
BigMemory Max Developer Guide

Version 4.3.10

October 2021

This document applies to BigMemory 4.3.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: BMM-EHCDG-4310-20211129

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About This Documentation..7
Online Information and Support...8
Data Protection...8

1 Key Classes and Methods..9
About the Key Classes...10
CacheManager..10
Cache..11
Element..11

2 Basic Caching...13
Creating a CacheManager...14
Loading a Configuration...14
Adding and Removing Caches Programmatically..15
Performing Basic Cache Operations..16
Shut down the CacheManager...17
JUnit Tests..17

3 Cache Usage Patterns..19
Supported Usage Patterns...20
cache-aside...20
cache-as-sor...21
read-through...22
write-through..22
write-behind..23
Copy Cache...23

4 Searching a Cache...25
About Searching...26
Making a Cache Searchable..26
Defining Attributes..28
Creating a Query..32
Obtaining and Organizing Query Results..34
Best Practices for Optimizing Searches...37
Concurrency Considerations..39
Options for Working with Nulls..40

5 Searching with BigMemory SQL...41
About BigMemory SQL...42
Using BigMemory SQL..42
Using the QueryManager API..43
SQL Syntax and Examples..44

BigMemory Max Developer Guide 4.3.10 iii

6 Using Explicit Locking...53
About Explicit Locking..54
Code Sample for Explicit Locking..54
How Locking Works..54
The Locking API...54

7 Blocking and Self Populating Caches...57
About Blocking and Self-Populating Caches..58
Blocking Cache..58
SelfPopulatingCache..58

8 Transaction Support..59
About Transaction Support...60
Requirements for Transactional Caches..61
Configuring Transactional Cache...62
Working with Global Transactions..62
Failure Recovery...63
Sample Applications..63
Transaction Managers..65
Working with Local Transactions...65
Performance Considerations...67
Potential Timeouts in a Transactional Cache..68
Transactions in Write-Behind and Write-Through Caches...68
Support for Other Transaction Systems..68

9 Write-Through and Write-Behind Caches..71
About Write-Through and Write-Behind Caches..72
Using a Combined Read-Through and Write-Behind Cache...74
Write-Behind Sample Application...74
Configuring a Cache Writer..75
CacheWriterFactory Attributes...76
API..77
SPI...78
Monitoring the Size of Write-Behind Queue..80
Handling Exceptions that Occur After a Writer is Called..80

10 Bulk Loading..81
About Bulk Loading...82
Using the Bulk Load API...82
Bulk-Load Sample Code..83
Performance Improvement...84

11 Refresh Ahead..85
About Refresh Ahead...86
Inline Refresh Ahead...86
Scheduled Refresh Ahead...87

iv BigMemory Max Developer Guide 4.3.10

Table of Contents

Implementing the CacheLoader...90

12 Cluster Events..91
About Cluster Events...92
Cluster Topology..92
Listening for Cluster Events..93
Troubleshooting..94

13 Cache Manager Event Listeners...95
About CacheManager Event Listeners..96
Configuring a Cache Manager Event Listener...96
Implementing a CacheManager Event Listener Factory andCacheManager Event Listener.96

14 Cache Event Listeners...99
About Cache Event Listeners..100
Configuring a Cache Event Listener..100
Implementing a Cache Event Listener Factory and Cache Event Listener............................101
Adding a Listener Programmatically..104
Running Multiple Listeners on Separate Nodes..104
Cache Events in a Terracotta Cluster...104

15 Cache Exception Handlers...107
About Exception Handlers..108
Declarative Configuration...108
Implementing a Cache Exception Handler Factory and Cache Exception Handler............108
Programmatic Configuration..109

16 Cache Decorators...111
About Cache Decorators..112
Built-in Decorators...112
Creating a Decorator..112
Adding Decorated Caches to a CacheManager...113

17 Cache Extensions...117
About Cache Extensions..118
Declarative Configuration...118
Implementing a Cache Extension Factory and Cache Extension..118
Programmatic Configuration..120

18 Class Loading...121
About Class Loading..122
Plugin Class Loading...122
Loading of ehcache.xml Resources..123

A Working with Apache Maven..125
About Working with Apache Maven..126

BigMemory Max Developer Guide 4.3.10 v

Table of Contents

Creating Enterprise Edition Clients...126
Using the tc-maven Plugin..127
Working With Terracotta SNAPSHOT Projects...128
Terracotta Repositories..128

vi BigMemory Max Developer Guide 4.3.10

Table of Contents

About This Documentation

■ Online Information and Support ... 8

■ Data Protection ... 8

BigMemory Max Developer Guide 4.3.10 7

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

8 BigMemory Max Developer Guide 4.3.10

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

1 Key Classes and Methods

■ About the Key Classes ... 10

■ CacheManager ... 10

■ Cache ... 11

■ Element .. 11

BigMemory Max Developer Guide 4.3.10 9

About the Key Classes

BigMemoryMax consists of aCacheManager, whichmanages logical data sets represented asCaches.
A Cache object contains Elements, which are essentially name-value pairs. You can use Cache
objects to hold any kind of data that you want to keep in memory, not just data that you want to
cache.

Caches are physically implemented, either in-memory or on disk (or on a Terracotta Server Array
if you are using distributed cache with BigMemory Max). The logical representations of these
components are actualized mostly through the following classes:

CacheManager

Cache

Element

These classes form the core of the Ehcache API used by BigMemory Max. The methods provided
by these classes are largely responsible for providing programmatic access to a cache or in-memory
data store.

CacheManager

The CacheManager class is used to manage caches. Creation of, access to, and removal of caches
is controlled by a named CacheManager.

CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance. The two types can exist in
the same JVM. However, multiple CacheManagers with the same name are not allowed to exist
in the same JVM. CacheManager() constructors creating non-SingletonCacheManagers can violate
this rule, causing a NullPointerException. If your code might create multiple CacheManagers of
the samename in the same JVM, avoid this error by using the static CacheManager.create()methods,
which always return the named (or default unnamed) CacheManager if it already exists in that
JVM. If the named (or default unnamed) CacheManager does not exist, the CacheManager.create()
methods create it.

For singletons, callingCacheManager.create(...) returns the existing singletonCacheManagerwith
the configured name (if it exists) or creates the singleton based on the passed-in configuration.

To work from configuration, use the CacheManager.newInstance(...) method, which parses the
passed-in configuration to either get the existing namedCacheManager or create thatCacheManager
if it doesn't exist.

To review, the behavior of the CacheManager creation methods is as follows:

CacheManager.newInstance(Configuration configuration) – Create a new CacheManager or
return the existing one named in the configuration.

CacheManager.create() – Create a new singleton CacheManager with default configuration,
or return the existing singleton. This is the same as CacheManager.getInstance().

10 BigMemory Max Developer Guide 4.3.10

1 Key Classes and Methods

CacheManager.create(Configuration configuration) –Create a singletonCacheManagerwith
the passed-in configuration, or return the existing singleton.

new CacheManager(Configuration configuration) – Create a new CacheManager, or throw
an exception if the CacheManager named in the configuration already exists or if the parameter
(configuration) is null.

Note that in instance-mode (non-singleton), where multiple CacheManagers can be created and
used concurrently in the same JVM, each CacheManager requires its own configuration.

If the Caches under management use the disk store, the disk-store path specified in each
CacheManager configuration should be unique. This is because when a new CacheManager is
created, a check is made to ensure that no other CacheManagers are using the same disk-store
path. Depending upon your persistence strategy, BigMemory Max will automatically resolve a
disk-store path conflict, or it will let you know that you must explicitly configure the disk-store
path.

If managed caches use only the memory store, there are no special considerations.

If a CacheManager is part of a cluster, there will also be listener ports which must be unique.

See the Javadoc at http://www.ehcache.org/apidocs/2.10.1/ for Ehcache for more information on
thesemethods, including options for passing in configuration. For examples, see the code samples
in “Creating a CacheManager” on page 14.

Cache

A Cache is a thread-safe logical representation of a set of data elements, analogous to a cache
region inmany caching systems.Once a reference to a cache is obtained (through aCacheManager),
logical actions can be performed. The physical implementation of these actions is relegated to the
stores. For more information about the stores, see "Configuring Storage Tiers" in the Configuration
Guide for BigMemory Max.

Caches are instantiated from configuration or programmatically using one of the Cache()
constructors. Certain cache characteristics, such as Automatic Resource Control (ARC)-related
sizing, and pinning, must be set using configuration.

Cache methods can be used to get information about the cache (for example, getCacheManager(),
isNodeBulkLoadEnabled(), and isSearchable()), or perform certain cache-wide operations (for
example, flush, load, initialize, and dispose).

Themethods provided in the Cache class also allow you toworkwith cache elements (for example,
get, set, remove, and replace) as well as get information about the them (for example, isExpired,
isPinned).

Element

An element is an atomic entry in a cache. It has a key, a value, and a record of accesses. Elements
are put into and removed from caches. They can also expire and be removed by the cache,
depending on the cache settings.

BigMemory Max Developer Guide 4.3.10 11

1 Key Classes and Methods

http://www.ehcache.org/apidocs/2.10.1/

There is an API for Objects in addition to the one for Serializable. Non-serializable Objects can be
stored only in heap. If an attempt is made to persist them, they are discarded with a DEBUG-level
log message but no error.

The APIs are identical except for the return methods from Element: getKeyValue() and
getObjectValue() are used by the Object API in place of getKey() and getValue().

12 BigMemory Max Developer Guide 4.3.10

1 Key Classes and Methods

2 Basic Caching

■ Creating a CacheManager ... 14

■ Loading a Configuration ... 14

■ Adding and Removing Caches Programmatically .. 15

■ Performing Basic Cache Operations .. 16

■ Shut down the CacheManager ... 17

■ JUnit Tests .. 17

BigMemory Max Developer Guide 4.3.10 13

Creating a CacheManager

All usages of the Ehcache API start with the creation of a CacheManager. The following code
snippets illustrate various ways to create one.

Singleton versus Instance

The following creates a singleton CacheManager using defaults, then list caches.
CacheManager.create();
String[] cacheNames = CacheManager.getInstance().getCacheNames();

The following creates a CacheManager instance using defaults, then list caches.
CacheManager.newInstance();
String[] cacheNames = manager.getCacheNames();

The following creates two CacheManagers, each with a different configuration, and list the caches
in each.
CacheManager manager1 = CacheManager.newInstance("src/config/ehcache1.xml");
CacheManager manager2 = CacheManager.newInstance("src/config/ehcache2.xml");
String[] cacheNamesForManager1 = manager1.getCacheNames();
String[] cacheNamesForManager2 = manager2.getCacheNames();

Loading a Configuration

When a CacheManager is created, it creates caches found in a provided configuration.

The following creates a CacheManager based on the configuration defined in the ehcache.xml file
in the classpath.
CacheManager manager = CacheManager.newInstance();

The following creates a CacheManager based on a specified configuration file.
CacheManager manager = CacheManager.newInstance("src/config/ehcache.xml");

The following creates a CacheManager from a configuration resource in the classpath.
URL url = getClass().getResource("/anotherconfigurationname.xml");
CacheManager manager = CacheManager.newInstance(url);

The following creates a CacheManager from a configuration in an InputStream.
InputStream fis = new FileInputStream(new File
("src/config/ehcache.xml").getAbsolutePath());
try {
CacheManager manager = CacheManager.newInstance(fis);

} finally {
fis.close();

}

14 BigMemory Max Developer Guide 4.3.10

2 Basic Caching

Adding and Removing Caches Programmatically

Adding Caches Programmatically

You are not limited to using caches that are placed in the CacheManager configuration. A new
cache based on the default configuration can be added to a CacheManager very simply:
manager.addCache(cacheName);

For example, the following adds a cache called testCache to CacheManager called singletonManager.
The cache is configured using defaultCache from the CacheManager configuration.
CacheManager singletonManager = CacheManager.create();
singletonManager.addCache("testCache");
Cache test = singletonManager.getCache("testCache");

As shown below, you can also create a new cachewith a specified configuration and add the cache
to a CacheManager. Note that when you create a new cache, it is not usable until it has been added
to a CacheManager.
CacheManager singletonManager = CacheManager.create();
Cache memoryOnlyCache = new Cache("testCache", 5000, false, false, 5, 2);
singletonManager.addCache(memoryOnlyCache);
Cache test = singletonManager.getCache("testCache");

Below is another way to create a new cache with a specified configuration. This example creates
a cache called testCache and adds it CacheManager called manager.
//Create a singleton CacheManager using defaults
CacheManager manager = CacheManager.create();
//Create a Cache specifying its configuration.
Cache testCache = new Cache(
new CacheConfiguration("testCache", maxEntriesLocalHeap)

.memoryStoreEvictionPolicy(MemoryStoreEvictionPolicy.LFU)

.eternal(false)

.timeToLiveSeconds(60)

.timeToIdleSeconds(30)

.diskExpiryThreadIntervalSeconds(0)

.persistence(new PersistenceConfiguration().strategy(Strategy.LOCALTEMPSWAP)));
manager.addCache(testCache);

For a full list of parameters for a new Cache, see the Cache constructor at http://ehcache.org/
apidocs/2.10.1/net/sf/ehcache/Cache.html.

Removing Caches Programmatically

The following removes the cache called sampleCache1:
CacheManager singletonManager = CacheManager.create();
singletonManager.removeCache("sampleCache1");

BigMemory Max Developer Guide 4.3.10 15

2 Basic Caching

http://ehcache.org/apidocs/2.10.1/net/sf/ehcache/Cache.html
http://ehcache.org/apidocs/2.10.1/net/sf/ehcache/Cache.html

Performing Basic Cache Operations

The following examples refer to manager, which is a reference to a CacheManager that contains a
cache called sampleCache1.

Obtaining a reference to a Cache

The following obtains a Cache called sampleCache1, which has been preconfigured in the
configuration file
Cache cache = manager.getCache("sampleCache1");

Putting an Element in Cache

The following puts an element into a cache
Cache cache = manager.getCache("sampleCache1");
Element element = new Element("key1", "value1");
cache.put(element);

Updating and Element in Cache

The following updates an element in a cache. Even though cache.put() is used, BigMemory Max
knows there is an existing element, and considers the put operation as an update for the purpose
of notifying cache listeners.
Cache cache = manager.getCache("sampleCache1");
cache.put(new Element("key1", "value1"));
//This updates the entry for "key1"
cache.put(new Element("key1", "value2"));

Getting an Element from Cache

The following gets a Serializable value from an element with a key of key1.
Cache cache = manager.getCache("sampleCache1");
Element element = cache.get("key1");
Serializable value = element.getValue();

The following gets a NonSerializable value from an element with a key of key1.
Cache cache = manager.getCache("sampleCache1");
Element element = cache.get("key1");
Object value = element.getObjectValue();

Removing an Element from Cache

The following removes an element with a key of key1.
Cache cache = manager.getCache("sampleCache1");
cache.remove("key1");

16 BigMemory Max Developer Guide 4.3.10

2 Basic Caching

Obtaining Cache Sizes

The following gets the number of elements currently in the cache.
Cache cache = manager.getCache("sampleCache1");
int elementsInMemory = cache.getSize();

The following gets the number of elements currently in the MemoryStore.
Cache cache = manager.getCache("sampleCache1");
long elementsInMemory = cache.getMemoryStoreSize();

The following gets the number of elements currently in the DiskStore.
Cache cache = manager.getCache("sampleCache1");
long elementsInMemory = cache.getDiskStoreSize();

Shut down the CacheManager

You should shut down a CacheManager after use. It does have a shut-down hook, but it is a best
practice to shut it down in your code.

The following shuts down the singleton CacheManager:
CacheManager.getInstance().shutdown();

The following shuts down a CacheManager instance, assuming you have a reference to the
CacheManager called manager:
manager.shutdown();

For additional examples, see CacheManagerTest.java at https://fisheye.terracotta.org/browse/
Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/.

JUnit Tests

BigMemory Max comes with a comprehensive JUnit test suite, which not only tests the code, but
shows you how to use the Ehcache API.

You can browse the available tests here: https://fisheye.terracotta.org/browse/Ehcache/branches/
ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/search. The unit tests are also available
in the src.zip in the Ehcache tarball.

BigMemory Max Developer Guide 4.3.10 17

2 Basic Caching

https://fisheye.terracotta.org/browse/Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/
https://fisheye.terracotta.org/browse/Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/
https://fisheye.terracotta.org/browse/Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/search
https://fisheye.terracotta.org/browse/Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/search

18 BigMemory Max Developer Guide 4.3.10

2 Basic Caching

3 Cache Usage Patterns

■ Supported Usage Patterns ... 20

■ cache-aside .. 20

■ cache-as-sor ... 21

■ read-through ... 22

■ write-through .. 22

■ write-behind .. 23

■ Copy Cache .. 23

BigMemory Max Developer Guide 4.3.10 19

Supported Usage Patterns

There are several common access patterns when using a cache. BigMemory Maxsupports the
following patterns:

“Cache-aside” on page 20 (or direct manipulation)

“Cache-as-sor” on page 21 (a combination of read-through andwrite-through orwrite-behind
patterns)

“Read-through” on page 22

“Write-through” on page 22

“Write-behind” on page 23 (or write-back)

“Copy cache” on page 23

cache-aside

With the cache-aside pattern, application code uses the cache directly.

This means that application code which accesses the system-of-record (SOR) should consult the
cache first, and if the cache contains the data, then return the data directly from the cache, bypassing
the SOR.

Otherwise, the application code must fetch the data from the system-of-record, store the data in
the cache, and then return it.

When data is written, the cache must be updated with the system-of-record. This results in code
that often looks like the following pseudo-code:
public class MyDataAccessClass
{
private final Ehcache cache;
public MyDataAccessClass(Ehcache cache)
{

this.cache = cache;
}
/* read some data, check cache first, otherwise read from sor */
public V readSomeData(K key)
{

Element element;
if ((element = cache.get(key)) != null) {

return element.getValue();
}
// note here you should decide whether your cache

// will cache 'nulls' or not
if (value = readDataFromDataStore(key)) != null) {

cache.put(new Element(key, value));
}
return value;

}
/* write some data, write to sor, then update cache */
public void writeSomeData(K key, V value)

20 BigMemory Max Developer Guide 4.3.10

3 Cache Usage Patterns

{
writeDataToDataStore(key, value);
cache.put(new Element(key, value);

}

cache-as-sor

The cache-as-sor pattern implies using the cache as though it were the primary system-of-record
(SOR). The pattern delegates SOR reading and writing activities to the cache, so that application
code is absolved of this responsibility.

To implement the cache-as-sor pattern, use a combination of the following read andwrite patterns:

read-through

write-through or write-behind

Advantages of using the cache-as-sor pattern are:

Less cluttered application code (improved maintainability)

Choice ofwrite-through orwrite-behind strategies on a per-cache basis (use only configuration)

Allows the cache to solve the "thundering-herd" problem

A disadvantage of using the cache-as-sor pattern is:

Less directly visible code-path

cache-as-sor example
public class MyDataAccessClass
{
private final Ehcache cache;
public MyDataAccessClass(Ehcache cache)
{

cache.registerCacheWriter(new MyCacheWriter());
this.cache = new SelfPopulatingCache(cache);

}
/* read some data - notice the cache is treated as an SOR.
* the application code simply assumes the key will always be available
*/
public V readSomeData(K key)
{

return cache.get(key);
}
/* write some data - notice the cache is treated as an SOR, it is
* the cache's responsibility to write the data to the SOR.
*/
public void writeSomeData(K key, V value)
{

cache.put(new Element(key, value);
}
/**
* Implement the CacheEntryFactory that allows the cache to provide
* the read-through strategy
*/

BigMemory Max Developer Guide 4.3.10 21

3 Cache Usage Patterns

private class MyCacheEntryFactory implements CacheEntryFactory
{

public Object createEntry(Object key) throws Exception
{

return readDataFromDataStore(key);
}

}
/**
* Implement the CacheWriter interface which allows the cache to provide
* the write-through or write-behind strategy.
*/
private class MyCacheWriter implements CacheWriter

public CacheWriter clone(Ehcache cache) throws CloneNotSupportedException;
{

throw new CloneNotSupportedException();
}
public void init() { }

void dispose() throws CacheException { }
void write(Element element) throws CacheException;

{
writeDataToDataStore(element.getKey(), element.getValue());

}
void writeAll(Collection<Element> elements) throws CacheException

{
for (Element element : elements) {

write(element);
}

}
void delete(CacheEntry entry) throws CacheException

{
deleteDataFromDataStore(element.getKey());

}
void deleteAll(Collection<CacheEntry> entries) throws CacheException

{
for (Element element : elements) {

delete(element);
}

}
}
}

read-through

The read-through pattern mimics the structure of the cache-aside pattern when reading data. The
difference is that you must implement the CacheEntryFactory interface to instruct the cache how
to read objects on a cache miss, and you must wrap the Cache instance with an instance of
SelfPopulatingCache.

write-through

Thewrite-through patternmimics the structure of the cache-aside pattern whenwriting data. The
difference is that you must implement the CacheWriter interface and configure the cache for
write-through mode.

A write-through cache writes data to the system-of-record in the same thread of execution.
Therefore, in the common scenario of using a database transaction in context of the thread, the

22 BigMemory Max Developer Guide 4.3.10

3 Cache Usage Patterns

write to the database is covered by the transaction in scope. For more details (including
configuration settings) about using the write-through pattern, see “Write-Through and Write-
Behind Caches” on page 71.

write-behind

The write-behind pattern changes the timing of the write to the system-of-record. Rather than
writing to the system-of-record in the same thread of execution, write-behind queues the data for
write at a later time.

