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Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://fempower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

®m  Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation” as an area of interest.

m  Access articles, code samples, demos, and tutorials.

m  Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

®  Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.
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1 Planning a Successful Deployment

A solid and proven concept of a production environment as well as adhering to best practices
common to most all data storage software is the foundation of a successful deployment, free of
troublesome interruptions of service.

The following sections is aimed to give crucial advice on the the dos and don'ts.

Ensure Proper, Dedicated System Resources

Terracotta Servers should be run on dedicated hardware. Software AG strongly discourages the
use of virtualization (such as vmWare).

Servers should generally be resourced such that no more than 70% of memory and 50% of CPU
is being utilized under "normal" peak conditions. This ensures capacity for abnormal spikes in
service demand. Failure to follow these recommendations could also result in adverse actions
taken by the operating system, such as the Linux OOM Kkiller.

Avoid any deployments that over-commit the memory resources of the underlying hardware, e.g.
do not use "swap" space for the processes running on the system.

When using persistence options such as FRS or Hybrid features, review and adhere to the "System
Requirements" sections of the documentation related to these features.

In particular, ensure that you utilize local drives for storage.

Virtual Environments

Note:
Use of dedicated physical hosts is recommended.

If you are deploying on virtual hosts (e.g. via vmWare), the Terracotta server process must be
"pinned" to given hardware (e.g. excluded from live migration processes such as vMotion). Such
virtual hosts must be configured with dedicated memory and CPU resources.

Similarly, for orchestrated container environments (e.g. Docker, Kubernetes, etc.), ensure that
Terracotta server processes are fixed to given hosts, and are not subject to unexpected migration.

Be aware of avoiding "noisy neighbor" problems - where processes compete for physical system
resources. This can lead to poor and/or unpredictable latency spikes and other performance and
stability issues.
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1 Planning a Successful Deployment

Running Multiple Terracotta Servers on the Same Host

Note:
Running multiple instances on the same host is not recommended.

Ensure that Terracotta servers that are members of the same stripe (e.g. "active" and "mirror(s)"
of the same stripe) are never assigned to the same physical host. This creates a single point of
failure, and can result in data loss.

Additionally, if you do run multiple servers on the same host, it is strongly recommended that
the processes run as separate users, and use separate mount points for persistence.

Leave Configuration Options at Defaults, Unless There Is a Specific Need

The default settings of Terracotta are the result of years of testing and experience in supporting
customer installations of any given size.

Software AG strongly recommends not to "proactively" override default property settings unless
a need is directly encountered.

Ensure Proper Selection of Persistence and High Availability Settings

Depending upon your use case, you may likely have requirements for taking extra care to make
proper selections for relevant configurations such as:

m  Deploying mirror servers

m  Selecting a proper Failover Tuning priority
m  Using persistence

®  Regular backup processes

Software AG strongly recommends checking the relevant documentation sections in order to
properly understand the concepts and implications.

Safe Shutdowns and Restarts

When shutting down Terracotta servers, and when restarting them, ensure that you follow the
documented "Safe Cluster Shutdown and Restart Procedures”. Under some configurations and
situations failure to do so may result in data loss.

Ensure that the persons who are responsible for the operations of your system are familiar with
these topics.
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2 Configuring BigMemory Max

About BigMemory Max Configuration

BigMemory Max supports declarative configuration via an XML configuration file, as well as
programmatic configuration via class-constructor APIs. Choosing one approach over the other
can be a matter of preference or a requirement, such as when an application requires a certain
run-time context to determine appropriate configuration settings.

If your project permits the separation of configuration from run time use, there are advantages to
the declarative approach:

m  Cache configuration can be changed more easily at deployment time.

m  Configuration can be centrally organized for greater visibility.

m  Configuration lifecycle can be separated from application-code lifecycle.

m  Configuration errors are checked at startup rather than causing an unexpected runtime error.
m If the configuration file is not provided, a default configuration is always loaded at runtime.

This guide focuses on XML declarative configuration. Programmatic configuration is explored in
certain examples and is documented in the Javadoc at http://www.ehcache.org/apidocs/2.10.1/.

XML Configuration

BigMemory Max uses Ehcache as its user-facing interface and is configured using the Ehcache
configuration system. By default, Ehcache looks for an ASCII or UTF8 encoded XML configuration
file called ehcache.xml at the top level of the Java classpath. You may specify alternate paths and
filenames for the XML configuration file by using the various CacheManager constructors as
described in the CacheManager Javadoc at http://www.ehcache.org/apidocs/2.10.1/.

To avoid resource conflicts, one XML configuration is required for each CacheManager that is
created. For example, directory paths and listener ports require unique values. BigMemory Max
will attempt to resolve conflicts, and, if one is found, it will emit a warning reminding the user to
use separate configurations for multiple CacheManagers.

A sample ehcache.xml file is included in the BigMemory Max distribution. It contains full
commentary on how to configure each element. This file can also be downloaded from http://
ehcache.org/ehcache.xml.

ehcache.xsd

Ehcache configuration files must comply with the Ehcache XML schema, ehcache. xsd, which can
be downloaded from http://ehcache.org/ehcache.xsd.

The BigMemory Max distribution also contains a copy of ehcache.xsd.

ehcache-failsafe.xml

If the CacheManager default constructor or factory method is called, Ehcache looks for a file called
ehcache.xml in the top level of the classpath. Failing that, it looks for encache-failsafe.xml in the

10 BigMemory Max Configuration Guide 4.3.10
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2 Configuring BigMemory Max

classpath. The ehcache-failsafe.xml file is packaged in the Ehcache JAR and should always be
found.

ehcache-failsafe.xml provides a simple default configuration to enable users to get started before
they create their own ehcache. xml.

When ehcache-failsafe.xml is used, Ehcache will emit a warning, reminding the user to set up
a proper configuration. The meaning of the elements and attributes are explained in the section
on ehcache.xml

<ehcache>
<diskStore path="java.io.tmpdir"/>
<defaultCache
maxEntriesLocalHeap="10000"
eternal="false"
timeToIdleSeconds="120"
timeTolLiveSeconds="120"
maxEntriesLocalDisk="10000000"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU">
<persistence strategy="localTempSwap"/>
</defaultCache>
</ehcache>

About Default Cache

The defaultCache configuration is applied to any cache that is not explicitly configured. The
defaultCache appears in the ehcache-failsafe.xml file by default, and can also be added to any
BigMemory Max configuration file.

While the defaultCache configuration is not required, an error is generated if caches are created
by name (programmatically) with no defaultCache loaded.

Dynamically Changing Cache Configuration

While most of the BigMemory Max configuration is not changeable after startup, certain cache
configuration parameters can be modified dynamically at runtime. These include the following;:

m  Expiration settings

m timeToLive — The maximum number of seconds an element can exist in the cache regardless
of access. The element expires at this limit and will no longer be returned from the cache.
The default value is 0, which means no TTL eviction takes place (infinite lifetime).

m timeToldle — The maximum number of seconds an element can exist in the cache without
being accessed. The element expires at this limit and will no longer be returned from the
cache. The default value is 0, which means no TTI eviction takes place (infinite lifetime).

Note that the eternal attribute, when set to "true", overrides timeToLive and timeToIdle so
that no expiration can take place.

®  Local sizing attributes

B maxEntriesLocalHeap

BigMemory Max Configuration Guide 4.3.10 1



2 Configuring BigMemory Max

B maxBytesLocalHeap
B maxEntrieslLocalDisk
B maxByteslLocalDisk
®  memory-store eviction policy.
m  CacheEventListeners can be added and removed dynamically

This example shows how to dynamically modify the cache configuration of a running cache:

Cache cache = manager.getCache("sampleCache");
CacheConfiguration config = cache.getCacheConfiguration();
config.setTimeToIdleSeconds(60) ;
config.setTimeTolLiveSeconds (120);
config.setmaxEntriesLocalHeap(10000) ;
config.setmaxEntriesLocalDisk(1000000) ;

Dynamic cache configurations can also be disabled to prevent future changes:

Cache cache = manager.getCache("sampleCache");
cache.disableDynamicFeatures();

In ehcache.xml, you can disable dynamic configuration by setting the <ehcache> element's
dynamicConfig attribute to "false".

Dynamically Changing a Distributed Configuration

Just as for standalone BigMemory, mutating the configuration of distributed BigMemory requires
access to the set methods of cache.getCacheConfiguration().

The following table provides information for dynamically changing common configuration options
in a Terracotta cluster. The Scope column, which specifies where the configuration is in effect, can
have one of the following values:

m  Client — The Terracotta client where the CacheManager runs.
m  TSA - The Terracotta Server Array for the cluster.

m  BOTH - Both the client and the TSA.

Note that configuration options whose scope covers "BOTH" are distributed and therefore affect
a cache on all clients.

Configuration Option Dynamic Scope Notes

Cache name NO TSA

Nonstop NO Client Enable High Availability
Timeout YES Client For nonstop.

Timeout Behavior YES Client For nonstop.

12 BigMemory Max Configuration Guide 4.3.10



2 Configuring BigMemory Max

Configuration Option

Immediate Timeout When
Disconnected

Time to Idle
Time to Live

Maximum Entries or Bytes in
Local Stores

Maximum Entries in Cache
Persistence Strategy

Disk Expiry Thread Interval
Disk Spool Buffer Size

Maximum Off-heap

Eternal

Pinning

Clear on Flush
Copy on Read
Copy on Write

Statistics

Logging

Consistency

Synchronous Writes

Dynamic

YES

YES
YES
YES

YES
N/A
N/A
N/A
N/A

YES
NO

NO
NO
NO
YES

NO

NO

NO

Scope

Client

BOTH
BOTH

Client

TSA
N/A
N/A
N/A
N/A

BOTH
BOTH

Client
Client
Client

Client

Client

Client

Client

Notes

For nonstop.

This and certain other sizing
attributes may be pooled by the
CacheManager, creating limitations
on how they can be changed.

Maximum off-heap memory
allotted to the TSA.

For details, see “Managing Data
Life” on page 41.

Cache statistics. Change
dynamically with
cache.setStatistics(boolean)
method.

Ehcache and Terracotta logging is
specified in configuration.
However, cluster events can be set
dynamically. For details, see
"Cluster Events" in the Developer
Guide for BigMemory Max.

It is possible to switch to and from
bulk mode. For details, see "Bulk
Loading" in the Developer Guide for
BigMemory Max..

BigMemory Max Configuration Guide 4.3.10
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2 Configuring BigMemory Max

To apply non-dynamic L1 changes, remove the existing cache and then add (to the same
CacheManager) a new cache with the same name as the removed cache, and which has the new
configuration. Restarting the CacheManager with an updated configuration, where all cache names
are the same as in the previous configuration, will also apply non-dynamic L1 changes.

Passing Copies Instead of References

By default, a get() operation on a store returns a reference to the requested data, and any changes
to that data are immediately reflected in the memory store. In cases where an application requires
a copy of data rather than a reference to it, you can configure the store to return a copy. This allows
you to change a copy of the data without affecting the original data in the memory store.

This is configured using the copyonRead and copyOnWrite attributes of the <cache> and
<defaultCache> elements in your configuration, or programmatically as follows:

CacheConfiguration config = new CacheConfiguration("copyCache", 1000)
.copyOnRead (true) .copyOnWrite(true);
Cache copyCache = new Cache(config);

The default configuration is "false" for both options.

To copy elements on put()-like and/or get()-like operations, a copy strategy is used. The default
implementation uses serialization to copy elements. You can provide your own implementation
of net.sf.ehcache.store.compound.CopyStrategy using the <copyStrategy> element:

<cache name="copyCache"

maxEntriesLocalHeap="10"

eternal="false"

timeToIdleSeconds="5"

timeTolLiveSeconds="10"

copyOnRead="true"

copyOnWrite="true">

<copyStrategy class="com.company.ehcache.MyCopyStrategy"/>

</cache>

A single instance of your CopyStrategy is used per cache. Therefore, in your implementation of
CopyStrategy.copy(T), T must be thread-safe.
A copy strategy can be added programmatically in the following way:

CacheConfiguration cacheConfiguration = new CacheConfiguration("copyCache", 10);
CopyStrategyConfiguration copyStrategyConfiguration = new CopyStrategyConfiguration();

copyStrategyConfiguration.setClass("com.company.ehcache.MyCopyStrategy");
cacheConfiguration.addCopyStrategy (copyStrategyConfiguration);

14 BigMemory Max Configuration Guide 4.3.10
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3 Configuring Storage Tiers

About Storage Tiers

BigMemory Max has three storage tiers, summarized here:

®  Memory store - Heap memory that holds a copy of the hottest subset of data from the off-heap
store. Subject to Java GC.

m  Off-heap store — Limited in size only by available RAM. Not subject to Java GC. Can store
serialized data only. Provides overflow capacity to the memory store.

m  Disk store — Backs up in-memory data and provides overflow capacity to the other tiers. Can
store serialized data only.

Note:
The disk tier is available for local (standalone) instances of BigMemory Max. For distributed
BigMemory Max, a Terracotta server or server array supplies the third tier.

This document defines the standalone storage tiers and their suitable element types and then
details the configuration for each storage tier.

Before running in production, it is strongly recommended that you test the tiers with the actual
amount of data you expect to use in production. For information about sizing the tiers, refer to
“Sizing Storage Tiers” on page 27.

Configuring Memory Store

The memory store is always enabled and exists in heap memory. For the best performance, allot
as much heap memory as possible without triggering garbage collection (GC) pauses, and use the
off-heap store to hold the data that cannot fit in heap (without causing GC pauses).

The memory store has the following characteristics:

m  Accepts all data, whether serializable or not

m  Fastest storage option

m  Thread safe for use by multiple concurrent threads

The memory store is the top tier and is automatically used by BigMemory Max to store the data
hotset because it is the fastest store. It requires no special configuration to enable, and its overall
size is taken from the Java heap size. Since it exists in the heap, it is limited by Java GC constraints.

Memory Use, Spooling, and Expiry Strategy in the Memory Store

All caches specify their maximum in-memory size, in terms of the number of elements, at
configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an existing
element is either deleted, if overflow is not enabled, or evaluated for spooling to another tier, if
overflow is enabled. The overflow options are overflowToOffHeap and <persistence> (disk store).

16 BigMemory Max Configuration Guide 4.3.10



3 Configuring Storage Tiers

If overflow is enabled, a check for expiry is carried out. If it is expired it is deleted; if not it is
spooled. The eviction of an item from the memory store is based on the optional
MemoryStoreEvictionPolicy attribute specified in the configuration file. Legal values are LRU
(default), LFU and FIFO:

m Least Recently Used (LRU)—LRU is the default setting. The last-used timestamp is updated
when an element is put into the cache or an element is retrieved from the cache with a get call.

m  Least Frequently Used (LFU) —For each get call on the element the number of hits is updated.
When a put call is made for a new element (and assuming that the max limit is reached for the
memory store) the element with least number of hits, the Less Frequently Used element, is
evicted.

