"

},
{
"name": "JMSPriority",
"value": "4",
"type": "Byte"

},
{
"name": "JMSMsgType",
"value": "6",
"type": "Integer"

}
]

}

Input parameters

-protobufdescriptor

The -protobufdescriptor input parameter is an optional parameter specifying the path to the
protocol buffer file descriptor set for filtering events based on event data.

The protocol buffer file descriptor set can be received as:
protoc.exe <proto_file_name>.proto
--descriptor_set_out=<protocol_buffer_file_descriptor_set_name>.fds

If the input parameter protobufdescriptor is specified and the mem file's store is a protobuf
channel with the same protobuf descriptor, then event filtering can be done based on the event
protocol buffer data. The protocol buffer descriptor will be exported to the output file as a
base64-encoded string.

406 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

If the input parameter protobufdescriptorwas not specified and thememfile's store is a protobuf
channel, then event filtering cannot be done based on the event protocol buffer data.

If the input parameter protobufdescriptor is specified but thememfile's store is a protobuf channel
with a different protobuf descriptor, then dumping will not be performed.

If the input parameter protobufdescriptor is specified but the mem file's store is not a protobuf
channel, then the event will be considered as nPublished events anyway. The protocol buffer
descriptor will be exported to the output file as a base64-encoded string.

batchsize

The default value of the batch size is 100. It can be optionally specified when running the tool. It
defines the number of eventswhichwill be read/loaded to thememory/ from thememfile, filtered
and then written to the output file at once.

The RepublishEventsFromOfflineFile Tool

The RepublishEventsFromOfflineFile tool is a command-line recovery tool that imports events
into aUniversalMessaging realm server store (channel or queue) from any of the following sources:

An XML file or JSON file.

A copy of the store's persistent memory file (or multiple memory files for a multi-file store).

Event filtering can be applied while importing with the tool. Republishing is done as transaction
event publishing.

Input files

Importing can be done fromanXMLor JSONfile produced by the ExportEventsFromOfflineMemFile
tool.

Importing can be done from offline memory files of the store taken from the parent realm's data
directory. The offline memory files have the filetype *.mem. When importing multi-file stores, you
specify the folder that contains the *.mem files. When importing a mixed/persistent store, you
specify a single .mem file.

When you invoke the tool, you can specify either a mem file (or mem folder name), or an XML
file, or a JSON file, but not a combination of these options.

The -protobufdescriptor input parameter

Import from the mem file of a protobuf store

If the import is performed from a protobuf store'smemfile and the protobufdescriptor parameter
specified is the same as for the "source" channel, then filtering can be done based on the protocol
buffer event data. If the "republish" channel has the same protocol buffer file descriptor set as the
"source" store, events will be republished as protobuf events.

Universal Messaging Administration Guide 10.7 407

6 Command Line Administration Tools

If the import is performed from a protobuf store'smemfile and the protobufdescriptor parameter
specified is the same as for the "source" channel, but the "republish" channel has another protocol
buffer file descriptor or is not a protobuf channel, then event republishing will not be done.

If the import is performed from a protobuf store's memfile but the protobufdescriptor parameter
is not specified, then filtering cannot be done based on protobuf data. Events will be republished
as non-protobuf events to a non-protobuf store and as protobuf events to a store with the protocol
buffer file descriptor set.

Import from mem file of non-protobuf store

If the import is performed from a non-protobuf store's mem file and the protobufdescriptor
parameter is not specified, events will be republished as non-protobuf events to any channel.

If the import is performed from a non-protobuf store's mem file and the protobufdescriptor
parameter is specified and coincides with the descriptor of the "republish" channel, events will be
republished as non-protobuf events.

But if the import is performed from a non-protobuf store's mem file and the protobufdescriptor
parameter is specified and does not coincidewith the descriptor of the "republish" channel, events
will not be republished.

Import from XML and JSON files

If the source file belongs (was exported from) to a protobuf channel's mem file and was exported
with its protobuf descriptor, the import will be done with the protobuf descriptor specified in the
file. So it is possible to specify only a selector to filter events based on protobuf data. Events will
be republished as protobuf events to a store with the protobuf descriptor and as non-protobuf
events to other channels.

If the source file belongs to a protobuf channel and was exported without a protobuf descriptor
and no protobufdescriptorwas specified or another is specified as input parameter, the import
will be donewithout possible filtering based on the protobuf event data. Eventswill be republished
as protobuf events to a store with the protobuf descriptor and as non-protobuf events to other
channels. If the correct protobufdescriptor parameter is specified as an input parameter, then
filtering will be possible based on protobuf eventdata.

The -batchsize input parameter

This parameter can be optionally specified when running the tool. It defines the number of events
which will be read/loaded to the memory/ frommem/XML/JSON file, filtered and then published
to the "destination" store as a single batch.

The default batch size is 100.

408 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Syntax reference for command line tools

Syntax: Store Tools

CreateChannel
Tool name:
CreateChannel

Description:
Creates a channel with the specified name on the specified server.
A single permission can be set during channel creation using
optional arguments.
For adding a set of permissions use the client API.

Usage:
runUMTool CreateChannel -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
CreateChannel -rname=nsp://localhost:8080 -channelname=channel0

-maxevents=10

Required arguments:
rname :

URL of the realm to which the channel will be connected.
channelname :

Name of the channel to be created.

Optional Parameters:
maxevents :

Capacity of the new store (default 0).
ttl :

Time to Live for the new store (default 0).
type :

Type of the new store (default S).
R - Reliable (stored in memory), with persistent EIDs
P - Persistent (stored on disk)
S - Simple (stored in memory)
T - Transient (no server-based storage)
M - Mixed (allows both memory and persistent events)
O - Off-Heap
G - Paged (uses a memory-mapped file for storage)

publishkeys :
Set of publish keys for the new store (default null).
Multiple pairs - each pair is separated by a ';'
Pairs - each name and depth is separated by a ','

e.g. name,depth;name2,depth2
isclusterwide :

Whether the new store is cluster-wide.
Will only work if the realm is part of a cluster.

usejmsengine :
Whether to use the JMS style fanout engine.

usemergeengine :
Whether to use the merge style fanout engine.

isautodelete :
Whether the store is auto-deleted upon disconnection of its creator.

Universal Messaging Administration Guide 10.7 409

6 Command Line Administration Tools

isdurable :
Whether the store is durable (restores after a server restart).

isautomaintenance :
Whether the store will have automatic maintenance as events are
being removed.

honourcapacity :
Whether the store capacity setting will prevent publishing of any more
data once full.

enablecaching :
Whether the server will cache events in memory or will always refer back
to the file-backed store.

cacheonreload :
Whether the server will cache events in memory for fast replay upon restart.

enablereadbuffering :
Whether reads will be buffered to optimise the I/O access to the
file-based store.

readbuffersize :
The size in bytes of the buffer to use when read buffering (default 10240).

enablemulticast :
Whether multicast is supported on the new store.

synceachwrite :
Whether each write to the store will also call sync on the file system
to ensure all data is written to disk.

syncbatchsize :
Maximum size of batch written to disk on sync.

syncbatchtime :
Time for writing data to disk on sync.

fanoutarchivetarget :
Name of fanout archive target to be configured.

priority :
The default message priority for events on the new store.

stampdictionary :
StampDictionary setting value for the new store.

subject :
The subject in format user@host for which the permission
will be set. For a group permission, this value will be set
as a group name. If this parameter is missing, the other parameters
related to the permission entry are considered invalid.

group :
Whether a group permission entry must be created. Such permissions
can be applied during channel creation only for already existing
security groups.

manage :
Whether the subject or group has permissions to manage ACLs
(default is set to false).

publish :
Whether the subject or group has permissions to publish
events to this channel (default is set to false).

subscribe :
Whether the subject or group has permissions to subscribe to the
channel (default is set to false).

purge :
Whether the subject or group has permissions to purge events
from the channel (default is set to false).

fullprivileges :
Whether the subject or group has full permissions for this channel

(default is set to false).
getlasteid :

Whether the subject or group has permissions to get the last event ID
(default is set to false).

410 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

named :
Whether the subject or group has permissions to use named
subscription on the channel (default is set to false).

multifileeventsperspindle :
Number of events that will be stored per individual file for a store

(default is 50000).
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

CreateDurable
Tool name:
CreateDurable

Description:
Creates a Durable (also known as Named Object) with the specified name and type
on the specified channel.

Usage:
runUMTool CreateDurable -rname=<rname> -channelname=<channelname>

-durablename=<durablename> -durabletype=<durabletype> [optional_args]

Examples:
CreateDurable -rname=nsp://localhost:8080 -channelname=channel0

-durablename=durable0 -durabletype=N

Required arguments:

rname :
URL of the realm to list the details of all the channels within.

channelname :
Name of the channel on which the Durable will be created.

durablename :
Name of the Durable to be created.

durabletype :
Type of the new Durable.
N - Named
S - Shared
SE - Serial

Optional Parameters:

isclusterwide :
Whether the durable should be created in the entire cluster.

username :
Your Universal Messaging server username

password :
Your Universal Messaging server password

CreateJoin
Tool name:
CreateJoin

Description:
Joins two channels.

Universal Messaging Administration Guide 10.7 411

6 Command Line Administration Tools

Usage:
runUMTool CreateJoin -rname=<rname> -channelhost=<channelhost>

-channeldest=<channeldest> [optional_args]

Examples:
CreateJoin -rname=nsp://localhost:8080 -rnamedest=nsp://localhost:8090

-channelhost=source -channeldest=destination

Required arguments:
rname :

URL of the realm from which the source channel will be retrieved.
channelhost :

Name of the source channel.
channeldest :

Name of the destination channel.

Optional Parameters:
rnamedest :

URL of the realm from which the destination channel
will be retrieved (default is set to be -rname).

routed :
Set routed parameter (default is set to be false).

hopcount :
Set maximum number of hops (default is set to be 10).

selector :
Set selector string (default is set to be null).

allowpurge :
Set allowPurge parameter when connecting to a channel
(default is set to be true).

createtwoway :
Set createtwoway parameter to create a two way
channel join (default is set to be false)

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

CreateQueue
Tool name:
CreateQueue

Description:
Creates a queue with the specified name on the specified server.
A single permission can be set during queue creation using
optional arguments. For adding a set of permissions use the client API.

Usage:
runUMTool CreateQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:
CreateQueue -rname=nsp://localhost:8080 -queuename=queue0 -maxevents=10

Required arguments:
rname :

URL of the realm to which the queue will be connected.

queuename :
Name of the queue to be created.

412 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Optional Parameters:

maxevents :
Capacity of the new store (default 0).

ttl :
Time to Live for the new store (default 0).

type :
Type of the new store (default S).
R - Reliable (stored in memory), with persistent EIDs
P - Persistent (stored on disk)
S - Simple (stored in memory)
T - Transient (no server-based storage)
M - Mixed (allows both memory and persistent events)
O - Off-Heap
G - Paged (uses a memory-mapped file for storage)

isclusterwide :
Whether the new store is cluster-wide.
Will only work if the realm is part of a cluster.

usejmsengine :
Whether to use the JMS style fanout engine.

usemergeengine :
Whether to use the merge style fanout engine.

isautodelete :
Whether the store is auto-deleted upon disconnection of its creator.

isdurable :
Whether the store is durable (restores after a server restart).

isautomaintenance :
Whether the store will have automatic maintenance as
events are being removed.

honourcapacity : Whether the store capacity setting will prevent
publishing of any more data once full.

enablecaching :
Whether the server will cache events in memory
or will always refer back to the file-backed store.

cacheonreload :
Whether the server will cache events in memory for fast replay
upon restart.

enablereadbuffering :
Whether reads will be buffered to optimise the I/O access
to the file-based store.

readbuffersize :
The size in bytes of the buffer to use when read buffering
(default 10240).

enablemulticast :
Whether multicast is supported on the new store.

synceachwrite :
Whether each write to the store will also call sync on the file system
to ensure all data is written to disk.

syncbatchsize :
Maximum size of batch written to disk on sync.

syncbatchtime :
Time for writing data to disk on sync.

fanoutarchivetarget :
Name of fanout archive target to be configured.

priority :

Universal Messaging Administration Guide 10.7 413

6 Command Line Administration Tools

The default message priority for events on the new store.
stampdictionary :

StampDictionary setting value for the new store.
subject :

The subject in format user@host for which the permission
will be set. For a group permission this value will be
set as a group name. If this parameter is missing the other
parameters related to the permission entry are
considered invalid.

group :
Whether a group permission entry must be created.
Such permissions can be applied during channel creation only
for already existing security groups.

manage :
Whether the subject or group has permissions to manage
ACLs (default is set to false).

fullprivileges : Whether the subject or group has full permissions
for this channel (default is set to false).

purge :
Whether the subject or group has permissions to purge
events from the channel (default is set to false).

pop :
Whether the subject or group has permissions to pop events
from the queue (default is set to false).

peek :
Whether the subject or group has permissions to peek events
from this queue (default is set to false).

push :
Whether the subject or group has permissions to push events
in the queue (default is set to false).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteChannel
Tool name:
DeleteChannel

Description:
Deletes a channel with the specified name on the specified realm.

Usage:
runUMTool DeleteChannel -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
DeleteChannel -rname=nsp://localhost:8080 -channelname=channel0

Required arguments:
rname :

URL of the realm to which the channel will be connected.

channelname :
Name of the channel to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.

414 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

password :
Your Universal Messaging server password.

DeleteDurable
Tool name:
DeleteDurable

Description:
Deletes a Durable with the specified name on the specified channel.

Usage:
runUMTool DeleteDurable -rname=<rname> -channelname=<channelname>

-durablename=<durablename> [optional_args]

Examples:
DeleteDurable -rname=nsp://localhost:8080 -channelname=channel0

-durablename=durable0

Required arguments:

rname :
URL of the realm to list the details of all the channels within.

channelname :
Name of the channel from which the Durable will be deleted.

durablename :
Name of the Durable to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteJoin
Tool name:
DeleteJoin

Description:
Deletes a join between two channels.

Usage:
runUMTool DeleteJoin -rname=<rname> -channelhost=<channelhost>

-channeldest=<channeldest> [optional_args]

Examples:
DeleteJoin -rname=nsp://localhost:8080 -rnamedest=nsp://localhost:8090

-channelhost=source -channeldest=destination

Required arguments:
rname :

URL of the realm from which the source channel will be retrieved.
channelhost :

Name of the source channel.
channeldest :

Name of the destination channel.

Optional Parameters:
rnamedest :

Universal Messaging Administration Guide 10.7 415

6 Command Line Administration Tools

URL of the realm from which the destination channel
will be retrieved (default is set to be -rname).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteQueue
Tool name:
DeleteQueue

Description:
Deletes a queue with the specified name on the specified realm.

Usage:
runUMTool DeleteQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:
DeleteQueue -rname=nsp://localhost:8080 -queuename=queue0

Required arguments:
rname :

URL of the realm to which the queue is connected.
queuename :

Name of the queue to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ExportProtobufDefinitions
Tool Name:
ExportProtobufDefinitions

Description:
Exports the protobuf definitions from a store with the specified name on the specified
server.
Usage:
runUMTool ExportProtobufDefinitions -rname=<rname> -storename=<storename>

-dirname=<dirname> [optional_args]
Examples:
ExportProtobufDefinitions -rname=nsp://localhost:9000 -storename=store0

-dirname=/../build/change-management/test/protobuf/
Required arguments:

rname :
URL of the session to which the store will be connected.

storename :
Name of the store from which to export the protobuf definitions.

dirname :
Directory in which to save the exported definition files.
If the directory that you entered does not exist, the tool creates the directory.

Optional Parameters:

416 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

GetChannelInfo
Tool name:
GetChannelInfo

Description:
Gets the attributes and storage properties of a specified channel
in a specified realm.

Usage:
runUMTool GetChannelInfo -rname=<rname> -cname=<cname> [optional_args]

Examples:
GetChannelInfo -rname=nsp://localhost:8080 -cname=channel0 -format=plaintext

Required arguments:
rname :

URL of the realm to which the channel will be connected.
cname :

Name of the channel to return info for.

Optional Parameters:
format :

Format to print output in (plaintext/xml/json).
username :

Your Universal Messaging server username.

password :
Your Universal Messaging server password.

GetDurableInfo
Tool name:
GetDurableInfo

Description:
Gets the attributes of a specific Durable in a specific channel.

Usage:
runUMTool GetDurableInfo -rname=<rname> -channelname=<channelname>

-durablename=<durablename> [optional_args]

Examples:
GetDurableInfo -rname=nsp://localhost:8080 -channelname=channel0

-durablename=durable0 -format=plaintext

Required arguments:
rname :

URL of the realm to list the details of all the channels within.
channelname :

Name of the channel from where to get the Durable.
durablename :

Name of the Durable to return info for.

Optional Parameters:

Universal Messaging Administration Guide 10.7 417

6 Command Line Administration Tools

format :
Format to print output in (plaintext/xml/json).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

GetDurablesInfo
Tool name:
GetDurablesInfo

Description:
Displays the durables details saved in a .nsb file.

Usage:
runUMTool GetDurablesInfo -nsbfileloc=<nsbfileloc> [optional_args]

Examples:
GetDurablesInfo -nsbfileloc=C:\filepath

Required arguments:
nsbfileloc :

Absolute path for the nsb files location. This can be a folder
which consists of multiple nsb files or a single nsb file.

Optional Parameters:
textfileexport :

Path to a text file in which the .nsb content will be saved.
Must be an absolute path to a text file or the name of a
text file which will be created in the working directory.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

GetDurableStatus
Tool name:
GetDurableStatus

Description:
Gets the current state of durables on a realm, sorted by a given field.

Usage:
runUMTool GetDurableStatus -rname=<rname> [optional_args]

Examples:
GetDurableStatus -rname=nsp://localhost:8080 -sort=storesize -v=true

Required arguments:

rname :
URL of the realm to find durables for.

Optional Parameters:
sort :

Field to sort objects by. May be depth, depthtx, storesize,
lasteid, lastread or lastwrite (default lastread).

v :

418 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Whether the final output includes all fields or only
the one specified. May be true or false (default false).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

GetEventsInfo

Note:
This tool has been deprecated in Universal Messaging v10.7 and will be removed from the
product in a future release. The functionality of GetEventsInfo is covered by the new command
line tool ExportEventsFromOfflineMemFile introduced in v10.7.

Tool name:
GetEventsInfo

Description:
Display the events details present in the memory file.

Usage:
runUMTool GetEventsInfo -memfileloc=<memfileloc> -storetype=<storetype>

[optional_args]

Examples:
GetEventsInfo -memfileloc=C:\filename -storetype=mixed

Required arguments:
memfileloc :

Absolute path for the memory files location. This can be a folder
which consists of multiple memory files or a single memory file.

storetype :
Store type of channel/queue. It will be either Mixed or Persistent.

Optional Parameters:
eventfactory :

Option to specify the type of the Event factory, by default
nServerEventFactory is used.

perfmaintenance :
Option to remove the free memory in the memory file (yes or no).
UM server must be down during maintenance.

additionalevtinfo :
Option to get the additional event details (yes or no).

exportfileformat :
Option to specify the file format to export the event data.
File formats supported are txt, xml.

exportfilepath :
Option to specify the absolute file path to export the event data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

IdentifyLargeDurableOutstandingEvents
Tool name:
IdentifyLargeDurableOutstandingEvents

Description:

Universal Messaging Administration Guide 10.7 419

6 Command Line Administration Tools

Identifies channels containing Durable with a large number
of outstanding events.

Usage:
runUMTool IdentifyLargeDurableOutstandingEvents -rname=<rname>

-threshold=<threshold> [optional_args]

Examples:
IdentifyLargeDurableOutstandingEvents -rname=nsp://localhost:8080

-threshold=100

Required arguments:
rname :

URL of the realm to list the details of all the channels within.

threshold :
Long value representing the tolerated number of outstanding events.

Optional Parameters:
username :

Your Universal Messaging server username.

password : Your Universal Messaging server password.

ListChannels
Tool name:
ListChannels

Description:
Lists details of the channels on the specified server.

Usage:
runUMTool ListChannels -rname=<rname> [optional_args]

Examples:
ListChannels -rname=nsp://localhost:8080

Required arguments:

rname :
URL of the realm to list the details of all the channels within.

Optional Parameters:

format :
Format to print output in (plaintext/xml/json).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ListJoins
Tool name:
ListJoins

Description:
Lists joins on a given realm.

420 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Usage:
runUMTool ListJoins -rname=<rname> [optional_args]

Examples:
ListJoins -rname=nsp://localhost:8080 -v=true

Required arguments:
rname :

URL of the realm to which we will connect.

Optional Parameters:
v :

Output additional information for each join.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

MonitorChannels
Tool name:
MonitorChannels

Description:
Monitors the channels and queues in a realm and prints totals.

Usage:
runUMTool MonitorChannels -rname=<rname> [optional_args]

Examples:
MonitorChannels -rname=nsp://localhost:8080 -channelname=channel0

-format=plaintext
MonitorChannels -rname=nsp://localhost:8080 -channelname=queue1

-format=plaintext

Required arguments:
rname :

URL of the realm to monitor channels and queues for.

Optional Parameters:
channelname :

Name of a specific channel or queue to monitor
format :

Format to print output in (plaintext/xml/json)
username :

Your Universal Messaging server username.
password : Your Universal Messaging server password.

PurgeEvents
Tool name:
PurgeEvents

Description:
Purges events from a channel with the specified name on the
specified realm.

Usage:
runUMTool PurgeEvents -rname=<rname> -channelname=<channelname>

[optional_args]

Universal Messaging Administration Guide 10.7 421

6 Command Line Administration Tools

Examples:
PurgeEvents -rname=nsp://localhost:8080 -channelname=channel0

Required arguments:
rname :

URL of the realm to which the channel will be connected.
channelname :

Name of the channel to be created.

Optional Parameters:
starteid :

Starting event ID of range to purge.
endeid :

Ending event ID of range to purge.
selector :

Selector query to filter which events to purge.
purgejoins :

Whether to purge events from joined channels.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: Cluster Tools

ClusterState
Tool name:
ClusterState

Description:
Checks the cluster state by a given RNAME, which is part of a cluster.

Usage:
runUMTool ClusterState -rname=<rname> [optional_args]

Examples:
ClusterState -rname=nsp://localhost:8080

Required arguments:
rname :

Name of a realm, which is part of a cluster.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

CreateCluster
Tool name:
CreateCluster

Description:
Creates a cluster with the specified name, consisting of the specified realms.

422 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Usage:
runUMTool CreateCluster -clustername=<clustername> -convertlocal=<convertlocal>

-rnames=<rnames> [optional_args]

Examples:
CreateCluster -clustername=cluster0 -convertlocal=true

-rnames=nsp://localhost:8080,nsp://localhost:9090

Required arguments:
clustername :

Name of the cluster to be created.
convertlocal :

Whether the local stores of the master should be converted
to cluster-wide stores.

rnames :
Server URLs to be included in the cluster. Can be more than one,
separated by a comma.
The proper format is [nsp/nhp/nsps/nhps]://[hostname]:[port] or
shm://[path/to/file].

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteCluster
Tool name:
DeleteCluster

Description:
Deletes the cluster with the specified name.
The RNAME of a server in the cluster must also be given.

Usage:
runUMTool DeleteCluster -clustername=<clustername>

-rname=<rname> -deletestores=<deletestores> [optional_args]

Examples:
DeleteCluster -clustername=cluster0 -rname=nsp://localhost:8080 -deletestores=true

Required arguments:
clustername :

Name of the cluster to be deleted.

rname :
The URL of a server which belongs to the cluster to be deleted.
The proper format is [nsp/nhp/nsps/nhps]://[hostname]:[port] or

shm://[path/to/file].

deletestores :
True/false flag indicating whether or not cluster-wide stores should be deleted
when the cluster is destroyed.

Optional Parameters:
username :

Your Universal Messaging server username.

password :

Universal Messaging Administration Guide 10.7 423

6 Command Line Administration Tools

Your Universal Messaging server password.

