5 software~

BigMemory Max Administrator Guide

Version 4.3.10

October 2021

TERRACOTTA

This document applies to BigMemory 4.3.10 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: BMM-AG-4310-20211130

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About This DocUmMENtatioN.......cciiiiiiiiiciiiiiiniiiieesesesssssssssesesesesesssssssssssssesesens 7
Online Information and SUPPOTt.........ccuiiiiiiiiiiciic s 8
Data ProteCtion........coiiiiiiiiciicice e 8

1 About the Terracotta SEIVET ATTaY......cciveirinririsinirinisinisinsisissiessiessesisssisssssssssssssssssssssssssssssessases 9
What is the Terracotta Server Array?........cooooeeeeeieeieeeeeee s 10
New for BigMemory Max 4.X.....ccccoeueeieieieieieieieieieeeeee e s 10
Definitions and Functional Characteristics...........ccccoeiviiiiiiiiiiiiiiiiicc 11

2 Terracotta Server Array ArchiteCture.......iiiininiiniiininicniiineienessssessssssssssssses 15
Terracotta Cluster in Development............cccccciviviiiiiiiiniiiiiiiii e 16
Terracotta Cluster with Reliability using Fast Restart (FRS).........ccococeiiviniiiinnniiiinie. 17
Fast Restart (FRS) Disk Compaction Strategies.............ccceeeeviviriiiinininiicininiiicciecccecnnes 18
Terracotta Cluster with High Availability.........ccccccoooviniiiiiiiiiiiiiiice 22
Failover Tuning for Guaranteed ConsiStency..........ccccoevuiiviniiiiiiiiniiiiiiiiccee 26
Scaling the Terracotta SEIvVer AITay ... 31

3 Configuring the Terracotta SEIVer AITay.......vrereserereseresesesessnssnsssssssssssssssssssssssssssssssssnes 35
About Terracotta Server Configuration...........ccccuveueiiniiiiciiininiecieee e 36
How Terracotta Servers Get Configured...........coeeiiviriiiiiininiiciinccceeeeeeeeeeeeeene 36
How Terracotta Clients Get Configured...........coeiiivriiiiininiiciinccceeceeee e 39
Configuration in a Development Environment............ccccccveeiinnniiinnnciinccceneeeeeeenes 40
Configuration in a Production Environment...........c.cccccccevniiiinnniiinnccinecccneeeene 42

4 Configuring the Terracotta SEIVer AITay ... 45
Binding Ports to Interfaces.............oeeveieieieiiiiiice 46
Which Configuration?...........cceveieeiiiiiiieiec s 46

5 Automatic Resource Management...........cocceicenirencsenisenisesnisisnicssiisssessssessssessssesessesssssssssscones 47
What is Automatic Resource Management?.............ccooeiiviniiiiiiiininiiiiinicceecssennns 48
BEVICH O oottt 48
Customizing the Eviction Strategy.........cccocoiiiiniiiiiiiiiiniiiiiiiiccces 52

6 Managing Near-Memory-Full Conditions..........eeeeeeeeeececcceececeeeeeeeesenenes 53
Behavior of the TSA under Near-Memory-Full Conditions..........cccoceoecivinneiinnnicininnnnnee. 54
Restricted Mode OPerations.........cocuciiririeiiininiiieieiiniecciee et 55
RECOVETY ..ottt 55

7 Monitoring Cluster EVENts........ieininicicnittcceincsceniscseesnsssesesssssssssesssssssssssssssssssssesess 57
About Cluster EVENLS.........coiiiiiiiiiiiicicc e 58
Event Types and Definitions..........coceiriiiiicccccccccc s 58

BigMemory Max Administrator Guide 4.3.10 ii

Table of Contents

8 Backing Up Live In-Memory Data..........eeeeeeeeeeeeeeeeeeeeeeeeeeee e esesesssenes 63
About Live BaCKUp......couiiiieiiiicecc s 64
Creating @ BaCKUp.......ccccovovviviiiiiii s 64
The Backup DiIrectory.........cocoiiiiiiiiiiiiiiiiiiiiic s 64
Restoring Data from a Backup........cccccccvviiiiiiiiiiiiniiiiiiiiccccs 64

9 Clearing Data from a Terracotta SeIVer.......iniiriinininisiiniinsiiiinisisissssssssssssssssssss 67
How to Clear Data from a Terracotta Server............ccccevriiiiinnininiiiniiiicncceccces 68

10 Changing Topology of a Live ClUSteT.........eeieeeictennnnnnescesesessssessssssssassnas 69
About Changing the Topology.........cceeieieiiieiiiiieiieeec s 70
AddIng @ NEW SeIVET.......ccoeueiiiiieieieieieieieee s 70
Removing an EXiStING SEIVET..........cccoeueieiiieiiiiieieicieeeeeee s 71
Editing the Configuration of an EXisting Server...........ccoooiiiiiiccccccccccccne 71

11 Enabling Production MoOde..........eeeeeeeeeeeeeeeeeeeeeeeee e e ssssssssesssesssssssssenes 73
Setting the Production Mode Property.........ccccooiiiviniiiiiiiniiiiiiicccccces 74

12 Managing Distributed Garbage Collection............ccovuvverieisiniiriisininiisiinisisscsiiesnssesiesssssesies 75
About Distributed Garbage Collection (DGC)........ccccvuiuiuiiiniiiiiiiiiiciiieceeceeee 76
Running the Periodic Distributed Garbage Collection.............cccccccuvvuiiinininicinniniiiiine, 76
Monitoring and Troubleshooting DGC..........cccooiiiiiiiiininiiiiiiic e 76

13 Starting the Terracotta Server as a Windows Service.........eeeeeeeeeeeeeeeeeeeccccnens 77
Configuring the Terracotta Server to Run as a Service...........coceeeiiiiiicicicccccccenes 78

14 Using BigMemory HyDbDIid.......ciiiinninniiniiniiniiniiisiiniiiisisniisiesscmissssssss 81
About BigMemory Hybrid.........ccoviiiiiiiiiiiiiiicc s 82
System ReqUITrements...........c.cciiiiiiiiiiiicc s 83
Hardware Capacity Guidelines............cccoeveieieiiiiiiieiiieieccccc s 84
Configuring BigMemory Hybrid..........ccoiiiiiiiiiccccccccccne 84
Using the TMC with BigMemory Hybrid.........cccooiiiiiii 85
Operator EVENLS.... ..ot 86

15 LOZGINE..cuiiiriiniiiiitiicneiiteinscisenssensesesssssssesessssessssssnssessssessssssssssssssesssssssssssssssssssssesssssssssssssessssssess 87
SLEJ LOZGINEG...cviviiiiiiiiiiiiiiiicicc e 88
Recommended Logging Levels............ccccoiiiiiiiiiiiiiiiiiiiccc s 88

16 Using Command Central to Manage Terracotta...........occveeveeeeeeeeeeeeeseeeeeeeeeeennns 91
Monitoring Terracotta BigMemory Max from Command Central...........ccccoooeveviiinniirninnnnen. 92
Troubleshooting a Secure Terracotta Server from Command Central..........ccccoovevviriiiinnnnen. 95
Commands that Terracotta SUPPOTES........cceveveiiieiiiiicieieee s 96
Configuration Types that Terracotta SUPPOItS.........ccccevviiiirieiniiiiciicce e 97
Lifecycle Actions fOr Terracotta........ccccooeerieieieiicieieiicecct s 97

iv BigMemory Max Administrator Guide 4.3.10

Table of Contents

Run-time Monitoring Statuses for Terracotta.............coceeeveieieieieeieieeieeeeee e 98
Run-time Monitoring States for Terracotta.............cccoeeeeeeieicieieieeee e 98
A Operational SCIiPES....civiirnininininiinriiniininisiesessssiesssstsssessssssssssssssssssssssssssssssssones 99
Archive Utility (archive-tool).........ccccoiviiiiiiiiiiiii s 100
Database Backup Utility (backup-data)..........ccccceeueviiiiiieinieiiiciicceceee e 100
Backup Status (backup-status).........cccccvviiiiiiiniiiiiiiicii s 101
Cluster Thread and State Dumps (debug-tool, cluster-dump).........cccccovuvivivniiiiinninnne. 101
Exit Safe Mode (eXit-Safe-mode)..........coeevirueririeinieinieiniciiecicc et 102
Distributed Garbage Collector (run-dgg)........cccoceueueveieieieeieiicieeee s 102
Start and Stop Server Scripts (start-tc-server, stop-tc-server)........ccooeeeviviviiiiininiiiininiinnen. 103
Server Status (SEIVET-StAL).....c..cocuirtiriririeiiniiet ettt et b et sb st esaesbe e neens 105
Version Utility (VEISION).......ccccciiviiiiiiiiiiiiiiiiiiiiiiccicc s 106
B Terracotta Configuration Parameters..........iiinininiiiinininsiiinisseiincsss 107
The Terracotta Configuration File...........ccccoviiiiiiiiiiiniiiicciee s 108
The Servers Parameters...........ccccciiiiiiiiiiniciii s 110
The Clients Parameters...........ccccociiiiiiiiniiiiiciiiicc s 118

BigMemory Max Administrator Guide 4.3.10 v

Table of Contents

vi BigMemory Max Administrator Guide 4.3.10

About This Documentation

B Online Information and SUPPOITcoooiiiiiiiiiee e

I B F-\ = W =l (o] (=1 (o] o IO

BigMemory Max Administrator Guide 4.3.10

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://fempower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

®m Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation” as an area of interest.

m Access articles, code samples, demos, and tutorials.

m Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

® Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

8 BigMemory Max Administrator Guide 4.3.10

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

1 About the Terracotta Server Array

B What is the Terracotta SErver ArTayY?uuiiei it e e e e e e e e e e aeeeaes 10
B New for BIgMemOory MaX 4.X ...ccoocoi i, 10
m Definitions and Functional CharacCteristiCSs ..., 11

BigMemory Max Administrator Guide 4.3.10 9

1 About the Terracotta Server Array

What is the Terracotta Server Array?

The Terracotta Server Array (TSA) provides the platform for Terracotta products and the backbone
for Terracotta clusters. A Terracotta Server Array can vary from a basic two-node tandem to a
multi-node array providing configurable scale, high performance, and deep failover coverage.

The main features of the Terracotta Server Array include:

m Distributed In-memory Data Management - Manages 10-100x more data in memory than
data grids

m Scalability Without Complexity - Simple configuration to add server instances to meet growing
demand and facilitate capacity planning

= High Availability - Instant failover for continuous uptime and services

= Configurable Health Monitoring - Terracotta HealthChecker for inter-node monitoring. For
information, see "Configuring the HealthChecker Properties" in the BigMemory Max
High-Awvailability Guide.

m Persistent Application State - Automatic permanent storage of all current shared in-memory
data

= Automatic Node Reconnection - Temporarily disconnected server instances and clients rejoin
the cluster without operator intervention

New for BigMemory Max 4.x

The 4.x TSA is an in-memory data platform, providing faster, more consistent, and more predictable
access to data. With resource management, if you have more data than memory available, the TSA
protects itself from going over its limit through data eviction and throttling. In most cases, it will
recover and come back to its normal working state automatically. In addition, four systems are
available to protect data: the Fast Restart (FRS) feature, BigMemory Hybrid's use of SSD/Flash,
active-mirror server groups, and backups.

Fast Restartability for Data Persistence

BigMemory's Fast Restart (FRS) feature is now integrated into the TSA, providing crash resilience
with quick recovery, plus a consistent record of the entire in-memory data set, no matter how
large. For more information about FRS, see “Fast Restartability” on page 17.

Hybrid Data Storage

"BigMemory Hybrid" extends BigMemory distributed in a Terracotta Server Array so that data
can be stored across a hybrid mixture of RAM and SSD/Flash. This additional storage is managed
with the in-memory data as one TSA data set. For more information, see “Using BigMemory
Hybrid” on page 81.

Resource Management

10 BigMemory Max Administrator Guide 4.3.10

1 About the Terracotta Server Array

Resource management provides better control over the TSA's in-memory data through time, size,
and count limitations. This enables automatic handling of, and recovery from, near-memory-full
conditions. For more information, see “Automatic Resource Management” on page 47.

Predictable Eviction Strategy

Based upon user-configured time, size, and count limitations, the TSA's 3-pronged eviction strategy
works automatically to ensure predictable behavior when memory becomes full. For more
information, see “Eviction ” on page 48.

Continuous Uptime

Improvements to provide continuous availability of data include flexibility in server startup
sequencing, better utilization of extra mirrors in mirror groups, multi-stripe backup capability,
optimizations to bulk load, and performance improvements for data access on rejoin. In addition,
the TSA no longer uses Oracle Berkeley DB, enabling in-memory data to be ready for use much
more quickly after any planned or unplanned restart.

Terracotta Management Console (TMC)

The expanded TMC replaces the Developer Console and Operations Center as the integrated
platform for monitoring, managing, and administering all Terracotta deployments. There is also
support for additional REST APIs for management and monitoring. For more information, start
with the Terracotta Management Console User’s Guide.

Additional Security Features

Active Directory (AD) and Lightweight Directory Access Protocol (LDAP) support on Terracotta
servers, and custom SecretProvider on Terracotta clients. For more information, see the BigMemory
Max Security Guide.

No More DSO, plus Simplified Configuration

DSO configuration has been deprecated, and the tc-config has a new format. Most of the elements
are the same, but the structure is revised. For more information, see the BigMemory Max
Administrator Guide.

Definitions and Functional Characteristics

The major components of a Terracotta installation are the following;:

® Cluster - All of the Terracotta server instances and clients that work together to share application
state or a data set.

m Terracotta client - Terracotta clients run on application servers along with the applications
being clustered by Terracotta. Clients manage live shared-object graphs.

m Terracotta server instance - A single Terracotta server. An active server instance manages
Terracotta clients, coordinates shared objects, and persists data. Server instances have no
awareness of the clustered applications running on Terracotta clients. A mirror (sometimes
called "hot standby") is a live backup server instance which continuously replicates the shared
data of an active server instance, instantaneously replacing the active if the active fails. Mirror
servers add failover coverage within each mirror group.

BigMemory Max Administrator Guide 4.3.10 1

1 About the Terracotta Server Array

Terracotta mirror group - A unit in the Terracotta Server Array. Sometimes also called a "stripe,"
a mirror group is composed of exactly one active Terracotta server instance and at least one
mirror Terracotta server instance. The active server instance manages and persists the fraction
of shared data allotted to its mirror group, while each mirror server in the mirror group
replicates (or mirrors) the shared data managed by the active server. Mirror groups add capacity
to the cluster. The mirror servers are optional but highly recommended for providing failover.

Terracotta Server Array - The platform, consisting of all of the Terracotta server instances in
a single cluster. Clustered data, also called in-memory data, or shared data, is partitioned
equally among active Terracotta server instances for management and persistence purposes.

Tip:

Nomenclature - This documentation may refer to a Terracotta server instance as L2, and a
Terracotta client (the node running your application) as L1. These are the shorthand references
used in Terracotta configuration files.

Figure 1 illustrates a Terracotta cluster with three mirror groups. Each mirror group has an active
server and a mirror, and manages one third of the shared data in the cluster.

Fig. 1: A Server Array
With 3 Mirrar Groups

L2 ACTIVE \ L2 ACTIVE \ L2 ACTIVE

Mirror Group 1 Mirror Group 2 Mirrar Group 3

A Terracotta cluster has the following functional characteristics:

Each mirror group automatically elects one active Terracotta server instance. There can never
be more than one active server instance per mirror group, but there can be any number of
mirrors. However, a performance overhead may become evident when adding more mirror
servers due to the load placed on the active server by having to synchronize with each mirror.

Every mirror group in the cluster must have a Terracotta server instance in active mode before
the cluster is ready to do work.

The shared data in the cluster is automatically partitioned and distributed to the mirror groups.
The number of partitions equals the number of mirror groups. In Fig. 1, each mirror group has
one third of the shared data in the cluster.

12

BigMemory Max Administrator Guide 4.3.10

1 About the Terracotta Server Array

®m Mirror groups cannot provide failover for each other. Failover is provided within each mirror
group, not across mirror groups. This is because mirror groups provide scale by managing
discrete portions of the shared data in the cluster -- they do not replicate each other. In Fig. 1,
if Mirror Group 1 goes down, the cluster must pause (stop work) until Mirror Group 1 is back
up with its portion of the shared data intact.

® Active servers are self-coordinating among themselves. No additional configuration is required
to coordinate active server instances.

® Only mirror server instances can be hot-swapped in an array. In Fig. 1, the L2 MIRROR servers
can be shut down and replaced with no affect on cluster functions. However, to add or remove
an entire mirror group, the cluster must be brought down. Note also that in this case the original
Terracotta configuration file is still in effect and no new servers can be added. Replaced mirror
servers must have the same address (hostname or IP address). If you must swap in a mirror
with a different configuration, see “Changing Topology of a Live Cluster” on page 69.

BigMemory Max Administrator Guide 4.3.10 13

1 About the Terracotta Server Array

14 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

m Terracotta Cluster in Development
m Terracotta Cluster with Reliability using Fast Restart (FRS)
m Fast Restart (FRS) Disk Compaction Strategies
m Terracotta Cluster with High Availability
m Failover Tuning for Guaranteed Consistency

m Scaling the Terracotta Server Array

BigMemory Max Administrator Guide 4.3.10

15

2 Terracotta Server Array Architecture

Terracotta Cluster in Development

Persistence: No | Failover: No | Scale: No

In a development environment, persisting shared data is often unnecessary and even inconvenient.
Running a single-server Terracotta cluster without persistence is a good solution for creating an
efficient development environment.

Single Server — No Poraistence of Shared Data

Application Instances

Server Array Instances

By default, a Terracotta server has Fast Restartability (FRS) disabled, which means it will not
persist data after a restart. Its configuration could look like the following;:

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.terracotta.org/schema/terracotta-9.xsd">
<servers>
<server name="Serverl'">
<data>/opt/terracotta/serverl-data</data>
<tsa-port>9510</tsa-port>
<jmx-port>9520</jmx-port>
<tsa-group-port>9530</tsa-group-port>
<management-port>9540</management-port>
<dataStorage size="4g">
<offheap size="4g"/>
</dataStorage>
</server>
</servers>

<)£é:tc—config>
If this server goes down, the application state (all clustered data) in the shared memory is lost. In

addition, when the server is up again, all clients must be restarted to rejoin the cluster. Note that
servers are required to run with off-heap, and that shared data is also lost.

16 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

Terracotta Cluster with Reliability using Fast Restart (FRS)

Persistence: Yes | Failover: No | Scale: No

The configuration above may be advantageous in development, but if shared in-memory data
must be persisted, the server should be configured to use its local disk. Terracotta servers achieve
data persistence with the Fast Restart (FRS) feature.

Aeliable Single Server — Shared Data Persisted

Application Instances

’

Server Array Instances

Disk

Fast Restartability

The Fast Restart (FRS) feature provides enterprise-ready crash resilience by keeping a fully
consistent, real-time record of your in-memory data. After any kind of shutdown - planned or
unplanned - the next time your application starts up, all of your BigMemory Max data is still
available and very quickly accessible.

