
About Terracotta

Version 10.15

October 2022

This document applies to Terracotta 10.15 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: TC-AB-1015-20221101

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About This Documentation..5
Online Information and Support...6
Data Protection...7

1 Introduction to Terracotta..9

2 What is Ehcache?...13
Features..14
Basic Terms..16
Data Freshness and Expiration...17
Storage Tiers..17
Topology Types...18

3 What is TCStore?...21
Core Concepts of TCStore...22
API Usages..26
Advanced Topics..32
Frequently Asked Questions..34

4 What is the Terracotta Server?..37

5 What is the Terracotta Management Console?..39

6 JAVADOC Documentation of the APIs..41

About Terracotta 10.15 iii

iv About Terracotta 10.15

Table of Contents

About This Documentation

■ Online Information and Support ... 6

■ Data Protection ... 7

About Terracotta 10.15 5

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/u/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

6 About Terracotta 10.15

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/u/softwareag/
https://hub.docker.com/u/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

About Terracotta 10.15 7

8 About Terracotta 10.15

1 Introduction to Terracotta

Terracotta is a comprehensive, distributed in-memory data management solution which caters to
caching and operational storage use cases, and enables transactional and analytical processing.
Terracotta has one of themost powerful query and computation capabilities in its class, leveraging
native JDK features such as Java Streams, collections, and functions.

Terracotta supports the following sub-systems:

1. A storage sub-system called TCStore, that caters to operational store and compute functionality.
The API exposing this sub-system's functionality is the TCStore API.

2. A caching sub-system called Ehcache, that caters to caching functionality. The API exposing
this sub-system's functionality is the Ehcache API.

Both sub-systems are backed by the Terracotta Server, which provides a common platform for
distributed in-memory data storage with scale-out, scale-up and high availability features.

The Terracotta APIs

Terracotta offers two distinct APIs for caching and storage:

Ehcache API
The Ehcache API is an improved version of Java's de facto caching API, Ehcache. It has a
powerful, streamlined, modernized caching API taking advantage of newer Java features as
well as the capability to be used via the JSR-107 "JCache" API. Some of the key high level feature
of this API include:

Leverages Java generics and simplifies cache interactions

Full compatibility with javax.cache API (JSR-107)

Storage

In-memory storage with optional persistence to disk and ultra-fast recovery

Java-based Key/Value store optimized for caching workloads

The industry's first and best Offheap storage capabilities

Distributed Store

Supports various scale-out and HA deployment configurations

About Terracotta 10.15 9

Flexible, fine-granular configuration of availability, consistency, and durability

TCStore API
TCStore API is an interface for distributed in-memory data storage and computation, which
has powerful ties to JDK features related to streams, collections and functions. Under the hood
it is powered by a completely new and powerful storage enginewhich is an "Aggregate oriented,
Key-Value, wide-column store" built upon a very high performance and highly scalable
architecture. Some of the key high level feature of this API include:

Flexible Data Model

Aggregate oriented, Key-Value store

Loose schema: modeling of data with structured and typed aggregate values within
records

Storage

In-memory storage with optional persistence to disk and ultra-fast recovery

Java-based Key/Value store optimized for data storage workloads

Secondary in-memory indexes to speed-up search and compute

Distributed Store

Supports various scale-out and HA deployment configurations

Flexible, fine-granular configuration of availability, consistency, and durability

Data Analysis

Search and Analyze capabilities that work naturally with Java 8 technologies

Java stream API to filter, aggregate, map data

DSLwith a library of pre-implemented lambda functions enabling server-side execution
of queries

Along with the two separate APIs, Terracotta is built upon the next generation of Terracotta
Server/Server Array. Both the Ehcache API and the TCStore API leverage the power of this new
distributed computing platform with reduced complexity and enhanced performance and
scalability. Similarly the shared platform provides common monitoring and management
capabilities.

Illustration of the separation of use cases. Ehcache versus TC Store API with a
common platform and management.

10 About Terracotta 10.15

1 Introduction to Terracotta

Ehcache versus TCStore: Why Two Different APIs?