The consequences of the change fromwrite-through to write-behind are that the data write using
write-behind will occur outside of the scope of the transaction.

This often-times means that a new transaction must be created to commit the data to the
system-of-record. That transaction is separate from themain transaction. Formore details (including
configuration settings) about using thewrite-behind pattern, see “Write-Through andWrite-Behind
Caches” on page 71.

Copy Cache

A copy cache can have two behaviors: it can copy Element instances it returns, when copyOnRead
is true and copy elements it stores, when copyOnWrite to true.

A copy-on-read cache can be useful when you can't let multiple threads access the same Element
instance (and the value it holds) concurrently. For example, where the programmingmodel doesn't
allow it, or you want to isolate changes done concurrently from each other.

Copy on write also lets you determine exactly what goes in the cache and when (i.e., when the
value that will be in the cachewill be in state it waswhen it actuallywas put in cache).All mutations
to the value, or the element, after the put operation will not be reflected in the cache.

A concrete example of a copy cache is a Cache configured for XA. It will always be configured
copyOnRead and copyOnWrite to provide proper transaction isolation and clear transaction boundaries
(the state the objects are in at commit time is the state making it into the cache). By default, the
copy operation will be performed using standard Java object serialization. For some applications,
however, this might not be good (or fast) enough. You can configure your own CopyStrategy,
which will be used to perform these copy operations. For example, you could easily implement
use cloning rather than Serialization.

For more information about copy caches, see "Passing Copies Instead of References" in the
Configuration Guide for BigMemory Max.

BigMemory Max Developer Guide 4.3.10 23

3 Cache Usage Patterns

24 BigMemory Max Developer Guide 4.3.10

3 Cache Usage Patterns

4 Searching a Cache

■ About Searching ... 26

■ Making a Cache Searchable .. 26

■ Defining Attributes .. 28

■ Creating a Query .. 32

■ Obtaining and Organizing Query Results ... 34

■ Best Practices for Optimizing Searches ... 37

■ Concurrency Considerations .. 39

■ Options for Working with Nulls ... 40

BigMemory Max Developer Guide 4.3.10 25

About Searching

The SearchAPI allows you to execute arbitrarily complex queries against caches. The development
of alternative indexes on values provides the ability for data to be looked up based on multiple
criteria instead of just keys.

Searchable attributes can be extracted from both keys and values. Keys, values, or summary values
(Aggregators) can all be returned. Here is a simple example: Search for 32-year-old males and
return the cache values.
Results results = cache.createQuery().includeValues()
.addCriteria(age.eq(32).and(gender.eq("male"))).execute();

You can formulate queries using the Search API or using BigMemory SQL.
// BigMemory Search API:
Attribute<Integer> age = cache.getSearchAttribute("age");
Person.createQuery().addCriteria(age.gt(30)).includeValues().execute();

// BigMemory SQL:
QueryManager queryManager =

QueryManagerBuilder
.newQueryManagerBuilder()
.addCache(Person)
.addCache(Address)
.build();

Query personQuery = queryManager.createQuery(
"select * from Person where age > 30");

Before creating a query, the cache configurationmust be prepared as described in “Making a Cache
Searchable” on page 26.

For more information about creating queries using the Search API, see “Creating a Query” on
page 32.

For more information about creating queries using BigMemory SQL, see “Searching with
BigMemory SQL” on page 41.

What is Searchable?

Searches can be performed against Element keys and values, but theymust be treated as attributes.
SomeElement keys and values are directly searchable and can simply be added to the search index
as attributes. Some Element keys and values must be made searchable by extracting attributes
with supported search types out of the keys and values. It is the attributes themselves that are
searchable.

Making a Cache Searchable

Caches can bemade searchable, on a per cache basis, either by configuration or programmatically.

26 BigMemory Max Developer Guide 4.3.10

4 Searching a Cache

By Configuration

Caches aremade searchable by adding a <searchable/> tag to the cache definition in the ehcache.xml
file.
<cache name="cache2" maxBytesLocalHeap="16M" eternal="true"
maxBytesLocalOffHeap="256M">

<persistence strategy="localRestartable"/>
<searchable/>

</cache>

This configuration will scan keys and values and, if they are of supported search types, add them
as attributes called "key" and "value," respectively. If you do not want automatic indexing of keys
and values, you can disable it using:
<cache name="cacheName" ...>

<searchable keys="false" values="false">
...

</searchable>
</cache>

You might want to do this if you have a mix of types for your keys or values. The automatic
indexing will throw an exception if types are mixed.

If you think that you will want to add search attributes after the cache is initialized, you can
explicitly indicate the dynamic search configuration. Set the allowDynamicIndexing attribute to
"true" to enable use of the Dynamic Attributes extractor. For more information about the Dynamic
Attributes extractor, see “Defining Attributes” on page 28.
<cache name="cacheName" ...>

<searchable allowDynamicIndexing="true">
...

</searchable>
</cache>

Often keys or valueswill not be directly searchable and instead youwill need to extract searchable
attributes from the keys or values. The following example shows a more typical case. Attribute
extractors are explained in more detail in “Defining Attributes” on page 28.
<cache name="cache3" maxEntriesLocalHeap="10000" eternal="true"
maxBytesLocalOffHeap="10G">

<persistence strategy="localRestartable"/>
<searchable>

<searchAttribute name="age" class="net.sf.ehcache.search.
TestAttributeExtractor"/>
<searchAttribute name="gender" expression="value.getGender()"/>

</searchable>
</cache>

Programmatically

The following example shows how to programmatically create the cache configurationwith search
attributes.
Configuration cacheManagerConfig = new Configuration();

BigMemory Max Developer Guide 4.3.10 27

4 Searching a Cache

CacheConfiguration cacheConfig = new CacheConfiguration("myCache", 0).eternal(true);

Searchable searchable = new Searchable();
cacheConfig.addSearchable(searchable);
// Create attributes to use in queries.
searchable.addSearchAttribute(new SearchAttribute().name("age"));
// Use an expression for accessing values.
searchable.addSearchAttribute(new SearchAttribute()

.name("first_name")

.expression("value.getFirstName()"));
searchable.addSearchAttribute(new SearchAttribute()

.name("last_name")
.expression("value.getLastName()"));
searchable.addSearchAttribute(new SearchAttribute()

.name("zip_code")
.className("net.sf.ehcache.search.TestAttributeExtractor"));
cacheManager = new CacheManager(cacheManagerConfig);
cacheManager.addCache(new Cache(cacheConfig));
Ehcache myCache = cacheManager.getEhcache("myCache");
// Now create the attributes and queries, then execute.
...

To learnmore about the SearchAPI, see the net.sf.ehcache.search* packages in the Ehcache Javadoc
at http://www.ehcache.org/apidocs/2.10.1/.

Disk usage with the Terracotta Server Array

Search indexes are stored on Terracotta server disks. The default path is the same directory as the
configured <data> location. You can customize the path using the <index> element in the server's
tc-config.xml configuration file.

The Terracotta Server Array can be configured to be restartable in addition to including searchable
caches, but both of these features require disk storage.When both are enabled, be sure that enough
disk space is available. Depending upon the number of searchable attributes, the amount of disk
storage required might be 3 times the amount of in-memory data.

It is highly recommended to store the search index (<index>) and the Fast Restart data (<data>)
on separate disks.

Defining Attributes

In addition to configuring a cache to be searchable, you must define the attributes to be used in
searches.

Attributes are extracted from keys or values during search by using AttributeExtractors. An
extracted attribute must be one of the following types:

Boolean

Byte

Character

Double

28 BigMemory Max Developer Guide 4.3.10

4 Searching a Cache

http://www.ehcache.org/apidocs/2.10.1/

Float

Integer

Long

Short

String

java.util.Date

java.sql.Date

Enum

These types correspond to the AttributeType enum specified by the Ehcache Javadoc at http://
ehcache.org/apidocs/2.10.1/net/sf/ehcache/search/attribute/AttributeType.html.

Type name matching is case sensitive. For example, Double resolves to the java.lang.Double class
type, and double is interpreted as the primitive double type.

Search API Example
<searchable>
<searchAttribute name="age" type="Integer"/>
</searchable>

BigMemory SQL Example
// no cast required for String or int
select * from Person where age = '11'

If an attribute cannot be found or is of the wrong type, an AttributeExtractorException is thrown
on search execution. !

Note:
On the first use of an attribute, the attribute type is detected, validated against supported types,
and saved automatically. Once the type is established, it cannot be changed. For example, if an
integer value was initially returned for attribute named "Age" by the attribute extractor, it is an
error for the extractor to return a float for this attribute later on.

Well-known Attributes

The parts of an Element that are well-known attributes can be referenced by some predefined,
well-known names. If a key and/or value is of a supported search type, it is added automatically
as an attribute with the name "key" or "value." These well-known attributes have the convenience
of being constant attributes made available in the Query class. For example, the attribute for "key"
can be referenced in a query by Query.KEY. For even greater readability, statically import so that,
in this example, you would use KEY.

BigMemory Max Developer Guide 4.3.10 29

4 Searching a Cache

http://ehcache.org/apidocs/2.10.1/net/sf/ehcache/search/attribute/AttributeType.html
http://ehcache.org/apidocs/2.10.1/net/sf/ehcache/search/attribute/AttributeType.html

Attribute ConstantWell-known Attribute Name

Query.KEYkey

Query.VALUEvalue

Reflection Attribute Extractor

The ReflectionAttributeExtractor is a built-in search attribute extractor that uses JavaBean
conventions and also understands a simple form of expression. Where a JavaBean property is
available and it is of a searchable type, it can be declared:
<cache>
<searchable>

<searchAttribute name="age"/>
</searchable>

</cache>

The expression language of the ReflectionAttributeExtractor also uses method/value dotted
expression chains. The expression chain must start with "key", "value", or "element". From the
starting object, a chain of method calls or field names follows. Method calls and field names can
be freely mixed in the chain:
<cache>
<searchable>

<searchAttribute name="age" expression="value.person.getAge()"/>
</searchable>

</cache>
<cache>
<searchable>

<searchAttribute name="name" expression="element.toString()"/>
</searchable>

</cache>

Note:
The method and field name portions of the expression are case-sensitive.

Custom Attribute Extractor

In more complex situations, you can create your own attribute extractor by implementing the
AttributeExtractor interface. The interface's attributeFor() method returns the attribute value for
the element and attribute name you specify.

Note:
These examples assume there are previously created Person objects containing attributes such
as name, age, and gender.

Provide your extractor class:
<cache name="cache2" maxEntriesLocalHeap="0" eternal="true">
<persistence strategy="none"/>
<searchable>

30 BigMemory Max Developer Guide 4.3.10

4 Searching a Cache

<searchAttribute name="age" class="net.sf.ehcache.search.TestAttributeExtractor"/>

</searchable>
</cache>

A custom attribute extractor could be passed an Employee object to extract a specific attribute:
returnVal = employee.getdept();

If you need to pass state to your custom extractor, specify properties:
<cache>
<searchable>

<searchAttribute name="age"
class="net.sf.ehcache.search.TestAttributeExtractor"
properties="foo=this,bar=that,etc=12" />

</searchable>
</cache>

If properties are provided, the attribute extractor implementation must have a public constructor
that accepts a single java.util.Properties instance.

Dynamic Attributes Extractor

The DynamicAttributesExtractor provides flexibility by allowing the search configuration to be
changed after the cache is initialized. This is done with one method call, at the point of element
insertion into the cache. TheDynamicAttributesExtractormethod returns amap of attribute names
to index and their respective values. This method is called for every Ehcache.put() and replace(
) invocation.

Assuming that we have previously created Person objects containing attributes such as name, age,
and gender, the following example shows how to create a dynamically searchable cache and
register the DynamicAttributesExtractor:
Configuration config = new Configuration();
config.setName("default");
CacheConfiguration cacheCfg = new CacheConfiguration("PersonCache");
cacheCfg.setEternal(true);
cacheCfg.terracotta(new TerracottaConfiguration().clustered(true));
Searchable searchable = new Searchable().allowDynamicIndexing(true);
cacheCfg.addSearchable(searchable);
config.addCache(cacheCfg);
CacheManager cm = new CacheManager(config);
Ehcache cache = cm.getCache("PersonCache");
final String attrNames[] = {"first_name", "age"};
// Now you can register a dynamic attribute extractor to index
// the cache elements, using a subset of known fields
cache.registerDynamicAttributesExtractor(new DynamicAttributesExtractor() {

Map<String, Object> attributesFor(Element element) {
Map<String, Object> attrs = new HashMap<String, Object>();
Person value = (Person)element.getObjectValue();
// For example, extract first name only
String fName = value.getName() == null ? null : value.getName().
split("\\s+")[0];
attrs.put(attrNames[0], fName);
attrs.put(attrNames[1], value.getAge());
return attrs;

BigMemory Max Developer Guide 4.3.10 31

4 Searching a Cache

}
});
// Now add some data to the cache
cache.put(new Element(10, new Person("John Doe", 34, Person.Gender.MALE)));

Given the code above, the newly put element would be indexed on values of name and age fields,
but not gender. If, at a later time, you would like to start indexing the element data on gender,
you would need to create a new DynamicAttributesExtractor instance that extracts that field for
indexing.

Similarly, consider the following scenario. A Customer object has three fields: First Name, Middle
Name, and Last Name. Two custom extractors exist, one for FirstName and one for LastName. To
index and search on Middle Name, you must add a new, third extractor specifically for that
purpose.

Dynamic Search Rules

To use the DynamicAttributesExtractor, the cache must be configured to be searchable and
dynamically indexable. For information aboutmaking a cache searchable, see “Making aCache
Searchable” on page 26.

A dynamically searchable cache must have a dynamic extractor registered BEFORE data is
added to it. (This is to prevent potential races between extractor registration and cache loading
which might result in an incomplete set of indexed data, leading to erroneous search results.)

Each call on the DynamicAttributesExtractor method replaces the previously registered
extractor, because there can be at most one extractor instance configured for each such cache.

If a dynamically searchable cache is initially configured with a predefined set of search
attributes, this set of attributes is always be queried for extracted values, regardless of whether
or not a dynamic search attribute extractor has been configured.

The initial search configuration takes precedence over dynamic attributes, so if the dynamic
attribute extractor returns an attribute name already used in the initial searchable configuration,
an exception is thrown.

Clustered BigMemory clients do not share dynamic extractor instances or implementations.
In a clustered searchable deployment, the initially configured attribute extractors cannot vary
from one client to another. This is enforced by propagating them across the cluster. However,
for dynamic attribute extractors, each clustered client maintains its own dynamic extractor
instance. Each distributed application using dynamic search must therefore maintain its own
attribute extraction consistency.

Creating a Query

BigMemory Max uses a fluent, object-oriented query API, following the principles of a
Domain-Specific Language (DSL), which should be familiar to Java programmers. For example:
Query query = cache.createQuery().addCriteria(age.eq(35)).includeKeys().end();
Results results = query.execute();

32 BigMemory Max Developer Guide 4.3.10

4 Searching a Cache

Using Attributes in Queries

If declared and available, the well-known attributes are referenced by their names or the
convenience attributes are used directly:
Results results = cache.createQuery().addCriteria(Query.KEY.eq(35)).execute();
Results results = cache.createQuery().addCriteria(Query.VALUE.lt(10)).execute();

Other attributes are referenced by the names in the configuration:
Attribute<Integer> age = cache.getSearchAttribute("age");
Attribute<String> gender = cache.getSearchAttribute("gender");
Attribute<String> name = cache.getSearchAttribute("name");

Expressions

A Query is built up using Expressions. Expressions can include logical operators such as <and>
and <or>, and comparison operators such as <ge> (>=), <between>, and <like>. The configuration,
addCriteria(...), is used to add a clause to a query. Adding a further clause automatically "<and>s"
the clauses.
query = cache.createQuery().includeKeys()

.addCriteria(age.le(65))
.add(gender.eq("male"))
.end();

Both logical and comparison operators implement the Criteria interface. To add a criterion with
a different logical operator, explicitly nest it within a new logical operator Criteria object. For
example, to check for age = 35 or gender = female:
query.addCriteria(new Or(age.eq(35),

gender.eq(Gender.FEMALE))
);

More complex compound expressions can be created through additional nesting. For a complete
list of expressions, see the Expression Javadoc at http://www.ehcache.org/apidocs/2.10.1/net/sf/
ehcache/search/expression/package-summary.html.

List of Operators

Operators are available as methods on attributes, so they are used by adding a ".". For example,
"lt" means "less than" and is used as age.lt(10), which is a shorthand way of saying age
LessThan(10).

DescriptionCriteria ClassShorthand

The Boolean AND logical operator.Andand

A comparison operatormeaning between two values.Betweenbetween

A comparison operator meaning Java "equals to"
condition.

EqualToeq

BigMemory Max Developer Guide 4.3.10 33

4 Searching a Cache

http://www.ehcache.org/apidocs/2.10.1/net/sf/ehcache/search/expression/package-summary.html
http://www.ehcache.org/apidocs/2.10.1/net/sf/ehcache/search/expression/package-summary.html

DescriptionCriteria ClassShorthand

A comparison operator meaning greater than.GreaterThangt

A comparison operatormeaning greater than or equal
to.

GreaterThanOrEqualge

A comparison operator meaning in the collection
given as an argument.

InCollectionin

A comparison operator meaning less than.LessThanlt

A comparison operator meaning less than or equal
to.

LessThanOrEqualle

A regular expressionmatcher. "?" and "*"may be used.
Note that placing awildcard in front of the expression
will cause a table scan. ILike is always case insensitive.

ILikeilike

Tests whether the value of an attribute with given
name is null.

IsNullisNull

Tests whether the value of an attribute with given
name is NOT null.

NotNullnotNull

The Boolean NOT logical operator,Notnot

A comparison operator meaning not the Java "equals
to" condition,

NotEqualTone

The Boolean OR logical operator.Oror

Note:

For Strings, the operators are case-insensitive.

Making Queries Immutable

By default, a query can be executed, modified, and re-executed. If end() is called, the query is
made immutable.

Obtaining and Organizing Query Results

Queries return a Results object that contains a list of objects of class Result. Each element in the
cache that a query finds is represented as a Result object. For example, if a query finds 350 elements,
there will be 350 Result objects. However, if no keys or attributes are included but aggregators are
included, there is exactly one Result present.

A Result object can contain:

The Element key - when includeKeys() is added to the query,

34 BigMemory Max Developer Guide 4.3.10

4 Searching a Cache

The Element value - when includeValues() is added to the query,

Predefined attribute(s) extracted from an Element value - when includeAttribute(...) is
added to the query. To access an attribute from a Result, use getAttribute(Attribute<T>
attribute).

Aggregator results - Aggregator results are summaries computed for the search. They are
available throughResult.getAggregatorResults, which returns a list of Aggregators in the same
order in which they were used in the query.

Aggregators

Aggregators are added with query.includeAggregator(\<attribute\>.\<aggregator\>). For
example, to find the sum of the age attribute:
query.includeAggregator(age.sum());

For a complete list of aggregators, see Aggregators in the Ehcache Javadoc at http://
www.ehcache.org/apidocs/2.10.1/.

Ordering Results

Query results can be ordered in ascending or descending order by adding an addOrderBy clause
to the query. This clause takes as parameters the attribute to order by and the ordering direction.
For example, to order the results by ages in ascending order:
query.addOrderBy(age, Direction.ASCENDING);

Grouping Results

Query query results can be grouped similarly to using an SQLGROUPBY statement. TheGroupBy
feature provides the option to group results according to specified attributes. You can add an
addGroupBy clause to the query,which takes as parameters the attributes to group by. For example,
you can group results by department and location:
Query q = cache.createQuery();
Attribute<String> dept = cache.getSearchAttribute("dept");
Attribute<String> loc = cache.getSearchAttribute("location");
q.includeAttribute(dept);
q.includeAttribute(loc);
q.addCriteria(cache.getSearchAttribute("salary").gt(100000));
q.includeAggregator(Aggregators.count());
q.addGroupBy(dept, loc);

The GroupBy clause groups the results from includeAttribute() and allows aggregate functions
to be performed on the grouped attributes. To retrieve the attributes that are associated with the
aggregator results, you can use:

String dept = singleResult.getAttribute(dept);
String loc = singleResult.getAttribute(loc);

BigMemory Max Developer Guide 4.3.10 35

4 Searching a Cache

http://www.ehcache.org/apidocs/2.10.1/
http://www.ehcache.org/apidocs/2.10.1/

GroupBy Rules

Grouping query results adds another step to the query. First, results are returned, and second the
results are grouped. Note the following rules and considerations:

In a query with a GroupBy clause, any attribute specified using includeAttribute() should
also be included in the GroupBy clause.

Special KEY or VALUE attributes cannot be used in a GroupBy clause. This means that
includeKeys() and includeValues() cannot be used in a query that has a GroupBy clause.

Adding a GroupBy clause to a query changes the semantics of any aggregators passed in, so
that they apply only within each group.

As long as there is at least one aggregation function specified in a query, the grouped attributes
are not required to be included in the result set, but they are typically requested anyway to
make result processing easier.

An addCriteria clause applies to all results prior to grouping.

If OrderBy is used with GroupBy, the ordering attributes are limited to those listed in the
GroupBy clause.

Limiting the Size of Results

By default, a query can return an unlimited number of results. For example, the following query
will return all keys in the cache.
Query query = cache.createQuery();
query.includeKeys();
query.execute();

If too many results are returned, it could cause an OutOfMemoryError The maxResults clause is
used to limit the size of the results. For example, to limit the above query to the first 100 elements
found:
Query query = cache.createQuery();
query.includeKeys();
query.maxResults(100);
query.execute();

Note:
When maxResults is used with GroupBy, it limits the number of groups.