®  First In First Out (FIFO) — Elements are evicted in the same order as they come in. When a
put call is made for a new element (and assuming that the max limit is reached for the memory
store) the element that was placed first (First-In) in the store is the candidate for eviction
(First-Out).

For all the eviction policies there are also putQuiet() and getQuiet() methods which do not update
the last used timestamp.

When there is a get() or a getQuiet() on an element, it is checked for expiry. If expired, it is removed
and null is returned. Note that at any point in time there will usually be some expired elements
in the cache. Memory sizing of an application must always take into account the maximum size
of each cache.

Tip:

calculateInMemorySize() is a convenient method that can provide an estimate of the size (in
bytes) of the memory store. It returns the serialized size of the cache, providing a rough estimate.
Do not use this method in production as it is has a negative effect on performance.

An alternative is to have an expiry thread. This is a trade-off between lower memory use and
short locking periods and CPU utilization. The design is in favor of the latter. For those concerned
with memory use, simply reduce the tier size. For more information, refer to “Sizing Storage
Tiers” on page 27.

Configuring Off-Heap Store

The off-heap store extends the in-memory store to memory outside the of the object heap. This
store, which is not subject to Java garbage collection (GC), is limited only by the amount of RAM
available.

Because off-heap data is stored in bytes, only data that is Serializable is suitable for the off-heap
store. Any non serializable data overflowing to the OffHeapMemoryStore is simply removed, and
a WARNING level log message emitted.

Since serialization and deserialization take place on putting and getting from the off-heap store,
it is theoretically slower than the memory store. This difference, however, is mitigated when GC
involved with larger heaps is taken into account.
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3 Configuring Storage Tiers

Allocating Direct Memory in the JVM

The off-heap store uses the direct-memory portion of the JVM. You must allocate sufficient direct
memory for the off-heap store by using the JVM property MaxDirectMemorySize.

For example, to allocate 2GB of direct memory in the JVM:

java —-XX:MaxDirectMemorySize=2G ...

Since direct memory may be shared with other processes, allocate at least 256MB (or preferably
1GB) more to direct memory than will be allocated to the off-heap store.

Note the following about allocating direct memory:

® If you configure off-heap memory but do not allocate direct memory with
-XX:MaxDirectMemorySize, the default value for direct memory depends on your version of
your JVM. Oracle HotSpot has a default equal to maximum heap size (-Xmx value), although
some early versions may default to a particular value.

B MaxDirectMemorySize must be added to the local node's startup environment.

®  Direct memory, which is part of the Java process heap, is separate from the object heap allocated
by -Xmx. The value allocated by MaxDirectMemorySizemust not exceed physical RAM, and is
likely to be less than total available RAM due to other memory requirements.

m  The amount of direct memory allocated must be within the constraints of available system
memory and configured off-heap memory.

®  The maximum amount of direct memory space you can use depends on the process data model
(32-bit or 64-bit) and the associated operating system limitations, the amount of virtual memory
available on the system, and the amount of physical memory available on the system.

Using Off-Heap Store with 32-bit JVMs

The amount of heap-offload you can achieve is limited by addressable memory. 64-bit systems
can allow as much memory as the hardware and operating system can handle, while 32-bit systems
have strict limitations on the amount of memory that can be effectively managed.

For a 32-bit process model, the maximum virtual address size of the process is typically 4GB,
though most 32-bit operating systems have a 2GB limit. The maximum heap size available to Java
is lower still due to particular operating-system (OS) limitations, other operations that may run
on the machine (such as mmap operations used by certain APIs), and various JVM requirements
for loading shared libraries and other code. A useful rule to observe is to allocate no more to
off-heap memory than what is left over after -Xmx is set. For example, if you set -Xmx3G, then
off-heap should be no more than 1GB. Breaking this rule may not cause an OutOfMemoryError
on startup, but one is likely to occur at some point during the JVM's life.

If Java GC issues are afflicting a 32-bit JVM, then off-heap store can help. However, note the
following:

m  Everything has to fit in 4GB of addressable space. If 2GB of heap is allocated (with -Xmx2g)
then at most are 2GB left for off-heap data.
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m  The JVM process requires some of the 4GB of addressable space for its code and shared libraries
plus any extra Operating System overhead.

®  Allocating a 3GB heap with -Xmx, as well as 2047MB of off-heap memory, will not cause an
error at startup, but when it's time to grow the heap an OutOfMemoryError is likely.

m  If both -Xms3G and -Xmx3G are used with 2047MB of off-heap memory, the virtual machine
will start but then complain as soon as the off-heap store tries to allocate the off-heap buffers.

m  Some APIs, such as java.util.zip.ZipFile on a 1.5 JVM, may <mmap> files in memory. This will
also use up process space and may trigger an OutOfMemoryError.

Configuring the Off-Heap Store

If an off-heap store is configured, the corresponding memory store overflows to that off-heap
store. Configuring an off-heap store can be done either through XML or programmatically. With
either method, the off-heap store is configured on a per-cache basis.

Declarative Configuration

The following XML configuration creates an off-heap cache with an in-heap store
(maxEntriesLocalHeap) of 10,000 elements which overflow to a 1-gigabyte off-heap area.

<ehcache updateCheck="false" monitoring="off" dynamicConfig="false">
<defaultCache maxEntriesLocalHeap="10000"
eternal="true"
memoryStoreEvictionPolicy="LRU"
statistics="false" />
<cache name="sample-offheap-cache"
maxEntriesLocalHeap="10000"
eternal="true"
memoryStoreEvictionPolicy="LRU"
overflowToOffHeap="true"
maxBytesLocalOffHeap="1G" />
</ehcache>

The configuration options are:

overflowToOffHeap

Values may be true or false. When set to true, enables the cache to utilize off-heap memory storage
to improve performance. Off-heap memory is not subject to Java GC cycles and has a size limit
set by the Java property MaxDirectMemorySize. The default value is false.

maxBytesLocalOffHeap

Sets the amount of off-heap memory available to the cache and is in effect only if over flowToOf fHeap
is true. The minimum amount that can be allocated is IMB. There is no maximum.

For more information on sizing data stores, see “Sizing Storage Tiers” on page 27.

Note:
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You should set maxEntriesLocalHeap to at least 100 elements when using an off-heap store to
avoid performance degradation. Lower values for maxEntriesLocalHeap trigger a warning to
be logged.

Programmatic Configuration

The equivalent cache can be created using the following programmatic configuration:

public Cache createOffHeapCache()
{

CacheConfiguration config = new CacheConfiguration("sample-offheap-cache'", 10000)
.overflowToOffHeap (true) .maxBytesLocalOffHeap("1G");

Cache cache = new Cache(config);

manager .addCache(cache) ;

return cache;

Off-Heap Configuration Examples

These examples show how to allocate 8GB of machine memory to different stores. It assumes a
data set of 7GB - say for a cache of 7M items (each 1kb in size).

Those who want minimal application response-time variance (or minimizing GC pause times),
will likely want all the cache to be off-heap. Assuming that 1GB of heap is needed for the rest of
the application, they will set their Java config as follows:

java -XmslG -Xmx1G -XX:maxDirectMemorySize=7G

And their Ehcache config as:

<cache
maxEntriesLocalHeap=100
overflowToOffHeap="true"
maxBytesLocalOffHeap="6G"

. />

Note:
To accommodate server communications layer requirements, the value of maxDirectMemorySize

must be greater than the value of maxBytesLocaloffHeap. The exact amount greater depends
upon the size of maxBytesLocaloffHeap. The minimum is 256MB, but if you allocate 1GB more
to the maxDirectMemorySize, it will certainly be sufficient. The server will only use what it needs
and the rest will remain available.

Those who want best possible performance for a hot set of data, while still reducing overall
application response time variance, will likely want a combination of on-heap and off-heap. The
heap will be used for the hotset, the off-heap for the rest. So, for example if the hot set is 1M items
(or 1GB) of the 7GB data. They will set their Java config as follows

java -Xms2G -Xmx2G -XX:maxDirectMemorySize=6G

And their Ehcache config as:

<cache
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maxEntriesLocalHeap=1M

overflowToOffHeap="true"

maxBytesLocalOffHeap="5G"
0o

This configuration will compare very favorably against the alternative of keeping the less-hot set
in a database (100x slower) or caching on local disk (20x slower).

Where the data set is small and pauses are not a problem, the whole data set can be kept on heap:

<cache
maxEntriesLocalHeap=1M
overflowToOffHeap="false"
oo

Where latency isn't an issue, the disk can be used:

<cache
maxEntriesLocalHeap=1M
<persistence strategy="localTempSwap"/>
0o

Tuning Off-Heap Store Performance

Memory-related or performance issues that arise during operations can be related to improper
allocation of memory to the off-heap store. If performance or functional issues arise that can be
traced back to the off-heap store, see the suggested tuning tips in this section.

General Memory allocation

Committing too much of a system's physical memory is likely to result in paging of virtual memory
to disk, quite likely during garbage-collection operations, leading to significant performance issues.
On systems with multiple Java processes, or multiple processes in general, the sum of the Java
heaps and off-heap stores for those processes should also not exceed the size of the physical RAM
in the system. Besides memory allocated to the heap, Java processes require memory for other
items, such as code (classes), stacks, and PermGen.

Note that MaxDirectMemorySize sets an upper limit for the JVM to enforce, but does not actually
allocate the specified memory. Overallocation of direct memory (or buffer) space is therefore
possible, and could lead to paging or even memory-related errors. The limit on direct buffer space
set by MaxDirectMemorySize should take into account the total physical memory available, the
amount of memory that is allotted to the JVM object heap, and the portion of direct buffer space
that other Java processes may consume.

In addition, be sure to allocate at least 15 percent more off-heap memory than the size of your data
set. To maximize performance, a portion of off-heap memory is reserved for meta-data and other
purposes.

Note also that there could be other users of direct buffers (such as NIO and certain frameworks
and containers). Consider allocating additional direct buffer memory to account for that additional
usage.
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Compressed References

For 64-bit JVMs running Java 6 Update 14 or higher, consider enabling compressed references to
improve overall performance. For heaps up to 32GB, this feature causes references to be stored at
half the size, as if the JVM is running in 32-bit mode, freeing substantial amounts of heap for
memory-intensive applications. The JVM, however, remains in 64-bit mode, retaining the advantages
of that mode.

For the Oracle HotSpot, compressed references are enabled using the option
-XX:+UseCompressedOops. For IBM JVMs, use -Xcompressedrefs.

Slow Off-Heap Allocation

Based configuration, usage, and memory requirements, BigMemory could allocate off-heap memory
multiple times. If off-heap memory comes under pressure due to over-allocation, the host OS may
begin paging to disk, thus slowing down allocation operations. As the situation worsens, an
off-heap buffer too large to fit in memory can quickly deplete critical system resources such as
RAM and swap space and crash the host OS.

To stop this situation from degrading, off-heap allocation time is measured to avoid allocating
buffers too large to fit in memory. If it takes more than 1.5 seconds to allocate a buffer, a warning
is issued. If it takes more than 15 seconds, the JVM is halted with System.exit() (or a different
method if the Security Manager prevents this).

To prevent a JVM shutdown after a 15-second delay has occurred, set the
net.sf.ehcache.offheap.DoNotHaltOnCriticalAllocationDelay system property to true. In this
case, an error is logged instead.

Swappiness and Huge Pages

An OS could swap data from memory to disk even if memory is not running low. For the purpose
of optimization, data that appears to be unused may be a target for swapping. Because BigMemory
can store substantial amounts of data in RAM, its data may be swapped by the OS. But swapping
can degrade overall cluster performance by introducing thrashing, the condition where data is
frequently moved forth and back between memory and disk.

To make heap memory use more efficient, Linux, Microsoft Windows, and Oracle Solaris users
should review their configuration and usage of swappiness as well as the size of the swapped
memory pages. In general, BigMemory benefits from lowered swappiness and the use of huge
pages (also known as big pages, large pages, and superpages).

Settings for these behaviors vary by OS and JVM. For Oracle HotSpot, -XX: +UseLargePages and
-XX:LargePageSizeInBytes=<size> (Where <size> is a value allowed by the OS for specific CPUs)
can be used to control page size. However, note that this setting does not affect how off-heap
memory is allocated. Over-allocating huge pages while also configuring substantial off-heap
memory can starve off-heap allocation and lead to memory and performance problems.

Maximum Serialized Size of an Element

This section applies when using BigMemory through the Ehcache API.
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Unlike the memory and the disk stores, by default the off-heap store has a 4MB limit for classes
with high quality hashcodes, and 256KB limit for those with pathologically bad hashcodes. The
built-in classes such as String and the java.lang.Number subclasses Long and Integer have high
quality hashcodes. This can issues when objects are expected to be larger than the default limits.

To override the default size limits, set the system property
net.sf.ehcache.offheap.cache_name.confﬁg.idealMaxSegmentSizetothesﬁze)mnlrequjna

For example,

net.sf.ehcache.offheap.com.company.domain.State.config.idealMaxSegmentSize=30M

Reducing Faulting

While the memory store holds a hotset (a subset) of the entire data set, the off-heap store should
be large enough to hold the entire data set. The frequency of misses (get operations that fail to
find the data in memory) begins to rise when the data is too large to fit into off-heap memory,
forcing gets to fetch data from the disk store (called faulting). More misses in turn raise latency
and lower performance.

For example, tests with a 4GB data set and a 5GB off-heap store recorded no misses. With the
off-heap store reduced to 4GB, 1.7 percent of cache operations resulted in misses. With the off-heap
store at 3GB, misses reached 15 percent.

Configuring Disk Store

The disk store provides a thread-safe disk-spooling facility that can be used for either additional
storage or persisting data through system restarts.

Note:
The disk tier is available for local (standalone) instances of BigMemory Max. For distributed
BigMemory Max, a Terracotta server or server array is used instead of a disk tier.

This section describes local disk usage. You can find additional information about configuring the
disk store in “Configuring Fast Restart (FRS)” on page 49.

Serialization

Only data that is Serializable can be placed in the disk store. Writes to and from the disk use
ObjectInputStream and the Java serialization mechanism. Any non-serializable data overflowing
to the disk store is removed and a NotSerializableException is thrown.

Serialization speed is affected by the size of the objects being serialized and their type. It has been
found that:

m  The serialization time for a Java object consisting of a large Map of String arrays was 126ms,
where the serialized size was 349,225 bytes.

m  The serialization time for a byte[] was 7ms, where the serialized size was 310,232 bytes.
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Byte arrays are 20 times faster to serialize, making them a better choice for increasing disk-store
performance.

