
BigMemory Max High-Availability Guide

Version 4.3.10

October 2021

This document applies to BigMemory 4.3.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: BMM-HA-4310-20211129

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About This Documentation..5
Online Information and Support...6
Data Protection...6

1 About High Availability..7
Overview of High-Availability Features...8
Basic High-Availability Configuration..8
Configuring High Availability Features..9

2 Configuring the HealthChecker Properties...11
About HealthChecker..12
HealthChecker Properties...12
How the HealthChecker Functions..13
Calculating HealthChecker Maximum..14
Configuration Examples..15
Tuning HealthChecker to Allow for Interruptions..16

3 Configuring Reconnection and Rejoin Properties...17
Automatic Server Instance Reconnect...18
Automatic Client Reconnect...18
Special Client Connection Properties..19
Using Rejoin to Reconnect Terracotta Clients..20
Effective Client-Server Reconnection Settings...21

4 Testing High-Availability Deployments..23
Designing and Testing Cluster Architecture..24
High-Availability Network Architecture and Testing...24
Terracotta Cluster Tests...29

BigMemory Max High-Availability Guide 4.3.10 iii

iv BigMemory Max High-Availability Guide 4.3.10

Table of Contents

About This Documentation

■ Online Information and Support ... 6

■ Data Protection ... 6

BigMemory Max High-Availability Guide 4.3.10 5

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

6 BigMemory Max High-Availability Guide 4.3.10

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

1 About High Availability

■ Overview of High-Availability Features ... 8

■ Basic High-Availability Configuration .. 8

■ Configuring High Availability Features .. 9

BigMemory Max High-Availability Guide 4.3.10 7

Overview of High-Availability Features

High Availability (HA) is an implementation designed to maintain uptime and access to services
even during component overloads and failures. Terracotta clusters offer simple and scalable HA
implementations based on the Terracotta Server Array (see BigMemoryMaxAdministrator Guide
> Terracotta Server Array Architecture for more information).

The main features of a Terracotta HA architecture include:

Instant failover using a hot standby or multiple active servers - provides continuous uptime
and services

Configurable automatic internode monitoring using the Terracotta HealthChecker. See
“Configuring the HealthChecker Properties” on page 11.

Automatic permanent storage of all current shared (in-memory) data - available to all server
instances (no loss of application state)

Automatic reconnection of temporarily disconnected server instances and clients - restores
hot standbys without operator intervention, allows "lost" clients to reconnect

Client reconnection refers to reconnecting clients that have not yet been disconnected from
the cluster by the Terracotta Server Array. To learn about reconnecting BigMemoryMax clients
that have been disconnected from their cluster, see “Automatic Client Reconnect” on page 18.

Tip:
Nomenclature - This document may refer to a Terracotta server instance as L2, and a Terracotta
client (the node running your application) as L1. These are the shorthand references used in
Terracotta configuration files.

It is important to thoroughly test any High Availability setup before going to production.
Suggestions for testingHighAvailability configurations are provided in the section “TestingHigh-
Availability Deployments” on page 23.

Basic High-Availability Configuration

A basic high-availability configuration has the following components:

Two or More Terracotta Server Instances

You may set up High Availability using either <server> or <mirror-group> configurations.
Note that <server> instances do work together as a mirror group, but to create more than one
stripe, or to configure the election-time, use <mirror-group> instances. For information on how
to set up a cluster with multiple Terracotta server instances, see "Terracotta Server Array
Architecture" in the BigMemory Max Administrator Guide.

Server-Server Reconnection

A reconnection mechanism can be enabled to restore lost connections between active and
mirror Terracotta server instances. See “Automatic Server Instance Reconnect” on page 18 for
more information.

8 BigMemory Max High-Availability Guide 4.3.10

1 About High Availability

Server-Client Reconnection

A reconnection mechanism can be enabled to restore lost connections between Terracotta
clients and server instances. See “Automatic Client Reconnect” on page 18 formore information.

Configuring High Availability Features

The following high-availability features can be used to extend the reliability of a Terracotta cluster.
These features are controlled using properties set with the <tc-properties> section at the beginning
of the Terracotta configuration file:
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-9.xsd">
<tc-properties>
<property name="some.property.name" value="true"/>
<property name="some.other.property.name" value="true"/>
<property name="still.another.property.name" value="1024"/>

</tc-properties>
<!-- The rest of the Terracotta configuration goes here. -->
</tc:tc-config>

For more information, see "Terracotta Configuration Parameters" in the BigMemory Max
Administrator Guide.

BigMemory Max High-Availability Guide 4.3.10 9

1 About High Availability

10 BigMemory Max High-Availability Guide 4.3.10

1 About High Availability

2 Configuring the HealthChecker Properties

■ About HealthChecker ... 12

■ HealthChecker Properties .. 12

■ How the HealthChecker Functions ... 13

■ Calculating HealthChecker Maximum .. 14

■ Configuration Examples ... 15

■ Tuning HealthChecker to Allow for Interruptions .. 16

BigMemory Max High-Availability Guide 4.3.10 11

About HealthChecker

HealthChecker is a connectionmonitor similar to TCPkeep-alive.HealthChecker functions between
Terracotta server instances (in High Availability environments), and between Terracotta sever
instances and clients. Using HealthChecker, Terracotta nodes can determine if peer nodes are
reachable, up, or in a GC operation. If a peer node is unreachable or down, a Terracotta node using
HealthChecker can take corrective action. HealthChecker is on by default.