DumpClusterNamedObjectsState
Tool name:
DumpClusterNamedObjectsState

Description:
Dumps the state of named objects (also called durable subscriptions)
on channels present on the specified cluster servers.

Usage:
runUMTool DumpClusterNamedObjectsState -rnames=<rnames>

-verbosemode=<verbosemode> [optional_args]

Examples:
DumpClusterNamedObjectsState -rnames=nsp://localhost:8080,nsp://localhost:9090

-verbosemode=true

Required arguments:
rnames :

Comma-separated list of rNames of clustered nodes.
verbosemode :

Set true to see all node states; set false to see only those
with mismatched node states.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: Interface Tools

AddHTTPInterface
Tool name:
AddHTTPInterface

Description:
Adds a HTTP interface on the specified adapter and port,
on the specified realm.

Usage:
runUMTool AddHTTPInterface -rname=<rname> -adapter=<adapter> -port=<port>

[optional_args]

Examples:
AddHTTPInterface -rname=nsp://localhost:8080 -adapter=0.0.0.0 -port=9090

-usewebsockets=true

Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be created, is connected.

adapter :
Adapter (network card) to which interface will bind.

port : Port on which the interface will listen.

424 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Optional Parameters:
usehttp1.1 :

Whether to use HTTP1.1.
usewebsockets :

Whether WebSockets are used.
ajaxactivedelay :

Time to wait (for additional events) before delivering to
Long Poll style subscribers.

ajaxidledelay :
Time to wait before returning from a Long Poll call if no events
have been received.

isnativecomet :
Whether JavaScript is enabled on the interface.

allowedorigins :
Set the Allowed Origins for CORS as a comma-separated list of origins
(use '*' to allow all), e.g. origin1,origin2,origin3

crossorigincredentials :
Whether to allow credentials header to be sent with CORS requests.

enablegzip :
Whether or not GZIP compression is enabled for javascript Long Poll
connections.

minimumbytes :
Set the minimum number of bytes in a packet before GZIP
is enabled (default 1000).

autostart :
Whether this interface will automatically be started when
the realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections or not.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client
has to authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this
interface when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Universal Messaging Administration Guide 10.7 425

6 Command Line Administration Tools

AddHTTPSInterface
Tool name:
AddHTTPSInterface

Description:
Adds a HTTPS interface on the specified adapter and port,
on the specified server.

Usage:
runUMTool AddHTTPSInterface -rname=<rname> -adapter=<adapter> -port=<port>
[optional_args]

Examples:
AddHTTPSInterface -rname=nsp://localhost:8080 -adapter=0.0.0.0 -port=9090

-alias=myAlias

Required arguments:

rname :
URL of the realm to which the realm node, on which the interface
will be created, is connected.

adapter :
Adapter (network card) to which interface will bind.

port :
Port on which the interface will listen.

Optional Parameters:
alias :

Set the certificate name/alias that this interface will use to
select its certificate from a keystore with multiple entries.

keystore :
Set the keystore file that this interface uses to load the certificate.

kspassword :
Set the keystore password that this interface will use to
access the keystore file specified.

truststore :
Set the truststore file against which this interface will
validate the client certificate.

tspassword :
Sets the truststore password that the server uses to access the
trust store.

privatepassword :
Private key password; used so that the key can be loaded
from the key store.

ciphers :
Names of the ciphers enabled for use by this interface, as a
comma-separated list of ciphers, e.g. cipher1,cipher2,cipher3.

rndalg :
Set the SecureRandom algorithm to use for this interface.

rndprov :
Set the SecureRandom provider to use for this interface.

clientcertrequired :
Whether this interface requires SSL client authentication.

crl :
Set the certificate revocation list file name that the interface
should use to check incoming SSL connections.

crlclassname :
Name of the class used to validate a client connection.

426 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

provider :
Name of the JSSE provider to use for the interface.

usehttp1.1 :
Whether to use HTTP1.1.

usewebsockets :
Whether WebSockets are used.

ajaxactivedelay :
Time to wait (for additional events) before delivering
to Long Poll style subscribers.

ajaxidledelay :
Time to wait before returning from a Long Poll call if
no events have been received.

isnativecomet :
Whether JavaScript is enabled on the interface.

allowedorigins :
Set the Allowed Origins for CORS as a comma-separated list of origins
(use '*' to allow all), e.g. origin1,origin2,origin3.

crossorigincredentials :
Whether to allow credentials header to be sent with CORS requests.

enablegzip :
Whether or not GZIP compression is enabled for javascript
Long Poll connections.

minimumbytes :
Set the minimum number of bytes in a packet before GZIP
is enabled (default 1000).

autostart :
Whether this interface will automatically be started when
the realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client
has to authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this interface
when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Universal Messaging Administration Guide 10.7 427

6 Command Line Administration Tools

AddSHMInterface
Tool name:
AddSHMInterface

Description:
Adds a shared memory interface with the specified path, buffer size and
timeout, on the specified server.

Usage:
runUMTool AddSHMInterface -rname=<rname> -path=<path> [optional_args]

Examples:
AddSHMInterface -rname=nsp://localhost:11000 -path=/dev/shm -buffer=1024

-timeout=2000 -autostart=true

Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be created, is connected.

path :
The path where the shared memory files will be stored.

Optional Parameters:
buffer :

The size of the shared memory buffer which will be used. If not
provided a default value of 1024000 will be used.

timeout :
The timeout value that will be used for read / write. If not
provided a default value of 20000 will be used.

autostart :
Whether this interface will be automatically started when
the Realm Server starts. Default is set to true.

interrealmallow :
Sets whether this interface is allowed to be used
in inter realm / cluster communication. Default is set to false.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddSSLInterface
Tool name:
AddSSLInterface

Description:
Adds a SSL interface on the specified adapter and port,
on the specified server.

Usage:
runUMTool AddSSLInterface -rname=<rname> -adapter=<adapter> -port=<port>

[optional_args]

Examples:
AddSSLInterface -rname=nsp://localhost:8080 -adapter=0.0.0.0 -port=9090

-alias=myAlias

Required arguments:
rname :

428 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

URL of the realm to which the realm node, on which the interface
will be created, is connected.

adapter :
Adapter (network card) to which interface will bind.

port :
Port on which the interface will listen.

Optional Parameters:
alias :

Set the certificate name/alias that this interface will use to
select its certificate from a keystore with multiple entries.

keystore :
Set the keystore file that this interface uses to load the
certificate.

kspassword :
Set the keystore password that this interface will use to
access the keystore file specified.

truststore :
Set the truststore file against which this interface will
validate the client certificate.

tspassword :
Sets the truststore password that the server uses to access
the trust store.

privatepassword :
Private key password; used so that the key can be loaded
from the key store.

ciphers :
Names of the ciphers enabled for use by this interface,
as a comma-separated list of ciphers, e.g. cipher1,cipher2,cipher3.

rndalg :
Set the SecureRandom algorithm to use for this interface.

rndprov :
Set the SecureRandom provider to use for this interface.

clientcertrequired :
Whether this interface requires SSL client authentication.

crl :
Set the certificate revocation list file name that the interface
should use to check incoming SSL connections.

crlclassname :
Name of the class used to validate a client connection.

provider :
Name of the JSSE provider to use for the interface.

autostart :
Whether this interface will automatically be started when the
realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client has to
authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

Universal Messaging Administration Guide 10.7 429

6 Command Line Administration Tools

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this interface
when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddSocketInterface
Tool name:
AddSocketInterface

Description:
Adds a socket interface on the specified adapter and port,
on the specified server.

Usage:
runUMTool AddSocketInterface -rname=<rname> -adapter=<adapter> -port=<port>

[optional_args]

Examples:
AddSocketInterface -rname=nsp://localhost:8080 -adapter=0.0.0.0 -port=9090

-autostart=true

Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be created, is connected.

adapter :
Adapter (network card) to which interface will bind.

port :
Port on which the interface will listen.

Optional Parameters:
autostart :

Whether this interface will automatically be started when the
realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client has
to authenticate with the server.

backlog :

430 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this interface
when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteInterface
Tool name:
DeleteInterface

Description:
Deletes the specified interface from the specified server.

Usage:
runUMTool DeleteInterface -rname=<rname> -interface=<interface>

[optional_args]

Examples:
DeleteInterface -rname=nsp://localhost:8080 -interface=interface0

Required arguments:
rname :

URL of the realm to which the realm node, from which the interface
will be deleted, is connected.

interface :
Name of the interface to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ListInterfaces
Tool name:
ListInterfaces

Description:
Lists details of the interfaces on the specified server.

Usage:
runUMTool ListInterfaces -rname=<rname> [optional_args]

Examples:
ListInterfaces -rname=nsp://localhost:9000

Universal Messaging Administration Guide 10.7 431

6 Command Line Administration Tools

Required arguments:
rname:

URL of the realm for which the details of all the interfaces will be listed.

Optional Parameters:
format:

Format to print output in (plaintext/xml/json).

ModifyInterface
Tool name:
ModifyInterface

Description:
Modifies the specified interface on the specified server .

Usage:
runUMTool ModifyInterface -rname=<rname> -interface=<interface>

-command=<command> [optional_args]

Examples:
ModifyInterface -rname=nsp://localhost:9000 -interface=interface0

-command=modify -usewebsockets=true

Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be modified, is connected.

interface :
Name of the interface to be modified.

command :
Whether the interface is to be stopped (STOP), started (START),
or have its fields modified (MODIFY).

Optional Parameters:
usehttp1.1 :

Whether to use HTTP1.1.
usewebsockets :

Whether WebSockets are used.
ajaxactivedelay :

Time to wait (for additional events) before delivering
to Long Poll style subscribers.

ajaxidledelay :
Time to wait before returning from a Long Poll call if no
events have been received.

isnativecomet :
Whether JavaScript is enabled on the interface.

allowedorigins :
Set the Allowed Origins for CORS as a comma-separated list of origins
(use '*' to allow all), e.g. origin1,origin2,origin3.

crossorigincredentials :
Whether to allow credentials header to be sent with CORS requests.

enablegzip :
Whether or not GZIP compression is enabled for javascript
Long Poll connections.

minimumbytes :
Set the minimum number of bytes in a packet before GZIP is
enabled (default 1000).

alias :

432 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Set the certificate name/alias that this interface will use to
select its certificate from a keystore with multiple entries.

keystore :
Set the keystore file that this interface uses to load the certificate.

kspassword :
Set the keystore password that this interface will use to
access the keystore file specified.

truststore :
Set the truststore file against which this interface will
validate the client certificate.

tspassword :
Sets the truststore password that the server uses to access
the trust store.

privatepassword :
Private key password; used so that the key can be loaded
from the key store.

ciphers :
Names of the ciphers enabled for use by this interface,
as a comma-separated list of ciphers, e.g. cipher1,cipher2,cipher3.

rndalg :
Set the SecureRandom algorithm to use for this interface.

rndprov :
Set the SecureRandom provider to use for this interface.

clientcertrequired :
Whether this interface requires SSL client authentication.

crl :
Set the certificate revocation list file name that the interface
should use to check incoming SSL connections.

crlclassname :
Name of the class used to validate a client connection.

provider :
Name of the JSSE provider to use for the interface.

autostart :
Whether this interface will automatically be started when the
realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client has
to authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :

Universal Messaging Administration Guide 10.7 433

6 Command Line Administration Tools

Set the socket buffer size in bytes used by this interface
when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Data Group Tools

AddDataGroup
Tool name:
AddDataGroup

Description:
Adds a child data group to a parent data group.
Both of these data groups must exist.

Usage:
runUMTool AddDataGroup -rname=<rname> -datagroupname=<datagroupname>

-parentname=<parentname> [optional_args]

Examples:
AddDataGroup -rname=nsp://localhost:9000 -datagroupname=mydatagroup01

-parentname=mydatagroup02

Required arguments:
rname :

Connection URL to the realm where the data groups exist.
datagroupname :

Name of the child data group.
parentname :

Name of the parent data group.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

CreateDataGroup
Tool name:
CreateDataGroup

Description:
Creates a data group with the specified name on the specified server.
Additionally, conflation attributes and other options of the data group
can be set.

Usage:
runUMTool CreateDataGroup -rname=<rname> -datagroupname=<datagroupname>

[optional_args]

Examples:
CreateDataGroup -rname=nsp://localhost:9000 -datagroupname=mydatagroup01

-confinterval=2000 -enablemulticast=true

434 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Required arguments:
rname :

Connection URL to the realm where the data group will be created.
datagroupname :

Name of the data group to be created.

Optional Parameters:
enablemulticast :

Whether multicast is supported on the new data group.
priority :

The default message priority for events on the new data group.
dropexpired :

Don't send events that are made obsolete by newer ones.
confinterval :

Interval at which all the events are sent.
confaction :

Action to take when multiple events arrive for this data group.
0 = drop old events
1 = merge events

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteDataGroup
Tool name:
DeleteDataGroup

Description:
Removes the data group with the specified name from the server.

Usage:
runUMTool DeleteDataGroup -rname=<rname> -datagroupname=<datagroupname>

[optional_args]

Examples:
DeleteDataGroup -rname=nsp://localhost:9000 -datagroupname=mydatagroup01

Required arguments:
rname :

Connection URL to the realm from which the data group will be deleted.
datagroupname :

Name of the data group to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ListenDataGroup
Tool name:
ListenDataGroup

Description:
Listens for data group events on a Universal Messaging realm.

Usage:

Universal Messaging Administration Guide 10.7 435

6 Command Line Administration Tools

runUMTool ListenDataGroup -rname=<rname> [optional_args]

Examples:
ListenDataGroup -rname=nsp://localhost:9000

Required arguments:
rname :

Connection URL to the realm from which messages will be received.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

PublishDataGroup
Tool name:
PublishDataGroup

Description:
Publishes messages to a data group.

Usage:
runUMTool PublishDataGroup -rname=<rname> -datagroupname=<datagroupname>

[optional_args]

Examples:
PublishDataGroup -rname=nsp://localhost:9000 -datagroupname=mydatagroup01

-size=20

Required arguments:
rname :

Connection URL to the realm to which the messages will be published.
datagroupname :

Name of the data group to publish to.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

size :
Size of the message to send. Message will be generated.
You can't use -message along with -size.

count :
How many times to send the event. Default 1.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Publish Tools

PublishChannel
Tool name:
PublishChannel

436 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Description:
Publishes events to a Universal Messaging channel.

Usage:
runUMTool PublishChannel -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
PublishChannel -rname=nsp://localhost:9000 -channelname=mychannel

-message="hello world"

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of the channel on the Universal Messaging Realm.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the event. Default 1.

size :
Size in bytes of the message to send. Message will be generated.
You can't use -message along with -size.

properties :
Properties, if any, of the event. Expected syntax is
"propertyName1:value1;propertyName2:value2",
e.g. "shirt:green;price:80;sleeve:long".

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

PublishChannelXML
Tool name:
PublishChannelXML

Description:
Publishes an XML document to a Universal Messaging channel.

Usage:
runUMTool PublishChannelXML -rname=<rname> -channelname=<channelname>

-file=<file> [optional_args]

Examples:
PublishChannelXML -rname=nsp://localhost:9000 -channelname=mychannel

-file=C:\myDoc.xml

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of the channel on the Universal Messaging Realm.
file :

File path of the XML document to send.

Universal Messaging Administration Guide 10.7 437

6 Command Line Administration Tools

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

PublishCompressed
Tool name:
PublishCompressed

Description:
Publishes events to a store, using compression.

Usage:
runUMTool PublishCompressed -rname=<rname> -storename=<storename>

[optional_args]

Examples:
PublishCompressed -rname=nsp://localhost:9000 -storename=mychannel

-message="hello world"

Required arguments:
rname :

Connection URL to the realm where the store exists.
storename :

Name of the store or queue on the Universal Messaging Realm.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the event. Default 1.

size :
Size in bytes of the message to send. Message will be generated.
You can't use -message along with -size.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

PublishQueue
Tool name:
PublishQueue

Description:
Publishes events to a queue.

Usage:
runUMTool PublishQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:
PublishQueue -rname=nsp://localhost:9000 -queuename=myqueue

-message="hello world"

Required arguments:
rname :

Connection URL to the realm where the channel exists.

438 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

queuename :
Name of the queue on the Universal Messaging Realm.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the event. Default 1.

size :
Size in bytes of the message to send. Message will be generated.
You can't use -message along with -size.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

PublishTX
Tool name:
PublishTX

Description:
Publishes events, as a part of a transaction, to a Universal Messaging
channel or queue.

Usage:
runUMTool PublishTX -rname=<rname> -storename=<storename> [optional_args]

Examples:
PublishTX -rname=nsp://localhost:9000 -storename=myStore

-message="hello world" -count=20 -txsize=5
PublishTX -rname=nsp://localhost:9000 -storename=myStore -size=2048

Required arguments:
rname :

Connection URL to the realm where the channel exists.
storename :

Name of the channel or queue on the Universal Messaging Realm.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the event. Default 1.

size :
Size in bytes of the message to send. Message will be generated.
You can't use -message along with -size.

txsize :
How many events to batch in a single transaction. Default 1.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Universal Messaging Administration Guide 10.7 439

6 Command Line Administration Tools

Syntax: Subscribe Tools

PeekQueue
Tool name:
PeekQueue

Description:
Peeks all events on a Universal Messaging queue and prints statistics for
the bandwidth rates.

Usage:
runUMTool PeekQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:

PeekQueue -rname=nsp://localhost:9000 -queuename=myqueue

Required arguments:
rname :

Connection URL to the realm where the channel exists.
queuename :

Name of a queue on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
statevents :

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeChannel
Tool name:
SubscribeChannel

Description:
Reads all the messages from a Universal Messaging channel.

Usage:
runUMTool SubscribeChannel -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
SubscribeChannel -rname=nsp://localhost:9000 -channelname=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of a channel on the Universal Messaging Realm.

Optional Parameters:
selector :

440 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Optional filter for the messages.
starteid :

Starting EID of the messages to consume.
statevents :

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeChannelAsync
Tool name:
SubscribeChannelAsync

Description:
Listens for messages on a Universal Messaging channel.

Usage:
runUMTool SubscribeChannelAsync -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
SubscribeChannelAsync -rname=nsp://localhost:9000 -channelname=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of a channel on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
starteid :

Start event ID of the messages to consume.
statevents :

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeChannelAsyncDurable
Tool name:
SubscribeChannelAsyncDurable

Description:
Listens for messages on a Universal Messaging channel.
Running the tool with the same "-name" argument will continue reading
from the last unconsumed event.

Usage:
runUMTool SubscribeChannelAsyncDurable -rname=<rname>

-channelname=<channelname> [optional_args]

Examples:

Universal Messaging Administration Guide 10.7 441

6 Command Line Administration Tools

SubscribeChannelAsyncDurable -rname=nsp://localhost:9000 -channelname=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of a channel on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
name :

Unique name of the durable subscriber. The name will be created
if it doesn't exist. Default is "STGE".

starteid :
Start EID of the messages to consume.

persistent :
Whether the durable name will exist after Universal Messaging
server reset. Default is false.

clusterwide :
Whether the durable name should be registered in the entire
cluster. Default is false.

autoack :
Whether each event will be automatically acknowledged by the API.
Default is true.

statevents :
How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeChannelDurable
Tool name:
SubscribeChannelDurable

Description:
Listens for messages on a Universal Messaging channel.
Running the tool with the same "-name" argument will continue reading
from the last unconsumed event.

Usage:
runUMTool SubscribeChannelDurable -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
SubscribeChannelDurable -rname=nsp://localhost:9000 -channelname=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of a channel on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
name :

442 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Unique name of the durable subscriber. The name will be created if
it doesn't exist. Default is "STGE".

starteid :
Start event ID of the messages to consume.

persistent :
Whether the durable name will exist after Universal Messaging
server reset. Default is false.

clusterwide :
Whether the durable name should be registered in the entire
cluster. Default is false.

autoack :
Whether each event will be automatically acknowledged by the API.
Default is true.

statevents :
How many events to peek before printing event statistics.
Default 1000.

timeout :
Maximum wait time (milliseconds) when attempting to synchronously
retrieve message from the server. Default is 1000ms.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeCompressed
Tool name:
SubscribeCompressed

Description:
Listens for compressed messages on a Universal Messaging channel.

Usage:
runUMTool SubscribeCompressed -rname=<rname> -storename=<storename>

[optional_args]

Examples:
SubscribeCompressed -rname=nsp://localhost:9000 -storename=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
storename :

Name of a channel or queue on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
starteid :

If the chosen store is a channel, only messages with ID greater
than this will be consumed.

statevents :
How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Universal Messaging Administration Guide 10.7 443

6 Command Line Administration Tools

SubscribeQueue
Tool name:
SubscribeQueue

Description:
Reads all the messages from a Universal Messaging queue.

Usage:
runUMTool SubscribeQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:
SubscribeQueue -rname=nsp://localhost:9000 -queuename=myqueue

Required arguments:
rname :

Connection URL to the realm where the channel exists.
queuename :

Name of a queue on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
transacted :

Set to true to use transacted subscriber. Default is false.
statevents :

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeQueueAsync
Tool name:
SubscribeQueueAsync

Description:
Listens for messages on a Universal Messaging queue.

Usage:
runUMTool SubscribeQueueAsync -rname=<rname> -queuename=<queuename>
[optional_args]

Examples:
SubscribeQueueAsync -rname=nsp://localhost:9000 -queuename=myqueue

Required arguments:
rname :

Connection URL to the realm where the channel exists.
queuename :

Name of a queue on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
transacted :

Set to true to use transacted subscriber. Default is false.
statevents :

444 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Security Tools

AddChannelACLEntry
Tool name:
AddChannelACLEntry

Description:
Adds an ACL entry on the specified channel for the specified user and host,
on the specified realm.

Usage:
runUMTool AddChannelACLEntry -channelname=<channelname> -rname=<rname>

-type=<type> [optional_args]

Examples:
AddChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=group -groupname=security_group0 -fullprivileges=true
AddChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=subject -user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
channelname :

Name of the channel to which the ACL entry is being applied.
rname :

URL of the server on which the channel exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
cangetlasteid :

Specify that the 'get last EID' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.

Universal Messaging Administration Guide 10.7 445

6 Command Line Administration Tools

cannamed :
Specify that the 'named' ACL permission should be added.

canpop :
Specify that the 'pop' ACL permission should be added.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddContainerACLEntry
Tool name:
AddContainerACLEntry

Description:
Adds an ACL entry on the specified container for the specified user and host.

Usage:
runUMTool AddContainerACLEntry -containername=<containername> -rname=<rname>

-type=<type> [optional_args]

Examples:
AddContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=group -groupname=security_group0 -fullprivileges=true

AddContainerACLEntry -rname=nsp://localhost:8080 -containername=container0
-type=subject -user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
containername :

Name of the container to which the ACL entry is being applied.
rname :

URL of the server from which to start searching for the container.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
cangetlasteid :

Specify that the 'get last EID' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.
cannamed :

Specify that the 'named' ACL permission should be added.

446 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

canpop :
Specify that the 'pop' ACL permission should be added.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddQueueACLEntry
Tool name:
AddQueueACLEntry

Description:
Adds an ACL entry on the specified queue for the specified user and host,
on the specified realm.

Usage:
runUMTool AddQueueACLEntry -queuename=<queuename> -rname=<rname> -type=<type>

[optional_args]

Examples:
AddQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0 -type=group

-groupname=security_group0 -fullprivileges=true
AddQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0 -type=subject

-user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
queuename :

Name of the queue to which the ACL entry is being applied.
rname :

URL of the server on which the queue exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should
be added.

canread :
Specify that the 'read' ACL permission should be added.

canwrite :
Specify that the 'write' ACL permission should be added.

canpurge :
Specify that the 'purge' ACL permission should be added.

canpop :
Specify that the 'pop' ACL permission should be added.

username :
Your Universal Messaging server username.

password :

Universal Messaging Administration Guide 10.7 447

6 Command Line Administration Tools

Your Universal Messaging server password.

AddRealmACLEntry
Tool name:
AddRealmACLEntry

Description:
Adds an ACL entry on the specified realm for the specified user and host.