The two different APIs help simplify development and separation of data management concerns
based upon use case. In a nutshell:

Ehcache is the right API to: ...

access relevant data, in large amounts, at maximum speed by simple key/value look-up

load hot, fresh data for as short as youmay need it and replace stale data by more relevant
data from the System of Record

offload work from the System of Record
because Ehcache ...

continually works to keep hotter, fresher entries available at the fastest, in-memory speeds

is optimized to for application caching needs

TCStore is the right API to: ...

store data that you always expect to be there (free from eviction concerns)

store data that you expect to perform reliable search and queries on, at in-memory speeds

be your database of record
because TCStore ...

allows data to be structured and strongly typed

entries can be looked up by key and queried on by field

It's important to understand that there is a strict separation between the Ehcache API and the
TCStore API, even when used with the same Terracotta Server:

About Terracotta 10.15 11

1 Introduction to Terracotta

Any information placed using the TCStore API cannot be retrieved using the Ehcache API and
vice versa.

Terracotta Server provides the core distributed storage platform and is common for data placed
using both the Ehcache API and the TCStore API, yet the cache data is managed separately from
stored data.

12 About Terracotta 10.15

1 Introduction to Terracotta

2 What is Ehcache?

■ Features ... 14

■ Basic Terms .. 16

■ Data Freshness and Expiration .. 17

■ Storage Tiers .. 17

■ Topology Types ... 18

About Terracotta 10.15 13

Features

Ehcache is the most widely-used Java-based cache. It is:

robust,

proven,

full-featured,

and integrates with other popular libraries and frameworks.

Ehcache scales from in-process caching, all theway tomixed in-process/out-of-process deployments
with terabyte-sized caches.

Fast and Lightweight

Fast

Ehcache's concurrency features are designed for large, high concurrency systems.

Simple

Many users of Ehcache hardly know they are using it. Sensible defaults require no initial
configuration.

Small footprint

Ehcache strives to maintain a small footprint - keeping your apps as light as they can be.

Minimal dependencies

The only dependency for core use is SLF4J.

Scalable

Provides for scalability into terabytes

The largest Ehcache installations utilize multiple terabytes of data storage.

With off-heap storage, Ehcache has been tested to store 6TB of data in a single process (JVM).

Scalable to hundreds of caches

The largest Ehcache installations use hundreds of caches.

Tuned for high concurrent load on large/wide multi-CPU servers

Ehcache is specifically built and tested to runwell under highly concurrent access on systemswith
dozens of cores. This results in an optimal balance between thread safety and performance.

Flexible

Provides multiple strategies for:

14 About Terracotta 10.15

2 What is Ehcache?

Expiration policies

Storage tiers (on-heap, off-heap, disk, clustered)

Configuration of caches

Standards Based

Support of JSR-107 JCache - Java Temporary Caching API

You can use Ehcache as a JCache provider. This allows you to use JCache API calls to develop a
complete application, without the need to use any Ehcache API calls.

Distributed Caching

Ehcache supports simple yet high performance distributed caching.

Enterprise Java and Applied Caching

High quality implementations for common caching scenarios and patterns.

Cacheable Commands

This is the trusty old command pattern with a twist: asynchronous behavior, fault tolerance and
caching. Creates a command, caches it and then attempts to execute it.

Works with Hibernate

Ehcache is popularly used as Hibernate's second-level cache.

Transactional support through JTA

Ehcache supports JTA and is a fully XA compliant resource participating in the transaction,
two-phase commit and recovery.

See the complete Transaction Module Java Documentation at www.ehcache.org.

API Documentation

The Javadoc documentation of the API can be found here:

www.ehcache.org/documentation/

Open Source Kit

There is an open-source version of Ehcache, pairedwith Terracotta Server open source functionality.
This can be found at http://www.terracotta.org/open-source/.

About Terracotta 10.15 15

2 What is Ehcache?

http://www.ehcache.org/
http://www.ehcache.org/documentation/
http://www.terracotta.org/open-source/

Basic Terms

Cache

A cache is a collection of temporary data that either duplicates data located elsewhere or is the
result of a computation. Data that is already in the cache can be repeatedly accessedwith minimal
costs in terms of time and resources.

Cache Entry

A cache entry consists of a key and its mapped data value within the cache.

Cache hit

When a data element is requested from cache and the element exists for the given key, it is referred
to as a cache hit (or simply, "a hit").