The Fast Restart feature persists the real-time record of the in-memory data in a Fast Restart store
on the server's local disk. After any restart, the data that was last in memory (both heap and
off-heap stores) automatically loads from the Fast Restart store back into memory. In addition,
previously connected clients are allowed to rejoin the cluster within a window set by the
<client-reconnect-window> element.

To configure the Terracotta server for Fast Restartability, add and enable the <restartable> element
in the tc-config.xml.

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.terracotta.org/schema/terracotta-9.xsd">
<servers>
<server name="Serverl">
<data>/opt/terracotta/serverl-data</data>
<tsa-port>9510</tsa-port>
<jmx-port>9520</jmx-port>
<tsa-group-port>9530</tsa-group-port>

BigMemory Max Administrator Guide 4.3.10 17

2 Terracotta Server Array Architecture

<management-port>9540</management-port>
<dataStorage size="4g">
<offheap size="4g"/>

</dataStorage>
</server>
<!-- Fast Restartability must be added explicitly. -->
<restartable enabled="true"/>
<!-- By default the window is 120 seconds. -->
<client-reconnect-window>120</client-reconnect-window>
</servers>

</tc:tc-config>

Disk usage

Fast Restartability requires a unique and explicitly specified path. The default path is the Terracotta
server's home directory. You can customize the path using the <data> element in the server's
tc-config.xml configuration file.

The Terracotta Server Array can be configured to be restartable in addition to including searchable
caches, but both of these features require disk storage. When both are enabled, be sure that enough
disk space is available. The amount of disk storage required is dependent on the use case, taking
into account aspects such as the number of searchable attributes, element size, read/write ratio
and transaction rate. For this reason an exact figure cannot be given, but the amount of disk storage
required can be a multiple of the amount of in-memory data. The recommended way to determine
the true minimum disk space requirements is to perform multiple iterations of testing the real-world
use case in full.

It is highly recommended to store the search index (<index>) and the Fast Restart data (<data>
) on separate disks.

Client Reconnect Window

The <client-reconnect-window> does not have to be explicitly set if the default value is acceptable.
However, in a single-server cluster, <client-reconnect-window> is in effect only if restartable mode
is enabled.

Understanding how FRS works

FRS is a trade-off of space efficiency against performance. Because the Terracotta product is about
performance, and in particular in-memory performance, the FRS feature purposely sacrifices
on-disk space efficiency in order to avoid making the process (the Terracotta server) wait for more
complex disk I/O. In periods of extensive writing (new entries, updated entries, deleted entries)
to the system, the FRS transaction logs will grow extensively. This design preserves high, predictable
performance (latencies).

Fast Restart (FRS) Disk Compaction Strategies

Since Terracotta is a product intended to maximize performance, a performance-focused
"append-only-log" architecture is used for the FRS disk persistence technology.

18 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

Terracotta supports the following two compaction strategies:

1. Performance Based Compaction Policy - Favors predictable performance at the expense of
unpredictable disk storage space requirements. This is the default strategy.

2. Size Based Compaction Policy - Favors predictable disk storage space requirements at the
expense of unpredictable performance.

Overview of Behavior

The following process describes in general what you can expect to observe occurring on the file
system in the configured <data> folder. This process is the same, regardless of which of the two
compaction strategies you use:

1. Data is added to Terracotta cache(s).

2. An FRSfile is created with a file name pattern similar to "seg<nnnn>.frs", where <nnnn>is a
number. This file receives all current data writes.

3. Asdatais further added to Terracotta cache(s), the current FRS file will grow in size.
4. Once the current FRS file grows to some predetermined size, the file is closed.
5. Repeat from Step 2 above, where the file name's <nnnn> is incremented by 1.

It is important to note from the above process that any given FRS file only grows in size to some
limit before it is closed and another file is created. This leads to increasing disk consumption.

Based on internal product heuristics, Terracotta will periodically try to "copy" living/valid data
into newer FRS files. Once all the cached data in an older FRS file is either "dead" (i.e. the "time to
live" has expired) or has been successfully copied to a newer FRS file, then that older FRS file will
be deleted in its entirety and its associated disk space will be reclaimed.

In short, disk usage will accumulate to some amount, then some storage space will be "freed", and
the process will repeat itself.

Note:

It is very important to determine upper-bound used-disk space and ensure the environment
always has enough free storage capacity to safely function. We recommend determining this
upper-bound, then pad this figure by approximately 20% or more (to accommodate variations
in usage), and set that as the "minimum required free disk space" for successful product operation.

Performance Based Compaction Policy (Default)

As noted above, the Performance Based Compaction Policy is the default compaction strategy
because it provides the fastest predictable performance which is of paramount concern to "Big
Data" users. This strategy frees up disk space associated with data which is either redundant or
has been removed from cache. This strategy provides fast, predictable performance at the cost of
large (and comparatively cheap) disk storage space. Put another way, this compaction strategy
intentionally sacrifices disk space to provide maximal disk performance.

BigMemory Max Administrator Guide 4.3.10 19

2 Terracotta Server Array Architecture

The amount of disk storage space that is required to successfully operate Terracotta when using
this compaction strategy is wholly dependent upon a variety of use-case specific factors (such as
data size, data volume, configured data lifetime, access patterns, etc.) which cannot reasonably
be "guessed at" to determine the minimal FRS disk space requirements for a deployment. The only
way to know how much disk space will be required for successful operation is to test the real
use-case, under real load, and monitor the resulting disk usage.

The following are some observed real world examples. Please note that every use-case is different
and that any particular usage could yield wildly different results; the following is intended to be
used for illustrative purposes only to show what is possible as a normally expected disk usage.

FRS was designed to efficiently manage Big Data use-cases; the side effect is that small data volumes
typically exhibit a high "relative" disk usage cost.

With this use-case, there are approximately 50 MB of real data which is completely
reloaded/refreshed every 24 hours from the backing data store. Based on the data lifetime
requirements and access patterns the following behavior might result:

1. Each FRS file slowly grows in size to approximately 512 MB before another file is created.

2. The number of FRS files accumulates to an average of 14 FRS files (each at ~512 MB) before
the configured data life-cycle coupled with the data access patterns allows FRS files to be freed.

3. All "old" FRS files are deleted except the most recent 3 FRS files.

Under normal operation, FRS disk usage could grow up to approximately 7.1 GB (14 files of 512
MB each) before 11 FRS files would be deleted (freeing about 5.6 GB) leaving 1.5 GB used on disk.
Then the process would repeat, where the 1.5 GB grows to 7.1 GB, at which point 5.6 GB would
be freed again. This pattern would repeat over the lifetime of this customer's deployment.

With this use-case, there are approximately 11 GB of real data which is completely
reloaded/refreshed every 24 hours from the backing data store. If the used disk-space is observed
to peak at approximately 50 GB, we would recommend ensuring that there are 60 GB of free space
(50 GB padded by 20%) dedicated to Terracotta data storage.

With this use-case, there are approximately 760 GB of real data distributed across 4 Terracotta
Servers, with each Terracotta Server containing approximately 190 GB of that data. The majority
of the time, this deployment is used for a read-heavy "pure caching" use-case which results in FRS
disk usage peaking at about 500 GB on each Terracotta Server. For this usage, it should be safe to
ensure that there is 600 GB (500 GB + 20%) of free disk storage capacity reserved for Terracotta
usage.

However, once every 2 weeks, a write-heavy "data-reconciliation” process is executed which
updates the entire 760 GB data-set (~190 GB per server). Due to the access patterns required to
perform the data reconciliation during this bi-weekly process, FRS disk usage temporarily peaks
during this window of time on each Terracotta Server at about 2000 GB (2 TB).

20 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

In summary, each Terracotta Server:
1. Stores approximately 190 GB of data.
2. Under normal operation requires at least 500 GB of free disk capacity.

3. Only during the bi-weekly data reconciliation operation, the minimum free disk space
requirement grows from the normal 500 GB to 2 TB.

Based on the observed application requirements, it is recommended to allocate at least 2.4 TB (2
TB +20%) of free disk storage capacity to safely operate during this bi-weekly process.

Optional Compaction Strategy (Size Based Compaction Policy)

If constraining FRS on-disk usage is more important than performance (i.e. predictable performance
is not important), then the "Size Based Compaction Policy" can be used instead.

This optional compaction strategy is configured in the Terracotta Server's "tc-config.xml" by adding
anew "tc-property"” to the "tc-properties” section as follows:

<tc-properties>
<property name="12.frs.compactor.policy" value="SizeBasedCompactionPolicy"/>
</tc-properties>

By default, this compaction strategy will attempt to constrain the on-disk size to approximately 2
times the overall data size but is influenced by the FRS "segment size".

The default FRS segment file size is 512 MB (53687092 bytes), but this can be further tuned by
changing the value used the following "tc-property":

<property name="12.frs.io.nio.segmentSize" value="53687092"/>
<!-- 512MB = 32 * 1024 * 1024 —-->

For small data sets, it might make sense to reduce the FRS segment file size relative to the amount
of data being stored; such tuning will be an iterative process is dependent upon the data storage
and access requirements of the application.

<tc-properties>
<property name="12.frs.compactor.policy" value="SizeBasedCompactionPolicy"/>
<property name="12.frs.jo.nio.segmentSize" value="33554432"/> <!-- 32MB = 32 *
1024 x 1024 -->
</tc-properties>

<tc-properties>
<property name="12.frs.compactor.policy" value="S1izeBasedCompactionPolicy"/>
<property name="12.frs.jo.nio.segmentSize" value="268435456"/> <!-- 256MB = 256
* 1024 x 1024 —-->
</tc-properties>

BigMemory Max Administrator Guide 4.3.10 21

2 Terracotta Server Array Architecture

The vast majority of use-cases should be successfully handled using the above options; what
follows is included for completeness. These additional tuning parameters are only applicable when
the Size Based Compaction Policy is being used and should be used with great caution.

Note:
The "value" of each parameter is expressed in percent as a fraction of 1.0 such that 100%=1.0,
85%=0.85, 50%=0.5, 5%=0.05, etc.

The following property controls when to trigger/start the on-disk data compaction process. The
formula used to determine the trigger threshold is INMEMORY_DATA / DISK_USED.

<!-- start compaction when in-memory size is 50% of what on-disk size is,
or in other words when disk is twice as much -->
<property name="12.frs.compactor.sizeBased.threshold" value="0.50"/>

The following property controls how much data should be compacted at a time. By default, the
Size Based Compaction Policy will attempt to free 5% of the on-disk stored data.

<property name="12.frs.compactor.sizeBased.amount" value="0.05"/>

Terracotta Cluster with High Availability

Persistence: Yes | Failover: Yes | Scale: No

The example above presents a reliable but not highly available cluster. If the server fails, the cluster
fails. There is no redundancy to provide failover. Adding a mirror server adds availability because
the mirror serves as a "hot standby" ready to take over for the active server in case of a failure.

Available and Reliable — Faifover, Persistence

Application Instances

ks

Server Array Instances

In this array, if the active Terracotta server instance fails, then the mirror instantly takes over and
the cluster continues functioning. No data is lost.

22 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

The following Terracotta configuration file demonstrates how to configure this two-server array:

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.terracotta.org/schema/terracotta-9.xsd">
<servers>
<server name="Serverl'">
<data>/opt/terracotta/serverl-data</data>
<tsa-port>9510</tsa-port>
<jmx-port>9520</jmx-port>
<tsa-group-port>9530</tsa-group-port>
<management-port>9540</management-port>
<dataStorage size="4g">
<offheap size="4g"/>
</dataStorage>
</server>
<server name="Server2">
<data>/opt/terracotta/server2-data</data>
<tsa-port>9510</tsa-port>
<jmx-port>9520</jmx-port>
<tsa-group-port>9530</tsa-group-port>
<management-port>9540</management-port>
<dataStorage size="4g">
<offheap size="4g"/>
</dataStorage>
</server>
<restartable enabled="true"/>
<client-reconnect-window>120</client-reconnect-window>
</servers>

</tc:tc-config>

You can add more mirror servers to this configuration by adding more <server> sections. However,
a performance overhead may become evident when adding more mirror servers due to the load
placed on the active server by having to synchronize with each mirror.

Note:
Terracotta server instances must not share data directories. Each server's <data> element should
point to a different and preferably local data directory.

Starting the Servers
How server instances behave at startup depends on when in the life of the cluster they are started.

In a single-server configuration, when the server is started it performs a startup routine and then
is ready to run the cluster (ACTIVE status). If multiple server instances are started at the same
time, one is elected the active server (ACTIVE-COORDINATOR status) while the others serve as
mirrors (PASSIVE-STANDBY status). The election is recorded in the servers' logs.

If a server instance is started while an active server instance is already running, it syncs up state
from the active server instance before becoming a mirror. The active and mirror servers must
always be synchronized, allowing the mirror server to mirror the state of the active. The mirror
server goes through the following states:

BigMemory Max Administrator Guide 4.3.10 23

2 Terracotta Server Array Architecture

1. PASSIVE-UNINITIALIZED - The mirror is beginning its startup sequence and is not ready
to perform failover should the active fail or be shut down. The server's status light in the
Terracotta Management Console (TMC) switches from red to orange.

2. INITIALIZING - The mirror is synchronizing state with the active and is not ready to perform
failover should the active fail or be shut down. The server's status light in the TMC is orange.

3. PASSIVE-STANDBY - The mirror is synchronized and is ready to perform failover should
the active server fail or be shut down. The server's status light in the TMC switches from orange
to cyan.

The active server instance carries the load of sending state to the mirror during the synchronization
process. The time taken to synchronize is dependent on the amount of clustered data and on the
current load on the cluster. The active server instance and mirrors should be run on similarly
configured machines for better throughput, and should be started together to avoid unnecessary
sync ups.

The sequence in which servers startup does not affect data. Even if a former mirror server is
initialized before the former active server, the mirror server's data is not erased. In the event that
a mirror server went offline while the active server was still up, then when the mirror server
returns, it remembers that it was in the mirror role. Even if the active server is offline at that point,
the mirror server does not try to become the active. It waits until the active server returns, and
clients are blocked from updating their data. When the active returns, it will restart the mirror.
The mirror's data objects and indices are then moved to the dirty-objectdb-backup directory, and
the active syncs its data with the mirror.

Failover

If the active server instance fails and two or more mirror server instances are available, an election
determines the new active. Successful failover to a new active takes place only if at least one mirror
server is fully synchronized with the failed active server; successful client failover (migration to
the new active) can happen only if the server failover is successful. Shutting down the active server
before a fully-synchronized mirror is available can result in a cluster-wide failure.

If the dataStorage and/or offheap size on the mirror server is smaller than on the active server,
then the mirror server will fail to start and the user will be alerted that the configuration is invalid.
If there are multiple mirrors with differing amounts of storage configured, then the passive with
the smallest dataStorage and offheap sizes (that are still greater than or equal to the active's
dataStorage and offheap sizes) will be elected to be the new active.

Tip:

Hot-Swapping Mirrors - A mirror can be hot-swapped if the replacement matches the original
mirror's <server>block in the Terracotta configuration. For example, the new mirror should use
the same host name or IP address configured for the original mirror. For information about
swapping in a mirror with a different configuration, refer to “Changing Topology of a Live
Cluster” on page 69.

Terracotta server instances acting as mirrors can run either in restartable mode or non-persistent
mode. If a server instance running in restartable mode goes down, and a mirror takes over, the
crashed server's data directory is cleared before it is restarted and allowed to rejoin the cluster.

24 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

Removing the data is necessary because the cluster state could have changed since the crash.
During startup, the restarted server's new state is synchronized from the new active server instance.

If both servers are down, and clustered data is persisted, the last server to be active will
automatically be started first to avoid errors and data loss.

In setups where data is not persisted, meaning that restartable mode is not enabled, then no data
is saved and either server can be started first.

Note:
Under certain circumstances pertaining to server restarts, the data directory should be manually
cleared. For more information, refer to “Clearing Data from a Terracotta Server” on page 67

A Safe Failover Procedure
To safely migrate clients to a mirror server without stopping the cluster, follow these steps:

1. Ifitis not already running, start the mirror server using the start-tc-server script. The mirror
server must already be configured in the Terracotta configuration file.

2. Ensure that the mirror server is ready for failover (PASSIVE-STANDBY status). In the TMC,
the status light will be cyan.

3. Shut down the active server using the stop-tc-server script.

Note:

If the script detects that the mirror server in STANDBY state isn't reachable, it issues a
warning and fails to shut down the active server. If failover is not a concern, you can override
this behavior with the --force flag.

Clients will connect to the new active server.

4. Restart any clients that fail to reconnect to the new active server within the configured
reconnection window.

The previously active server can now rejoin the cluster as a mirror server. If restartable mode had
been enabled, its data is first removed and then the current data is read in from the now active
server.

A Safe Cluster Shutdown Procedure

A safe cluster shutdown should follow these steps:

1. Shut down the mirror servers using the stop-tc-server script.

2. Shut down the clients. The Terracotta client will shut down when you shut down your
application.

3. Shut down the active server using the stop-tc-server script.

To restart the cluster, first start the server that was last active. If clustered data is not persisted,
any of the servers could be started first as no data conflicts can take place.

BigMemory Max Administrator Guide 4.3.10 25

2 Terracotta Server Array Architecture

Split Brain Scenario

In a Terracotta cluster, "split brain" refers to a scenario where two servers assume the role of active
server (ACTIVE-COORDINATOR status). This can occur during a network problem that disconnects
the active and mirror servers, causing the mirror to both become an active server and open a
reconnection window for clients (<client-reconnect-window>).

If the connection between the two servers is never restored, then two independent clusters are in
operation. This is a split-brain situation. However, if the connection is restored, one of the following
scenarios results:

® No clients connect to the new active server - The original active server "zaps" the new active
server, causing it to restart, wipe its database, and synchronize again as a mirror.

= A minority of clients connect to the new active server - The original active server starts a
reconnect timeout for the clients that it loses, while zapping the new active server. The new
active restarts, wipes its database, and synchronizes again as a mirror. Clients that defected
to the new active attempt to reconnect to the original active, but if they do not succeed within
the parameters set by that server, they must be restarted.

® A majority of clients connects to the new active server - The new active server "zaps" the original
active server. The original active restarts, wipes its database, and synchronizes again as a
mirror. Clients that do not connect to the new active within its configured reconnection window
must be restarted.

® Anequal number of clients connect to the new active server - In this unlikely event, exactly
one half of the original active server's clients connect to the new active server. The servers
must now attempt to determine which of them holds the latest transactions (or has the freshest
data). The winner zaps the loser, and clients behave as noted above, depending on which
server remains active. Manual shutdown of one of the servers may become necessary if a timely
resolution does not occur.

In the case of split-brain occurrences it is imperative to confirm the integrity of shared data after
such an event.

Note:
Under certain circumstances pertaining to server restarts, the data directory should be manually
cleared. For more information, refer to “Clearing Data from a Terracotta Server” on page 67.

Failover Tuning for Guaranteed Consistency

In a clustered environment any network, hardware, or other issues can result in an active node to
partition from the cluster.