Usage:
runUMTool AddRealmACLEntry -rname=<rname> -type=<type> [optional_args]

Examples:
AddRealmACLEntry -rname=nsp://localhost:8080 -type=group

-groupname=security_group0 -fullprivileges=true
AddRealmACLEntry -rname=nsp://localhost:8080 -type=subject -user=username

-host=127.0.0.1 -fullprivileges=true

Required arguments:

rname :
URL of the realm to which the ACL entry is being applied.

type :
Type of ACL entry, either 'group' or 'subject'. If group is chosen,

'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
canuseadminapi :

Specify that the 'use admin api' ACL permission should be added.
canmanagerealms :

Specify that the 'manage realms' ACL permission should be added.
canmanagejoins :

Specify that the 'manage joins' ACL permission should be added.
canmanagechannels :

Specify that the 'manage channels' ACL permission should be added.
canaccess :

Specify that the 'access' ACL permission should be added.
canoverrideconnectioncount :

Specify that the 'override connection count' ACL permission should be added.
canconfigure :

Specify that the 'configuration' ACL permission should be added.
canmanagedatagroups :

Specify that the 'manage data groups' ACL permission should be added.
canpublishglobaldatagroups :

Specify that the 'publish global data groups' ACL permission should
be added.

cantakeownershipdatagroups :

448 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Specify that the 'take ownership of data groups' ACL permission should
be added.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddSecurityGroup
Tool name:
AddSecurityGroup

Description:
Adds a security group to the specified realm with the specified name.

Usage:
runUMTool AddSecurityGroup -rname=<rname> -groupname=<groupname> [optional_args]

Examples:

AddSecurityGroup -rname=nsp://localhost:8080 -groupname=security_group0

Required arguments:
rname :

URL of the realm to which the security group is being added.
groupname :

Name of the security group to be added.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

AddUserToSecurityGroup
Tool name:
AddUserToSecurityGroup

Description:
Adds a specified user and host subject to a given security group on a
specified realm.

Usage:
runUMTool AddUserToSecurityGroup -rname=<rname> -groupname=<groupname>

-user=<user> -host=<host> [optional_args]

Examples:

AddUserToSecurityGroup -rname=nsp://localhost:8080 -groupname=security_group0
-user=username -host=127.0.0.1

Required arguments:
rname :

URL of the realm on which is the security group.
groupname :

Name of the security group to which the user is being added.
user :

User of the subject being added to security group.
host :

Universal Messaging Administration Guide 10.7 449

6 Command Line Administration Tools

Host of the subject being added to security group.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteChannelACLEntry
Tool name:
DeleteChannelACLEntry

Description:
Deletes the ACL entry from the specified channel with the specified user
and host.

Usage:
runUMTool DeleteChannelACLEntry -channelname=<channelname> -rname=<rname>

-type=<type> [optional_args]

Examples:
DeleteChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=group -groupname=security_group0
DeleteChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=subject -user=username -host=127.0.0.1

Required arguments:

channelname :
Name of the channel from which the ACL entry is being removed.

rname :
URL of the server on which the channel exists.

type :
Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:

groupname :
Name of the group for which the ACL entry is being removed.

user :
User for which the ACL entry is being removed.

host :
Host for which the ACL entry is being removed.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteContainerACLEntry
Tool name:
DeleteContainerACLEntry

Description:
Removes an ACL entry from the specified container with the specified user
and host.

Usage:

450 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

runUMTool DeleteContainerACLEntry -containername=<containername> -rname=<rname>
-type=<type> [optional_args]

Examples:
DeleteContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=group -groupname=security_group0
DeleteContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=subject -user=username -host=127.0.0.1

Required arguments:
containername :

Name of the container from which the ACL entry is being removed.
rname :

URL of the server from which to start searching for the container.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which the ACL entry is being removed.
user :

User for which the ACL entry is being removed.
host :

Host for which the ACL entry is being removed.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteQueueACLEntry
Tool name:
DeleteQueueACLEntry

Description:
Deletes the ACL entry from the specified queue with the specified user and host.

Usage:
runUMTool DeleteQueueACLEntry -queuename=<queuename> -rname=<rname>
-type=<type> [optional_args]

Examples:
DeleteQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0

-type=group -groupname=security_group0
DeleteQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0

-type=subject -user=username -host=127.0.0.1

Required arguments:
queuename :

Name of the queue from which the ACL entry is being removed.
rname :

URL of the server on which the queue exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which the ACL entry is being removed.

Universal Messaging Administration Guide 10.7 451

6 Command Line Administration Tools

user :
User for which the ACL entry is being removed.

host :
Host for which the ACL entry is being removed.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteRealmACLEntry
Tool name:
DeleteRealmACLEntry

Description:
Removes an ACL entry from the specified realm with the specified user and host.

Usage:
runUMTool DeleteRealmACLEntry -rname=<rname> -type=<type> [optional_args]

Examples:
DeleteRealmACLEntry -rname=nsp://localhost:8080 -type=group

-groupname=security_group0
DeleteRealmACLEntry -rname=nsp://localhost:8080 -type=subject -user=username

-host=127.0.0.1

Required arguments:
rname :

URL of the realm from which the ACL entry is being removed.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which the ACL entry is being removed.
user :

User for which the ACL entry is being removed.
host :

Host for which the ACL entry is being removed.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteSecurityGroup
Tool name:
DeleteSecurityGroup

Description:
Removes a security group from the specified realm with the specified name.

Usage:
runUMTool DeleteSecurityGroup -rname=<rname> -groupname=<groupname>

[optional_args]

Examples:
DeleteSecurityGroup -rname=nsp://localhost:8080 -groupname=security_groupp

452 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Required arguments:
rname :

URL of the realm from which the security group is being removed.
groupname :

Name of the security group to be removed.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DumpACL
Tool name:
DumpACL

Description:
Dumps all the ACL data for a realm.

Usage:
runUMTool DumpACL -rname=<rname> [optional_args]

Examples:
DumpACL -rname=nsp://localhost:8080
DumpACL -rname=nsp://localhost:8080 -format=XML
DumpACL -rname=nsp://localhost:8080 -format=JSON

Required arguments:
rname :

URL of the realm for which to dump the ACL data.

Optional Parameters:
format :

Which format to output ACL data. Defaults to plaintext, other
options are: plaintext, xml, json.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ModifyChannelACLEntry
Tool name:
ModifyChannelACLEntry

Description:
Updates an ACL entry on the specified channel for the specified user and
host, on the specified realm.

Usage:
runUMTool ModifyChannelACLEntry -channelname=<channelname> -rname=<rname>

-type=<type> [optional_args]

Examples:
ModifyChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=group -groupname=security_group0 -fullprivileges=true
ModifyChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=subject -user=username -host=127.0.0.1 -fullprivileges=true

Universal Messaging Administration Guide 10.7 453

6 Command Line Administration Tools

Required arguments:
channelname :

Name of the channel on which the ACL entry is being updated.
rname :

URL of the server on which the channel exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
cangetlasteid :

Specify that the 'get last EID' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.
cannamed :

Specify that the 'named' ACL permission should be added.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ModifyContainerACLEntry
Tool name:
ModifyContainerACLEntry

Description:
AddContainerACLEntry adds an ACL entry on the specified container for the
specified user and host.

Usage:
runUMTool ModifyContainerACLEntry -containername=<containername> -rname=<rname>

-type=<type> [optional_args]

Examples:
ModifyContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=group -groupname=security_group0 -fullprivileges=true
ModifyContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=subject -user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
containername :

Name of the container to which the ACL entry is being applied.
rname :

454 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

URL of the server from which to start searching for the container.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
cangetlasteid :

Specify that the 'get last EID' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.
cannamed :

Specify that the 'named' ACL permission should be added.
canpop :

Specify that the 'pop' ACL permission should be added.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ModifyQueueACLEntry
Tool name:
ModifyQueueACLEntry

Description:
Updates an ACL entry on the specified queue for the specified user and host,
on the specified realm.

Usage:
runUMTool ModifyQueueACLEntry -queuename=<queuename> -rname=<rname> -type=<type>

[optional_args]

Examples:
ModifyQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0 -type=group

-groupname=security_group0 -fullprivileges=true
ModifyQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0 -type=subject

-user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
queuename :

Name of the queue on which the ACL entry is being updated.
rname :

URL of the server on which the queue exists.
type :

Universal Messaging Administration Guide 10.7 455

6 Command Line Administration Tools

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.
canpop :

Specify that the 'pop' ACL permission should be added.
username :

Your Universal Messaging server username.
password : Your Universal Messaging server password.

ModifyRealmACLEntry
Tool name:
ModifyRealmACLEntry

Description:
Modifies an ACL entry on the specified realm for the specified user and host.

Usage:
runUMTool ModifyRealmACLEntry -rname=<rname> -type=<type> [optional_args]

Examples:
ModifyRealmACLEntry -rname=nsp://localhost:8080 -type=group

-groupname=security_group0 -fullprivileges=true
ModifyRealmACLEntry -rname=nsp://localhost:8080 -type=subject -user=username

-host=127.0.0.1 -fullprivileges=true

Required arguments:
rname :

URL of the realm on which ACL is being updated.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

456 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.

fullprivileges :
Specify that the 'full permissions' ACL permission should be added.

canuseadminapi :
Specify that the 'use admin api' ACL permission should be added.

canmanagerealms :
Specify that the 'manage realms' ACL permission should be added.

canmanagejoins :
Specify that the 'manage joins' ACL permission should be added.

canmanagechannels :
Specify that the 'manage channels' ACL permission should be added.

canaccess :
Specify that the 'access' ACL permission should be added.

canoverrideconnectioncount :
Specify that the 'override connection count' ACL permission should be added.

canconfigure :
Specify that the 'configuration' ACL permission should be added.

canmanagedatagroups :
Specify that the 'manage data groups' ACL permission should be added.

canpublishglobaldatagroups :
Specify that the 'publish global data groups' ACL permission should be added.

cantakeownershipdatagroups :
Specify that the 'take ownership of data groups' ACL permission should be added.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

RemoveUserFromSecurityGroup
Tool name:
RemoveUserFromSecurityGroup

Description:
Removes a specified user from a given security group on the specified realm.

Usage:
runUMTool RemoveUserFromSecurityGroup -rname=<rname> -groupname=<groupname>

-user=<user> -host=<host> [optional_args]

Examples:
RemoveUserFromSecurityGroup -rname=nsp://localhost:8080

-groupname=security_group0 -user=username -host=127.0.0.1

Required arguments:
rname :

URL of the realm on which the security group resides.
groupname :

Name of the security group user is being removed from.
user :

User being removed from security group.
host :

Host of subject being removed from security group.

Optional Parameters:
username :

Universal Messaging Administration Guide 10.7 457

6 Command Line Administration Tools

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: Zone Tools

AddMemberToZone
Tool name:
AddMemberToZone

Description:
Adds a realm to a specified realm's zone.

Usage:
runUMTool AddMemberToZone -rname=<rname> -zonememberrname=<zonememberrname>

[optional_args]

Examples:
AddMemberToZone -rname=nsp://localhost:8080 -zonememberrname=nsp://localhost:9090

Required arguments:
rname :

URL of the realm you want to add to the zone.
zonememberrname :

URL of a realm in the zone you want to expand.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

CreateZone
Tool name:
CreateZone

Description:
Creates a zone with the specified name containing the specified realms.

Usage:
runUMTool CreateZone -rnames=<rnames> -zonename=<zonename> [optional_args]

Examples:
CreateZone -rnames=nsp://localhost:8080,nsp://localhost:9090 -zonename=zone0

Required arguments:
rnames :

Comma separated list of URLs of the realms which the zone will contain.
zonename :

Name of the zone to be created.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

458 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

DeleteZone
Tool name:
DeleteZone

Description:
Deletes a zone with the specified name on the specified realm.

Usage:
runUMTool DeleteZone -rname=<rname> [optional_args]

Examples:
DeleteZone -rname=nsp://localhost:8080
DeleteZone -rname=nsp://localhost:8080 -removejoins=true

Required arguments:
rname :

URL of a realm which belongs to the zone to be deleted.

Optional Parameters:
removejoins :

Whether to remove intra-zone connections when the zone
is deleted. Defaults to false.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

RemoveMemberFromZone
Tool name:
RemoveMemberFromZone

Description:
Removes a realm from its current zone.

Usage:
runUMTool RemoveMemberFromZone -rname=<rname> [optional_args]

Examples:
RemoveMemberFromZone -rname=nsp://localhost:8080
RemoveMemberFromZone -rname=nsp://localhost:8080 -removejoins=true

Required arguments:
rname :

URL of the realm you want to remove from the zone.

Optional Parameters:
removejoins :

Whether or not to remove realm links with the former zone member.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: JMS Tools

Note:

Universal Messaging Administration Guide 10.7 459

6 Command Line Administration Tools

The JMS Client for Universal Messaging supports JMS 1.1. The client does not support JMS 2.0.

CreateConnectionFactory
Tool name:
CreateConnectionFactory

Description:
Creates a JMS connection factory with the specified server.

Usage:
runUMTool CreateConnectionFactory -rname=<rname>

-factoryname=<factoryname> [optional_args]

Examples:
CreateConnectionFactory -rname=nsp://localhost:9000 -factoryname=factory0
Connects to a Universal Messaging server at nsp://localhost:9000 and creates
a connection factory named 'factory0' that uses the nsp://localhost:9000 connection
URL.
CreateConnectionFactory -rname=nsp://localhost:9000 -connectionurl=nsp://SomeFQDN:9000
-factoryname=factory0
Connects to a Universal Messaging server at nsp://localhost:9000 and creates a

connection
factory named 'factory0' that uses the nsp://SomeFQDN:9000 connection URL.

Required arguments:
rname :
The URL of the Universal Messaging server on which to create the connection factory.
The -rname is used as a connection factory URL unless the -connectionurl parameter

is specified.
factoryname :

Name of the connection factory to create.

Optional parameters:

connectionurl :
The URL that the connection factory uses to connect to the JMS provider.
If -connectionurl is not specified, the connection factory uses the URL specified
in the -rname argument.

factorytype :
Connection factory type to be created. The default is ConnectionFactory,
if no parameter is passed.
Values are:

-factorytype=default (Creates a ConnectionFactory)
-factorytype=queue (Creates a QueueConnectionFactory)
-factorytype=topic (Creates a TopicConnectionFactory)
-factorytype=xa (Creates an XAConnectionFactory)

contextfactory :
The name of the ContextFactory class to use.
Default: com.pcbsys.nirvana.nSpace.NirvanaContextFactory

autocreateresource :
Creates resources on the server when performing a lookup
on a queue or channel.

synctopicacks :
Specifies for a specific connection whether the topic acknowledgements
are sent synchronously.

syncqueueacks :

460 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Specifies for a specific connection whether the queue acknowledgements
are sent synchronously.

writehandler :
Specifies for a specific connection the write handler type to use.
Ignored unless between 1-4.

adapterbuffer :
Specifies for a specific connection the adapter send / receive buffer size.
If the value is 0 or less it is ignored .

syncnamedtopicacks :
Specifies for a specific connection whether the durable topic
acknowledgements will be sent synchronously.

permittedkeepalivesmissed :
Set the number of keep server keep alives the client is allowed to miss
before detecting a network issue and terminating the connection.

connectiontimeout :
Set the timeout used for connection / reconnection to realms.
If the connection fails to establish within this time-frame it will fail.

disconnectafterclusterfailure :
If connected to a cluster of realms, and cluster quorum is lost,
this flag determines whether the client will be disconnected.

usejmsengine :
JMS engine ensures no events are available for topic replay
unless durable subscriptions are being used. Non JMS engine fanout enables
events to be stored even after events are delivered. Default is true.

reconnectinterval :
If a client is disconnected, and Immediate Reconnect is set to true,
this value represents the interval between reconnect attempts.

immediatereconnect :
If a client is disconnected, this flag will indicate whether the client
will immediately reconnect and attempt to reconnect as fast as possible,
rather than rely on a back off period.

autoreconnectafteracl :
If a client is disconnected because of a security change, this flag
will indicate whether the automatic session reconnection logic will kick in.

threadpoolsize :
Gets the maximum number of threads used by the client for delivery of
all messages to listeners.

redeliveredsize :
Specifies the maximum number of messages that the client will keep
reference to if they are marked as redelivered.

unackedsize :
The client will keep a list of messages that have not been
acknowledged. This value sets the maximum size of this list.

useinfinitewindowsize :
When set to true, the consumer can consume as many events as required
before committing.

windowsize :
When asynchronously consuming messages from the server, they will be
delivered in batches (windows). This property sets the size of that window.

autoackcount :
With AUTO acknowledgement mode, in order to improve performance,
the acknowledgement of messages can be batched so that not every message
consumed results in communication with the server. This value determines
how many events can be consumed before an acknowledgement is sent to the
server.

globalstorecapacity :
Each topic or queue store can have a maximum number of messages that
can exist before no more messages are allowed to be published.

synctime :
When file sync is set, you can buffer the sync calls into batches

Universal Messaging Administration Guide 10.7 461

6 Command Line Administration Tools

in order to prevent the underlying system from being overloaded during
busy periods. This value specifies the maximum time in milliseconds between
sync calls. The smaller the value, the more frequent the sync will be
called on the physical file system.

syncbatchsize :
When file sync is set, you can buffer the sync calls into batches
in order to prevent the underlying system from being overloaded
during busy periods. This value specifies the number of messages in
each batch. The smaller the value, the more frequent the sync will
be called on the physical file system.

initialconnectionretrycount :
When a connection is first established, the default number of
connection attempts is 2. This allows this value to be overridden.

syncsendpersistent :
For each persistent message written to the server, ensure the send
is a synchronous call.

syncwritestodisc :
For each persistent message written to the server, perform a
file system sync to ensure the OS has written the data.

enabledurablepriority :
If enabled, durable subscriptions of the same name can exist on
the same topic, but only the first in will consume the events for
that subscription.

enablesinglequeueack :
If enabled, message acknowledgements on a queue consumer will
only acknowledge that specific message rather than all messages
consumed prior to that message, on that queue.

enablesingleshareddurableack :
If enabled, message acknowledgements on a shared durable consumer
will only acknowledge that specific message rather than all messages
consumed prior to that message, on that shared durable.

enableshareddurable :
If enabled, durable subscriptions of the same name can exist on
the same topic, and events will be distributed in a round robin
fashion to each subscriber using that name (i.e. once and once only per
durable name).

maxreconnectattempts :
When getConxExceptionOnFailure() is enabled, this value is used to
prevent the disconnection exceptions being thrown via the
ExceptionListener on the JMS Connection. The default value is -1, which
represents infinite retries.

conxexceptiononretryfailure :
When enabled, any disconnections from the JMS Connection will not result
in an Exception being generated through the ExceptionListener.
An exception will only be thrown to the ExceptionListener when the
getMaxReconAttempts() value is reached.

retrycommit :
Determines whether the commit call to a transacted session will
retry if any exceptions are detected, rather than simply throw an exception.

randomrnames :
Allows the list of RNAME urls to be randomised to provide simple load
balancing across a list of servers.

enablemultiplexedconnections :
Support the use of a shared physical connection by multiple sessions
when the same topic or queue is used by multiple receivers.

durabletype :
Type of the new Durable:
N - Named
S - Shared
Serial - Serial

462 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

CreateJMSQueue
Tool name:
CreateJMSQueue

Description:
Creates a JMS queue with the specified name on the specified realm.

Usage:
runUMTool CreateJMSQueue -rname=<rname>
-queuename=<queuename> [optional_args]

Examples:
CreateJMSQueue -rname=nsp://localhost:8080
-queuename=queue0

Required arguments:
rname :

URL of the realm to which the queue will be connected.
queuename :

Name of the queue to be created.

Optional Parameters:
maxevents :

Capacity of the new store (default 0).
synceachwrite :

Whether each write to the store will also call sync on the
file system to ensure all data is written to disk.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

CreateJMSTopic
Tool name:
CreateJMSTopic

Description:
Creates a JMS topic with the specified name on the specified realm.

Usage:
runUMTool CreateJMSTopic -rname=<rname>

-channelname=<channelname> [optional_args]

Examples:
CreateJMSTopic -rname=nsp://localhost:8080

-channelname=channel0

Required arguments:
rname :

URL of the realm to which the channel will be connected.

channelname :
Name of the channel to be created.

Universal Messaging Administration Guide 10.7 463

6 Command Line Administration Tools

Optional Parameters:
maxevents :

Capacity of the new store.
The default value is 0.

synceachwrite :
Whether each write to the store will also call sync on the
file system to ensure all data is written to disk.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteConnectionFactory
Tool name:
DeleteConnectionFactory

Description:
Deletes a JMS connection factory with the specified server.

Usage:
runUMTool DeleteConnectionFactory -rname=<rname>

-factoryname=<factoryname> [optional_args]
Examples:
DeleteConnectionFactory -rname=nsp://localhost:9000 -factoryname=factory0

Required arguments:

rname :
URL of the realm to which the ConnectionFactory is attached.

factoryname :
Name of the connection factory to deleted.

Optional Parameters:

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteJMSTopic
Tool name:
DeleteJMSTopic

Description:
Deletes a JMS topic with the specified name on the specified context.

Usage:
runUMTool DeleteJMSTopic -rname=<rname>

-channelname=<channelname> [optional_args]
Examples:

DeleteJMSTopic -rname=nsp://localhost:9000 -channelname=channel0

DeleteJMSTopic -rname=nsp://localhost:9000 -channelname=channel0
-deletestore=true

Required arguments:

rname :
URL of the session to which the channel will be connected.

464 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

channelname :
Name of the channel to be unbind.

Optional Parameters:

deletestore :
True if store to be deleted.
Default value is false.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteJMSQueue
Tool name:
DeleteJMSQueue

Description:
Delete a JMS queue with the specified name on the specified context.

Usage:
runUMTool DeleteJMSQueue -rname=<rname>

-queuename=<queuename> [optional_args]
Examples:

DeleteJMSQueue -rname=nhp://localhost:9000 -queuename=queue0

DeleteJMSQueue -rname=nhp://localhost:9000 -queuename=queue0
-deletestore=true

Required arguments:

rname :
URL of the session to which the queue will be connected.

queuename :
Name of the queue to be deleted.

Optional Parameters:

deletestore :
True if store to be deleted.
Default value is false.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

JMSPublish
Tool name:
JMSPublish

Description:
Publishes one or more messages to a JMS queue or topic.

Usage:
runUMTool JMSPublish -rname=<rname> -connectionfactory=<connectionfactory>

Universal Messaging Administration Guide 10.7 465

6 Command Line Administration Tools

-destination=<destination> [optional_args]

Examples:
JMSPublish -rname=nsp://localhost:9000 -connectionfactory=factory

-destination=topic -message=hello

Required arguments:
rname :

Connection URL to the realm where the data group will be created.
connectionfactory :

Name of the connection factory in the Universal Messaging Realm's
JNDI namespace. Must exist.

destination :
Name of the JMS destination (queue or topic). Must exist.

Optional Parameters:
size :

Size of the message to send. Message will be generated. You can't use
-message along with -size.

message :
Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the message. Default is 1.

transacted :
If the session is transacted. Default is false.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

JMSSubscribe
Tool name:
JMSSubscribe

Description:
Reads messages arriving to a JMS destination.

Usage:
runUMTool JMSSubscribe -rname=<rname> -connectionfactory=<connectionfactory>
-destination=<destination> [optional_args]

Examples:
JMSSubscribe -rname=nsp://localhost:9000 -connectionfactory=factory
-destination=topic

Required arguments:
rname :

Connection URL to the realm where the data group will be created.
connectionfactory :

Name of the connection factory in the Universal Messaging Realm's
JNDI namespace. Must exist.

destination :
Name of the JMS destination (queue or topic). Must exist.

Optional Parameters:
transacted :

If the session is transacted. Default is false.
selector :

466 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Optional JMS message selector.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ModifyConnectionFactory
Tool name:
ModifyConnectionFactory

Description:
Modifies settings of a JMS connection factory on the specified server.