Cache miss

When a data element is requested from cache and the element does not exist for the given key, it
is referred to as a cache miss (or simply, "a miss").

Eviction

When entries are removed from the cache in order tomake room for newer entries (typicallywhen
the cache has run out of data storage capacity), it is referred to as eviction.

Expiration

When entries are removed from the cache after some defined amount of time has passed, it is
referred to as expiration.

Hot Data

Data that has recently been used by an application is very likely to be accessed again soon. Such
data is considered hot. A cache may attempt to keep the hottest data most quickly available, while
attempting to choose the least hot data for eviction.

System-of-Record

The system-of-record is the authoritative source of truth for the data. The cache acts as a local copy
of data retrieved from or stored to the system-of-record (SOR). The SOR is often a traditional
database, although it might be a specialized file system or some other reliable long-term storage.
It can also be a conceptual component such as an expensive computation.

16 About Terracotta 10.15

2 What is Ehcache?

Data Freshness and Expiration

Data Freshness

Data freshness describes how up-to-date a copy of data (e.g. in a cache) is compared to the source
version of the data (e.g. in the system-of-record (SoR). A stale copy is considered to be out of sync
(or likely to be out of sync) with the SoR.

Databases (and other SORs) weren't built with caching outside of the database in mind, and
therefore don't normally comewith any default mechanism for notifying external processes when
data has been updated or modified. Thus external components that have loaded data from the
SoR have no direct way of ensuring that data is not stale.

Cache Entry Expiration

Ehcache can assist you with reducing the likelihood that stale data is used by your application by
expiring cache entries after some amount of configured time.Once expired, the entry is automatically
removed from the cache.

For instance, the cache could be configured to expire entries five seconds after they are put into
the cache - which is a time-to-live TTL setting. Or to expire entries 17 seconds after the last time
the entry was retrieved from the cache - which is a time-to-idle TTI setting.

Note:
TTI is not supported for caches with clustered storage tiers.

The expiration configuration that would be most appropriate for your cache (if any) would be a
mixture of a business and technical decision based upon the requirements and assumptions of
your application.

Storage Tiers

You can configure Ehcache to use various data storage areas. When a cache is configured to use
more than one storage area, those areas are arranged and managed as tiers. They are organized
in a hierarchy, with the lowest tier being called the authority tier and the others being part of the
caching tier. The caching tier can itself be composed of more than one storage area. The hottest
data is kept in the caching tier, which is typically less abundant but faster than the authority tier.
All the data is kept in the authority tier, which is slower but more abundant.

Data stores supported by Ehcache include:

On-Heap Store – Utilizes Java's on-heap RAMmemory to store cache entries. This tier utilizes
the same heap memory as your Java application, all of which must be scanned by the JVM
garbage collector. The more heap space your JVM utilizes the more your application
performance will be impacted by garbage collection pauses. This store is extremely fast, but
is typically your most limited storage resource.

About Terracotta 10.15 17

2 What is Ehcache?

Off-Heap Store – Limited in size only by available RAM.Not subject to Java garbage collection
(GC). Is quite fast, yet slower than the On-Heap Store because data must be moved to and
from the JVM heap as it is stored and re-accessed.

Disk Store – Utilizes a disk (file system) to store cache entries. This type of storage resource
is typically very abundant butmuch slower than the RAM-based stores. As for all applications
using disk storage, it is recommended to use a fast and dedicated disk to optimize the
throughput.

Clustered Storage – This data store is a cache on a remote server. The remote server may
optionally have a failover server providing improved high availability. Since clustered storage
comes with performance penalties due to such factors as network latency as well as for
establishing client/server consistency, this tier, by nature, is slower than local off-heap storage.

Diagram illustrating how an Ehcache application is organized. A Cache Manager
and the tiers of data stores. Applications may have one or more Cache Managers.
A Cache Manager can manage many Caches. Caches are configured to utilize one
or more Tiers for storing cache entries. Ehcache keeps the hotter data in faster tiers.

Topology Types

The following describes the basic types of caching topologies:

18 About Terracotta 10.15

2 What is Ehcache?

Standalone

The data set is held in the application node. Any other application nodes are independent with
no communication between them. If a standalone topology is used where there are multiple
application nodes running the same application, then their caches are completely independent.

