
About BigMemory Max

Version 4.3.10

October 2021

This document applies to BigMemory 4.3.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: BMM-ABMM-4310-20211129

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About This Documentation..5
Online Information and Support...6
Data Protection...6

1 BigMemory Max Overview...7
What is BigMemory Max?...8
Basic Terms..9

2 Caching Basics...11
Will an Application Benefit from Caching?..12
How Much Will an Application Speed up with Caching?...13

3 Topology Types..17

4 Storage Tiers...19

5 Automatic Resource Control...21

About BigMemory Max 4.3.10 iii

iv About BigMemory Max 4.3.10

Table of Contents

About This Documentation

■ Online Information and Support ... 6

■ Data Protection ... 6

About BigMemory Max 4.3.10 5

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

6 About BigMemory Max 4.3.10

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

1 BigMemory Max Overview

■ What is BigMemory Max? .. 8

■ Basic Terms .. 9

About BigMemory Max 4.3.10 7

What is BigMemory Max?

BigMemory Max supports a distributed in-memory data-storage topology, which enables the
sharing of data among multiple caches and in-memory data stores in multiple JVMs. It uses a
Terracotta Server Array to manage data that is shared by multiple application nodes in a cluster.

BigMemory Max combines the power of the Terracotta Server Array with the ease of Ehcache for
caching and in-memory data storage. This enables you to:

Linearly scale your application to grow with requirements.

Rely on data that remains consistent across the cluster.

Offload databases to reduce the associated overhead.

Increase application performance with distributed in-memory data.

Access even more powerful APIs to leverage these capabilities.

BigMemory Max also enables you to query your caches and in-memory data stores using SQL.

As with Ehcache, you can use BigMemory Max as a general-purpose cache/in-memory data store
or a second-level cache for Hibernate. You can additionally integrate it with third-party products
such as ColdFusion, Google App Engine, and Spring.

8 About BigMemory Max 4.3.10

1 BigMemory Max Overview

Basic Terms

Cache

Wiktionary defines a cache as "a store of things that will be required in the future, and can be
retrieved rapidly." A cache is a collection of temporary data that either duplicates data located
elsewhere or is the result of a computation. Data that is already in the cache can be repeatedly
accessed with minimal costs in terms of time and resources.

Cache hit

When a data element is requested from cache and the element exists for the given key, it is referred
to as a cache hit (or simply, "a hit").

Cache miss

When a data element is requested from cache and the element does not exist for the given key, it
is referred to as a cache miss (or simply, "a miss").

System-of-Record

The authoritative source of truth for the data. The cache acts as a local copy of data retrieved from
or stored to the system-of-record (SOR). The SOR is often a traditional database, although it might
be a specialized file system or some other reliable long-term storage. For the purposes of using
Ehcache, the SOR is assumed to be a database.

About BigMemory Max 4.3.10 9

1 BigMemory Max Overview

10 About BigMemory Max 4.3.10

1 BigMemory Max Overview

2 Caching Basics

■ Will an Application Benefit from Caching? ... 12

■ How Much Will an Application Speed up with Caching? .. 13

About BigMemory Max 4.3.10 11

Will an Application Benefit from Caching?

Often the answer is yes, especially if the application is I/O bound. If an application is I/O bound,
it depends on the rate at which data can be obtained. If it is CPU bound, then the time taken
principally depends on the speed of theCPUandmainmemory. Caching can improve performance
and also reduce the load on a web server.

Speeding up CPU-bound Applications

CPU bound applications are often sped up by:

Improving algorithm performance

Parallelizing the computations across multiple CPUs (SMP) or multiple machines (clusters).

Upgrading the CPU speed.

A cache can temporarily store computations for reuse, including but not limited to:

Large web pages that have a high rendering cost

Authentication status, where authentication requires cryptographic transforms

Speeding up I/O-bound Applications

Many applications are I/O bound, either by disk or network operations. In the case of databases
they can be limited by both.

Network operations can be bound by a number of factors:

Time to set up and tear down connections

Latency, or the minimum round trip time

Throughput limits

Overhead for marshalling and unmarshalling

The caching of data can often help significantly with I/O bound applications. For example, you
might use BigMemory Maxfor:

Data Access Object caching for Hibernate

Web page caching, for pages generated from databases

Increased Application Scalability

The corollary to increased performance is increased scalability. Suppose you have a database that
can perform up to 100 expensive queries per second. Beyond that threshold, the database backs
up and if addition connections occur, the database slowly dies.