Usage:
runUMTool ModifyConnectionFactory -rname=<rname>

-factoryname=<factoryname> [optional_args]

Examples:
ModifyConnectionFactory -rname=nsp://localhost:8080 -factoryname=factory0

Required arguments:
rname :

URL of the realm to which the ConnectionFactory is attached.
factoryname :

Name of the connection factory to locate.

Optional Parameters:
contextfactory :

The name of the ContextFactory class to use.
Default: com.pcbsys.nirvana.nSpace.NirvanaContextFactory

autocreateresource :
If set will create resources on the server when performing a lookup
on a queue or channel.

synctopicacks :
Specifies for a specific connection whether the topic
acknowledgements will be sent synchronously.

syncqueueacks :
Specifies for a specific connection whether the queue
acknowledgements will be sent synchronously.

writehandler :
Specifies for a specific connection the write handler type to use.
Ignored unless between 1-4.

adapterbuffer :
Specifies for a specific connection the adapter send / receive
buffer size. If the value is 0 or less it is ignored.

syncnamedtopicacks :
Specifies for a specific connection whether the durable
topic acknowledgements will be sent synchronously.

permittedkeepalivesmissed :
Set the number of keep server keep alives the client is allowed
to miss before detecting a network issue and terminating the connection.

connectiontimeout :
Set the timeout used for connection / reconnection to realms.
If the connection fails to establish within this time-frame it will
fail.

disconnectafterclusterfailure :
If connected to a cluster of realms, and cluster quorum is lost,
this flag determines whether the client will be disconnected.

usejmsengine :

Universal Messaging Administration Guide 10.7 467

6 Command Line Administration Tools

JMS engine ensures no events are available for topic replay
unless durable subscriptions are being used. Non JMS engine fanout enables
events to be stored even after events are delivered. Default is true.

reconnectinterval :
If a client is disconnected, and Immediate Reconnect is set to true,
this value represents the interval between reconnect attempts.

immediatereconnect :
If a client is disconnected, this flag will indicate whether the client
will immediately reconnect and attempt to reconnect as fast as possible,
rather than rely on a back off period.

autoreconnectafteracl :
If a client is disconnected because of a security change, this flag
will indicate whether the automatic session reconnection logic will
kick in.

threadpoolsize :
Gets the maximum number of threads used by the client for
delivery of all messages to listeners.

redeliveredsize :
Specifies the maximum number of messages that the client
will keep reference to if they are marked as redelivered.

unackedsize :
The client will keep a list of messages that have not been
acknowledged. This value sets the maximum size of this list.

useinfinitewindowsize :
When set to true, the consumer can consume as many events as required
before committing.

windowsize :
When asynchronously consuming messages from the server, they
will be delivered in batches (windows). This property sets the size of that
window.

autoackcount :
With AUTO acknowledgement mode, in order to improve performance,
the acknowledgement of messages can be batched so that not every message
consumed results in communication with the server. This value determines
how many events can be consumed before an acknowledgement is sent to the
server.

globalstorecapacity :
Each topic or queue store can have a maximum number of messages that
can exist before no more messages are allowed to be published.

synctime :
When file sync is set, you can buffer the sync calls into batches
in order to prevent the underlying system from being overloaded during
busy periods. This value specifies the maximum time in milliseconds between
sync calls. The smaller the value, the more frequent the sync will be
called on the physical file system.

syncbatchsize :
When file sync is set, you can buffer the sync calls into
batches in order to prevent the underlying system from being overloaded
during busy periods. This value specifies the number of messages in each
batch. The smaller the value, the more frequent the sync will be called on
the physical file system.

initialconnectionretrycount :
When a connection is first established, the default number of
connection attempts is 2. This allows this value to be overridden.

syncsendpersistent :
For each persistent message written to the server, ensure the send
is a synchronous call.

syncwritestodisc :
For each persistent message written to the server, perform a file system
sync to ensure the OS has written the data.

468 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

enabledurablepriority :
If enabled, durable subscriptions of the same name can exist on the
same topic, but only the first in will consume the events for that subscription.

enablesinglequeueack :
If enabled, message acknowledgements on a queue consumer will only
acknowledge that specific message rather than all messages consumed prior
to that message, on that queue.

enablesingleshareddurableack :
If enabled, message acknowledgements on a shared durable consumer will
only acknowledge that specific message rather than all messages
consumed prior to that message, on that shared durable.

enableshareddurable :
If enabled, durable subscriptions of the same name can
exist on the same topic, and events will be distributed in a round robin
fashion to each subscriber using that name (ie once and once only per
durable name).

maxreconnectattempts :
When getConxExceptionOnFailure() is enabled, this value is used to
prevent the disconnection exceptions being thrown via the
ExceptionListener on the JMS Connection. The default value is -1, which
represents infinite retries.

conxexceptiononretryfailure :
When enabled, any disconnections from the JMS Connection will not
result in an Exception being generated through the ExceptionListener.
An exception will only be thrown to the ExceptionListener when the
getMaxReconAttempts() value is reached.

retrycommit :
Determines whether the commit call to a transacted session will
retry if any exceptions are detected, rather than simply throw an exception.

randomrnames :
Allows the list of RNAME urls to be randomised to provide simple
load balancing across a list of servers.

enablemultiplexedconnections :
Support the use of a shared physical connection by multiple sessions
when the same topic or queue is used by multiple receivers.

durabletype :
Type of the new Durable:
N - Named
S - Shared
Serial - Serial

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ViewConnectionFactory
Tool name:
ViewConnectionFactory

Description:
Views settings of a JMS connection factory on the specified server.

Usage:
runUMTool ViewConnectionFactory -rname=<rname>

-factoryname=<factoryname> [optional_args]
Examples:
ViewConnectionFactory -rname=nsp://localhost:8080 -factoryname=factory0

Universal Messaging Administration Guide 10.7 469

6 Command Line Administration Tools

Required arguments:
rname :

URL of the realm to which the ConnectionFactory is attached.
factoryname :

Name of the connection factory to locate.

Optional Parameters:
contextfactory :

The name of the ContextFactory class to use.
Default: com.pcbsys.nirvana.nSpace.NirvanaContextFactory

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Recovery Tools

AddInterfaceOffline
Tool name:
AddInterfaceOffline

Description:
Adds a new interface to an offline realm.

Usage:
runUMTool AddInterfaceOffline -dirname=<dirname> -protocol=<protocol>

-adapter=<adapter> -port=<port> [optional_args]

Examples:
AddInterfaceOffline -dirname=~/realmDirectories/realm0/data/ -protocol=socket

-adapter=0.0.0.0 -port=11000

Required arguments:
dirname :

Data directory of the realm to add interface to.
protocol :

Protocol for the interface to use.
adapter :

Adapter the interface wants setting to.
port :

Port that the interface will listen on.

Optional Parameters:
interface :

Name of the interface to be created.
autostart :

Whether or not the interface should be autostarted when the realm
starts.

canadvertise :
Whether or not the interface will be advertised.

authtimeout :
Number of milliseconds for authorisation timeout.

interrealm :
Whether or not this interface should be used for inter-realm
communication.

clientconnections :

470 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Whether or not this interface should be used for client
connections.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteInterfaceOffline
Tool name:
DeleteInterfaceOffline

Description:
Removes an interface from an offline realm using config data.

Usage:
runUMTool DeleteInterfaceOffline -dirname=<dirname> -interface=<interface>

[optional_args]

Examples:
DeleteInterfaceOffline -dirname=~/realmDirectories/realm0/data/ -interface=nhp0

Required arguments:
dirname :

Data directory of the realm to dump interfaces for.
interface :

Name of the interface to be removed.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DumpInterfacesOffline
Tool name:
DumpInterfacesOffline

Description:
Dumps the list of interfaces for a specified offline realm.

Usage:
runUMTool DumpInterfacesOffline -dirname=<dirname> [optional_args]

Examples:
DumpInterfacesOffline -dirname=~/realmDirectories/realm0/data/

Required arguments:
dirname :

Data directory of the realm to dump interfaces for.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Universal Messaging Administration Guide 10.7 471

6 Command Line Administration Tools

ExportEventsFromOfflineMemFile
Tool name:
ExportEventsFromOfflineMemFile

Description:
Dumps events to XML or JSON optionally using filter and protobuf description file.

Usage:
runUMTool ExportEventsFromOfflineMemFile -memfileloc=<memfileloc> [optional_args]

Examples:
ExportEventsFromOfflineMemFile

-memfileloc=C:\source_folder\protobuf_channel94fab9fe6d3a92
-dumpdata=true
-jsonfilename=C:\destination_folder\file_name.json
-xmlfilename=C:\destination_folder\file_name.xml
-protobufdescriptor="C:\folder\School.fds"

ExportEventsFromOfflineMemFile
-memfileloc=C:\source_folder\protobuf_channel94fab9fe6d3a92
-dumpdata=true
-jsonfilename=C:\destination_folder\file_name.json
-xmlfilename=C:\destination_folder\file_name.xml
-protobufdescriptor="C:\folder\School.fds"
-selector="teacher.name = 'Person2' or teacher.name ='Person4'"
-starteid=10 -endeid=30

ExportEventsFromOfflineMemFile
-memfileloc=C:\source_folder\mixed_channel_name231859db942796.mem
-jsonfilename=C:\destination_folder\file_name.json
-selector="EVENTDATA.AS-STRING(0, 8) = 'data2702'"
-batchsize=1000

Required arguments:
memfileloc :

Required parameter specifying the absolute path for the location of the
memory file. The path can also be the location of a folder that contains
multiple mem files.
A folder with mem files can be specified only for multi-file storage.
A single memory file can be specified only for mixed/persistent store.

xmlfilename/jsonfilename : Required parameter specifying the file path
to export events to. xmlfilename exports to an XML-formatted file,
whereas jsonfilename exports to a JSON-formatted file.
You must specify at least one of these arguments (xmlfilename or
jsonfilename), and you can also specify both.

Optional Parameters:

selector :
Optional parameter specifying the selector to filter the events.

dumpdata :
Optional parameter, when set to true the tool will dump event data (base64 encoded).
Default value is true.
The exported JSON file will contain event data as JSON node for protobuf events
if protocol buffer file descriptor set is specified.

starteid :
Optional parameter specifying the startEID of event from mem file
to start filtering/dumping from (default = 0).

endeid :
Optional parameter specifying the endEID of event from mem file to filter/dump to

(if not specified, filtering/dumping will be done till the last storage event
id).

protobufdescriptor:

472 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Optional parameter specifying the path to the protocol buffer file descriptor
for filtering based on event data. The specified protocol buffer file descriptor

will be applied if the mem file belongs to the protobuf channel
with the same descriptor.

batchsize :
Optional parameter specifying the events batch size to read from mem file
and dump to output file, default value is 100.

ModifyInterfaceOffline
Tool name:
ModifyInterfaceOffline

Description:
Modifies and interface of an offline realm.

Usage:
runUMTool ModifyInterfaceOffline -dirname=<dirname> -interface=<interface>

[optional_args]

Examples:
ModifyInterfaceOffline -dirname=~/realmDirectories/realm0/data/

-interface=nhp0 -port=11000

Required arguments:
dirname :

Data directory of the realm to dump interfaces for.
interface :

Name of the interface to be modified.

Optional Parameters:
adapter :

Adapter the interface wants setting to.
port :

Port that the interface will be set to.
autostart :

Whether or not the interface should be autostarted when the
realm starts.

canadvertise :
Whether or not the interface will be advertised.

authtimeout :
Number of milliseconds for authorisation timeout.

interrealm :
Whether or not this interface should be used for inter-realm
communication.

clientconnections :
Whether or not this interface should be used for client
connections.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ModifyPrimeFlagOffline
Tool name:
ModifyPrimeFlagOffline

Description:

Universal Messaging Administration Guide 10.7 473

6 Command Line Administration Tools

Modifies the prime flag of a site while a realm is offline.

Usage:
runUMTool ModifyPrimeFlagOffline -datadirectory=<datadirectory> [optional_args]

Examples:
ModifyPrimeFlagOffline -datadirectory=~/realmDirectories/realm0/data/
(This will show current state of prime flag per cluster sites)

ModifyPrimeFlagOffline -datadirectory=~/realmDirectories/realm0/data/
-Site1=true -Site2=false

(This will set prime flag to true on site1 and to false on site 2 in
directory ~/realmDirectories/realm0/data/)

Required arguments:
datadirectory :

Data directory of the realm to be modified.

Optional Parameters:

force :
Skip confirmation step before modifying cluster sites.

NOTE - if you want to edit the prime flag for sites inside a cluster you need to
specify it like an optional parameter :

-<site_name>=<new_value>.
You need to specify the value of the flag for all sites inside the cluster.
For example, if you want to set the prime flag to true on Site1 and you have
another site called Site2, the optional parameter will look like :

-Site1=true -Site2=false

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

RepublishEventsFromOfflineFile
Tool Name:
RepublishEventsFromOfflineFile

Description:
Imports events from an XML, JSON or .mem file,
optionally using filter and protocol buffer file descriptor,
and republishes events to specified store.

Usage:
runUMTool RepublishEventsFromOfflineFile -realm=<realm> -channelname=<channelname>
[optional_args]
Examples:
RepublishEventsFromOfflineFile

-jsonfilename=C:\source_folder\filename.json
-protobufdescriptor="C:\protobuf_folder\School.fds"
-selector="teacher.name = 'Person2' or teacher.name ='Person4'"
-realm="nhp://0.0.0.0:11000" -channelname="destination_channel_name"

RepublishEventsFromOfflineFile
-memfileloc=C:\source_folder\proto_channelb31238f42a49b
-selector="EVENTDATA.AS-STRING(0, 8) = 'data2702'" -realm="nhp://0.0.0.0:11000"
-channelname="destination_queue_name" -starteid=0 -endeid=90

RepublishEventsFromOfflineFile
-xmlfilename=C:\source_folder\filename.xml

474 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

-selector="EVENTDATA.TAG = '3' or EVENTDATA.TAG = '33'"
-realm="nhp://0.0.0.0:11000" -channelname="destination_channel_name"
-endeid=50 -batchsize=1000

Required arguments:
realm :

Required parameter specifying realm server name/address for republishing events.

channelname :
Required parameter specifying destination store name for republishing events.

Optional Parameters:
memfileloc :

Optional parameter specifying absolute path for the memory file location.
The path can also be the location of a folder that contains
multiple mem files.
A folder with mem files can be specified only for multi-file storage,
and a single memory file can be specified only for mixed/persistent store.
One source file should be specified: memfileloc, xmlfilename or jsonfilename.

xmlfilename :
Optional parameter specifying an XML file path to import events from.
One source file should be specified: memfileloc, xmlfilename or jsonfilename.

jsonfilename :
Optional parameter specifying a JSON file path to import events from.
One source file should be specified: memfileloc, xmlfilename or jsonfilename.

protobufdescriptor:
Optional parameter specifying the path to a protocol buffer file descriptor set
for filtering events based on event data.

selector :
Optional parameter specifying the selector to filter the events.

started :
Optional parameter specifying the startEID of event from source file
to start filtering/importing from (default = 0).

endeid :
Optional parameter specifying the endEID of event from source file to filter/import

to.
If not specified, filtering/importing will be done till last storage event id).

batchsize :
Optional parameter specifying the event batch size used for import and republishing

events
to the store (default = 100).

Syntax: Durable Tools

ViewDurableEvent
Tool name:
ViewDurableEvent

Description:
Gets all events for all durables or all events for a specific durable.
The tool has two required parameters (rname , channelname) and two optional
parameters (durablename , maxevents , startid). By default, if no optional
parameters are added it will list the events on all durables. Default number
of events is 1000 per durable.

Universal Messaging Administration Guide 10.7 475

6 Command Line Administration Tools

Usage:
runUMTool ViewDurableEvent -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
ViewDurableEventWith required parameters: -rname=nhp://localhost:11000

-channelname=testchan With optional parameters:
-rname=nhp://localhost:11000 -channelname=testchan
-durablename=testdurable -maxevents=100 -startid=50 -displayanydata=true

Required arguments:
rname :

Name of the realm.
channelname :

Channel which durable is subscribed to.

Optional Parameters:
durablename :

The name of the durable to browse events.(Optional Parameter).
maxevents :

The number of maximum events to display.(Optional Parameter).
startid :

The EID of the starting event to display events from.
(Optional Parameter)

displayanydata :
If the data displayed should be of any kind. By default
only UTF-8 encoded data is shown. (Optional Parameter)

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Miscellaneous Tools

AddHealthMonitorPlugin

Note:
For more details of the purpose of this plugin, see the section “Health Monitor Plugin” on
page 210 in the documentation of the Enterprise Manager.

Tool name:
AddHealthMonitorPlugin

Description:
Adds the health monitor plugin to an interface on a realm server.
The URL endpoint for this plugin must always include a trailing slash, for example
http://localhost:9000/test/
There are two modes available: Offline and Online.
- Online mode adds the plugin on a running server,
- Offline mode can be used to add the plugin on an offline server.

Usage:
runUMTool AddHealthMonitorPlugin -rname=<rname> -protocol=<protocol>

-adapter=<adapter> -port=<port> -mountpath=<mountpath> [optional_args]

Example:

476 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

AddHealthMonitorPlugin -rname=nsp://0.0.0.0:9000 -protocol=http
-adapter=0.0.0.0 -port=11000 -mountpath=monitor

Required arguments:
protocol :

Protocol for the interface to use/add.
adapter :

Adapter that the interface will be set to.

port :
Port that the plugin will be added on.

mountpath :
Path that the plugin will be mounted to.

Optional Parameters:

rname :
URL of the session to which the realm server, on which the plugin will be created,
is connected. This is applicable only for online mode;
for offline mode, the 'dirname' parameter needs to be set.

dirname :
Data directory of the realm server where the plugin will be added.

autostart:
Boolean value to set the interface to "autostart".
Applicable only if the interface is not present already.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

EditRealmConfiguration
Tool name:
EditRealmConfiguration

Description:
Edits realm configuration parameters.

Usage:
runUMTool EditRealmConfiguration -rname=<rname> [optional_args]

Examples:
EditRealmConfiguration -rname=nsp://localhost:9000 -listgroupconfiguration=all
(This will show all realm configuration parameters and their current value)

EditRealmConfiguration -rname=nsp://localhost:9000
-listgroupconfiguration=Thread_Pool_Config

(This will show Thread Pool Config parameters and their current values)

EditRealmConfiguration -rname=nsp://localhost:9000
-Audit_Settings.ChannelACL=false -Join_Config.MaxQueueSizeToUse=50

(This will set channelACL to false and MaxQueueSizeToUse to 50)

Required arguments:
rname :

Connection URL to the realm you want to edit configuration.

Universal Messaging Administration Guide 10.7 477

6 Command Line Administration Tools

Optional Parameters:

NOTE - If you want to edit a realm configuration parameter you should
specify it like an optional parameter :
-<group_name>.<parameter>=<new_value>
where space is escaped in <group_name> by using an underscore("_").
For example, if you want to change the parameter ChannelACL in the
group Audit Settings to "true" the optional parameter will look like:
-Audit_Settings.ChannelACL=true

listgroupconfiguration :
The configuration group for which you want to see values of parameters.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ExportRealmXML
Tool name:
ExportRealmXML

Description:
Exports selected realm to an XML file.

Usage:
runUMTool ExportRealmXML -rname=<rname> -filename=<filename> [optional_args]

Examples:
ExportRealmXML -rname=nsp://localhost:9000 -filename=test.xml -exportall=true
(This will export all the information)

ExportRealmXML -rname=nsp://localhost:9000 -filename=test.xml -realms=true
-realmconfiguration=true -channels=true -queues=true

(This will export information about realm set, realm configuration, channels
and queues)

Required arguments:
rname :

Connection URL to the realm you want to export.
filename :

File name where the information will be exported.

Optional Parameters:
exportall :

Export all information for the chosen realm.
clusters :

Include Cluster information in the export file.
datagroups :

Include DataGroups information in the export file.
realmall :

Export all information for realm including RealmSet,
RealmConfiguration, RealmSchedulerSet and RealmACLS(RealmPermissionSet)

realms :
Include RealmSet information in the export file.

realmconfiguration :
Include RealmConfiguration information in the export file.

realmschedule :

478 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Include RealmSchedulerSet information in the export file.
realmacls :

Include RealmACLS (RealmPermissionSet) information in the export file.
channelsall :

Export all information for channels in the chosen realm
including ChannelEntry, ChannelACLs (ChannelPermissionSet), ChannelJoins,
DurableSet and JNDI Configuration.

channels :
Include ChannelEntry information in the export file.

channelacls :
Include ChannelACLs (ChannelPermissionSet) information in
the export file.

channeljoins :
Include ChannelJoins information in the export file.

durables :
Include DurableSet information in the export file.

jndiconfig :
Include JNDI Configuration information in the export file.

interfacesall :
Export all information for interfaces in the chosen realm
including Interfaces, InterfaceVIA (ACLs) and Interface Plugins.

interfaces :
Include Interfaces information in the export file.

interfacevia :
Include InterfaceVIA (ACLs) information in the export file.

plugins :
Include Interface Plugins information in the export file.

queuesall :
Export all information for interfaces in the chosen realm
including QueueEntry and QueueACLs (QueuePermissionSet).

queues :
Include QueueEntry information in the export file.

queueacls :
Include QueueACLs (QueuePermissionSet) information in the export file.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

HealthChecker
Tool name:
HealthChecker

Description:
Tool for analysing configuration items and highlighting robustness improvements.

Usage:
runUMTool HealthChecker -rname=<rname> [optional_args]
or..
runUMTool HealthChecker -xml=<xml> [optional_args]

Live Mode :
Examples:
HealthChecker -rname=nsp://localhost:9000
HealthChecker -rname=nsp://localhost:9000 -mode=all
HealthChecker -rname=nsp://localhost:9000

-check=StoreWarningsCheck,RealmConfigurationCheck
HealthChecker -rname=nsp://localhost:9000 -mode=all

-exclude=StoreWarningsCheck,RealmConfigurationCheck
-include=RealmACLCheck,ResourcesSafetyLimitsCheck

Universal Messaging Administration Guide 10.7 479

6 Command Line Administration Tools

XML Check Mode :
Examples:
HealthChecker -xml=/path/to/xml1,/path/to/xml2
HealthChecker -xml=/path/to/xml1,/path/to/xml2 -mode=all
HealthChecker -xml=/path/to/xml1,/path/to/xml2

-check=StoreWarningsCheck,RealmConfigurationCheck
HealthChecker -xml=/path/to/xml1,/path/to/xml2 -mode=all

-exclude=FixLevelCheck,DurableMismatchCheck
-include=ResourcesSafetyLimitsCheck,RealmACLCheck

Required arguments:
rname: URL of the realm, or cluster member, against which to run the health check.
or..
xml: XML files containing realm configuration.

Optional arguments:
mode: Defines the initial set of 'HealthChecker' checks that you

can manipulate (with 'exclude' or 'include' options) if you choose to.
There are two modes :
default:

This option gives access to the recommended minimal subset of checks.
This is the default option if mode is not specified.

all:
This option gives access to additional checks.
Executed without 'exclude' or 'check' it will execute all HealthChecker

checks.
check: Run only the specified check or checks.

It should not be used together with 'mode','include' or 'exclude arguments.

exclude: Run all checks from the specified set (see 'mode') except the specified
check or checks.

The parameter may contain a single check or a comma-separated list of
checks.

include: Run all checks available with the given mode and
additionally include the check(s) specified via this parameter.
The parameter may contain a single check to include or a comma-separated

list of checks
*: All additional parameters are passed down to the checks.