When you are done with the results, call the discard() method to free up resources.

In a distributed implementation with Terracotta, resources may be used to hold results for paging
or return.

For additional information aboutmanaging large result sets, see the topics that relate to pagination
in “Best Practices for Optimizing Searches” on page 37.

36 BigMemory Max Developer Guide 4.3.10

4 Searching a Cache

Interrogating Results

To determine what a query returned, use one of the interrogation methods on Results.:

hasKeys()

hasValues()

hasAttributes()

hasAggregators()

Best Practices for Optimizing Searches

Construct searches by including only the data that is actually required.

Only use includeKeys() and/or includeAttribute() if those values are required for your
application logic.

If you do not need values or attributes, be careful not to burden your queries with
unnecessary work. For example, if result.getValue() is not called in the search results, do
not use includeValues() in the query.

Consider if it would be sufficient to get attributes or keys on demand. For example, instead
of running a search query with includeValues() and then result.getValue(), run the query
for keys and include cache.get() for each individual key.

Note:
The includeKeys() and includeValues() methods have lazy deserialization, meaning that
keys and values are deserialized only when result.getKey() or result.getValue() is called.
However, calls to includeKeys() and includeValues() do take time, so consider carefully
when constructing your queries.

Searchable keys and values are automatically indexed by default. If you are not including them
in your query, turn off automatic indexing with the following:
<cache name="cacheName" ...>
<searchable keys="false" values="false"/>
...
</searchable>

</cache>

Limit the size of the result set. Depending on your use case, you might consider maxResults,
an Aggregator, or pagination:

If getting a subset of all the possible results quickly is more important than receiving all the
results, consider using query.maxResults(int number_of_results). Sometimes maxResults is
useful where the result set is ordered such that the items you want most are included within
the maxResults.

If all you want is a summary statistic, use a built-in Aggregator function, such as count(). For
details, see the net.sf.ehcache.search.aggregator package in the Ehcache Javadoc at http://
www.ehcache.org/apidocs/2.10.1/.

BigMemory Max Developer Guide 4.3.10 37

4 Searching a Cache

http://www.ehcache.org/apidocs/2.10.1/
http://www.ehcache.org/apidocs/2.10.1/

Make your search as specific as possible.

Queries with iLike criteria and fuzzy (wildcard) searches might take longer than more
specific queries.

If you are using awildcard, trymaking it the trailing part of the string instead of the leading
part ("321*" instead of "*123").

Tip:
If you want leading wildcard searches, you should create a <searchAttribute> with the
string value reversed in it, so that your query can use the trailing wildcard instead.

When possible, use the query criteria "Between" instead of "LessThan" and "GreaterThan", or
"LessThanOrEqual" and "GreaterThanOrEqual". For example, instead of using le(startDate)
and ge(endDate), try not(between(startDate,endDate)).

Index dates as integers. This can save time and can also be faster if you have to do a conversion
later on.

Searches of "eventually consistent" BigMemory Max data sets are fast because queries are
executed immediately, without waiting for the commit of pending transactions at the local
node.

Note:
If a thread adds an element into an eventually consistent cache and immediately runs a
query to fetch the element, it will not be visible in the search results until the update is
published to the server.

If you want to avoid an OutOfMemoryError while allowing your Terracotta client to receive
an extremely large result set, consider using the pagination feature. Pagination limits howmany
of the total results appear on the client at a time, so that you can view the results in page-sized
batches. Instead of calling the parameterless version of the execute method query.execute(),
pass in an ExecutionHints object that specifies the page size you want:

query.execute(new ExecutionHints().setResultBatchSize(pageSize))

If you call for results after issuing a query with ExecutionHints, all results are returned (same
behavior as a regular query), except that only the number of results specified as the
ResultBatchSize will appear on the client. For example, if your query would have 500 results
and you use a ResultBatchSize of 100, youwill still get all 500 results, but you can scroll through
them in pages of 100.

You can enable search result pagination for the execution phase of a query whether the query
was constructed using the Search API or BigMemory SQL.

Limitations:

Results from GroupBy queries (created with the Query.addGroupBy() method) cannot be
paginated regardless of server topology.

Inmulti-stripe (active/active) Terracotta ServerArray topologies, pagination is not supported
for the following query types:

38 BigMemory Max Developer Guide 4.3.10

4 Searching a Cache

Result-size capped queries with aggregate functions, for example, those constructed
with Query.includeAggregator().maxResults() - with the exception that count() is the
one aggregator that does work with all topologies.

Queries that request result ordering, for example, those createdwithQuery.addOrderBy(
).

Concurrency Considerations

Unlike cache operations, which have selectable concurrency control or transactions, queries are
asynchronous and search results are "eventually consistent" with the caches.

Index Updating

Although indexes are updated synchronously, their state lags slightly behind that of the cache.
The only exception is when the updating thread performs a search.

For caches with concurrency control, an index does not reflect the new state of the cache until:

The change has been applied to the cluster.

For a cache with transactions, when commit has been called.

Query Results

Unexpected results might occur if:

A search returns an Element reference that no longer exists.

Search criteria select an Element, but the Element has been updated.

Aggregators, such as sum(), disagreewith the same calculation done by redoing the calculation
yourself by re-accessing the cache for each key and repeating the calculation.

A value reference refers to a value that has been removed from the cache, and the cache has
not yet been reindexed. If this happens, the value is null but the key and attributes supplied
by the stale cache index are non-null. Because values in a cache are also allowed to be null,
you cannot tell whether your value is null because it has been removed from the cache after
the index was last updated or because it is a null value.

Recommendations

Because the state of the cache can change between search executions, the following is recommended:

Add all of the aggregators you want for a query at once, so that the returned aggregators are
consistent.

Use null guards when accessing a cache with a key returned from a search.

BigMemory Max Developer Guide 4.3.10 39

4 Searching a Cache

Options for Working with Nulls

The Search API supports using the presence of a null as search criteria.
myQuery.addCriteria(cache.getAttribute("middle_name").isNull());

It also supports using the absence of a null as search criteria:
myQuery.addCriteria(cache.getAttribute("middle_name").notNull());

Which is equivalent to:
myQuery.addCriteria(cache.getAttribute("middle_name").isNull().not());

BigMemory SQL also supports using the presence or absence of null as search criteria:
select * from searchable where birthDate is null
select * from searchable where birthDate is not null

Alternatively, you can call constructors to set up equivalent logic:
Criteria isNull = new IsNull("middle_name");
Criteria notNull = new NotNull("middle_name");

40 BigMemory Max Developer Guide 4.3.10

4 Searching a Cache

5 Searching with BigMemory SQL

■ About BigMemory SQL .. 42

■ Using BigMemory SQL ... 42

■ Using the QueryManager API .. 43

■ SQL Syntax and Examples .. 44

BigMemory Max Developer Guide 4.3.10 41

About BigMemory SQL

BigMemory SQL allows you to search the in-memory data of BigMemory using expressions similar
to those of Structured Query Language. BigMemory SQL is an alternative to the programmatic,
Java-based Search API described in “Searching a Cache” on page 25.

Any query that can be constructed using the Search API can also be expressed using BigMemory
SQL. Similarly, any BigMemory SQL query can be expressed in the SearchAPI. Because the Search
API allows only lookup-style queries, BigMemory SQL supports only SELECT statements (and
not, for example, INSERT or DELETE, even though they are found in SQL92). For information
about null support, see “Options for Working with Nulls” on page 40.

Note:
You can also use BigMemory SQL to query a cache from the Terracotta Management Console.
For procedures, see the Terracotta Management Console User Guide.

Using BigMemory SQL

Configure the Ehcache File

Confirm that the search configuration sub-elements are present in your ehcache.xml file. To enable
searching the cache with BigMemory SQL, include the <searchable/> tag. To enable the addition
of search attributes after the cache is initialized, include the allowDynamicIndexing option.

This example defines the searchable cache's configuration in an ehcache.xml file called ehcache-
users.xml.
<ehcache name="Users">
<cache name="Person">

<searchable allowDynamicIndexing="true">
<searchAttribute name="name" type="String" expression="value.getName()"/>
<searchAttribute name="age" type="int" expression="value.getAge()"/>

</searchable>
</cache>
<cache name="Address">

<searchable>
<searchAttribute name="zip" type="int" expression="value.address.getZip()"/>

</searchable>
</cache>

</ehcache>

Instantiate the QueryManager

In your application, instantiate the QueryManager using the QueryManagerBuilder.
// get the CacheManager that contains the caches to query
CacheManager usersCacheManager = new CacheManager("ehcache-users.xml");
// build the QueryManager
QueryManager queryManager = QueryManagerBuilder

.newQueryManagerBuilder()

.addCache(Person)

.addCache(Address)

42 BigMemory Max Developer Guide 4.3.10

5 Searching with BigMemory SQL

.build();

For more information about this step, see “About Searching” on page 26.

Issue a Query

Issue the BigMemory SQL query.
// construct the queries
Query personQuery = queryManager.createQuery("select * from Person where age > 30");

Query addressQuery = queryManager.createQuery("select zip from Address where zip =
94115");
// execute the queries
Results personResults = personQuery.end().execute();
Results addressResults = addressQuery.end().execute();
// iterate over the results, etc.

For more information about specifying a SQL query, see “SQL Syntax and Examples” on page 44.

Using the QueryManager API

The QueryManager Builder and Interface

BigMemory SQL searches are performed using the QueryManager builder and interface.
public final class QueryManagerBuilder
{

public static QueryManagerBuilder newQueryManagerBuilder()
{
}
public QueryManagerBuilder addCache(Ehcache cache)
{
}
public QueryManagerBuilder addAllCachesCurrentlyIn(CacheManager cacheManager)
{

for (String s : cacheManager.getCacheNames())
{

final Ehcache cache = cacheManager.getEhcache(s);
}

}
public QueryManager build()
{
}

}
public interface QueryManager
{
Query createQuery(String queryString);

}

Specifying Caches to Query

You can explicitly add a cache to be searched by BigMemory SQL, or you can specify the
CacheManager that contains the caches. The following example does both:

BigMemory Max Developer Guide 4.3.10 43

5 Searching with BigMemory SQL

QueryManager queryManager = QueryManagerBuilder
.newQueryManagerBuilder()
.addCache(cache1)
.addCache(cache2)
.addAllCachesCurrentlyIn(cacheManager1)
.addAllCachesCurrentlyIn(cacheManager2)

.build();

Note:
A build of the QueryManager is a snapshot of the state of the CacheManagers and Caches. If
CacheManagers or Caches are added or removed after the build, a new QueryManager should
be built before issuing the query.

Specifying the Query

The createQuery()method takes one string argument that represents a BigMemory SQL SELECT
clause:
Query query = queryManager.createQuery("queryString");

SQL Syntax and Examples

SELECT Clause
This section provides a detailed specification for the SELECT clause. The general form of SELECT
statement is:
SELECT [* | KEY | VALUE |

[(attribute 1, attribute 2, ... , attribute N) | aggregatorFunction(attribute)
]]

[FROM cache]
[WHERE condition]
[GROUP BY attribute]
[ORDER BY {attribute}]
[LIMIT { count }]

The SELECT clause defines the Attributes to be selected.

Note:
Attributes are specified by their names and must match the Search configuration. Otherwise,
an exception is thrown.

You can also select the cache key and value denoted by the keywords key and value. A SELECT
clause can have Attributes, keys, and values, in any order. To return all searchable attributes, use
the wildcard character “*”.

The name of the cache to be queried is specified using the FROM clause.
// get all attributes for a person named Dave
select * from Person where name = 'Dave'
//get only the key
select key from Person where name = 'Dave'
//get only the value

44 BigMemory Max Developer Guide 4.3.10

5 Searching with BigMemory SQL

select value from Person where name = 'Dave'
// get key, value and all attributes for a person named Dave
select *, key, value from Person where name = 'Dave'
// get only the age for a person named Dave
select age from Person where name = 'Dave'
// get both age and zip
select age, zip from Person where name = 'Dave'

Aggregator Functions

Aggregator functions can be used to perform calculations on a specified attribute's values. The
following functions are available:

sum

max

min

average (can be 'average' or 'avg')

count
// get the average age for all persons older than 30
select avg(age) from Person where age > 30

Aggregation Examples
select key,sum(age) from Person
select key,average(age) from Person where age > 10
select key,sum(age),min(age) from Person where age > 10

FROM Clause
By default, the QueryManager locates the cache name attached to the FROM clause from all
CacheManagers specified when the QueryManager was built.
... from [Cache | CacheManager.Cache] ...

If there are multiple CacheManagers, two or more might have a cache with the same name. For
example, suppose that in addition to the ehcache-users.xml configuration (presented in “Using
BigMemory SQL” on page 42), there is another configuration file called ehcache-address.xml that
provides detailed address information.
<ehcache name="Detailed-Address">
<!--another cache with the name "Address" is present in ehcache-users.xml-->
<cache name="Address">

<searchable>
<searchAttribute name="name" type="String" expression="value.getName()"/>

<searchAttribute name="street" type="String" expression="value.getStreet()"/>
<searchAttribute name="apartment" type="String"

expression="value.getApartment()"/>
<searchAttribute name="city" type="String" expression="value.getCity()"/>
<searchAttribute name="zip" type="int" expression="value.getZip()"/>

BigMemory Max Developer Guide 4.3.10 45

5 Searching with BigMemory SQL

</searchable>
</cache>

</ehcache>

Because more than one cache has the name Address, we prefix the CacheManager name, that is,
Users.Address or Detailed-Address.Address:
// get cache managers
CacheManager usersCacheManager = new CacheManager("ehcache-users.xml");
CacheManager addressCacheManager = new CacheManager("ehcache-address.xml");
// needed only once
QueryManager qm = QueryManagerBuilder.newQueryManagerBuilder()
.addAllCahcesCurrentlyIn(Users,Detailed-Address)
.build();
// ** Default use case
// Since the Person cache is unique, we don't need to supply the cache manager
Query nameQuery1 = qm.createQuery("select name from Person where age > 21");
// ** Explicit scoping use case #1
// search Address cache defined in ehcache-users.xml where the CacheManager name is
"Users"
Query nameQuery2 = qm.createQuery("select name from Users.Address where zip = 94115");

// ** Explicit scoping use case #2
// search Address cache defined in ehcache-address.xml where the CacheManager name
// is "Detailed-Address"
Query nameQuery3 = qm.createQuery("select name from Detailed-Address.Address

where zip = 94115");
// get the results
Results allNamesInUserRecordsOver21 = nameQuery1.end().execute();
Results allNamesInUserRecordsIn94115 = nameQuery2.end().execute();
Results allNamesInAddressBookIn94115 = nameQuery3.end().execute();
// iterate over the results, etc.

Note:
If no CacheManager is specified in the FROM clause, and multiple caches with the same name
are found, an exception is thrownwith amessage that more than one cachewith the same name
exists.

WHERE Clause
The condition expression associated with theWHERE clause fetches only those Ehcache elements
that match a particular criterion. The general syntax of the condition expression is:
((attribute [= | > | < | >= | <= | != | ilike | like | in | between] value)

[AND | OR | NOT]
(attribute [= | > | < | >= | <= | != | ilike | like | in | between] value)

[AND | OR | NOT]
(attribute [= | > | < | >= | <= | != | ilike | like | in | between] value)

[AND | OR | NOT]
. . .)

For example:
select * from Person where ((age > 21 or zip=94115) and (time > 10 or fun > 100));

46 BigMemory Max Developer Guide 4.3.10

5 Searching with BigMemory SQL

Where Examples
select * from Person where age = 18
select * from Person where age != 18
select * from Person where age < 18
select * from Person where age > 18
select * from Person where age <= 18
select * from Person where age >= 18

Ilike Example
select city from Address where city ilike 'San*'

Note: ilike takes the wildcard character * for zero or more characters, and ? for a single character.

To find 'cat' and 'cow', use
select * from searchable where animal ilike 'c*'

To find 'cat' but exclude 'cow', use
select * from searchable where animal ilike 'c?t'

To find elephant and sheep but exclude weasel, use
select * from searchable where animal ilike '*e*p*'

Like Example
select city from Address where city like 'San%'

Note: like takes the wildcard character % for zero or more characters, and _ for a single character.

To find 'cat' and 'cow', use
select * from searchable where animal like 'c%'

to find 'cat' but exclude 'cow', use
select * from searchable where animal like 'c_t'

To find elephant and sheep but exclude weasel, use
select * from searchable where animal like '%e%p%'

BigMemory SQL does not support the following for like and ilike:

[charlist] — Sets and ranges of characters to match

[^charlist] or [!charlist] — Matches only a character NOT specified within the brackets

Between Example
select * from Person where age between 10 and 20

BigMemory Max Developer Guide 4.3.10 47

5 Searching with BigMemory SQL

Boolean Operators
select key,value from Person where (age > 100 and zip = 20144)
select key,value from Person where ((age > 100 and zip = 20144) and time > 10)
select key,value from Person where (age > 100 or zip = 20144)
select key,value from Person where ((age > 100 or zip = 20144) or time > 10)
select key,value from Person where ((age > 100 and zip = 20144) or time > 10)
select key,value from Person where ((age > 100 or zip = 20144) and (time > 10 or fun
> 100))
select key,value from Person where ((age > 100 or zip = 20144) and time > 10)

Data Types
To be searchable using BigMemory SQL, the data type of anAttributemust be one of the following:

boolean

byte

char

float

short

long

int

double

date

sqldate

String

The value of an Attribute in the WHERE clause must follow these data type rules:

Except for integer and string types, an explicit cast must indicate the data type.

Values for string, boolean, date, and sqldate must be surrounded by single quotes.

Data Types Examples
select * from Person where age = 11 // age is of type int
select * from Person where name = 'Mary' // name is of type String
select * from Person where gender = (char)'M'
select * from Person where isMale = (bool)'true'
select * from Person where age = (byte)11
select * from Person where age = (short)11
select * from Person where age = (long)11
select * from Person where age = (double)11.1
select * from Person where birthDate = (date)'2003-01-10T14:25:22'

48 BigMemory Max Developer Guide 4.3.10

5 Searching with BigMemory SQL

The data type name is case-sensitive. For example, use lowercase 'd' in (double) to indicate a
primitive of type double.

Enums
To search for a specific enum type, cast the value with the enum class name. The class name must
be fully qualified and must be in the same format as the return value of String.class.getName().
select * from Person where age = (enum some.company.package.Foo)'Bar'

Dates
BigMemory SQL can parse two date types:

the java.util.Date cast by the date keyword

its subclass, java.sql.Date, which is cast using the sqldate keyword

BigMemory SQL can parse the following common formats of date and time strings:
'yyyy-MM-ddTHH:mm:ss.SSS z'
'yyyy-MM-ddTHH:mm:ss.SSS'
'yyyy-MM-ddTHH:mm:ss z'
'yyyy-MM-ddTHH:mm:ss'
'yyyy-MM-ddz'
'yyyy-MM-dd'

Formats which are supported by ISO 8601 but not by BigMemory SQL are:

DD omission (YYYY-MM)

Week Date formats (YYYY-Www-D)

Ordinal dates (YYYY-DDD)

Durations (e.g., P3Y6M4DT12H30M5S)

Time intervals (e.g., 2007-03-01T13:00:00Z/2008-05-11T15:30:00Z)

Examples of Dates
select * from Person where dateOfBirth = (date)'2012-12-01T10:10:20'
select * from Person where dateOfBirth = (date)'2012-12-01'
select * from Person where dateOfBirth = (date)'2012-12-01T10:22'
select * from Person where dateOfBirth = (date)'2012-12-01T10:10:22.433 EST'

GROUP BY Clause
The GROUP BY clause provides the option to group results according to specified attributes.
Adding a GROUP BY clause to the query both groups the results and allows aggregate functions
to be performed on the grouped attributes. The general syntax of the group by clause is:
group by <attribute 1>, <attribute 2>, . . . <attribute n>

BigMemory Max Developer Guide 4.3.10 49

5 Searching with BigMemory SQL

The following apply to both the Ehcache Search API's Group By clause and the GROUP BY clause
in BigMemory SQL:

Any attribute specified with the GROUP BY clause should also be included in the target list
of the SELECT clause.

Special KEY or VALUE attributes cannot be used in a GROUP BY clause. This means that KEY,
VALUE, or * cannot be used in a query that has a GROUP BY clause.

Adding a GROUP BY clause to a query changes the semantics of any aggregators passed in,
so that they apply only within each group.

If at least one aggregation function is specified in a query, the grouped attributes are not
required to be included in the result set, However, grouped attributes are typically requested
to make result processing easier.

GROUP BY Examples
select age from Person where ((age > 100 and zip = 20144) or time > 10) group by age

select age, zip from Person where ((age > 100 and zip = 20144) or time > 10)
group by age, zip

ORDER BY Clause
To order the Query results, add an ORDER BY clause.

The general form of the ORDER BY clause is:
order by <attribute 1> <asc[ending] | desc[ending]>,

<attribute 2> <asc[ending] | desc[ending]>, . . .
<attribute n> <asc[ending] | desc[ending]>

The default ordering direction is ascending.