Configuring the Disk Store

Disk stores are configured on a per CacheManager basis. If one or more caches requires a disk
store but none is configured, a default directory is used and a warning message is logged to
encourage explicit configuration of the disk store path.

Configuring a disk store is optional. If all caches use only memory and off-heap stores, then there
is no need to configure a disk store. This simplifies configuration, and uses fewer threads. This
also makes it unnecessary to configure multiple disk store paths when multiple CacheManagers
are being used.

Two disk store options are available:
®m  Temporary store (localTempSwap)

m Persistent store (LocalRestartable)

localTempSwap

The localTempSwap persistence strategy allows local disk usage during BigMemory operation,
providing an extra tier for storage. This disk storage is temporary and is cleared after a restart.

If the disk store path is not specified, a default path is used, and the default will be auto-resolved
in the case of a conflict with another CacheManager.

The localTempSwap disk store creates a data file for each cache on startup called
"<cache_name>.data".

localRestartable

This option implements a restartable store for all in-memory data. After any restart, the data set
is automatically reloaded from disk to the in-memory stores.

The path to the directory where any required disk files will be created is configured with the
<diskStore> sub-element of the Ehcache configuration. In order to use the restartable store, a
unique and explicitly specified path is required.

The diskStore Configuration Element

Files are created in the directory specified by the <diskStore> configuration element. The
<diskStore> element has one attribute called path.

<diskStore path="/path/to/store/data"/>

Legal values for the path attribute are legal file system paths. For example, for Unix:

/home/application/cache

The following system properties are also legal, in which case they are translated:
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® user.home - User's home directory
®  user.dir- User's current working directory
®  java.ijo.tmpdir - Default temp file path

B ehcache.disk.store.dir- A system property you would normally specify on the command
line—for example, java -Dehcache.disk.store.dir=/u01/myapp/diskdir.

Subdirectories can be specified below the system property, for example:

user.dir/one

To programmatically set a disk store path:

DiskStoreConfiguration diskStoreConfiguration = new DiskStoreConfiguration();
diskStoreConfiguration.setPath("/my/path/dir");

// Already created a configuration object ...
configuration.addDiskStore(diskStoreConfiguration);

CacheManager mgr = new CacheManager (configuration);

Note:
A CacheManager's disk store path cannot be changed once it is set in configuration. If the disk
store path is changed, the CacheManager must be recycled for the new path to take effect.

Disk Store Expiry and Eviction

Expired elements are eventually evicted to free up disk space. The element is also removed from
the in-memory index of elements.

One thread per cache is used to remove expired elements. The optional attribute
diskExpiryThreadIntervalSeconds sets the interval between runs of the expiry thread.

Important:
Setting diskExpiryThreadIntervalSeconds to alow value can cause excessive disk-store locking
and high CPU utilization. The default value is 120 seconds.

If a cache's disk store has a limited size, Elements will be evicted from the disk store when it
exceeds this limit. The LFU algorithm is used for these evictions. It is not configurable or changeable.

Note:
With the localTempSwap strategy, you can use maxEntrieslLocalDisk Or maxBytesLocalD1isk at
either the Cache or CacheManager level to control the size of the disk tier.

Turning off Disk Stores
To turn off disk store path creation, comment out the diskStore element in ehcache.xml.

The default Ehcache configuration, ehcache-failsafe.xml, uses a disk store. To avoid use of a disk
store, specify a custom ehcache.xml with the diskStore element commented out.
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The Sizing Attributes

Tuning BigMemory Max often involves sizing the data storage tiers appropriately. You can size
the different data tiers in a number of ways using simple sizing attributes. These sizing attributes
affect memory and disk resources.

The following table summarizes the sizing attributes you can use.

Tier Attribute Description

maxEntriesLocalHeapmax

Memory Store
BytesLocalHeap

(Heap)

The maximum number of entries or bytes a
data set can use in local heap memory, or
when set at the CacheManager level
(maxBytesLocalHeap only), as a pool
available to all data sets under that
CacheManager. This setting is required for
every cache or at the CacheManager level.

Pooling is available at the CacheManager
level using maxBytesLocalHeap only.

Off-heap Store MaxByteslocalOffHeap The maximum number of bytes a data set
can use in off-heap memory, or when set at
the CacheManager level, as a pool available
to all data sets under that CacheManager.

Pooling is available at the CacheManager
level.

Disk Store maxEntriesLocalDiskmax

X The maximum number of entries or bytes a
BytesLocalDisk

data set can use on the local disk, or when
set at the CacheManager level
(maxBytesLocalDisk only), as a pool
available to all data sets under that
CacheManager. Note that these settings
apply to temporary disk usage
(localTempswap); these settings do not apply
to disk persistence.

Pooling is available at the CacheManager
level using maxBytesLocalDisk only.

The following table summarizes sizing attributes for distributed BigMemory Max (using a Terracotta
Server or a Server Array).

Tier Attribute Description

maxEntriesLocalHeapmax

The maximum number of cache entries or
BytesLocalHeap

bytes a cache can use in local heap memory,
or, when set at the CacheManager level

Heap
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Tier Attribute

Off—heap maxBytesLocalOffHeap

Local disk N/A

Terracotta maxEntriesInCache

Server Array

Description

(maxBytesLocalHeap only), a local pool
available to all caches under that
CacheManager. This setting is required for
every cache or at the CacheManager level.

Pooling is available at the CacheManager
level using maxBytesLocalHeap only.

The maximum number of bytes a cache can
use in off-heap memory, or, when set at the
CacheManager level, as a pool available to
all caches under that CacheManager. This
setting requires BigMemory.

Pooling is available at the CacheManager
level.

Distributed caches cannot use the local disk.

Pooling at the CacheManager level is not
available.

The number of cache elements that the
Terracotta Server Array will store for a
distributed cache. This value must be greater
than or equal to the number of entries in all
of the clients of the server array. Set on
individual distributed caches only, this
setting is unlimited by default.

Pooling at the CacheManager level is not
available.

Attributes that set a number of entries or elements take an integer. Attributes that set a memory
size (bytes) use the Java -Xmx syntax (for example: "500k", "200m", "2g") or percentage (for example:
"20%"). Percentages, however, can be used only in the case where a CacheManager-level pool has

been configured.

The following diagram illustrates the tiers and their effective sizing attributes.
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Pooling Resources Versus Sizing Individual Data Sets

You can constrain the size of any data set on a specific tier in that data set's configuration. You
can also constrain the size of all of a CacheManager's data sets in a specific tier by configuring an
overall size at the CacheManager level.

If there is no CacheManager-level pool specified for a tier, an individual data set claims the amount
of that tier specified in its configuration. If there is a CacheManager-level pool specified for a tier,
an individual data set claims that amount from the pool. In this case, data sets with no size
configuration for that tier receive an equal share of the remainder of the pool (after data sets with
explicit sizing configuration have claimed their portion).

For example, if a CacheManager with eight data sets pools one gigabyte of heap, and two data
sets each explicitly specify 200MB of heap while the remaining data sets do not specify a size, the
remaining data sets will share 600MB of heap equally. Note that data sets must use bytes-based
attributes to claim a portion of a pool; entries-based attributes such as maxEntriesLocal cannot be
used with a pool.

On startup, the sizes specified by data sets are checked to ensure that any CacheManager-level
pools are not over-allocated. If over-allocation occurs for any pool, an
InvalidConfigurationException is thrown. Note that percentages should not add up to more than
100% of a single pool.

If the sizes specified by data sets for any tier take exactly the entire CacheManager-level pool
specified for that tier, a warning is logged. In this case, data sets that do not specify a size for that
tier cannot use the tier, as nothing is left over.

Memory Store (Heap)

A size must be provided for the heap, either in the CacheManager (maxBytesLocalHeap only) or in
each individual cache (maxBytesLocalHeap Or maxEntriesLocalHeap). Not doing so causes an
InvalidConfigurationException.

If a pool is configured, it can be combined with a heap setting in an individual cache. This allows
the cache to claim a specified portion of the heap setting configured in the pool. However, in this
case the cache setting must use maxBytesLocalHeap (same as the CacheManager).
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In any case, every cache must have a heap setting, either configured explicitly or taken from the
pool configured in the CacheManager.

Off-Heap Store
Off-heap sizing can be configured in bytes only, never by entries.

If a CacheManager has a pool configured for off-heap, your application cannot add caches
dynamically that have off-heap configuration — doing so generates an error. In addition, if any
caches that used the pool are removed programmatically or through the Terracotta Management
Console (TMC), other caches in the pool cannot claim the unused portion. To allot the entire
off-heap pool to the remaining caches, remove the unwanted cache from the Ehcache configuration
and then reload the configuration.

To use off-heap as a data tier, a cache must have overflowTo0OffHeap set to "true". If a CacheManager
has a pool configured for using off-heap, the overflowTo0ffHeap attribute is automatically set to
"true" for all caches. In this case, you can prevent a specific cache from overflowing to off-heap by
explicitly setting its overflowToOffHeap attribute to "false".

Note that an exception is thrown if any cache using an off-heap store attempts to put an element
that will cause the off-heap store to exceed its allotted size. The exception will contain a message
similar to the following;:

The element '[ key = 25274, value=[B@3ebb2a91, version=1, hitCount=0,

CreationTime = 1367966069431, LastAccessTime = 1367966069431 ]'
is too large to be stored in this offheap store.

Local Disk Store

The local disk can be used as a data tier, either for temporary storage or for disk persistence, but
not both at once.

To use the disk as a temporary tier during BigMemory operation, set the persistenceStrategy to
"localTempSwap", and use the maxBytesLocalDisk setting to configure the size of this tier. For
more information about using the disk as a temporary tier, see “Configuring Disk Store” on
page 23.

For information about using the disk store for data persistence, see “Data Persistence
Implementation” on page 50.

Note that BigMemory Max distributed across a Terracotta Server Array cannot use the local disk.

Sizing Examples

The following examples illustrate both pooled and individual cache-sizing configurations.

Note:
Some of the following examples include allocations for off-heap storage. Off-heap data storage
(i.e., the off-heap tier) is only available with the BigMemory products.
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Pooled Resources

The following configuration sets pools for all of this CacheManager's caches:

<ehcache xmlns...
Name="CM1"
maxByteslLocalHeap="100M"
maxBytesLocalOffHeap="10G"
maxByteslLocalDisk="50G">

<cache name="Cachel" ... </cache>

<cache name="Cache2" ... </cache>
<cache name="Cache3" ... </cache>
</ehcache>

CacheManager CM1 automatically allocates these pools equally among its three caches. Each cache
gets one third of the allocated heap, off-heap, and local disk. Note that at the CacheManager level,
resources can be allocated in bytes only.

Explicitly Sizing Caches

You can explicitly allocate resources to specific caches:

<ehcache xmlns...
Name="CM1"
maxByteslLocalHeap="100M"
maxBytesLocalOffHeap="10G"
maxByteslLocalDisk="60G">

<cache name="Cachel" ...
maxBytesLocalHeap="50M"

</cache>
<cache name="Cache2" ...
maxBytesLocalOffHeap="5G"

</cache>
<cache name="Cache3" ... </cache>
</ehcache>

In the example above, Cachel reserves 50Mb of the 100Mb local-heap pool; the other caches divide
the remaining portion of the pool equally. Cache2 takes half of the local off-heap pool; the other
caches divide the remaining portion of the pool equally. Cache3 receives 25Mb of local heap, 2.5Gb
of off-heap, and 20Gb of the local disk.

Caches that reserve a portion of a pool are not required to use that portion. Cachel, for example,
has a fixed portion of the local heap but may have any amount of data in heap up to the configured
value of 50Mb.

Note that caches must use the same sizing attributes used to create the pool. Cachel, for example,
cannot use maxEntriesLocalHeap to reserve a portion of the pool.

32 BigMemory Max Configuration Guide 4.3.10



4 Sizing Storage Tiers

Mixed Sizing Configurations

If a CacheManager does not pool a particular resource, that resource can still be allocated in cache
configuration, as shown in the following example.

<ehcache xmlns...
Name="CM2"
maxBytesLocalHeap="100M">

<cache name='"Cache4"
maxBytesLocalHeap="50M"
maxEntriesLocalDisk="100000"

</cache>
<cache name="Cache5"
maxBytesLocalOffHeap="10G"

</cache>
<cache name="Cache6" ... </cache>
</ehcache>

CacheManager CM2 creates one pool (local heap). Its caches all use the local heap and are
constrained by the pool setting, as expected. However, cache configuration can allocate other
resources as desired. In this example, Cache4 allocates disk space for its data, and Cacheb5 allocates
off-heap space for its data. Cache6 gets 25Mb of local heap only.

Using Percents

The following configuration sets pools for each tier:

<ehcache xmlns...
Name="CM1"
maxBytesLocalHeap="1G"
maxBytesLocalOffHeap="10G"
maxByteslLocalDisk="50G">

<!-- Cachel gets 400Mb of heap, 2.5Gb of off-heap, and 5Gb of disk. -->
<cache name="Cachel"

maxByteslLocalHeap="40%">

</cache>

<!-- Cache2 gets 300Mb of heap, 5Gb of off-heap, and 5Gb of disk. -->
<cache name="Cache2"

maxBytesLocalOffHeap="50%">

</cache>

<!-- Cache2 gets 300Mb of heap, 2.5Gb of off-heap, and 40Gb of disk. -->
<cache name="Cache3"

maxByteslLocalDisk="80%">

</cache>

</ehcache>

Note:

You can use a percentage of the total JVM heap for the CacheManager maxBytesLocalHeap.
The CacheManager percentage, then, is a portion of the total JVM heap, and in turn, the Cache
percentage is the portion of the CacheManager pool for that tier.
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Sizing Without a Pool

The CacheManager in this example does not pool any resources.

<ehcache xmlns...
Name="CM3"
Y

<cache name="Cache7"
maxBytesLocalHeap="50M"
maxEntriesLocalDisk="100000"

</cache>
<cache name="Cache8"
maxEntriesLocalHeap="1000"
maxBytesLocalOffHeap="10G"

</cache>
<cache name="Cache9"
maxBytesLocalHeap="50M"

</cache>
</ehcache>

Caches can be configured to use resources as necessary. Note that every cache in this example
must declare a value for local heap. This is because no pool exists for the local heap; implicit
(CacheManager configuration) or explicit (cache configuration) local-heap allocation is required.

Sizing Distributed Caches

Terracotta distributed caches can be sized as other caches except that they do not use the local
disk and therefore cannot be configured with *LocalDisk sizing attributes. Distributed caches use
the storage resources available on the Terracotta Server Array, BigMemory Max and the Fast
Restart store. For more information about fast restartability for distributed caches, see "Terracotta
Cluster with Reliability" in the Terracotta Server Array Administrator Guide.

Cache-configuration sizing attributes behave as local configuration, which means that every node
can load its own sizing attributes for the same caches. That is, while some elements and attributes
are fixed by the first Ehcache configuration loaded in the cluster, cache-configuration sizing
attributes can vary across nodes for the same cache.