If any given check has the capability to process any of the additional
arguments then it will, and the given check will ignore any
additional parameters that it cannot process.

additionalArg<n>:
Some of the health checks allow you to specify one or more additional
parameters when calling the HealthChecker. The name and purpose of each
additional parameter is specific to the individual health check being run.
For example, the DurableSubscriberLargeStoreCheck check allows you
to specify the additional parameter -threshold=<value>, which defines
a threshold for the number of remaining events to be consumed in a
shared durable.
All additional parameters are passed to all the HealthChecker checks;
if any given check has the capability to process any of the additional
arguments then it will, and the given check will ignore any
additional parameters that it cannot process.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

480 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

ImportRealmXML
Tool name:
ImportRealmXML

Description:
Imports selected realm from an XML file

Usage:
runUMTool ImportRealmXML -rname=<rname> -filename=<filename> [optional_args]

Examples:
ImportRealmXML -rname=nsp://localhost:9000 -filename=test.xml -importall=true
(This will import all the information present in selected file)

ImportRealmXML -rname=nsp://localhost:9000 -filename=test.xml -realms=true
-realmconfiguration=true -channels=true -queues=true

(This will import information about realm set, realm configuration, channels and
queues if present in selected file)

Required arguments:
rname :

Connection URL to the realm you want to import configuration.
filename :

File name from which the information will be imported.

Optional Parameters:
importall :

Import all information for the chosen realm.
clusters :

Import Cluster information if present in file.
datagroups :

Import Data Groups information if present in file.
realmall :

Import all information for realm including RealmSet,
RealmConfiguration, RealmSchedulerSet and RealmACLS(RealmPermissionSet)
if present in file.

realms :
Import RealmSet information if present in file.

realmconfiguration :
Import RealmConfiguration information if present in file.

realmschedule :
Import RealmSchedulerSet information if present in file.

realmacls :
Import RealmACLS(RealmPermissionSet) information if present in file.

channelsall :
Import all information for channels including ChannelEntry,
ChannelACLs (ChannelPermissionSet), ChannelJoins, DurableSet and
JNDI Configuration if present in file.

channels :
Import ChannelEntry information if present in file.

channelacls :
Import ChannelACLS information if present in file.

channeljoins :
Import ChannelJoins information if present in file.

durables :
Import DurableSet information if present in file.

jndiconfig :
Import JNDI Configuration information if present in file.

Universal Messaging Administration Guide 10.7 481

6 Command Line Administration Tools

interfacesall :
Import all information for interfaces including Interfaces,
InterfaceVIA (ACLs) and Interface Plugins if present in file.

interfaces :
Import Interfaces information if present in file.

interfacevia :
Import InterfaceVIA (ACLs) information if present in file.

plugins :
Import Interface Plugins information if present in file.

queuesall :
Import all information for interfaces including QueueEntry and
QueueACLs (QueuePermissionSet) if present in file.

queues :
Import QueueEntry information if present in file.

queueacls :
Import QueueACLs (QueuePermissionSet) information if present in
file.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Site Tools

CreateSite
Tool name:
CreateSite

Description:
Creates a site with the specified name, consisting of the specified nodes.

Usage:
runUMTool CreateSite -sitename=<sitename> -rnames=<rnames> [optional_args]

Examples:
CreateSite -sitename=site0 -rnames=nsp://localhost:11000,nsp://localhost:11010

Required arguments:
sitename :

Name of the site to be created.
rnames :

Server URLs to be considered for the site. Can be more than one URL,
separated by a comma.
The proper format is [nsp/nhp/nsps/nhps]://[hostname]:[port] or
shm://[path/to/file].

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteSite
Tool name:
DeleteSite

482 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

Description:
Deletes a site with the specified name from all the nodes associated with it.

Usage:
runUMTool DeleteSite -sitename=<sitename> -rname=<rname> [optional_args]

Examples:
DeleteSite -sitename=site0 -rname=nsp://localhost:11000

Required arguments:
sitename :

Name of the site to be deleted.
rname :

Server URL to be considered for the site. Can be more than one URL,
separated by a comma.
The proper format is [nsp/nhp/nsps/nhps]://[hostname]:[port] or
shm://[path/to/file].

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

SetPrimeSite
Tool name:
SetPrimeSite

Description:
Toggles the specified site's prime status.

Usage:
runUMTool SetPrimeSite -sitename=<sitename> -rname=<rname>

-setprime=<setprime> [optional_args]

Examples:
SetPrimeSite -sitename=site0 -rname=nhp://localhost:11000 -setprime=true

Required arguments:
sitename :

Name of the site to be configured.
rname :

Server URL to be considered for the site.
setprime :

True/False flag to set/unset a site being the prime site.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ShowSites
Tool name:
ShowSites

Description:
Displays the configuration of the sites.

Universal Messaging Administration Guide 10.7 483

6 Command Line Administration Tools

Usage:
runUMTool ShowSites -rname=<rname> [optional_args]

Examples:
ShowSites -rname=nhp://localhost:11000

Required arguments:
rname :

Server URL to be considered for the site.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: Diagnostic Tools

RealmInformationCollector
Tool name:
RealmInformationCollector

Description:
Collects diagnostic information from a Universal Messaging realm server
installation and stores it in a zip archive.

Usage:
runUMTool RealmInformationCollector -mode=<mode> -instance=<instance>

[optional_args]

Examples:
RealmInformationCollector -mode=offline -instance=umserver
RealmInformationCollector -mode=offline -instance=umserver

-include=data,heapdumps
RealmInformationCollector -mode=offline -instance=*
RealmInformationCollector -mode=live -instance=umserver,umserver2

-include=heapdump
RealmInformationCollector -mode=live -instance=umserver,umserver2

-exclude=jaas,plugins
RealmInformationCollector -mode=live -instance=umserver,umserver2

-outputfile=/path/to/outputfile.zip

Required arguments:
mode : Operating mode, either 'offline' or 'live'.

The chosen mode determines what information is collected.
If 'offline' is specified, the tool will ensure that all instances to collect
information from are not running.
If 'live' is specified, the tool will ensure that all instances are running.

In live mode, certain Universal Messaging directories/files are not collected,
because reading them may cause failures on the server.
For example, if the content of the data directory is needed, it can be
collected only in offline mode.

The following collectors will be executed by default in live mode:
tanukilogs - Collects Tanuki wrapper logs of an UM server instance.

484 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

secfile - Collects the security file of an UM server instance.
installlogs - Collects SoftwareAG installer logs.
tanukiconf - Collects Tanuki wrapper configuration of an UM server

instance.
env - Collects environment information from a running UM server.
license - Collects the license file of an UM server instance.
realmconfig - Exports realm configuration from a running UM server instance.

instancemgr - Collects Universal Messaging instance manager logs.
healthchecker - Acquires health information from a running UM server instance

using UM HealthChecker tool
jaas - Collects JAAS configuration of an UM server instance.
threaddump - Generates 3 thread dumps of a running UM server instance.
plugins - Collects plugins directory of an UM server instance.

Collectors not enabled per default in live mode (need to be explicitly included):

heapdump - Acquires heap dump from a running UM server instance.
Note: This collector is not available on all platforms.

heapdumps - Collects heap dumps directory of an UM server instance.

The following collectors will be executed by default in offline mode:
tanukilogs - Collects Tanuki wrapper logs of an UM server instance.
secfile - Collects the security file of an UM server instance.
installlogs - Collects SoftwareAG installer logs.
tanukiconf - Collects Tanuki wrapper configuration of an UM server instance.

license - Collects the license file of an UM server instance.
instancemgr - Collects Universal Messaging instance manager logs.
jaas - Collects JAAS configuration of an UM server instance.
logs - Collects logs of an UM server instance.
plugins - Collects plugins directory of an UM server instance.

Collectors not enabled per default in offline mode (need to be explicitly
included):

data - Collects data directory of an UM server instance.
heapdumps - Collects heap dumps directory of an UM server instance.

instance :
Specifies a comma-separated list of realm server instance names to
collect information from. Specify '*' to include all available instances.

Optional Parameters:
outputfile :

The directory or file to write generated archive to.
If a directory is specified, it must exist.
If a file is specified and it is already present, the tool will fail.
If this argument is omitted, the tool will generate the archive in the
current working directory.

exclude :
Specifies a comma-separated list of collector names to exclude.
See 'mode' for list of available collectors.

include :
Specifies a comma-separated list of collector names to include.
See 'mode' for list of available collectors.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Universal Messaging Administration Guide 10.7 485

6 Command Line Administration Tools

486 Universal Messaging Administration Guide 10.7

6 Command Line Administration Tools

7 Universal Messaging Administration API

■ Introduction ... 488

■ Administration API Package Documentation .. 491

■ Namespace Objects ... 491

■ Realm Server Management ... 498

■ Security .. 506

■ Management Information ... 510

Universal Messaging Administration Guide 10.7 487

Universal Messaging provides a feature rich Administration API capable of capturing all metrics,
management and audit information from Universal Messaging realms. The API allows you to
control and administer all aspects of any Universal Messaging realm or clusters of realms.

Universal Messaging's Enterprise Manager GUI has been written entirely using the Universal
Messaging Administration API as a means of demonstrating how useful the API can be for the
management of your messaging infrastructure.

Some example code showing how to use the Universal Messaging management API can be found
in the examples section.

The Administration API is available in the following languages:

Java

C#.NET

C++

Note:
The Administration APIs for C# and C++ are deprecated and will be removed from the product
distribution in the next official release.

Introduction

Getting Started

The Universal Messaging Admin API (see the Package Documentation) allows management,
configuration, audit and monitoring of all aspects of a Universal Messaging realm server.

The starting point for the Admin API is connecting to a realm. In order to connect to a realm using
the Admin API, you need to ensure you are familiar with the concept of an RNAME. Once you
have the RNAME that corresponds to your realm, you can then connect to the realm.

The way you connect to a realm is by constructing an nRealmNode object. The nRealmNode object is
the main object you need to access all of the objects you wish to configure, monitor and manage:
String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nRealmNode realm = new nRealmNode(nsa);

Universal Messaging namespace

Access to resources on a Universal Messaging realms, or indeed objects in a multi Universal
Messaging realm server namespace, is based on a simple tree structure, where the nRealmNode is
the root of the tree. All nodes within the tree are subclasses of a base class nNode. From the root, it
is possible to obtain references to all child nodes. Child nodesmay be other realm nodes, containers
(folders containing other realms, channels etc), channels and queues.

For example, to obtain an enumeration of all child nodes within a realm node, simply call the
following:

488 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

Java:
Enumeration children = realm.getNodes();

C#:
System.Collections.IEnumerator children = realm.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

From this enumeration you can then perform operations on the child nodes. For example, if you
have a realm with 1 channel and 1 queue, and wanted to find the number of events currently on
each, the following code would do that:

Example: Finding out how many events are on a channel / queue

Java:
while (children.hasMoreElements()) {

nNode child = (nNode)children.nextElement();
if (child instanceof nLeafNode) {

nLeafNode leaf = (nLeafNode)child;
System.out.println("Leaf node contains "+leaf.getCurrentNumberOfEvents());

}
}

C#:
while (children.MoveNext()){
nNode child = (nNode)children.Current;

if (child is nLeafNode) {
nLeafNode leaf = (nLeafNode)child;
Console.WriteLine("Leaf node contains "+leaf.getCurrentNumberOfEvents());

}
}

C++:
void searchNodes(fSortedList nodes)

for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end();
iterator++)

{
nNode *pNode = iterator->second;
int type = pNode->getType ();
if (type == fBase::LEAFNODE)
{

printf("Leaf node contains %ll events",pNode->getCurrentNumberOfEvents());
}

}
}

The namespace structure is dynamic and is managed asynchronously for you, so as and when
objects are created, deleted modified, stopped or started, the namespace will manage those state
changes and keep the structure up to date automatically.

Universal Messaging Administration Guide 10.7 489

7 Universal Messaging Administration API

Management / Configuration / Security

As well as the namespace nodes, there are also other objects that can be obtained from the nodes
but which are not part of the namespace tree structure.

For example, from an nRealmNode it is possible to obtain the following objects:

nClusterNode - The cluster node that this realm may be part of, allowing the administration
of Universal Messaging realm clusters

nACL - The realm acl object (see “About Realm ACL Permissions” on page 123), allowing
control of the ACL permissions (see “Access Control Lists” on page 506)

nInterfaceManager - The realm interface manager, allows me to add, remove, stop, start
interfaces on a realm (see “Interfaces” on page 498)

nSchedulerManager - the scheduler manager allows me to control scheduled tasks (see
“Scheduling” on page 500) on the realm

nConfigGroup - an enumeration of these corresponds to all configuration (see “Config” on
page 502) and tuning parameters for a given realm.

From an nLeafNode which could be a channel or a queue, the following objects are available:

nACL - The leaf node acl object, allows me to control acl permissions (see “About Channel
ACL Permissions” on page 124) for resources

nJoinInfo - All join information associated with a channel or queue

Monitoring

As well access to the channel resources as described above, there are also many monitoring tools
available to developers that provide information asynchronously as and when events occur on a
realm. This can be extremely useful in ongoing real time management of one or more Universal
Messaging Realm servers.

For example, for a realm node you can provide listeners for the following :

Connections - get notified as new connections (see “Connection Information” on page 516) to
the realm occur, showing connection information

Creation /Deletions / Stop / Start - get notifiedwhen newobjects are created, deleted,modified,
stopped or started (see “nRealmNode” on page 510) (for example new channels being created,
acls being changed etc)

State Changes - get notified when changes occur to any of the objects in the namespace (see
“nLeafNode” on page 514), such as events being published / consumed. All updates are
asynchronously received from the realm server and the API manages those changes for you.

Audit / Logging - when security or state changes occur, get notified of audit events, as well
as remotely receiving log file information from the server.

490 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

The following sections in this guide will work through in more detail, each of what has been
discussed above.

Administration API Package Documentation

The Administration API is provided in the package com.pcbsys.nirvana.nAdminAPI

The API documentation is available in the Universal Messaging Reference Guide section of the
documentation.

Namespace Objects

nRealmNode
Universal Messaging's namespace contains objects that can be administered, monitored and
configured. The nRealmNode object in the nAdminAPI, corresponds to aUniversalMessagingRealm
server process. The nRealmNode is used to make an admin connection to a realm.

In order to connect to a realm you need to ensure you are familiar with the concept of an RNAME.
Once you have the RNAME that corresponds to your realm, you can then construct the nRealmNode
and connect to the corresponding realm. This is achieved by the following calls:

Java:
String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nRealmNode realm = new nRealmNode(nsa);

C++:
std::string rName = "nsp://127.0.0.1:9000";
nSessionAttributes* nsa=new nSessionAttributes(rName);
nRealmNode* realm = new nRealmNode(nsa);

By constructing an nRealmNode, and connecting to a realm, the realm node will automatically
begin receiving status information from the realm periodically, as well as when things occur.

nRealmNode

The nRealmNode is the root of a Universal Messaging Realm's namespace, which is a tree like
structure that contains child nodes. The tree nodes are all subclasses of a base class nNode. Each
node corresponds to one of the following node subclasses:

nRealmNode - other realm nodes that have been added to this realm's namespace

nContainer - folders, if there was a channel called /eur/uk/rates, there would be a child
nContainer node called, 'eur' which would have a child called 'uk' etc.

nLeafNode - these correspond to channels and queues

nDurableNode - represents the status of a durable object.

Universal Messaging Administration Guide 10.7 491

7 Universal Messaging Administration API

The nRealmNode itself is a subclass of the nContainer class. To obtain an enumeration of all child
nodes within a realm node, simply call the following:

Java:
Enumeration children = realm.getNodes();

C#:
System.Collections.IEnumerator children = realm.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

Once you have this enumeration of nodes, you can then perform the various operations on those
nodes available through the nAdminAPI.

If you know the name of the child node youwish to obtain a reference to, you can use the following
method:

Java:
nNode found = realm.findNode("/eur/uk/rates");

C++:
nNode* found = realm->findNode("/eur/uk/rates");

Which should return you an nLeafNode that corresponds to the channel called '/eur/uk/rates'.

As well as obtaining references to existing nodes, it is also possible to create and delete channels
and queues using the nRealmNode. For example, to create a channel called '/eur/fr/rates', we would
write the following code:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.SIMPLE_TYPE);
cattrib.setName(“/eur/fr/rates”);
nLeafNode channel = realm.createChannel(cattrib);

C++:
nChannelAttributes* cattrib = new nChannelAttributes();
cattrib->setMaxEvents(0);
cattrib->setTTL(0);
cattrib->setType(nChannelAttributes.SIMPLE_TYPE);
cattrib->setName(“/eur/fr/rates”);
nLeafNode* channel = realm->createChannel(cattrib);

To remove channel or a queue, you can simply call the following method on your realm node
(using the channel created above):
realm.delLeafNode(channel);

C++:

492 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

realm->delLeafNode(channel);

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the “Enterprise Manager Guide” on page 9.

nLeafNode (Channels and Queues)
Before you use the administration objects associated with the namespace of a realm, you should
understand:

The concept of the Universal Messaging Namespace, as discussed in the nRealmNode guide
(see “nRealmNode” on page 491).

The publish/subscribe and message queue functions of Universal Messaging.

The concept of the nRealmNode and how to create it.

nLeafNode

The nLeafNode is either a channel or a queue, and is, as its name suggests, an end point of a branch
of the namespace tree. The parent of an nLeafNode is always an instance of nContainer. Since
nRealmNode is a subclass of nContainer, sometimes the parent of an nLeafNode is also an instance
of an nRealmNode. For example, consider the following 2 channels within the namespace:
/eur/uk/rates
/rates

The nLeafNode that corresponds to the channel '/eur/uk/rates' will have a parent which is an
instance of nContainer, and is called 'uk', whereas the nLeafNode that corresponds to the channel
'/rates' has a parent which is also an instance of nContainer, however is is also an instance of an
nRealmNode (i.e. the namespace root), since it does not contain any folder information in its name.

When channels and queues are created, they are added to the tree structure of the nRealmNode as
nLeafNodes. Universal Messaging adds the nLeafNode automatically, but will send notifications
to indicate that the namespace structure has changed so that the application handles the changes.
For more details about managing the structure, see the "Management Information" section in this
guide.

To determine if an nLeafNode is a channel or a queue, you can use one of the methods in the
following code snippets to search the namespace and print out whether each leaf node it finds is
a channel or a queue.

Example : Find channels and queues in the namespace

Java:
public void searchNodes(nContainer container)
Enumeration children = container.getNodes();
while (children.hasMoreElements()) {

nNode child = (nNode)children.nextElement();
if (child instanceof nContainer) {

searchNodes((nContainer)child);
} else if (child instanceof nLeafNode) {

Universal Messaging Administration Guide 10.7 493

7 Universal Messaging Administration API

nLeafNode leaf = (nLeafNode)child;
if (leaf.isChannel) {
System.out.println("Leaf Node "+leaf.getName()+" is a channel");

} else if (leaf.isQueue()) {
System.out.println("Leaf Node "+leaf.getName()+" is a queue");

}
}

}
}

C#:
public void searchNodes(nContainer container)
System.Collections.IEnumerator children = realm.getNodes();
while (children.MoveNext()){
nNode child = (nNode)children.Current;

if (child is nContainer) {
searchNodes((nContainer)child);

} else if (child is nLeafNode) {
nLeafNode leaf = (nLeafNode)child;
if (leaf.isChannel) {
Console.WriteLine("Leaf Node "+leaf.getName()+" is a channel");

} else if (leaf.isQueue()) {
Console.WriteLine("Leaf Node "+leaf.getName()+" is a queue");

}
}

}
}

C++:
void searchNodes(fSortedList nodes)

for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end();
iterator++)

{
nNode *pNode = iterator->second;
int type = pNode->getType ();
if (type == fBase::LEAFNODE)
{

if(iterator->second->isChannel()){
printf("Leaf Node %s is a Channel");

} else if(iterator->second->isQueue()){
printf("Leaf Node %s is a Queue");

}
}
else if (type == fBase::CONTAINER)
{

searchNodes(((nContainer*)pNode)->getNodes());
}

}
}

In the above code example, by the searchNodes(realm)method searches the namespace from the
realm node, and this isChannel() and isQueue() methods are used to determine whether each leaf
node is a queue or a channel.

Associatedwith each leaf node, is the nChannelAttributes for the queue or channel, this is obtained
by using the getAttributes()method, so it is possible to determine the characteristics of each leaf node.

494 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

Each leaf node also has an associated nACL object that can be modified to change security
permissions for users. This is discussed in more detail in the security section of this guide.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

nDurableNode
Before you use the administration objects associated with the namespace of a realm, you should
understand:

The concept of the Universal Messaging Namespace, as discussed in the nRealmNode guide
(see “nRealmNode” on page 491).

The publish/subscribe and message queue functions of Universal Messaging.

The concept of the nRealmNode and how to create it.

The concept of the nTopicNode and how to access it from the namespace of a realm.

nDurableNode

nDurableNode represents the status of a durable object in a Universal Messaging namespace.

When a durable node is created, it is added to the tree structure of the nRealmNode as an nDurableNode.
UniversalMessaging adds the nDurableNode automatically, andwill send notifications to indicate
that the namespace structure has changed so that the application handles the changes. For more
details about managing the structure, see the "Management Information" section in this guide.

To access the durable nodes associated with a channel/topic, you can use one of the methods in
the following code snippets to search the namespace for:

the name of a specific durable node

the list of the durable nodes associated with the topic

the iterator of the durable nodes associated with a channel/topic

Example: Find a durable node associated with the topic node based on the name of that durable
node.

Java:
nDurableNode durableNode = topicNode.getDurable(durable_name);

Example: List the durable nodes associated with the topic node.

Java:
List<nDurableNode> durableNodeList = topicNode.getDurableList()

Example: Get the iterator of durable nodes associatedwith the topic node and then use it to iterate
through the durable nodes.

Universal Messaging Administration Guide 10.7 495

7 Universal Messaging Administration API

Java:
Iterator<nDurableNode> iterator = topicNode.getDurables()

The nDurableNode class determines the durable characteristics usingAPIs, such as isSerial(), isShared(),
and isClusterWide(). Status information of the durable object, such as lastReadTime, lastWriteTime,
depth, is updated periodically by the server. To configure the time interval, use the StatusBroadcast
realm configuration property. The default is 5 seconds.

Before fetching the durableNode from topicNode, set the application to wait for durables to get
updated in the namespace using nRealmNode# waitForDurableInformation(). To determinewhether
the durableNode status is updated by the server for the first time, use nDurableNode#
isStatusInitialised(). true indicates that the durable node receives the first update from the
server.

For more information on administering nDurableNode APIs, see the API documentation.

Realm Federation
A Universal Messaging Realm is an instance of the server and a container for resources. Each
Universal Messaging Realm defines a namespace of its own but it is possible to merge the
namespaces of multiple Realms into one large one. This is known as realm federation.

Note:
Clustering and Realm Federation are mutually exclusive. If a realm is a member of a cluster,
you cannot use the realm for federation. Similarly, if a realm is part of a federation, the realm
cannot be used for clustering.

While adding aUniversalMessagingRealm into the namespace of another, there is one compulsory
options and two optional. The compulsory option is the RNAME of that Realm. The optional
parameter is the mount point that the Realm should be added in the existing Realm.

If you are specifying the name of the Realm you are adding it should be specified exactly as it
appears in the Enterprise Manager. It appears adjacent to the globe icon specifying the realm to
which this realm is being added.

AUniversalMessagingRealm can also be added to another Realm's namespace using the Enterprise
Manager (see “Realm Federation” on page 496).

A Realm is added into the namespace of another programmatically as follows.

Java, C#:
//Create an instance of the Universal Messaging Realm object to be added
String rname = "nsp://remoteHost:9002";
nRealm nr = new nRealm(realmName, rname);
//Set the mountpoint in the local realm's Namespace
nr.setMountPoint(mountPnt);
//Add the remote realm to the local one.
//assuming mySession has already been connected to your local realm
mySession.addRealm(nr);

C++

496 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

//Create an instance of the Universal Messaging Realm object to be added
string rname = "nsp://remoteHost:9002";
nRealm* nr = new nRealm(realmName, rname);
//Set the mountpoint in the local realm's Namespace
nr->setMountPoint(mountPnt);
//Add the remote realm to the local one.
//assuming mySession has already been connected to your local realm
mySession->addRealm(nr);

Example Usage of a Federated Universal Messaging Namespace

You can then provide filters for channel joins across the multiple realms you have added to the
namespace. This allows you to ensure that events are routed to the correct channel based on the
content of the event.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins. The description details the usage based on the Enterprise Manager, but
the same general principles apply if you are using the API.