ORDER BY Examples
select * from Person where age > 30 order by age asc, name desc
select age from Person where ((age > 100 and zip=20144) or time > 10)

order by age descending
select age, zip from Person where ((age > 100 and zip=20144) or time > 10)

order by age desc, zip asc

ORDER BY and GROUP BY Together
If ORDER BY is used with GROUP BY, the ordering attributes are limited to those listed in the
GROUP BY clause.
select age from Person where ((age > 100 and zip = 20144) or time > 10)

group by age order by age ascending
select age, zip from Person where ((age > 100 and zip = 20144) or time > 10)

group by age, zip order by age asc, zip desc

50 BigMemory Max Developer Guide 4.3.10

5 Searching with BigMemory SQL

LIMIT Clause
The LIMIT clause can be used to restrict the number of results returned by the search query.
Ordinarily, the LIMIT clause is used with an ORDER BY clause to get the top results.
select * from Person where age < 80 limit 100

The LIMIT clause takes a single integer argument to restrict the result set with this general form:
limit <integer>

Example of Limiting Search Results
select age, zip from Person where ((age > 100 and zip = 20144) or time > 10)

order by age asc limit 10

Additional Syntax
If you have a backslash in the string youwant to search for (e.g., "path\name"), escape the backslash:
select * from Person where firstName = 'path\\name'

BigMemory Max Developer Guide 4.3.10 51

5 Searching with BigMemory SQL

52 BigMemory Max Developer Guide 4.3.10

5 Searching with BigMemory SQL

6 Using Explicit Locking

■ About Explicit Locking .. 54

■ Code Sample for Explicit Locking ... 54

■ How Locking Works .. 54

■ The Locking API ... 54

BigMemory Max Developer Guide 4.3.10 53

About Explicit Locking

BigMemoryMax contains an implementation which provides for explicit locking, using read and
write locks.

With explicit locking, it is possible to get more control over BigMemory Max's locking behavior
to allow business logic to apply an atomic change with guaranteed ordering across one or more
keys in one or more caches. It can therefore be used as a custom alternative to XA Transactions or
Local transactions.

With that power comes a caution. It is possible to create deadlocks in your own business logic
using this API.

Code Sample for Explicit Locking

The following is a simple example that shows how to use explicit locking.
String key = "123";
Foo val = new Foo();
cache.acquireWriteLockOnKey(key);
try {

cache.put(new Element(key, val));
} finally {

cache.releaseWriteLockOnKey(key);
}
...sometime later
String key = "123";
cache.acquireWriteLockOnKey(key);
try {

Object cachedVal = cache.get(key).getValue();
cachedVal.setSomething("abc");
cache.put(new Element(key, cachedVal));

} finally {
cache.releaseWriteLockOnKey(key);
}

How Locking Works

A READ lock does not prevent other READers from also acquiring a READ lock and reading. A
READ lock cannot be obtained if there is an outstanding WRITE lock. It will queue.

A WRITE lock cannot be obtained while there are outstanding READ locks. It will queue.

In each case the lock should be released after use to avoid locking problems. The lock release
should be in a "finally" block.

If before each read you acquire a READ lock and then before each write you acquire a WRITE
lock, then an isolation level akin to READ_COMMITTED is achieved.

The Locking API

The following methods are available on Cache and Ehcache.

54 BigMemory Max Developer Guide 4.3.10

6 Using Explicit Locking

/**
* Acquires the proper read lock for a given cache key
*
* @param key - The key that retrieves a value that you want to protect via
* locking.
*/
public void acquireReadLockOnKey(Object key) {

this.acquireLockOnKey(key, LockType.READ);
}
/**
* Acquires the proper write lock for a given cache key
*
* @param key - The key that retrieves a value that you want to protect via
* locking.
*/
public void acquireWriteLockOnKey(Object key) {

this.acquireLockOnKey(key, LockType.WRITE);
}
/**
* Try to get a read lock on a given key. If can't get it in timeout millis
* then return a boolean telling that it didn't get the lock
*
* @param key - The key that retrieves a value that you want to protect via
* locking.
* @param timeout - millis until giveup on getting the lock
* @return whether the lock was awarded
* @throws InterruptedException
*/
public boolean tryReadLockOnKey(Object key, long timeout) throws
InterruptedException {

Sync s = getLockForKey(key);
return s.tryLock(LockType.READ, timeout);

}
/**
* Try to get a write lock on a given key. If can't get it in timeout millis
* then return a boolean telling that it didn't get the lock
*
* @param key - The key that retrieves a value that you want to protect via
* locking.
* @param timeout - millis until giveup on getting the lock
* @return whether the lock was awarded
* @throws InterruptedException
*/
public boolean tryWriteLockOnKey(Object key, long timeout) throws
InterruptedException {

Sync s = getLockForKey(key);
return s.tryLock(LockType.WRITE, timeout);

}
/**
* Release a held read lock for the passed in key
*
* @param key - The key that retrieves a value that you want to protect via
* locking.
*/
public void releaseReadLockOnKey(Object key) {

releaseLockOnKey(key, LockType.READ);
}
/**
* Release a held write lock for the passed in key
*

BigMemory Max Developer Guide 4.3.10 55

6 Using Explicit Locking

* @param key - The key that retrieves a value that you want to protect via
* locking.
*/
public void releaseWriteLockOnKey(Object key) {

releaseLockOnKey(key, LockType.WRITE);
}
/**
* Returns true if a read lock for the key is held by the current thread
*
* @param key
* @return true if a read lock for the key is held by the current thread
*/
boolean isReadLockedByCurrentThread(Object key);
/**
* Returns true if a write lock for the key is held by the current thread
*
* @param key
* @return true if a write lock for the key is held by the current thread
*/
boolean isWriteLockedByCurrentThread(Object key);

56 BigMemory Max Developer Guide 4.3.10

6 Using Explicit Locking

7 Blocking and Self Populating Caches

■ About Blocking and Self-Populating Caches .. 58

■ Blocking Cache .. 58

■ SelfPopulatingCache .. 58

BigMemory Max Developer Guide 4.3.10 57

About Blocking and Self-Populating Caches

The net.sf.ehcache.constructs package contains some applied caching classes which use the core
classes to solve everyday caching problems. Two of these are BlockingCache and
SelfPopulatingCache.

Blocking Cache

Imagine you have a very busy web site with thousands of concurrent users. Rather than being
evenly distributed in what they do, they tend to gravitate to popular pages. These pages are not
static, they have dynamic data which goes stale in a fewminutes. Or imagine you have collections
of data which go stale in a few minutes. In each case the data is extremely expensive to calculate.
If each request thread asks for the same thing, that is a lot of work. Now, add a cache. Get each
thread to check the cache; if the data is not there, go and get it and put it in the cache.

Now, imagine that there are so many users contending for the same data that in the time it takes
the first user to request the data and put it in the cache, ten other users have done the same thing.
The upstream system,whether a JSP or velocity page, or interactionswith a service layer or database
are doing ten times more work than they need to. Enter the BlockingCache. It is blocking because
all threads requesting the same key wait for the first thread to complete. Once the first thread has
completed the other threads simply obtain the cache entry and return. The BlockingCache can
scale up to very busy systems. Each thread can eitherwait indefinitely, or you can specify a timeout
using the timeoutMillis constructor argument.

Formore information, see the Javadoc at http://www.ehcache.org/apidocs/2.10.1/ for BlockingCache.

SelfPopulatingCache

Sometimes, you want to use the BlockingCache, but the requirement to always release the lock
results in complicated code. You also want to think about what you are doing without thinking
about the caching. Enter the SelfPopulatingCache.

SelfPopulatingCache is synonymous with pull-through cache, which is a common caching term.
However, SelfPopulatingCache is always used in addition to a BlockingCache.

SelfPopulatingCache uses a CacheEntryFactory which, given a key, knows how to populate the
entry.

Note:
JCache inspired getWithLoader and getAllWithLoader directly in Ehcache, which work with a
CacheLoader may be used as an alternative to SelfPopulatingCache.

For more information, see the Javadoc at http://www.ehcache.org/apidocs/2.10.1/ for
SelfPopulatingCache.

58 BigMemory Max Developer Guide 4.3.10

7 Blocking and Self Populating Caches

http://www.ehcache.org/apidocs/2.10.1/
http://www.ehcache.org/apidocs/2.10.1/

8 Transaction Support

■ About Transaction Support ... 60

■ Requirements for Transactional Caches ... 61

■ Configuring Transactional Cache .. 62

■ Working with Global Transactions .. 62

■ Failure Recovery .. 63

■ Sample Applications ... 63

■ Transaction Managers .. 65

■ Working with Local Transactions .. 65

■ Performance Considerations .. 67

■ Potential Timeouts in a Transactional Cache .. 68

■ Transactions in Write-Behind and Write-Through Caches .. 68

■ Support for Other Transaction Systems .. 68

BigMemory Max Developer Guide 4.3.10 59

About Transaction Support

BigMemory Max supports Global Transactions, with "xa_strict" and "xa" modes, and Local
Transactions with "local" mode.

For more discussion on thesemodes, and related topics, see "WorkingWith Transactional Caches"
in the Configuration Guide for BigMemory Max.

All or Nothing

If a cache is enabled for transactions, all operations on it must happenwithin a transaction context
otherwise a TransactionException will be thrown.

Transactional Methods

The following methods require a transactional context to run:

put()

get()

getQuiet()

remove()

getKeys()

getSize()

containsKey()

removeAll()

putWithWriter()

removeWithWriter()

putIfAbsent()

removeElement()

replace()

This list is applies to all transaction modes.

All other methods work non-transactionally but can be called on a transactional cache, either
within or outside of a transactional context.

Change Visibility

The isolation level offered by BigMemory’s Ehcache is READ_COMMITTED. Ehcache can work
as an XAResource, in which case, full two-phase commit is supported. Specifically:

60 BigMemory Max Developer Guide 4.3.10

8 Transaction Support

Allmutating changes to the cache are transactional including put(), remove(), putWithWriter(),
removeWithWriter(), and removeAll().

Mutating changes are not visible to other transactions in the local JVM or across the cluster
until COMMIT has been called.

Until then, reads such as by cache.get(...) by other transactions return the old copy. Reads do
not block.

Transactional Modes

Transactional modes enable you to perform atomic operations on your caches and other data
stores.

local —When you want your changes across multiple caches to be performed atomically. Use
this mode when you need to update your caches atomically. That is, you can have all your
changes be committed or rolled back using a straightforward API. This mode is most useful
when a cache contains data calculated from other cached data.

xa —Use this mode when you cache data from other data stores, such as a DBMS or JMS, and
want to do it in an atomic way under the control of the JTA API ("Java Transaction API") but
without the overhead of full two-phase commit. In this mode, your cached data can get out of
sync with the other resources participating in the transactions in case of a crash. Therefore,
only use this mode if you can afford to live with stale data for a brief period of time.

xa_strict — Similar to "xa" but use it only if you need strict XA disaster recovery guarantees.
In this mode, the cached data can never get out of sync with the other resources participating
in the transactions, even in case of a crash. However, to get that extra safety the performance
decreases significantly.

Requirements for Transactional Caches

The objects you store in your transactional cache must:

Implement java.io.Serializable—This is required to store cached objects when the cache is
distributed in a Terracotta cluster, and it is also required by the copy-on-read / copy-on-write
mechanism used to implement isolation.

Override equals and hashcode— These must be overridden because the transactional stores
rely on element value comparison. See: ElementValueComparator and the
elementValueComparator configuration setting.

Additional restrictions:

Transactional mode with terracotta consistency="strong".

Caches can be dynamically changed to bulk-loadmode, but any attempt to performa transaction
when this is the case causes a CacheException to be thrown.

If using "xa_strict", set synchronouswrites (in ehcache.xml) to prevent potential loss of unwritten
data on the client:

BigMemory Max Developer Guide 4.3.10 61

8 Transaction Support

<terracotta synchronousWrites="true" />

Configuring Transactional Cache

Transactions are enabled on a cache-by-cache basis with the transactionalMode cache attribute.
The allowed values are:

xa_strict

xa

local

off

The default value is "off." In the following example, "xa_strict" is enabled.
<cache name="xaCache"

maxEntriesLocalHeap="500"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
diskExpiryThreadIntervalSeconds="1"
transactionalMode="xa_strict">

</cache>

Transactional Caches with Spring

Note the following when using Spring:

If you access the cache froman@Transactional Spring-annotatedmethod, begin/commit/rollback
statements are not required in application code because they are emitted by Spring.

Both Spring and Ehcache need to access the transaction manager internally, and therefore you
must inject your chosen transaction manager into Spring's PlatformTransactionManager as
well as use an appropriate lookup strategy for Ehcache.

The Ehcache default lookup strategy might not be able to detect your chosen transaction
manager. For example, it cannot detect the WebSphere transaction manager. For additional
information, see the “Transaction Managers” on page 65.

Configuring a <tx:method>with read-only=true could be problematicwith certain transaction
managers such as WebSphere.

Working with Global Transactions

Global Transactions are supported by BigMemory Max. Ehcache can act as an {XAResouce} to
participate in JTA transactions under the control of a Transaction Manager. This is typically
provided by your application server. However you can also use a third party transactionmanager
such as Bitronix.

To use Global Transactions, select either "xa_strict" or "xa" mode.

62 BigMemory Max Developer Guide 4.3.10

8 Transaction Support

Implementation

Global transactions support is implemented at the Store level, through XATransactionStore and
JtaLocalTransactionStore. The former decorates the underlying MemoryStore implementation,
augmenting itwith transaction isolation and two-phase commit support through an <XAResouce>
implementation. The latter decorates a LocalTransactionStore-decorated cache tomake it controllable
by the standard JTA API instead of the proprietary TransactionController API.

During its initialization, the cache does a lookup of the Transaction Manager using the provided
TransactionManagerLookup implementation. Then, using the
TransactionManagerLookup.register(XAResouce), the newly created XAResource is registered.
The store is automatically configured to copy every element read from the cache or written to it.
Cache is copy-on-read and copy-on-write.

Failure Recovery

In support of the JTA specification, only prepared transaction data is recoverable. Prepared data is
persisted onto the cluster and locks on thememory are held. Thismeans that non-clustered caches
cannot persist transaction data. Therefore, recovery errors after a crash might be reported by the
transaction manager.

Recovery

At any time after something went wrong, an XAResource might be asked to recover. Data that
has been prepared might either be committed or rolled back during recovery. XA data that has
not yet been prepared is discarded. The recovery guarantee differs depending on the XA mode.

xa Mode

With "xa"mode, the cache doesn't get registered as an {XAResource}with the TransactionManager
but merely can follow the flow of a JTA transaction by registering a JTA {Synchronization}. The
cache can end up inconsistent with the other resources if there is a JVM crash in the mutating
node. In thismode, some inconsistencymight occur between a cache and other XA resources (such
as databases) after a crash. However, the cache data remains consistent because the transaction is
still fully atomic on the cache itself.

xa_strict Mode

With "xa_strict" mode, the cache always responds to the Transaction Manager's recover calls with
the list of prepared XIDs of failed transactions. Those transaction branches can then be committed
or rolled back by the Transaction Manager. This mode supports the basic XA mechanism of the
JTA standard.

Sample Applications

The following sample applications showing how to use XA with a variety of technologies.

BigMemory Max Developer Guide 4.3.10 63

8 Transaction Support

XA Sample Application

This sample application uses the JBoss application server. It shows an example usingUsermanaged
transactions. Although most people use JTA from within a Spring or EJB container rather than
managing it themselves, this sample application is useful as a demonstration. The following snippet
from our SimpleTX servlet shows a complete transaction.
Ehcache cache = cacheManager.getEhcache("xaCache");
UserTransaction ut = getUserTransaction();
printLine(servletResponse, "Hello...");
try {

ut.begin();
int index = serviceWithinTx(servletResponse, cache);
printLine(servletResponse, "Bye #" + index);
ut.commit();

} catch(Exception e) {
printLine(servletResponse,

"Caught a " + e.getClass() + "! Rolling Tx back");
if(!printStackTrace) {

PrintWriter s = servletResponse.getWriter();
e.printStackTrace(s);
s.flush();

}
rollbackTransaction(ut);

}

You can download the source code for the sample from Terracotta Forge. The readme file explains
how to set up the sample application.

XA Banking Application

This application represents a real-world scenario. A Web application reads <account transfer>
messages from a queue and tries to execute the transfers.

With transaction mode enabled, failures are rolled back so that the cached account balance is
always the same as the true balance summed from the database. This sample is a Spring-based
web application running in a Jetty container. It has (embedded) the following components:

A message broker (ActiveMQ)

2 databases (embedded Derby XA instances)

2 caches (transactional Ehcache)

All XA Resources are managed by Atomikos Transaction Manager. Transaction demarcation is
done using Spring AOP's @Transactional annotation. You can run it with: mvn clean jetty:run.
Then point your browser at: http://localhost:9080. To see what happens without XA transactions:
mvn clean jetty:run -Dxa=no

You can download the source code for the sample from Terracotta Forge. The readme file explains
how to set up the sample application.

64 BigMemory Max Developer Guide 4.3.10

8 Transaction Support

http://svn.terracotta.org/svn/forge/projects/ehcache-jta-sample/trunk
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-banking/trunk

Transaction Managers

Automatically Detected Transaction Managers

BigMemory Maxautomatically detects and uses the following transaction managers in the order
shown below:

GenericJNDI (e.g. GlassFish, JBoss, JTOM and any others that register themselves in JNDI at
the standard location of java:/TransactionManager

WebLogic (since 2.4.0)

Bitronix

Atomikos

No configuration is required. They work out-of-the-box. The first found is used.

Configuring a Transaction Manager

If your transaction manager is not in the list above or you want to change the priority, provide
your own lookup class based on an implementation of
net.sf.ehcache.transaction.manager.TransactionManagerLookup and specify it in place of the
DefaultTransactionManagerLookup in ehcache.xml as shown below.
<transactionManagerLookup
class= "com.mycompany.transaction.manager.MyTransactionManagerLookupClass"
properties="" propertySeparator=":"/>

Another option is to provide a different location for the JNDI lookup by passing the jndiName
property to the DefaultTransactionManagerLookup. The example below provides the proper
location for the transaction manager in GlassFish v3:
<transactionManagerLookup
class="net.sf.ehcache.transaction.manager.DefaultTransactionManagerLookup"
properties="jndiName=java:appserver/TransactionManager" propertySeparator=";"/>

Working with Local Transactions

Local Transactions allow single-phase commit across multiple cache operations, across one or
more caches, and in the same CacheManager.This lets you apply multiple changes to a
CacheManager all in your own transaction. If you also want to apply changes to other resources,
such as a database, open a transaction to them andmanually handle commit and rollback to ensure
consistency.

Local transactions are not controlled by a transaction manager. Instead there is an explicit API
where a reference is obtained to a TransactionController for the CacheManager using
cacheManager.getTransactionController() and the steps in the transaction are called explicitly.
The steps in a local transaction are:

BigMemory Max Developer Guide 4.3.10 65

8 Transaction Support

transactionController.begin() - This marks the beginning of the local transaction on the
current thread. The changes are not visible to other threads or to other transactions.

transactionController.commit() - Commitswork done in the current transaction on the calling
thread.

transactionController.rollback() - Rolls back work done in the current transaction on the
calling thread. The changes done since begin are not applied to the cache. These steps should
be placed in a try-catch blockwhich catches TransactionException. If any exceptions are thrown,
rollback() should be called. Local Transactions has its own exceptions that can be thrown,
which are all subclasses of CacheException. They are:

TransactionException - a general exception

TransactionInterruptedException - if Thread.interrupt() was called while the cache was
processing a transaction.

TransactionTimeoutException - if a cache operation or commit is called after the transaction
timeout has elapsed.

Introductory Video

LudovicOrban, the primary author of Local Transactions, presents an introductory video on Local
Transactions.

Configuration

Local transactions are configured as follows:
<cache name="sampleCache"

...
transactionalMode="local"

</cache>

Isolation Level

As with the other transaction modes, the isolation level is READ_COMMITTED.

Transaction Timeouts

If a transaction cannot complete within the timeout period, a TransactionTimeoutException is
thrown. To return the cache to a consistent state, call transactionController.rollback(). Because
TransactionController is at the level of the CacheManager, a default timeout can be set which
applies to all transactions across all caches in a CacheManager. The default is 15 seconds. To change
the defaultTimeout:
transactionController.setDefaultTransactionTimeout(int defaultTransactionTimeoutSeconds)

The countdown starts when begin() is called. You might have another local transaction on a JDBC
connection and you might be making multiple changes. If you think it might take longer than 15

66 BigMemory Max Developer Guide 4.3.10

8 Transaction Support

http://vimeo.com/21299785

seconds for an individual transaction, you can override the defaultwhen you begin the transaction
with:
transactionController.begin(int transactionTimeoutSeconds) {

Sample Code

The following example shows a transaction that performs multiple operations across two caches.
CacheManager cacheManager = CacheManager.getInstance();
try {

cacheManager.getTransactionController().begin();
cache1.put(new Element(1, "one"));

cache2.put(new Element(2, "two"));
cache1.remove(4);
cacheManager.getTransactionController().commit();

} catch (CacheException e) {
cacheManager.getTransactionController().rollback()

}

Performance Considerations

Managing Contention

If two transactions , either standalone or across the cluster, attempt to perform a cache operation
on the same element, the following rules apply:

The first transaction gets access

The following transactions block on the cache operation until either the first transaction
completes or the transaction timeout occurs.

Note:
When an element is involved in a transaction, it is replaced with a new element with a marker
that is locked, along with the transaction ID. The normal cluster semantics are used. Because
transactions only work with consistency=strong caches, the first transaction is the thread that
manages to atomically place a soft lock on the element. (This is done with the CAS based
putIfAbsent and replace methods.)

What Granularity of Locking is Used?

BigMemory Maxuses soft locks stored in the Element itself and is on a key basis.

Performance Comparisons

Any transactional cache adds an overhead, which is significant for writes and nearly negligible
for reads. Compared to transactionalMode="off", the time it takes to perform writes will be
noticeably slower with either "xa" or "local" specified, and "xa_strict" will be the slowest.