The detection of such a situation results in an Active-left event.

As described in the previous sections, the default behavior of a TSA would be that the remaining
passive node will then run an election and, if not finding the active node (5 sec default), take over
as Active.

26 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

While this configuration ensures a tight availability of the data, risks of experiencing a so-called
split brain situation during such elections are increased.

In the case of a TSA, split brain would be a situation in which both nodes are acting as Active.
Any further operations performed on the data are likely to result in inconsistencies.

So, depending on mission priorities, a cluster may also be configured to emphasize consistency.

Note:

Using Failover Tuning requires the feature to be part of the license key. Contact your nearest
Software AG representative in case of questions.

AVAILABILITY versus CONSISTENCY

AVAILABILITY |default setting is 5|Passives automatically become Actives
seconds

CONSISTENCY |explicit settings | WAITING-FOR-PROMOTION state requesting operator
<failover-priority>|to issue a failover-action command

Note:
Even in the absence of any configuration value, the default behavior is Availability.

Supported Configuration

Tuning the failover priority to CONSISTENCY can be applied to clusters consisting of up to two
data centers.

Each mirror group in the cluster has one active and one mirror node. Mirror groups that have
more than one mirror node are not supported.

A very common example scenario would be Integration Server instances (one per data center) that
require a shared (Active-Active replicated) database.

BigMemory Max Administrator Guide 4.3.10 27

2 Terracotta Server Array Architecture

Mamed Cluster

How to Switch to failover-priority CONSISTENCY:

Since the default setting is AVAILABIILITY, changing this setting must be performed explicitly
on the following property:

<tc-config>
<{servers>

<failover-priority>
CONSISTENCY
</failover-priority>

</servers>
</tc-config>

Note:

In the CONSISTENCY scenario, no mirror group can have more than two servers configured,
otherwise the startup would fail.

The CONSISTENCY setting has no effect in a single node stripe but will take effect for the
modified stripe once a new server is added.

How Failover Works in Various Scenarios

If the Active Node Fails ?
If the active node fails, the mirror node automatically stops processing, but all data is preserved
and there are no lost transactions. At this point, the mirror node can only determine that the
connection to the active node has been lost, but cannot determine whether the active node has
failed, or whether there is just a break in the network connection. The mirror node sets its own

28 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

status to WAITING_FOR_PROMOTION and waits for human interaction to determine why
the connection has been lost.

If the Mirror Node Fails ?
If the mirror node fails, the active node continues operation without interruption. Human
intervention is required to restart the mirror node.

If the Network Connection Fails ?
If the network connection fails, the active node cannot determine if the mirror node is still
operating. However, the active node will continue without interruption. The mirror node cannot
determine if the active node is still operating, so the mirror node will proceed as if the active
node is not operating.

See above for details of how the mirror node reacts in this case.

What Happens to Transactions in Transit During Failover?
Provided the client is running, transactions will not be lost as they will be replayed to the new
Active.

Monitoring Using Server Stats Script

The server-stat. [sh/bat] script packaged with this software is the ideal tool to monitor a cluster
configured for Fail-Over tuning. The script delivers information regarding the states of the clustered
servers. The following block shows part of the output of server-stat.[sh/bat] in a live 2-node
cluster:

glsl.health: OK

glsl.role: ACTIVE

glsl.state: ACTIVE-COORDINATOR
glsl.port: 9540

glsl.group name: groupl
gls2.health: OK

gls2.role: PASSIVE

gls2.state: PASSIVE-STANDBY
gls2.port: 9640

gls2.group name: groupl

In the case of an Active server crashing, the staus deliverd by server-stat.[sh/bat] will deliver an
output as below:

localhost.health: unknown
localhost.role: unknown
localhost.state: unknown
localhost.port: 9540
localhost.group name: unknown
localhost.error: Connection refused to localhost:9540. Is the TSA running?
gls2.health: OK

gls2.role: WAITING-FOR-PROMOTION
gls2.state: PASSIVE-STANDBY
gls2.port: 9640

gls2.group name: groupl

The "role" field of the Passive server indicates that is waiting for promotion.

BigMemory Max Administrator Guide 4.3.10 29

2 Terracotta Server Array Architecture

Monitoring Using REST Endpoints

The server-stat utility internally uses a rest endpoint on the servers to fetch the information shown
in the output. The same REST endpoint can be addressed directly to get the same information
using the following URL:

<server:mgmt-port>/tc-management-api/v2/local/stat

Pointing to this URL to a Passive node that is waiting for promotion would give a response such
as below:

{"health":"OK","role" :"WAITING-FOR-PROMOTION","state":"PASSIVE-STANDBY",
"managementPort":"<port number>","serverGroupName":"groupl","name":"gls2"}

The "role" attribute indicates that the Passive server is waiting for promotion.

Monitoring Using TMC

In the case of a partition of Active and Passive, TMC will receive operator events indicating that
the Passive is waiting for promotion.

However, in the case of failure of the Active node acting as active-coordinator of the cluster, TMC
will be unable to deliver any useful information on the cluster.

In all other cases, TMC provides accurate operator events.

CONSISTENCY: How to Start Up and What to Consider

The command for starting up a server can be extended by the flag --active
S$SKIT/server/bin/start-server.sh[bat] -f /path/to/tc-config.xml -n <server-name> --active
= [f this flag is set, then that node will run an election and if won, will become the Active.

m If an Active is found during the election, then this flag is ignored and the node will join the
cluster as a Passive.

= If this flag is not set at all, then this node will look for an Active until such is found and, in the
case of an Active responding, join as a Passive.
CONSISTENCY: The fail-over-action Command

When a Passive standby running with failover-priority "CONSISTENCY" detects that a node has
left, then it will move to WAITING-FOR-PROMOTION state.

This state ...
® raises operator alerts with an operator alert appearing in the TMC as well as in log files

Note:
TMC may not be accessible should stripe 0 Active be out of operation. Consequentially,
integration of the alert into 3rd party software or accessing logs may be required.

30 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

® initiates continuous logging
® waits for an external trigger

This trigger is provided by the fail-over-action command that must be performed by an operator.
$KIT/server/bin/fail-over-action.sh[bat] -f /path/to/tc-config.xml -n <server-name>

--promote|--restart|--failFast

This command will call a REST endpoint to pass the fail-over action to the node specified by the
<server-name>

Action Description

--promote The node will move to the ACTIVE_COORDINATOR state, provided
the node was currently in the WAITING-FOR-PROMOTION state.

--restart The node will log appropriately, shutdown, and mark the DB as dirty.
The server will restart automatically.

--failFast The node will log appropriately and shutdown without any changes to
the database. The server will not restart automatically.

Scaling the Terracotta Server Array

Persistence: Yes | Failover: Yes | Scale: Yes

For capacity requirements that exceed the capabilities of a two-server active-mirror setup, expand
the Terracotta cluster using a mirror-groups configuration. Using mirror groups with multiple
coordinated active Terracotta server instances adds scalability to the Terracotta Server Array.

Avaifable, Reliable, and Scalable — Failover, Persistence, Capacity

‘ ‘ Server Array Instances ‘

Application Instances

BigMemory Max Administrator Guide 4.3.10 31

2 Terracotta Server Array Architecture

Mirror groups are specified in the <servers> section of the Terracotta configuration file. Mirror
groups work by assigning group memberships to Terracotta server instances. The following snippet
from a Terracotta configuration file shows a mirror-group configuration with four servers:

<servers>

<mirror-group election-time="10" group-name='"groupA">
<server name="serverl">
</server>
<server name="server2">
</server>

</mirror-group>

<mirror-group election-time="15" group-name='"groupB">
<server name="server3'">
</server>
<server name="server4'">
</server>

</mirror-group>

<restartable enabled="true"/>
</servers>

In this example, the cluster is configured to have two active servers, each with its own mirror. If
server] is elected active in groupA, server2 becomes its mirror. If server3 is elected active in groupB,
server4 becomes its mirror. serverl and server3 automatically coordinate their work managing
Terracotta clients and shared data across the cluster.

In a Terracotta cluster designed for multiple active Terracotta server instances, the server instances
in each mirror group participate in an election to choose the active. Once every mirror group has
elected an active server instance, all the active server instances in the cluster begin cooperatively
managing the cluster. The rest of the server instances become mirrors for the active server instance
in their mirror group. If the active in a mirror group fails, a new election takes place to determine
that mirror group's new active. Clients continue work without regard to the failure.

Note:

Server vs. Mirror Group - Under <servers>, you may use either <server> or <mirror-group>
configurations, but not both. All <server> configurations directly under <servers> work together
as one mirror group, with one active server and the rest mirrors. To create more than one stripe,
use <mirror-group> configurations directly under <servers>. The mirror group configurations
then include one or more <server> configurations.

In a Terracotta cluster with mirror groups, each group, or "stripe", behaves in a similar way to an
active-mirror setup (see “Terracotta Cluster with High Availability ” on page 22. For example,
when a server instance is started in a stripe while an active server instance is present, it synchronizes
state from the active server instance before becoming a mirror. A mirror cannot become an active
server instance during a failure until it is fully synchronized. If an active server instance running
in restartable mode goes down, and a mirror takes over, the data directory is cleared before bringing
back the crashed server.

32 BigMemory Max Administrator Guide 4.3.10

2 Terracotta Server Array Architecture

Election Time

The <mirror-group> configuration allows you to declare the election time window. An active server
is elected from the servers that cast a vote within this window. The value is specified in seconds
and the default is 5 seconds. Network latency and the work load of the servers should be taken
into consideration when choosing an appropriate window.

In the above example, the servers in groupA can take up to 10 seconds to elect an active server,
and the servers in groupB can take up to 15 seconds.

Stripe and Cluster Failure

If the active server in a mirror group fails or is taken down, the cluster stops until a mirror takes
over and becomes active (ACTIVE-COORDINATOR status).

However, the cluster cannot survive the loss of an entire stripe. If an entire stripe fails and no
server in the failed mirror-group becomes active within the allowed window (based on the
election-time setting), the entire cluster must be restarted.

BigMemory Max Administrator Guide 4.3.10 33

2 Terracotta Server Array Architecture

34 BigMemory Max Administrator Guide 4.3.10

3 Configuring the Terracotta Server Array

m About Terracotta Server Configuration
m How Terracotta Servers Get Configured
m How Terracotta Clients Get Configured
m Configuration in a Development Environment

m Configuration in a Production Environment

BigMemory Max Administrator Guide 4.3.10

35

3 Configuring the Terracotta Server Array

About Terracotta Server Configuration

Terracotta XML configuration files set the characteristics and behavior of Terracotta server instances
and Terracotta clients. The easiest way to create your own Terracotta configuration file is by editing
a copy of one of the sample configuration files available with the BigMemory Max kit.

Where you locate the Terracotta configuration file, or how your Terracotta server and client
configurations are loaded, depends on the stage your project is at and on its architecture. This
document covers the following cases:

® Development stage, 1 Terracotta server
m Development stage, 2 Terracotta servers
® Deployment stage

This document discusses cluster configuration in the Terracotta Server Array. To learn more about
the Terracotta server instances, see “Terracotta Server Array Architecture” on page 15.

For a comprehensive and fully annotated configuration file, see config-samples/tc-config-
reference.xml in the Terracotta kit.

How Terracotta Servers Get Configured

To configure the Terracotta server, create a tc-config.xml configuration file, or update the one
that is provided in the config-samples/ directory of the BigMemory Max kit. For example:

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.terracotta.org/schema/terracotta-9.xsd">
<servers>
<server host="localhost" name="My Server Namel'>
<!-- Specify the path where the server should store its data. -->
<data>/local/disk/path/to/terracotta/serverl-data</data>
<!-- Specify the port where the server should listen for client
traffic. -—>
<tsa-port>9510</tsa-port>
<jmx-port>9520</jmx-port>
<tsa-group-port>9530</tsa-group-port>
<management-port>9540</management-port>
<!-- Enable BigMemory on the server. -->
<dataStorage size="800g">
<offheap size="200g"/>
<!-- Hybrid storage is optional. -->
<hybrid/>
</dataStorage>
</server>
<server host="localhost" name="My Server Name2'">
<data>/local/disk/path/to/terracotta/server2-data</data>
<tsa-port>9510</tsa-port>
<jmx-port>9520</jmx-port>
<tsa-group-port>9530</tsa-group-port>
<management-port>9540</management-port>
<dataStorage size="200g">

36 BigMemory Max Administrator Guide 4.3.10

3 Configuring the Terracotta Server Array

<offheap size="200g"/>
</dataStorage>
</server>
<!-- Add the restartable element for Fast Restartability (optional). -->
<restartable enabled="true"/>
</servers>
<clients>
<logs>logs-%i</logs>
</clients>
</tc:tc-config>

To successfully configure a Terracotta Server Array using the Terracotta configuration file, note
the following;:

Two or more servers should be defined in the <servers> section of the Terracotta configuration
file.

<tsa-port> is the port that the Terracotta server listens to for client traffic.

<jmx-port> is the port that the Terracotta server's JMX Connector listens to.

Note:

Listening on the <jmx-port>is deprecated. Alternatively, use the monitoring features provided
by the Terracotta Management Console (see the Terracotta Management Console User Guide)
and the WAN Replication Service (see the WAN Replication User Guide).

<jmx-port> is disabled by default. If you want to enable it, add jmx-enabled="true" in the
<server> elements. For example:

<server host="localhost" name="My Server Namel" jmx-enabled="true">

<tsa-group-port>is the port used by the Terracotta server to communicate with other Terracotta
servers.

<management-port> is the port that the Terracotta Management Console (TMC) uses.

Under <servers>, use either <server> or <mirror-group> configurations, but not a mixture. You
may configure multiple servers or multiple mirror groups. <server> instances under <servers>
work together as a mirror group. To create more than one stripe, use <mirror-group> instances.

Terracotta server instances must not share data directories. Each server's <data> element should
point to a different and preferably local data directory.

For data persistence, configure fast restartability. Enabling <restartable> means that the shared
in-memory data is backed up and, in case of failure, it is automatically restored. Setting
<restartable> to "false" or omitting the <restartable> element are two ways to configure no
persistence.

Each server requires an off-heap store, which allows all data to be stored in-memory, limited
only by the amount of memory in your server. The minimum <offheap> size is 4 GB. Additional
hybrid storage is optional. Specify the <dataStorage> size and the <offheap> size. The <offheap>
size can be set to the amount of memory available in your server for data. If you enable <hybrid>,
then the <dataStorage> size can exceed the <offheap> size.

BigMemory Max Administrator Guide 4.3.10 37

3 Configuring the Terracotta Server Array

m All servers and clients should be running the same version of Terracotta and Java.

Note:
For more information about the Terracotta configuration file, see “Terracotta Configuration
Parameters” on page 107.

Server Startup Behavior

At startup, Terracotta servers load their configuration from one of the following sources:
® A default configuration included with the Terracotta kit

® A local or remote XML file

These sources are explored below.

Default Configuration

If no configuration file is specified and no tc-config.xml exists in the directory in which the
Terracotta instance is started, then default configuration values are used.

Local XML File (Default)

The file tc-config.xml is used by default if it is located in the directory in which a Terracotta
instance is started and no configuration file is explicitly specified.

Local or Remote Configuration File

You can explicitly specify a configuration file by passing the -f option to the script used to start a
Terracotta server. For example, to start a Terracotta server on UNIX/Linux using the provided
script, enter:

start-tc-server.sh -f <path_to_configuration_file>

where <path_to_configuration_file> can be a URL or a relative directory path. In Microsoft Windows,
use start-tc-server.bat.

Note:
Cygwin (on Windows) is not supported for this feature.

Usage note for Terracotta Server Array on Linux

If your Terracotta Server Array operates in a Linux environment and you encounter file descriptor
errors in the BigMemory server log (whose location is specified in your tc-config.xml file) you
need to adjust your ulimit setting.

BigMemory uses the Apache Lucene search engine for indexes, and the number of file descriptors
needed depends on the number of indexes you have created. If you are running on a 64bit processor,
you can safely set the ulimit to unlimited; for older machines Lucene suggests that a limit of 64K
is appropriate.

38 BigMemory Max Administrator Guide 4.3.10

3 Configuring the Terracotta Server Array

How Terracotta Clients Get Configured

At startup, Terracotta clients load their configuration from one of the following sources:
m “Local or Remote XML File” on page 39
m “Terracotta Server” on page 40

® An Ehcache configuration file (using the “<terracottaConfig> element” on page 43) used with
BigMemory Max and BigMemory Go.

® A Quartz properties file (using the org.quartz.jobStore.tcConfigurl property) used with
Quartz Scheduler.

m A Filter (in web.xml) element used with containers and Terracotta Web Sessions.
® The client constructor (TerracottaClient()) used when a client is instantiated programmatically.

Terracotta clients can load customized configuration files to specify <client> and <application>
configuration. However, the <servers> block of every client in a cluster must match the <servers>
block of the servers in the cluster. If there is a mismatch, the client will emit an error and fail to
complete its startup. However, there are options you can set for server settings to override client
settings. For details, see "How Server Settings Can Override Client Settings" in the BigMemory Max
Configuration Guide.

Note:

Error with Matching Configuration Files - On startup, a Terracotta client may emit a
configuration-mismatch error if its <servers> block does not match that of the server it connects
to. However, under certain circumstances, this error may occur even if the <servers> blocks
appear to match.

The following suggestions may help prevent this error:

m Use -Djava.net.preferIPv4Stack consistently. If it is explicitly set on the client, be sure to
explicitly set it on the server.

® Ensure the etc/hosts file does not contain multiple entries for hosts running Terracotta
servers.

® Ensure that DNS always returns the same address for hosts running Terracotta servers.

Local or Remote XML File

See the discussion for local XML file (default) in “How Terracotta Servers Get Configured” on
page 36.

To specify a configuration file for a Terracotta client, see “Clients in Development ” on page 42.

Note:

Fetching Configuration from the Server - On startup, Terracotta clients must fetch certain
configuration properties from a Terracotta server. A client loading its own configuration will
attempt to connect to the Terracotta servers named in that configuration. If none of the servers
named in that configuration are available, the client cannot complete its startup.

BigMemory Max Administrator Guide 4.3.10 39

3 Configuring the Terracotta Server Array

Terracotta Server

Terracotta clients can load configuration from an active Terracotta server by specifying its hostname
and TSA port (see “Clients in Production” on page 43).

Configuration in a Development Environment

In a development environment, using a different configuration file for each Terracotta client
facilitates the testing and tuning of configuration options. This is an efficient and effective way to
gain valuable insight on best practices for clustering your application with Terracotta.

One-Server Setup in Development

For one Terracotta server, the default configuration is adequate.

LEGEND

. Active Network Connection
Development Environment
- - - Configuration Path

Passive Metwork Connection

-
<xmi= Configuration File

L2 Configuration File Used by L2
<X

Lz Terracotta Server

L2

L1 Terracotta Client

To use the default configuration settings, start your Terracotta server using the start-tc-server.sh
(or start-tc-server.bat) script in a directory that does not contain the file tc-config.xmtl:

[PROMPT] S${TERRACOTTA_HOME}\bin\start-tc-server.sh

To specify a configuration file, use one of the approaches discussed in “How Terracotta Servers
Get Configured” on page 36.