For example, if channel1 on Realm1 is joined to channels channel2, channel3, channel4, channel5
on realmsRealm2, Realm3, Realm4, Realm5, and each event is published using an nEventProperties
dictionary that contains a key called 'DESTINATION'.

If each channel join from channel1 is created with a filter, for example for the join from channel1
to channel2 on Realm2 the filter would be:
DESTINATION='realm2'

This guarantees only those events that are published to channel1 and that contain 'realm2' in the
'DESTINATION' key will be published to channel2 on Realm2.

For further example code demonstrating adding Universal Messaging Realms to a names space
please see the addRealm example.

Channel Join
Joining a channel to another allows you to set up content routing such that events on the source
channel will be passed on to the destination channel also. Joins also support the use of filters thus
enabling dynamic content routing.

Channels can be joined using the Universal Messaging Enterprise Manager GUI or
programmatically.

In joining two Universal Messaging channels there is one compulsory option and two optional
ones. The compulsory option is the destination channel. The optional parameters are themaximum
join hops and a JMS message selector to be applied to the join.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins in the Administration Guide. The description details the usage based on
the Enterprise Manager, but the same general principles apply if you are using the API.

Universal Messaging Administration Guide 10.7 497

7 Universal Messaging Administration API

Channel joins can be created using the nmakechanjoin join sample application which is provided
in the <InstallDir>/UniversalMessaging/server/<InstanceName>/bin directory of the Universal
Messaging installation. For further information on using this example please see the nmakechanjoin
example page.

Universal Messaging joins are created as follows:

Java, C#:
//Obtain a reference to the source channel
nChannel mySrcChannel = mySession.findChannel(nca);
//Obtain a reference to the destination channel
nChannel myDstChannel = mySession.findChannel(dest);
//create the join
mySrcChannel.joinChannel(myDstChannel, true, jhc, SELECTOR);

C++:
//Obtain a reference to the source channel

nChannel* mySrcChannel = mySession->findChannel(nca);
//Obtain a reference to the destination channel
nChannel* myDstChannel = mySession->findChannel(dest);
//create the join
mySrcChannel->joinChannel(myDstChannel, true, jhc, SELECTOR);

Realm Server Management

Interfaces
Universal Messaging Realm servers provide the ability for connections to be made using any
available physical network interface on the servermachine. For example, if amachine has 4 physical
network interfaces, Universal Messaging provides the ability to bind specific network interface
addresses to specific ports and different protocols. This provides the ability to run segment the
communication between client and server. There is no limit to the number of separate interfaces
that can be run on a Universal Messaging realm server.

For example, a Realm Server that is visible to Internet users may have 4 Network cards, each one
having its ownphysical IP address and hostname. Two of the network interfacesmay be externally
visible, while the other 2 may be only visible on internal sub-nets.

The 2 external interfacesmay be specified as using nhp, and nhps on ports 80 and 443 respectively,
since for firewall purposes, these ports are the most commonly accessible ports to external clients
connecting to the realm. The remaining internal interfaces, visible to internal client connections
do not have the same restrictions, and so could be defined as using nsp and nsps protocols on
other ports, say 9000 and 9002 respectively.

What this guarantees is separation of internal and external connections based on network interface
and protocol.

498 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

nInterfaceManager

When you have connected to a realm, and have a reference to an nRealmNode object (see
“nRealmNode” on page 491), you can access an object called nInterfaceManager, which provides
the ability to add, modify, delete, stop and start interfaces on the Universal Messaging realm. To
get access to this object, you can call the following method from a realm node:

Java, C#:
nInterfaceManager iMgr = realm.getInterfaceManager();

C++:
nInterfaceManager* iMgr = realm->getInterfaceManager();

Using the nInterfaceManager object you can then obtain a list of known interfaces for that realm:

Java:
Vector ifaces = iMgr.getInterfaces();

C#:
List ifaces = iMgr.getInterfaces();

C++:
int numInterfaces; nInterfaceStatus** pTemp = iMgr->getInterfaces(numInterfaces);

All interfaces extend a base class called nInterface. There are 4 types of interface object that
correspond to the different types of protocols that an interface can use. These are:

nSocketInterface - standard socket interface, Universal Messaging protocol is nsp

nHTTPInterface - http interface, Universal Messaging protocol is nhp

nSSLInterface - ssl socket interface, Universal Messaging protocol is nsps

nHTTPSInterface - https interface, Universal Messaging protocl is nhps

Each of these interface objects contain standard configuration information and allows the same
operations to be performed on them. For example, if there is an interface called 'nsp1', and you
wanted to change the 'autostart' property to true (i.e. make the interface start automatically when
the realm is started) this can be achieved with the following code:

Java, C#:
nInterface iface = iMgr.findInterface("nsp0");
iface.setAutostart(true);
iMgr.modInterface(iface);

C++:
nInterface* iface = iMgr->findInterface("nsp0");
iface->setAutostart(true);
iMgr->modInterface(iface);

Universal Messaging Administration Guide 10.7 499

7 Universal Messaging Administration API

Which will modify the interface configuration at the server, stop and restart the interface. When
performing a modInterface operation, if you are modifying the interface that your nRealmNode
is connected to, you will be disconnected and reconnected when the interface restarts. This is
important to remember when using the stop method of an interface too, since if you stop the
interface you are connected to, you cannot start it again, since your connection needs to be active,
and the stop operation will close your connection. If you wish to restart an interface you should
therefore do it from a connection which has been made via another interface.

Example: creating an NHPS interface

You can create an NHPS interface using code such as the following:
nRealmNode rnode = ...;
nHTTPSInterface nhps = new nHTTPSInterface("0.0.0.0", 9443,
autoStart);
nhps.setKeyStore(keystore);
nhps.setKeyStorePassword(kpass);
nhps.setPrivateKeyPassword(kpass);
nhps.setTrustStore(tstore);
nhps.setTrustStorePassword(tpass);
rnode.getInterfaceManager().addInterface(nhps);

Scheduling
UniversalMessagingRealm servers provide the ability for scheduling tasks. Tasks can be scheduled
to execute based on certain conditions being met.

These conditions can be either time based (scheduling) or event based (triggers).

UniversalMessaging scheduling is achieved through the creation of numerous scheduling scripts.
Each script can contain multiple definitions of triggers and tasks.

TheUniversalMessaging server parses these scripts and sets up the triggers and tasks accordingly.
For more information on the script grammar, there is a section in the enterprise manager guide
which deals with writing scheduling scripts.

nSchedulerManager

When you have connected to a realm, and have a reference to an nRealmNode object (see
“nRealmNode” on page 491), you can access an object called nSchedulerManager, which provides
you with the ability to add, modify, delete scheduling scripts. To get access to this object, you can
call the following method from a realm node:

Java, C#:
nSchedulerManager sMgr = realm.getSchedulerManager();

C++:
nSchedulerManager* sMgr = realm->getSchedulerManager();

Using the nSchedulerManager object you can then obtain a list of scheduler objects for the realm:

500 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

Java:
Enumeration schedulers = sMgr.getNodes();

C#:
System.Collections.IEnumerator schedulers = sMgr.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

Thismethod returns an enumeration of nScheduler objects. The nScheduler objects each correspond
to a particular scheduling script.

The following code shows you how to construct a new scheduler object using a sample script that
will log a message to the realm server log every hour, signified by the 'every 60' condition: {Please
Note: typically this script would be read from a script file or it could be entered directly into the
realm enterprise manager GUI.}

Java, C##:
String source = "scheduler myScheduler {\n";
String logString = "Sample script : ";
source += "\n";
source += "\n";
source += " initialise{\n";
source += " Logger.setlevel(0);\n";
source += " }\n";
source += " every 60"{\n";
source += " Logger.report(\""+logString+"\");\n";
source += " }\n";
source += "}\n";
sMgr.add(source, "user@localhost", false);

C++:
stringstream s;
s<<"scheduler myScheduler {\n";
string logString = "Sample script : ";
s<<"\n";
s<<"\n";
s<<"initialise{\n";
s<<"Logger.setlevel(0);\n";
s<<"}\n";
s<<"every 60"{\n";
s<<"fLogger::report(\""+logString+"\");\n";
s<<"}\n";
s<<"}\n";
sMgr->add(source, "user@localhost", false);

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Universal Messaging Administration Guide 10.7 501

7 Universal Messaging Administration API

Config
Universal Messaging Realm servers contain a large number of configurable parameters These
parameters can be modified using the nAdminAPI.

The Universal Messaging Realm config can also be managed via the Realm enterprise manager
(see “Realm Configuration” on page 33). This also provides a useful guide to the configuration
groups and their specific config entities.

nConfigGroup

When connected to a realm, and using a reference to an nRealmNode object (see “nRealmNode” on
page 491), you can access configuration objects that correspond to a group of configuration entries.
To get access to the config groups, call the following method from a realm node:

Java, C#
Enumeration children = realm.getNodes();

C++
fSortedList nodes = pNode->getNodes();

The enumeration will contain a number of nConfigGroup objects. Each nConfigGroup contains a
number of nConfigEntry objects, each one corresponds to a specific configurable parameter in the
realm server.

For example, to change the log level of the realm server, we need to obtain the config group called
'Logging Config' and set the 'fLoggerLevel' property:

Java, C#:
nConfigGroup grp = realm.getConfigGroup("Logging Config");
nConfigEntry entry = grp.find("fLoggerLevel");
entry.setValue("0");

C++
nConfigGroup* grp = realm->getConfigGroup("Logging Config");
nConfigEntry* entry = grp->find("fLoggerLevel");
entry->setValue("0");

For a definitive list of available configuration groups and their specific properties please see “Realm
Configuration” on page 33 in the enterprise manager guide.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Clustering
Universal Messaging provides the ability to group Realm servers together to form a cluster. A
cluster is a logical group of realm servers that share common resources. The resources and any

502 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

operations performed on then are replicated across all cluster members. Clients connecting to
'Realm A' in cluster 1, are able to access the same logical objects as clients connecting to Realms B
or C in cluster1.

The state of these objects is fully replicated by each realm in the cluster. For example, if you create
a queue (queue1) within cluster 1, it is physically created in realms A, B and C. If there are 3
consumers on queue1, say one on each of realms A, B and C respectively, each realm in the cluster
will be aware as each message is consumed and removed from the different physical queue1
objects in the 3 realms.

If one of the realms within cluster1 stops, due to a hardware or network problems, then clients
can automatically reconnect to any of the other realms and start from the same point in time on
any of the other realms in the cluster.

This ensures a number of things:

Transparency - Any client can connect to anyUniversalMessaging realm serverwithin a cluster
and see the same cluster objects with the same state. Clients disconnected from one realmwill
automatically be reconnected to another cluster realm.

24 x 7 Availability - If one server stops, the other realms within the cluster will take over the
work, providing an always on service

nClusterNode

Using the nAdmin API, if you wish to create a cluster that contains 3 realms, and you know the
RNAME values for all 3, then the following call will create the cluster.

Java, C#, C++:
String[] RNAME= {"nsp://127.0.0.1:9000",
"nsp://127.0.0.1:10000","nsp://127.0.0.1:11000"};
nRealmNode realms[] = new nRealmNode[RNAME.length];
nClusterMemberConfiguration[] config = new nClusterMemberConfiguration[RNAME.length];
for (int x = 0; x < RNAME.length; x++) {
// you don't have to create the realm nodes
// here, since the member configuration will create
// them for you from the RNAME values
realms[x] = new nRealmNode(new nSessionAttributes(RNAME[x]));
config[x]=new nClusterMemberConfiguration(realms[x], true);

}
nClusterNode cluster = nClusterNode.create("cluster1", config);

Once the cluster node is created, each realm node within the cluster will know of the other realms
within the cluster, and be aware of the cluster they are part of. For example, calling the following
method:

Java, C#, C++:
nClusterNode cluster = realms[0].getCluster();

will return the cluster node just created with the realm with nsp://127.0.0.1:9000 for an RNAME.

Cluster nodes contain information about the member realms (nRealmNode objects) as well as the
current state of the cluster members. This information can be found by calling the

Universal Messaging Administration Guide 10.7 503

7 Universal Messaging Administration API

getClusterConnectionStatus()method on the cluster node, which returns a vector of nClusterStatus objects,
each of which corresponds to a realm.

nRealmlNode

Once a realm becomes part of a cluster, channels and queues can be created that are part of the
cluster, as well as standard local resources within the realms. For example, if you were to us the
following calls:

Java, C#, C++:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.PERSISTENT_TYPE);
cattrib.setClusterWide(true);
cattrib.setName(“clusterchannel”);
nLeafNode=.createChannel(cattrib);
realms[0].createChannel(cattrib);

Thiswould create a channel that is visible to all realmswithin a cluster. Any administrative changes
made to this channel such as ACL modifications will also be propagated to all cluster members
in order for the channel to be kept in sync across all realms.

Inter-Cluster Connections

Inter-cluster connections can be created programmatically through the Administration API. To
do this, connect to a realmNode in each cluster and then do the following:

Java, C#, C++:
cluster1realm1.getCluster().registerRemoteCluster(cluster2realms1.getCluster());

Similarly, the inter-cluster connection can be removed programmatically:

Java, C#, C++:
cluster1realm1.getCluster().deregisterRemoteCluster(cluster2realm1.getCluster());

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Multicast
A common way to add a multicast configuration is via the Enterprise Manager (see “Adding a
Multicast Configuration” on page 183) but you can also do this programmatically.

Creating the nMulticastConfiguration

In order to create an nMulticastConfiguration object you need to specify two parameters:

multicastAddress - Multicast IP address to use

504 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

adapter - Network adapter address of your multicast configuration

Java, C#:
String multicastAddress = "227.0.0.98";

String adapter = "10.150.12.1";
nMulticastConfiguration mConf = new nMulticastConfiguration(multicastAddress,

adapter);

C++:
std::string multicastAddress = "227.0.0.98";

std::string adapter = "10.150.12.1";
nMulticastConfiguration* mConf = new nMulticastConfiguration(multicastAddress,

adapter);

Enabling multicast for cluster communication

In order to use multicast for intra-cluster communication you need to set a flag on the
nMulticastConfiguration:

Java, C#:
mConf.setUseForCluster(true);

C++:
mConf->setUseForCluster(true);

Enabling multicast on DataGroups

When you create a DataGroup you have the option to enable multicast delivery. However you
also need to enable multicast for DataGroups on the multicast configuration:

Java, C#:
mConf.setUseForDataGroups(true);

C++:
mConf->setUseForDataGroups(true);

Then (after the configuration has been applied) when you create a DataGroup you need to set the
enableMulticast flag to true:

Java, C#:
boolean enableMulticast = true;

String name = "newGroup";
mySession.createDataGroup(name,enableMulticast);

C++:
bool enableMulticast = true;

std::string name = "newGroup";

Universal Messaging Administration Guide 10.7 505

7 Universal Messaging Administration API

mySession->createDataGroup(name,enableMulticast);

Applying the multicast configuration

In order to register the new configuration on the server you will need to connect to a Universal
Messaging Realm and establish an nRealmNode (see “nRealmNode” on page 491). You can then
get a reference to the nMulticastManager:

Java, C#:
nMulticastManager mMgr = realm.getMulticastManager();

C++:
nMulticastManager* mMgr = realm->getMulticastManager();

You can now use the nMulticastManager to send the new configuration to the server:

Java, C#:
mMgr.addMulticastConfiguration(mConf);

C++:
mMgr->addMulticastConfiguration(mConf);

Security

Access Control Lists
The Universal Messaging Administration API allows Access Control Lists (ACLs) to be set using
the nACL object defines a set of nACLEntry objects that consist of a user subject and a value that
corresponds to the operations permitted for that subject. With an nACL object, it is possible to
added, delete and modify acl entries for specific subjects.

The nACL Object

There are subclasses of the base nACLEntry object. These are :

nRealmACLEntry - defines permissions for a specific subject on the Universal Messaging
Realm server itself

nChannelACLEntry - defines permissions for a subject on a channel or queue

ACL Lists can contain any combination and number of user@host entries, along with Security
Groups (see “Nirvana Admin API - Nirvana Security Groups” on page 506).

Nirvana Admin API - Nirvana Security Groups
The Administration API allows groups of users to be defined. These groups can then be used in
ACL lists in-place of individual ACL entries for each user.

506 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

Security Groups can contain any number of users (user@host pairs), and may also include other
Security Groups.

A new security group can be registered as follows:

Java, C#, C++:

nSecurityGroup grp = new nSecurityGroup("mySecurityGroup");
grp.add(add(new nSubject("user@host");
realmNode.getSecurityGroupManager.registerSecurityGroup(grp);

The SecurityGroupManager can be used to edit memberships ofmultiple groups at the same time,
for example:

Java, C#, C++:
nSecurityGroupManager mgr = realmNode.getSecurityGroupManager();
mgr.registerGroupMembers(group,members);
//Members can be a single subject(user@host), a group, or a collection
//containing many subjects, groups or a combination of these.

Once a security group has been registered, it can be added into ACL lists as you would normally
add a user@host entry. Subsequent changes to the membership of the group will be reflected in
which users have permissions for the corresponding resources.

Java, C#, C++:
nSecurityGroup grp = securityGroupManager.getGroup("myGroupName");
nChannelACLEntry aclEntry = new nChannelACLEntry(grp);
aclEntry.setFullPrivileges(true);
leafNode.addACLEntry(aclEntry);

Groups can also be deregistered from the realm. This will remove the group and will remove the
group reference fromall ACL listswhere the group currently appears. Aswith the other examples,
this can be done via the nSecurityGroupManager:

Java, C#, C++:
mgr.deregisterSecurityGroup(grp);

Aswith all ACLs inUniversalMessaging, privileges are cumulative. Thismeans that, for example,
if a user is in a group which has publish permissions on a channel, but not subscribe permissions,
the user will no be able to subscribe on the channel. Then, if an ACL entry is added on the channel
for his specific username/host pair, with subscribe but no publish permissions, the user will then
be able to both subscribe (from the non-groupACLpermission), and publish (from the groupACL
permission).

Deeply nested Security Groups hierarchies are generally discouraged, since this type of
configuration can negatively impact the speed of checking ACLs, and may result in worse
performance than a shallow hierarchy.

Universal Messaging Administration Guide 10.7 507

7 Universal Messaging Administration API

Realm Access Control List (nACL)
When you have connected to a realm, and have a reference to an nRealmNode object (see
“nRealmNode” on page 491), you can access an the realm's acl object. This object contains a list of
nRealmACLEntry objects that represent a subject and a set permissions for various operations on
a realm.

You can also, add, delete and modify acl entry objects. To obtain the realm acl object, simply call
the following method from a realm node:

Java, C#:
nACL acl = realm.getACLs();

C++:
nACL* acl = realm->getACLs();

nRealmACLEntry

Once you have the acl object, you can then add, remove or modify acl entries:

To find a specific acl entry from the realm acl, you can search the acl using the subject. For example,
if I wished to change the default permissions for the *@* subject (i.e. the default permission for a
realm), I could use the following code:
nRealmACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false);
acl.replace(entry);
realm.setACLs(acl);

C++:
nRealmACLEntry* entry = acl->find("Everyone");
entry->setFullPrivileges(false);
acl->replace(entry);
realm->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Channel Access Control List (nACL)
When connected to aUniversalMessaging realm server ,with a reference to an nRealmNode object
(see “nRealmNode” on page 491) it is possible to get a reference to an nLeafNode (see “nLeafNode
(Channels and Queues)” on page 493) that corresponds to a channel. This can then be used to get
access the node's nACL . This object contains a list of nChannelACLEntry objects that represent a
subject and a set permissions for various operations on a channel. There is a separate
nChannelACLEntry object for each subject that has been permissioned on the nLeafNode.

You can also, add, delete and modify ACL entry objects.

508 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

In order to obtain a reference to the correct channel ACL object for a channel called
"/products/prices", simply call the following method from a realm node:

Java, C#, C++:
nLeafNode chan = realm.findNode("/products/prices");
nACL acl = chan.getACLs();

C++:
nLeafNode* chan = realm->findNode("/products/prices");
nACL* acl = chan->getACLs();

nChannelACLEntry

Once you have the ACL object, you can then add, remove or modify acl entries:

To find a specific ACL entry from the channel ACL, the ACL object can be searched using the
subject.

For example, to change the default permissions for the *@* subject (i.e. the default permission for
the channel), the following code can be used:

Java, C#:
nChannelACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false);
acl.replace(entry);
chan.setACLs(acl);

C++:
nChannelACLEntry* entry = acl->find("Everyone");
entry->setFullPrivileges(false);
acl->replace(entry);
chan->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Click here to see example of how to modify channel ACLs programmatically or to see example of
modifying ACLs using the enterprise manager.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Queue Access Control List
When you have connected to a realm, and have a reference to an nRealmNode object (see
“nRealmNode” on page 491), and an nLeafNode (see “nLeafNode (Channels and Queues)” on
page 493) that corresponds to a queue, you can access the node's ACL object. This object contains
a list of nChannelACLEntry objects that represent a subject and a set permissions for various
operations on a queue.

Universal Messaging Administration Guide 10.7 509

7 Universal Messaging Administration API

You can also, add, delete and modify acl entry objects. To obtain the queue ACL object, simply
call the following method from a realm node:

Java, C#:
nLeafNode queue = realm.findNode("/eur/uk/orders");
nACL acl = queue.getACLs();

C++:
nLeafNode* queue = realm->findNode("/eur/uk/orders");
nACL* acl = queue->getACLs();

Once you have the acl object, you can then add, remove or modify acl entries:

nChannelACLEntry

To find a specific ACL entry from the queue ACL, you can search the ACL using the subject. For
example, if I wished to change the default permissions for the *@* subject (i.e. the default permission
for the queue), I could use the following code:

Java, C#:
nChannelACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false):
acl.replace(entry);
queue.setACLs(acl);

C++:
nChannelACLEntry* entry = acl.find("Everyone");
entry->setFullPrivileges(false):
acl->replace(entry);
queue->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Click here to see example of how to add queue ACLs programmatically or to see example of
modifying ACLs using the enterprise manager.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Management Information

nRealmNode
The Universal Messaging admin API provides real time asynchronous management information
on all objects within a realm server. By creating an nRealmNode (see “nRealmNode” on page 491),
and connecting to a realm, information is automatically delivered to the nRealmNode object from
the realm. This information is delivered periodically in summary form, and also as and when the
state changes for one or all of the objects managed within a realm.

510 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

Before reading this section it may be useful to look at the management information available via
the Universal Messaging enterprise manager. A full description of all Realmmanagement screens
is available in the enterprise manager guide. All functionality seen in the enterprise manager can
be easily added to bespoke admin and monitoring processes as it is written entirely using the
Universal Messaging Admin API.

This section discusses the following different types of information that can be obtained through
the nAdmin API for the nRealmNode object:

Status Information

The nRealmNode extends nContainer, that extends nNode which is a subclass of Observable, so
when the status information is received for a realm node, (by default this is every 5 seconds
although it is configurable (see “Realm Configuration” on page 33) by setting the StatusBroadcast
property under the Global Values config group) the nRealmNode will trigger the update callback
on any knownObservers. For example, if youwrite a class that implements theObserver interface,
it can be added as an observer as follows:

Java, C#, C++:
realm.addObserver(this);

Assuming 'this' is the instance of the class implementing Observer, then the implementation of
the update(Observable obs, Object obj) will be notified that the realm node has changed.

When regular status events are sent, the Observable object referenced in the update method will
be the realm node that you added your observer to, and the Object will be null.