BigMemory Max Developer Guide 4.3.10 67

8 Transaction Support

Potential Timeouts in a Transactional Cache

Why Do Some Threads Regularly Time Out and Throw an Exception?

In transactional caches, write locks are in forcewhenever an element is updated, deleted, or added.
With concurrent access, these locks cause some threads to block and appear to deadlock. Eventually
the deadlocked threads time out (and throw an exception) to avoid being stuck in a deadlock
condition.

Transactions in Write-Behind and Write-Through Caches

If your transaction-enabled cache is being used with a writer, write operations are queued until
transaction commit time. A solely write-through approach would have its potential XAResource
participate in the same transaction.

Write-behind is supported, however it should probably not be used with an XA transactional
cache because the operations would never be part of the same transaction. Your writer would also
be responsible for obtaining a new transaction.

Using Write-through with a non-XA resource would also work, but there is no guarantee the
transaction will succeed after the write operations have been executed. On the other hand, any
exception thrown during these write operations would cause the transaction to be rolled back by
having UserTransaction.commit() throw a RollbackException.

Support for Other Transaction Systems

Is IBM WebSphere Transaction Manager supported?

Mostly. The "xa_strict" mode is not supported due to each version of WebSphere being a custom
implementation. That is, it has no stable interface to implement against. However, "xa", which
uses TransactionManager callbacks, and "local" modes are supported.

When using Spring, make sure your configuration is set up correctly with respect to the
PlatformTransactionManager and the WebSphere TM.

To confirm that BigMemory Max will succeed, try to manually register a
com.ibm.websphere.jtaextensions.SynchronizationCallback in the
com.ibm.websphere.jtaextensions.ExtendedJTATransaction. Get
java:comp/websphere/ExtendedJTATransaction from JNDI, cast that to
com.ibm.websphere.jtaextensions.ExtendedJTATransaction and call the
registerSynchronizationCallbackForCurrentTranmethod. If you succeed, BigMemoryMax should
too.

Are Hibernate Transactions Supported?

Ehcache is a "transactional" cache for Hibernate purposes. The
net.sf.ehcache.hibernate.EhCacheRegionFactory supports Hibernate entities configured with
<cache usage="transactional"/>.

68 BigMemory Max Developer Guide 4.3.10

8 Transaction Support

How Do I Make WebLogic 10 Work with a Transactional Cache?

WebLogic uses an optimization that is not supported by the Ehcache implementation. By default
WebLogic 10 spawns threads to start the transaction on each XAResource in parallel. Because we
need transaction work to be performed on the same Thread, you must turn off this optimization
by setting the parallel-xa-enabled option to false in your domain configuration:
<jta>

...
<checkpoint-interval-seconds>300</checkpoint-interval-seconds>
<parallel-xa-enabled>false</parallel-xa-enabled>
<unregister-resource-grace-period>30</unregister-resource-grace-period>
...

</jta></p>

How Do I Make Atomikos Work with a Cache in "xa" Mode?

Atomikos has a bug, which makes the "xa" mode's normal transaction termination mechanism
unreliable. There is an alternative termination mechanism built in that transaction mode that is
automatically enabled when net.sf.ehcache.transaction.xa.alternativeTerminationMode is set
to true or when Atomikos is detected as the controlling transaction manager.

This alternative termination mode has strict requirement on the way threads are used by the
transaction manager and Atomikos’s default settings will not work unless you configure the
following property as shown below:
com.atomikos.icatch.threaded_2pc=false

BigMemory Max Developer Guide 4.3.10 69

8 Transaction Support

http://fogbugz.atomikos.com/default.asp?community.6.802.3

70 BigMemory Max Developer Guide 4.3.10

8 Transaction Support

9 Write-Through and Write-Behind Caches

■ About Write-Through and Write-Behind Caches .. 72

■ Using a Combined Read-Through and Write-Behind Cache ... 74

■ Write-Behind Sample Application ... 74

■ Configuring a Cache Writer .. 75

■ CacheWriterFactory Attributes ... 76

■ API .. 77

■ SPI .. 78

■ Monitoring the Size of Write-Behind Queue ... 80

■ Handling Exceptions that Occur After a Writer is Called .. 80

BigMemory Max Developer Guide 4.3.10 71

About Write-Through and Write-Behind Caches

Write-through caching is a caching patternwherewrites to the cache causewrites to an underlying
resource. The cache acts as a facade to the underlying resource. With this pattern, it often makes
sense to read through the cache too.

Write-behind caching uses the same client API; however, the write happens asynchronously.

While file systems or a web-service clients can underlie the facade of a write-through cache, the
most common underlying resource is a database. To simplify the discussion, we will use the
database as the example resource.

Potential Benefits of Write-Behind

The major benefit of write-behind is database offload. This can be achieved in a number of ways:

Time shifting - moving writes to a specific time or time interval. For example, writes could
be batched up and written overnight, or at 5 minutes past the hour, to avoid periods of peak
contention.

Rate limiting - spreading writes out to flatten peaks. Say a point-of-sale (POS) network has
an end-of-day procedure where data gets written to a central server. All POS nodes in the
same time zone will write all at once. A very large peak will occur. Using rate limiting, writes
could be limited to 100 TPS to whittle down the queue of writes over several hours

Conflation - consolidatewrites to create fewer transactions. For example, a value in a database
row is updated by 5 writes, incrementing it from 10 to 20 to 31 to 40 to 45. Using conflation,
the 5 transactions are replaced by one to update the value from 10 to 45.

These benefits must be weighed against the limitations and constraints imposed.

Limitations & Constraints of Write-Behind

Transaction Boundaries

If the cache participates in a JTA transaction, which means it is an XAResource, then the cache can
be made consistent with the database. A write to the database, and a commit or rollback, happens
with the transaction boundary. In write-behind, the write to the resource happens after the write
to the cache. The transaction boundary is thewrite to the outstanding queue, not thewrite behind.
In write-through mode, commit can get called and both the cache and the underlying resource
can get committed at once. Because the database is being written to outside of the transaction,
there is always a risk that a failure on the eventual write will occur. While this can be mitigated
with retry counts and delays, compensating actions may be required.

Time Delay

The obvious implication of asynchronous writes is that there is a delay between when the cache
is updated andwhen the database is updated. This introduces an inconsistency between the cache

72 BigMemory Max Developer Guide 4.3.10

9 Write-Through and Write-Behind Caches

and the database, where the cache holds the correct value and the database will be eventually
consistent with the cache.

The data passed into the CacheWriter methods is a snapshot of the cache entry at the time of the
write to operation. A read against the database will result in incorrect data being loaded.

Applications Tolerant of Inconsistency

The application must be tolerant of inconsistent data. The following examples illustrate this
requirement:

The database is logging transactions and only appends are done.

Reading is done by a part of the application that does not write, so there is no way that data
can be corrupted. The application is tolerant of delays. For example, a news application where
the reader displays the articles that are written.

Note if other applications are writing to the database, then a cache can often be inconsistent with
the database.

Time Synchronization Across Nodes

Ideally node times should be synchronized. The write-behind queue is generally written to the
underlying resource in timestamp order, based on the timestamp of the cache operation, although
there is no guaranteed ordering. The ordering will be more consistent if all nodes are using the
same time. This can easily be achieved by configuring your system clock to synchronize with a
time authority using Network Time Protocol.

No Ordering Guarantees

The items on the write-behind queue are generally in order, but this isn't guaranteed. In certain
situations , and more particularly in clustered usage, the items can be processed out of order.
Additionally, when batching is used, write and delete collections are aggregated separately and
can be processed inside the CacheWriter in a different order than the order that was used by the
queue. Your application must be tolerant of item reordering or you need to compensate for this
in your implementation of the CacheWriter. Possible examples are:

Working with versioning in the cache elements.

You may have to explicitly version elements. Auto-versioning is off by default and is effective
only for unclustered MemoryStore caches. Distributed caches or caches that use off-heap or
disk stores cannot use auto-versioning. To enable auto-versioning, set the system property
net.sf.ehcache.element.version.auto (it is false by default). Note that if this property is
turned on for one of the ineligible cache types, auto-versioning will silently fail.

Verifications with the underlying resource to check if the scheduled write-behind operation
is still relevant.

Introductory Video

Alex Snaps the primary author of Write Behind, presents an introductory video on Write Behind.

BigMemory Max Developer Guide 4.3.10 73

9 Write-Through and Write-Behind Caches

http://vimeo.com/21193026

Using a Combined Read-Through and Write-Behind Cache

For applications that are not tolerant of inconsistency, the simplest solution is for the application
to always read through the same cache that it writes through. Provided all database writes are
through the cache, consistency is guaranteed.

In the distributed-caching scenario, using Terracotta clustering extends the same guarantee to the
cluster. If using transactions, the cache is the XAResource, and a commit is a commit to the cache.
The cache effectively becomes the System of Record (SOR). Terracotta clustering providesHA and
durability and can easily act as the SOR. The database then becomes a backup to the SOR.

The following aspects of read-through with write-behind should be considered:

Lazy Loading

The entire data set does not need to be loaded into the cache on startup. A read-through cache
uses a CacheLoader that loads data into the cache on demand. In this way the cache can be
populated lazily.

Caching of a Partial Dataset

If the entire dataset cannot fit in the cache, then some reads will miss the cache and fall through
to the CacheLoader which will in turn hit the database. If a write has occurred but has not yet hit
the database due to write-behind, then the database will be inconsistent. The simplest solution is
to ensure that the entire dataset is in the cache. This then places some implications on cache
configuration in the areas of expiry and eviction.

Eviction

Eviction or flushing of elements, occurs when the maximum elements for the cache have been
exceeded. Be sure to size the cache appropriately to avoid eviction or flushing. See "Sizing Storage
Tiers" in the Configuration Guide for BigMemory Max.

Expiry

Even if all of the dataset can fit in the cache, it could be evicted if elements expire. Consequently,
you should set both the timeToLive and timeToIdle properties to eternal ("0") to prevent this from
happening.

Write-Behind Sample Application

A sample web application for a raffle is available, which fully demonstrates how to use write
behind. You can also check out the Ehcache Raffle application, that demonstrates Cache Writers
and Cache Loaders from github.com.

74 BigMemory Max Developer Guide 4.3.10

9 Write-Through and Write-Behind Caches

https://github.com/alexsnaps/Ehcache-Raffle

Configuring a Cache Writer

There are many configuration options for a cache writer. For a full list of configuration properties,
see the Javadoc at http://www.ehcache.org/apidocs/2.10.1/ for the CacheWriterConfiguration class.

Below is an example of how to configure the cache writer in XML:
<cache name="writeThroughCache1" ... >
<cacheWriter writeMode="write-behind" maxWriteDelay="8" rateLimitPerSecond="5"

writeCoalescing="true" writeBatching="true" writeBatchSize="20"
retryAttempts="2" retryAttemptDelaySeconds="2">

<cacheWriterFactory class="com.company.MyCacheWriterFactory"
properties="just.some.property=test; another.property=test2"

propertySeparator=";"/>
</cacheWriter>
</cache>

Further examples:
<cache name="writeThroughCache2" ... >
<cacheWriter/>

</cache>
<cache name="writeThroughCache3" ... >
<cacheWriter writeMode="write-through" notifyListenersOnException="true"

maxWriteDelay="30" rateLimitPerSecond="10" writeCoalescing="true"
writeBatching="true" writeBatchSize="8" retryAttempts="20"
retryAttemptDelaySeconds="60"/>

</cache>
<cache name="writeThroughCache4" ... >
<cacheWriter writeMode="write-through" notifyListenersOnException="false"

maxWriteDelay="0" rateLimitPerSecond="0" writeCoalescing="false"
writeBatching="false" writeBatchSize="1" retryAttempts="0"
retryAttemptDelaySeconds="0">

<cacheWriterFactory class="net.sf.ehcache.writer.WriteThroughTestCacheWriterFactory"/>

</cacheWriter>
</cache>
<cache name="writeBehindCache5" ... >
<cacheWriter writeMode="write-behind" notifyListenersOnException="true"

maxWriteDelay="8" rateLimitPerSecond="5" writeCoalescing="true"
writeBatching="false" writeBatchSize="20"
retryAttempts="2" retryAttemptDelaySeconds="2">

<cacheWriterFactory class="net.sf.ehcache.writer.WriteThroughTestCacheWriterFactory"

properties="just.some.property=test; another.property=test2"
propertySeparator=";"/>

</cacheWriter>
</cache>

As shown below, this configuration can also be achieved through the Cache constructor in Java:
Cache cache = new Cache(
new CacheConfiguration("cacheName", 10)
.cacheWriter(new CacheWriterConfiguration()
.writeMode(CacheWriterConfiguration.WriteMode.WRITE-BEHIND)
.maxWriteDelay(8)
.rateLimitPerSecond(5)
.writeCoalescing(true)

BigMemory Max Developer Guide 4.3.10 75

9 Write-Through and Write-Behind Caches

http://www.ehcache.org/apidocs/2.10.1/

.writeBatching(true)

.writeBatchSize(20)

.retryAttempts(2)

.retryAttemptDelaySeconds(2)

.cacheWriterFactory(new CacheWriterConfiguration.CacheWriterFactoryConfiguration()
.className("com.company.MyCacheWriterFactory")
.properties("just.some.property=test; another.property=test2")
.propertySeparator(";"))));

Instead of relying on a CacheWriterFactoryConfiguration to create a CacheWriter, it is also possible
to explicitly register a CacheWriter instance from within Java code. This allows you to refer to
local resources like database connections or file handles.
Cache cache = manager.getCache("cacheName");
MyCacheWriter writer = new MyCacheWriter(jdbcConnection);
cache.registerCacheWriter(writer);

CacheWriterFactory Attributes

The CacheWriterFactory supports the following attributes:

All modes

write-mode [write-through | write-behind] - Whether to run in write-behind or write-through
mode. The default is write-through.

write-through mode only

notifyListenersOnException -Whether to notify listeners when an exception occurs on a store
operation. Defaults to false. If using cache replication, set this attribute to "true" to ensure that
changes to the underlying store are replicated.

write-behind mode only

writeBehindMaxQueueSize - The maximum number of elements allowed per queue, or per
bucket (if the queue has multiple buckets). "0" means unbounded (default). When an attempt
to add an element is made, the queue size (or bucket size) is checked, and if full then the
operation is blocked until the size drops by one. Note that elements or a batch currently being
processed (and coalesced elements) are not included in the size value. Programmatically, this
attribute can be set with:

net.sf.ehcache.config.CacheWriterConfiguration.setWriteBehindMaxQueueSize()

writeBehindConcurrency - The number of thread-bucket pairs on the node for the given cache
(default is 1). Each thread uses the settings configured for write-behind. For example, if
rateLimitPerSecond is set to 100, each thread-bucket pair will perform up to 100 operations
per second. In this case, setting writeBehindConcurrency="4"means that up to 400 operations
per second will occur on the node for the given cache. Programmatically, this attribute can be
set with:

net.sf.ehcache.config.CacheWriterConfiguration.setWriteBehindConcurrency()

76 BigMemory Max Developer Guide 4.3.10

9 Write-Through and Write-Behind Caches

maxWriteDelaySeconds - The maximum number of seconds to wait before writing behind.
Defaults to 0. If set to a value greater than 0, it permits operations to build up in the queue to
enable effective coalescing and batching optimizations.

rateLimitPerSecond - The maximum number of store operations to allow per second.

writeCoalescing - Whether to use write coalescing. Defaults to false. When set to true, if
multiple operations on the same key are present in thewrite-behind queue, then only the latest
write is done (the others are redundant). This can dramatically reduce load on the underlying
resource.

writeBatching - Whether to batch write operations. Defaults to false. If set to true, storeAll
and deleteAll will be called rather than store and delete being called for each key. Resources
such as databases can perform more efficiently if updates are batched to reduce load.

writeBatchSize - The number of operations to include in each batch. Defaults to 1. If there are
less entries in the write-behind queue than the batch size, the queue length size is used. Note
that batching is split across operations. For example, if the batch size is 10 and there were 5
puts and 5 deletes, the CacheWriter is invoked. It does not wait for 10 puts or 10 deletes.

retryAttempts - The number of times to attempt writing from the queue. Defaults to 1.

retryAttemptDelaySeconds - The number of seconds to wait before retrying.

API

CacheLoaders are exposed for API use through the cache.getWithLoader(...)method.

CacheWriters are exposedwith cache.putWithWriter(...) and cache.removeWithWriter(...) methods.
The code below show the method signature for the cache.putWithWriter(...)method. For the
complete API, see the Cache Javadoc at http://www.ehcache.org/apidocs/2.10.1/.
/**
* Put an element in the cache writing through a CacheWriter. If no CacheWriter
* has been set for the cache, then this method has the same effect as
* cache.put().
*
* Resets the access statistics on the element, which would be the case if
* it has previously been gotten from a cache, and is now being put back.
*
* Also notifies the CacheEventListener, if the writer operation succeeds, that:
*
* - the element was put, but only if the Element was actually put.
* - if the element exists in the cache, that an update has occurred, even if
* the element would be expired if it was requested
*
*
* @param element An object. If Serializable it can fully participate in
* replication and the DiskStore.
* @throws IllegalStateException if the cache is not
* {@link net.sf.ehcache.Status#STATUS_ALIVE}
* @throws IllegalArgumentException if the element is null
* @throws CacheException
*/
void putWithWriter(Element element) throws IllegalArgumentException,

BigMemory Max Developer Guide 4.3.10 77

9 Write-Through and Write-Behind Caches

http://www.ehcache.org/apidocs/2.10.1/

IllegalStateException, CacheException;

SPI

Thewrite-through SPI is the CacheWriter interface. Implementers performwrites to the underlying
resource in their implementation.
/**
* A CacheWriter is an interface used for write-through and write-behind caching
* to an underlying resource.
* <p/>
* If configured for a cache, CacheWriter's methods will be called on a cache
* operation. A cache put will cause a CacheWriter write
* and a cache remove will cause a writer delete.
* <p>
* Implementers should create an implementation which handles storing and
* deleting to an underlying resource.
* </p>
* <h4>Write-Through</h4>
* In write-through mode, the cache operation will occur and the writer
* operation will occur before CacheEventListeners are notified. If the
* write operation fails an exception will be thrown. This can result in
* a cache which is inconsistent with the underlying resource.
* To avoid this, the cache and the underlying resource should be configured
* to participate in a transaction. In the event of a failure,
* a rollback can return all components to a consistent state.
* <p/>
* <h4>Write-Behind</h4>
* In write-behind mode, writes are written to a write-behind queue. They are
* written by a separate execution thread in a configurable
* way. When used with Terracotta Server Array, the queue is highly available.
* In addition, any node in the cluster may perform the write-behind operation.
* <p/>
* <h4>Creation and Configuration</h4>
* CacheWriters can be created using the CacheWriterFactory.
* <p/>
* The manner upon which a CacheWriter is actually called is determined by the
* {@link net.sf.ehcache.config.CacheWriterConfiguration} that is set up
* for a cache using the CacheWriter.
* <p/>
* See the CacheWriter chapter in the documentation for more information on
* how to use writers.
*
* @author Greg Luck
* @author Geert Bevin
* @version $Id: $
*/
public interface CacheWriter {
/**
* Creates a clone of this writer. This method will only be called by
* ehcache before a cache is initialized.
* <p/>
* Implementations should throw CloneNotSupportedException if they do not
* support clone but that will stop them from being used with defaultCache.
*
* @return a clone
* @throws CloneNotSupportedException if the extension could not be cloned.
*/

78 BigMemory Max Developer Guide 4.3.10

9 Write-Through and Write-Behind Caches

public CacheWriter clone(Ehcache cache) throws CloneNotSupportedException;
/**

* Notifies writer to initialise themselves.
* <p/>
* This method is called during the Cache's initialise method after it has
* changed its status to alive. Cache operations are legal in this method.
*
* @throws net.sf.ehcache.CacheException
*/
void init();
/**
* Providers may be doing all sorts of exotic things and need to be able
* to clean up on dispose.
* <p/>
* Cache operations are illegal when this method is called. The cache itself
* is partly disposed when this method is called.
*/
void dispose() throws CacheException;
/**
* Write the specified value under the specified key to the underlying store.
* This method is intended to support both key/value creation and value
* update for a specific key.
*
* @param element the element to be written
*/
void write(Element element) throws CacheException;
/**
* Write the specified Elements to the underlying store. This method is
* intended to support both insert and update.
* If this operation fails (by throwing an exception) after a partial success,
* the convention is that entries which have been written successfully are
* to be removed from the specified mapEntries, indicating that the write
* operation for the entries left in the map has failed or has not been
* attempted.
*
* @param elements the Elements to be written
*/
void writeAll(Collection<Element> elements) throws CacheException;
/**

* Delete the cache entry from the store
*
* @param entry the cache entry that is used for the delete operation
*/
void delete(CacheEntry entry) throws CacheException;
/**

* Remove data and keys from the underlying store for the given collection
* of keys, if present. If this operation fails * (by throwing an exception)
* after a partial success, the convention is that keys which have been erased
* successfully are to be removed from the specified keys, indicating that the
* erase operation for the keys left in the collection has failed or has not
* been attempted.
*
* @param entries the entries that have been removed from the cache
*/
void deleteAll(Collection<CacheEntry> entries) throws CacheException;
/**
* This method will be called whenever an Element couldn't be handled by the
* writer and all of the
* {@link net.sf.ehcache.config.CacheWriterConfiguration#getRetryAttempts()
* retryAttempts} have been tried.