40 BigMemory Max Administrator Guide 4.3.10

3 Configuring the Terracotta Server Array

Two-Server Setup in Development

A two-server setup, sometimes referred to as an active-mirror setup, has one active server instance
and one "hot standby" (the mirror) that should load the same configuration file.

Development Environment
(Active-Mirror)

ik n'.xml:rl n'.xml:rl

L1

L1 L1

L2 ACTIVE

The configuration file loaded by the Terracotta servers must define each server separately using
<server> elements. For example:

<tc:tc-config xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-9.xsd"
xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'">

<!-- Use an IP address or a resolvable host name for the host attribute. —-->
<server host="123.456.7.890" name='"Serverl'">

<server host="myResolvableHostName" name="Server2">
</tc:tc-config>

Assuming Serverl is the active server, using the same configuration allows Server2 to be the mirror
and maintain the environment in case of failover. When running both servers on the same host,
the <tsa-port> for each server should be different. The other ports are automatically generated
from the <tsa-port>. Having a separate log location is a good idea, but failing to do so will not
prevent the servers from starting. If the servers are set up to be restartable, setting the data directory
to a different location would be a requirement.

BigMemory Max Administrator Guide 4.3.10 41

3 Configuring the Terracotta Server Array

Server Names for Startup

With multiple <server> elements, the name attribute may be required to avoid ambiguity when
starting a server:

start-tc-server.sh -n Serverl -f <path_to_configuration_file>
In Microsoft Windows, use start-tc-server.bat.

For example, if you are running Terracotta server instances on the same host, you must specify
the name attribute to set an unambiguous target for the script.

However, if you are starting Terracotta server instances in an unambiguous setup, specifying the
server name is optional. For example, if the Terracotta configuration file specifies different IP
addresses for each server, the script assumes that the server with the IP address corresponding to
the local IP address is the target.

Clients in Development

You can explicitly specify a client's Terracotta configuration file by passing
-Dtc.config=path/to/my-tc-config.xml when you start your application with the Terracotta client.

-Dtc.config=path/to/my-tc-config.xml -cp classes myApp.class.Main

where myApp.class.Main is the class used to launch the application you want to cluster with
Terracotta.

If tc-config. xml exists in the directory in which you run Java, it can be loaded without -Dtc.config.

Configuration in a Production Environment

For an efficient production environment, it's recommended that you maintain one Terracotta
configuration file. That file can be loaded by the Terracotta server (or servers) and pushed out to
clients. While this is an optional approach, it's an effective way to centralize and decrease
maintenance.

42 BigMemory Max Administrator Guide 4.3.10

3 Configuring the Terracotta Server Array

Production Environment
[Active-Mirror)

L2 ACTIVE

If your Terracotta configuration file uses "%i" for the hostname attribute in its server element,
change it to the actual hostname in production. For example, if in development you used the
following:

<server host="%i" name="Serverl">

and the production host's hostname is myHostName, then change the host attribute to the
myHostName:

<server host="myHostName" name="Serverl'>

Clients in Production

For clients in production, you can set up the Terracotta environment before launching your
application.

Setting Up the Terracotta Environment

To start your application with the Terracotta client using your own scripts, first set the following
environment variables:

TC_INSTALL_DIR=<path_to_local_Terracotta_home>
TC_CONFIG_PATH=<path/to/tc-config.xml>

or

TC_CONFIG_PATH=<server_host>:<tsa-port>

BigMemory Max Administrator Guide 4.3.10 43

3 Configuring the Terracotta Server Array

where <server_host>: <tsa-port> points to the running Terracotta server. The specified Terracotta
server will push its configuration to the Terracotta client.

Alternatively, a client can specify that its configuration come from a server by setting the tc.config
system property:

-Dtc.config=serverHost:tsaPort

If more than one Terracotta server is available, enter them in a comma-separated list:
TC_CONFIG_PATH=<server_hostl>:<tsa-port>,<server_host2>:<tsa-port>

If <server_host1> is unavailable, <server_host2> is used.

Terracotta Products

Terracotta products can set a configuration path using their own configuration files.

For BigMemory Max and BigMemory Go, use the <terracottaConfig> element in the Ehcache
configuration file (ehcache.xml by default):

<terracottaConfig url="localhost:9510" />

For Quartz, use the org.quartz.jobStore.tcConfigurl property in the Quartz properties file (
quartz.properties by default):

org.quartz.jobStore.tcConfigUrl = /myPath/to/tc-config.xml

For Terracotta Web Sessions, use the appropriate elements in web . xml or context.xml (see the Web
Sessions User Guide).

44 BigMemory Max Administrator Guide 4.3.10

4 Configuring the Terracotta Server Array

B Binding Ports t0 INTEITACEScoovveiiii e e 46

B Which Configuration? ... 46

BigMemory Max Administrator Guide 4.3.10 45

4 Configuring the Terracotta Server Array

Binding Ports to Interfaces

Normally, the ports you specify for a server in the Terracotta configuration are bound to the
interface associated with the host specified for that server. For example, if the server is configured
with the IP address "12.345.678.8" (or a hostname with that address), the server's ports are bound
to that same interface:

<server host="12.345.678.8" name="Serverl">

<tsa-port>9510</tsa-port>

<jmx-port>9520</jmx-port>

<tsa-group-port>9530</tsa-group-port>

<management-port>9540</management-port>
</server>

However, in certain situations it may be necessary to specify a different interface for one or more
of a server's ports. This is done using the bind attribute, which allows you bind a port to a different
interface. For example, a JMX client may only be able connect to a certain interface on a host. The
following configuration shows a JMX port bound to an interface different than the host's:

<server host="12.345.678.8" name="Serverl">

<tsa-port>9510</tsa-port>

<jmx-port bind="12.345.678.9">9520</jmx-port>
<tsa-group-port>9530</tsa-group-port>
<management-port>9540</management-port>
</server>

Which Configuration?

Each server and client must maintain separate log directories. By default, server logs are written
k)%(user.home)/terracotta/server—logsarKiCﬁentlogstoS%(user.home)/terracotta/client—
logs.

To find out which configuration a server or client is using, search its logs for an INFO message
containing the text "Configuration loaded from".

46 BigMemory Max Administrator Guide 4.3.10

5 Automatic Resource Management

m What is Automatic Resource Management?uuuiiiiiiiiiireiiiiis e e e e e e e e eeaaneens 48
L T e V1o 1o o SRS PPUPPRRP 48
B Customizing the EVICHON Srat@gyueeeeiiieiiiiiiiiiiieee e 52

BigMemory Max Administrator Guide 4.3.10 47

5 Automatic Resource Management

What is Automatic Resource Management?

Terracotta Server Array resource management involves self-monitoring and polling to determine
the real-time size of the data set and assess the amount of memory remaining according to
user-configured limitations. In-memory data can be managed from three directions:

1. Time - TTI/TTL settings can be configured to expire entries that will then be evicted by the
new TSA eviction implementation. You can also configure caches so that their entries are
eternal, or you can pin entries or caches so that they are never evicted.

2. Size - The total amount of BigMemory managed by the TSA can be configured using the
dataStorage and offheap elements in the tc-config.xml file.

3. Count - The total number of entries per cache can be configured using the maxEntriesInCache
attribute in the ehcache.xml file.

Eviction

All data is kept in memory, and the TSA runs evictions in the background to keep the data set
within its limitations. Eviction of entries from the data set reduces the amount of data before the
memory becomes full. The criteria for an entry to be eligible for eviction are:

m Itis not on a Terracotta client (L1).
m [tis not pinned to a Terracotta server.

m Itis held in a cache backed by a System of Record (SOR).

Note:

Store vs. Cache - BigMemory's in-memory data is treated as a "store" when BigMemory owns
the data, and as a "cache" when the data also resides in a System of Record (SOR). Generally,
data that is created by BigMemory and run-time data created by your application are examples
of data that is treated as a store. The TSA does not evict data stores because they are the only
or primary records. The TSA can evict cached data because that data is backed up in an SOR.
Distinctions in data structures are handled automatically.

Eviction is done by the following evictors, which work together in the background:

1. The periodic evictor is activated on an as-needed basis. It removes expired entries based on
TTI/TTL settings. The Server Expiration Rate graph in the TMC shows the activity of the
periodic evictor.

48 BigMemory Max Administrator Guide 4.3.10

5 Automatic Resource Management

Explration Rate

o Jog

o

s LS

2. The resource-based evictor is activated by the periodic TTI/TTL eviction scheduler, as well as
by resource monitoring events. This evictor continuously polls BigMemory stores to check
current resource usage. At approximately 10% usage of the disk as well as dataStorage and
offheap sizes (configured in the tc-config.xml file), it starts looking for TTT/TTL-expired elements
to evict. At approximately 80% usage, it evicts live as well as expired elements. If a monitored
resource goes over its critical threshold, this evictor will work continually until the monitored
resource falls below the critical threshold.

This evictor monitors two off-heap thresholds -- used space and reserved space. Resource
eviction is triggered if either the reserved or used space is above its threshold. Once resource
eviction has started, both used and reserved spaces must fall below their respective thresholds
before resource eviction ends.

BigMemory Max Administrator Guide 4.3.10 49

5 Automatic Resource Management

OffHeap Usage
1.2GB -

1GE

0.8GE -

0.4GE -

0.2GH - '
r

0GB
4:06:16 4:08:16 4:10:16 4:42:20 4:16:33
B OffHeap Max B OffHeap Reserved B OffHeap Used

The Oftheap Usage graph in the TMC provides the following information:

m Off-heap Max is the configured offheap size

m Off-heap Reserved represents usage of the space that is reserved for the system
m Off-heap Used represents the amount of off-heap BigMemory that is in use

The Data Storage Usage graph in the TMC shows the configured dataStorage size and the
amount in use. This usage includes off-heap and hybrid storage combined. (BigMemory Hybrid
allows for a mix of a solid-state drive (S5SD) with DRAM-based oftheap storage.)

50 BigMemory Max Administrator Guide 4.3.10

5 Automatic Resource Management

Data Storage Usage
§GB -

4GB
IGE

268 4

1GB r,—

0GB
4:0

4:08:16 4:10:16 4:12:20 4:16:33
B Data Max m Data Used

[=}]
-
[=}]

3. The capacity-based evictor is activated when a cache goes over its maximum count (as
configured with maxEntriesInCache), plus an overshoot count, and it attempts to bring the
size of the cache to the max capacity. The maxEntriesInCache attribute must be present in the
Ehcache configuration (do not include maxEntriesInCache in your configuration if you do not
want the capacity evictor to run). If maxEntriesInCache is not set, it gets the default value 0,
which means that the cache is unbounded and will not undergo capacity eviction (but periodic
and resource evictions are still allowed).

The Server Eviction Rate graph in the TMC shows the activity of the resource and capacity
evictors.

BigMemory Max Administrator Guide 4.3.10 51

5 Automatic Resource Management

Eviction Rate

Customizing the Eviction Strategy

Based upon the three types of evictors, there are three strategies that you can employ for controlling
the size of the TSA's data set:

1. Set the Time To Idle (TTI) or Time to Live (TTL) options for any entry in your data set. After
the time has expired, the periodic evictor will clear the entry.

2. Set the dataStorage and of fheap sizes to control how much BigMemory should be used before
the resource-based evictor is activated.

3. Set the maxEntriesInCache attribute to control when the capacity-based evictor is activated.

52 BigMemory Max Administrator Guide 4.3.10

6 Managing Near-Memory-Full Conditions

m Behavior of the TSA under Near-Memory-Full Conditions

m Restricted Mode Operations

m Recovery

BigMemory Max Administrator Guide 4.3.10

53

6 Managing Near-Memory-Full Conditions

Behavior of the TSA under Near-Memory-Full Conditions

In a near-memory-full condition, where evictions are not happening fast enough to keep the data
set within its BigMemory size limitations, the TSA will put a throttle on operations for a temporary
period while it attempts to automatically recover in the background. If unable to recover, the TSA
will move into "restricted mode" to prevent out-of-memory errors. The Terracotta Management
Console (TMC) uses events to report when the TSA enters restricted mode and allows you to
execute additional recovery measures. See “Monitoring Cluster Events” on page 57.

Summary of TSA behavior in near-memory-full conditions:

m [fusagereachesits critical threshold, T1, then it enters "throttle mode," where writes are slowed
while the TSA attempts to evict eligible cache entries in order to bring memory usage within
the configured range.

m [fusagereachesits halt threshold, T2, then it enters "restricted mode," where writes are blocked,
an exception is thrown, and operator intervention is needed to reduce memory usage.

= When usage falls below T1, then the TSA returns to normal operation.

Throttle mode

Restricted mode

Entered when

Disk, dataStorage , and/or offheap
usage crosses its critical threshold

Disk, dataStorage , and/or offheap
usage crosses its halt threshold

Operator event

"TPS seems really low; marking us as
being throttled'

"We're in restricted mode; waiting a
while and retrying"

Data access

Modifications to in-memory data are
slowed

Modifications to in-memory data are
blocked

Allowed All cache operations still allowed Only gets, removes, and config

operations changes are allowed

Actions Evictions continue automatically in the|Operator intervention required to

background make additional evictions

State of the data |Evictable data is still present No more data present in memory that
can be evicted by the evictor (all caches
are pinned)

Recovery Automatic From the TMC or programmatically,

clear caches and/or remove entries
from a data set

Back to normal

As soon as the background evictions

After user intervention clears space,

operation have time to catch up and reduce the |the TSA will automatically continue
data set to within its limitations with normal operation
54 BigMemory Max Administrator Guide 4.3.10

6 Managing Near-Memory-Full Conditions

Restricted Mode Operations

If the TSA is temporarily under restricted mode, any change to the data set which may result in
increased resource utilization is not allowed, including all put and replace methods. Restricted
mode does allow gets, removes, configuration changes, and other operations.

Recovery

Recovery from throttle mode is automatic, as soon as the background evictions have time to reduce
the data set to within its limitations.

If the TSA enters restricted mode, operator events will be logged in the TMC, and user or
programmatic intervention is necessary. In the TMC, you can initiate actions to manually reduce
the data set. You can also anticipate operator events and use programmatic logic to respond
appropriately.

The following actions are recommended for reducing the data set:
m (lear caches (from the TMC or programmatically)

® Remove entries from data sets programmatically

Note:
Because eviction in restricted mode is resource-driven, changing TTI/TTL or maximum capacity
will not move the TSA out of restricted mode.

To clear caches from the TMC, click the Application Data tab and the Management sub-tab. Each
cache will have a clickable option to Clear Cache. Note that caution should be used when
considering whether to clear a pinned cache.

BigMemory Max Administrator Guide 4.3.10 55

6 Managing Near-Memory-Full Conditions

56 BigMemory Max Administrator Guide 4.3.10

7 Monitoring Cluster Events

T AN o To 10 | O {1 1S3 (= gl =T o £ 58
B Event Types and DefinitioNsScccooiioiiiiiiiiii e 58
BigMemory Max Administrator Guide 4.3.10 57

7 Monitoring Cluster Events

About Cluster Events

Cluster events report topology changes, performance issues, and errors in operations. These events
are logged by both Terracotta server (L2) and client (L1), and can also be viewed in the TMC (see
the Terracotta Management Console User’s Guide).

By default, the L2 stores a maximum of 100 events in memory, and this is the number pulled by
the TMC. To edit that number, use the Terracotta property 12.operator.events.store. To set the
property in the Terracotta configuration file, use:

<tc-properties>

<property name="12.operator.events.store" value="500" />
</tc-properties>

Event Types and Definitions

This section describes the types of events that can be found in logs or viewed in the TMC.
= memory.longgc (Memory Manager)
®m Level: WARN
m Cause: A full garbage collection (GC) longer than the configured threshold has occurred.

m Action: Reduce cache memory footprint in L1 (Terracotta client). Investigate issues with
application logic and garbage creation.

® Notes: The default critical threshold is 8 seconds, but it can be reconfigured in tc.properties
using longgc. threshhold. For information about setting tc.properties, see the “Terracotta
Configuration Parameters” on page 107.

Occurrence of this event could help diagnose certain failures. For details, see "Configuring
the HealthChecker Properties" in the BigMemory Max High-Availability Guide.

m dgc.periodic.started (DGC)
= Level: INFO

m Cause: Periodic distributed garbage collection (DGC), which was explicitly enabled in the
configuration, has started a cleanup cycle.

m Action: If periodic DGC is unneeded, disable it to improve overall cluster performance.

® Notes: Periodic DGC, which is disabled by default, is mostly useful in the absence of
automatic handling of distributed garbage.

m dgc.periodic.finished (DGC)
m Level: INFO

m Cause: Periodic DGC, which was explicitly enabled in the configuration, ended a cleanup
cycle.

58 BigMemory Max Administrator Guide 4.3.10

7 Monitoring Cluster Events

m Action: If periodic DGC is unneeded, disable it to improve overall cluster performance.

m= Notes: Event message reads "DGC][{0}] finished. Begin Count : {1} Collected : {2} Time
Taken : {3} ms Live Objects : {4}".

m dgc.periodic.canceled (DGC)
m Level: INFO

m Cause: Periodic DGC, wPeriodichich was explicitly enabled in the configuration, has been
cancelled due to an interruption (for example, by a failover operation).

® Action: If periodic DGC is unneeded, disable it to improve overall cluster performance.

= Notes: Periodic DGC, which is disabled by default, is mostly useful in the absence of
automatic handling of distributed garbage.

m dgc.inline.cleanup.started (DGC)
= Level: INFO

m Cause: L2 (Terracotta server) is starting up as ACTIVE with existing data, triggering inline
distributed garbage collection (DGC).

m Action: No action necessary.

® Notes: Only seen when a server starts up as ACTIVE upon a recovery, using Fast
Restartability.

m dgc.inline.cleanup.finished (DGC)
® Level: INFO
m Cause: Inline DGC operation completed.
® Action: No action necessary.

= Notes: Event message reads "Inline DGC [{0}] reference cleanup finished. Begin Count :
{1} Collected : {2} Time Taken : {3} ms Live Objects : {4}".

m dgc.inline.cleanup.canceled (DGC)

= Level: INFO

® Cause: Inline DGC operation interrupted.

® Action: Investigate any unusual cluster behavior or other events.

® Notes: Possibly occurs during failover, but other events should indicate real cause.
= topology.node.joined (Cluster Topology)

® Level: INFO

m Cause: Specified node has joined the cluster.

® Action: No action necessary.