For example, a cache may have the following configuration on one node:

<cache name="myCache"
maxEntriesLocalHeap="10000"
maxBytesLocalOffHeap="8g"
eternal="false"
timeToIdleSeconds="3600"
timeTolLiveSeconds="1800">
<persistence strategy="distributed"/>
<terracotta/>

</cache>

The same cache may have the following size configuration on another node:
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<cache name="myCache"
maxEntriesLocalHeap="10000"
maxBytesLocalOffHeap="10g"
eternal="false"
timeToIdleSeconds="3600"
timeTolLiveSeconds="1800">
<persistence strategy="distributed"/>
<terracotta/>

</cache>

If the cache exceeds its size constraints on a node, then with this configuration the Terracotta Server
Array provides myCache with an unlimited amount of space for spillover and backup. To impose
a limit, you must set maxEntriesInCache to a positive non-zero value:

<cache name="myCache"
maxEntriesLocalHeap="10000"
maxBytesLocalOffHeap="10g"
eternal="false"
timeToIdleSeconds="3600"
timeTolLiveSeconds="1800"
maxEntriesInCache="1000000">
<persistence strategy="distributed"/>
<terracotta/>

</cache>

The Terracotta Server Array will now evict myCache entries to stay within the limit set by
maxEntriesInCache. However, for any particular cache, eviction on the Terracotta Server Array is
based on the largest size configured for that cache. In addition, the Terracotta Server Array will
not evict any cache entries that exist on at least one client node, regardless of the limit imposed by
maxEntriesInCache

Note:

If maxEntriesInCache is not set, the default value 0 is used, which means that the cache is
unbounded and will not undergo capacity eviction (but periodic and resource evictions are still
allowed). Although bounds are not enforced by capacity eviction, an "unbounded" cache in this
respect has a practical limitation equal to Integer MAX_VALUE (app. 2 billion entries). For more
information about eviction, see "Understanding Automatic Resource Management" in the
Terracotta Server Array Administrator Guide.

Sizing the Terracotta Server Array

Since maxEntriesInCache is based on entries, you must size the Terracotta Server Array based on
the expected average size of an entry. One way to discover this value is by using the Terracotta
Management Console (TMC). Set up a test cluster with the expected data set, and connect it to the
TMC. Then navigate to Application Data > Sizing Panel, and review the Relative Cache Sizes
by Tier section.

Note that the average cache-entry size reported in the TMC is an estimate. For more information,
see the Terracotta Management Console User Guide.
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Pinning and Size Limitations

Pinned caches can override the limits set by cache-configuration sizing attributes, potentially
causing OutOfMemory errors. This is because pinning prevents flushing of cache entries to lower
tiers. For more information on pinning, see “Pinning Data” on page 43.

Built-In Sizing Computation and Enforcement

Internal BigMemory Max mechanisms track data-element sizes and enforce the limits set by
CacheManager sizing pools.

Sizing of Elements

Elements put in a memory-limited cache will have their memory sizes measured. The entire

Element instance added to the cache is measured, including key and value, as well as the memory
footprint of adding that instance to internal data structures. Key and value are measured as object
graphs —each reference is followed and the object reference also measured. This goes on recursively.

Shared references will be measured by each class that references it. This will result in an
overstatement. Shared references should therefore be ignored.

Ignoring for Size Calculations

For the purposes of measurement, references can be ignored using the @IgnoreSizeof annotation.
The annotation may be declared at the class level, on a field, or on a package. You can also specify
a file containing the fully qualified names of classes, fields, and packages to be ignored.

This annotation is not inherited, and must be added to any subclasses that should also be excluded
from sizing.

The following example shows how to ignore the Dog class.

@IgnoreSizeOf

public class Dog {
private Gender gender;
private String name;

}

The following example shows how to ignore the sharedInstance field.

public class MyCacheEntry {
@IgnoreSizeOf
private final SharedClass sharedInstance;

3

Packages may be also ignored if you add the @IgnoreSizeOf annotation to appropriate
package-info.java of the desired package. Here is a sample package-info.java for and in the
com.pany.ignore package:

@IgnoreSizeOf
package com.pany.ignore;
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import net.sf.ehcache.pool.sizeof.filter.IgnoreSizeOf;

Alternatively, you may declare ignored classes and fields in a file and specify a
net.sf.ehcache.sizeof.filter system property to point to that file.

# That field references a common graph between all cached entries
com.pany.domain.cache.MyCacheEntry.sharedInstance

# This will dignore all instances of that type
com.pany.domain.SharedState

# This ignores a package

com.pany.example

Note that these measurements and configurations apply only to on-heap storage. Once Elements
are moved to off-heap memory ordisk, they are serialized as byte arrays. The serialized size is
then used as the basis for measurement.

Configuration for Limiting the Traversed Object Graph

Asnoted above, sizing caches involves traversing object graphs, a process that can be limited with
annotations. This process can also be controlled at both the CacheManager and cache levels.

Size-Of Limitation at the CacheManager Level
Control how deep the size-of engine can go when sizing on-heap elements by adding the following
element at the CacheManager level:

<sizeOfPolicy maxDepth="100" maxDepthExceededBehavior="abort"/>

This element has the following attributes

®  maxDepth — Controls how many linked objects can be visited before the size-of engine takes
any action. This attribute is required.

® maxDepthExceededBehavior — Specifies what happens when the max depth is exceeded while
sizing an object graph:

m  "continue" - (DEFAULT) Forces the size-of engine to log a warning and continue the sizing
operation. If this attribute is not specified, "continue" is the behavior used.

m  "abort" — Forces the SizeOf engine to abort the sizing, log a warning, and mark the cache
as not correctly tracking memory usage. With this setting, Ehcache.hasAbortedSize0f ()
returns true.

The SizeOf policy can be configured at the CacheManager level (directly under <ehcache>) and at
the cache level (under <cache> or <defaultCache>). The cache policy always overrides the
CacheManager if both are set.

Size-Of Limitation at the Cache level

Use the <size0fPolicy> as a sub-element in any <cache> block to control how deep the size-of
engine can go when sizing on-heap elements belonging to the target cache. This cache-level setting
overrides the CacheManager size-of setting.
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Debugging of Size-Of Related Errors

If warnings or errors appear that seem related to size-of measurement (usually caused by the
size-of engine walking the graph), generate more log information on sizing activities:

m  Set the net.sf.ehcache.sizeof.verboseDebuglogging system property to true.

®  Enable debug logs on net.sf.ehcache.pool.sizeof in your chosen implementation of SLF4].

Eviction When Using CacheManager-Level Storage

When a CacheManager-level storage pool is exhausted, a cache is selected on which to perform
eviction to recover pool space. The eviction from the selected cache is performed using the cache's
configured eviction algorithm (LRU, LFU, etc...). The cache from which eviction is performed is
selected using the "minimal eviction cost" algorithm described below:

eviction-cost = mean-entry-size * drop-in-hit-rate

Eviction cost is defined as the increase in bytes requested from the underlying SOR (System of
Record, e.g., database) per unit time used by evicting the requested number of bytes from the
cache.

If we model the hit distribution as a simple power-law then:

P(hit n'th element) ~ 1/n”{alpha}

In the continuous limit, this means the total hit rate is proportional to the integral of this distribution
function over the elements in the cache. The change in hit rate due to an eviction is then the integral
of this distribution function between the initial size and the final size. Assuming that the eviction
size is small compared to the overall cache size, we can model this as:

drop ~ access * 1/x"{alpha} * Delta(x)

where "access" is the overall access rate (hits + misses), and x is a unit-less measure of the "fill level"
of the cache. Approximating the fill level as the ratio of hit rate to access rate, and substituting in
to the eviction-cost expression, we get:

eviction-cost = mean-entry-size * access * 1/(hits/access)”{alpha}
* (eviction / (byteSize / (hits/access)))

Simplifying:

eviction-cost = (byteSize / countSize) * access x 1/(h/A)*{alpha}
* (eviction * hits)/(access * byteSize)
eviction-cost = (eviction * hits) / (countSize * (hits/access)”{alpha}l)

Removing the common factor of "eviction", which is the same in all caches, lead us to evicting
from the cache with the minimum value of:

eviction-cost = (hits / countSize) / (hits/access)*{alpha}

When a cache has a zero hit-rate (it is in a pure loading phase), we deviate from this algorithm

n_n

and allow the cache to occupy 1/nth of the pool space, where "n" is the number of caches using
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the pool. Once the cache starts to be accessed, we re-adjust to match the actual usage pattern of
that cache.
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Configuration Options that Affect Data Life

This topic covers managing the life of the data in each of the data-storage tiers, including the
pinning features of Automatic Resource Control (ARC).

You use the options to manage data life within the data-storage tiers:

®  Flush — To move an entry to a lower tier. Flushing is used to free up resources while still
keeping data in BigMemory Max.

®  Fault-To copy an entry from a lower tier to a higher tier. Faulting occurs when data is required
at a higher tier but is not resident there. The entry is not deleted from the lower tiers after

being faulted.

®  Eviction — To remove an entry from BigMemory Max. The entry is deleted; it can only be
reloaded from an outside source. Entries are evicted to free up resources.

= Expiration — A status based on Time-To-Live and Time-To-Idle settings. To maintain
performance, expired entries may not be immediately flushed or evicted.

®  Pinning - To keep data in memory indefinitely.

The following figure depicts the movement of data across the storage tiers.
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Setting Expiration

Data entries expire based on parameters with configurable values. When eviction occurs, expired
elements are the first to be removed. Having an effective expiration configuration is critical to
optimizing the use of resources such as heap and maintaining overall performance.

To add expiration, specify values for the following <cache> attributes, and tune these values based
on results of performance tests:

B timeToIdleSeconds—The maximum number of seconds an element can exist in the BigMemory
data store without being accessed. The element expires at this limit and will no longer be
returned from BigMemory Max. The default value is 0, which means no TTI eviction takes
place (infinite lifetime).

B timeTolLiveSeconds—The maximum number of seconds an element can exist in the BigMemory
data store regardless of use. The element expires at this limit and will no longer be returned
from BigMemory Max. The default value is 0, which means no TTL eviction takes place (infinite
lifetime).

B  maxEntriesInCache — The maximum sum total number of elements (cache entries) allowed for
a distributed cache in all Terracotta clients. If this target is exceeded, eviction occurs to bring
the count within the allowed target. The default value is 0, which means that the cache will
not undergo capacity eviction (but periodic and resource evictions are still allowed). Note that
maxEntriesInCache reflects storage allocated on the Terracotta Server Array.

®m eternal-Ifthe cache's eternal flag is set, it overrides any finite TTI/TTL values that have been
set. Individual cache elements may also be set to eternal. Eternal elements and caches do not
expire, however they may be evicted.

For information about how configuration can impact eviction, see “How Configuration Affects
Element Flushing and Eviction” on page 45.

Pinning Data

Without pinning, expired cache entries can be flushed and eventually evicted, and even most
non-expired elements can also be flushed and evicted as well, if resource limitations are reached.
Pinning gives per-cache control over whether data can be evicted from BigMemory Max.

Data that should remain in memory can be pinned. You cannot pin individual entries, only an
entire cache. As described in the following topics, there are two types of pinning, depending upon
whether the pinning configuration should take precedence over resource constraints or the other
way around.

Configuring Pinning

Entire caches can be pinned using the pinning element in the Ehcache configuration. This element
has a required attribute (store) to specify how the pinning will be accomplished.

The store attribute can have either of the following values:
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m inCache - Data is pinned in the cache, in any tier in which cache data is stored. The tier is
chosen based on performance-enhancing efficiency algorithms. Unexpired entries can never
be evicted.

®  localMemory — Data is pinned to the memory store or the off-heap store. Entries are evicted
only in the event that the store's configured size is exceeded. Updated copies of invalidated
elements are faulted in from the server, a behavior you can override by setting the Terracotta
properﬁz11.servermapmanager.faultInvalidatedPinnedEntriestofabe.

For example, the following cache is configured to pin its entries:

<cache name="Cachel" ... >
<pinning store="inCache" />
</cache>

The following cache is configured to pin its entries to heap or off-heap only:

<cache name="Cache2" ... >
<pinning store="localMemory" />
</cache>

Pinning and Cache Sizing

The interaction of the pinning configuration with the cache sizing configuration depends upon
which pinning option is used.

For inCache pinning, the pinning setting takes priority over the configured cache size. Elements
resident in a cache with this pinning option cannot be evicted if they have not expired. This type
of pinned cache is not eligible for eviction at all, and maxEntriesInCache should not be configured
for this cache.

Important:

Potentially, pinned caches could grow to an unlimited size. Caches should never be pinned
unless they are designed to hold a limited amount of data (such as reference data) or their usage
and expiration characteristics are understood well enough to conclude that they cannot cause
erTorsS.

For localMemory pinning, the configured cache size takes priority over the pinning setting.
localMemory pinning should be used for optimization, to keep data in heap or off-heap memory,
unless or until the tier becomes too full. If the number of entries surpasses the configured size,
entries will be evicted. For example, in the following cache the maxEntriesLocalHeap and
maxBytesLocalOffHeap settings override the pinning configuration. (Off-heap storage is only
available in the BigMemory products.)

<cache name="myCache"
maxEntriesLocalHeap="10000"
maxBytesLocalOffHeap="8g"
LD
<pinning store="localMemory" />
</cache>
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Scope of Pinning

Pinning as a setting exists in the local Ehcache client (L1) memory. It is never distributed in the
cluster. In case the pinned cache is bulk loaded, the pinned data is removed from the L1 and will
be faulted back in from the Terracotta Server Array.

Pinning achieved programmatically will not be persisted — after a restart the pinned entries are
no longer pinned. Pinning is also lost when an L1 rejoins a cluster. Cache pinning in configuration
is reinstated with the configuration file.

Explicitly Removing Data from a Pinned Cache

To unpin all of a cache's pinned entries, clear the cache. Specific entries can be removed from a
cache using Cache.remove(). To empty the cache, Cache.removeAll(). If the cache itself is removed
(Cache.dispose() or CacheManager.removeCache()), then any data still remaining in the cache is
also removed locally. However, that remaining data is not removed from the Terracotta Server
Array or disk (if localRestartable).

How Configuration Affects Element Flushing and Eviction

The following example shows a cache with certain expiration settings:

<cache name="myCache"
eternal="false" timeToIdleSeconds="3600"
timeTolLiveSeconds="0" memoryStoreEvictionPolicy="LFU">
</cache>

Note the following about the myCache configuration:

m If a client accesses an entry in myCache that has been idle for more than an hour
(timeToIdleSeconds), that element is evicted.

m If an entry expires but is not accessed, and no resource constraints force eviction, then the
expired entry remains in place until a periodic evictor removes it.

m  Entries in myCache can live forever if accessed at least once per 60 minutes (timeToLiveSeconds).
However, unexpired entries may still be flushed based on other limitations. For details, see
“Sizing Storage Tiers” on page 27.