State Change Events

When events occur on a realm node that you have added an observer to, the Observable/Observer
mechanismwill notify you of the details of that event. For example, the following implementation
of the update method of the Observer interface demonstrates how to detect that a new channel or
queue has been created or deleted :

Java, C#:
public void update(Observable obs, Object obj){
if (obs instanceof nContainer) {

if (obj instanceof nLeafNode) {
nLeafNode leaf = (nLeafNode)obj;
nContainer cont = (nContainer)obs;
if (cont.findNode(leaf) == null) {

// node has been deleted
System.out.println("Node "+leaf.getName()+" removed");

} else {
// node has been added
System.out.println("Node "+leaf.getName()+" added");

}
}

}
}

C++:

Universal Messaging Administration Guide 10.7 511

7 Universal Messaging Administration API

void ObservableMapping::update(Observable *pObs, void *pObj)
{
if (obs->getType() == fBase::CONTAINER) {

if (obj->getType() == fBase::LEAFNODE) {
nLeafNode leaf = (nLeafNode*)obj;
nContainer cont = (nContainer*)obs;
if (cont->findNode(leaf)) {
// node has been deleted
printf("Node %s removed",leaf->getName());
System.out.println("Node "+leaf.getName()+" removed");

} else {
// node has been added
printf("Node %s added",leaf->getName());

}
}

}
}

Any changes to the realm ACL will also use the same notification mechanism. For example, if an
ACL entry was changed for a realm, the update method would be fired calling with the realm
node object and the nACLEntry that had been modified.

Logging and Audit

An nRealmNode allows you to asynchronously receive realm log file entries as well as audit file
entries as they occur.

Firstly, for receiving asynchronous log file entries, there is an interface called nLogListener which
your classmust implement. This interface defines a callbackmethod called report(String) that will
deliver each new log entry as a string. Once implemented, the following call will add your log
listener to the realm node:

Java, C#, C++:
realm.addLogListener(this);

Assuming 'this' is the instance of the class implementing the nLogListener interface.

The following is an example of the report(String) method implementation:

Java, C#:
public void report(String msg) {
System.out.println("LOG "+msg);

}

C++:
printf("Log : %s\n", msg);

Secondly, realm servers provide an audit file that tracks object creations and deletions, acl changes,
connection attempts and failures. This information can be very useful for trackingwho has created
ACL entries for example and when they were done.

This information, as with log file entries can be asynchronously received by implementing an
interface called nAuditListener. This interface defines a callbackmethod called audit(nAuditEvent)

512 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

that delivers contains the details of the audit entry. Once implemented, the following call will add
your log listener to the realm node:

Java, C#, C++:
realm.addAuditListener(this);

Assuming 'this' is the instance of the class implementing the nAuditListener.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

nClusterNode
Universal Messaging's admin API provides real time asynchronous information on all objects
within a realm server. By creating an nRealmNode (see “nRealmNode” onpage 491), and connecting
to a realm, information is automatically delivered to the realm node from the realm. This
information is delivered periodically in summary form, and also as and when the state changes
for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information available via
the Universal Messaging enterprise manager. A full description of all Realmmanagement screens
is available in the enterprise manager guide. All functionality seen in the enterprise manager can
be easily added to bespoke admin and monitoring processes as it is written entirely using the
Universal Messaging Admin API.

This section discusses the following different types of information that can be obtained through
the nAdmin API for the nClusterNode object. The nClusterNode corresponds to a cluster that 2
or more realms are members of. Each nRealmNode will have access to its cluster node object once
it has been added to a new or existing cluster:

Status Information

Firstly, in order to detect that a cluster node has been created, one has to observer the realm to
which you are connected.When the realm is added to a cluster, theObserver/Observablemechanism
will notify you of the cluster creation.

As well as implementing the Observer interface to detect new clusters, there is an interface that
can be used to be notified of specific cluster events when clusters already exist. This interface is
the nClusterEventListener. The interface defines various methods that enable your program to
receive callbacks for specific cluster events. When the status changes for a cluster node, this will
trigger an callback on any known listeners of the nClusterNode. For example, when you have
constructed your nRealmNode, if your class implements the nClusterEventListener interface, then
we can do the following:

Java, C#:
realm.addObserver(this);
nClusterNode cluster = realm.getCluster();
if (cluster != null) {
cluster.addListener(this);

}

Universal Messaging Administration Guide 10.7 513

7 Universal Messaging Administration API

C++:
pRealm->addObserver(this);
nClusterNode *pCluster = pRealm->getCluster();
pCluster->addListener(this);

If the realm is not part of a cluster, then the getCluster() method will return null. However, by
adding an observer to the realm, if a cluster is created that contains the realm you are connected
to, the update() method of the Observer implementation will notify you that a cluster has been
created. For example, the following code demonstrates how to detect if a cluster has been created
with the realm you are connected to as a member:

Java, C#:
public void update(Observable o, Object arg) {
if (arg instanceof nClusterNode) {
System.out.println("New cluster formed, name = "+((nClusterNode)arg).getName());
((nClusterNode)arg).addListener(this);

}
}

C++:
nNode *pNode = iterator->second;
int type = pNode->getType ();

if (type == fBase::LEAFNODE)
{

((nLeafNode*)pNode)->addListener(new nChannelWatch((nLeafNode*)pNode, this));
}

Formore information on how tomonitor cluster nodes programmatically please see the appropriate
code example.

For more information on how to monitor cluster nodes using the enterprise manager please see
the enterprise manager guide.

For more information on Universal Messaging Administration, please see the API documentation
and the Enterprise Manager Guide.

nLeafNode
Universal Messaging's admin API provides real time asynchronous information on all objects
within a realm server. By creating an nRealmNode (see “nRealmNode” onpage 491), and connecting
to a realm, information is automatically delivered to the realm node from the realm. This
information is delivered periodically in summary form, and also as and when the state changes
for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information available via
the Universal Messaging enterprise manager. A full description of all Realmmanagement screens
is available in the enterprise manager guide. All functionality seen in the enterprise manager can
be easily added to bespoke admin and monitoring processes as it is written entirely using the
Universal Messaging Admin API.

514 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

This section will discuss the basic information that can be obtained through the nAdmin API for
the nLeafNode object:

Status Events

The nLeafNode extends nNode which is a subclass of Observable, so when the status information
is received for a leaf node, (this occurs only when things change on the channel or queue, i.e. acl,
connections, events published / consumed etc) the nLeafNode will trigger the update callback on
any known Observers. For example, if you write a class that implements the Observer interface,
then we can do the following:

Java, C#:
Enumeration children = realm.getNodes();
while (children.hasMoreElements();
nNode child = (nNode)children.nextElement();
if (child instanceof nLeafNode) {

child.addObserver(this);
}

}

C++:
pNode->addObserver(this);
pNode->addConnectionListener(new nRealmWatch(this));
fSortedList nodes = registerNodes(pNode->getNodes());
for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end();
iterator++)

{
if (type == fBase::LEAFNODE)

{
((nLeafNode*)pNode)->addListener(new nChannelWatch((nLeafNode*)pNode,

this));
}

}

Assuming 'this' is the instance of the class implementing Observer, then the implementation of
the update(Observable obs, Object obj) will be notified that the leaf node has changed.

When events occur on a leaf node that you have added an observer to, the Observable/Observer
mechanismwill notify you of the details of that event. For example, the following implementation
of the updatemethod of theObserver interface demonstrates how to detect that a channel or queue
acl has been added or deleted:

Java, C#:
public void update(Observable obs, Object obj){
if (obs instanceof nLeafNode) {

if (obj instanceof nACLEntry) {
nLeafNode leaf = (nLeafNode)obs;
nACLEntry entry = (nACLEntry)obj;
if (leaf.isChannel()) {

// acl modified / added / deleted
System.out.println("Channel "+leaf.getName()+" acl event for

"+entry.getSubject());
} else {

Universal Messaging Administration Guide 10.7 515

7 Universal Messaging Administration API

// acl modified / added / deleted
System.out.println("Queue "+leaf.getName()+" acl event for

"+entry.getSubject());
}

}
}

}

C++:
void ObservableMapping::update(Observable *pObs, void *pObj)
{
if (obs->getType() == fBase::LEAFNODE) {

if (obj->getType() == fBase::ACLENTRY) {
nLeafNode leaf = (nLeafNode*)obs;
nACLEntry entry = (nACLEntry*)obj;
if (leaf->isChannel()) {
// acl modified / added / deleted

printf("Channel %s acl event for %s",leaf->getName(),+entry->getSubject());
} else {
// acl modified / added / deleted
printf("Queue %s acl event for %s",leaf->getName(),+entry->getSubject());

}
}

}
}

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Connection Information
Universal Messaging's admin API provides real time asynchronous information on all objects
within a realm server. By creating an nRealmNode (see “nRealmNode” onpage 491), and connecting
to a realm, information is automatically delivered to the realm node from the realm. This
information is delivered periodically in summary form, and also as and when the state changes
for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information available via
the Universal Messaging enterprise manager. A full description of all Realmmanagement screens
is available in the enterprise manager guide. All functionality seen in the enterprise manager can
be easily added to bespoke admin and monitoring processes as it is written entirely using the
Universal Messaging Admin API.

This section will discuss the connection information that is available through the nAdmin API for
the nRealmNode and the nLeafNode objects:

nRealmNode Connections

The nRealmNode provides the ability to be notified of connections to the realm, and when
connections are closed. When a client attempts a connection, a callback will be made that gives
the details of the connection, such as the user name, hostname, protocol and connection id. When
a user connection is closed, again, you will receive notification. This information can be useful for
monitoring activity on a realm.

516 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

In order to receive this kind of information, you need to implement the nConnectionListener class.
This class defines 2 methods, newConnection and delConnection. To receive notifications, you
can use the following method:

Java, C#, C++:
realm.addConnectionListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when connections
are made or closed with the realm.

nLeafNode Connections

Universal Messaging provides the ability to issue notifications of connections to leaf nodes.
Connections to leaf nodes correspond to subscriptions on a channel, so when a user subscribes to
a channel or removes the subscription, you can be notified. Notification is via a callback that
contains the details of the connection, such as the user name, hostname, protocol, connection id,
durable name and subscription filter.

In order to receive this kind of information, you need to implement the nConnectionListener class.
This class defines 2 methods, newConnection and delConnection. To receive notifications, you
can use the following method:

Java, C#:
leafaddListener(this);

C++:
leaf->addListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when channel
subscriptions are made or removed.

Universal Messaging Administration Guide 10.7 517

7 Universal Messaging Administration API

518 Universal Messaging Administration Guide 10.7

7 Universal Messaging Administration API

8 Configuring the Java Service Wrapper

The Java Service Wrapper is an application developed by Tanuki Software, Ltd. It is a utility
program that allows an application such as a JVM to run as a Windows service or UNIX daemon.

Several components of Universal Messaging run in a Java Service Wrapper. You can configure
yourUniversalMessaging environment by adding ormodifying the Java ServiceWrapper properties
for each of these components.

In addition, the Java Service Wrapper offers features for monitoring the JVM, logging console
output, and generating thread dumps. The following sections describe how Universal Messaging
components use the features of the Java Service Wrapper.

For an overview of the Java Service Wrapper, see the cross-product document, Software AG
Infrastructure Administrator's Guide.

Product Components that Use the Java Service Wrapper

Each of the following Universal Messaging components runs in its own dedicated Java Service
Wrapper:

The Universal Messaging realm server, located under
<InstallDir>/UniversalMessaging/server/<InstanceName>/bin,where <InstanceName> is the name
of the realm server instance. If there are multiple realm servers, each instance runs in its own
Java Service Wrapper.

The Enterprise Manager and the Enterprise Viewer, located under
<InstallDir>/UniversalMessaging/java/<InstanceName>/bin

All of the Java sample applications, located under
<InstallDir>/UniversalMessaging/java/<InstanceName>/bin.

The certificate generator, server configurator, and interface configurator server applications
under <InstallDir>/UniversalMessaging/server/<InstanceName>/bin.

The Java Service Wrapper Configuration Files

Whenyou start a Java ServiceWrapper, properties in configuration files determine the configuration
of the Java Service Wrapper and the behavior of the logging and monitoring features. There is
typically one configuration file per wrapper that determines a default set of properties, and a

Universal Messaging Administration Guide 10.7 519

second configuration file perwrapper that determines your customized set of properties. A typical
arrangement can be as follows:

DescriptionFile name

Contains initial property settings.wrapper.conf

Do not modify the contents of this file unless asked to do so by Software AG.

Contains properties thatmodify the installed settings inwrapper.conf.custom_wrapper.conf

If you need to modify the property settings for the Java Service
Wrapper, then modify this file. The settings in this file override
settings in the wrapper.conf file.

Note:
The filenames wrapper.conf and custom_wrapper.conf shown here are just examples, and can
be different for any given wrapper. See the following table for details.

Configuration filesComponent

<InstallDir>/profiles/CCE/configuration/wrapper.conf,
custom_wrapper.conf

Command Central

<InstallDir>/profiles/SPM/configuration/wrapper.conf,
custom_wrapper.conf

Software AG Platform Manager

<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/nserverdaemon.conf
: this is the default Tanuki configuration for the Universal
Messaging realm server.

Realm Server <InstanceName>

<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/Server_Common.conf
: this file contains common Tanuki configuration settings
for the Universal Messaging realm server. Historically the
server could be started in different modes and this file
would contain common configuration options.

<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/Custom_Server_Common.conf
: this file should be used to customize the default Tanuki
configuration.

There is a generic
<InstallDir>/UniversalMessaging/java/<InstanceName>/bin/Samples_Common.conf

Java sample applications for
<InstanceName>

file that provides the common settings for all sample
applications.

Additionally, each sample application has its own *.conf
file in
<InstallDir>/UniversalMessaging/java/<InstanceName>/bin/

520 Universal Messaging Administration Guide 10.7

8 Configuring the Java Service Wrapper

Configuration filesComponent

There is a
<InstallDir>/UniversalMessaging/java/<InstanceName>/bin/Admin_Tools_Common.conf

Administration Tools (Enterprise
Manager / Enterprise Viewer)

file that provides common settings for the Enterprise
Manager and the Enterprise Viewer tools.

Additionally,
<InstallDir>/UniversalMessaging/java/<InstanceName>/bin/nenterprisemgr.conf
provides settings for the Enterprise Manager

<InstallDir>/UniversalMessaging/java/<InstanceName>/bin/nenterpriseview.conf
provides settings for the Enterprise Viewer

There is a generic
<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/Server_Tools_Common.conf

Server applications

file that provides common settings for all server
applications.

Additionally each application has its own configuration
file:

<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/CertificateGenerator.conf
provides settings for the certificate generator application.

<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/nServerConfiguration.conf
provides settings for the server configurator application.

<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/inconfig.conf
provides settings for the interface configurator application.

The JVM property settings that Universal Messaging installs are suitable for most environments.
However, you can modify the properties if the installed settings do not suit your needs. For
procedures and additional information, see the cross-product document, Software AG Infrastructure
Administrator's Guide.

The Wrapper Log

The Java Service Wrapper records console output in a log file. The log contains the output sent to
the console by the wrapper itself and by the Universal Messaging component running in the
wrapper. Thewrapper log is especially useful when you run the component as aWindows service
because console output is normally not available to you in this mode.

Log fileComponent

<InstallDir>/profiles/CCE/logs/wrapper.logCommand Central

<InstallDir>/profiles/SPM/logs/wrapper.logSoftware AG Platform Manager

<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/UMRealmService.logRealm Server <InstanceName>

Universal Messaging Administration Guide 10.7 521

8 Configuring the Java Service Wrapper

Logging Properties

The wrapper.console and wrapper.log properties in thewrapper configuration files determine the
content, format, and behavior of the wrapper log.

The default logging settings are suitable for most environments. However, you can modify the
following properties if the installed settings do not suit your needs. For procedures and additional
information, see the cross-product document, Software AG Infrastructure Administrator's Guide.

ValueProperty

Level of messages to display in the console.wrapper.console.loglevel

Format of messages in the console.wrapper.console.format

File in which to log messages.wrapper.logfile

Level of messages to write in the log file.wrapper.logfile.loglevel

Format of messages in the log file.wrapper.logfile.format

Maximum size to which the log can grow.wrapper.logfile.maxsize

Number of old logs to maintain.wrapper.logfile.maxfiles

Level of messages to write to the Event Log on Windows
systems or the syslog on UNIX.

wrapper.syslog.loglevel

Fault Monitoring

The Java ServiceWrapper canmonitor the JVM for the certain conditions and then restart the JVM
or perform other actions when it detects these conditions.

The following table gives some examples. To learnmore about these features, see the cross-product
document, Software AG Infrastructure Administrator's Guide.

User configurable?Enabled?Feature

No.Donotmodify the wrapper.pingproperties unless
asked to do so by Software AG.

YesJVM timeout

Yes. For more details see, Deadlock-Detecting
Properties.

NoDeadlock detection

Yes. Formore details see, Console Filtering Properties.NoConsole filtering

JVM Timeout Properties

The wrapper.ping.interval properties in the wrapper configuration files determine whether the
wrapper monitors the JVM for timeout and what action it takes when a timeout occurs. The
following table gives some examples.

522 Universal Messaging Administration Guide 10.7

8 Configuring the Java Service Wrapper

ValueProperty

How often, in seconds, the Java Service Wrapper pings
JVM to ensure that it is active. The default is 5 seconds.

wrapper.ping.interval

Length of time, in seconds that the Wrapper waits for a
response to a ping. Set this property to 60. If theWrapper

wrapper.ping.timeout

does not receive a response in the specified time, it initiates
the action specified in wrapper.ping.timeout.action.

Action to take if the Wrapper does not receive a response
to a ping in the allotted time. Set this property to
DEBUG,DUMP,RESTART.

wrapper.ping.timeout.action

Deadlock-Detection Properties

The wrapper.check.deadlock properties in the wrapper configuration files determine whether the
wrapper monitors the JVM for deadlocks and what action it takes when a deadlock occurs. The
following table gives some examples.

ValueProperty

Flag (TRUE or FALSE) that enables or disables
deadlock detection. The default is FALSE.

wrapper.check.deadlock

How often, in seconds, the Java Service Wrapper
evaluates the JVM for a deadlock condition. The
default is 60 seconds.

wrapper.check.deadlock.interval

Action that occurs if the Java Service Wrapper detects
a deadlock condition.

wrapper.check.deadlock.action

Information to log when the Wrapper detects a
deadlock condition. Set this property to
DEBUG,DUMP,RESTART.

wrapper.check.deadlock.output

Console Filtering Properties

The wrapper.filter properties in the wrapper configuration files determinewhether the wrapper
monitors the console for specified messages and what action it takes when a specified message
occurs. To use console filtering, you can configure the following properties. However, SoftwareAG
recommends that you do not modify these properties unless asked to do so. The following table
gives some examples.

ValueProperty

String of text that you want to detect in the console
output.

wrapper.filter.trigger. n

Universal Messaging Administration Guide 10.7 523

8 Configuring the Java Service Wrapper

ValueProperty

Action that occurs when the Java Service Wrapper
detects the string of text.

wrapper.filter.action. n

Flag (TRUE or FALSE) that specifies whether the
Java ServiceWrapper processeswildcard characters
that appear in wrapper.filter.trigger. n.

wrapper.filter.allow_wildcards. n

Message that displays when Java Service Wrapper
detects the string of text.

wrapper.filter.message. n

Generating a Thread Dump

The Java ServiceWrapper provides a utility for generating a thread dumpof the JVMwhen running
as aWindows service. A thread dump can help you locate thread contention issues that can cause
thread blocks or deadlocks.

Go to the bin directory of theWrapper and execute the command service -dump. The Java Service
Wrapper writes the thread dump to the wrapper log file.

524 Universal Messaging Administration Guide 10.7

8 Configuring the Java Service Wrapper

9 Thread Pool Monitoring

In addition to the thread dumpgeneration provided by the Java ServiceWrapper, you can configure
the Universal Messaging realm servers to monitor the thread pool for slow-running threads and
generate thread dumps when certain events occur. The thread dumps and messages generated
from the user-defined monitoring of the thread pool are logged into Software AG_directory
\UniversalMessaging\server\InstanceName\data\nirvana.log.

The thread poolmonitoring generates thread dumps for stalled or slow-moving tasks, and reports
reduced thread availability. Stalled tasks are tasks that run longer than the specified time.
Slow-moving tasks are tasks that run slower than the timeout for the task execution. You can also
set a threshold for pending tasks to monitor thread availability. You can then use the thread dump
entries in the log to troubleshoot the task execution.

To ensure that the logs are not too big, you can configure the interval at which the server generates
a thread dump.

Thread-Pool Monitoring Configuration Properties

You configure the thread-poolmonitoring properties for a realm in theThread Pool Config group
on the Config tab in the Enterprise Manager.

For information aboutworkingwithUniversalMessaging configuration properties in the Enterprise
Manager, see .

StalledTasksWarningTime
The time in milliseconds before reporting a stalled task. The system writes the information at
the WARNING log level and generates a thread dump. When you change this configuration,
the thread pool monitor interval is updated to monitor at the same time interval as the value
you specify for this property. Valid values range from 10000 to 60000. Default is 60000.

SlowTaskWarningTime
The time in milliseconds before reporting a slow-running task. The server logs the information
at theWARNING log level and generates a thread dump. Valid values range from 1000 to 30000.
Default is 5000.

PendingTaskWarningThreshold
The threshold at which the server starts to warn about the number of pending tasks. When the
number of pending tasks is below the threshold, but over 100, the server logs a WARNING
message. When the number is above the threshold, the server logs an ERROR message. When

Universal Messaging Administration Guide 10.7 525

the server does not find available threads, it logs a message that the thread pool is exhausted.
Valid values range from 100 to 100000. Default is 1000.

ThreadDumpOnSlowTask
Whether to generate a thread dump when the server reports a slow task. Valid values are true
- generate a thread dump, or false - do not generate a thread dump. Default is false.

ThreadDumpInterval
The interval inmilliseconds at which a thread dump is generatedwhen the system reports slow
or stalled tasks, or when the number of pending tasks exceeds the value of
PendingTaskWarningThreshold. The thread dump interval applies across all thread pools in
the JVM instance. Valid values range from 1000 to 600000. Default is 60000.

Examples

In the following example, the slow-moving task warning timeout is set to 1000ms and the server
is configured to generate a thread dump for a slow task. The task completed in 1060ms and the
server reports that the task execution time exceeds 1000ms and generates a thread dump. The
following entries will show in the log:
[Wed Feb 17 07:39:32.790 IST 2021] [ThreadPoolTest-Slow:9] ThreadPool:
<ThreadPool-SlowTasksTest> Slow moving task detected. ThreadPool-SlowTasksTest:9 has
been active
for over 1060(ms) running task class
com.pcbsys.foundation.threads.fThreadPoolTaskReportTest$TestTask, Idle Threads 7,
Allocated
Threads 10, Queued Tasks 0, Task Executed 10
[Wed Feb 17 07:39:32.790 IST 2021] [ThreadPoolTest-Slow:0] ThreadPool:
<ThreadPool-SlowTasksTest>
Slow moving task detected. ThreadPool-SlowTasksTest:0 has been active for over 1060(ms)
running
task class com.pcbsys.foundation.threads.fThreadPoolTaskReportTest$TestTask, Idle
Threads 7,
Allocated Threads 10, Queued Tasks 0, Task Executed 10

[Wed Feb 17 07:39:41.000 IST 2021] [ThreadPoolTest-Slow:7] ThreadPool:
<TThreadPool-SlowTasksTest> Slow moving task detected. ThreadPool-SlowTasksTest:7 has
been active
for over 1020(ms) running task class
com.pcbsys.foundation.threads.fThreadPoolTaskReportTest$TestTask, Idle Threads 7,
Allocated
Threads 10, Queued Tasks 0, Task Executed 10
[Wed Feb 17 07:39:41.000 IST 2021] [ThreadPoolTest-Slow:7] Producing thread dump.
Reason : Slow
moving task detected on thread pool: ThreadPool-SlowTasksTest

In the following example, the threshold for pending tasks is set to 200. Because the number of
pending tasks in the thread pool is 209, the server logs an error message and generates a thread
dump. The following entries will show in the log:
[Wed Feb 17 07:39:39.949 IST 2021] [Time-limited test] ThreadPool:
<ThreadPoolTest-Pending> Pending tasks are above the threshold 200 pending tasks 209,
Idle Threads
0, Allocated Threads 1, Queued Tasks 209, Task Executed 210
[Wed Feb 17 07:39:39.949 IST 2021] [Time-limited test] Producing thread dump. Reason
: Pending

526 Universal Messaging Administration Guide 10.7

9 Thread Pool Monitoring

tasks are above the threshold: 200 pending tasks: 209

Troubleshooting Task Execution

To correct or improve the task execution, you can take the following actions:

In the thread pool configuration, checkwhether you have allocated enough threads. If the logs
report a large number of queued tasks, allocate more threads to the pool.