BigMemory Max Administrator Guide 4.3.10 59

7 Monitoring Cluster Events

= Notes: None.
= topology.node.left (Cluster Topology)
m Level: WARN
m Cause: Specified node has left the cluster.
m Action: Check why the node has left (for example: long GC, network issues, or issues with
local node resources).
® Notes: None.
= topology.node.state (Cluster Topology)
m Level: INFO
m Cause: L2 changing state (for example, from INITIALIZING to ACTIVE).
® Action: Check to see that the state change is expected.
= Notes: Event message reads "Moved to {0}", where {0} is the new state.
= topology.handshake.reject (Cluster Topology)
= Level: ERROR
m Cause: L1 is unsuccessfully trying to reconnect to cluster, but it has already been expelled.
m Action: If the L1 does not go into a rejoin operation, it must be restarted manually.
m Notes: Event message reads "An {0} client {1} tried to connect to {2} server. Connection
refused!!"
= topology.active.left (Cluster Topology)
= Level: WARN
m Cause: Active server left the cluster.
m Action: Check why the active L2 has left.
= Notes: None.
= topology.mirror.left (Cluster Topology)
m Level: WARN
m Cause: Mirror server left the cluster.
m Action: Check why the mirror L2 has left.
= Notes: None.
= topology.zap.received (Cluster Topology)
= Level: CRITICAL
60 BigMemory Max Administrator Guide 4.3.10

7 Monitoring Cluster Events

Cause: One L2 is trying to cause another L2 to restart ("zap").

Action: Investigate a possible "split brain" situation (a mirror L2 behaves as the ACTIVE)
if the zapped L2 does not obey the restart order.

Notes: A "zap" operation happens only within a mirror group. Event message reads "SPLIT
BRAIN, {0} and {1} are ACTIVE", where {0} and {1} are the two servers vying for the ACTIVE
role.

= topology.zap.accepted (Cluster Topology)

Level: CRITICAL
Cause: The L2 is accepting the order to restart ("zap" order).

Action: Check the state of the zapped L2 to ensure that it restarts as a mirror, or manually
restart it.

Notes: A "zap" order is issued only within a mirror group. Event message reads "{0} has
more clients. Exiting!!", where {0} is the L2 that becomes the ACTIVE.

= topology.db.dirty (Cluster Topology)

Level: WARN
Cause: A mirror L2 is trying to join with data in place.

Action: If the mirror does not automatically restart and wipe its data, its data may need to
be manually wiped and before it is restarted.

Notes: Restarted mirror L2s must wipe their data to resync with the active L2. This is
normally an automatic operation that should not require action. Event message reads
"Started with dirty database. Exiting!! Restart {0}", where {0} is the the mirror that is
automatically restarting.

= topology.config.reloaded (Cluster Topology)

Level: INFO
Cause: Cluster configuration was reloaded.
Action: No action necessary.

Notes: None.

®m dcv2.servermap.eviction (DCV2)

Level: INFO
Cause: Automatic evictions for optimizing Terracotta Server Array operations.
Action: No action necessary.

Notes: Event message reads "DCV2 Eviction - Time taken (msecs)={0}, Number of entries
evicted={1}, Number of segments over threshold={2}, Total Overshoot={3}".

BigMemory Max Administrator Guide 4.3.10 61

7 Monitoring Cluster Events

system.time.different (System Setup)

Level: WARN
Cause: System clocks are not aligned.
Action: Synchronize system clocks.

Notes: The default tolerance is 30 seconds, but it can be reconfigured in tc.properties using
time.sync.threshold. For information about setting tc.properties, see “Terracotta
Configuration Parameters” on page 107.

Note that overly large tolerance can introduce unpredictable errors and behaviors.

resource.capacity.near (Resource)

Level: WARN

Cause: L2 entered throttled mode, which could be a temporary condition (e.g., caused by
bulk-loading) or could indicate insufficient allocation of memory.

Action: See “Managing Near-Memory-Full Conditions” on page 53.

Notes: After emitting this, L2 can emit resource.capacityrestored (return to normal mode)
or resource. fullcapacity (move to restricted mode), based on resource availability. Event
message reads "{0} is nearing capacity limit, performance may be degraded - {1}% usage",
where {0} is the L2 identification and {1} is the % usage of the memory resources allocated
to that L2.

resource.capacity.full (Resource)

Level: ERROR

Cause: L2 entered restricted mode, which could be a temporary condition (e.g., caused by
bulk-loading) or could indicate insufficient allocation of memory.

Action: See “Managing Near-Memory-Full Conditions” on page 53.

Notes: After emitting this, L2 can emit resource.capacityrestored (return to normal mode),
based on resource availability. Event message reads "{0} is at over capacity limit, no further
additive operations will be accepted - {1}% usage", where {0} is the L2 identification and
{1} is the % usage of the memory resources allocated to that L2.

resource.capacity.restored (Resource)

Level: INFO
Cause: L2 returned to normal from throttled or restricted mode.
Action: No action necessary.

Notes: Event message reads "{0} capacity has been restored, performance has returned to
normal - {1}% usage", where {0} is the L2 identification and {1} is the % usage of the memory
resources allocated to that L2.

62

BigMemory Max Administrator Guide 4.3.10

8 Backing Up Live In-Memory Data

m About Live Backup
m Creating a Backup
m The Backup Directory

m Restoring Data from a Backup

BigMemory Max Administrator Guide 4.3.10

63

8 Backing Up Live In-Memory Data

About Live Backup

Backups of the entire data set across all stripes (mirror groups) of the Terracotta Server Array can
be made using the TMC Backup feature. This feature creates a time-stamped backup of each stripe's
data, providing a snapshot of the TSA's in-memory data.

The Backup feature is available when fast restartability (FRS) is enabled for the TSA (<restartable
enabled="true"/> in the tc-config.xml).

Creating a Backup

From the TMC, select the Administration tab and the Backups sub-tab. Click the Make Backup
button to perform a backup. The TMC sends a backup request to all stripes in the cluster.

In order to capture a consistent snapshot of the in-memory data, the backup function creates a
pause in transactions, allowing any unfinished transactions to complete, and then the backup is
written. This allows the backup to be a consistent record of the entries in-memory, as well as search
and other indices.

Note that when backing up a cluster, each stripe is backed up independently and at a slightly
different time than the other stripes.

When complete, a window appears that confirms the backup was taken and provides the
time-stamped file name(s) of the backup.

The Backup Directory

Backups are saved to the default directory data-backup, unless otherwise configured in the
tc-config.xml. Terracotta automatically creates data-backup in the directory containing the Terracotta
server's configuration file (tc-config.xml by default).

You can override the default directory by specifying a different backup directory in the server's
configuration file using the <data-backup> property:

<servers>
<server name="Serverl">
<data>/opt/terracotta/serverl-data</data>
<data-backup>path/to/my/backup/directory</data-backup>
<offheap>
<enabled>true</enabled>
<maxDataSize>2g</maxDataSize>
</offheap>
</server>
<restartable enabled="true"/>
</servers>

Restoring Data from a Backup

If the TSA fails, on restart it automatically restores data from its data directory, recreating the
application state. If the current data files are corrupt or missing, or in other situations where an
earlier snapshot of data is required, you can restore them from backups:

64 BigMemory Max Administrator Guide 4.3.10

8 Backing Up Live In-Memory Data

1. Shut down the Terracotta cluster.
(Optional) Make copies of any existing data files.

Delete the existing data files from your Terracotta servers.

L

Copy the backup data files to the directory from which you deleted the original (existing) data
files.

5. Restart the Terracotta cluster.

BigMemory Max Administrator Guide 4.3.10 65

8 Backing Up Live In-Memory Data

66 BigMemory Max Administrator Guide 4.3.10

9 Clearing Data from a Terracotta Server

B How to Clear Data from a TErraCotla SEIVELovvuiieiiee e e e

BigMemory Max Administrator Guide 4.3.10

67

9 Clearing Data from a Terracotta Server

How to Clear Data from a Terracotta Server

After a Terracotta server is restarted, under certain circumstances it will retain artifacts from
previous runs and its data directory must be manually cleared. These circumstances include
running with Fast Restartability disabled and BigMemory Hybrid enabled. This may also be the
source of errors during "split brain" resolution or during a mirror server restart.

By default, the number of copies of a server's objectdb data that are retained is unlimited. Over
time, and with frequent restarts, these copies may consume a substantial amount of disk space.
You can manually delete these files, which are saved in the server's data directory under /dirty-
objectdb-backup/dirty-objectdb-<timestamp>. You can also set a limit for the number of backups
by adding the following element to the Terracotta configuration file's <tc-properties> block:

<property name="12.nha.dirtydb.rolling" value="<myValue>" />

where <myValue> is an integer.

If you have Fast Restartability disabled and BigMemory Hybrid enabled, you can also automatically
remove the older data before server shutdown by setting the property 12.nha.dirtydb.autoDelete
to “true”. It is important to note that a backup copy will still be made in the configured /dirty-
objectdb-backup folder prior to the most recent "working" data being deleted. This can potentially
consume all available disk space. If you want to disable the creation of backups altogether, you
can set the property 12.nha.dirtydb.backup.enabled to “false”.

68 BigMemory Max Administrator Guide 4.3.10

10 Changing Topology of a Live Cluster

m About Changing the Topology
m Adding a New Server
m Removing an Existing Server

m Editing the Configuration of an Existing Server

BigMemory Max Administrator Guide 4.3.10

69

10 Changing Topology of a Live Cluster

About Changing the Topology

Using the TMC, you can change the topology of a live cluster by reloading an edited Terracotta
configuration file.

Note the following restrictions:

® Only the removal or addition of <server>blocks in the <servers> or <mirror-group> section of
the Terracotta configuration file are allowed.

m All servers and clients must load the same configuration file to avoid topology conflicts.

Servers that are part of the same server array but do not share the edited configuration file must
have their configuration file edited and reloaded as shown below. Clients that do not load their
configuration from the servers must have their configuration files edited to exactly match that of
the servers.

Note:

Changing the topology of a live cluster will not affect the distribution of data that is already
loaded in the TSA. For example, if you added a stripe to a live cluster, the data in the server
array would not be redistributed to utilize it. Instead, the new stripe could be used for adding
new caches, while the original servers would continue to manage the old caches. Any new data
added to the old caches will use the original servers.

Adding a New Server

To add a new server to a Terracotta cluster, follow these steps:

1. Add anew <server>block to the <servers> or <mirror-group> section in the Terracotta
configuration file being used by the cluster. The new <server> block should contain the
minimum information required to configure a new server. It should appear similar to the
following, with your own values substituted:

<server host="myHost" name="server2" >
<data>%(user.home) /terracotta/server2/server-data</data>
<logs>%(user.home) /terracotta/server2/server-logs</logs>
<tsa-port>9510</tsa-port>
<management-port>9540</management-port>

</server>

2. Make sure you are connected to the TMC, and that the TMC is connected to the target cluster.
See the Terracotta Management Console User Guide for more information on using the TMC.

3. With the target cluster selected in the TMC, click the Administration tab, then choose the
panel.

4. Click Reload. A message appears with the result of the reload operation. A successful operation
logs a message similar to the following:
2013-03-14 13:25:44,821 INFO - Successfully overridden server topology
from file at '/bigmemory-max-4/tc-config.xml'.

5. Start the new server.

70 BigMemory Max Administrator Guide 4.3.10

10 Changing Topology of a Live Cluster

Removing an Existing Server

To remove a server from a Terracotta cluster configuration, follow these steps:

1. Shut down the server you want to remove from the cluster. If you shutting down an active
server, first ensure that a backup server is online to enable failover.

2. Delete the <server>block associated with the removed server from the Terracotta configuration
file being used by the cluster. Make sure you are connected to the TMC, and that the TMC is
connected to the target cluster. See the Terracotta Management Console User’s Guide for more
information on using the TMC.

3. With the target cluster selected in the TMC, click the Administration tab, then choose the
Change Topology panel.

4. Click Reload. A message appears with the result of the reload operation. A successful operation
logs a message similar to the following:

2013-03-14 13:25:44,821 INFO - Successfully overridden server topology
from file at '/bigmemory-max-4/tc-config.xml'.

The TMC will also display the event

Server topology reloaded from file at '/bigmemory-max-4/tc-config.xml'.

Editing the Configuration of an Existing Server

If you edit the configuration of an existing ("live") server and attempt to reload its configuration,
the reload operation will fail. However, you can successfully edit an existing server's configuration
by following these steps:

1. Remove the server by following the steps in “Removing an Existing Server ” on page 71.
Instead of deleting the server's <server> block, you can comment it out.

2. Edit the server's <server> block with the changed values.
3. Add (or uncomment) the edited <server> block.

4. Inthe TMC's Change Server Topology panel, click Reload. A message appears with the
result of the reload operation.

Note:

To be able to edit the configuration of an existing server, all clients must load their configuration
from the Terracotta Server Array. Clients that load configuration from another source will fail
to remain connected to the TSA due to a configuration mismatch.

BigMemory Max Administrator Guide 4.3.10 71

10 Changing Topology of a Live Cluster

72

BigMemory Max Administrator Guide 4.3.10

11 Enabling Production Mode

m Setting the Production Mode Propertyccieiieeiiiiiiiiiiii e e e eeaaeeans

BigMemory Max Administrator Guide 4.3.10

73

11 Enabling Production Mode

Setting the Production Mode Property

Production mode can be set by setting the Terracotta property in the Terracotta configuration:

<tc-properties>

<property name="12.enable. legacy.production.mode" value="true" />
</tc-properties>

Production mode requires the --force flag to be used with the stop-tc-server script if the target is
an active server with no mirror.

74 BigMemory Max Administrator Guide 4.3.10

12 Managing Distributed Garbage Collection

m About Distributed Garbage Collection (DGC)

m Running the Periodic Distributed Garbage Collection

m Monitoring and Troubleshooting DGC

BigMemory Max Administrator Guide 4.3.10

75

12 Managing Distributed Garbage Collection

About Distributed Garbage Collection (DGC)

There are two types of DGC: periodic and inline. The periodic DGC is configurable and can be
run manually (see below). Inline DGC, which is an automatic garbage-collection process intended
to maintain the server's memory, runs even if the periodic DGC is disabled.

Note that the inline DGC algorithm operates at intervals optimal to maximizing performance, and
so does not necessarily collect distributed garbage immediately.

Running the Periodic Distributed Garbage Collection

The periodic DGC can be run in any of the following ways:
® run-dgc shell script - Call the run-dgc shell script to trigger DGC externally.
m JMX- Trigger DGC through the server's JMX management interface.

By default, DGC s disabled in the Terracotta configuration file in the <garbage-collection> section.
However, even if disabled, it will run automatically under certain circumstances when clearing
garbage is necessary but the inline DGC does not run (such as when a crashed server returns to
the cluster).

Monitoring and Troubleshooting DGC

DGC events (both periodic and inline) are reported in a Terracotta server instance's logs. DGC
events can also be monitored using the Terracotta Management Console.

If DGC does not seem to be collecting objects at the expected rate, one of the following issues may
be the cause:

m Java GCisnot able to collect objects fast enough. Client nodes may be under resource pressure,
causing GC collection to run behind, which then causes DGC to run behind.

= Certain client nodes continue to hold references to objects that have become garbage on other
nodes, thus preventing DGC from being able to collect those objects.

If possible, shut down all Terracotta clients to see if DGC then collects the objects that were expected
to be collected.

76 BigMemory Max Administrator Guide 4.3.10

13 Starting the Terracotta Server as a Windows

Service
m Configuring the Terracotta Server to RUN @S @ SEIVICEuvvciviiieeiiieeiiiiiiie e ee e 78
BigMemory Max Administrator Guide 4.3.10 77

13 Starting the Terracotta Server as a Windows Service

Configuring the Terracotta Server to Run as a Service

A Windows service supports scheduling and automatic start and restart. You might want to run
the Terracotta Server Array, which is a Java application, as a Windows service. If so, use the Service
Wrapper located inside the kit at $installdir/server/wrapper (or, for 3.7, $installdir/wrapper).

Note:

When using the wrapper for setups with more than one server per stripe (e.g., including mirror
node), ensure that the following property is entered in the wrapper config:
"wrapper.disable_restarts.automatic=TRUE".

Set JAVA_HOME

To start the service, set your JAVA_HOME in conf/wrapper-tsa.conf. For example:

set.JAVA_HOME=C:/Java/jdkl.7.0_21

The wrapper does not read your JAVA_HOME from the environment. For Windows, if you do not
want to set it in the configuration file, comment it out and set JAVA_HOME in the registry instead.

Configuration Files

For the TSA, you need the conf/tc-config.xml configuration file. Overwrite this file with your own.
If you want to change the file name, modify the name in the wrapper configurations.

Modify the TSA conf/wrapper-tsa.conf file to match the server name in your tc-config.xml:

set.SERVER_NAME=server0

where server(represents the name of the server you want to start.

Set Permissions

The services are controlled by an Administrator user, so you have to confirm for every action,
such as install, start, stop, remove.

In addition, the Administrator user needs to have read/write permission for the "wrapper" directory.

Install and Start the Service
The wrapper service is located at $installdir/server/wrapper.
To install the service wrapper, run the script with the install parameter:

%> bin/tsa-service.bat install

Then you can either start/stop the service:

%> bin/tsa-service.bat start
%> bin/tsa-service.bat stop

78 BigMemory Max Administrator Guide 4.3.10

13 Starting the Terracotta Server as a Windows Service

If you want to remove the service:

%> bin/tsa-service.bat remove

There are more commands available when you run the script without any parameter:

%> bin/tsa-service.bat

Changing Wrapper Configuration

There are comments in wrapper-tsa.conf to explain each parameter. If you need to modify JVM
system properties, classpath, or command line parameters, follow the current pattern. Pay close
attention to their numerical order and parameter counts.

For more information, see http://wrapper.tanukisoftware.com/doc/english/properties.html.

BigMemory Max Administrator Guide 4.3.10 79

http://wrapper.tanukisoftware.com/doc/english/properties.html

13 Starting the Terracotta Server as a Windows Service

80

BigMemory Max Administrator Guide 4.3.10

14 Using BigMemory Hybrid

B About BIgMemory HYDIIA ..o 82
B System ReQUIFEMENTS ..o 83
B Hardware Capacity GUIAEIINESooviiiiiiiiiiiiiiii e 84
B Configuring BIgMemory HYDIIA ..o 84
m Using the TMC with BigMemory Hybrid ... 85
I @ T 01T = 1 (0] AV = o | (P 86

BigMemory Max Administrator Guide 4.3.10 81

14 Using BigMemory Hybrid

About BigMemory Hybrid

BigMemory Hybrid is an optional extension to BigMemory Max that:

Enables scaling up to economical solid-state drive (SSD) flash memory motionless "disks" in
conjunction with conventional dynamic random-access memory (DRAM) memory. This means
that the cache size can exceed the available off-heap memory.

Provides predictable low latency at very large scale.

Manages the data flow seamlessly and automatically from DRAM to flash "disk" according to
the size of the cache.

Performs much faster than conventional hard disks, although not quite as fast as a pure DRAM
in-memory solution.

Supports searching, Fast Restart backup and recovery, Web Sessions, Quartz, and WAN
replication.

Works with industry-standard SSD devices from popular vendors, such as Fusion IO and Intel
SSD.

How it works

For use in Terracotta servers, when using BigMemory Hybrid, all data is stored in SSD/Flash
drives. The keys are stored in off-heap memory, providing optimal performance when using
Hybrid (though there is an option to store cache keys on disk, but this comes with a performance
penalty and is not recommended).

Figure 1. BigMemory Hybrid allows you to expand BigMemory in Terracotta servers,
keeping more data closer to your application for increased transactions per second
(TPS).