You configure HealthChecker using certain Terracotta properties, which are grouped into three
different categories:

Terracotta server instance -> Terracotta client

Terracotta Server -> Terracotta Server (HA setup only)

Terracotta Client -> Terracotta Server

Property category is indicated by the prefix:

l2.healthcheck.l1 indicates L2 -> L1

l2.healthcheck.l2 indicates L2 -> L2

l1.healthcheck.l2 indicates L1 -> L2

For example, the l2.healthcheck.l2.ping.enabled property applies to L2 -> L2.

HealthChecker Properties

The followingHealthChecker properties can be set in the <tc-properties> section of the Terracotta
configuration file:

DefinitionProperty

Enables (True) or disables (False) ping probes
(tests). Ping probes are high-level attempts to

l2.healthcheck.l1.ping.enabled
l2.healthcheck.l2.ping.enabled
l1.healthcheck.l2.ping.enabled gauge the ability of a remote node to respond to

requests and is useful for determining if
temporary inactivity or problems are responsible
for the node's silence. Ping probes may fail due
to long GC cycles on the remote node.

Themaximum time (inmilliseconds) that a node
can be silent (have no network traffic) before

l2.healthcheck.l1.ping.idletime
l2.healthcheck.l2.ping.idletime
l1.healthcheck.l2.ping.idletime HealthChecker begins a ping probe to determine

if the node is alive.

If no response is received to a ping probe, the
time (in milliseconds) that HealthChecker waits
between retries.

l2.healthcheck.l1.ping.interval
l2.healthcheck.l2.ping.interval
l1.healthcheck.l2.ping.interval

12 BigMemory Max High-Availability Guide 4.3.10

2 Configuring the HealthChecker Properties

DefinitionProperty

If no response is received to a ping probe, the
maximum number (integer) of retries
HealthChecker can attempt.

l2.healthcheck.l1.ping.probes
l2.healthcheck.l2.ping.probes
l1.healthcheck.l2.ping.probes

Enables (True) or disables (False)
socket-connection tests. This is a low-level

l2.healthcheck.l1.socketConnect
l2.healthcheck.l2.socketConnect
l1.healthcheck.l2.socketConnect connection that determines if the remote node

is reachable and can access the network. Socket
connections are not affected by GC cycles.

Amultiplier (integer) to determine themaximum
amount of time that a remote node has to

l2.healthcheck.l1.socketConnectTimeout
l2.healthcheck.l2.socketConnectTimeout
l1.healthcheck.l2.socketConnectTimeout respond before HealthChecker concludes that

the node is dead (regardless of previous
successful socket connections). The time is
determined by multiplying the value in
ping.interval by this value.

The maximum number (integer) of successful
socket connections that can be made without a

l2.healthcheck.l1.socketConnectCount
l2.healthcheck.l2.socketConnectCount
l1.healthcheck.l2.socketConnectCount successful ping probe. If this limit is exceeded,

HealthChecker concludes that the target node is
dead.

Binds the client to the configured IP address.
This is useful where a host has more than one

l1.healthcheck.l2.bindAddress

IP address available for a client to use. The
default value of "0.0.0.0" allows the system to
assign an IP address.

Set the client's callback port. Terracotta
configuration does not assign clients a port for

l1.healthcheck.l2.bindPort

listening to cluster communications such as that
required by HealthChecker. The default value
of "0" allows the system to assign a port. To
specify a port number or a range of ports, you
can provide a port number as the value, or a
comma separated list of ports where each
element of the list can either be a single number
or range. A value of "-1" disables a client's
callback port.

How the HealthChecker Functions

The following diagram illustrates how HealthChecker functions.

BigMemory Max High-Availability Guide 4.3.10 13

2 Configuring the HealthChecker Properties

Calculating HealthChecker Maximum

The following formula can help you compute the maximum time in milliseconds it will take
HealthChecker to discover failed or disconnected remote nodes:
Max Time = (ping.idletime) + socketConnectCount * [(ping.interval * ping.probes)

+ (socketConnectTimeout * ping.interval)]

Note the following about the formula:

The response time to a socket-connection attempt is less than or equal to (socketConnectTimeout
* ping.interval). For calculating the worst-case scenario (absolute maximum time), the
equality is used. In most real-world situations the socket-connect response time is likely to be
close to 0 and the formula can be simplified to the following:
Max Time = (ping.idletime) + [socketConnectCount * (ping.interval *

ping.probes) + ping.interval]

14 BigMemory Max High-Availability Guide 4.3.10

2 Configuring the HealthChecker Properties

ping.idletime, the trigger for the full HealthChecker process, is counted once since it is in
effect only once each time the process is triggered.

socketConnectCount is a multiplier that is in incremented as long as a positive response is
received for each socket connection attempt.