BigMemory Max Developer Guide 4.3.10 79

9 Write-Through and Write-Behind Caches

* <p>When batching is enabled, all of the elements in the failing batch will
* be passed to this method.
* <p>Try to not throw RuntimeExceptions from this method. Should an Exception
* occur, it will be logged, but the element will still be lost.
* @param element the Element that triggered the failure, or one of the elements
* in the batch that failed.
* @param operationType the operation we tried to execute
* @param e the RuntimeException thrown by the Writer when the last retry attempt
* was being executed
*/
void throwAway(Element element, SingleOperationType operationType,

RuntimeException e);
}

Monitoring the Size of Write-Behind Queue

Use the method net.sf.ehcache.statistics.LiveCacheStatistics#getWriterQueueLength() to get the
length of the queue. This method returns the number of elements on the local queue (in all local
buckets) that are waiting to be processed, or -1 if no write-behind queue exists.

Note that elements or a batch currently being processed (and coalesced elements) are not included
in the returned value.

Handling Exceptions that Occur After a Writer is Called

Once all retry attempts have been executed, on exception the element (or all elements of that batch)
will be passed to the net.sf.ehcache.writer.CacheWriter#throwAway() method. The user can then
act one last time on the element that failed to write.

A reference to the last thrown RuntimeException, and the type of operation that failed to execute
for the element, are received. Any Exception thrown from that method will simply be logged and
ignored. The elementwill be lost forever. It is important that implementers are careful about proper
Exception handling in that last method.

A handy pattern is to use an eternal cache (potentially using a writer, so it is persistent) to store
failed operations and their element. Users canmonitor that cache andmanually intervene on those
errors at a later point.

80 BigMemory Max Developer Guide 4.3.10

9 Write-Through and Write-Behind Caches

10 Bulk Loading

■ About Bulk Loading .. 82

■ Using the Bulk Load API .. 82

■ Bulk-Load Sample Code .. 83

■ Performance Improvement ... 84

BigMemory Max Developer Guide 4.3.10 81

About Bulk Loading

BigMemory Max has a bulk-loading mode that dramatically speeds up bulk loading into caches
using the Terracotta Server Array (TSA). Bulk loading is designed to be used for:

Cache warming, where caches need to be filled before bringing an application online.

Periodic batch loading, such as an overnight batch process that uploads data.

The bulk-load API optimizes bulk-loading of data by removing the requirement for locks and by
adding transaction batching. The bulk-load API also allows applications to discover whether a
cache is in bulk-load mode and to block based on that mode.

Using the Bulk Load API

With bulk loading, the API for putting data into BigMemory Max stays the same. Just use
cache.put(...), cache.load(...), or cache.loadAll(...). What changes is that there is a special mode that
suspends the normal distributed-cache consistency guarantees and provides optimized flushing
to the Terracotta Server Array (the L2 cache).

Note:
The initial consistency mode of a cache is set by configuration and cannot be changed
programmatically. The bulk-loadAPI should be used for temporarily suspending the configured
consistency mode to allow for bulk-load operations. For more information about setting the
consistencymode, see "Terracotta Clustering Configuration Elements" in theConfiguration Guide
for BigMemory Max.

The following are the bulk-load API methods that are available in
org.terracotta.modules.ehcache.Cache.

public boolean isClusterBulkLoadEnabled()

Returns true if a cache is in bulk-load mode (is not consistent) throughout the cluster. Returns
false if the cache is not in bulk-load mode (is consistent) anywhere in the cluster.

public boolean isNodeBulkLoadEnabled()

Returns true if a cache is in bulk-load mode (is not consistent) on the current node. Returns
false if the cache is not in bulk-load mode (is consistent) on the current node.

public void setNodeBulkLoadEnabled(boolean)

Sets a cache's consistency mode to the configured consistency mode (false) or to bulk load
(true) on the local node. There is no operation if the cache is already in the mode specified by
setNodeBulkLoadEnabled(). When using this method on a nonstop cache, a multiple of the
nonstop cache's timeout value applies. The bulk-load operation must complete within that
timeout multiple to prevent the configured nonstop behavior from taking effect. For more
information on tuning nonstop timeouts, see "Tuning Nonstop Timeouts and Behaviors" in
the Configuration Guide for BigMemory Max.

public void waitUntilBulkLoadComplete()

82 BigMemory Max Developer Guide 4.3.10

10 Bulk Loading

Waits until a cache is consistent before returning. Changes are automatically batched and the
cache is updated throughout the cluster. Returns immediately if a cache is consistent throughout
the cluster.

Notes on Bulk-Load Mode

Consistency cannot be guaranteed because isClusterBulkLoadEnabled() can return false in
one node just before another node calls setNodeBulkLoadEnabled(true) on the same cache.
Understanding exactly how your application uses the bulk-load API is crucial to effectively
managing the integrity of cached data.

If a cache is not consistent, any ObjectNotFound exceptions that may occur are logged.

get() methods that fail with ObjectNotFound return null.

Eviction is independent of consistency mode. Any configured or manually executed eviction
proceeds unaffected by a cache's consistency mode.

Bulk-Load Sample Code

The following sample code shows how a clustered application with BigMemory Max can use the
bulk-load API to optimize a bulk-load operation:
import net.sf.ehcache.Cache;
public class MyBulkLoader {
CacheManager cacheManager = new CacheManager(); // Assumes local ehcache.xml.
Cache cache = cacheManager.getEhcache(\"myCache\"); // myCache defined in ehcache.xml.

cache.setNodeBulkLoadEnabled(true); // myCache is now in bulk mode.
// Load data into myCache.
// Done, now set myCache back to its configured consistency mode.
cache.setNodeBulkLoadEnabled(false);
}

Note:
There exists a potential error with non-singleton CacheManagers. The Ehcache API does not
allowmultiple CacheManagers with the same name to exist in the same JVM. CacheManager()
constructors creating non-singleton CacheManagers can violate this rule, causing an error. If
your code might create multiple CacheManagers of the same name in the same JVM, avoid this
error by using the static CacheManager.create() methods, which always return the named (or
default unnamed) CacheManager if it already exists in that JVM. If the named (or default
unnamed) CacheManager does not exist, the CacheManager.create()methods create it. Formore
information, see the Javadoc at http://ehcache.org/apidocs/2.10.1/ for the CacheManager.

On another node, application code that intends to touch myCache can run or wait, based on
whether myCache is consistent or not:
...
if (!cache.isClusterBulkLoadEnabled()) {
// Do some work.
}
else {
cache.waitUntilBulkLoadComplete()

BigMemory Max Developer Guide 4.3.10 83

10 Bulk Loading

http://ehcache.org/apidocs/2.10.1/

// Do the work when waitUntilBulkLoadComplete() returns.
}
...

Waiting may not be necessary if the code can handle potentially stale data:
...
if (!cache.isClusterBulkLoadEnabled()) {
// Do some work.
}
else {
// Do some work knowing that data in myCache may be stale.
}
...

Performance Improvement

The performance improvementwith bulk loading is an order ofmagnitude faster. The ehcacheperf
(Spring Pet Clinic) project now has a bulk-load test that shows the performance improvement for
using a Terracotta cluster. Consider also that multi-threading is likely to improve performance.

Performance Tips

Bulk Loading on Multiple Nodes - The implementation scales well when the load is split up
against multiple CacheManagers on multiple machines. Adding nodes for bulk loading is
likely to improve performance.

Why not run in bulk load mode all the time? - Terracotta clustering provides consistency,
scaling and durability. Some applications might require consistency. However, for reference
data it might be acceptable to run a cache permanently in inconsistent mode.

84 BigMemory Max Developer Guide 4.3.10

10 Bulk Loading

http://svn.terracotta.org/svn/forge/projects/ehcacheperf/trunk/

11 Refresh Ahead

■ About Refresh Ahead ... 86

■ Inline Refresh Ahead .. 86

■ Scheduled Refresh Ahead ... 87

■ Implementing the CacheLoader ... 90

BigMemory Max Developer Guide 4.3.10 85

About Refresh Ahead

The refresh-ahead pattern is intended to proactively update cached data to avoid serving stale
data. It is also a solution for the "thundering herd" problem associatedwith read-through caching.

Inline Refresh Ahead

Inline refresh allows caches to automatically refresh entries based on a timer. Entries whose age
reaches the configured time limit, and are accessed, are reloaded by the CacheLoader methods.
For more information about the CacheLoader, see “Implementing the CacheLoader” on page 90.

Configuring Inline Refresh

Inline refresh ahead is configured per cache using a cache decorator. For information about using
cache decorators, see “Cache Decorators” on page 111.
<cache ...
<cacheLoaderFactory class="com.company.my.ConcreteCacheLoaderFactory"

properties="some_property=1, some_other_property=2" />
<cacheDecorator class="net.sf.ehcache.constructs.refreshahead
.RefreshAheadCacheFactory"

properties="name=myCacheRefresher,
timeToRefreshSeconds=200,
batchSize=10,
numberOfThreads=4,
maximumBacklogItems=100,
evictOnLoadMiss=true" />

</cacheDecorator>
...

</cache>

The cache-decorator class is required for implementing the refresh-ahead mechanism. Note that
inline-refresh configuration properties are optional unless marked REQUIRED. The following
table describes these properties.

Default ValueDefinitionProperty

N/AThe name used to identify the cache decorator.
If left null, the cache decorator is accessed instead

name

of the underlying cache when the cache's name
is referenced.

N/AREQUIRED. The number of seconds an entry can
exist in the cache before it is refreshed (reloaded)

timeToRefreshSeconds

on access. Expired items that have yet to be
evicted cannot be refreshed.

N/AREQUIRED. The maximum number of refresh
requests allowed in the refreshwork queue. Once

maximumBacklogItems

this limit is exceeded, items are dropped from
the queue to prevent potentially overtaxing

86 BigMemory Max Developer Guide 4.3.10

11 Refresh Ahead

Default ValueDefinitionProperty

resources. If refresh requests are queued faster
than they are being cleared, this limit can be
exceeded.

100The maximum number of refresh requests that
can be batched for processing by a thread. For

batchSize

more frequent processing of requests—at a cost
to performance—lower the value.

1The number of threads to use for background
refresh operations on the decorator. If multiple

numberOfThreads

cache loaders are configured, refresh operations
occur in turn.

falseA boolean to force an immediate eviction on a
reload miss (true) or to not evict before normal

evictOnLoadMiss

eviction takes effect (false). If true, entries that do
not refresh due to a failure of the reload operation
(all cacheloaders fail) are evicted even if they have
not expired based on time-to-live or time-to-idle
settings.

How timeToRefreshSeconds Works With Expiration

The timeToRefreshSeconds value is at least how old an entrymust be before a get operation triggers
an automatic refresh. The refresh is a reload operation that resets an entry's time-to-live (TTL)
countdown. A Time-to-idle (TTI) setting is reset upon access and so has no effect if it is greater
than the refresh time limit (TTR), unless no access occurs.

For example, for a cache with a TTR of 10 seconds, a TTL of 30 seconds, and a TTI of 0 (infinite
idle time), any access to an entry that occurs between 10 and 30 seconds triggers an automatic
refresh of that entry. This assumes that the entry is reloaded ahead of the TTL limit so that the
TTL timer is reset.

Scheduled Refresh Ahead

You can configure refresh-ahead operations to occur on a regular schedule usingQuartz scheduled
jobs. These jobs can asynchronously load newvalues using configured cache loaders on a schedule
defined by a cron expression. This type of refresh operation is useful when all or a large portion
of a cache's data must be updated regularly.

Note that at least one CacheLoader must be configured for caches using scheduled refresh. For
information about configuring a cache loader, see “Implementing the CacheLoader” on page 90.

BigMemory Max Developer Guide 4.3.10 87

11 Refresh Ahead

http://quartz-scheduler.org/documentation
http://quartz-scheduler.org/documentation

Configuring Scheduled Refresh

Scheduled refresh ahead is configured using a cache extension. For information about using cache
extensions, see “Cache Extensions” on page 117.
<cache ...

<cacheLoaderFactory class="com.company.my.ConcreteCacheLoaderFactory"
properties="some_property=1, some_other_property=2" />

<cacheExtensionFactory

class="net.sf.ehcache.constructs.scheduledrefresh.ScheduledRefreshCacheExtensionFactory"

properties="batchSize=100;
quartzJobCount=2;
cronExpression=0 0 12 * * ?"

propertySeparator=";"/>
...
</cache>

Because a cron expression can contain commas (","), which is the default delimiter for properties,
the propertySeparator attribute can be used to specify a different delimiter.

The cache-extension class is required for implementing the refresh-ahead mechanism. This cache
extension is responsible for instantiating a dedicatedQuartz scheduler with its ownRAMJobStore
for each non-clustered cache configured for scheduled refresh ahead. For information about
RAMJobStores, see "Working with JobStores" in the Quartz Scheduler Developer Guide.

Note that scheduled-refresh configuration properties are optional unlessmarkedREQUIRED. The
following table describes these properties. Classes are found in
net.sf.ehcache.constructs.scheduledrefresh.

Default ValueDefinitionProperty

N/AREQUIRED. This is a string expression, in cron format,
dictating when the refresh job should be run. For

cronExpression

information about creating cron triggers, see "Working
with Triggers" in the Quartz Scheduler Developer Guide.

100(Integer) This is the number of keys which a single job
will refresh at a time as jobs are scheduled.

batchSize

NullIf null, SimpleScheduledRefreshKeyGenerator is used
to enumerate all keys in the cache. Or, to filter the keys

keyGenerator

to be refreshed, provide a class that implements the
ScheduledRefreshKeyGenerator interface, overriding
its generateKeys() method.

falseIf this is true, the node will be put in bulkload mode as
keys are loaded into the cache. For information about
bulk loading, see “Bulk Loading” on page 81.

useBulkLoad

88 BigMemory Max Developer Guide 4.3.10

11 Refresh Ahead

Default ValueDefinitionProperty

2Controls the number of threads in the Quartz job store
created by this instance of

quartzJobCount

ScheduleRefreshCacheExtension. At least 2 threads are
needed, 1 for the controlling job and 1 to run refresh
batch jobs. There is always an additional thread created
with respect to the value set. Therefore the default value
of "2" creates the controlling job (always created) and 2
worker threads to process incoming jobs.

NullBy default, the underlying Quartz job store is named
based on a combination of CacheManager and cache

scheduledRefreshName

names. If two or more ScheduledRefreshExtensions are
going to be attached to the same cache, this property
provides a necessary way to name separate instances.

trueA boolean to force an immediate eviction on a reload
miss (true) or to not evict before normal eviction takes

evictOnLoadMiss

effect (false). If true, entries that do not refresh due to a
failure of the reload operation (all cacheloaders fail) are
evicted even if they have not expired based on
time-to-live or time-to-idle settings.

See Note
below.

By default, a RAMJobStore is used by the Quartz
instance. To define a custom job store, implement the
ScheduledRefreshJobStorePropertiesFactory interface.

jobStoreFactory

N/AThe URL to a Terracotta server in the form
<server-address>:<tsa-port>, same as theQuartz property

tcConfigUrl

org.quartz.jobStore.tcConfigUrl. Setting this allows
the Quartz instances supporting scheduled refresh to
run distributed in a Terracotta cluster.

Equals the
value of
quartzJobCount.

Maximum number of simultaneous refresh batch jobs
that can run when Quartz instances supporting
scheduled refresh run distributed in a Terracotta cluster.
Tune this value to improve performance by beginning

parallelJobCount

with a value equal to the number of (identical)
distributed scheduled-refresh nodes multiplied by the
total number of Quartz nodes. For example, if there are
4 instances and 4 Quartz nodes, set this value to 16 and
confirm that resources are not being overly utilized. If
resources are still underutilized, increase this value and
gauge the impact on resources and performance.

Note:
The default jobStoreFactory is ScheduledRefreshRAMJobStoreFactory. However, if the property
tcConfigUrl is specified, the jobStoreFactory used is ScheduledRefreshTerracottaJobStoreFactory.

BigMemory Max Developer Guide 4.3.10 89

11 Refresh Ahead

Implementing the CacheLoader

ImplementingCacheLoaderFactory through the BigMemoryMaxAPI is required to effect reloading
of entries for refresh-ahead operations. In configuration, specify the concrete class that extends
net.sf.ehcache.loader.CacheLoaderFactory and call createCacheLoader(myCache, properties) to
create the cache's cache loader. For example, if the configured concrete class is the following:
<cache name="myCache" ...
<cacheLoaderFactory class="com.company.my.ConcreteCacheLoaderFactory"

Properties="some_property=1, some_other_property=2" />

<!-- Additional cacheLoaderFactory elements can be added.
These form a chain so that if a CacheLoader returns null,
the next in line is tried. -->

...
</cache>

then it can be used programmatically:
CacheLoader cacheLoader = ConcreteCacheLoaderFactory.createCacheLoader

(myCache, properties);
// Custom properties can be passed to the implemented CacheLoader.

Note that cacheLoader must implement the CacheLoader.loadAll() method to load the refreshed
entries.

90 BigMemory Max Developer Guide 4.3.10

11 Refresh Ahead

12 Cluster Events

■ About Cluster Events .. 92

■ Cluster Topology ... 92

■ Listening for Cluster Events .. 93

■ Troubleshooting .. 94

BigMemory Max Developer Guide 4.3.10 91

About Cluster Events

The Cluster Events API provides access to Terracotta cluster events and cluster topology. This
event-notification mechanism reports events related to the nodes in the Terracotta cluster, not
cache events.

Cluster Topology

The interface net.sf.ehcache.cluster.CacheCluster provides methods for obtaining topology
information for a Terracotta cluster. The following methods are available:

String getScheme()

Returns a scheme name for the cluster information. Currently TERRACOTTA is the only scheme
supported. The scheme name is used by CacheManager.getCluster() to return cluster
information.

Collection<ClusterNode> getNodes()

Returns information on all the nodes in the cluster, including ID, hostname, and IP address.

boolean addTopologyListener(ClusterTopologyListener listener)

Adds a cluster-events listener. Returns true if the listener is already active.

boolean removeTopologyListener(ClusterTopologyListener)

Removes a cluster-events listener. Returns true if the listener is already inactive.

The interface net.sf.ehcache.cluster.ClusterNode provides methods for obtaining information on
specific cluster nodes.
public interface ClusterNode {
/**
* Get a unique (per cluster) identifier for this node.
*
* @return Unique per cluster identifier
*/
String getId();
/**
* Get the host name of the node
*
* @return Host name of node
*/
String getHostname();
/**
* Get the IP address of the node
*
* @return IP address of node
*/
String getIp();
}

92 BigMemory Max Developer Guide 4.3.10

12 Cluster Events

Listening for Cluster Events

The interface net.sf.ehcache.cluster.ClusterTopologyListener provides methods for detecting the
following cluster events:
public interface ClusterTopologyListener {
/**
* A node has joined the cluster
*
* @param node The joining node
*/
void nodeJoined(ClusterNode node);
/**
* A node has left the cluster
*
* @param node The departing node
*/
void nodeLeft(ClusterNode node);
/**
* This node has established contact with the cluster and can execute clustered
* operations.
*
* @param node The current node
*/
void clusterOnline(ClusterNode node);
/**
* This node has lost contact (possibly temporarily) with the cluster and
* cannot execute clustered operations
*
* @param node The current node
*/
void clusterOffline(ClusterNode node);
}
/**
* This node lost contact and rejoined the cluster again.
*
* This event is only fired in the node which rejoined and not to all the
* connected nodes
* @param oldNode The old node which got disconnected
* @param newNode The new node after rejoin
*/
void clusterRejoined(ClusterNode oldNode, ClusterNode newNode);

Example Code

This example prints out the cluster nodes and then registers a ClusterTopologyListener, which
prints out events as they happen.
CacheManager mgr = ...
CacheCluster cluster = mgr.getCluster("TERRACOTTA");
// Get current nodes

Collection<ClusterNode> nodes = cluster.getNodes();
for(ClusterNode node : nodes) {
System.out.println(node.getId() + " " + node.getHostname() + " " + node.getIp());

}
// Register listener

cluster.addTopologyListener(new ClusterTopologyListener() {

BigMemory Max Developer Guide 4.3.10 93

12 Cluster Events

public void nodeJoined(ClusterNode node) { System.out.println(node +
" joined"); }

public void nodeLeft(ClusterNode node) { System.out.println(node + " left"); }
public void clusterOnline(ClusterNode node) { System.out.println(node +

" enabled"); }
public void clusterOffline(ClusterNode node) { System.out.println(node +

" disabled"); }
public void clusterRejoined(ClusterNode node, ClusterNode newNode) {

System.out.println(node + " rejoined the cluster as " + newNode);
}

});

Troubleshooting

In most cases, the Terracotta Cluster Events API behaves as expected. Unexpected results can
occur under the circumstances described below.

getCluster Returns Null For Programmatically Created CacheManagers

If a CacheManager instance is created and configured programmatically (without an ehcache.xml
or other external configuration resource), getCluster("TERRACOTTA") might return null even if
a Terracotta cluster exists. To ensure that cluster information is returned in this case, get a cache
that is clustered with Terracotta:
// mgr created and configured programmatically.
CacheManager mgr = new CacheManager();
// myCache has Terracotta clustering.
Cache cache = mgr.getEhcache("myCache");
// A Terracotta client has started, making available cluster information.
CacheCluster cluster = mgr.getCluster("TERRACOTTA");

nodeJoined for the Current Node {#68163}

Since the current node joins the cluster before code adding the topology listener runs, the current
node may never receive the nodeJoined event. You can detect if the current node is in the cluster
by checking whether the cluster is online:
cluster.addTopologyListener(cacheListener);
if(cluster.isClusterOnline()) {
cacheListener.clusterOnline(cluster.getCurrentNode());

}

Multiple NodeJoined Events in the Same JVM

Since multiple Terracotta clients can exist in the same JVM, multiple NodeJoined events can be
generated in that JVM. Remote clients will not be able to differentiate between the clients that
generated the NodeJoined events.