In this case, caching is likely to reduce the workload. If caching can cause 90% of those 100 queries
to be cache hits and not impact the database, the database can scale 10 times higher.

12 About BigMemory Max 4.3.10

2 Caching Basics

How Much Will an Application Speed up with Caching?

In applications that are I/O bound, which is most business applications, most of the response time
is getting data from a database. In a system where each piece of data is used only one time, there
is no benefit. In a systemwhere a high proportion of the data is reused, the speed up is significant.

Applying Amdahl's Law

Amdahl’s law finds the total system speedup from a speedup in part of the system.
1 / ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl’s law to common situations. In the interests
of simplicity, we assume:

A single server.

A system with a single thing in it, which when cached, gets 100% cache hits and lives forever.

Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1000 times faster from cache than from a
database. .

A typical Hibernate query will return a list of IDs from the database, and then attempt to load
each. If Session.iterate() is used, Hibernate goes back to the database to load each object.

Imagine a scenario where we execute a query against the database that returns a hundred IDs and
then loads each one. The query takes 20% of the time and the round trip loading takes the rest
(80%). The database query itself is 75% of the time that the operation takes. The proportion being
sped up is thus 60% (75% * 80%).

The expected system speedup is thus:
1 / ((1 - .6) + .6 / 1000)
= 1 / (.4 + .0006)
= 2.5 times system speedup

Web Page Caching

An observed speed up from caching a web page is 1000 times. BigMemory Max can retrieve a
page from its SimplePageCachingFilter in a few milliseconds.

Because the web page is the result of a computation, it has a proportion of 100%.

The expected system speedup is thus:
1 / ((1 - 1) + 1 / 1000)
= 1 / (0 + .0001)
= 1000 times system speedup

About BigMemory Max 4.3.10 13

2 Caching Basics

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liveness requirements vary in different parts
of the page. Here the SimplePageFragmentCachingFilter can be used.

Let's say we have a 1000 fold improvement on a page fragment that takes 40% of the page render
time.

The expected system speedup is thus:
1 / ((1 - .4) + .4 / 1000)
= 1 / (.6 + .0004)
= 1.6 times system speedup

Cache Efficiency

Cache entries do not live forever. Some examples that come close are:

Static web pages or web page fragments, like page footers.

Database reference data, such as the currencies in the world.

Factors that affect the efficiency of a cache are:

Liveliness—How live the data needs to be. High liveliness means that the data can change
frequently, so the value in cache will soon be out of date. Low liveliness means that the data
changes only rarely, so the value in cache will often match the current real value of the
non-cached data. In general, the less live an item of data is, the more it can be cached.

Proportion of data cached—What proportion of the data can fit into the resource limits of
the machine. For 32-bit Java systems, there was a hard limit of 2 GB of address space. 64-bit
systems do not have that constraint, but garbage collection issues often make it impractical to
have the Java heap be large. Various eviction algorithms are used to evict excess entries.

Shape of the usage distribution—If only 300 out of 3000 entries can be cached, but the Pareto
(80/20 rule) distribution applies, it might be that 80% of the time, those 300 will be the ones
requested. This drives up the average request lifespan.

Read/Write ratio—The proportion of times data is read comparedwith howoften it is written.
Things such as the number of empty rooms in a hotel change often, and will be written to
frequently.However the details of a room, such as number of beds, are immutable, and therefore
a maximum write of 1 might have thousands of reads.

BigMemory Max keeps these statistics for each cache and each element, so they can be measured
directly rather than estimated.

Cluster Efficiency

Assume a round-robin load balancer where each hit goes to the next server. The cache has one
entry which has a variable lifespan of requests, say caused by a time to live (TTL) setting. The
following table shows how that lifespan can affect hits and misses.

14 About BigMemory Max 4.3.10

2 Caching Basics

Server 1 Server 2 Server 3 Server 4
M M M M
H H H H
H H H H
H H H H
H H H H
...