82

BigMemory Max Administrator Guide 4.3.10

14 Using BigMemory Hybrid

BigMemory Hybrid
Speed (TPS) Size (GB)
BigMemory
(DRAM)
2,000,000+ 2
1,000,000 1,000
100,000 10,000+

External Data Source
1,000s (e.g., Database)

How is BigMemory Hybrid different than Overflow to Disk?

BigMemory Hybrid Overflow to Disk

Available in version 4.1 Available in version 3.7

Leverages BigMemory's Fast Restart technology | Depends upon Berkeley DB to store data on disk

Manages all data in SSD/Flash for predictable |If data does not fit in off-heap, it is pushed to
performance. Only the cache keys are stored in |disk, hence performance is less predictable
off-heap memory.

Optimized for SSD usage No optimization done for SSDs

System Requirements

BigMemory Hybrid supports writing to one single mount, so all of the BigMemory Hybrid capacity
must be presented to the Terracotta process as one continuous region, which can be a single device
or a RAID.

The mount should be used exclusively for the Terracotta server process. The software was designed
for usage on local drives (SSD/Flash in particular) - SAN/NAS storage is not recommended. If you
utilize SAN/NAS storage you will experience notably reduced and inconsistent performance - any
support requests related to performance or stability on such deployments will require the user to
reproduce the issue with local disks.

Note:

BigMemory Max Administrator Guide 4.3.10 83

14 Using BigMemory Hybrid

System utilization is higher when using BigMemory Hybrid, and it is not recommended to run
multiple servers on the same machine. Doing so could result in health checkers timing out, and
killing or restarting servers. Therefore, it is important to provision sufficient hardware, and it
is highly recommended to deploy servers on different machines.

Hardware Capacity Guidelines

To account for the overhead necessary for consistent performance, the formulas below are suggested
asinitial starting points for sizing the amount of space allocated for BigMemory Hybrid operation.

Minimum SSD flash memory requirement = planned total data size * 3.2

Minimum DRAM requirement = planned maximum number of elements * (168 + key size)

Note:
It is strongly recommended to configure enough offheap to accommodate all cache keys in
DRAM.

Configuring BigMemory Hybrid

To configure BigMemory Hybrid, include the following elements in the tc-config.xml file:

m dataStorage - Specifies the maximum amount of data you plan to store on the server, using
either DRAM alone or both DRAM and SSD flash memory.

m offheap - Specifies the maximum amount of data to hold in DRAM.
® hybrid - Enables the Hybrid option to use SSD flash memory in addition to off-heap DRAM.

For example:

<servers>
<server host="hostname" name="serverl">

<dataStorage size='"800g">
<offheap size="200g"/>
<hybrid/>
</dataStorage>
</server>
</servers>

The minimum <offheap> required for non-hybrid deployments, distributed caching and other
applications is 4GB to be configured for each server.

The minimum <offheap> required for webMethods clustering in hybrid mode is 2GB. In case there
are any custom caches created on the same Terracotta Server Array, then 4GB becomes the minimum
requirement.

If the hybrid element is present, then the BigMemory Hybrid functionality is enabled. With Hybrid
enabled, the value of the size attribute for the dataStorage element can exceed that of the size
attribute for the offheap element. This enables SSD devices to supplement the DRAM and be many
times larger than the DRAM.

84 BigMemory Max Administrator Guide 4.3.10

14 Using BigMemory Hybrid

If the hybrid element is absent, then BigMemory Hybrid functionality is off. With Hybrid off, the
value of the size attribute for the dataStorage element must be less than or equal to the value of
the size attribute for the of fheap element. In this case, the of fheap element is not required.

If the dataStorage element is absent, dataStorage size and of fheap size default to 512 MB.

Although the dataStorage element is optional, if included, this element must have a value assigned
to its size attribute.

Note:

If you are migrating from BigMemory Max 4.0 to 4.1, the dataStorage element has replaced the
maxDataSize element. The old element is still compatible for pure DRAM operation, but to enable
Hybrid mode, you must use the new 4.1-compatible dataStorage element with the hybrid tag.

Disk Storage Path

BigMemory Hybrid requires a unique and explicitly specified path. The default path is the Terracotta
server's home directory. You can customize the path using the <data> element in the server's tc-
config.xml configuration file.

BigMemory Hybrid and Fast Restartability

If Fast Restartabillity is enabled, then if you have a restart, data will be loaded into BigMemory
Hybrid in the same way as for BigMemory, with no difference in behavior or time required to get
the system running again. See “Fast Restartability” on page 17.

If Fast Restartabillity is not enabled, then on restart, you will have some artifacts from the previous
run left on disk, and you may want to remove them. For more information, see “Clearing Data
from a Terracotta Server” on page 67.

Using the TMC with BigMemory Hybrid

When you use the Terracotta Management Console (TMC), you can see the effect of the BigMemory
Hybrid feature in the Monitoring > Runtime Stats panel as "Data Storage Usage". When the cache
is operating at a steady state, the Data Used typically exceeds the OffHeap Max shown in the
"OffHeap Usage" graph:

BigMemory Max Administrator Guide 4.3.10 85

14 Using BigMemory Hybrid

Application Data Monitaring Administration Troubleshooting WAN
Runtime Stats Evant

Sedect View: All Aciive Sarvers

Live Object Count Eviction Rate Expiration Rate
— 12 1
w8
1 1
oe
E
os
fd
o 0z
0
BEEM 532 78 TOEAE BEEE EEAN TTET i BELH] 703 TR
Fead \Write Operation Rate Data Storage Usaga OffHeap Usage
1208 0,808
= ‘ 158 s.508
| ocece §4GE
. | |
||| || LEOE %
| | A ||I |
| [[| | B]
- 1. | b~ a1 T |
11\ My 4~ UM
IR Y Il | 0208 a8
MIARIEE IR
o {1 - 1 5 | i h 0GR]
BEE1E BRI TONM 7oz BER 14 P THM TATAR 5314 P T TOTAR
H Reads @ Wries B Daia Max B Data Used B CffHeap Max @ OffHeap Reserved @ Offteap Used

Operator Events

BigMemory Hybrid supports the existing operator events in the Terracotta Server Array (TSA),
including

® a Throttle Mode when the amount of either RAM, Flash, or both is approaching its capacity
limit. See “Managing Near-Memory-Full Conditions” on page 53.

® a Restricted Mode when the system has entered read-only mode.

For more information, see “Managing Near-Memory-Full Conditions” on page 53.

86 BigMemory Max Administrator Guide 4.3.10

15 Logging

B SLFJLogQging .ccooooeeeevveviiiiinn.

B Recommended Logging Levels

BigMemory Max Administrator Guide 4.3.10

87

15 Logging

SLFJ Logging

BigMemory Max uses the SLF4] logging facade, so you can plug in your own logging framework.
The following information pertains to Ehcache logging. For information about SLF4] in general,
refer to the SLF4] website.

With SLF4]J, users must choose a concrete logging implementation at deploy time. The options
include Maven and the download kit.

Note:

In respect of considerations concerning EU General Data Protection Regulation (GDPR), be
aware that in cases of incorrect login procedure or other error scenarios, LDAP username and
IP address may be logged in the tmc-security log file. Amongst other events, such data may be
collected for reasons of configuring messages based on such logs. LOG4J offers possibilities for
log-purging and log-retention, which may offer useful strategies to avoid unwanted loss or
exposure of sensitive data possibly conflicting with regulations.

Concrete Logging Implementation use in Maven

The maven dependency declarations are reproduced here for convenience. Add one of these to
your Maven POM.

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-jdkl4</artifactId>
<version>1.5.8</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4jl2</artifactId>
<version>1.5.8</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupld>
<artifactId>slf4j-simple</artifactId>
<version>1.5.8</version>
</dependency>

Concrete Logging Implementation use in the Download Kit

The slf4j-api jar is in the kit along with the BigMemory Max jars so that, if the app does not already
use SLF4], you have everything you need. Additional concrete logging implementations can be
downloaded from SLF4] website.

Recommended Logging Levels

BigMemory Max seeks to trade off informing production-support developers of important messages
and cluttering the log. ERROR messages should not occur in normal production and indicate that
action should be taken.

88 BigMemory Max Administrator Guide 4.3.10

http://www.slf4j.org
http://www.slf4j.org

15 Logging

WARN messages generally indicate a configuration change should be made or an unusual event
has occurred. DEBUG and TRACE messages are for development use. All DEBUG level statements
are surrounded with a guard so that no performance cost is incurred unless the logging level is
set. Setting the logging level to DEBUG should provide more information on the source of any

problems. Many logging systems enable a logging level change to be made without restarting the
application.

BigMemory Max Administrator Guide 4.3.10 89

15 Logging

90

BigMemory Max Administrator Guide 4.3.10

16 Using Command Central to Manage Terracotta

m Monitoring Terracotta BigMemory Max from Command Centralcccccceeeivieevennnnns 92
B Troubleshooting a Secure Terracotta Server from Command Centralcc..ccooee.. 95
B Commands that TErracotta SUPPOITSuuuuuuriuriiieiiiiiiiieiiriiariiaeiaaraenreanr e 96
m Configuration Types that Terracotta SUPPOILS ..ccceveeeeieee i 97
B Lifecycle ACtiONS fOr TEITACOTAuuviiiieeiiiiiiiiii e 97
m Run-time Monitoring Statuses for Terracottaccovvivieiiiiiiee 98
B Run-time Monitoring States for Terracottacceeiiiiieiiiieiiiiien e e 98

BigMemory Max Administrator Guide 4.3.10 91

16 Using Command Central to Manage Terracotta

Monitoring Terracotta BigMemory Max from Command Central

Monitoring a Single Terracotta Server from Command Central

To show the status of a Terracotta Server, the Terracotta Server name must be entered into the
tc-config.xml file of Command Central (Terracotta Server Instance page > Configuration tab).
By default the tc-config.xmlis configured to your machine host name and therefore can't address
the Terracotta Server.

1. Add the tc-config.xml to <installDir>\Terracotta\server\wrapper\conf\.

2. Update the server name in the
<installDir>\Terracotta\server\wrapper\conf\custom_wrapper.conf for parameter.6 and
parameter .13.

3. Use the scripts

<installDir>\Terracotta\server\wrapper\bin\startup.bat to start the Terracotta Server
and ...

<installDir>\Terracotta\server\wrapper\bin\shutdown.bat for stopping the server.
The Command Central configuration for the Terracotta Server instance must be set as follows:
1. Login to Command Central and navigate to Terracotta Server instance page.
2. Select the Configuration tab of the Terracotta instance.
3. Select the tc-config and then click on TC-config.
4. Select the Edit button and replace the content with the server's tc-config.xml file content
or
Update the tc-config with the desired configuration.
Save these settings.
Choose the Terracotta Server's name in the dropdown.

Click the default Server name.

® N o O

Update the name to the name of the Terracotta Server as per tc-config.xml file and Save this
server name.

9. Start the Terracotta Server in case it is not yet started.

10. Select the Overview tab and click Refresh to display the Terracotta Server's running status.

Monitoring Multiple Terracotta Servers from Command Central

If the scenario consists of several Terracotta Servers then each Server requires a different installation
with the same tc-config.xml added to <installDir>\Terracotta\server\wrapper\conf\.

92 BigMemory Max Administrator Guide 4.3.10

16 Using Command Central to Manage Terracotta

1. Update the server's names in

<installDir>\Terracotta\server\wrapper\conf\custom_wrapper.conf for parameters .6 and
parameters .13.

2. Disable the auto-restart feature of the wrapper.

Note:

The auto-restart feature of the wrapper must be disabled to avoid interfering with any
fail-over or recovery behavior of the Terracotta Cluster.

Edit
<SAG>/Terracotta/server/wrapper/conf/custom_wrapper.conf
and set the following property ...
wrapper.disable_restarts.automatic=TRUE.

3. Use the following scripts to start and to stop the Servers:
<installDir>\Terracotta\server\wrapper\bin\startup.bat
<installDir>\Terracotta\server\wrapper\bin\shutdown.bat

Next Step is to add another Terracotta Server into the same Command Central:

1. In Command Central Home > Installations > All

Choose + to add a Terracotta installation.
2. Enter the host name and select whatever fits best:

Platform Manager is already installed or Install Platform Manager remotely.

3. Enter the SPM port number, username, password.

Note:
To find out the SPM Port Number open the file

<SAG>\profiles\SPM\configuration\com.softwareag.platform.config.propsloader.

As an example
\com.softwareag.catalina.connector.http.pid-8312.properties
means that 8312 is the http port for SPM.

4. Enter a Display Name of your choice and choose Finish.

To finish the set-up you need to configure Command Central for the Terracotta instances as follows:

1. Login to Command Central and navigate to Terracotta Server instance page.

BigMemory Max Administrator Guide 4.3.10 93

16 Using Command Central to Manage Terracotta

® N o O

9.

Select the Configuration tab of the Terracotta instance.

Select the tc-config and then click on TC-config.

Select the Edit button and replace the content with the server's tc-config.xml file content
or

Update the tc-config with the desired configuration.

Save these settings.

Choose the Terracotta Server's name in the dropdown menu.

Click the default Server name.

Update the name to the name of the Terracotta Server as per tc-config.xml file and Save this
server name.

Start the Terracotta Server in case it is not yet started.

10. Select the Overview tab and click Refresh to display the Terracotta Server's running status.

Monitoring a Secure Terracotta Server from Command Central

To monitor an SSL enabled Terracotta Server from Command Central follow these steps:

1.

Allow the SPM plugin to trust the outbound connection to the secure Terracotta server. To do
that, you need to import the server’s certificate to the SPM’s JVM’s cacerts file present at
<installDir>/jvm/jvm/jre/lib/security/cacerts. Import the certificate with the java keytool
command:

Keytool -import -alias <server-alias> -file <server-cert-file>
-keystore <cacerts-file>

or
Try the open source graphic tool KeyStore Explorer at https://keystore-explorer.org/.
Restart SPM for the changes to take effect.

Provide a truststore location for the Terracotta server. This enables the server to become part
of one cluster and allows the secured TMC to connect to it. To do that:

® Login to Command Central and navigate to the Terracotta server instance page.

m Click on the Configuration tab and select the Truststore Location option from the
dropdown menu.

m Select a Truststore Location under Name column.
® Click the Edit button and provide the path of server’s truststore location.
® Save the changes and restart the server.

or

94

BigMemory Max Administrator Guide 4.3.10

https://keystore-explorer.org/

16 Using Command Central to Manage Terracotta

Update the property present in the
<installDir>/Terracotta/server/wrapper/conf/custom_wrapper.conf file:

wrapper.java.additional.9=-Djavax.net.ssl.truststore="path_to_truststore”

where path_to_truststore is a valid path to the server's trustore location.

4. Similar steps can be followed for other servers in a secured cluster.

Troubleshooting a Secure Terracotta Server from Command
Central

In case SPM is unable to connect to a secured Terracotta server refer to the Terracotta SPM logs
presentin <installDir>/profiles/SPM/logs. Below are some errors and scenarios you may see in
the logs.

Unable to Find a Valid Certification Path to Requested Target

MonitoringImpl Checking server state failed
javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: PKIX path building failed:
sun.security.provider.certpath.SunCertPathBuilderException:

unable to find valid certification path to requested target

This indicates the SPM’s cacerts file doesn’t have a valid server’s certificate.

No subject alternative names present

MonitoringImpl Checking server state failed javax.net.ssl.SSLHandshakeException:
java.security.cert.CertificateException: No subject alternative names present

SPM uses a bind attribute of management-port which has a default value of 0.0.0.0 (e.g.
https://0.0.0.0:9540/tc—management—api/v2/agents/statistics/servers;names:stripe—A.O)

This exception indicates that the server certificate identity is checked against the bind attribute IP
address, but it is not present in the certificate. This can be solved by adding Subject Alternate
Name (SAN) at the time of creating certificate:

keytool -keystore <server-keystore> -alias <server-alias>
-genkey -keyalg RSA -ext "SAN=IP:0.0.0.0"

To change the bind attribute of a management port, refer to “Binding Ports to Interfaces” on
page 46 in the BigMemory Max Administrator Guide.

Two Active Servers

An entry similar to the following might appear in the server log:

2013-05-17 12:10:24,805 [L2_L2:TCWorkerComm # 1_W]
ERROR com.tc.net.core.TCConnection - SSL handshake error:
unable to find valid certification path to requested target, closing connection.

BigMemory Max Administrator Guide 4.3.10 95

16 Using Command Central to Manage Terracotta

If you start secured servers from SPM (for example a 2 server stripe), but they don’t assert an
active-mirror status, refer to section Two Active Servers in Troubleshooting part of the BigMemory
Max Security Guide.

For debugging purposes, in each of the Terracotta servers' custom_wrapper.conf file (located in
<insta11Dir>/Terracotta/server/wrapper/conf))Knlcarlassign:

wrapper.java.additional.9=-Djavax.net.ssl.trustStore=""
wrapper.java.additional.10=-Dtc.ssl.trustAllCerts=true

Note:
This makes the Terracotta server trust all the incoming HTTPS connections, which is significantly
less secure than having properly authorized certs.

TMC not able to connect to secured cluster after starting servers from SPM

This can happen if server's truststore is missing its TMC's certificate. Check the TMC logs for more
details. You can debug this issue by following the suggested steps from the previous section.

For more information on troubleshooting secure servers, check Troubleshooting in the BigMemory
Max Security Guide.

Commands that Terracotta Supports

Terracotta supports the Command Central CLI (command line interface) commands listed in the
following table. In cases where there is Terracotta-specific information, the table lists where you
can learn more about arguments and options that Terracotta supports or details about the actions
Terracotta takes when you execute an exec command.

CLI Commands Additional Information

sagcc get configuration data For Terracotta-specific information about configuration
types, see “Configuration Types that Terracotta
Supports” on page 97.

sagcc get configuration [dinstances

sagcc list configuration tdinstances

sagcc get configuration types

sagcc list configuration types

sagcc get diagnostic logs

sagcc get monitoring

sagcc get inventory components

sagcc list inventory components

96 BigMemory Max Administrator Guide 4.3.10

16 Using Command Central to Manage Terracotta

CLI Commands Additional Information

sagcc exec lifecycle For Terracotta-specific information about using this
command, see “Lifecycle Actions for Terracotta” on
page 97.

For information about Command Central CLI commands, see the Command Central Help.

Configuration Types that Terracotta Supports

The Terracotta run-time component supports creating instances of the configuration types listed
in the following table.

Configuration Type Use to...

COMMON-CLUSTER View the configuration for a cluster.

COMMON-MEMORY Configure the JVM memory settings.

COMMON-PORTS View the custom port configuration for a Terracotta
Server Array instance.

TC-CONFIG Configure the tc-config.xml file.

TC-SERVER-SERVER Assign a server name to a Terracotta Server Array

instance that matches the server name in the
tc-config.xml file.

Lifecycle Actions for Terracotta

The following table lists the actions that Terracotta supports with the sagcc exec lifecycle
command and the operation taken against Terracotta when an action is executed.