The formula yields an ideal value, since slight variations in actual times can occur.

To prevent clients from disconnecting too quickly in a situation where an active server is
temporarily disconnected from both the backup server and those clients, ensure that the Max
Time for L1->L2 is approximately 8-12 seconds longer than for L2->L2. If the values are too
close together, then in certain situations the active server may kill the backup and refuse to
allow clients to reconnect.

Configuration Examples

The configuration examples in this section show settings for L1 -> L2 HealthChecker. However,
they apply similarly to L2 -> L2 and L2 -> L1, which means that the server is using HealthChecker
on the client.

Aggressive

The following settings create an aggressive HealthChecker with low tolerance for short network
outages or long GC cycles:
<property name="l1.healthcheck.l2.ping.enabled" value="true" />
<property name="l1.healthcheck.l2.ping.idletime" value="2000" />
<property name="l1.healthcheck.l2.ping.interval" value="1000" />
<property name="l1.healthcheck.l2.ping.probes" value="3" />
<property name="l1.healthcheck.l2.socketConnect" value="true" />
<property name="l1.healthcheck.l2.socketConnectTimeout" value="2" />
<property name="l1.healthcheck.l2.socketConnectCount" value="5" />

According to the HealthChecker "Max Time" formula, themaximum time (inmilliseconds) before
a remote node is considered to be lost is computed in the following way:
2000 + 5 [(3 * 1000) + 1000] = 22000

In this case, after the initial idle time of 2 seconds, the remote failed to respond to ping probes but
responded to every socket connection attempt, indicating that the node is reachable but not
functional (within the allowed time frame) or in a long GC cycle. This aggressive HealthChecker
configuration declares a node dead in no more than 22 seconds.

If at some point the node had been completely unreachable (a socket connection attempt failed),
HealthChecker would have declared it dead sooner. Where, for example, the problem is a
disconnected network cable, the "Max Time" is likely to be even shorter:
2000 + 1[(3 * 1000) + (2 * 1000)] = 7000

In this case, HealthChecker declares a node dead in no more than 7 seconds.

Tolerant

BigMemory Max High-Availability Guide 4.3.10 15

2 Configuring the HealthChecker Properties

The following settings create aHealthCheckerwith a higher tolerance for interruptions in network
communications and long GC cycles:
<property name="l1.healthcheck.l2.ping.enabled" value="true" />
<property name="l1.healthcheck.l2.ping.idletime" value="5000" />
<property name="l1.healthcheck.l2.ping.interval" value="1000" />
<property name="l1.healthcheck.l2.ping.probes" value="3" />
<property name="l1.healthcheck.l2.socketConnect" value="true" />
<property name="l1.healthcheck.l2.socketConnectTimeout" value="5" />
<property name="l1.healthcheck.l2.socketConnectCount" value="10" />

According to the HealthChecker "Max Time" formula, themaximum time (inmilliseconds) before
a remote node is considered to be lost is computed in the following way:
5000 + 10 [(3 x 1000) + 1000] = 45000

In this case, after the initial idle time of 5 seconds, the remote failed to respond to ping probes but
responded to every socket connection attempt, indicating that the node is reachable but not
functional (within the allowed time frame) or excessively longGCcycle. This tolerantHealthChecker
configuration declares a node dead in no more than 45 seconds.

If at some point the node had been completely unreachable (a socket connection attempt failed),
HealthChecker would have declared it dead sooner. Where, for example, the problem is a
disconnected network cable, the "Max Time" is likely to be even shorter:
5000 + 1[(3 * 1000) + (5 * 1000)] = 13000

In this case, HealthChecker declares a node dead in no more than 13 seconds.

Tuning HealthChecker to Allow for Interruptions

GC cycles do not affect a node's ability to respond to socket-connection requests, while network
interruptions do. This difference can be used to tune HealthChecker to work more efficiently in a
cluster where one or the other of these issues is more likely to occur:

To favor detection of network interruptions, adjust the socketConnectCount down (since socket
connections will fail). This will allow HealthChecker to disconnect a client sooner due to
network issues.

To favor detection of GC pauses, adjust the socketConnectCount up (since socket connections
will succeed). This will allow clients to remain in the cluster longer when no network
disconnection has occurred.

The ping interval increases the time before socket-connection attempts kick in to verify health of
a remote node. The ping interval can be adjusted up or down to add more or less tolerance in
either of the situations listed above.

16 BigMemory Max High-Availability Guide 4.3.10

2 Configuring the HealthChecker Properties

3 Configuring Reconnection and Rejoin Properties

■ Automatic Server Instance Reconnect ... 18

■ Automatic Client Reconnect ... 18

■ Special Client Connection Properties ... 19

■ Using Rejoin to Reconnect Terracotta Clients .. 20

■ Effective Client-Server Reconnection Settings ... 21

BigMemory Max High-Availability Guide 4.3.10 17

Automatic Server Instance Reconnect

An automatic reconnect mechanism can prevent short network disruptions from forcing a restart
for any Terracotta server instances in a server array with hot standbys. If not disabled, this
mechanism is by default in effect in clusters set to networked-based HA mode.