The cache hit ratios for the system as a whole are as follows:
Entry
Lifespan Hit Ratio Hit Ratio Hit Ratio Hit Ratio
in Hits 1 Server 2 Servers 3 Servers 4 Servers
2 1/2 0/2 0/2 0/2
4 3/4 2/4 1/4 0/4
10 9/10 8/10 7/10 6/10
20 19/20 18/20 17/20 16/10
50 49/50 48/50 47/20 46/50

The efficiency of a cluster of standalone caches is generally:
(Lifespan in requests - Number of Standalone Caches) / Lifespan in requests

Where the lifespan is large relative to the number of standalone caches, cache efficiency is not
much affected. However when the lifespan is short, cache efficiency is dramatically affected. This
problem can be solved using the distributed caching capability provided in BigMemoryMax.With
distributed cache, entries put into a local cache are propagated to other servers in the cluster.

A Cache Version of Amdahl's Law

Applying Amdahl's law to caching, we now have:
1 / ((1 - Proportion Sped Up * effective cache efficiency) +
(Proportion Sped Up * effective cache efficiency)/ Speed up)
where:
effective cache efficiency = (cache efficiency) * (cluster efficiency)

Web Page Example

Applying this formula to the earlier web page cache example where we have cache efficiency of
35% and average request lifespan of 10 requests and two servers:
cache efficiency = .35
cluster efficiency = .(10 - 1) / 10

= .9
effective cache efficiency = .35 * .9

= .315
system speedup:

1 / ((1 - 1 * .315) + 1 * .315 / 1000)
= 1 / (.685 + .000315)
= 1.45 times system speedup

If the cache efficiency is 70% (two servers):
cache efficiency = .70
cluster efficiency = .(10 - 1) / 10

= .9

About BigMemory Max 4.3.10 15

2 Caching Basics

effective cache efficiency = .70 * .9
= .63

system speedup:
1 / ((1 - 1 * .63) + 1 * .63 / 1000)
= 1 / (.37 + .00063)
= 2.69 times system speedup

If the cache efficiency is 90% (two servers):
cache efficiency = .90
cluster efficiency = .(10 - 1) / 10

= .9
effective cache efficiency = .9 * .9

= .81
system speedup:

1 / ((1 - 1 * .81) + 1 * .81 / 1000)
= 1 / (.19 + .00081)
= 5.24 times system speedup

The benefit is dramatic because Amdahl’s law is most sensitive to the proportion of the system
that is sped up.

16 About BigMemory Max 4.3.10

2 Caching Basics

3 Topology Types

Standalone – The data set is held in the application node. Any other application nodes are
independent with no communication between them. If a standalone topology is used where
there are multiple application nodes running the same application, then there is Weak
Consistency between them. They contain consistent values for immutable data or after the
time-to-live on an element has completed and the element needs to be reloaded.

Distributed – The data is held in a remote server (or array of servers) with a subset of recently
used data held in each application node. This topology offers a rich set of consistency options.

A distributed topology is the recommended approach in a clustered or scaled-out application
environment. It provides the highest level of performance, availability, and scalability. The
distributed topology is available only with BigMemory Max.

Many production applications are deployed in clusters of multiple instances for availability and
scalability. Without a distributed topology, application clusters will experience data drift, meaning
that updates made to the data by one application does not appear in the other instances. This also
happens to web session data. Using a distributed topology ensures that the data for all the
application instances is kept in sync.

About BigMemory Max 4.3.10 17

18 About BigMemory Max 4.3.10

3 Topology Types

4 Storage Tiers

You can divide a cache or in-memory data set across the following storage areas, referred to as
tiers:

MemoryStore – On-heap memory used to hold cache elements. This tier is subject to Java
garbage collection.

OffHeapStore – Provides overflow capacity to the MemoryStore. Limited in size only by
available RAM. Not subject to Java garbage collection (GC). Available only with BigMemory
products.

DiskStore – Backs up in-memory cache elements and provides overflow capacity to the other
tiers.

MemoryStore

Thememory store is always enabled and exists in heapmemory. It has the following characteristics:

It accepts all data, whether serializable or not.

It is the fastest storage option.

Is thread safe for use by multiple concurrent threads.

If you use OffHeapStore (available with the BigMemory products only), MemoryStore holds a
copy of the hottest subset of data from the OffHeapStore.

All caches specify their maximum in-memory size, in terms of the number of elements, at
configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an existing
element is either deleted, if overflow is not enabled, or evaluated for spooling to another tier, if
overflow is enabled.