Distributed / Clustered

The data is held in a remote server (or array of servers) with a subset of hot data held in each
application node. This topology offers a selection of consistency options. A distributed topology
is the recommended approach in a clustered or scaled-out application environment. It provides
the best combination of performance, availability, and scalability.

Diagram illustrating two applications accessing a Terracotta Server. In the
application, hot data is cached locally, hotter data in faster tiers.The data cached
by one application instance is available to all cluster members.The full dataset is
available to the cluster. One or more mirror servers may be deployed to provide
High Availability.The ability to span data across multiple active servers for larger
scale deployments is available commercially.

It is common for many production applications to be deployed in clusters of multiple instances
for availability and scalability. However, without a distributed cache, application clusters exhibit
a number of undesirable behaviors, such as:

Cache Drift - If each application instance maintains its own cache, updates made to one cache
will not appear in the other instances. A distributed cache ensures that all of the cache instances
are kept in sync with each other.

About Terracotta 10.15 19

2 What is Ehcache?

Database Bottlenecks - In a single-instance application, a cache effectively shields a database
from the overhead of redundant queries. However, in a distributed application environment,
each instance must load and keep its own cache fresh. The overhead of loading and refreshing
multiple caches leads to database bottlenecks as more application instances are added. A
distributed cache eliminates the per-instance overhead of loading and refreshing multiple
caches from a database.

20 About Terracotta 10.15

2 What is Ehcache?

3 What is TCStore?

■ Core Concepts of TCStore ... 22

■ API Usages .. 26

■ Advanced Topics .. 32

■ Frequently Asked Questions .. 34

About Terracotta 10.15 21

Core Concepts of TCStore

TCStore organizes its data into collections, so-called datasets.

Each Dataset is comprised of zero or more records.

Each Record has a key, unique within the dataset, and zero or more cells.

Each Cell has a name, unique within the record; a declared type; and a non-null value.

While records within a dataset must have a uniform key type, records are not required to have
uniform content— each recordmay be comprised of cells having different names and/or different
types.

Each record and each cell is self-describing and is understood by the storage engine.

TCStore Data Storage Model - typed data.

Since records and cells are self-describing, records and cells can be manipulated efficiently:

retrieved: no need to retrieve the entire Record, when all you want is a single Cell;

mutated: cell values can be directly changed such as incrementing an Integer cell;

searched: nearly, every cell type is searchable. Indexesmay be added to improve search patterns;

computed: computation, mutative or not, to be executed against the records of a dataset;

Using popular/industry definitions, TCStore is an "Aggregate oriented, Key-Value, wide-column
NoSQL store". As noted above, the individual records stored within TCStore contain cells with
type information enabling the store to make use of the data it holds. However, like other NoSQL
stores, TCStore is schema-less in its core design, allowing individual records to contain identical
sets of cells, a subset of common cells, or a completely different sets of cells.

As such, and like otherNoSQL stores, TCStore is not intended for usage patterns that are traditional
to tabular data or RDBMSs.Data containedwithin TCStore are not and cannot be directly relational,
and care should be taken to use modeling techniques (such as de-normalization of data) other
than those commonly used with RDBMSs.

Type System

Fundamental to TCStore is the type system used in the data model.

The supported data types are:

22 About Terracotta 10.15

3 What is TCStore?

Associated with ...Description/Mapping toType

cells of type Cell<Boolean>Aboolean value (either true or
false), mapping to
java.lang.Boolean

BOOL

cell definitions of type BoolCellDefinition
and CellDefinition<Boolean>

cells of type Cell<byte[]>An array of bytes, signed 8-bit
each, mapping to byte[]

BYTES

cell definitions of type BytesCellDefinition
and CellDefinition<byte[]>

cells of type Cell<Character>A single UTF-16 character,
16-bit unsigned, mapping to
java.lang.Character

CHAR

cell definitions of type CharCellDefinition
and CellDefinition<Character>

cells of type Cell<Double>A 64-bit floating point value,
mapping to java.lang.Double

DOUBLE

cell definitions of type DoubleCellDefinition
and CellDefinition<Double>

cells of type Cell<Integer>A signed 32-bit integer value,
mapping to java.lang.Integer

INT

cell definitions of type IntCellDefinition and
CellDefinition<Integer>

cells of type Cell<Long>A signed 64-bit integer value,
mapping to java.lang.Long

LONG

cell definitions of type LongCellDefinition
and CellDefinition<Long>

cells of type Cell<String>A variable length sequence of
CHAR, mapping to
java.lang.String

STRING

cell definitions of type StringCellDefinition
and CellDefinition<String>

The key of a Recordmay be an instance of any of the above types except BYTES. The value of a Cell
may be an instance of any one of the above types.