Check for overall system slowdown, such as disk speed, network speed, CPU speed and
allocation, and JVM garbage collection.

Check for product behavior that might cause a slow performance.

Universal Messaging Administration Guide 10.7 527

9 Thread Pool Monitoring

528 Universal Messaging Administration Guide 10.7

9 Thread Pool Monitoring

10 Using Nginx with Universal Messaging

■ About Using Nginx with Universal Messaging .. 530

■ Configure Nginx to Direct HTTP Requests to Universal Messaging 530

■ Nginx Directives Configuration ... 531

■ Configure Nginx to Direct HTTPS Requests to Universal Messaging 532

■ Forward Requests Based on URL Matches ... 535

Universal Messaging Administration Guide 10.7 529

About Using Nginx with Universal Messaging

Nginx is open-source software for web serving, reverse proxying, caching, and load balancing.
You can useNginx as a reverse proxy server for UniversalMessaging. To do so, youmust configure
Nginx to redirect HTTP and HTTPS traffic to Universal Messaging.

Important:
Note thatUniversalMessaging does not support load balancing usingNginx but only proxying.

Consider the following requirements before configuringNginx for usewith UniversalMessaging:

You must be familiar with the Nginx structure, configuration, and terminology, including the
nginx.conf configuration file and the directives, blocks, and contexts included in it.

You must have Nginx installed. For information about installing and configuring Nginx, see
https://nginx.org/en/docs/.

Youmust configure an nhp or nhps interface on theUniversalMessaging server for redirecting
HTTP or HTTPS traffic, respectively. For information about how to configure nhp and nhps
interfaces, see “Creating Interfaces” on page 171 and “Creating an SSL-Enabled Interface” on
page 178.

Configure Nginx to Direct HTTP Requests to Universal
Messaging

Nginx provides an http block that includes directives for handling web traffic. The http block in
turn includes a server block where you specify virtual server configurations.

To configure Nginx to serve http requests to Universal Messaging, add the following code to the
nginx.conf file or to a separate conf file that you include in the main Nginx configuration module.
If Nginx is running, you must reload it for the changes to take effect.
user nginx;
worker_processes auto;
pid /var/run/nginx.pid;
#Set the number of open file descriptors configuration according to the resource limits
of the machine.
worker_rlimit_nofile 25000;
events {

#Set this configuration according to the resource limits of the machine.
worker_connections 20000;

}
http {

#Log settings. You can customize them as required.
log_format main '$remote_addr - $remote_user [$time_local] "$request" '

'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

#The server closes idle connections after this timeout.
keepalive_timeout 300s;

#The number of requests that the client can make over a single connection.
keepalive_requests 1000000;

530 Universal Messaging Administration Guide 10.7

10 Using Nginx with Universal Messaging

https://nginx.org/en/docs/

#Required setting because the UM client sends “User-Agent: Mozilla/4.0 (compatible;
MSIE 6.0;

#Windows NT 5.0).” The Nginx default value is 'msie6', which causes Nginx to
close

#UM client connections.
keepalive_disable none;

server {
listen 80;
server_name proxy_server;
location / {

#Important: Nginx must continuously send data to the Universal
Messaging

#client rather than buffering it.
proxy_buffering off;

#Important: Configure proxy http protocol version 1.1 to enable the
connection

#keepalive and specify an empty string for the connection header.
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_pass http://umhost:port;

}
}

}

In the provided configuration, the Nginx server listens on port 80 and redirects client requests to
the UniversalMessaging server URL specified in the proxy_pass directive that is part of the server
> location block.

For example, if you specify http://umserver1host:9000 for proxy_pass, when a client is trying to
connect to http://nginxhost:80, which is the address of theNginx server, all requests to this server
will be redirected to the Universal Messaging server configured at http://umserver1host:9000.

Nginx Directives Configuration

The following table describes the Nginx directives you must configure for redirecting both HTTP
and HTTPS traffic to Universal Messaging and their required values.

DescriptionRequired ValueDirectives

Disable this directive for servingUniversalMessaging requests
because Universal Messaging does not send a content length

offproxy_buffering

to initial HTTP connections. This option optimizes stateless
HTTP environments, but Universal Messaging uses a
streaming protocol. Default is on.

TheURLof the proxiedUniversalMessaging server. Configure
Universal Messaging with either an nhp or an nhps protocol.

http|https://umhost:portproxy_pass

This directive takes either an HTTP or an HTTPS protocol
respectively to redirect the requests, for example,
http://umhost1:9000 or https://umhost1:9100.

Universal Messaging Administration Guide 10.7 531

10 Using Nginx with Universal Messaging

DescriptionRequired ValueDirectives

Number of keepalive idle connections that the Universal
Messaging server can have. Part of the upstream directive.

100keepalive

Keepalive settings are important when handling many client
connections. This directive has no default value.

Number of requests that can be served through a single
keepalive connection to Universal Messaging. Software AG
recommends that you set a high value. Default is 1000.

100000keepalive_requests

Timeout in seconds for idle connections that remain open for
the specified amount of time. Default is 75s.

300skeepalive_
timeout

Set the http version to 1.1. Default is 1.0.1.1proxy_http_version

Connection headers. Set an empty value. Default is close,
which closes the connections of the Universal Messaging
server.

Connection “”proxy_set_header

Configure Nginx to Direct HTTPS Requests to Universal
Messaging

Use SSL Passthrough

With SSL passthrough, traffic passes through a proxy server to a backend server without being
decrypting on the proxy server. Proxy SSL passthrough is the simplest way to configure SSL in a
proxy server but is suitable only for smaller deployments.

To use SSL passthrough with Nginx, add the following code to the nginx.conf file. If Nginx is
running, you must reload it for the changes to take effect.
server {
listen 443 ssl;
server_name proxy_server;

#Setting Nginx to serve HTTPS traffic requires private keys and certificates.
ssl_certificate /etc/nginx/certificates/servercerts/server.pem;
ssl_certificate_key /etc/nginx/certificates/servercerts/server.key;
ssl_trusted_certificate /etc/nginx/certificates/servercerts/truststore.crt;

location / {
#Important: Nginx must continuously send data to the Universal Messaging

client rather than
#buffering it.
proxy_buffering off;
#SSL settings for validating Nginx by the Universal Messaging server
proxy_ssl_certificate

/etc/nginx/certificates/servercerts/server.pem;
proxy_ssl_certificate_key

/etc/nginx/certificates/servercerts/server.key;

532 Universal Messaging Administration Guide 10.7

10 Using Nginx with Universal Messaging

proxy_ssl_trusted_certificate
/etc/nginx/certificates/servercerts/truststore.crt;

#Important: Configure proxy http protocol version 1.1 to enable the
connection keepalive

#and specify an empty string for the connection header.
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_pass https://umhost:port;

}
}

Use SSL Termination

SSL termination or offloading decrypts all HTTPS traffic on the proxy server. SSL offloading allows
data to be inspected as the data passes between the proxy server and the backend server. It also
reduces CPU demand on an application server by decrypting data in advance. However, SSL
offloading is vulnerable to attacks because the data travels unencrypted between the proxy server
and the application server.

Nginx decrypts the request before sending it to the backend server and encrypts the response
before sending it to the client. This action takes extra CPU cycles to encrypt and decryptmessages.

Add the following code to the nginx.conf file with the nhps interface that you configured for your
Universal Messaging server and reload Nginx:
server {
listen 443 ssl;
server_name proxy_server;
#SSL certificates and keys
ssl_certificate /etc/nginx/certificates/servercerts/server.pem;
ssl_certificate_key /etc/nginx/certificates/servercerts/server.key;
ssl_trusted_certificate /etc/nginx/certificates/servercerts/truststore.crt;

location / {
#Important: Nginx must continuously send data to the UM client rather

than buffering it.
proxy_buffering off;

#Important: Configure proxy http protocol version 1.1 to enable the
connection keepalive

#and specify an empty string for the Connection header.
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_pass http://umhost:port;

}
}

SSL Directives

The following table describes the Nginx SSL directives to configure and their required values for
redirecting HTTPS traffic to Universal Messaging.

Universal Messaging Administration Guide 10.7 533

10 Using Nginx with Universal Messaging

DescriptionRequired ValueDirectives

Server certificate file in pem format.<certificate_file_path>ssl_certificate

Server private key in pem format.<certificate_key_file_path>ssl_certificate_key

File with trusted CA certificates in pem format
used to verify clients.

<truststore_file_path>ssl_trusted_certificate

Specifies a filewith the certificate in pem format
used for authentication to a proxied HTTPS
server.

<certificate_file_path>proxy_ssl_certificate

Specifies a filewith the secret key in pem format
used for authentication to a proxied HTTPS
server.

<certificate_file_path>proxy_ssl_certificate_key

You can specify the value engine:name:id
instead of the file (1.7.9), which loads a secret
key with the specified ID from the OpenSSL
engine name.

Specifies a file with trusted CA certificates in
pem format used to verify the certificate of the
proxied HTTPS server.

<truststore_file_path>proxy_ssl_trusted_certificate

Client Code

Update the keystore and truststore certificates of the client in the session attributes in the
createSession()method of the following program:
public void createSessionAndCreateChannel(String arg) throws Exception {

nSessionAttributes attr = new nSessionAttributes(“nhps://locahost:443”);
attr.setName("client");
attr.setTruststore("C:\\certs\\truststore.jks", "nirvana");
attr.setKeystore("C:\\certs\\myclient.jks", "nirvana");
attr.setSSLProtocol("TLS");
nSession session = nSessionFactory.create(attr);
session.init();
nChannel chan = session.createChannel(new nChannelAttributes(“MyChannel”));
session.close();

}

The program creates a session to the Universal Messaging sever that is specified in the proxy_pass
location directive of the nginx.conf file.

When you run the program specify the Nginx HTTPS URL in the format nhps://nginxhost:port,
for example, nhps://locahost:443. You can also create a channel on the Universal Messaging
server with the proxied Nginx server.

534 Universal Messaging Administration Guide 10.7

10 Using Nginx with Universal Messaging

Forward Requests Based on URL Matches

The Nginx location directive in the ngnix.conf file enables you to route requests to a location in
the file system.

WhileNginxmatches or searches a location block against the requestedURL, the locationdirective
tells Nginx where to search for a specific path by including all files and directories.

The location directive has the following syntax:
location [modifier] [URL-match] {
...

}

Formore information about how to use regular expressions (regex) to forward requests to specific
locations, see https://www.nginx.com/blog/regular-expression-tester-nginx/.

The following example shows how to redirect requests to specific Universal Messaging servers
by using regex:
server {
listen 80;
server_name proxy_server;

location / {
#Important: Nginx must continuously send data to Universal Messaging

clients
#rather than buffering it.
proxy_buffering off;

#Important: Configure proxy http 1.1 protocol version to enable the
connection

#keepalive and rewrite the Connection header.
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_pass http://umhost:port;

}
location /umserver1/ {

#Important: Nginx must continuously send data to Universal Messaging
clients

#rather than buffering it.
proxy_buffering off;

#Important: Configure proxy http 1.1 protocol version to enable the
connection

#keepalive and rewrite the Connection header.
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_pass http://umserver1host:port;

}
location = /umserver2 {

#Important: Nginx must continuously send data to Universal Messaging
clients

#rather than buffering it.
proxy_buffering off;

Universal Messaging Administration Guide 10.7 535

10 Using Nginx with Universal Messaging

https://www.nginx.com/blog/regular-expression-tester-nginx/

#Important: Configure proxy http 1.1 protocol version to enable the
connection

#keepalive and rewrite the Connection header.
proxy_http_version 1.1;
proxy_set_header Connection "";
proxy_pass http://umserver2host:port;

}
}

In the example, traffic is redirected as follows:

location /umserver1/ - requests that start with umserver1 are redirected to
http://umserver1host:port.

location = /umserver2 - requests that match the umserver2 block are redirected to
http://umserver2host:port.

Requests that do not match location /umserver1/ or location = /umserver2 are served by
the default location directive.

Client Code Example
public void createSessionAndCreateChannel(String arg) throws Exception {

// The request initiated with nhp://localhost:80/ without any endpoint is redirected
to

// http://umhost:port; in the code sample above.

nSessionAttributes defaultAttr = new nSessionAttributes(“nhp://locahost:80/”);
defaultAttr.setName("defaultAttr-client");
nSession defautServerSession= nSessionFactory.create(defaultAttr);
defautServerSession.init();
nChannel chan = session.createChannel(new

nChannelAttributes(“defaultServerChannel”));
defautServerSession.close();
// The request initiated with nhp://localhost:80/umserver1 without any endpoint

is
// redirected to http://umserver1host:port; in the code sample above.

nSessionAttributes attr1 = new nSessionAttributes(“nhp://locahost:80/umserver1”);
attr1.setName("umserver1-client");
nSession session1 = nSessionFactory.create(attr1);
session1.init();
nChannel chan1 = session.createChannel(new nChannelAttributes(“umserver1Channel”));
session1.close();

// The request initiated with nhp://localhost:80/umserver2 without any endpoint
is

// redirected to http://umserver2host:port; in the code sample above.

nSessionAttributes attr2 = new nSessionAttributes(“nhp://locahost:80/umserver2”);
attr2.setName("umserver2-client");
nSession session2 = nSessionFactory.create(attr2);
session2.init();
nChannel chan2 = session.createChannel(new nChannelAttributes(“umserver2Channel”));
session2.close();

}

536 Universal Messaging Administration Guide 10.7

10 Using Nginx with Universal Messaging

11 Migrating from IPv4 to IPv6

Overview

If you currently use an IPv4 infrastructure for network communications, there is a general
recommendationwithin the IT industry tomove to an IPv6 infrastructure. One of themain reasons
is that the number of available new IPv4 addresses has reduced to practically zero, whereas new
IPv6 addresses are expected to be plentiful for a long time to come.

Universal Messaging can support an environment that uses only IPv4, or an environment that
uses only IPv6, or an environment that supports a combination of IPv4 and IPv6. Universal
Messaging is written in Java, which by design works seamlessly with IPv4 and IPv6 in parallel
(themechanism is called dual stack). If the underlying operating system and network infrastructure
support dual stack, then the Universal Messaging server socket can communicate with both IPv4
and IPv6 clients at the transport layer without any changes in the source code or settings.

The server sockets that are expected to serve both IPv4 and IPv6 clients should be bound to "0.0.0.0"
or "::0", and not to any specific IPv4 or IPv6 address.

The following setups are supported:

If your environment uses only IPv4 addressing, Universal Messagingwill continue to support
your environment. There is no technical requirement to move to IPv6.

If you intend to migrate your entire environment to IPv6 addressing, Universal Messaging
will in most cases continue to work after the migration without manual reconfiguration, but
there are some points to watch out for. See the sectionMigrating to IPv6 below for details.

If you intend to use IPv4 addressing for some clients, and IPv6 addressing for other clients,
this is also supported in Universal Messaging.

Migrating to IPv6

If you plan to migrate all of your clients from IPv4 to IPv6 addressing, Universal Messaging will
in most cases work with the new IPv6 clients without needing anymanual configuration changes.
However, you need to check for any hard-coded IPv4 addresses in the locations mentioned below
and update them accordingly before you activate the IPv6 environment:

The hosts file

Universal Messaging Administration Guide 10.7 537

Check the entries in the hosts file. If required, map the host name to the required IPv6 address.
On Linux, the hosts file is /etc/hosts , and on Windows it is typically C:\Windows\System32\
drivers\etc\hosts.

The Server_Common.conf file

Check if Server_Common.conf uses a specific IPv4 address for the default adapter. If so, do the
following:

Change the default adapter to "0.0.0.0" or "::0" or hostname as per the requirement.

Take a backup of adapters.nst, then delete adapters.nst.

The file adapters.nst is a binary file that contains the interface details of the realm server.
It is present in <InstallDir>/UniversalMessaging/server/<InstanceName>/data/
RealmSpecific.

Restart the server. This will create a new adapters.nst file.

Also, before migrating to IPv6, check if your Universal Messaging server setup uses any other
interface that was created using a specific IPv4 address. If you do not intend to support the IPv4
address any more after migration, you need to delete the interface. If, however, the IPv4 address
will still be valid aftermigration, the interface does not need to be deleted, as UniversalMessaging
supports IPv4 and IPv6 at the same time.

To ensure that all of the IPv4 interface addresses that youwish to convert in aUniversalMessaging
realm have indeed been converted to IPv6 addresses, we suggest that you proceed as follows:

1. Export the current realm configuration to an XML file.

2. In the XML file, if there are any hard-coded IPv4 addresses that you wish to migrate, change
them to either the host name or the corresponding IPv6 address.

3. If you made any changes in the XML file, import the XML file in order to update the realm to
the new configuration. If you made no changes in the XML file, you can of course omit this
step.

The instructions for exporting and importing a realm are given in the section “ Exporting and
Importing Realm XML Configurations ” on page 212.

538 Universal Messaging Administration Guide 10.7

11 Migrating from IPv4 to IPv6

12 Data Protection and Privacy

Introduction

Legislation in various parts of the world – such as the General Data Protection Regulation (GDPR)
of the EuropeanUnion (EU) - specifies that personal data cannot be collected andprocessedwithout
a person’s consent or other legitimate basis, and that organizations are responsible for protecting
personal data that is entrusted to them. The concept of “personal data” typically covers details
that can be used to identify a person, such as the person's name, email address or IP address.

Note:
In the different countries of the EU, the GDPRmay be known under another, language-specific
name. For example, it known as the Datenschutz-Grundverordnung (DSGVO) in Germany and
as Règlement Général sur la Protection des Données (RGPD) in France.

Universal Messaging includes personal data such as user names, and client IP addresses / host
names in the logs. Universal Messaging includes personal data in logs for purposes of auditing,
monitoring activity with the server, and diagnosing and correcting problems.

Universal Messaging is a middleware platform on which customers build their own applications.
Most of the data handled by Universal Messaging is arbitrary customer-defined data whose
meaning is defined by the customerwhodeveloped the application. Some of that customer-defined
data may qualify as “personal data”, so if you are developing applications on the Universal
Messaging platform, you should be careful to ensure compliance with laws related to that data.

If Software AG support personnel request you to send diagnostic data such as operational logs
for the purposes of diagnosing product issues, and if this diagnostic data contains personal data,
you should be aware that Software AG has GDPR processes in place to ensure that data is held
securely and deleted when no longer needed.

Summary of Log Files used by Universal Messaging

Universal Messaging uses the log files described in the following table. The log files can contain
personal data associatedwith a current activity, such as a user ID and client IP address. The length
of time that a Universal Messaging server stores log data depends on the log.

Universal Messaging Administration Guide 10.7 539

Log

The log file is named nirvana.log and resides in the
server/<RealmServerName>/data directory. The data remains there for as
long as the log file is retained.

standard server log file

When using the default Universal Messaging logger, the log file policy
is defined by the DefaultLogSize realm server property which defines
themaximumsize of the log file, and the RolledLogFileDepth realm server
property, which defines the number of log files to keep if log rolling is
activated.

The personal data can be removed by either manually removing lines
from the file, or deleting a log file altogether.

The audit log file is named NirvanaAudit.mem and resides in the
server/<RealmServerName>/data/RealmSpecific directory. The data
remains in the audit log file for as long as the file exists.

audit log file

There is no mechanism to partially remove data from this log file. The
onlyway to remove the personal data is by deleting the NirvanaAudit.mem
file.

Ad-hoc creation of data collections

In addition to standard operational data that is collected by Universal Messaging, some data can
be collected on an ad-hoc basis by the Universal Messaging administrator. Such ad-hoc data is
typically written to a location on your file system.

Examples are:

Realm Information Collector
The files collected by the Realm Information Collector tool can include files that may contain
personal data related to messages that are being handled by the server.

Exported Realm Configuration File
When you export a realm's configuration to an XML file for a later re-import, the XML file can
contain personal data, such as user IDs and client IPs related to ACL permissions for accessing
realm components.

Heap Dump
A heap dump (which Software AGmay request you to generate for the purpose of diagnosing
problems) may contain personal data related to messages that are being handled by the server,
or the server's log files.

Protecting and erasing data from log files

As there are many situations in which user names, IP addresses or events containing personal
data may be logged, including by customer-provided plug-ins and third-party libraries, it is not

540 Universal Messaging Administration Guide 10.7

12 Data Protection and Privacy

practical to enumerate all of the log messages that may contain such data, or the set of categories
they may be logged under.

Log files are formatted for reading by human system administrators (notmachines), so rectification
of data contained within them does not make sense, and erasure of data for individual persons is
not practical. The retention of complete information in log files also serves an important and
legitimate purpose, in providing a security audit trail, and the ability to diagnose and fix accidental
or unlawful events compromising the availability, integrity or confidentiality of the application
and personal data it contains.

For these reasons, the recommended approach to protecting personal data in log files is to regularly
rotate the logs (also termed log rolling) in cases where log rotation is activated, and archive the
old log files to a secured location protected by encryption.

Universal Messaging Administration Guide 10.7 541

12 Data Protection and Privacy

542 Universal Messaging Administration Guide 10.7

12 Data Protection and Privacy

	Table of Contents
	About this Documentation
	Online Information and Support
	Data Protection

	Overview
	2 Universal Messaging Enterprise Manager
	About the Enterprise Manager
	Starting the Enterprise Manager
	Tab-by-Tab Overview
	About the Enterprise View
	Realm Administration
	Zone Administration
	Cluster Administration
	Channel Administration
	Queue Administration
	Data Group Administration
	Container Administration
	Using ACLs for Role-Based Security
	Scheduling
	Integration with JNDI
	Administering TCP Interfaces, IP Multicast, and Shared Memory
	Plugins
	Exporting and Importing Realm XML Configurations
	Using the Enterprise Viewer

	3 Using Command Central to Manage Universal Messaging
	About Using Command Central to Manage Universal Messaging
	Managing Universal Messaging Server Instances
	Starting, Stopping, and Restarting Universal Messaging
	Securing Communication Between Command Central and Universal Messaging
	Configuring Universal Messaging
	Securing Access to Command Central
	Administering Universal Messaging
	Viewing Universal Messaging Run-time Monitoring Statuses
	Viewing Universal Messaging KPIs
	Viewing Universal Messaging Logs
	Viewing Universal Messaging Inventory
	Configuration Types That the Universal Messaging Server Supports
	Using the Command Line to Manage Universal Messaging
	Lifecycle Actions for Universal Messaging Server
	Run-time Monitoring States for Universal Messaging Server
	Run-time Monitoring Statuses for Universal Messaging Server
	Deployment of Universal Messaging Assets
	Templates for Provisioning Universal Messaging

	4 Comparison of Enterprise Manager and Command Central Features
	5 Setting up Active/Passive Clustering with Shared Storage
	About Active/Passive Clustering
	Overview of Active/Passive Clustering on Windows
	Overview of Active/Passive Clustering on UNIX
	Configuring a Universal Messaging Active/Passive Cluster on UNIX

	6 Command Line Administration Tools
	Introduction to the Administration Tools
	Starting the Tools using the Tools Runner Application
	Performing Standard Administration Tasks on Realms and Clusters
	Running a Configuration Health Check
	The "Realm Information Collector" Diagnostic Tool
	The ExportEventsFromOfflineMemFile Tool
	The RepublishEventsFromOfflineFile Tool
	Syntax reference for command line tools

	7 Universal Messaging Administration API
	Introduction
	Administration API Package Documentation
	Namespace Objects
	Realm Server Management
	Security
	Management Information

	8 Configuring the Java Service Wrapper
	9 Thread Pool Monitoring
	10 Using Nginx with Universal Messaging
	About Using Nginx with Universal Messaging
	Configure Nginx to Direct HTTP Requests to Universal Messaging
	Nginx Directives Configuration
	Configure Nginx to Direct HTTPS Requests to Universal Messaging
	Forward Requests Based on URL Matches

	11 Migrating from IPv4 to IPv6
	12 Data Protection and Privacy