How Configuration Affects Eviction in Distributed Cache

Element eviction is a crucial part of keeping cluster resources operating efficiently. Element eviction
and expiration are related, but an expired element is not necessarily evicted immediately and an
evicted element is not necessarily an expired element. Cache elements might be evicted due to
resource and configuration constraints, while expired elements are evicted from the Terracotta
client when a get() or put() operation occurs on that element (sometimes called inline eviction).

The Terracotta server array contains the full key set (as well as all values), while clients contain a
subset of keys and values based on elements they have faulted in from the server array.
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Typically, an expired cache element is evicted, or more accurately flushed, from a client tier to a
lower tier when a get() or put() operation occurs on that element. However, a client may also flush
expired, and then unexpired elements, whenever a cache's sizing limit for a specific tier is reached
or it is under memory pressure. This type of eviction is intended to meet configured and real
memory constraints.

To learn about eviction and controlling the size of the cache, see “Managing Data Life” on page 41
and “Sizing Storage Tiers” on page 27.

Flushing from clients does not mean eviction from the server array. Servers will evict expired
elements and elements can become candidates for eviction from the server array when servers
run low on allocated BigMemory. Unexpired elements can also be evicted if they meet the following
criteria:

m  They are in a cache with infinite TTI/TTL (Time To Idle and Time To Live), or no explicit
settings for TTI/TTL. Enabling a cache's eternal flag overrides any finite TTI/TTL values that
have been set.

m  They are not resident on any Terracotta client. These elements can be said to have been
"orphaned." Once evicted, they will have to be faulted back in from a system of record if
requested by a client.

For more information about Terracotta Server Array data eviction, see "Automatic Resource
Management" in the BigMemory Max Administrator Guide.

Data Freshness and Expiration

Databases and other systems of record (SORs) that were not built to accommodate caching outside
of the database do not normally come with any default mechanism for notifying external processes
when data has been updated or modified.

When using BigMemory Max as a caching system, the following strategies can help to keep the
data in the cache in sync:

»  Data Expiration Use the eviction algorithms included with Ehcache, along with the
timeToIdleSeconds and timetoliveSeconds settings, to enforce a maximum time for elements
to live in the cache (forcing a re-load from the database or SOR).

m  Message Bus: Use an application to make all updates to the database. When updates are made,
post a message onto a message queue with a key to the item that was updated. All application
instances can subscribe to the message bus and receive messages about data that is updated,
and can synchronize their local copy of the data accordingly (for example by invalidating the
cache entry for updated data)

m  Triggers: Using a database trigger can accomplish a similar task as the message bus approach.
Use the database trigger to execute code that can publish a message to a message bus. The
advantage to this approach is that updates to the database do not have to be made only through
a special application. The downside is that not all database triggers support full execution
environments and it is often inadvisable to execute heavy-weight processing such as publishing
messages on a queue during a database trigger.
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The Data Expiration method is the simplest and most straightforward. It gives you the most control
over the data synchronization, and doesn't require cooperation from any external systems. You
simply set a data expiration policy and let Ehcache expire data from the cache, thus allowing fresh
reads to re-populate and re-synchronize the cache.

The most important consideration when using the expiration method is balancing data freshness
with database load. The shorter you make the expiration settings - meaning the more "fresh” you
try to make the data - the more load you will place on the database.

Try out some numbers and see what kind of load your application generates. Even modestly short
values such as five or ten minutes will produce significant load reductions.
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About Fast Restart (FRS)

BigMemory’s Fast Restart (FRS) feature provides enterprise-ready crash resilience by keeping a
fully consistent, real-time record of your in-memory data. After any kind of shutdown — planned
or unplanned — the next time your application starts up, all of the data that was in BigMemory
is still available and very quickly accessible.

The advantages of the Fast Restart feature include:

® In-memory data survives crashes and enables fast restarts. Because your in-memory data does
not need to be reloaded from a remote data source, applications can resume at full speed after
a restart.

® A real-time record of your in-memory data provides true fault tolerance. Fast Restart provides
the equivalent of a local "hot mirror," which guarantees full data consistency.

® A consistent record of your in-memory data opens many possibilities for business innovation,
such as arranging data sets according to time-based needs or moving data sets around to
different locations. The uses of the Fast Restart store can range from a simple key-value
persistence mechanism with fast read performance, to an operational store with in-memory
speeds during operation for both reads and writes.

System Requirements

BigMemory FRS supports writing to one single mount, which can be a single device or a RAID.

The mount should be used exclusively for the Terracotta server process. The software was designed
for usage on local drives (SSD/Flash in particular) - SAN/NAS storage is not recommended. If you
utilize SAN/NAS storage you will experience notably reduced and inconsistent performance - any
support requests related to performance or stability on such deployments will require the user to
reproduce the issue with local disks.

Data Persistence Implementation

The BigMemory Fast Restart feature works by creating a real-time record of the in-memory data,
which it persists in a Fast Restart store on the local disk. After any restart, the data that was last
in memory (both heap and off-heap stores) automatically loads from the Fast Restart store back
into memory.

Data persistence is configured by adding the <persistence> sub-element to a cache configuration.
The <persistence> sub-element includes two attributes: strategy and synchronousWrites.

<cache>
<persistence strategy="localRestartable|localTempSwap|none|distributed"
synchronousWrites="false|true"/>
</cache>

Strategy Options

The options for the strategy attribute are:
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B "localRestartable" — Enables the Fast Restart feature which automatically logs all BigMemory
data. This option provides fast restartability with fault-tolerant data persistence.

®  "localTempSwap" — Enables temporary local disk usage. This option provides an extra tier for
data storage during operation, but this store is not persisted. After a restart, the disk is cleared
of any BigMemory data.

®  "none" — Does not offload data to disk. With this option, all of the working data is kept in
memory only. This is the default mode.

®  "distributed" — Defers to the <terracotta> configuration for persistence settings. For more
information, refer to “Terracotta Clustering Configuration Elements” on page 57.

Synchronous Writes Options

If the strategy attribute is set to "localRestartable”, then the synchronousWrites attribute can be
configured. The options for synchronousWrites are:

m  synchronousWrites="false" — This option specifies that an eventually consistent record of
the data is kept on disk at all times. Writes to disk happen when efficient, and cache operations
proceed without waiting for acknowledgement of writing to disk. After a restart, the data is
recovered as it was when last synced. This option is faster than synchronousWrites="true",
but after a crash, the last 2-3 seconds of written data may be lost.

If not specified, the default for synchronousWrites is "false".

m  synchronousWrites="true" — This option specifies that a fully consistent record of the data is
kept on disk at all times. As changes are made to the data set, they are synchronously recorded
on disk. The write to disk happens before a return to the caller. After a restart, the data is
recovered exactly as it was before shutdown. This option is slower than
synchronousWrites="false", but after a crash, it provides full data consistency.

For transaction caching with synchronousWrites, soft locks are used to protect access. If there is a
crash in the middle of a transaction, then upon recovery the soft locks are cleared on next access.

Note:
The synchronousWrites attribute is also available in the <terracotta> sub-element. If configured
in both places, it must have the same value.

DiskStore Path

The path to the directory where any required disk files will be created is configured with the
<diskStore> sub-element of the Ehcache configuration.

m  For "localRestartable", a unique and explicitly specified path is required for each node.

m  For "localTempSwap", if the disk store path is not specified, a default path is used for the disk
tier, and the default path will be auto-resolved in the case of a conflict with another
CacheManager.

Note:
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The Fast Restart feature does not use the disk tier in the same way that conventional disk
persistence does. Therefore, when configured for "localRestartable," disk store size measures
such as Cache.getDiskStoreSize() or Cache.calculateOnDiskSize() are not applicable and will
return zero. On the other hand, when configured for "localTempSwap", these measures will
return size values.

Configuration Examples

This section presents possible disk usage configurations when using a standalone deployment.

Options for Crash Resilience

The following configuration provides fast restartability with fully consistent data persistence:

<ehcache>
<diskStore path="/path/to/store/data"/>
<cache>
<persistence strategy="localRestartable" synchronousWrites="true"/>

</cache>
</ehcache>

The following configuration provides fast restartability with eventually consistent data persistence:

<ehcache>
<diskStore path="/path/to/store/data"/>
<cache>
<persistence strategy="localRestartable" synchronousWrites="false"/>
</cache>
</ehcache>

Clustered Caches

For distributing BigMemory Max across a Terracotta Server Array (TSA), the persistence strategy
in the ehcache.xml should be set to "distributed", and the <terracotta> sub-element must be
present in the configuration.
<cache>
maxEntriesInCache="100000">
<persistence strategy="distributed"/>
<terracotta clustered="true" consistency="eventual" synchronousWrites="false"/>
</cache>

The attribute maxEntriesInCache configures the maximum number of entries in a distributed cache.
(maxEntriesInCache is not required, but if it is not set, the default is unlimited.)

Note:
Restartability must be enabled in the TSA in order for clients to be restartable.

Temporary Disk Storage

The "localTempSwap" persistence strategy create a local disk tier for in-memory data during
BigMemory operation. The disk storage is temporary and is cleared after a restart.
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<ehcache>
<diskStore path="/auto/default/path"/>
<cache>
<persistence strategy="localTempSwap"/>

</cache>
</ehcache>

Note:
With the "localTempSwap" strategy, you can use maxEntriesLocalDisk or maxBytesLocalDisk

at either the Cache or CacheManager level to control the size of the disk tier.

In-memory Only Cache

When the persistence strategy is "none", all cache stays in memory (with no overflow to disk nor
persistence on disk).

<cache>
<persistence strategy="none"/>
</cache>

Programmatic Configuration Example

The following is an example of how to programmatically configure cache persistence on disk:

Configuration cacheManagerConfig = new Configuration()
.diskStore(new DiskStoreConfiguration()
.path("/path/to/store/data"));
CacheConfiguration cacheConfig = new CacheConfiguration()
.name ("my-cache")
.maxBytesLocalHeap (16, MemoryUnit.MEGABYTES)
.maxBytesLocalOffHeap (256, MemoryUnit.MEGABYTES)
.persistence(new PersistenceConfiguration().strategy(Strategy.LOCALRESTARTABLE));

cacheManagerConfig.addCache(cacheConfig);
CacheManager cacheManager = new CacheManager (cacheManagerConfig);
Ehcache myCache = cacheManager.getEhcache("my-cache");

Fast Restart Performance

When configured for fast restartability ("localRestartable" persistence strategy), BigMemory
becomes active on restart after all of the in-memory data is loaded. The amount of time until
BigMemory is restarted is proportionate to the amount of in-memory data and the speed of the
underlying infrastructure. Generally, recovery can occur as fast as the disk speed. With an SSD,
for example, if you have a read throughput of 1 GB per second, you will see a similar loading
speed during recovery.

Fast Restart Limitations

The following recommendations should be observed when configuring BigMemory for fast
restartability:
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The size of on-heap or off-heap stores should not be changed during a shutdown. If the amount
of memory allocated is reduced, elements will be evicted upon restart.

Restartable caches should not be removed from the CacheManager during a shutdown.

If a restartable cache is disposed, the reference to the cache is deleted, but the cache contents
remain in memory and on disk. After a restart, the cache contents are once again recovered
into memory and on disk. The way to safely dispose of an unused restartable cache, so that it
does not take any space in disk or memory; is to call clear on the cache and then dispose.
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About Distributed Configurations

The BigMemory Max configuration file (ehcache.xml by default) contains the configuration for
one instance of a CacheManager (the Ehcache class managing a set of defined caches). This
configuration file must be in your application's classpath to be found. When using a WAR file,
ehcache.xml should be copied to WEB-INF/classes.

Note the following about ehcache.xml in a Terracotta cluster:

®  The copy on disk is loaded into memory from the first Terracotta client (also called application
server or node) to join the cluster.

®  Once loaded, the configuration is persisted in memory by the Terracotta servers in the cluster
and survives client restarts.

®  In-memory configuration can be edited in the Terracotta Management Console (TMC). Changes
take effect immediately but are not written to the original on-disk copy of ehcache.xml.

®  The in-memory cache configuration is removed with server restarts if the servers are not in
persistent mode (<restartable enabled="false">), which is the default. The original (on-disk)
ehcache.xml is loaded.

®  The in-memory cache configuration survives server restarts if the servers are in persistent
mode (<restartable enabled="true">).If you are using the Terracotta servers with persistence
of shared data, and you want the cluster to load the original (on-disk) ehcache.xml, the servers'
database must be wiped by removing the data files from the servers' server-data directory.
This directory is specified in the Terracotta configuration file in effect (tc-config.xml by default).
Wiping the database causes all persisted shared data to be lost.

A minimal distributed-cache configuration should have the following configured:
® A CacheManager. See “Configuring a CacheManager” on page 56.
® A Clustering element in individual cache configurations. See “terracotta” on page 57.

m A source for Terracotta client configuration. See “terracottaConfig” on page 59.

Configuring a CacheManager

CacheManager configuration elements and attributes are fully described in the ehcache.xml
reference file available in the kit.

Via ehcache.xml
The attributes of <ehcache> are:

® name - an optional name for the CacheManager. The name is optional and primarily used for
documentation or to distinguish Terracotta clustered cache state. With Terracotta clustered
caches, a combination of CacheManager name and cache name uniquely identify a particular
cache store in the Terracotta clustered memory. The name will show up in the TMC.
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Note:

If you employ multiple Ehcache configuration files, use the name attribute in the <ehcache>
element to identify specific CacheManagers in the cluster. The TMC provides a menu listing
these names, allowing you to choose the CacheManager you want to view

= updateCheck — an optional boolean flag specifying whether this CacheManager should check
for new versions of Ehcache over the Internet. If not specified, updateCheck="true".

®  monitoring — an optional setting that determines whether the CacheManager should
automatically register the SampledCacheMBean with the system MBean server. Currently,
this monitoring is only useful when using Terracotta clustering. The "autodetect" value detects
the presence of Terracotta clustering and registers the MBean. Other allowed values are "on"
and "off". The default is "autodetect".

<Ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="ehcache.xsd"
updateCheck="true" monitoring="autodetect">

Programmatic Configuration

CacheManagers can be configured programmatically with a fluent APL The example below creates
a CacheManager with a Terracotta configuration specified in an URL, and creates a defaultCache
and a cache named "example".