Datasets

A Dataset is a collection of Record instances. Each Record instance is uniquely identified by a key
within the Dataset. The key type is declared when the Dataset is created. Aside from the Record
key type, a Dataset has no predefined schema.

Records

A Record is a key plus an unordered set of "name to (typed) value" pairs representing a natural
aggregate of your domainmodel. Each Recordwithin a Dataset can hold completely different sets
of cells, as there is no schema to conform to. Record instances held within a given Dataset are

About Terracotta 10.15 23

3 What is TCStore?

immutable. Changing one or multiple values on a Record creates a new instance of that Record
which replaces the old instance.

Record represents the only atomically alterable type in TCStore. You can mutate as many Cells of
a given Record as you wish as an atomic action, but not across multiple Record instances. This
includes adding and removing cells at the same time as changing the values of existing cells.

Cell Definitions and Values

A Record contains zero or more Cell instances, each derived from a CellDefinition. A
CellDefinition is a "type/name" pair (e.g. String firstName). From a CellDefinition you can
create a Cell (e.g. firstName = "Alex", where "Alex" is of type String) to store in a Record. The
name of the Cell is the name from the CellDefinition used to create the cell; the value of the Cell
is of the type specified in the CellDefinition used to create the cell.

Cell instances cannot contain null values. However, the API will let you test a Record for the
absence of a cell.

Note:
The Cell instances within a Record are unordered.

Creating a CellDefinition Instance
There are multiple ways of providing a CellDefinition describing cells used in a dataset. The
following example shows various ways of specifying a CellDefinition for a cell holding a
String value.
StringCellDefinition NAME =

CellDefinition.defineString("nameCell"); // <1>
CellDefinition<String> ALT_NAME =

CellDefinition.defineString("altNameCell"); // <2>
CellDefinition<String> BASIC_NAME =

CellDefinition.define("basicNameCell", Type.STRING); // <3>

1. A CellDefinition supporting a value type of String can be using the
CellDefinition.defineString()method.

2. A StringCellDefinition is also a CellDefinition<String>.

3. In addition to the CellDefinition.defineString()method, the CellDefinition.define()
may be used to create a CellDefinition for a String.

Cell definitions for other supported types (see “Type system” on page 22) are handled similarly.
The following are the CellDefinition instances used in several examples shown in this document:
Counter Demo Cells
LongCellDefinition counterCell = CellDefinition.defineLong("longCounter");
BoolCellDefinition stoppedCell = CellDefinition.defineBool("stopped");
StringCellDefinition stoppedByCell = CellDefinition.defineString("stoppedBy");

In this group, three cells are defined:

counterCell holds the value of the counter

stoppedCell indicates if the counter has been stopped or not

24 About Terracotta 10.15

3 What is TCStore?

stoppedByCell holds the name of the stopping user if the counter is stopped

Creating a Cell Instance
Creating a Cell instance is typically done from a CellDefinition instance using the
CellDefinition.newCell()method.
For applications using well-structured data, statically declaring the cell definitions and using
newCell can aid code clarity.
For applications with more fluid requirements where data is not well structured, it is possible
to create the needed CellDefinition instances implicitly when creating Cell instances.
Cell<String> nameCell = NAME.newCell("Alex"); // <1>
Cell<String> mollyCell = nameCell.definition().newCell("Molly"); // <2>
Cell<String> aliasCell = Cell.cell("aliasCell", "Tattoo"); // <3>
CellSet cells = CellSet.of(// <4>

cell("inlineNameCell", "Alex"),
cell("inlineWeightCell", 118.5D),
cell("inlineCountCell", 2L),
cell("inlineCategoryCell", '®'),
cell("inlineAgeCell", 42),
cell("inlineEmployedCell", true),
cell("inlineVaultCell",

new byte[] {(byte) 0xCA,(byte) 0xFE,(byte) 0xBA,(byte) 0xBE}));

1. Creates a new instance of a nameCell having the value "Alex". When using pre-defined cell
definitions, this is the most common way to create a new Cell instance, the
CellDefinition.newCellmethod. In this example, NAME is a statically-declared
CellDefinition.