Note:
Increased Time-to-Failover - This feature increases time-to-failover by the timeout value set for
the automatic reconnect mechanism.

This event-based reconnectionmechanismworks independently and exclusively ofHealthChecker.
If HealthChecker has already been triggered, this mechanism cannot be triggered for the same
node. If thismechanism is triggered first by an internal Terracotta event,HealthChecker is prevented
frombeing triggered for the same node. The events that can trigger thismechanism are not exposed
by API but are logged.

Configure the following properties for the reconnect mechanism:

l2.nha.tcgroupcomm.reconnect.enabled - (DEFAULT: true)When set to "true" enables a server
instance to attempt reconnectionwith its peer server instance after a disconnection is detected.
Most use cases should benefit from enabling this setting.

l2.nha.tcgroupcomm.reconnect.timeout - Enabled if l2.nha.tcgroupcomm.reconnect.enabled
is set to true. Specifies the timeout (in milliseconds) for reconnection. Default: 2000. This
parameter can be tuned to handle longer network disruptions.

Automatic Client Reconnect

Clients disconnected from a Terracotta cluster normally require a restart to reconnect to the cluster.
An automatic reconnect mechanism can prevent short network disruptions from forcing a restart
for Terracotta clients disconnected from a Terracotta cluster.

Note:
Performance Impact of Using Automatic Client Reconnect - With this feature, clients waiting
to reconnect continue to hold locks. Some application threads may block while waiting to for
the client to reconnect.

This event-based reconnectionmechanismworks independently and exclusively ofHealthChecker.
If HealthChecker has already been triggered, this mechanism cannot be triggered for the same
node. If thismechanism is triggered first by an internal Terracotta event,HealthChecker is prevented
frombeing triggered for the same node. The events that can trigger thismechanism are not exposed
by API but are logged.

Configure the following properties for the reconnect mechanism:

l2.l1reconnect.enabled - (DEFAULT: false) When set to "true" enables a client to reconnect
to a cluster after a disconnection is detected. This property controls a server instance's reaction
to such an attempt. It is set on the server instance and is passed to clients by the server instance.
A client cannot override the server instance's setting. If a mismatch exists between the client
setting and a server instance's setting, and the client attempts to reconnect to the cluster, the

18 BigMemory Max High-Availability Guide 4.3.10

3 Configuring Reconnection and Rejoin Properties

client emits a mismatch error and exits. Most use cases should benefit from enabling this
setting.

l2.l1reconnect.timeout.millis - Enabled if l2.l1reconnect.enabled is set to true. Specifies
the timeout (inmilliseconds) for reconnection. This property controls a server instance's timeout
during such an attempt. It is set on the server instance and is passed to clients by the server
instance. A client cannot override the server instance's setting. Default: 2000. This parameter
can be tuned to handle longer network disruptions.

Special Client Connection Properties

Client connections can also be tuned for the following special cases:

Client failover after server failure

First-time client connection

The connection properties associated with these cases are already optimized for most typical
environments. If you attempt to tune these properties, be sure to thoroughly test the new settings.

Client Failover After Server Failure

When an active Terracotta server instance fails, and a mirror Terracotta server is available, the
mirror server becomes active. Terracotta clients connected to the previous active server
automatically switch to the new active server. However, these clients have a limited window of
time to complete the failover.

Tip:
Clusters with a Single Server - This reconnection window also applies in a cluster with a single
Terracotta server that is restarted. However, a single-server cluster must have <restartable>
enabled for the reconnection window to take effect.

Thiswindow is configured in the Terracotta configuration file using the <client-reconnect-window>
element:
<servers>
...
<client-reconnect-window>120</client-reconnect-window>
<!-- The reconnect window is configured in seconds, with a default value of

120. The default value is "built in," so the element does not have to
be explicitly added unless a different value is required. -->

...
</servers>

Clients that fail to connect to the new active server must be restarted if they are to successfully
reconnect to the cluster.

First-Time Client Connection

When a Terracotta client is first started (or restarted), it attempts to connect to a Terracotta server
instance based on the following properties:

BigMemory Max High-Availability Guide 4.3.10 19

3 Configuring Reconnection and Rejoin Properties

-1 == retry all configured servers eternally.
Must the client and server be running the same version of Terracotta?
l1.connect.versionMatchCheck.enabled = true
Time (in milliseconds) before a socket connection attempt is timed out.
l1.socket.connect.timeout=10000
Time (in milliseconds; minimum 10) between attempts to connect to a server.
l1.socket.reconnect.waitInterval=1000

To control connection attempts before configuration is resolved, set the following property on the
client:
-Dcom.tc.tc.config.total.timeout=5000

This property limits the time (in milliseconds) that a client spends attempting to make an initial
connection.