Configuration configuration = new Configuration()

.terracotta(new TerracottaClientConfiguration().url("localhost:9510"))
.defaultCache(new CacheConfiguration("defaultCache", 100))

.cache(new CacheConfiguration("example", 100)

.timeToIdleSeconds(5)

.timeTolLiveSeconds(120)

.terracotta(new TerracottaConfiguration()));

CacheManager manager = new CacheManager (configuration);

Terracotta Clustering Configuration Elements

The terracottaand terracottaConfigelements in the Ehcache configuration control the clustering
of caches with Terracotta.

terracotta

The <terracotta> element is an optional sub-element of <cache>. It can be set differently for each
<cache> defined in ehcache.xml.

<terracotta> has one sub-element, <nonstop>. For more information about the <nonstop> element,
see “Configuring Nonstop Cache” on page 74.

The following <terracotta> attribute allows you to control the type of data consistency for the
distributed cache:

m  consistency — Uses no cache-level locks for better performance ("eventual" DEFAULT) or uses
cache-level locks for immediate cache consistency ("strong"). When set to "eventual”, allows
reads without locks, which means the cache may temporarily return stale data in exchange
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for substantially improved performance. When set to "strong", guarantees that after any update
is completed no local read can return a stale value, but at a potentially high cost to performance,
because a large number of locks may need to be stored in client and server heaps.

Once set, this consistency mode cannot be changed except by reconfiguring the cache using a
configuration file and reloading the file. This setting cannot be changed programmatically. For
more information, see “Consistency Modes” on page 63.

Except for special cases, the following <terracotta> attributes should operate with their default
values:

clustered — Enables ("true" DEFAULT) or disables ("false") Terracotta clustering of a specific
cache. Clustering is enabled if this attribute is not specified. Disabling clustering also disables
the effects of all of the other attributes.

localCacheEnabled - Enables ("true" DEFAULT) or disables ("false") local caching of distributed
cache data, forcing all of that cached data to reside on the Terracotta Server Array. Disabling
local caching may improve performance for distributed caches in write-heavy use cases.

synchronousWrites — Enables ("true") or disables ("false" DEFAULT) synchronous writes from
Terracotta clients (application servers) to Terracotta servers. Asynchronous writes
(synchronousWrites="false") maximize performance by allowing clients to proceed without
waiting for a "transaction received" acknowledgment from the server. This acknowledgment
is unnecessary in most use cases. Synchronous writes (synchronousWrites="true") provide
extreme data safety but at a performance cost by requiring that a client receive server
acknowledgment of a transaction before that client can proceed. If the cache's consistency
mode is eventual, or while it is set to bulk load using the bulk-load AP, only asynchronous
writes can occur (synchronousWrites="true" is ignored).

concurrency — Sets the number of segments for the map backing the underlying server store
managed by the Terracotta Server Array. If concurrency is not explicitly set (or set to "0"), the
system selects an optimized value.

The following attributes are used with Hibernate:

localKeyCache — Enables ("true") or disables ("false" DEFAULT) a local key cache. BigMemory
Max can cache a "hotset" of keys on clients to add locality-of-reference, a feature suitable for
read-only cases. Note that the set of keys must be small enough for available memory.

localKeyCacheSize — Defines the size of the local key cache in number (positive integer) of
elements. In effect if localKeyCache is enabled. The default value, 300000, should be tuned to
meet application requirements and environmental limitations.

orphanEviction — Enables ("true" DEFAULT) or disables ("false") orphan eviction. Orphans are
cache elements that are not resident in any Hibernate second-level cache but still present on
the cluster's Terracotta server instances.

orphanEvictionPeriod — The number of local eviction cycles (that occur on Hibernate) that
must be completed before an orphan eviction can take place. The default number of cycles is
4. Raise this value for less aggressive orphan eviction that can reduce faulting on the Terracotta
server, or lower it if garbage on the Terracotta server is a concern.
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Default Behavior

By default, adding <terracotta/> to a <cache> block is equivalent to adding the following:

<cache name="sampleTerracottaCache"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="3600"
timeTolLiveSeconds="1800"">
<persistence strategy="distributed"/>
<terracotta clustered="true" consistency="eventual" />
</cache>

terracottaConfig

The <terracottaConfig> element enables the distributed-cache client to identify a source of
Terracotta configuration. It also allows a client to rejoin a cluster after disconnecting from that
cluster and being timed out by a Terracotta server. For more information on the rejoin feature, see
the BigMemory Max High-Availability Guide. In addition, the <terracottaConfig> element allows
you to enable caches for WAN replication.

The client must load the configuration from a file or a Terracotta server. The value of the ur1l
attribute should contain a path to the file, a system property, or the address and TSA port (9510
by default) of a server.

Note:
In a Terracotta cluster, the application server is also known as the client.

For more information on client configuration, see the "Terracotta Configuration Parameters" in
the BigMemory Max Administrator Guide.

Adding an URL Attribute

Add the ur1 attribute to the <terracottaConfig> element as follows:
<terracottaConfig url="<source>" />

where <source> must be one of the following;:

m A path (for example, url="/path/to/tc-config.xml")

®  An URL (for example, url="http://www.mydomain.com/path/to/tc-config.xml)

® A system property (for example, url="${terracotta.config.location}"), where the system
property is defined like this:

System.setProperty("terracotta.config.location","10.x.x.x:9510"");

m A Terracotta host address in the form <host>:<tsa-port> (for example, url="host1:9510").
Note the following about using server addresses in the form <host>:<tsa-port>:

®  The default TSA port is 9510.
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® In a multi-server cluster, you can specify a comma-delimited list (for example,
url="host1:9510,host2:9510,host3:9510").

m  If the Terracotta configuration source changes at a later time, it must be updated in
configuration.

Adding the WAN Attribute

For each cache to be replicated, its encache.xml configuration file must include the wanEnabledTsA
attribute set to "true" within the <terracottaConfig> element. Add the wanEnabledTSA attribute to
the <terracottaConfig> element as follows:

<terracottaConfig wanEnabledTSA="true" />

For more information, see the WAN Replication User Guide.

Embedding Terracotta Configuration

You can embed the contents of a Terracotta configuration file in ehcache.xml as follows:

<terracottaConfig>
<tc-config>
<servers>
<server host="serverl" name="s1"/>
<server host="server2" name="s2"/>
</servers>
<clients>
<logs>app/logs-%i</logs>
</clients>
</tc-config>
</terracottaConfig>

Embedding Terracotta Configuration

You can embed the contents of a Terracotta configuration file in ehcache.xml as follows:

<terracottaConfig>
<tc-config>
<servers>
<server host="serverl" name="s1"/>
<server host="server2" name="s2"/>
</servers>
<clients>
<logs>app/logs-%i</logs>
</clients>
</tc-config>
</terracottaConfig>

Incompatible Configuration Attributes

For any clustered cache, you must delete, disable, or edit configuration elements in ehcache.xml
that are incompatible when clustering with Terracotta. Clustered caches have a <terracotta/> or

<terracotta clustered="true"/> element.
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The following Ehcache configuration attributes or elements should be deleted or disabled:
®  Replication-related attributes such as replicateAsynchronously and replicatePuts.

m  The attribute MemoryStoreEvictionPolicy is ignored (a clock eviction policy is used instead),
however, if allowed to remain in a clustered cache configuration, the MemoryStoreEvictionPolicy
may cause an exception.

How Server Settings Can Override Client Settings

The tc.property, ehcache.clustered.config.override.mode, allows you to determine if and how
the cache settings on the server override the cache settings on the client. You can set this tc.property
in the tc-config.xml file or define it as a system property with the com. tc. prefix.

The possible values are:

®  NONE- Default behavior: any discrepancy between the client and server versions of a cache
configuration option causes the client to throw an exception.

®  GLOBAL- Allows any cache-wide settings from the server to override those from the client. For
example, if a client were to join with a TTI=10 while the server has a TT1=15, then

m The server TTI value overrides the client TTI value.
®  Local settings, such as maxEntriesLocalHeap, are not overridden.

®  ALL - Causes the client to accept all values from the server’s configuration. This includes the
cache-wide settings of GLOBAL as well as the local settings, such as maxBytesLocalHeap.

Controlling Cache Size

Certain Ehcache cache configuration attributes affect caches clustered with Terracotta.

See "How Configuration Affects Eviction in Distributed Cache" for more information on how
configuration affects eviction.

To learn about eviction and controlling the size of the cache, see "Managing Data Life" and "Sizing
Storage Tiers."

Cache Events Configuration

The <cache> sub-element <cacheEventListenerFactory>, which registers listeners for cache events
such as puts and updates, has a notification scope controlled by the attribute 1istenFor. This
attribute can have one of the following values:

m local- Listen for events on the local node. No remote events are detected.
m remote — Listen for events on other nodes. No local events are detected.

® local - (DEFAULT) Listen for events on both the local node and on remote nodes.
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In order for cache events to be detected by remote nodes in a Terracotta cluster, event listeners
must have a scope that includes remote events. For example, the following configuration allows
listeners of type MyCacheListener to detect both local and remote events:

<cache name="myCache" ... >
<!-- Not defining the listenFor attribute for <cacheEventListenerFactory> is by
default equivalent to listenFor="all". -->

<cacheEventListenerFactory
class="net.sf.ehcache.event.TerracottaCacheEventReplicationFactory" />
<terracotta />
</cache>

YbLlnnustusenet.sf.ehcache.event.TerracottaCacheEventReplicationFactoryasthefactory
class to enable cluster-wide cache-event broadcasts in a Terracotta cluster.

For more information about cache events in a Terracotta cluster, see "Cache Event Listeners" in
the Developers Guide for BigMemory Max.

Copy On Read

The copyOnRead setting is most easily explained by first examining what it does when not enabled
and exploring the potential problems that can arise. For a cache in which copyonRead is not enabled,
the following reference comparison will always be true:

Object objl = c.get("key").getValue();
// Assume no other thread changes the cache mapping between these get() operations

Object obj2 = c.get("key").getValue();
if (objl == obj2) {
System.err.println("Same value objects!");

}

The fact that the same object reference is returned across multiple get() operations implies that
the cache is storing a direct reference to cache value. This default behavior (copyOnRead=false)
is usually desired, although there are at least two scenarios in which it is problematic:

1. Caches shared between classloaders
and
2. Mutable value objects

Imagine two web applications that both have access to the same Cache instance (this implies that
the core Ehcache classes are in a common classloader). Imagine further that the classes for value
types in the cache are duplicated in the web application (so they are not present in the common
loader). In this scenario you would get ClassCastExceptions when one web application accessed
a value previously read by the other application.

One obvious solution to this problem is to move the value types to the common loader, but another
is to enable copyonrRead. When copyOnRead is in effect, the object references are unique with every
get(). Having unique object references means that the thread context loader of the caller will be
used to materialize the cache values on each get(). This feature has utility in OSGi environments
as well where a common cache service might be shared between bundles.
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Another subtle issue concerns mutable value objects in a distributed cache. Consider this simple
code with a Cache containing a mutable value type (Foo):

class Foo {

int field;

}

Foo foo = (Foo) c.get("key").getValue();
foo.field++;

// foo instance is never re-put() to the cache

Il ooq

If the Foo instance is never put back into the Cache your local cache is no longer consistent with
the cluster (it is locally modified only). Enabling copyonRead eliminates this possibility since the
only way to affect cache values is to call mutator methods on the Cache.

It is worth noting that there is a performance penalty to copyOnRead since values are deserialized
on every get().

Consistency Modes

Cache consistency modes are configuration settings and API methods that control the behavior
of clustered caches with respect to balancing data consistency and application performance. A
cache can be in one of the following consistency modes:

m  Strong — This mode ensures that data in the cache remains consistent across the cluster at all
times. It guarantees that a read gets an updated value only after all write operations to that
value are completed, and that each put operation is in a separate transaction. The use of locking
and transaction acknowledgments maximizes consistency at a potentially substantial cost in
performance. This mode is set using the Ehcache configuration file and cannot be changed
programmatically (see the consistency attribute in <terracotta> element).

m=  Eventual - This mode guarantees that data in the cache will eventually be consistent. Read/write
performance is substantially boosted at the cost of potentially having an inconsistent cache for
brief periods of time. This mode is set using the Ehcache configuration file and cannot be
changed programmatically (see the consistency attribute in <terracotta> element).

To optimize consistency and performance, consider using eventually consistent caches while
selectively using appropriate locking in your application where cluster-wide consistency is critical
at all times. Eventual cache operations that are explicitly locked become strongly consistent with
respect to each other (but not with respect to non locked operations). For example, a reservation
system could be designed with an eventual cache that is only explicitly locked when a customer
starts to make a reservation; with this design, eventually consistent data would be available during
a customer's search, but during the reservation process, reads and writes would be strongly
consistent.

®=  Bulk Load - This mode is optimized for bulk-loading data into the cache without the slowness
introduced by locks or regular eviction. It is similar to the eventual mode, but has batching,
higher write speeds, and weaker consistency guarantees. This mode is set using the bulk-load
API only. For information, see "Bulk Loading" in the Developer Guide for BigMemory Max.
When turned off, allows the configured consistency mode (either strong or eventual) to take
effect again.
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Use configuration to set the permanent consistency mode for a cache as required for your
application, and the bulk-load mode only during the time when populating (warming) or refreshing
the cache.

APIs Related to Consistency
The following APIs and settings also affect consistency:

m  Explicit Locking — This API provides methods for cluster-wide (application-level) locking on
specific elements in a cache. There is guaranteed consistency across the cluster at all times for
operations on elements covered by a lock. When used with the strong consistency mode in a
cache, each cache operation is committed in a single transaction. When used with the eventual
consistency mode in a cache, all cache operations covered by an explicit lock are committed in a
single transaction. While explicit locking of elements provides fine-grained locking, there is
still the potential for contention, blocked threads, and increased performance overhead from
managing clustered locks. For information, see "Explicit Locking" in the Developer Guide for
BigMemory Max.

®  Bulk-loading methods — Bulk-loading Cache methods putAll(), getAll(), and removeAll()
provide high-performance and eventual consistency. These can also be used with strong
consistency. If you can use them, it's unnecessary to use bulk-load mode.

® Atomic methods — To guarantee write consistency at all times and avoid potential race
conditions for put operations, use atomic methods. The following Compare and Swap (CAS)
operations are available:

® cache.replace(Element old, Element new) — Conditionally replaces the specified key's
old value with the new value, if the currently existing value matches the old value.

® cache.replace(Element) — Maps the specified key to the specified value, if the key is
currently mapped to some value.

® cache.putIfAbsent(Element) — Puts the specified key/value pair into the cache only if the
key has no currently assigned value. Unlike put, which can replace an existing key/value
pair, putIfAbsent creates the key/value pair only if it is not present in the cache.

®  cache.removeElement (Element) — Conditionally removes the specified key, if it is mapped
to the specified value.