2. A new Cell instance can also be created from an existing Cell through the original cell’s
CellDefinition. A Cell instance reveals its CellDefinition through the Cell.definition()
method.

3. For applications with more fluid data needs, a CellDefinitionmay be implicitly defined
in conjunction with creating a cell using the Cell.cell()method. When the Cell.cell()
method is used, the value type for the CellDefinition is determined from the value
supplied. The supported value types are limited to the supported types identified in the
type system. In this example, a the CellDefinition created is equivalent to
CellDefinition.define("aliasCell", Type.String). The Cell instance is equivalent to
that created by CellDefinition.define("aliasCell", Type.String).newCell("Tattoo").

4. When paired with a static import for com.terracottatech.store.Cell.cell, creation of
Cell instances inline becomes somewhat "cleaner". In this example, several cells, with their
implicit cell definitions, inline with the creation of the CellSet to contain them.

Note:
Caution is advised when using Cell.cell. A Record (or CellSet) can contain no more
than one Cell of a given name regardless of type.

Note:

Note that neither CellSet nor Record guarantees an order of the Cell instances contained
within. If cell ordering is required, the ordering must be applied by application code.

About Terracotta 10.15 25

3 What is TCStore?

API Usages

For convenience, the software kit contains several demo programs that elaborate on how to use
the TCStore API.

The following sections discuss aspects of the TCStore API using code of these demo programs.

Please mind:

The TCStore API in general and in particular the following code snippets are based on Java 8
concepts and constructs. Strong familiarity with Java 8 is required to fully understand these
examples.

Tomake good use of the TCStoreAPI, youwill also need knowledge of Java 8 Lambda Expressions,
Java 8 Streams and Collectors and topics such as patterns, parallelization and performance.

Lifecycle

In order to use a Dataset you need to create one or use one that you had created previously. One
client node in the cluster is responsible for creating the Dataset.

Clustered Dataset
A Terracotta Server can be used to host a Dataset that can be shared among multiple clients.
To do this, you must create a clustered DatasetManager instance identifying the server to host
the dataset.
DatasetManager datasetManager =

DatasetManager.clustered(connectionURI).build(); // <1>
DatasetConfiguration configuration =

datasetManager.datasetConfiguration()
.offheap(offHeapResource).build(); // <2>

Dataset<String> counterSet = datasetManager.createDataset(
"counters", Type.STRING, configuration)) // <3>

1. First, a DatasetManager instance is built. For a clustered dataset, the URI identifying the
Terracotta Server must be specified.

2. The dataset configuration for a clustered Datasetmust identify the name of an off-heap
storage resource to be used on the server. The name specified here must match a name
provided in a service/offheap-resources/resource element in the server’s XML
configuration.

3. The Dataset is created by using the DatasetManager.createDataset(String, Type<K>,
DatasetConfiguration)method.

Note:

Creation of DatasetManager and Dataset instances is often done using a Java 7
try-with-resources statement. Both DatasetManager and Dataset extend
java.lang.AutoCloseable. Each should be closedwhen no longer needed to permit resources
to be reclaimed.

26 About Terracotta 10.15

3 What is TCStore?

For purposes of clarity, this detail is omitted from the samples in this document.

Data Access and Data Model

Once you’ve obtained a reference to a Dataset, you can read, add, remove and mutate data that
it holds. That data is held in the form of Record instances. The following section demonstrates the
basic create/replace/update/delete (CRUD) operations on a dataset.