Using Rejoin to Reconnect Terracotta Clients

A Terracotta client may disconnect and be timed out (ejected) from the cluster. Typically, this
occurs because of network communication interruptions lasting longer than the configured HA
settings for the cluster. Other causes include long GC pauses and slowdowns introduced by other
processes running on the client hardware.

You can configure clients to automatically rejoin a cluster after they are ejected. If the ejected client
continues to run under nonstop cache settings, and then senses that it has reconnected to the cluster
(receives a clusterOnline event), it can begin the rejoin process.

Note the following about using the rejoin feature:

Disconnected clients can only rejoin clusters to which they were previously connected.

Clients rejoin as new members and will wipe all cached data to ensure that no pauses or
inconsistencies are introduced into the cluster.

Clients cannot rejoin a new cluster; if the TSA has been restarted and its data has not been
persisted, clients can never rejoin and must be restarted.

If the TSA has been restarted and its data has been persisted, clients are allowed to rejoin.

Any nonstop-related operations that begin (and do not complete) before the rejoin operation
completes may be unsuccessful and may generate a NonStopCacheException.

If a Terracotta client with rejoin enabled is running in a JVM with clients that do not have
rejoin, then only that client will rejoin after a disconnection. The remaining clients cannot rejoin
and may cause the application to behave unpredictably.

Once a client rejoins, the clusterRejoined event is fired on that client only.

Configuring Rejoin

The rejoin feature is disabled by default. To enable the rejoin feature in an Terracotta client, follow
these steps:

20 BigMemory Max High-Availability Guide 4.3.10

3 Configuring Reconnection and Rejoin Properties

1. Ensure that all of the caches in the Ehcache configuration file where rejoin is enabled have
nonstop enabled.

2. Ensure that your application does not create caches on the client without nonstop enabled.

3. Enable the rejoin attribute in the client's <terracottaConfig> element:
<terracottaConfig url="myHost:9510" rejoin="true" />

For more options on configuring <terracottaConfig>, see "Terracotta Clustering Configuration
Elements" in the BigMemory Max Configuration Guide.

Exception During Rejoin

Under certain circumstances, if a lock is being used by your application, an
InvalidLockAfterRejoinException could be thrown during or after client rejoin. This exception
occurswhen an unlock operation takes place on a lock obtained before the rejoin attempt completed.

To ensure that locks are released properly, application code should encapsulate lock-unlock
operations with try-finally blocks:
myLock.acquireLock();
try {
// Do some work.

} finally {
myLock.unlock();

}

Effective Client-Server Reconnection Settings

To prevent unwanted disconnections, it is important to understand the potentially complex
interaction between HA settings and the environment in which your cluster runs. Settings that
are not appropriate for a particular environment can lead to unwanted disconnections under
certain circumstances.

In general, it is advisable tomaintain an L1-L2HealthChecker timeout that falls between the L2-L2
HealthChecker timeout as modified in the following inequality:
L2-L2 HealthCheck + Election Time

< L1-L2 HealthCheck
< L2-L2 HealthCheck + Election Time + Client Reconnect Window

This allows a cluster's L1s to avoid disconnecting before a client reconnection window is opened
(a backup L2 takes over), or to not disconnect if that window is never opened (the original active
L2 is still functional). The Election Time and Client Reconnect Window settings, which are found
in the Terracotta configuration file, are respectively 5 seconds and 120 seconds by default.

For example, in a cluster where the L2-L2 HealthChecker triggers at 55 seconds, a backup L2 can
take over the cluster after 180 seconds (55 + 5 + 120). If the L1-L2 HealthChecker triggers after a
time that is greater than 180 seconds, clients may not attempt to reconnect until the reconnect
window is closed and it's too late.

BigMemory Max High-Availability Guide 4.3.10 21

3 Configuring Reconnection and Rejoin Properties

If the L1-L2 HealthChecker triggers after a time that is less than 60 seconds (L2-L2 HealthChecker
+ Election Time), then the clientsmay disconnect from the active L2 before its failure is determined.
Should the active L2 win the election, the disconnected L1s would then be lost.

A check is performed at server startup to ensure that L1-L2 HealthChecker settings are within the
effective range. If not, a warning with a prescription is printed.

22 BigMemory Max High-Availability Guide 4.3.10

3 Configuring Reconnection and Rejoin Properties

4 Testing High-Availability Deployments

■ Designing and Testing Cluster Architecture .. 24

■ High-Availability Network Architecture and Testing .. 24

■ Terracotta Cluster Tests .. 29

BigMemory Max High-Availability Guide 4.3.10 23

Designing and Testing Cluster Architecture

This section presents recommendations for designing and testing a robust cluster architecture.
While these recommendations have been tested and shown to be effective under certain
circumstances, in your custom environment additional testing is still necessary to ensure an optimal
setup, and to meet specific demands related to factors such as load.