If overflow is enabled, a check for expiry is carried out. If it is expired it is deleted; if not it is
spooled.

For information about sizing and configuring the MemoryStore, see "ConfiguringMemory Store"
in the BigMemory Max Configuration Guide.

About BigMemory Max 4.3.10 19

OffHeapStore

The OffHeapStore extends a cache to memory outside the of the Java heap. This store, which is
not subject to Java garbage collection (GC), is limited only by the amount of RAM available. Using
OffHeapStore, you can create extremely large local caches. OffHeapStore is only available with the
BigMemory products.

Because off-heap data is stored in bytes, only data that is Serializable is suitable for the
OffHeapStore. Any non serializable data overflowing to the OffHeapMemoryStore is simply
removed, and a WARNING level log message is emitted.

Since serialization and deserialization take place on putting and getting from the off-heap store,
it is theoretically slower than the MemoryStore. This difference, however, is mitigated when
garbage collection associated with larger heaps is taken into account.

For the best performance, you should allocate to a cache asmuch heapmemory as possiblewithout
triggering GC pauses. Then, use the OffHeapStore to hold the data that cannot fit in heap (without
causing GC pauses).

For information about sizing and configuring OffHeapStore, see "Configuring OffHeapStore" in
the Configuration Guide for your BigMemory product.

DiskStore

The DiskStore provides a thread-safe disk-spooling facility that can be used for either additional
storage or persisting data through system restarts.

Note:
The DiskStore tier is available only for local (standalone) instances of cache. When you use a
distributed cache (available only in BigMemoryMax), a Terracotta Server Array is used instead
of a disk tier.

Only data that is Serializable can be placed in the DiskStore. Writes to and from the disk use
ObjectInputStream and the Java serialization mechanism. Any non-serializable data overflowing
to the disk store is removed and a NotSerializableException is thrown. Be aware that serialization
speed is affected by the size of the objects being serialized and their type. For example, it has been
shown that:

The serialization time for a Java object consisting of a large Map of String arrays was 126ms,
where the serialized size was 349,225 bytes.

The serialization time for a byte[] was 7ms, where the serialized size was 310,232 bytes.

Byte arrays are 20 times faster to serialize, making them a better choice for increasing disk-store
performance.

Configuring a disk store is optional. If all caches use only memory and off-heap stores, then there
is no need to configure a disk store. This simplifies configuration, and uses fewer threads.

For more information about configuring and sizing the DiskStore, see "Configuring Fast Restart"
in the Configuration Guide for your BigMemory Product.

20 About BigMemory Max 4.3.10

4 Storage Tiers

5 Automatic Resource Control

Automatic Resource Control (ARC) gives you fine-grained controls for tuning performance and
enabling trade-offs between throughput, latency and data access. Independently adjustable
configuration parameters include differentiated tier-based sizing and pinning hot or eternal data
in the most effective tier.

ARC offers a wealth of benefits, including:

Sizing limitations on in-memory caches to avoid OutOfMemory errors

Pooled sizing – no requirement to size caches individually

Differentiated tier-based sizing for flexibility

Sizing by bytes, entries, or percentages for more flexibility

Dynamically Sizing Stores

Tuning often involves sizing stores appropriately. There are a number of ways to size the different
BigMemoryMax storage tiers using simple configuration sizing attributes. For information about
how to tune tier sizing by configuring dynamic allocation of memory and automatic balancing,
see "Sizing Storage Tiers" in the Configuration Guide for BigMemory Max.

Pinning Data

One of the most important aspects of running an in-memory data store involves managing the
life of the data in each tier. Formore information aboutmanaging life of data in a tier using pinning,
expiration, and eviction, see "Managing Data Life" in the Configuration Guide for BigMemoryMax.

About BigMemory Max 4.3.10 21

22 About BigMemory Max 4.3.10

5 Automatic Resource Control

	Table of Contents
	About This Documentation
	Online Information and Support
	Data Protection

	1 BigMemory Max Overview
	What is BigMemory Max?
	Basic Terms

	2 Caching Basics
	Will an Application Benefit from Caching?
	How Much Will an Application Speed up with Caching?

	3 Topology Types
	4 Storage Tiers
	5 Automatic Resource Control