Basic CRUD Operations
DatasetWriterReader<String> counterAccess =

counterSet.writerReader(); // <1>
String someCounterKey = "someCounter";
boolean added = counterAccess.add(// <2>

someCounterKey, counterCell.newCell(0L),
stoppedCell.newCell(false));

if (added) {
System.out.println("No record with the key: " + someCounterKey

+ " existed. The new one was added");
}
Optional<Record<String>> someCounterRec =

counterAccess.get(someCounterKey); // <3>
Long longCounterVal = someCounterRec.flatMap(r ->

r.get(counterCell)).orElse(0L); // <4>
System.out.println("someCounter is now: " + longCounterVal);
counterAccess.update(someCounterKey, write(counterCell, 10L)); // <5>
someCounterRec = counterAccess.get(someCounterKey);
System.out.println("someCounter is now: "

+ someCounterRec.flatMap(r -> r.get(counterCell)).orElse(0L));
Optional<Record<String>> deletedRecord =

counterAccess.on(someCounterKey).delete(); // <6>
System.out.println("Deleted record with key: "

+ deletedRecord.map(Record::getKey).orElse("<none>"));

1. Define a Dataset access object, in this case a DatasetWriterReader instance, over the dataset.

2. DatasetWriterReader.add lets you add a new Record for a given key in the Dataset but
only if no Record already exists for the key provided. Should a Record already exist, false
is returned and no changes are made to the Dataset.

3. DatasetWriterReader.get lets you retrieve a Record, wrapped in an Optional, from the
Dataset using the key that was used to add the record in the dataset. If a record with the
specified key does not exist in the dataset then Optional.empty() is returned.

4. Since an Optional is returned from get, Optional.flatMapmaybeused to extract information
from the Record. In this case, the value of the counterCell is extracted. If the record does not
contain the counterCell, zero is returned by the Optional.orElsemethod

5. Mutates the Record. In this example, the counterCell value is updated.
UpdateOperation.writemethod is a helper method provided to update individual cells in
a record. One thing to note here is that this form of updatemethod does not return anything.

6. Deletes the Record. If a record with the given key is available in the dataset, it is removed
and returned, wrapped in an Optional. If there is no record with the given key, then an
empty Optional is returned.

About Terracotta 10.15 27

3 What is TCStore?

Complex Mutative Operations
The example that follows shows a complexmutative operation and a conditional delete operation.
This example operates on a dataset containing ten records having keys counter0 through
counter9 each ofwhich has a counterCell and a stoppedCell. Another cell, stoppedByCell, is defined
but is not present in any of the records.
Single Record Update/Delete
String advancedCounterKey = "counter9";
Optional<String> token = counterAccess

.on(advancedCounterKey) // <1>

.update(UpdateOperation.custom(// <2>
record -> { // <3>
if (!record.get(stoppedCell).orElse(false) // <4>

&& record.get(counterCell).orElse(0L) > 5) {
CellSet newCells = new CellSet(record); // <5>
newCells.set(stoppedCell.newCell(true));
newCells.set(stoppedByCell.newCell("Albin"));
newCells.remove(counterCell);
return newCells;

} else {
return record; // <6>

}
}))

.map(Tuple::second) // <7>

.map(r -> r.get(stoppedCell).orElse(false)
? r.get(stoppedByCell).orElse("<unknown>") : "<not_stopped>");

deletedRecord = counterAccess.on("counter0")
.iff(stoppedCell.isFalse()).delete(); // <8>

1. Selecting the counter9 record ...

2. Update the record ...

3. Using a custom, i.e. non-DSL lambda. DSL is discussed in the following section "Query and
Compute Capabilities".

4. Gates the update so the record is only mutated if stoppedCell is false and counterCell is
greater than five.

5. The custom update creates a CellSet copied from the existing record and then modifies it
by setting the stoppedCell and stoppedByCell, and removing the counterCell. Note that the
stoppedByCell gets added to the record by this update.

6. If the record does not meet the selection criterion (stoppedCell == false && counterCell > 5),
the original record is returned.

7. Maps the output of the update operation (a Tuple containing the old and new records) to
select only the new record (the second of the tuple) then maps the new record to obtain
the "stopped by" value if the record is actually flagged as stopped.

8. Delete the record with the key counter0 if, and only if, stoppedCell is false.

Query and Compute Capabilities
The following example shows a simple computation over the Record instances in a Dataset: an
average of the counterCell values. This example uses a Java stream on the Dataset and a pipeline
using Java lambda expressions.