Important:
You must execute all lifecycle operations in the correct order to ensure safe startup, shutdown,
and restart for Terracotta Server Array cluster instances.

Action Description

Start Start a server instance that has stopped.
Stop Stop a running server instance.

Restart Restart a running server instance.

BigMemory Max Administrator Guide 4.3.10 97

16 Using Command Central to Manage Terracotta

Run-time Monitoring Statuses for Terracotta

The following table lists the run-time statuses that the Terracotta run-time component can return
in response to the sagcc get monitoring runtimestatus and sagcc get monitoring state
commands, along with the meaning of each run-time status.

Run-time Status Meaning

STOPPED The server is not running.

ONLINE_MASTER The server is running and is the master in its stripe.
ONLINE_SLAVE The server is running and is a slave (mirror) in its stripe.
FAILED The server was running, but crashed. A possible reason for this

failure is that the server did not find the correct license.

UNRESPONSIVE The server is running, but is not responding on the specified ports.
A possible reason for this failure is that the server did not find the
correct license.

Run-time Monitoring States for Terracotta

Inresponse to the sagcc get monitoring runtimestate and sagcc get monitoring state commands,
the Terracotta run-time component provides information about the following key performance
indicators (KPIs):

KPI Description

Live Object Count The number of live objects in the cache.
Oftheap The off-heap storage capacity for the cache.
Write Operations Rate The rate of write operations for the cache.

The KPIs apply to the whole Terracotta Server Array cluster.

98 BigMemory Max Administrator Guide 4.3.10

A Operational Scripts

B Archive Utility (@rchiVe-tOO0l)ccooviiiiiiiii e e e e e eaneeas 100
B Database Backup Utility (backup-data)ccoeeiiieiiiii e 100
B Backup Status (Dackup-Status)ccoooiiiiiiiiiiee e 101
m Cluster Thread and State Dumps (debug-tool, cluster-dump)cccccvviviieeiniiiiiinne. 101
B Exit Safe Mode (EXIT-SAfE-MOUE)ccoiiiiiiiiiiiiie e 102
m Distributed Garbage Collector (FUN-AgC)uuuuummmmiiiniiiiieeeeeeeeeeeeeeeeeeenees 102
m Start and Stop Server Scripts (start-tc-server, Stop-tC-SErver)ccccvvvviiiieniieeeeeeennnns 103
B Server StatusS (SEIVEI-STAL)cciiiiiiiiiii e e aaa b aneanseanaennrennee 105
B Version ULty (VEISION)uuuuueeeiiiiieiiiiiiiisiteiiessesessesessessssssees 106

BigMemory Max Administrator Guide 4.3.10 99

A Operational Scripts

Archive Utility (archive-tool)

The archive-tool is used to gather logs generated by a Terracotta server or client for the purpose
of contacting Terracotta with a support query.

For Microsoft Windows:

[PROMPT] %BIGMEMORY_HOME%\server\bin\archive-tool.bat <args>

For UNIX/Linux:
[PROMPT] ${BIGMEMORY_HOME}/server/bin/archive-tool.sh <args>

where <args> are:

® [-n] (No Data - excludes data files)

m [-c] (Client - include files from the client)
® [path to terracotta config xml file (tc-config.xml) or path to logs directory
® [output filename in .zip format]

Database Backup Utility (backup-data)

The backup utility creates a backup of the data being shared by your application by taking a
snapshot of the data held by the Terracotta Server Array (TSA). Unless a different directory is
specified in configuration, backups are saved to the default directory
${user.dir}/terracotta/backups

Configuring Backup

You can override this default behavior by specifying a different backup directory in the server's
configuration file using the <data-backup> property:

<servers>
<restartable enabled="true"/>

<server host="%i" name="myServer">

<data-backup>/Users/myBackups</data-backup>
</server>

</servers>

Note that enabling <restartable> mode is required for using the backup utility.

Creating a Backup

The backup utility relies on the Terracotta Management Server (TMS) to locate and execute backups.
The TMS must be running and connected to the TSA for the backup to take place. For more
information about connecting the Terracotta Management Server to the TSA, see the Terracotta
Management Console User Guide.

100 BigMemory Max Administrator Guide 4.3.10

A Operational Scripts

For Microsoft Windows:

[PROMPT] %BIGMEMORY_HOME%\tools\management-console\bin\backup-data.bat <args>

For UNIX/Linux:
[PROMPT] ${BIGMEMORY_HOME}/tools/management-console/bin/backup-data.sh <args>

where <args> are:

® [I] <tms-host:port>— The host and port used to connect to the TMS. If omitted,
http://localhost:9889 is used by default.

® [u] <username> - If the TMS requires authentication, a username must be specified.
® [p] <password> - If the TMS requires authentication, a password must be specified.

m [a] <agentID> - Specify the agent ID of a TSA. The agent ID is set as a connection name when
the connection to the TSA is configured on the TMS. If no agent ID is provided, the TMS returns
a list of configured agent IDs.

® [K] This flag causes invalid TMS SSL certificates to be ignored.

For example, to initiate a backup on a cluster with the agent ID "someConnection":

${BIGMEMORY_HOME}/tools/management-console/bin/
backup-data.sh -1 http://my-tms-host:9889 \ -u admin
-p admin -a someConnection -k

If initiation is successful, the script reports that the backup process has started. Once the backup

is complete, the backup data files can be used to restore data in place of the current data files. For
information about restoring data from a backup, see “Restoring Data from a Backup” on page 64.

Backup Status (backup-status)

The backup-status script is run from the tools/management-console/bin directory. This script
complements the backup-data utility by checking on the status of executed backups for a specified
cluster. For example, to return a list of backup operations on the agent myClusterAgent:

[PROMPT] ${BIGMEMORY_HOME}/tools/management-console/bin/backup-status
-1 http://myTMShost:9889 -a myClusterAgent

The backup-status script takes the same arguments as backup-data. For details, see “Database
Backup Utility (backup-data)” on page 100.

Cluster Thread and State Dumps (debug-tool, cluster-dump)

The cluster and thread- and state-dump debug tools provide a way to easily generate debugging
information that can be analyzed locally or forwarded to support personnel. These tools work
against the Terracotta Management Server that is monitoring the target Terracotta cluster. All
components must be running at the time a tool is used.

® debug-tool generates thread dumps for all nodes in the cluster, with each node's dump saved
its log file. A flag is available for saving the thread dumps to a single zip file.

BigMemory Max Administrator Guide 4.3.10 101

A Operational Scripts

® cluster-dump provides a similar service, but adds each node's state, including information on
locks. Note that these tools can generate a substantial amount of data.

Note:
Server utility scripts do not work when a server is starting up or when a server is in the process
of recovering using the Fast Restart feature.

For more information on operating these tools, run the associated script with the -h flag. For
example:

For Microsoft Windows:

[PROMPT] %BIGMEMORY_HOME%\tools\management-console\bin\debug-tool.bat -h

For UNIX/Linux:
[PROMPT] ${BIGMEMORY_HOME}/tools/management-console/bin/debug-tool.sh -h

Exit Safe Mode (exit-safe-mode)

The exit-safe-mode script makes a server exit the safe mode so that the server can transition into
the Active or Passive state.

Note that server enters safe mode when it is started with the --safe-mode option. See “Start and
Stop Server Scripts (start-tc-server, stop-tc-server)” on page 103 for related information.

For Microsoft Windows

[PROMPT] %BIGMEMORY_HOME%\server\bin\exit-safe-mode.bat <args>

For UNIX/Linux
[PROMPT] ${BIGMEMORY_HOME}/server/bin/exit-safe-mode.sh <args>
where <args> are:

® [-s] hostl,host2,... -specifies one or more servers using the given hostnames or IP addresses
using the default management port (9540).

® [-s] hostl1:9540,host2:9541, ... - specifies one or more servers using the given hostnames
or IP addresses with the JMX port specified.

®m [-f] <path>/tc-config.xml - specifies the servers defined in the specified configuration file.
® [-n] <name> - name of the server when specifying a tc-config.xml file.

® [-k] - This flag causes invalid TMS SSL certificates to be ignored. Use this option to accept
self-signed certificates (ones not signed by a trusted CA).

Distributed Garbage Collector (run-dgc)

run-dgc is a utility that causes the specified cluster to perform distributed garbage collection (DGC).
Use run-dgc to force a periodic DGC cycle in environments where inline DGC is not in effect.
However, automated DGC collection is sufficient for most environments.

102 BigMemory Max Administrator Guide 4.3.10

A Operational Scripts

This utility relies on the Terracotta Management Server (TMS) to locate and execute backups. The
TMS must be running and connected to the TSA for the DGC to be initiated. For more information
about connecting the Terracotta Management Server to the TSA, see the Terracotta Management
Console User Guide.

For Microsoft Windows:

PROMPT] %BIGMEMORY_HOME%\tools\management-console\bin\run-dgc.bat <args>
[] _ \ \ g \bin\ g g

For UNIX/Linux:
[PROMPT] ${BIGMEMORY_HOME}/tools/management-console/bin/run-dgc.sh <args>
where <args> are:

m [I] <tms-host:port>—The host and port used to connect to the TMS. If omitted, localhost:9889
is used by default.

® [u] <username> — If the TMS requires authentication, a username must be specified.
® [p] <password> - If the TMS requires authentication, a password must be specified.

® [a] <agentID> - Specify the agent ID of a TSA. The agent ID is set as a connection name when
the connection to the TSA is configured on the TMS. If no agent ID is provided, the TMS returns
a list of configured agent IDs.

m [k] This flag causes invalid TMS SSL certificates to be ignored.

Note:
Two DGC cycles cannot run at the same time. Attempting to run a DGC cycle on a server while
another DGC cycle is in progress generates an error

For more information on distributed garbage collection, see “Managing Distributed Garbage
Collection” on page 75.

Start and Stop Server Scripts (start-tc-server, stop-tc-server)

Starting and Stopping Using Terracotta's Scripts

Use the start-tc-server script to run the Terracotta Server, optionally specifying a configuration
file:
For Microsoft Windows:
[PROMPT] %BIGMEMORY_HOME%\server\bin\start-tc-server.bat A
[-n <name of server>] [-f <config specification>] [--safe-mode]
For UNIX/Linux:
[PROMPT] ${BIGMEMORY_HOME}/server/bin/start-tc-server.sh \

[-n <name of server>] [-f <config specification>] [--safe-mode]

<config specification> can be one of:

BigMemory Max Administrator Guide 4.3.10 103

A Operational Scripts

m Path to configuration file

m URL to configuration file

m <server host>:<tsa-port> of another running Terracotta Server
Note the following:

m If no configuration is specified, a file named tc-config.xml in the current working directory
will be used.

® Ifno configuration is specified and no file named tc-config.xmlis found in the current working
directory, a default configuration will be used.

m If no server is named, and more than one server exists in the configuration file used, an error
is printed to standard out and no server is started.

® The option [safe-mode] starts the server in safe mode. This means that an external trigger will
be required to resume the startup process. See the section “Exit Safe Mode (exit-safe-mode)” on
page 102 for related information.

Use the stop-tc-server script to cause the Terracotta Server to gracefully terminate:
For Microsoft Windows:

[PROMPT] %BIGMEMORY_HOME%\server\bin\stop-tc-server.bat <host-name> <jmx-port> <args>

For UNIX/Linux:
[PROMPT] ${BIGMEMORY_HOME}/server/bin/stop-tc-server.sh <host-name> <jmx-port> <args>
where <args> are:

m [f] <file-or-URL> — Specifies the tc-config file to use, as a file path or URL. For an SSL-secured
server, a valid path to the self-signed certificate must have been specified in the server's
configuration file.

m [--force] — Force shutdown of the active server.

In production mode, if the stop-tc-server script detects that the mirror server in STANDBY
state isn't reachable, it issues a warning and fails to shut down the active server. If failover is
not a concern, you can override this behavior with the --force flag. For information about
production mode, see “Enabling Production Mode” on page 73.

® [n] <server-name> — The name of the server to shut down. Defaults to the local host.

m [s] - If the server is secured with a JMX password, then a username and password must be
passed into the script.

® [u] - Specify the JMX username. For an SSL-secured server, the user specified must have the
"admin" role.

® [w] - Specify the JMX password.

m [k] - This flag causes invalid TMS SSL certificates to be ignored. Use this option to accept
self-signed certificates (ones not signed by a trusted CA).

104 BigMemory Max Administrator Guide 4.3.10

A Operational Scripts

m [stop-if-active] - Stops the server only if the server is in the active state.
m [stop-if-passive] - Stops the server only if the server is in the passive state.

m [restart-in-safe-mode] - Restarts the server in safe mode. This means that an external trigger
will be required to resume the startup process. See the section “Exit Safe Mode (exit-safe-
mode)” on page 102 for related information.

For more information, see "Setting up Server Security" in the BigMemory Max Security Guide.

Starting and Stopping Terracotta Server Using Software AG Command Central

Terracotta Server can also be started, stopped and monitored using Software AG Command
Central.

When using Command Central, these are the scripts to start and to stop the Servers:

<installDir>\Terracotta\server\wrapper\bin\startup.bat
<installDir>\Terracotta\server\wrapper\bin\shutdown.bat

For more information see section BigMemory Max Administrator Guide > Using Command Central to
Manage Terracotta > Monitoring Terracotta from Command Central

Server Status (server-stat)

The status tool is a command-line utility for checking the current status of one or more Terracotta
server instances.

For Microsoft Windows:

[PROMPT] %BIGMEMORY_HOME%\server\bin\server-stat.bat <args>

For UNIX/Linux:
[PROMPT] ${BIGMEMORY_HOME}/server/bin/server-stat.sh <args>
where <args> are:

® [-s] hostl,host2,... — Check one or more servers using the given hostnames or IP addresses
using the default J]MX port (9520).

® [-s] host1:9520,host2:9521,... — Check one or more servers using the given hostnames or IP
addresses with JMX port specified.

m [-f] <path>/tc-config.xml — Check the servers defined in the specified configuration file.

m [-Kk] - This flag causes invalid TMS SSL certificates to be ignored. Use this option to accept
self-signed certificates (ones not signed by a trusted CA).

The status tool returns the following data on each server it queries:

m Health—OK (server responding normally) or FAILED (connection failed or server not responding
correctly).

BigMemory Max Administrator Guide 4.3.10 105

A Operational Scripts

® Role —The server's position in an active-mirror group. Single servers always show ACTIVE.
Backups are shown as MIRROR or PASSIVE.

m State — The work state that the server is in. When ready, active servers should show
ACTIVE-COORDINATOR, while mirror servers should show MIRROR-STANDBY or
PASSIVE-STANDBY.

m InitialState - Denotes the server's state prior to shutdown.

= JMX port — The TCP port the server is using to listen for J]MX events.

m Error - If the status tool fails, the type of error.

Example

The following example shows usage of and output from the status tool.

[PROMPT] server-stat.sh -s localhost:9540

localhost:
localhost:
localhost:
localhost:
localhost:
localhost:

9510.
9510.
9510.
9510.
9510.
9510.

health: OK

role: ACTIVE

initialState: ACTIVE-COORDINATOR
state: ACTIVE-COORDINATOR

port: 9540

group name: default-group

If no server is specified, by default the tool checks the status of localhost at management port 9540.

Version Utility (version)

The version tool is a utility script that outputs information about the BigMemory installation,
including the version, date, and version-control change number from which the installation was
created. When contacting Terracotta with a support query, please include the output from the
version tool to expedite the resolution of your issue.

For Microsoft Windows:

[PROMPT] %BIGMEMORY_HOME%\server\bin\version.bat

For UNIX/Linux:

[PROMPT] ${BIGMEMORY_HOME}/server/bin/version.sh&

Use the following flags to produce more information:

® [r] - Produces detailed, raw information in a "property=value" format.

B [v] - Produces more detailed information.

106

BigMemory Max Administrator Guide 4.3.10

B Terracotta Configuration Parameters

m The Terracotta Configuration File

m The Servers Parameters

m The Clients Parameters

BigMemory Max Administrator Guide 4.3.10

107

B Terracotta Configuration Parameters

The Terracotta Configuration File

This document is a reference to all of the Terracotta configuration elements in the Terracotta
configuration file, which is named tc-config.xml by default.

You can use a sample configuration file provided in the kit as the basis for your Terracotta
configuration. Some samples have inline comments describing the configuration elements. Be sure
to start with a clean file for your configuration.

The Terracotta configuration XML document is divided into the sections <servers> and <clients>.

m The <servers>section contains parameters you use to configure the behavior and characteristics
of the Terracotta Server Array and its component servers.

® The <clients> section contains parameters you use to configure client behavior.

Configuration Variables

Certain variables can be used that are interpolated by the configuration subsystem using local
values:

Variable Interpolated Value

%h The fully-qualified hostname

Yol The IP address

%D Time stamp (yyyyMMddHHmMmssSSS)

%H The home directory of the user running the application,

corresponding to the user.home Java system property

%on The username of the user running the application,
corresponding to the user.name Java system property

%0 The operating system name, corresponding to the os.name
Java system property

Yoa The CPU architecture, corresponding to the os.arch Java
system property
Y%ov The version of the operating system, corresponding to the

os.version Java system property

%ot The path to the temporary directory, corresponding to the
java.io.tmpdir Java system property

%(system property) A standard or custom Java system property. If a custom Java
property needs to be used, it should be first set in the JVM
by setting it in JAVA_OPTS in the
-Djava.custom.property=value format.

108 BigMemory Max Administrator Guide 4.3.10

B Terracotta Configuration Parameters

These variables can be used where appropriate, including for elements or attributes that expect
strings or paths for values:

m the "name", "host" and "bind" attributes of the <server> element
m the password file location for JMX authentication

m client logs location

m server logs location

m server data location

Note:

The variable %i is expanded into a value determined by the host's networking setup. In many
cases that setup is in a hosts file containing mappings that may influence the value of %i. Test
this variable in your production environment to check the value it interpolates.

Using Paths as Values

Some configuration elements take paths as values. Relative paths are interpreted relative to the
current working directory (the directory from which the server was started). Specifying an absolute
path is recommended.

Overriding tc.properties

Every Terracotta installation has a default tc.properties file containing system properties.
Normally, the settings in tc.properties are pre-tuned and should not be edited.

If tuning is required, you can override certain properties in tc.properties using tc-config.xml.
This can make a production environment more efficient by allowing system properties to be pushed
out to clients with tc-config.xml. Those system properties would normally have to be configured
separately on each client.

Setting System Properties in tc-config

To set a system property with the same value for all clients, you can add it to the Terracotta server's
tc-config.xml file using a configuration element with the following format:

<property name="<tc_system_property>" value='"<new_value>" />

All <property /> tags must be wrapped in a <tc-properties> section placed at the beginning of
tc-config.xml.

For example, to override the values of the system properties 11.cachemanager.enabled and
11.cachemanager . leastCount, add the following to the beginning of tc-config.xml:

<tc-properties>
<property name="11l.cachemanager.enabled" value="false" />
<property name="11.cachemanager.leastCount" value="4" />
</tc-properties>

BigMemory Max Administrator Guide 4.3.10 109

B Terracotta Configuration Parameters

Override Priority

System properties configured in tc-config.xml override the system properties in the default
tc.properties file provided with the Terracotta kit. The default tc.properties file should not be
edited or moved.