High-Availability Network Architecture and Testing

To take advantage of the Terracotta active-mirror server configuration, certain network
configurations are necessary to prevent split-brain scenarios and ensure that Terracotta clients
(L1s) and server instances (L2s) behave in a deterministic manner after a failure occurs. This is
regardless of the nature of the failure, whether network, machine, or other type.

This section outlines two possible network configurations that are known to work with Terracotta
failover. While it is possible for other network configurations to work reliably, the configurations
listed in this document have been well tested and are fully supported.

Deployment Configuration: Simple

Deployment Configuration: Simple (no network redundancy)

Description

24 BigMemory Max High-Availability Guide 4.3.10

4 Testing High-Availability Deployments

This is the simplest network configuration. There is no network redundancy so when any failure
occurs, there is a good chance that all or part of the cluster will stop functioning. All failover
activity is up to the Terracotta software.

In this diagram, the IP addresses are merely examples to demonstrate that the L1s (L1a & L1b)
and L2s (TCserverA & TCserverB) can live on different subnets. The actual addressing scheme is
specific to your environment. The single switch is a single point of failure.

Additional configuration

There is no additional network or operating-system configuration necessary in this configuration.
Each machine needs a proper network configuration (IP address, subnet mask, gateway, DNS,
NTP, hostname) and must be plugged into the network.

Test Plan - Network Failures Non-Redundant Network

To determine that your configuration is correct, use the following tests to confirm all failure
scenarios behave as expected.

Expected OutcomeFailureTestID

Cluster continues as normal using only
L1b

Loss of L1a (link or system)FS1

Cluster continues as normal using only
L1a

Loss of L1b (link or system)FS2

Non-functioning clusterLoss of L1a & L1bFS3

Non-functioning clusterLoss of SwitchFS4

mirror L2 becomes new Active L2, L1s
fail over to new Active L2

Loss of Active L2 (link or system)FS5

Cluster continues as normal without TC
redundancy

Loss of mirror L2FS6

Non-functioning clusterLoss of TCservers A & BFS7

Test Plan - Network Tests Non-redundant Network

After the network has been configured, you can test your configuration with simple ping tests.

Expected OutcomeActionHostTestID

successful pingping every other hostallNT1

ping failure until link restoredpull network cable during
continuous ping

allNT2

BigMemory Max High-Availability Guide 4.3.10 25

4 Testing High-Availability Deployments

Expected OutcomeActionHostTestID

all pings cease until reload complete
and links restored

reloadswitchNT3

Deployment Configuration: Fully Redundant

Deployment Configuration: Fully Redundant

Description

This is the fully redundant network configuration. It relies on the failover capabilities of Terracotta,
the switches, and the operating system. In this scenario it is even possible to sustain certain double
failures and still maintain a fully functioning cluster.

In this diagram, the IP addressing scheme is merely to demonstrate that the L1s (L1a & L1b) can
be on a different subnet than the L2s (TCserverA & TCserverB). The actual addressing scheme

26 BigMemory Max High-Availability Guide 4.3.10

4 Testing High-Availability Deployments

will be specific to your environment. If you choose to implement with a single subnet, then there
will be no need for VRRP/HSRP but you will still need to configure a single VLAN (can be VLAN
1) for all TC cluster machines.

In this diagram, there are two switches that are connected with trunked links for redundancy and
which implement Virtual Router Redundancy Protocol (VRRP) or HSRP to provide redundant
network paths to the cluster servers in the event of a switch failure. Additionally, all servers are
configured with both a primary and secondary network link which is controlled by the operating
system. In the event of a NIC or link failure on any single link, the operating system should fail
over to the backup link without disturbing (e.g. restarting) the Java processes (L1 or L2) on the
systems.

The Terracotta fail over is identical to that in the simple case above, however both NIC cards on
a single host would need to fail in this scenario before the TC software initiates any fail over of its
own.

Additional configuration

Switch - Switches need to implement VRRP or HSRP to provide redundant gateways for each
subnet. Switches also need to have a trunked connection of two or more lines in order to
prevent any single link failure from splitting the virtual router in two.

Operating System - Hosts need to be configured with bonded network interfaces connected
to the two different switches. For Linux, choosemode 1.More information about Linux channel
bonding can be found in the Linux Bonding Driver description at http://
www.linuxfoundation.org/collaborate/workgroups/networking/bonding. Pay special attention
to the amount of time it takes for your VRRP or HSRP implementation to reconverge after a
recovery. You don't want your NICs to change to a switch that is not ready to pass traffic. This
should be tunable in your bonding configuration.

Test Plan - Network Failures Redundant Network

The following tests continue the tests listed in Network Failures (Pt. 1). Use these tests to confirm
that your network is configured properly.