Normally, these methods are used with strong consistency. Unless the property
org.terracotta.clusteredStore.eventual.cas.enabled is set to "true"”, these methods throw an
UnsupportedOperationException if used with eventual consistency since a race condition cannot
be prevented. Other ways to guarantee the return value in eventual consistency are to use the
cache decorator StronglyConsistentCacheAccessor, or to use explicit locking. The
StronglyConsistentCacheAccessor will use locks with its special substituted versions of the atomic
methods. Note that using locks may impact performance. For information about cache decorators
and explicit locking, see "Cache Decorators" and "Explicit Locking" in the Developer Guide for
BigMemory Max.

64 BigMemory Max Configuration Guide 4.3.10



7 Defining a Distributed Configuration

Configuring Robust Distributed In-Memory Data Sets

Making the BigMemory Max in-memory data system robust is typically a combination of Ehcache
configuration and Terracotta configuration and architecture. For more information, see the following
documentation:

= Nonstop caches — Configure caches to take a specified action after an Ehcache node appears
to be disconnected from the cluster. For information, see “Configuring Nonstop Cache” on
page 74.

®  Rejoin the cluster — Allow Ehcache nodes to rejoin the cluster as new clients after being
disconnected from the cluster. For information, see the BigMemory Max High-Availability Guide.

= High Availability in a Terracotta cluster — Configure nodes to ride out network interruptions
and long Java garbage collection cycles, connect to a backup Terracotta server, and more. For
information, see the BigMemory Max High-Availability Guide.

®  Architecture — Design a cluster that provides failover. For information, see the BigMemory Max
High-Availability Guide.

= BigMemory Hybrid — Extend BigMemory on Terracotta servers with hybrid storage that can
include SSD and Flash technologies as well as DRAM. For information, see the BigMemory
Max Administrator Guide.

Exporting Configuration from the Terracotta Management
Console

To create or edit a cache configuration in a live cluster, see the Terracotta Management Console User
Guide.

To persist custom cache configuration values, create a cache configuration file by exporting
customized configuration from the Terracotta Management Console or create a file that conforms
to the required format. This file must take the place of any configuration file used when the cluster
was last started.

BigMemory Max Configuration Guide 4.3.10 65



7 Defining a Distributed Configuration

66 BigMemory Max Configuration Guide 4.3.10



8 Default Settings for a Distributed Configuration

B Terracotta Server Array PrOPErtIES .....uuuiiiii i e e e e e e et e e e e e aeenannnas 68
B Terracotta ClIeNt PrOPEITIES ......uuuuuuuuuiiiiiiiiiiiiiisisttsssssssssssssssssesrrssessssssrreerseerrerre—————————— 69
BigMemory Max Configuration Guide 4.3.10 67



8 Default Settings for a Distributed Configuration

Terracotta Server Array Properties

A Terracotta cluster is composed of clients and servers. Terracotta properties often use a shorthand
notation where a client is referred to as "I1" and a server as "12".

These properties are set at the top of tc-config.xml using a configuration block similar to the
following:
<tc-properties>

<property name="12.nha.tcgroupcomm.reconnect.enabled" value="true" />

<!-- More properties here. —->
</tc-properties>

See the BigMemory Max Administrator Guide for more information on the Terracotta Server Array.

Reconnection and Logging Properties

The following reconnection properties are shown with default values. These properties can be set
to custom values using Terracotta configuration properties (<tc-properties>/<property> elements
in tc-config.xml).

Property Default Value Notes
12.nha. tcgroupcomm true Enables server-to-server reconnections.
.reconnect.enabled
12.nha. tcgroupcomm 5000ms 12-12 reconnection timeout.
.reconnect.timeout
12.l1reconnect.enabled true Enables an 11 to reconnect to servers.
1; : ngconned -timeout 5000ms The reconnection time out, after which an 11
! disconnects.
tfé : ;Zg:ig‘ getFromSource 30000ms Timeout for getting configuration from a
' source. For example, this controls how long
a client can try to access configuration from
a server. If the client fails to do so, it will fail
to connect to the cluster.
logging.maxBackups 20 Upper limit for number of backups of
Terracotta log files.
LB 1o IR FEE A LES 42 512MB Maximum size of Terracotta log files before

rolling logging starts.

HealthChecker Tolerances

The following properties control disconnection tolerances between Terracotta servers (12 <->12),
Terracotta servers and Terracotta clients (12 ->11), and Terracotta clients and Terracotta servers (11
->12).
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2<->12 GC tolerance : 40 secs, cable pull/network down tolerance : 10secs

12.healthcheck.12.ping.enabled = true
12.healthcheck.12.ping.idletime = 5000
12.healthcheck.12.ping.interval = 1000
12.healthcheck.12.ping.probes = 3
12.healthcheck.12.socketConnect = true
12.healthcheck.12.socketConnectTimeout = 5
12.healthcheck.12.socketConnectCount = 10

I2->I1 GC tolerance : 40 secs, cable pull/network down tolerance : 10secs

12.healthcheck.11l.ping.enabled = true
12.healthcheck.11l.ping.idletime 5000
12.healthcheck.11l.ping.interval 1000
12.healthcheck.11l.ping.probes =
12.healthcheck.11.socketConnect = true

12.healthcheck.11.socketConnectTimeout = 5
12.healthcheck.11.socketConnectCount = 10

w

[1->I1 GC tolerance : 50 secs, cable pull/network down tolerance : 10secs

11.healthcheck.12.ping.enabled = true
11.healthcheck.12.ping.idletime = 5000
11.healthcheck.12.ping.interval = 1000
11.healthcheck.12.ping.probes = 3
11.healthcheck.12.socketConnect = true
11.healthcheck.12.socketConnectTimeout = 5
11.healthcheck.12.socketConnectCount = 13

Terracotta Client Properties

Client configuration properties typically address the behavior, size, and functionality of in-memory
data stores. Others affect certain types of cache-related bulk operations.

See also “How Server Settings Can Override Client Settings” on page 61.

Properties are set in ehcache.xml except as noted.

General Settings

The following default settings affect in-memory data.

Property Default Value Notes
value mode SERIALIZATION
consistency EVENTUAL

XA false

orphan eviction true
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Property

local key cache
synchronous writes
ttl

tti

transactional mode
persistence strategy

maxEntriesInCache

maxBytesLocalHeap
maxBytesLocalOffHeap

maxEntriesLocalHeap

NonStop Cache

Default Value
false

false

0

0

off

none

0

Notes

0 means never expire.

0 means never expire.

0 means that the cache will not undergo
capacity eviction (but periodic and resource
evictions are still allowed)

0 means infinite.

The following default settings affect the behavior of the cache when while the client is disconnected
from the cluster. For more information on these settings, see “Configuring Nonstop Cache” on

page 74.

Property

enable

timeout behavior
timeout
net.sf.ehcache.nonstop
bulkOpsTimeoutMultiply

Factor

Default Value
false
exception
30000ms

10

Notes

This value is a timeout multiplication factor affecting
bulk operations such as removeAll() and getAll().
Since the default nonstop timeout is 30 seconds, it
sets a timeout of 300 seconds for those operations.
The default can be changed programmatically:
cache.getTerracottaConfiguration()

.getNonstopConfiguration()
.setBulkOpsTimeoutMultiplyFactor (10)
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Bulk Operations

The following properties are shown with default values. These properties can be set to custom
values using “Terracotta Server Array Properties” on page 68.

Increasing batch sizes may improve throughput, but could raise latency due to the load on resources

from processing larger blocks of data.

Property
ehcache.bulkOps.maxKBS1ize

ehcache.getAll.batchSize

ehcache.incoherent.putsBatch
ByteSize

ehcache.incoherent.putsBatch
TimeInMillis

Default Value Notes

1MB

1000

5MB

600 ms

Batch size for bulk operations such as
putAll and removeAll.

The number of elements per batch in a
getAll operation.

For bulk-loading mode. The minimum size
of a batch in a bulk-load operation.
Increasing batch sizes may improve
throughput, but could raise latency due
to the load on resources from processing
larger blocks of data.

For bulk-loading mode. The maximum
time the bulk-load operation takes to batch
puts before flushing to the Terracotta
Server Array.
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About Nonstop Operation

The nonstop feature allows certain operations to proceed on Terracotta clients that have become
disconnected from the cluster, or if an operation cannot complete by the nonstop timeout value.

This is useful in meeting service-level agreement (SLA) requirements, responding to node failures,
and building a more robust High Availability cluster.

One way BigMemory Max can go into nonstop mode is when a client receives a "cluster offline"
event. Note that a nonstop instance can go into nonstop mode even if the client is not disconnected,
such as when an operation is unable to complete within the timeout allotted by the nonstop
configuration. In addition, nonstop instances running in a client that is unable to locate the TSA
at startup will initiate nonstop behavior as if the client had disconnected.

Nonstop can be used in conjunction with rejoin. For information about the rejoin feature, see
"Configuring Reconnection and Rejoin Properties” in the book Configuring a Terracotta Cluster for
High Availability.

Use cases include:
m  Setting timeouts on operations.

For example, say you use BigMemory Max rather than a mainframe. The SLA calls for 3 seconds.
There is a temporary network interruption that delays the response to a cache request. With
the timeout you can return after 3 seconds. The lookup is then done against the mainframe.
This could also be useful for write-through, writes to disk, or synchronous writes.

® Automatically responding to cluster topology events to take a pre-configured action.

= Allowing Availability over Consistency within the CAP theorem when a network partition
occurs.

m  Providing graceful degradation to user applications when distributed BigMemory Max becomes
unavailable.

Configuring Nonstop Cache

Nonstop behavior is configured by specifying a <nonstop> element in the <terracotta> element
within a <cache> block. In the following example, myCache is configured for nonstop operation:

<cache name="myCache" maxEntriesLocalHeap="10000" eternal="false">
<terracotta>
<nonstop immediateTimeout="false" timeoutMillis="30000">
<timeoutBehavior type="noop" />
</nonstop>
</terracotta>
</cache>

Nonstop is enabled if the <nonstop> element is present. However, if <nonstop> is specified with
the attribute enabled="false", nonstop is disabled. The default setting of this optional attribute is
enabled="true".

The minimal syntax to enable nonstop is <nonstop />.
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If the <nonstop> element is not supplied, then nonstop is disabled.

Nonstop Timeouts and Behaviors

Nonstop caches can be configured with the following attributes:

®  enabled—Enables ("true" DEFAULT) or disables ("false") the ability of a cache to execute certain
actions after a Terracotta client disconnects. This attribute is optional for enabling nonstop.

B  immediateTimeout — Enables ("true") or disables ("false" DEFAULT) an immediate timeout
response if the Terracotta client detects a network interruption (the node is disconnected from
the cluster). If enabled, this parameter overrides timeoutMillis, so that the option set in
timeoutBehavior is in effect immediately.

B timeoutMillis — Specifies the number of milliseconds an application waits for any cache
operation to return before timing out. The default value is 30000 (thirty seconds). The behavior
after the timeout occurs is determined by timeoutBehavior.

B searchTimeoutMillis — Specifies the number of milliseconds an application waits for search
operations to return before timing out. The default value is 30000 (thirty seconds). The behavior
after the timeout occurs is determined by timeoutBehavior.

<nonstop> has one self-closing sub-element, <timeoutBehavior>. This sub-element determines the
response after a timeout occurs (timeoutMillis expires or an immediate timeout occurs). The
response can be set by the <timeoutBehavior>attribute type. This attribute can have one of the
values listed in the following table:

Value Behavior

exception (DEFAULT) Throw NonStopCacheException. For
more information about this exception, see “When
is NonStopCacheException Thrown?” on page 77.

noop Return null for gets. Ignore all other cache
operations. Hibernate users may want to use this
option to allow their application to continue with
an alternative data source.

localReads For caches with Terracotta clustering, allow
inconsistent reads of cache data. Ignore all other
cache operations. For caches without Terracotta
clustering, throw an exception.

localReadsAndExceptionOnWrite For caches with Terracotta clustering, allow
inconsistent reads of cache data, and throw a
NonStopCacheException for write operations. For
caches without Terracotta clustering, throw an
exception.
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Tuning for Nonstop Timeouts and Behaviors

You can tune the default timeout values and behaviors of nonstop caches to fit your environment.

Tuning for Network Interruptions

For example, in an environment with regular network interruptions, consider disabling
immediateTimeout and increasing timeoutMillis to prevent timeouts for most of the interruptions.

For a cluster that experiences regular but short network interruptions, and in which caches clustered
with Terracotta carry read-mostly data or there is tolerance of potentially stale data, you may want
to set timeoutBehavior to localReads.

Tuning for Slow Cache Operations

In an environment where cache operations can be slow to return and data is required to always
be in sync, increase timeoutMillis to prevent frequent timeouts. Set timeoutBehavior to noop to
force the application to get data from another source or exception if the application should stop.

For example, a cache.acquireWriteLockOnKey(key) operation may exceed the nonstop timeout
while waiting for a lock. This would trigger nonstop mode only because the lock couldn't be
acquired in time. Using cache.tryWriteLockOnKey(key, timeout), with the method's timeout set
to less than the nonstop timeout, avoids this problem.

Bulk Loading

If a nonstop cache is bulk-loaded using the Bulk-Load API, a multiplier is applied to the configured
nonstop timeout whenever the method net.sf.ehcache.Ehcache.setNodeBulkLoadEnabled(boolean)
is used. The default value of the multiplier is 10. You can tune the multiplier using the
bulkOpsTimeoutMultiplyFactor system property:

-Dnet.sf.ehcache.nonstop.bulkOpsTimeoutMultiplyFactor=10

Note that when nonstop is enabled, the cache size displayed in the Terracotta Management Console
is subject to the bulkOpsTimeoutMultiplyFactor. Increasing this multiplier on the clients can facilitate
more accurate size reporting.

This multiplier also affects the methods:
net.sf.ehcache.Ehcache.getAll()
net.sf.ehcache.Ehcache.removeAll()

net.sf.ehcache.Ehcache.removeAll(boolean)

Printing Stack Traces on Exceptions

You can turn on additional logging (at the INFO level) for nonstop timeouts using;:

-Dnet.sf.ehcache.nonstop.printStackTraceOnException=true
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This is a dynamic property that can also be managed programmatically:

System.setProperty (PRINT_STACK_TRACE_ON_EXCEPTION_PROPERTY, "true'")

This property logs the stack trace for the nonstop thread. Note that, with this property set, log
files can become very large in environments in which a large number of timeouts occur.

Nonstop Exceptions

Typically, application code may access the cache frequently and at various points. Therefore, with
anonstop cache, where your application could encounter NonStopCacheExceptions is difficult to
predict. The following sections provide guidance on when to expect NonStopCacheExceptions
and how to handle them.

When is NonStopCacheException Thrown?