If you create a local tc.properties file in the Terracotta 1ib directory, system properties set in that
file are used by Terracotta and will override system properties in the default tc.properties file.
System properties in the local tc. properties file are not overridden by system properties configured
in tc-config.xml.

System property values passed to Java using -D override all other configured values for that system
property. In the example above, if -Dcom. tc.11.cachemanager.leastcount=5 was passed at the
command line or through a script, it would override the value in tc-config.xmland tc.properties.
The order of precedence is shown in the following list, with highest precedence shown last:

1. default tc.properties
2. tc-config.xml
3. local, or user-created tc.properties in Terracotta 1ib directory

4. Java system properties set with -D

Failure to Override

If system properties set in tc-config.xml fail to override default system properties, a warning is
logged to the Terracotta logs. The warning has the following format:

The property <system_property_name> was set by local settings to <value>.

This value will not be overridden to <value> from the tc-config.xml file.

System properties used early in the Terracotta initialization process may fail to be overridden. If
this happens, a warning is logged to the Terracotta logs. The warning has the following format:

The property <system_property_name> was read before initialization completed.

The warning is followed by the value assigned to <system_property_name>.

Note:
The property tc.management.mbeans.enabled is known to load before initialization completes
and cannot be overridden.

The Servers Parameters

/tc:tc-config/servers

This section defines the Terracotta server instances present in your cluster. One or more entries
can be defined, either directly under the <servers>element or in the “/tc:tc-config/servers/mirror-
group” on page 115. If this section is omitted, Terracotta configuration behaves as if there's a single
server instance with default values.

110 BigMemory Max Administrator Guide 4.3.10

B Terracotta Configuration Parameters

This section also defines certain global settings that affect all servers, including the attribute secure.
This is a global control for enabling ("true") or disabling ("false" DEFAULT) SSL-based security
for the entire cluster.

For information about SSL-based security, see the BigMemory Max Security Guide.

/tc:tc-config/servers/server

A server stanza encapsulates the configuration for a Terracotta server instance. The server element
takes three optional attributes (see table below).

Attribute Definition Value Default Value
host The address of the machine Host machine's IP Host machine's IP address
hosting the Terracotta server address or resolvable
hostname
name The symbolic name of the user-defined string <host>:<tsa-port>

Terracotta server; can be
passed to Terracotta scripts
such as start-tc-server using
-n <npame>

bind The network interface on interface's IP address 0.0.0.0
which the Terracotta server
listens cluster traffic; 0.0.0.0
specifies all interfaces

Each Terracotta server instance needs to know which configuration it should use as it starts up.
If the server's configured name is the same as the hostname of the host it runs on and no host
contains more than one server instance, then configuration is found automatically.

Here is a sample configuration snippet

<server>

<!-=— my host 1is '%i', my name is '%i:tsa-port', my bind is 0.0.0.0 -->
</server>
<server host="myhostname'">

<I-= my host 1is 'myhostname', my name 1is 'myhostname:tsa-port',

my bind is 0.0.0.0 -->

</server>

<server host="myotherhostname" name='"serverl" bind="192.168.1.27">
<I-- my host 1is 'myotherhostname', my name is 'serverl',

my bind dis 192.168.1.27 -->

</server>

/tc:tc-config/servers/server/data

This element specifies the path where the server should store its data for persistence.

BigMemory Max Administrator Guide 4.3.10 1M1

B Terracotta Configuration Parameters

Default: data (creates the directory data under the working directory)

/tc:tc-config/servers/server/logs

This section lets you declare where the server should write its logs.
Default: logs (creates the directory logs under the working directory)

You can also specify stderr: or stdout: as the output destination for log messages. For example:

<logs>stdout:</logs>

/tc:tc-config/servers/server/index

This element specifies the path where the server should store its search indexes.

Default: index (creates the directory index under the working directory)

/tc:tc-config/servers/server/data-backup

This element specifies the path where the server should store backups (if a backup call is initiated).

Default: data-backup (creates the directory data-backup under the working directory)

/tc:tc-config/servers/server/tsa-port

This section lets you set the port that the Terracotta server listens to for client traffic.
The default value of "tsa-port" is 9510.

Here is a sample configuration snippet:

<tsa-port>9510</tsa-port>

/tc:tc-config/servers/server/jmx-port

Note:

Listening on the "jmx-port" is deprecated. Alternatively, use the monitoring features provided
by the Terracotta Management Console (see the Terracotta Management Console User Guide) and
the WAN Replication Service (see the WAN Replication User Guide).

"jmx-port" is disabled by default. To enable it, add jmx-enabled="true" to the <server host>
sections of tc-config.xml. For example:

<server host="localhost" name="My Server Namel" jmx-enabled="true">

This section lets you set the port that the Terracotta server's JMX Connector listens to.

12 BigMemory Max Administrator Guide 4.3.10

B Terracotta Configuration Parameters

The default value of "jmx-port" is 9520. If tsa-port was set to a value other than the default 9510,
this port defaulted to the value of the tsa-port plus 10.

Here is a sample configuration snippet:

<jmx-port>9520</jmx-port>

/tc:tc-config/servers/server/tsa-group-port

This section lets you set the port that the Terracotta server uses to communicate with other
Terracotta servers.

The default value of "tsa-group-port" is 9530. If tsa-port is set to a value other than the default
9510, this port defaults to the value of the tsa-port plus 20.

Here is a sample configuration snippet:

<tsa-group-port>9530</tsa-group-port>

/tc:tc-config/servers/server/management-port

This section lets you set the port that the Terracotta Management Console (TMC) uses.

The default value of "management-port" is 9540. If tsa-port is set to a value other than the default
9510, this port defaults to the value of the tsa-port plus 30.

Here is a sample configuration snippet:

<management-port>9540</management-port>

Prior to 4.2, the TMC used the ports specified in /tc:tc-config/servers/server/tsa-port (port
9510 by default) and /tc:tc-config/servers/server/tsa-group-port (port 9530 by default). Now
the TMC uses only the port specified in /tc:tc-config/servers/server/management-port.

/tc:tc-config/servers/server/security

This section contains the data necessary for running a secure cluster based on SSL, digital certificates,
and node authentication and authorization.

For more information, see "About Security in a Cluster" in the BigMemory Max Security Guide.

/tc:tc-config/servers/server/security/ssl/certificate

The element specifying certificate entry and location of the certificate store. The format is:

<store-type>:<certificate-alias>@</path/to/keystore.file>

The Java Keystore (JKS) type is supported by Terracotta 3.7 and higher.

BigMemory Max Administrator Guide 4.3.10 13

B Terracotta Configuration Parameters

/tc:tc-config/servers/server/security/keychain

This element contains the following subelements:

® <class> — Element specifying the class defining the keychain file. If a class is not specified,
com.terracotta.management.keychain.FileStoreKeyChain is used.

® <url>-The URI for the keychain file. It is passed to the keychain class to specify the keychain
file.

® <secret-provider> — The fully qualified class name of the user implementation of
com.terracotta.management.security.SecretProviderBackEnd. This class can read and provide
the keychain file.

/tc:tc-config/servers/server/security/auth

This element contains the following subelements:

® <realm> — Element specifying the class defining the security realm. If a class is not specified,
com.tc.net.core.security.ShiroIniRealmis used.

® <url>—-The URI for the Realm configuration (.ini) file. It is passed to the realm class to specify
authentication file. Alternatively, URIs for LDAP or Microsoft Active directory can also be
used if one of these schemes is implemented instead.

m <user>—The username that represents the server and is authenticated by other servers. This
name is part of the credentials stored in the .ini file. The default value is "terracotta".

/tc:tc-config/servers/server/security/management

This element contains the subelements needed to allow the Terracotta Management Server (TMS)
to make a secure connection to the TSA:

® ia—The HTTPS URL with the domain of the TMS, followed by the port 9443 and the path
/tmc/api/assertIdentity.

® timeout — The timeout value (in milliseconds) for connections from the server to the TMS.

® hostname — Used only if the DNS hostname of the server does not match server hostname used
in its certificate. If there is a mismatch, enter the DNS address of the server here.

/tc:tc-config/servers/server/authentication

Turn on JMX authentication for the Terracotta server. An empty tag (<authentication />) defaults
to the standard Java JMX authentication mechanism referring to password and access files in
$JAVA_HOME/jre/lib/management:

$JAVA_HOME/jre/lib/management/jmxremote.password
$JAVA_HOME/jre/lib/management/jmxremote.access

114 BigMemory Max Administrator Guide 4.3.10

B Terracotta Configuration Parameters

You must modify these files as follows (or, if none exist create them).

jmxremote.password: Add a line to the end of the file declaring a username and password followed
by a carriage return:

secretusername secretpassword

jmxremote.access: Add the following line (with a carriage return) to the end of your file:

secretusername readwrite

Be sure to assign the appropriate permissions to the file. For example, in *NIX:
$ chmod 500 jmxremote.password

$ chown <user who will run the server> jmxremote.password

For information on alternatives to JMX authentication, see the BigMemory Max Security Guide.

Note that version 4.x does not support HTTP authentication.

/tc:tc-config/servers/dataStorage

This configuration block includes the required of fheap element, as well as the optional hybrid
element.

® The minimum <offheap> required for non-hybrid deployments, distributed caching and other
applications is 4GB to be configured for each server.

The minimum <offheap> required for webMethods clustering in hybrid mode is 2GB. In case
there are any custom caches created on the same Terracotta Server Array, then 4GB becomes
the minimum requirement.

B <dataStorage> specifies the maximum amount of data to store on each server, and represents
the hybrid sum of off-heap DRAM plus flash SSD.

® <hybrid/>, if included, enables the Hybrid option.

Here is a sample configuration snippet:

<dataStorage size='"800g">
<offheap size="200g"/>
<hybrid/>

</dataStorage>

If the hybrid element is present, then dataStorage size may exceed of fheap size, however if the
hybrid element is not present, then the dataStorage size must be less than or equal to the of fheap
size.

/tc:tc-config/servers/mirror-group

A mirror group is a stripe in a TSA, consisting of one active server and one or more mirror (or
backup) servers. A configuration that does not use the <mirror-group> element would produce a
one-stripe TSA:

BigMemory Max Administrator Guide 4.3.10 115

B Terracotta Configuration Parameters

<servers>
<server name="A">

</server>

<server name='"B">

</server>

<server name="C">

</server>

<server name='"D">

</server>
</servers>

One of the named servers would assume the role of active (the one started first or that wins the
election), while the remaining servers become mirrors. Note that in a typical stripe, having only
one or two mirrors is sufficient and less taxing on the active server's resources (as it needs to sync
with each mirror).

The following example shows the same servers split into two stripes:

<servers>
<mirror-group group-name="teaml">
<server name="A">

</server>

<server name="B">

</server>
</mirror-group>

<mirror-group group-name="team2">
<server name="C">

</server>
<server name='"D">
</server>
</mirror-group>
</servers>
Each stripe will have one active and one mirror server.

Note:

Under <servers>, you may use either <server> or <mirror-group> configurations, but not both.
All <server> configurations directly under <servers> work together as one mirror group, with
one active server and the rest mirrors. To create more than one stripe, use <mirror-group>
configurations directly under <servers>. The mirror group configurations then include one or
more <server> configurations

For more examples and information, see “Configuring the Terracotta Server Array” on page 35.

116 BigMemory Max Administrator Guide 4.3.10

B Terracotta Configuration Parameters

/tc:tc-config/servers/garbage-collection

This section lets you configure the periodic distributed garbage collector (DGC) that runs in the
TSA. The DGC collects shared data made garbage by Java garbage collection.

For many use cases, there is no need to enable periodic DGC. For caches, the more efficient
automatic inline DGC is normally sufficient for clearing garbage. In addition, certain read-heavy
applications will never require the periodic DGC as little shared data becomes garbage.

However, concerning certain data structures, the periodic DGC may need to be enabled. Inline
DGC may not be available for all data structures.

For more on how DGC functions, see “Managing Distributed Garbage Collection” on page 75.

Here is a configuration snippet:

<garbage-collection>
== Default: false -->
<enabled>true</enabled>

<I-== If "true", additional information is logged when a
server performs distributed garbage collection.

Default: false
-—>
<verbose>false</verbose>

<!-- How often should distributed garbage collection
be performed, in seconds?

Default: 3600 (60 minutes)
-—>

<interval>3600</interval>
</garbage-collection>

/tc:tc-config/servers/restartable

The fast-restart persistence mechanism must be explicitly enabled for the TSA using this element:
<restartable enabled="true"/>
In case of TSA failure, fast-restart persistence allows the TSA to reload all shared cluster data.

To function, this feature requires <offheap> to be enabled on each server. To make backups of TSA
data, the backup feature requires this feature to be enabled.

/tc:tc-config/servers/client-reconnect-window

This section lets you declare the window of time servers will allow disconnected clients to reconnect
to the cluster as the same client. Outside of this window, a client can only rejoin as a new client.
The value is specified in seconds and the default is 120 seconds.

BigMemory Max Administrator Guide 4.3.10 17

B Terracotta Configuration Parameters

If adjusting value, note that a too-short reconnection window can lead to unsuccessful reconnections
during failure recovery, while a too-long window lowers the efficiency of the cluster since it is
paused for the time the window is in effect.

For more information on how client and server reconnection is executed in a Terracotta cluster,
and on tuning reconnection properties in a high-availability environment, see the BigMemory Max
High-Availability Guide.

The Clients Parameters

/tc:tc-config/clients/logs

This section lets you configure where the Terracotta client writes its logs.

Here is a sample configuration snippet:

<1--

-=>

This value undergoes parameter substitution before being used;
thus, a value like 'client-logs-%h' would expand to
'client-logs—banana' if running on host 'banana'. See the

Product Guide for more details.

If this is a relative path, then it is dinterpreted relative to

the current working directory of the client (that is, the directory
you were in when you started the program that uses Terracotta
services). It is thus recommended that you specify an absolute

path here.

Default: 'logs-%i'; this places the logs in a directory relative

to the directory you were in when you invoked the program that uses
Terracotta services (your client), and calls that directory, for example,
'logs-10.0.0.57' if the machine that the client is on has assigned IP
address 10.0.0.57.

<logs>logs-%i</logs>

You can also specify stderr: or stdout: as the output destination for log messages. For example:

<logs>stdout:</logs>

To set the logging level, see “LLogging” on page 87.

18

BigMemory Max Administrator Guide 4.3.10

	Table of Contents
	About This Documentation
	Online ​Information ​and ​Support
	Data ​Protection

	1 About ​the ​Terracotta ​Server ​Array
	What ​is ​the ​Terracotta ​Server ​Array?
	New ​for ​BigMemory ​Max ​4.x
	Definitions ​and ​Functional ​Characteristics

	2 Terracotta ​Server ​Array ​Architecture
	Terracotta ​Cluster ​in ​Development
	Terracotta ​Cluster ​with ​Reliability ​using ​Fast ​Restart ​(FRS)
	Fast ​Restart ​(FRS) ​Disk ​Compaction ​Strategies
	Terracotta ​Cluster ​with ​High ​Availability
	Failover ​Tuning ​for ​Guaranteed ​Consistency
	Scaling ​the ​Terracotta ​Server ​Array

	3 Configuring ​the ​Terracotta ​Server ​Array
	About ​Terracotta ​Server ​Configuration
	How ​Terracotta ​Servers ​Get ​Configured
	How ​Terracotta ​Clients ​Get ​Configured
	Configuration ​in ​a ​Development ​Environment
	Configuration ​in ​a ​Production ​Environment

	4 Configuring ​the ​Terracotta ​Server ​Array
	Binding ​Ports ​to ​Interfaces
	Which ​Configuration?

	5 Automatic ​Resource ​Management
	What ​is ​Automatic ​Resource ​Management?
	Eviction
	Customizing ​the ​Eviction ​Strategy

	6 Managing ​Near-​Memory-​Full ​Conditions
	Behavior ​of ​the ​TSA ​under ​Near-​Memory-​Full ​Conditions
	Restricted ​Mode ​Operations
	Recovery

	7 Monitoring ​Cluster ​Events
	About ​Cluster ​Events
	Event ​Types ​and ​Definitions

	8 Backing ​Up ​Live ​In-​Memory ​Data
	About ​Live ​Backup
	Creating ​a ​Backup
	The ​Backup ​Directory
	Restoring ​Data ​from ​a ​Backup

	9 Clearing ​Data ​from ​a ​Terracotta ​Server
	How ​to ​Clear ​Data ​from ​a ​Terracotta ​Server

	10 Changing ​Topology ​of ​a ​Live ​Cluster
	About ​Changing ​the ​Topology
	Adding ​a ​New ​Server
	Removing ​an ​Existing ​Server
	Editing ​the ​Configuration ​of ​an ​Existing ​Server

	11 Enabling ​Production ​Mode
	Setting ​the ​Production ​Mode ​Property

	12 Managing ​Distributed ​Garbage ​Collection
	About ​Distributed ​Garbage ​Collection ​(DGC)
	Running ​the ​Periodic ​Distributed ​Garbage ​Collection
	Monitoring ​and ​Troubleshooting ​DGC

	13 Starting ​the ​Terracotta ​Server ​as ​a ​Windows ​Service
	Configuring ​the ​Terracotta ​Server ​to ​Run ​as ​a ​Service

	14 Using ​BigMemory ​Hybrid
	About ​BigMemory ​Hybrid
	System ​Requirements
	Hardware ​Capacity ​Guidelines
	Configuring ​BigMemory ​Hybrid
	Using ​the ​TMC ​with ​BigMemory ​Hybrid
	Operator ​Events

	15 Logging
	SLFJ ​Logging
	Recommended ​Logging ​Levels

	16 Using ​Command ​Central ​to ​Manage ​Terracotta
	Monitoring ​Terracotta ​BigMemory ​Max ​from ​Command ​Central
	Troubleshooting ​a ​Secure ​Terracotta ​Server ​from ​Command ​Central
	Commands ​that ​Terracotta ​Supports
	Configuration ​Types ​that ​Terracotta ​Supports
	Lifecycle ​Actions ​for ​Terracotta
	Run-​time ​Monitoring ​Statuses ​for ​Terracotta
	Run-​time ​Monitoring ​States ​for ​Terracotta

	A Operational ​Scripts
	Archive ​Utility ​(archive-​tool)
	Database ​Backup ​Utility ​(backup-​data)
	Backup ​Status ​(backup-​status)
	Cluster ​Thread ​and ​State ​Dumps ​(debug-​tool, ​cluster-​dump)
	Exit ​Safe ​Mode ​(exit-​safe-​mode)
	Distributed ​Garbage ​Collector ​(run-​dgc)
	Start ​and ​Stop ​Server ​Scripts ​(start-​tc-​server, ​stop-​tc-​server)
	Server ​Status ​(server-​stat)
	Version ​Utility ​(version)

	B Terracotta ​Configuration ​Parameters
	The ​Terracotta ​Configuration ​File
	The ​Servers ​Parameters
	The ​Clients ​Parameters