Expected OutcomeFailureTestID

Failover to standby linkLoss of any primary network linkFS8

All nodes fail to their secondary linkLoss of all primary linksFS9

Remaining switch assumesVRRPaddress
and switches fail over NICs if necessary

Loss of any switchFS10

Cluster continues as normal using only
other L1

Loss of any L1 (both links or system)FS11

mirror L2 becomes the newActive L2, All
L1s fail over to the new Active L2

Loss of Active L2FS12

BigMemory Max High-Availability Guide 4.3.10 27

4 Testing High-Availability Deployments

http://www.linuxfoundation.org/collaborate/workgroups/networking/bonding
http://www.linuxfoundation.org/collaborate/workgroups/networking/bonding

Expected OutcomeFailureTestID

Cluster continues as normal without TC
redundancy

Loss of mirror L2FS13

non-functioning clusterLoss of both switchesFS14

Cluster continues as normal without
trunk redundancy

Loss of single link in switch trunkFS15

possible non-functioning cluster
depending on VRRP or HSRP
implementation

Loss of both trunk linksFS16

non-functioning clusterLoss of both L1sFS17

non-functioning clusterLoss of both L2sFS18

Test Plan - Network Testing Redundant Network

After the network has been configured, you can test your configuration with simple ping tests
and various failure scenarios.

The test plan for Network Testing consists of the following tests:

Expected OutcomeActionHostTestID

successful pingping every other hostanyNT4

failover to secondary link, no
noticeable network interruption

pull primary link during
continuous ping to any other
host

anyNT5

no effectpull standby link during
continuous ping to any other
host

anyNT6

mirror L2 becomes Active, L1s
fail over to new Active L2

pull both network linksActive L2NT7

no effectpull both network linksMirror L2NT8

nodes detect link down and fail
to standby link, brief network
outage if VRRP transition occurs

reloadswitchANT9

brief network outage if VRRP
transition occurs

reloadswitchBNT10

no effectpull single trunk linkswitchNT11

28 BigMemory Max High-Availability Guide 4.3.10

4 Testing High-Availability Deployments

Terracotta Cluster Tests

All tests in this section should be run after the Network Tests succeed.

Test Plan - Active L2 System Loss Tests - verify Mirror Takeover

The test plan for mirror takeover consists of the following tests:

Expected ResultStepsSetupTestTestID

L2-B(mirror) becomes
active. Takes the load.

L2-A is active, L2-B is
mirror. All systems

Active L2 Loss -
Kill

TAL1 1. Run app

2. Kill -9 Terracotta
PID on L2-A
(Active)

are running and
available to take
traffic.

No drop in TPS on
Failover.

L2-B(mirror) becomes
active. Takes the load.

L2-A is active, L2-B is
mirror. All systems

Active L2 Loss -
clean shutdown

TAL2 1. Run app

2. Run
~/bin/stop-tc-server.sh
on L2-A (Active)

are running and
available to take
traffic.

No drop in TPS on
Failover.

L2-B(mirror) becomes
active. Takes the load.

L2-A is Active, L2-B
is mirror. All systems

Active L2 Loss -
Power Down

TAL3 1. Run app

2. Power down
L2-A (Active)

are running and
available to take
traffic

No drop in TPS on
Failover.

L2-B(mirror) becomes
active. Takes the load.

L2-A is Active, L2-B
is mirror. All systems

Active L2 Loss -
Reboot

TAL4 1. Run app

2. Reboot L2-A
(Active)

are running and
available to take
traffic

No drop in TPS on
Failover.

L2-B(mirror) becomes
active. Takes the load.

L2-A is Active, L2-B
is mirror. All systems

Active L2 Loss -
Pull Plug

TAL5 1. Run app

2. Pull the power
cable on L2-A
(Active)

are running and
available to take
traffic

No drop in TPS on
Failover.

Test Plan - Mirror L2 System Loss Tests

System loss tests confirms High Availability in the event of loss of a single system. This section
outlines tests for testing failure of the Terracotta mirror server.

The test plan for testing Terracotta mirror Failures consist of the following tests:

BigMemory Max High-Availability Guide 4.3.10 29

4 Testing High-Availability Deployments

Expected ResultStepsSetupTestTestID

data directory needs
to be cleaned up, then

L2-A is active, L2-B is
mirror. All systems

Mirror L2 loss -
kill

TPL1 1. Run app

2. Kill -9 L2-B
(mirror)

are running and
available to take
traffic.

when L2-B is
restarted, it re-synchs
state from Active
Server.

data directory needs
to be cleaned up, then

L2-A is active, L2-B is
mirror. All systems

Mirror L2 loss
-clean

TPL2 1. Run app

2. Run
~/bin/stop-tc-server.sh
on L2-B (mirror)

are running and
available to take
traffic

when L2-B is
restarted, it re-synchs
state from Active
Server.

data directory needs
to be cleaned up, then

L2-A is active, L2-B is
mirror. All systems

Mirror L2 loss
-power down

TPL3 1. Run app

2. Power downL2-B
(mirror)

are running and
available to take
traffic

when L2-B is
restarted, it re-synchs
state from Active
Server.

data directory needs
to be cleaned up, then

L2-A is active, L2-B is
mirror. All systems

Mirror L2 loss
-reboot

TPL4 1. Run app

2. Reboot L2-B
(mirror)

are running and
available to take
traffic

when L2-B is
restarted, it re-synchs
state from Active
Server.

data directory needs
to be cleaned up, then

L2-A is active, L2-B is
mirror. All systems

Mirror L2 loss
-Pull Plug

TPL5 1. Run app

2. Pull plug on L2-B
(mirror)

are running and
available to take
traffic

when L2-B is
restarted, it re-synchs
state from Active
Server.