94 BigMemory Max Developer Guide 4.3.10

12 Cluster Events

13 Cache Manager Event Listeners

■ About CacheManager Event Listeners ... 96

■ Configuring a Cache Manager Event Listener ... 96

■ Implementing a CacheManager Event Listener Factory and CacheManager Event
Listener ... 96

BigMemory Max Developer Guide 4.3.10 95

About CacheManager Event Listeners

CacheManager event listeners allow implementers to register callbackmethods thatwill be executed
when a CacheManager event occurs. CacheManager listeners implement the
CacheManagerEventListener interface. The events include:

Adding a Cache

Removing a Cache

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on
what their listener is doing.

Configuring a Cache Manager Event Listener

One CacheManagerEventListenerFactory and hence one CacheManagerEventListener can be
specified per CacheManager instance. The factory is configured as below:
<cacheManagerEventListenerFactory class="" properties=""/>

The entry specifies a CacheManagerEventListenerFactory which will be used to create a
CacheManagerEventListener, which is notified when Caches are added or removed from the
CacheManager. The attributes of a CacheManagerEventListenerFactory are:

class— a fully qualified factory class name.

properties— comma-separated properties having meaning only to the factory.

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on
what their listener is doing. If no class is specified, or there is no cacheManagerEventListenerFactory
element, no listener is created. There is no default.

Implementing a CacheManager Event Listener Factory and
CacheManager Event Listener

CacheManagerEventListenerFactory is an abstract factory for creating CacheManager listeners.
Implementers should provide their own concrete factory extending this abstract factory. It can
then be configured in ehcache.xml.

The factory class needs to be a concrete subclass of the abstract factory
CacheManagerEventListenerFactory, which is reproduced below:
/**
* An abstract factory for creating {@link CacheManagerEventListener}s.
* Implementers should provide their own concrete factory extending this
* factory. It can then be configured in ehcache.xml.
*
*/
public abstract class CacheManagerEventListenerFactory {
/**

96 BigMemory Max Developer Guide 4.3.10

13 Cache Manager Event Listeners

* Create a CacheManagerEventListener
*
* @param properties implementation specific properties.
* These are configured as comma-separated name value pairs in ehcache.xml.
* Properties may be null.
* @return a constructed CacheManagerEventListener
*/
public abstract CacheManagerEventListener

createCacheManagerEventListener(Properties properties);
}

The factory creates a concrete implementation of CacheManagerEventListener,which is reproduced
below:
/**
* Allows implementers to register callback methods that will be executed when
* a CacheManager event occurs.
* The events include:
*
* adding a Cache
* removing a Cache
*
*
* Callbacks to these methods are synchronous and unsynchronized. It is the
* responsibility of the implementer to safely handle the potential
* performance and thread safety issues depending on what their listener
* is doing.
*/
public interface CacheManagerEventListener {
/**
* Called immediately after a cache has been added and activated.
*
* Note that the CacheManager calls this method from a synchronized method.
* Any attempt to call a synchronized method on CacheManager from this method
* will cause a deadlock.
*
* Note that activation will also cause a CacheEventListener status change
* notification from {@link net.sf.ehcache.Status#STATUS_UNINITIALISED} to
* {@link net.sf.ehcache.Status#STATUS_ALIVE}. Care should be taken on processing
* that notification because:
*
* the cache will not yet be accessible from the CacheManager.
* the addCaches methods whih cause this notification are synchronized on the
* CacheManager. An attempt to call
* {@link net.sf.ehcache.CacheManager#getCache(String)} will cause a deadlock.
*
* The calling method will block until this method returns.
*
* @param cacheName the name of the Cache the operation relates to
* @see CacheEventListener
*/
void notifyCacheAdded(String cacheName);
/**
* Called immediately after a cache has been disposed and removed. The calling
* method will block until this method returns.
*
* Note that the CacheManager calls this method from a synchronized method.
* Any attempt to call a synchronized method on CacheManager from this method
* will cause a deadlock.
*

BigMemory Max Developer Guide 4.3.10 97

13 Cache Manager Event Listeners

* Note that a {@link CacheEventListener} status changed will also be triggered.
* Any attempt from that notification to access CacheManager will also result in
* a deadlock.
* @param cacheName the name of the Cache the operation relates to
*/
void notifyCacheRemoved(String cacheName);
}

The implementations need to be placed in the classpath accessible to Ehcache. Ehcache uses the
ClassLoader returned by Thread.currentThread().getContextClassLoader() to load classes.

98 BigMemory Max Developer Guide 4.3.10

13 Cache Manager Event Listeners

14 Cache Event Listeners

■ About Cache Event Listeners ... 100

■ Configuring a Cache Event Listener ... 100

■ Implementing a Cache Event Listener Factory and Cache Event Listener 101

■ Adding a Listener Programmatically ... 104

■ Running Multiple Listeners on Separate Nodes ... 104

■ Cache Events in a Terracotta Cluster ... 104

BigMemory Max Developer Guide 4.3.10 99

About Cache Event Listeners

Cache listeners allow implementers to register callback methods that will be executed when a
cache event occurs. Cache listeners implement the CacheEventListener interface. The events
include:

An Element has been put

An Element has been updated. Updated means that an Element exists in the Cache with the
same key as the Element being put.

An Element has been removed

An Element expires, either because timeToLive or timeToIdle have been reached.

Note:

Callbacks to these methods are synchronous and unsynchronized.

It is the responsibility of the implementer to safely handle the potential performance and thread
safety issues depending on what their listener is doing.

Even with added thread safety, ABA ordering problems may be observed.

Furthermore in clustered/distributed deployments not all events will be seen by all nodes. In
fact, occasionally, there may be events that are not seen by any node.

Listeners areNOT guaranteed to be notified of events in the order inwhich they occurred. Elements
can be put or removed from a Cache without notifying listeners by using the putQuiet() and
removeQuiet() methods.

Configuring a Cache Event Listener

Cache event listeners are configured per cache. Each cache can havemultiple listeners. Each listener
is configured by adding a cacheEventListenerFactory element as follows:
<cache ...>
<cacheEventListenerFactory class="" properties="" listenFor=""/>
...

</cache>

The entry specifies a CacheEventListenerFactory that creates a CacheEventListener, which then
receives notifications. The attributes of a CacheEventListenerFactory are:

class— a fully qualified factory class name.

properties— optional comma-separated properties having meaning only to the factory.

listenFor—describes which events will be delivered in a clustered environment (defaults to
"all").

These are the possible values:

100 BigMemory Max Developer Guide 4.3.10

14 Cache Event Listeners

"all" — the default is to deliver all local and remote events.

"local" — deliver only events originating in the current node.

"remote" — deliver only events originating in other nodes (for BigMemory Max only).

Note:

Callbacks to these methods are synchronous and unsynchronized.

It is the responsibility of the implementer to safely handle the potential performance and thread
safety issues depending on what their listener is doing.

Implementing a Cache Event Listener Factory and Cache Event
Listener

ACacheEventListenerFactory is an abstract factory for creating cache event listeners. Implementers
should provide their own concrete factory, extending this abstract factory. It can then be configured
in ehcache.xml. The following example demonstrates how to create an abstract
CacheEventListenerFactory:
/**
* An abstract factory for creating listeners. Implementers should provide
* their own concrete factory extending this factory. It can then be configured
* in ehcache.xml
*
*/
public abstract class CacheEventListenerFactory {
/**
* Create a CacheEventListener
*
* @param properties implementation specific properties. These are configured
* as comma-separated name-value pairs in ehcache.xml
* @return a constructed CacheEventListener
*/
public abstract CacheEventListener createCacheEventListener(Properties properties);
}

The following example demonstrates how to create a concrete implementation of the
CacheEventListener interface:
/**
* Allows implementers to register callback methods that will be executed when
* a cache event occurs.
* The events include:
*
* put Element
* update Element
* remove Element
* an Element expires, either because timeToLive or timeToIdle has been
* reached.
*
*
* Callbacks to these methods are synchronous and unsynchronized. It is the
* responsibility of the implementer to safely handle the potential performance

BigMemory Max Developer Guide 4.3.10 101

14 Cache Event Listeners

* and thread safety issues depending on what their listener is doing.
*
* Events are guaranteed to be notified in the order in which they occurred.
*
* Cache also has putQuiet and removeQuiet methods which do not notify listeners.
*
*/
public interface CacheEventListener extends Cloneable {
/**
* Called immediately after an element has been removed. The remove method will
* block until this method returns.
*
* Ehcache does not check for
*
*
* As the {@link net.sf.ehcache.Element} has been removed, only what was the
* key of the element is known.
*
*
* @param cache the cache emitting the notification
* @param element just deleted
*/
void notifyElementRemoved(final Ehcache cache, final Element element) throws
CacheException;

/**
* Called immediately after an element has been put into the cache. The
* {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method
* will block until this method returns.
*
* Implementers may wish to have access to the Element's fields, including value,
* so the element is provided. Implementers should be careful not to modify the
* element. The effect of any modifications is undefined.
*
* @param cache the cache emitting the notification
* @param element the element which was just put into the cache.
*/
void notifyElementPut(final Ehcache cache, final Element element) throws
CacheException;

/**
* Called immediately after an element has been put into the cache and the element
* already existed in the cache. This is thus an update.
*
* The {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method
* will block until this method returns.
*
* Implementers may wish to have access to the Element's fields, including value,
* so the element is provided. Implementers should be careful not to modify the
* element. The effect of any modifications is undefined.
*
* @param cache the cache emitting the notification
* @param element the element which was just put into the cache.
*/
void notifyElementUpdated(final Ehcache cache, final Element element) throws
CacheException;

/**
* Called immediately after an element is found to be expired. The
* {@link net.sf.ehcache.Cache#remove(Object)} method will block until this
* method returns.
* As the {@link Element} has been expired, only what was the key of the element
* is known.

102 BigMemory Max Developer Guide 4.3.10

14 Cache Event Listeners

*
* Elements are checked for expiry in Ehcache at the following times:
*
* When a get request is made
* When an element is spooled to diskStore in accordance with a MemoryStore
* eviction policy
* In the DiskStore when the expiry thread runs, which by default is
* {@link net.sf.ehcache.Cache#DEFAULT_EXPIRY_THREAD_INTERVAL_SECONDS}
*
* If an element is found to be expired, it is deleted and this method is
* notified.
*
* @param cache the cache emitting the notification
* @param element the element that has just expired
*
* Deadlock Warning: expiry will often come from the DiskStore
* expiry thread. It holds a lock to the DiskStore at the time the
* notification is sent. If the implementation of this method calls into a
* synchronized Cache method and that subsequently calls into
* DiskStore a deadlock will result. Accordingly implementers of this method
* should not call back into Cache.
*/
void notifyElementExpired(final Ehcache cache, final Element element);
/**
* Give the replicator a chance to cleanup and free resources when no longer
* needed
*/
void dispose();
/**
* Creates a clone of this listener. This method will only be called by Ehcache
* before a cache is initialized.
*
* This may not be possible for listeners after they have been initialized.
* Implementations should throw CloneNotSupportedException if they do not support
* clone.
* @return a clone
* @throws CloneNotSupportedException if the listener could not be cloned.
*/
public Object clone() throws CloneNotSupportedException;
}

Two other methods are also available:

void notifyElementEvicted(Ehcache cache, Element element)

Called immediately after an element is evicted from the cache. Eviction, which happens when
a cache entry is deleted from a store, should not be confused with removal, which is a result
of calling Cache.removeElement(Element).

void notifyRemoveAll(Ehcache cache)

Called during Ehcache.removeAll() to indicate that all elements have been removed from the
cache in a bulk operation. The usual notifyElementRemoved(net.sf.ehcache.Ehcache,
net.sf.ehcache.Element) is not called. Only one notification is emitted because performance
considerations do not allow for serially processing notifications where potentially millions of
elements have been bulk deleted.

BigMemory Max Developer Guide 4.3.10 103

14 Cache Event Listeners

The implementations need to be placed in the classpath accessible to Ehcache. For details on how
the loading of these classes will be done, see “Class Loading” on page 121.

Adding a Listener Programmatically

To add a listener programmatically, follow this example:
cache.getCacheEventNotificationService().registerListener(myListener);

Running Multiple Listeners on Separate Nodes

The following is an example of running multiple event listeners on separate nodes.

If a listener B in one node is listening for an event generated by the action of listener A on another
node, it will fail to receive an event unless listener A performs the action in a different thread.

For example, if listener A detects a put into cache A and in turn puts an element into cache B, then
listener B should receive an event (if it is correctly registered to cache B). However, with the
following code, listener B would fail to receive the event generated by the put:
// This method is within listener A
public void notifyElementPut(...) {
...
...
cache.put(...);
...
...

}

The following code allows listener B to receive the event:
// This method is within listener A
public void notifyElementPut(...) {
executorService.execute(new Runnable() {

public void run()
{
...
...
cache.put(...);
...
...
}

...

...
}

...

Cache Events in a Terracotta Cluster

Cache events are fired for certain cache operations:

Evictions – An eviction on a client generates an eviction event on that client. An eviction on
a Terracotta server fires an event on a random client.

104 BigMemory Max Developer Guide 4.3.10

14 Cache Event Listeners

Puts – A put() on a client generates a put event on that client.

Updates – If a cache uses fast restart, then an update on a client generates a put event on that
client.

Orphan eviction – An orphan is an element that exists only on the Terracotta Server Array. If
an orphan is evicted, an eviction event is fired on a random client.

For information about configuring the scope of cache events in a Terracotta cluster, see "Defining
a Distributed Configuration" in the Configuration Guide for BigMemory Max.

Handling Cache Update Events

Caches generate put events whenever elements are put or updated. If it is important for your
application to distinguish between puts and updates, check for the existence of the element during
put() operations:
if (cache.containsKey(key)) {
cache.put(element);
// Action in the event handler on replace.

} else {
cache.put(element);
// Action in the event handler on new puts.

}

To protect against races, wrap the if block with explicit locks (see “Using Explicit Locking” on
page 53). You can also use the atomic cache methods putIfAbsent() or to check for the existence
of an element:
// Returns null if successful or returns the existing (old) element.
if((olde = cache.putIfAbsent(element)) == null) {

// Action in the event handler on new puts.
} else {
cache.replace(old, newElement); // Returns true if successful.
// Action in the event handler on replace.

}

If your code cannot use these approaches (or a similar workaround), you can force update events
for cache updates by setting the Terracotta property
ehcache.clusteredStore.checkContainsKeyOnPut at the top of the Terracotta configuration file
(tc-config.xml by default) before starting the Terracotta Server Array:
<tc-properties>
<property name="ehcache.clusteredStore.checkContainsKeyOnPut" value="true" />

</tc-properties>

Important:

Enabling this property can substantially degrade performance.
Clustered caches may not receive notifications for all events, and may receive duplicates
of some events.

BigMemory Max Developer Guide 4.3.10 105

14 Cache Event Listeners

106 BigMemory Max Developer Guide 4.3.10

14 Cache Event Listeners

15 Cache Exception Handlers

■ About Exception Handlers .. 108

■ Declarative Configuration ... 108

■ Implementing a Cache Exception Handler Factory and Cache Exception Handler 108

■ Programmatic Configuration ... 109

BigMemory Max Developer Guide 4.3.10 107

About Exception Handlers

By default, most cache operations will propagate a runtime CacheException on failure. An
interceptor, using a dynamic proxy, may be configured so that a CacheExceptionHandler can be
configured to intercept Exceptions. Errors are not intercepted.

Caches with ExceptionHandling configured are of type Ehcache. To get the exception handling
behavior theymust be referencedusingCacheManager.getEhcache(), notCacheManager.getCache(),
which returns the underlying undecorated cache.

Exception handlers are configured per cache. Each cache can have at most one exception handler.
You can set CacheExceptionHandlers either declaratively in the ehcache.xml configuration file,
or programmatically.

Declarative Configuration

To configure an exception handler declaratively, add the cacheExceptionHandlerFactory element
to ehcache.xml as shown in the following example:
<cache ...>
<cacheExceptionHandlerFactory
class="net.sf.ehcache.exceptionhandler.CountingExceptionHandlerFactory"
properties="logLevel=FINE"/>

</cache>

Implementing a Cache Exception Handler Factory and Cache
Exception Handler

A CacheExceptionHandlerFactory is an abstract factory for creating cache exception handlers.
Implementers should provide their own concrete factory, extending this abstract factory. It can
then be configured in ehcache.xml.

Note:
Your implementations need to be placed in the classpath accessible to Ehcache. For information
about how class loading is handled, see “Class Loading” on page 121.

The factory class needs to be a concrete subclass of the abstract factory class
CacheExceptionHandlerFactory, which is reproduced below.
/**
* An abstract factory for creating <code>CacheExceptionHandler</code>s at
* configuration time, in ehcache.xml.
* <p/>
* Extend to create a concrete factory
*
*/
public abstract class CacheExceptionHandlerFactory {
/**
* Create an <code>CacheExceptionHandler</code>
*
* @param properties implementation specific properties. These are configured
* as comma separated name value pairs in ehcache.xml

108 BigMemory Max Developer Guide 4.3.10

15 Cache Exception Handlers

* @return a constructed CacheExceptionHandler
*/
public abstract CacheExceptionHandler createExceptionHandler(Properties properties);

}

The factory creates a concrete implementation of the CacheExceptionHandler interface, which is
reproduced below:
/**
* A handler which may be registered with an Ehcache, to handle exception on
* Cache operations.
*
* Handlers may be registered at configuration time in ehcache.xml, using a
* CacheExceptionHandlerFactory, or set at runtime (a strategy).
*
* If an exception handler is registered, the default behaviour of throwing the
* exception will not occur. The handler method on Exception will be called.
* Of course, if the handler decides to throw the exception, it will propagate
* up through the call stack. If the handler does not, it won't.
*
* Some common Exceptions thrown, and which therefore should be considered when
* implementing this class, are listed below:
*
* {@link IllegalStateException} if the cache is not
* {@link net.sf.ehcache.Status#STATUS_ALIVE}
* {@link IllegalArgumentException} if an attempt is made to put a null
* element into a cache
* {@link net.sf.ehcache.distribution.RemoteCacheException} if an issue
* occurs in remote synchronous replication
*
*
*
*
*/
public interface CacheExceptionHandler {
/**
* Called if an Exception occurs in a Cache method. This method is not
* called if an Error occurs.
*
* @param Ehcache the cache in which the Exception occurred
* @param key the key used in the operation, or null if the operation
* does not use a key or the key was null
* @param exception the exception caught
*/
void onException(Ehcache ehcache, Object key, Exception exception);
}

Programmatic Configuration

The following example shows how to add exception handling to a cache, and then add the cache
back into cache manager so that all clients obtain the cache handling decoration.
CacheManager cacheManager = ...
Ehcache cache = cacheManger.getCache("exampleCache");
ExceptionHandler handler = new ExampleExceptionHandler(...);
cache.setCacheLoader(handler);
Ehcache proxiedCache = ExceptionHandlingDynamicCacheProxy.createProxy(cache);

BigMemory Max Developer Guide 4.3.10 109

15 Cache Exception Handlers

cacheManager.replaceCacheWithDecoratedCache(cache, proxiedCache);

110 BigMemory Max Developer Guide 4.3.10

15 Cache Exception Handlers

16 Cache Decorators

■ About Cache Decorators .. 112

■ Built-in Decorators .. 112

■ Creating a Decorator .. 112

■ Adding Decorated Caches to a CacheManager ... 113

BigMemory Max Developer Guide 4.3.10 111

About Cache Decorators

BigMemory Max uses the Ehcache interface, of which Cache is an implementation. It is possible
and encouraged to create Ehcache decorators that are backed by a Cache instance, implement
Ehcache and provide extra functionality.

The Decorator pattern is one of the well known Gang of Four patterns.

Decorated caches are accessed from the CacheManager using CacheManager.getEhcache(String
name). Note that, for backward compatibility, CacheManager.getCache(String name) has been
retained. However only CacheManager.getEhcache(String name) returns the decorated cache.

Built-in Decorators

BlockingCache

This is a Blocking decorator for Ehcache that allows concurrent read access to elements already
in the cache. If the element is null, other reads will block until an element with the same key is
put into the cache. This decorator is useful for constructing read-through or self-populating caches.
BlockingCache is used by CachingFilter.

SelfPopulatingCache

A self-populating decorator for Ehcache that creates entries on demand. Clients of the cache simply
call it without needing knowledge of whether the entry exists in the cache. If null, the entry is
created. The cache is designed to be refreshed. Refreshes operate on the backing cache, and do not
degrade performance of get calls.

SelfPopulatingCache extends BlockingCache.Multiple threads attempting to access a null element
will block until the first thread completes. If refresh is being called the threads do not block - they
return the stale data. This is very useful for engineering highly scalable systems.

Caches with Exception Handling

Cacheswith exception handlers are decorated. For information about adding an exception handler
to a cache, see “Cache Exception Handlers” on page 107.

Creating a Decorator

You can add decorators to a cache either declaratively in the ehcache.xml configuration file, or
programmatically.

Declarative Creation
You can configure decorators directly in ehcache.xml. The decorators will be created and added
to the CacheManager.

112 BigMemory Max Developer Guide 4.3.10

16 Cache Decorators

It accepts the name of a concrete class that extends net.sf.ehcache.constructs.CacheDecoratorFactory

The properties will be parsed according to the delimiter (default is comma ",") and passed to the
concrete factory's createDecoratedEhcache(Ehcache cache, Properties properties) method along
with the reference to the owning cache.