NonStopCacheException is usually thrown when it is the configured behavior for a nonstop cache
in a client that disconnects from the cluster. In the following example, the exception would be
thrown 30 seconds after the disconnection (or the "cluster offline" event is received):

<nonstop immediateTimeout="false" timeoutMillis="30000">
<timeoutBehavior type="exception" />
</nonstop>

However, under certain circumstances the NonStopCache exception can be thrown even if a
nonstop cache's timeout behavior is not set to throw the exception. This can happen when the
cache goes into nonstop mode during an attempt to acquire or release a lock. These lock operations
are associated with certain lock APIs and special cache types such as Explicit Locking,
BlockingCache, SelfPopulatingCache, and UpdatingSelfPopulatingCache.

A NonStopCacheException can also be thrown if the cache must fault in an element to satisfy a
get() operation. If the Terracotta Server Array cannot respond within the configured nonstop
timeout, the exception is thrown.

A related exception, InvalidLockAfterRejoinException, can be thrown during or after client rejoin.
This exception occurs when an unlock operation takes place on a lock obtained before the rejoin
attempt completed. For more information about rejoin, see "Using Rejoin to Automatically Reconnect
Terracotta Clients" in the BigMemory Max High-Availability Guide.

Using try-finally Blocks to Release Locks

To ensure that locks are released properly, application code using Ehcache lock APIs should
encapsulate lock-unlock operations with try-finally blocks:

myLock.acquireLock() ;
try {
// Do some work.
} finally {
myLock.unlock() ;
}
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Handling Nonstop Exceptions

Your application can handle nonstop exceptions in the same way it handles other exceptions. For
nonstop caches, an unhandled-exceptions handler could, for example, refer to a separate thread
any cleanup needed to manage the problem effectively.

Another way to handle nonstop exceptions is by using a dedicated Ehcache decorator that manages
the exception outside of the application framework. The following is an example of how the
decorator might operate:

try { cache.put(element); }
catch(NonStopCacheException e) {
handler.handleException(cache, element, e);

}
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About Transactional Caches

Transactional caches add a level of safety to cached data and ensure that the cached data and
external data stores are in sync. Distributed caches can support Java Transaction API (JTA)
transactions as an XA resource. This is useful in JTA applications requiring caching, or where
cached data is critical and must be persisted and remain consistent with System of Record data.

However, transactional caches are slower than non-transactional caches due to the overhead from
having to write transactionally. Transactional caches also have the following restrictions:

®  Data can be accessed only transactionally, even for read-only purposes. You must encapsulate
data access with begin() and commit() statements. This may not be necessary under certain
circumstances (see, for example, the discussion on Spring in "Transaction Support" in the
Developer Guide for BigMemory Max.

B copyOnRead and copyOnWrite must be enabled. These <cache> attributes are "false" by default
and must set to "true".

m  Caches must be strongly consistent. A transactional cache's consistency attribute must be set
to "strong".

= Nonstop caches cannot be made transactional except in strict mode (xa_strict). Transactional
caches in other modes must not contain the <nonstop> sub-element.

m  Objects stored in a transactional cache must override equals() and hashCode (). If overriding
equals() and hashCode() is not possible, see “Implementing an Element Comparator” on
page 85.

m  Caches can be dynamically changed to bulk-load mode, but any attempt to perform a transaction
when this is the case will throw a CacheException.

For more information about transactional caches, see "Transaction Support" in the Developer Guide
for BigMemory Max.

You can choose one of three different modes for transactional caches:

m  Strict XA — Has full support for XA transactions. May not be compatible with transaction
managers that do not fully support JTA.

= XAXA - Has support for the most common JTA components, so likely to be compatible with
most transaction managers. But unlike strict XA, may fall out of sync with a database after a
failure (has no recovery). Integrity of cache data, however, is preserved.

®  Local - Local transactions written to a local store and likely to be faster than the other transaction
modes. This mode does not require a transaction manager and does not synchronize with
remote data sources. Integrity of cache data is preserved in case of failure.

Note:

Both the XA and local mode write to the underlying store synchronously and using pessimistic
locking. Under certain circumstances, this can result in a deadlock, which generates a
DeadLockException after a transaction times out and a commit fails. Your application should
catch DeadLockException (or TransactionException) and call rollback(). Deadlocks can have
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a severe impact on performance. A high number of deadlocks indicates a need to refactor
application code to prevent races between concurrent threads attempting to update the same
data.

Strict XA (Support for All JTA Components)

Note that Ehcache as an XA resource:

m Has an isolation level of ReadCommitted.

m  Updates the underlying store asynchronously, potentially creating update conflicts. With this
optimistic locking approach, Ehcache might force the transaction manager to roll back the
entire transaction if a commit () generates a RollbackException (indicating a conflict).

= Can work alongside other resources such as JDBC or JMS resources.
®  Guarantees that its data is always synchronized with other XA resources.

m  Can be configured on a per-cache basis (transactional and non-transactional caches can exist
in the same configuration).

®  Automatically performs enlistment.
m  Can be used standalone or integrated with frameworks such as Hibernate.

m  [stested with the most common transaction managers by Atomikos, Bitronix, JBoss, WebLogic,
and others.

Configuration

To configure a cache as an XA resource able to participate in JTA transactions, the following <cache>
attributes must be set as shown:

m transactionalMode="xa_strict"

®  copyOnRead="true"

m  copyOnWrite="true"

In addition, the <cache> sub-element <terracotta> must not have clustering disabled.

For example, the following cache is configured for JTA transactions with strict XA:

<cache name="com.my.package.Foo"
maxEntriesLocalHeap="500"
eternal="false"
copyOnRead="true"
copyOnWrite="true"
consistency="strong"
transactionalMode="xa_strict">
<persistence strategy="distributed"/>
<terracotta />
</cache>
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Any other XA resource that could be involved in the transaction, such as a database, must also be
configured to be XA compliant.

Usage

Your application can directly use a transactional cache in transactions. This usage must occur after
the transaction manager has been set to start a new transaction and before it has ended the
transaction.

For example:

myTransactionMan.begin();

Cache fooCache = cacheManager.getCache("Foo");
fooCache.put("1", "Bar");
myTransactionMan.commit();

If more than one transaction writes to a cache, it is possible for an XA transaction to fail. See
“Avoiding XA Commit Failures With Atomic Methods” on page 84.

Setting Up Transactional Caches in Hibernate {#45557}

If your application is using JTA, you can set up transactional caches in a second-level cache with
Ehcache for Hibernate. To do so, ensure the following:

Ehcache

®  You are using Ehcache 2.1.0 or higher.

m  The attribute transactionalMode is set to "xa" or "xa-strict".

m  The cacheis clustered (the <cache> element has the sub-element <terracotta clustered="true">).
For example, the following cache is configured to be transactional:

<cache name="com.my.package.Foo"

transactionalMode="xa"> <terracotta /> </cache>

®  The cache UpdateTimestampsCache is not configured to be transactional. Hibernate updates
to org.hibernate.cache.UpdateTimestampsCache prevent it from being able to participate in
XA transactions.

Hibernate

®  You are using Hibernate 3.3.

m  The factory class used for the second-level cache is
net.sf.ehcache.hibernate.EhCacheRegionFactory.

®  Query cache is turned off.

m The value of current_session_context_class is jta.
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®m  The value of transaction.manager_lookup_class is the name of a TransactionManagerLookup
class (see your Transaction Manager).

®  The value of transaction. factory_class is the name of a TransactionFactory class to use with
the Hibernate Transaction APL

m  The cache concurrency strategy is set to TRANSACTIONAL. For example, to set the cache
concurrency strategy for com.my.package.Foo in hibernate.cfg.xml:

<class-cache class="com.my.package.Foo" usage="transactional"/>

Or in a Hibernate mapping file (hbm file):

<cache usage="transactional"/>

Or using annotations:

@Cache (usage=CacheConcurrencyStrategy. TRANSACTIONAL)
public class Foo {...}

Important:

WARNING: Use the TRANSACTIONAL concurrency strategy with transactional caches only.
Using with other types of caches will cause errors.

XA (Basic JTA Support)

Transactional caches set to "xa" provide support for basic JTA operations. Configuring and using
XA does not differ from using local transactions, except that "xa" mode requires a transaction
manager and allows the cache to participate in JTA transactions.

Note:

When using XA with an Atomikos transaction Manager, be sure to set
com.atomikos.icatch.threaded_2pc=false in the Atomikos configuration. This helps prevent
unintended rollbacks due to a bug in the way Atomikos behaves under certain conditions

For example, the following cache is configured for JTA transactions with XA:

<cache name="com.my.package.Foo"
maxEntriesLocalHeap="500"
eternal="false"
copyOnRead="true"
copyOnWrite="true"
consistency="strong"
transactionalMode="xa">
<persistence strategy="distributed"/>
<terracotta />
</cache>

Any other XA resource that could be involved in the transaction, such as a database, must also be
configured to be XA compliant.
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Local Transactions

Local transactional caches (with the transactionalMode attribute set to "local") write to a local store
using an API that is part of the Ehcache core API Local transactions have the following
characteristics:

m  Recovery occurs at the time an element is accessed.
m  Updates are written to the underlying store immediately.
m  Get operations on the underlying store may block during commit operations.

To use local transactions, instantiate a TransactionController instance instead of a transaction
manager instance:

TransactionController txCtrl = cacheManager.getTransactionController();
txCtrl.begin();

Cache fooCache = cacheManager.getCache("Foo");

fooCache.put("1", "Bar");
txCtrl.commit();

You can use rollback() to roll back the transaction bound to the current thread.

Tip:

You can find out if a transaction is in process on the current thread by calling
TransactionController.getCurrentTransactionContext() and checking its return value. If the
value isn't null, a transaction has started on the current thread.

Commit Failures and Timeouts

Commit operations can fail if the transaction times out. If the default timeout requires tuning, you
can get and set its current value:

int currentDefaultTransactionTimeout = txCtrl.getDefaultTransactionTimeout();

txCtrl.setDefaultTransactionTimeout(30); // in seconds -- must be greater than zero.

You can also bypass the commit timeout using the following version of commit():

txCtrl.commit(true); // "true" forces the commit to ignore the timeout.

Avoiding XA Commit Failures With Atomic Methods

If more than one transaction writes to a cache, it is possible for an XA transaction to fail. In the
following example, if a second transaction writes to the same key ("1") and completes its commit
first, the commit in the example may fail:

myTransactionMan.begin();
Cache fooCache = cacheManager.getCache("Foo");
fooCache.put("1", "Bar");
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myTransactionMan.commit();

One approach to prevent this type of commit failure is to use one of the atomic put methods, such
as Cache.replace():

myTransactionMan.begin();

int val = cache.get(key).getValue(); // "cache" 1is configured to be transactional.
Element olde = new Element (key, val);

// True only 1if the element was successfully replaced.

if (cache.replace(olde, new Element(key, val + 1)) {

myTransactionMan.commit();

}

else { myTransactionMan.rollback(); }

Another useful atomic put method is Cache.putIfAbsent(Element element), which returns null
on success (no previous element exists with the new element's key) or returns the existing element
(the put is not executed). Atomic methods cannot be used with null elements, or elements with
null keys.

Implementing an Element Comparator

For all transactional caches, the atomic methods Cache.removeElement (Element element) and
Cache.replace(Element old, Element element) must compare elements for the atomic operation
to complete. This requires all objects stored in the cache to override equals() and hashCode().

If overriding these methods is not desirable for your application, a default comparator is used
(net.sf.echache.store.DefaultElementValueComparator). You can also implement a custom
comparator and specify it in the cache configuration with <elementValueComparator>:

<cache name="com.my.package.Foo"
maxEntriesLocalHeap="500"
eternal="false"
copyOnRead="true"
copyOnWrite="true"
consistency="strong"
transactionalMode="xa">
<elementValueComparator class="com.company.xyz.MyElementComparator" />
<persistence strategy="distributed"/>
<terracotta />
</cache>

Custom comparators must implement net.sf.ehcache.store.ElementValueComparator.

A comparator can also be specified programmatically.
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Working With OSGi

To allow Enterprise Ehcache to behave as an OSGi component, the following attributes should be
set as shown:

<cache ... copyOnRead="true" ... >
<terracotta ... clustered="true" ... />
</cache>

Your OSGi bundle will require the following JAR files (showing versions from a BigMemory Max
4.0.0):

B ehcache-ee-2.7.0.jar
B terracotta-toolkit-runtime-ee-4.0.0.jar
B slf4j-api-1.6.6.jar
B slf4j-nop-l.6.1.jar
Or use another appropriate logger binding.

Use the following directory structure:

-- net.sf.ehcache

|
| - ehcache.xml
|- ehcache-ee-2.7.0.jar

|- terracotta-toolkit-runtime-ee-4.0.0.jar

| - slf4j-api-1.6.6.jar
|
| - slf4j-nop-1.6.6.jar
|
|

- META-INF/
| - MANIFEST.MF

The following is an example manifest file:

Manifest-Version: 1.0
Export-Package: net.sf.ehcache;version="2.7.0"
Bundle-Vendor: Terracotta
Bundle-ClassPath: .,ehcache-ee-2.7.0.jar,terracotta-toolkit-runtime-ee-4.0.0.jar
,slf4j-api-1.6.6.jar,slf4j-nop-1.6.6.jar
Bundle-Version: 2.7.0
Bundle-Name: EHCache bundle
Created-By: 1.6.0_15 (Apple Inc.)
Bundle-ManifestVersion: 2
Import-Package: org.osgi.framework;version="1.3.0"
Bundle-SymbolicName: net.sf.ehcache
Bundle-RequiredExecutionEnvironment: J2SE-1.5

Use versions appropriate to your setup.

To create the bundle, execute the following command in the net.sf.ehcache directory:
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jar cvfm net.sf.ehcache.jar MANIFEST.MF *
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Software AG strongly recommends against allowing live migrations of virtual machine(s) with
Software AG Terracotta server processes. This is because of the downtime introduced during the
live migration process which can cause other Terracotta server processes to elect a new active
server which will then create data consistency problems (such as split-brain scenarios) when the
migrated process becomes live again.

If you must use vMotion in your environment, please make sure that Terracotta server processes
and runtime processes are excluded from live migration. Be very thoughtful about any other VMs
that you put on the same hardware - the workload within it may be disruptive to the resources
available to the Terracotta server.

Applications utilizing Terracotta (Terracotta clients) can also experience disruption by live
migrations - although they will normally automatically reconnect and resume operation in a
healthy and well-resourced virtualized environment.
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A System Properties

Special System Properties

net.sf.ehcache.disabled

Setting this system property to true (using java -Dnet.sf.ehcache.disabled=true in the Java
command line) disables caching in ehcache. If disabled, no elements can be added to a cache (puts
are silently discarded).

net.sf.ehcache.use.classic.lru

When LRU is selected as the eviction policy, set this system property to true (using java
-Dnet.sf.ehcache.use.classic.lru=true in the Java command line) to use the older
LruMemoryStore implementation. This is provided for ease of migration.
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