Test Plan - Failover/Failback Tests

This section outlines tests to confirm the cluster ability to fail-over to the mirror Terracotta server,
and fail back.

The test plan for testing fail over and fail back consists of the following tests:

Expected ResultStepsSetupTestTestID

After first failover
L2-A->L2-B, txns

L2-A is active, L2-B is
mirror. All systems

Failover/FailbackTFO1 1. Run application

30 BigMemory Max High-Availability Guide 4.3.10

4 Testing High-Availability Deployments

Expected ResultStepsSetupTestTestID

are running and
available to take
traffic

should continue. L2-A
should come up
cleanly in mirror
mode when tc-server

2. Kill -9 (or run
stop-tc-server) on
L2-A (Active)

3. After L2-B takes
over as Active,

is run. When second
failover occurs

start-tc-server on L2-B->L2-A, L2-A
should process txns.L2-A. (L2-A is

now mirror)

4. Kill -9 (or run
stop-tc-server) on
L2-B. (L2-A is
now Active)

Test Plan - Loss of Switch Tests

Tip:
This test can only be run on a redundant network

This section outlines testing the loss of a switch in a redundant network, and confirming that no
interrupt of service occurs.

The test plan for testing failure of a single switch consists of the following tests:

Expected ResultStepsSetupTestTestID

All traffic
transparently moves

2 Switches in
redundant

Loss of 1 SwitchTSL1 1. Run application

2. Power down/pull
plug on Switch

configuration. L2-A is
active, L2-B is mirror.
All systems are

to switch 2 with no
interruptions

running and available
to take traffic.

Test Plan - Loss of Network Connectivity

This section outlines testing the loss of network connectivity.

The test plan for testing failure of the network consists of the following tests:

Expected ResultStepsSetupTestTestID

All traffic
transparently moves

L2-A is active, L2-B is
mirror. All systems

Loss ofNICwiring
(Active)

TNL1 1. Run application

BigMemory Max High-Availability Guide 4.3.10 31

4 Testing High-Availability Deployments

Expected ResultStepsSetupTestTestID

are runnng and
available to traffic

to L2-B with no
interruptions

2. RemoveNetwork
Cable on L2-A

No user impact on
cluster

L2-A is active, L2-B is
mirror. All systems
are runnng and
available to traffic

Loss ofNICwiring
(mirror)

TNL2 1. Run application

2. RemoveNetwork
Cable on L2-B

Test Plan - Terracotta Cluster Failure

This section outlines the tests to confirm successful continued operations in the face Terracotta
Cluster failures.

The test plan for testing Terracotta Cluster failures consists of the following tests:

Expected ResultStepsSetupTestTestID

Cluster should come
up and begin taking
txns again

L2-A is active, L2-B is
mirror. All systems
are running and
available to traffic

Process Failure
Recovery

TF1 1. Run application

2. Bring down all
L1s and L2s

3. Start L2s then L1s

Should be able to run
application once all
servers are up.

L2-A is active, L2-B is
mirror. All systems
are running and
available to traffic

Server Failure
Recovery

TF2 1. Run application

2. Power down all
machines

3. Start L2s and then
L1s

Client Failure Tests

This section outlines tests to confirm successful continued operations in the face of Terracotta
client failures.

The test plan for testing Terracotta Client failures consists of the following tests:

Expected ResultStepsSetupTestTestID

L1-B should take all
incoming traffic.

L2-A is active, L2-B is
mirror. 2 L1s L1-A

L1 Failure -TCF1 1. Run application

2. kill -9 L1-A.and L1-B All systems
are running and
available to traffic

Some timeouts may
occur due to txns in
process when L1 fails
over.

32 BigMemory Max High-Availability Guide 4.3.10

4 Testing High-Availability Deployments

	Table of Contents
	About This Documentation
	Online Information and Support
	Data Protection

	1 About High Availability
	Overview of High-Availability Features
	Basic High-Availability Configuration
	Configuring High Availability Features

	2 Configuring the HealthChecker Properties
	About HealthChecker
	HealthChecker Properties
	How the HealthChecker Functions
	Calculating HealthChecker Maximum
	Configuration Examples
	Tuning HealthChecker to Allow for Interruptions

	3 Configuring Reconnection and Rejoin Properties
	Automatic Server Instance Reconnect
	Automatic Client Reconnect
	Special Client Connection Properties
	Using Rejoin to Reconnect Terracotta Clients
	Effective Client-Server Reconnection Settings

	4 Testing High-Availability Deployments
	Designing and Testing Cluster Architecture
	High-Availability Network Architecture and Testing
	Terracotta Cluster Tests