It is configured as per the following example:
<cacheDecoratorFactory

class="com.company.SomethingCacheDecoratorFactory"
properties="property1=36 ..." />

Note that decorators can be configured against the defaultCache. This is very useful for frameworks
like Hibernate that add caches based on the configuration of the defaultCache.

Programmatic Creation
Cache decorators are created as follows:
BlockingCache newBlockingCache = new BlockingCache(cache);

The class must implement Ehcache.

Adding Decorated Caches to a CacheManager

Having created a decorator programmatically, it is generally useful to put it in a place where
multiple threads can access it. Note that decorators created via configuration in ehcache.xml have
already been added to the CacheManager.

Using CacheManager.replaceCacheWithDecoratedCache()

A built-in way is to replace the Cache in CacheManager with the decorated one. This is achieved
as in the following example:
cacheManager.replaceCacheWithDecoratedCache(cache, newBlockingCache);

TheCacheManager.replaceCacheWithDecoratedCache()method requires that the decorated cache
be built from the underlying cache from the same name.

Note that any overridden Ehcache methods will take on new behaviors without casting, as per
the normal rules of Java. Casting is only required for new methods that the decorator introduces.

Any calls to get the cache out of the CacheManager now return the decorated one.

A word of caution. This method should be called in an appropriately synchronized init style
method before multiple threads attempt to use it. All threads must be referencing the same
decorated cache. An example of a suitable init method is found in CachingFilter:
/**
* The cache holding the web pages. Ensure that all threads for a given cache
* name are using the same instance of this.
*/
private BlockingCache blockingCache;

BigMemory Max Developer Guide 4.3.10 113

16 Cache Decorators

/**
* Initialises blockingCache to use
*
* @throws CacheException The most likely cause is that a cache has not been
* configured in Ehcache's configuration file ehcache.xml
* for the filter name
*/
public void doInit() throws CacheException {
synchronized (this.getClass()) {

if (blockingCache == null) {
final String cacheName = getCacheName();
Ehcache cache = getCacheManager().getEhcache(cacheName);
if (!(cache instanceof BlockingCache)) {
//decorate and substitute
BlockingCache newBlockingCache = new BlockingCache(cache);
getCacheManager().replaceCacheWithDecoratedCache(cache, newBlockingCache);

}
blockingCache = (BlockingCache) getCacheManager().getEhcache(getCacheName());

}
}

}

Ehcache blockingCache = singletonManager.getEhcache("sampleCache1");

The returned cache will exhibit the decorations.

Using CacheManager.addDecoratedCache()

Sometimes you want to add a decorated cache but retain access to the underlying cache.

The way to do this is to create a decorated cache and then call cache.setName(new_name) and
then add it to CacheManager with CacheManager.addDecoratedCache().
/**
* Adds a decorated {@link Ehcache} to the CacheManager. This method neither
* creates the memory/disk store nor initializes the cache. It only adds the
* cache reference to the map of caches held by this cacheManager.
*
* It is generally required that a decorated cache, once constructed, is made
* available to other execution threads. The simplest way of doing this is to
* either add it to the cacheManager with a different name or substitute the
* original cache with the decorated one.
*
* This method adds the decorated cache assuming it has a different name.
* If another cache (decorated or not) with the same name already exists,
* it will throw {@link ObjectExistsException}. For replacing existing
* cache with another decorated cache having same name, please use
* {@link #replaceCacheWithDecoratedCache(Ehcache, Ehcache)}
*
* Note that any overridden Ehcache methods by the decorator will take on
* new behaviours without casting. Casting is only required for new methods
* that the decorator introduces. For more information see the well known
* Gang of Four Decorator pattern.
*
* @param decoratedCache
* @throws ObjectExistsException
* if another cache with the same name already exists.
*/

114 BigMemory Max Developer Guide 4.3.10

16 Cache Decorators

public void addDecoratedCache(Ehcache decoratedCache) throws ObjectExistsException {

BigMemory Max Developer Guide 4.3.10 115

16 Cache Decorators

116 BigMemory Max Developer Guide 4.3.10

16 Cache Decorators

17 Cache Extensions

■ About Cache Extensions .. 118

■ Declarative Configuration ... 118

■ Implementing a Cache Extension Factory and Cache Extension 118

■ Programmatic Configuration ... 120

BigMemory Max Developer Guide 4.3.10 117

About Cache Extensions

Cache extensions are a general-purpose mechanism to allow generic extensions to a cache. Cache
extensions are tied into the cache lifecycle. For that reason, this interface has the lifecyclemethods.

Cache extensions are created using the CacheExtensionFactory, which has a
createCacheCacheExtension() method that takes as a parameter a Cache and properties. It can
thus call back into any public method on Cache, including, of course, the load methods. Cache
extensions are suitable for timing services, where you want to create a timer to perform cache
operations. (Another way of adding Cache behavior is to decorate a cache. For an example of,
“Blocking and Self Populating Caches” on page 57.)

Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things such
as registering a CacheEventListener or even a CacheManagerEventListener, all from within a
CacheExtension, creating more opportunities for customization.

Declarative Configuration

Cache extensions are configured per cache. Each cache can have zero or more.

You configure a cache extension by adding a cacheExceptionHandlerFactory element as shown
in the following example:
<cache ...>

<cacheExtensionFactory
class="com.example.FileWatchingCacheRefresherExtensionFactory"

properties="refreshIntervalMillis=18000, loaderTimeout=3000,
flushPeriod=whatever, someOtherProperty=someValue ..."/>

</cache>

Implementing a Cache Extension Factory and Cache Extension

ACacheExtensionFactory is an abstract factory for creating cache extension. Implementers should
provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml. The factory class needs to be a concrete subclass of the abstract factory class
CacheExtensionFactory, which is reproduced below:
/**
* An abstract factory for creating CacheExtensions. Implementers should
* provide their own concrete factory extending this factory.
* It can then be configured in ehcache.xml.
*
*/
public abstract class CacheExtensionFactory {
/**
* @param cache the cache this extension should hold a reference to, and to
* whose lifecycle it should be bound.
* @param properties implementation specific properties configured as
* delimiter separated name value pairs in ehcache.xml
*/
public abstract CacheExtension createCacheExtension(Ehcache cache,
Properties properties);
}

118 BigMemory Max Developer Guide 4.3.10

17 Cache Extensions

The factory creates a concrete implementation of the CacheExtension interface, which is reproduced
below:
/**
* This is a general purpose mechanism to allow generic extensions to a Cache.
*
* CacheExtensions are tied into the Cache lifecycle. For that reason this
* interface has the lifecycle methods.
*
* CacheExtensions are created using the CacheExtensionFactory which has a
* createCacheCacheExtension() method which takes as a parameter a Cache and
* properties. It can thus call back into any public method on Cache, including,
* of course, the load methods.
*
* CacheExtensions are suitable for timing services, where you want to create a
* timer to perform cache operations. The other way of adding Cache behaviour is
* to decorate a cache.
* See {@link net.sf.ehcache.constructs.blocking.BlockingCache}
* for an example of how to do this.
*
* Because a CacheExtension holds a reference to a Cache, the CacheExtension
* can do things such as registering a CacheEventListener or even a
* CacheManagerEventListener, all from within a CacheExtension,
* creating more opportunities for customisation.
*
*/
public interface CacheExtension {
/**
* Notifies providers to initialise themselves.
*
* This method is called during the Cache's initialise method after it
* has changed its status to alive. Cache operations are legal in
* this method.
*
* @throws CacheException
*/
void init();
/**
* Providers may be doing all sorts of exotic things and need to be able to
* clean up on dispose.
*
* Cache operations are illegal when this method is called. The cache
* itself is partly disposed when this method is called.
*
* @throws CacheException
*/
void dispose() throws CacheException;
/**
* Creates a clone of this extension. This method will only be called by
* Ehcache before a cache is initialized.
*
* Implementations should throw CloneNotSupportedException if they do not
* support clone but that will stop them from being used with defaultCache.
*
* @return a clone
* @throws CloneNotSupportedException if the extension could not be cloned.
*/
public CacheExtension clone(Ehcache cache) throws CloneNotSupportedException;
/**
* @return the status of the extension

BigMemory Max Developer Guide 4.3.10 119

17 Cache Extensions

*/
public Status getStatus();
}

The implementations need to be placed in the classpath accessible to ehcache. For details on how
the loading of these classes will be done, see “Class Loading” on page 121.

Programmatic Configuration

Cache extensions can also be programmatically added to a Cache as shown below:
TestCacheExtension testCacheExtension = new TestCacheExtension(cache, ...);
testCacheExtension.init();
cache.registerCacheExtension(testCacheExtension);

120 BigMemory Max Developer Guide 4.3.10

17 Cache Extensions

18 Class Loading

■ About Class Loading .. 122

■ Plugin Class Loading .. 122

■ Loading of ehcache.xml Resources ... 123

BigMemory Max Developer Guide 4.3.10 121

About Class Loading

Class loading, within the plethora of environments that BigMemory Max can be running, could
be complex. But with BigMemory Max, all class loading is done in a standard way in one utility
class: ClassLoaderUtil.

Plugin Class Loading

BigMemory Max allows plugins for events and distribution. These are loaded and created as
follows:
/**
* Creates a new class instance. Logs errors along the way. Classes are loaded
* using the Ehcache standard classloader.
*
* @param className a fully qualified class name
* @return null if the instance cannot be loaded
*/
public static Object createNewInstance(String className) throws CacheException {

Class clazz;
Object newInstance;
try {
clazz = Class.forName(className, true, getStandardClassLoader());
} catch (ClassNotFoundException e) {
//try fallback
try {

clazz = Class.forName(className, true, getFallbackClassLoader());
} catch (ClassNotFoundException ex) {

throw new CacheException("Unable to load class " + className +
". Initial cause was " + e.getMessage(), e);

}
}
try {
newInstance = clazz.newInstance();
} catch (IllegalAccessException e) {
throw new CacheException("Unable to load class " + className +

". Initial cause was " + e.getMessage(), e);
} catch (InstantiationException e) {
throw new CacheException("Unable to load class " + className +

". Initial cause was " + e.getMessage(), e);
}
return newInstance;

}
/**
* Gets the ClassLoader that all classes in ehcache, and extensions,
* should use for classloading. All ClassLoading in Ehcache should use this
* one. This is the only thing that seems to work for all of the class
* loading situations found in the wild.
* @return the thread context class loader.
*/
public static ClassLoader getStandardClassLoader() {

return Thread.currentThread().getContextClassLoader();
}
/**
* Gets a fallback ClassLoader that all classes in ehcache, and
* extensions, should use for classloading. This is used if the
* context class loader does not work.

122 BigMemory Max Developer Guide 4.3.10

18 Class Loading

* @return the ClassLoaderUtil.class.getClassLoader(); */
public static ClassLoader getFallbackClassLoader() {

return ClassLoaderUtil.class.getClassLoader();
}

If this does not work for some reason, a CacheException is thrown with a detailed error message.

Loading of ehcache.xml Resources

If the configuration is otherwise unspecified, BigMemory Max looks for a configuration in the
following order:

Thread.currentThread().getContextClassLoader().getResource("/ehcache.xml")

ConfigurationFactory.class.getResource("/ehcache.xml")

ConfigurationFactory.class.getResource("/ehcache-failsafe.xml")

BigMemoryMaxuses the first configuration found.Note the use of "/ehcache.xml",which requires
that ehcache.xml be placed at the root of the classpath (i.e., not in any package).

BigMemory Max Developer Guide 4.3.10 123

18 Class Loading

124 BigMemory Max Developer Guide 4.3.10

18 Class Loading

A Working with Apache Maven

■ About Working with Apache Maven .. 126

■ Creating Enterprise Edition Clients .. 126

■ Using the tc-maven Plugin .. 127

■ Working With Terracotta SNAPSHOT Projects ... 128

■ Terracotta Repositories .. 128

BigMemory Max Developer Guide 4.3.10 125

About Working with Apache Maven

ApacheMaven users can set up the Terracotta repository for Terracotta artifacts (including Ehcache,
Quartz, and other Terracotta projects) using the URL shown:
<repository>

<id>terracotta-repository</id>
<url>http://www.terracotta.org/download/reflector/releases</url>
<releases>

<enabled>true</enabled>
</releases>

</repository>

For a complete list of repositories, see “Terracotta Repositories” on page 128.

Note the following when using Maven:

The repository URL is not browsable.

If you intend to work with Terracotta SNAPSHOT projects (usually in trunk), see “Working
With Terracotta SNAPSHOT Projects” on page 128.

You can use the artifact versions in a specific kit when configuring a POM.Artifacts in a specific
kit are guaranteed to be compatible.

Note:
Certain frameworks, including Hibernate and certain Spring modules, may have POMs with
dependencies on outdated versions of Terracotta products. This can cause older versions of
Terracotta products to be installed in your application's classpath ahead of the current versions
of those products, resulting in NoClassDefFound, NoSuchMethod, and other errors. At best,
your application may run but not perform correctly. Be sure to locate and remove any outdated
dependencies before running Maven.

Creating Enterprise Edition Clients

The following example shows the dependencies needed for creating Terracotta 4.3.1 clients. You
will need to adapt some of the entries to match your specific product installation.
<dependencies>
<dependency>
<groupId>org.terracotta</groupId>
<artifactId>terracotta-toolkit-runtime-ee</artifactId>
<version>4.3.1.0.133</version>

</dependency>
<!-- The following dependencies are required for using Ehcache.

Dependencies not listed here include the SLF4J API JAR (version 1.6.1) and an
SLF4J

binding JAR of your choice. These JARs specify the required logging framework.
It also does not include the explicit-locking JAR.-->

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-ee</artifactId>
<version>2.10.1.0.52</version>

</dependency>

126 BigMemory Max Developer Guide 4.3.10

A Working with Apache Maven

<!-- The following dependencies are required for using Terracotta Sessions. -->
<dependency>
<groupId>org.terracotta</groupId>
<artifactId>web-sessions</artifactId>
<version>4.3.1.0.133</version>

</dependency>
</dependencies>

Note:
The example shows artifact IDs (in the <artifactId> tags) and corresponding version numbers
(in the <version> tags). The contents of the <version> tags shown in the example probably do
notmatch the version numbers in your installed product.Make sure that you replace the versions
numbers in the example by the correct values for your installation. You can find these values
at the following locations (<InstallDir> represents the product installation location):

<InstallDir>/Terracotta/apis/ehcache/lib/ehcache-ee-<version>.jarEhcache version

<InstallDir>/Terracotta/apis/toolkit/lib/terracotta-toolkit-runtime-ee-<version>.jarTerracotta version

<InstallDir>/Terracotta/sessions/lib/web-sessions-<version>.jarWeb sessions version

<InstallDir>/Terracotta/quartz-ee/lib/quartz-ee-<version>.jarQuartz version (only 3
digits)

<InstallDir>/Terracotta/server/lib/wan-core-<version>.jarWAN version

Using the tc-maven Plugin

The tc-maven plugin can simplify the process of integrating and testing Terracotta products and
other assets. The plugin supplies a number of useful tasks, including starting, stopping, and
pausing Terracotta servers. To integrate the plugin, add the following to your project's POM
(version shown is for Terracotta 4.3.0):
<plugin>
<groupId>org.terracotta.maven.plugins</groupId>
<artifactId>tc-maven-plugin</artifactId>
<version>2.0.0</version>

</plugin>

The following is an abbreviated list of goals available with the tc-maven plugin:

FunctionGoal

Print help.tc:help

Start the Terracotta server.tc:start

Stop the Terracotta server.tc:stop

Restart the Terracotta server.tc:restart

Start the Terracotta Developer Console.tc:dev-console

BigMemory Max Developer Guide 4.3.10 127

A Working with Apache Maven

FunctionGoal

Start multiple Terracotta server and client processes.tc:run

Clean Terracotta data and logs directories.tc:clean

Stop web servers that started with tc:run.tc:terminate

Execute tc:help to print more detailed information on these goals.

Working With Terracotta SNAPSHOT Projects

If you intend to work with Terracotta SNAPSHOT projects (usually in trunk), you must have the
following settings.xml file installed:
<settings xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">
<profiles>

<profile>
<id>terracotta-repositories</id>
<repositories>

<repository>
<id>terracotta-snapshots</id>
<url>http://www.terracotta.org/download/reflector/snapshots</url>

</repository>
</repositories>
<pluginRepositories>
<pluginRepository>

<id>terracotta-snapshots</id>
<url>http://www.terracotta.org/download/reflector/snapshots</url>

</pluginRepository>
</pluginRepositories>

</profile>
</profiles>
<activeProfiles>
<activeProfile>terracotta-repositories</activeProfile>
</activeProfiles>
</settings>

Terracotta Repositories

The following contains all of the Terracotta repositories available:
<repositories>
<repository>
<id>terracotta-snapshots</id>
<url>http://www.terracotta.org/download/reflector/snapshots</url>
<releases><enabled>false</enabled></releases>
<snapshots><enabled>true</enabled></snapshots>

</repository>
<repository>
<id>terracotta-releases</id>
<url>http://www.terracotta.org/download/reflector/releases</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>false</enabled></snapshots>

128 BigMemory Max Developer Guide 4.3.10

A Working with Apache Maven

</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>terracotta-snapshots</id>
<url>http://www.terracotta.org/download/reflector/snapshots</url>
<releases><enabled>false</enabled></releases>
<snapshots><enabled>true</enabled></snapshots>

</pluginRepository>
<pluginRepository>
<id>terracotta-releases</id>
<url>http://www.terracotta.org/download/reflector/releases</url>
<releases><enabled>true</enabled></releases>
<snapshots><enabled>false</enabled></snapshots>

</pluginRepository>
</pluginRepositories>

BigMemory Max Developer Guide 4.3.10 129

A Working with Apache Maven

130 BigMemory Max Developer Guide 4.3.10

A Working with Apache Maven

	Table of Contents
	About This Documentation
	Online Information and Support
	Data Protection

	1 Key Classes and Methods
	About the Key Classes
	CacheManager
	Cache
	Element

	2 Basic Caching
	Creating a CacheManager
	Loading a Configuration
	Adding and Removing Caches Programmatically
	Performing Basic Cache Operations
	Shut down the CacheManager
	JUnit Tests

	3 Cache Usage Patterns
	Supported Usage Patterns
	cache-aside
	cache-as-sor
	read-through
	write-through
	write-behind
	Copy Cache

	4 Searching a Cache
	About Searching
	Making a Cache Searchable
	Defining Attributes
	Creating a Query
	Obtaining and Organizing Query Results
	Best Practices for Optimizing Searches
	Concurrency Considerations
	Options for Working with Nulls

	5 Searching with BigMemory SQL
	About BigMemory SQL
	Using BigMemory SQL
	Using the QueryManager API
	SQL Syntax and Examples

	6 Using Explicit Locking
	About Explicit Locking
	Code Sample for Explicit Locking
	How Locking Works
	The Locking API

	7 Blocking and Self Populating Caches
	About Blocking and Self-Populating Caches
	Blocking Cache
	SelfPopulatingCache

	8 Transaction Support
	About Transaction Support
	Requirements for Transactional Caches
	Configuring Transactional Cache
	Working with Global Transactions
	Failure Recovery
	Sample Applications
	Transaction Managers
	Working with Local Transactions
	Performance Considerations
	Potential Timeouts in a Transactional Cache
	Transactions in Write-Behind and Write-Through Caches
	Support for Other Transaction Systems

	9 Write-Through and Write-Behind Caches
	About Write-Through and Write-Behind Caches
	Using a Combined Read-Through and Write-Behind Cache
	Write-Behind Sample Application
	Configuring a Cache Writer
	CacheWriterFactory Attributes
	API
	SPI
	Monitoring the Size of Write-Behind Queue
	Handling Exceptions that Occur After a Writer is Called

	10 Bulk Loading
	About Bulk Loading
	Using the Bulk Load API
	Bulk-Load Sample Code
	Performance Improvement

	11 Refresh Ahead
	About Refresh Ahead
	Inline Refresh Ahead
	Scheduled Refresh Ahead
	Implementing the CacheLoader

	12 Cluster Events
	About Cluster Events
	Cluster Topology
	Listening for Cluster Events
	Troubleshooting

	13 Cache Manager Event Listeners
	About CacheManager Event Listeners
	Configuring a Cache Manager Event Listener
	Implementing a CacheManager Event Listener Factory and CacheManager Event Listener

	14 Cache Event Listeners
	About Cache Event Listeners
	Configuring a Cache Event Listener
	Implementing a Cache Event Listener Factory and Cache Event Listener
	Adding a Listener Programmatically
	Running Multiple Listeners on Separate Nodes
	Cache Events in a Terracotta Cluster

	15 Cache Exception Handlers
	About Exception Handlers
	Declarative Configuration
	Implementing a Cache Exception Handler Factory and Cache Exception Handler
	Programmatic Configuration

	16 Cache Decorators
	About Cache Decorators
	Built-in Decorators
	Creating a Decorator
	Adding Decorated Caches to a CacheManager

	17 Cache Extensions
	About Cache Extensions
	Declarative Configuration
	Implementing a Cache Extension Factory and Cache Extension
	Programmatic Configuration

	18 Class Loading
	About Class Loading
	Plugin Class Loading
	Loading of ehcache.xml Resources

	A Working with Apache Maven
	About Working with Apache Maven
	Creating Enterprise Edition Clients
	Using the tc-maven Plugin
	Working With Terracotta SNAPSHOT Projects
	Terracotta Repositories