28 About Terracotta 10.15

3 What is TCStore?

Simple Stream<Record<K>> Using Lambdas
OptionalDouble avg;
try (final Stream<Record<String>> recordStream =

counterAccess.records()) { // <1>
avg = recordStream

.filter(record -> !record.get(stoppedCell).orElse(false)) // <2>

.mapToLong(record -> record.get(counterCell).orElse(0L)) // <3>

.average(); // <4>
}

1. Retrieves a Stream<Record<K>> to operate on.Note the use of the try-with-resources statement.
Streams obtained from a Dataset should be closed when no longer needed.

2. Filters the Stream for all Record<K> having the stoppedCell value as false, which are the
counters that are not stopped.

3. Maps the Stream<Record<K>> to a LongStream of the values of the counterCell.

4. Calculates the average of all of these values using the Java 8 LongStream.averagemethod.
A key aspect of using a Java stream is that no elements (in this case, Record instances) get
processed until a terminal operation is invoked on the Stream, in this example, the .average()
operation. As part of the terminal operation processing, TCStore tries to resolve the best possible
way to execute the query.
While the example above is completely functional using TCStore, it isn’t optimal as the example
Java lambda expressions are not introspectable.
In a distributed environment, TCStore must move data (at least the Cell<Boolean> for all
stoppedCell instances to filter on and then all matching Cell<Long> for counterCell instances)
over the network to the client node to evaluate each and every lambda in the pipeline.

Note:
As with other Java Stream instances, a Stream instance obtained from a Dataset can be
consumed exactly one time.

In the next example below, we re-express the query from the previous example "Simple
Stream<Record<K>>Using Lambdas", this time using TCStore's fluent Domain Specific Language
(DSL) for querying and computing. Using the DSL, TCStore is capable of understanding the
actual query and/or computation being requested and optimizing it for an execution in a
distributed environment. (For information on how to make use of existing cell indexes, see the
following section "Cell Indexes"):
Simple Stream<Record<K>> using TCStore API DSL
try (final Stream<Record<String>> recordStream =

counterAccess.records()) { // <1>
avg = recordStream

.filter(stoppedCell.isFalse()) // <2>

.mapToLong(counterCell.longValueOr(0L)) // <3>

.average(); // <4>
}

1. As above, retrieving a Stream<Record<K>>;

2. Filters on the stoppedCell being false;

About Terracotta 10.15 29

3 What is TCStore?

3. Retrieves the values of counterCell as a long;

4. And finally, as above, averages them.
The DSL makes the actual query more readable to everyone and the example above is more
self-describing than the initial implementation above it.
If we refactor the "Single Record Update/Delete" example from above using DSL to avoidmoving
the data to the client node, then this is what it would look like:
DSL-based counter update

// <1>
import static com.terracottatech.store.UpdateOperation.allOf;
import static com.terracottatech.store.UpdateOperation.remove;
import static com.terracottatech.store.UpdateOperation.write;
...

String dslCounterKey = "counter8";
token = counterAccess

.on(dslCounterKey)

.iff(stoppedCell.isFalse()
.and(counterCell.valueOr(0L).isGreaterThan(5L))) // <2>

.update(
allOf(write(stoppedCell, true), // <3>

write(stoppedByCell, "Albin"),
remove(counterCell)))

.map(Tuple::second)

.map(r -> r.get(stoppedCell).orElse(false)
? r.get(stoppedByCell).orElse("<unknown>") :

"<not stopped>"); // <4>

1. The use of static imports for the DSL helper methods is recommended to make the
DSL-based code more readable.

2. The iff operation (if-and-only-if) is used to enable the following update operation only if
the specified condition is true. In this case, stoppedCell is false and counterCell is greater
than five.

3. This update operation specifies a collection of mutations to perform: (1) adds or updates
the stoppedCell value to true, (2) adds or updates the stoppedByCell to Albin, and (3) removes
counterCell. As with previous example, the Record is updated by all of these mutations in
one atomic operation.

4. Maps the output of the update operation (a Tuple containing the old and new records) to
select only the new record (the second of the tuple) then maps the new record to obtain
the stoppedByCell value if the record is actually flagged as stopped.

The delete shown in the example "Single Record Update/Delete" is already expressed in proper
DSL form and is not repeated in the example above.
Similar to the example "DSL-based Counter Update" above, a bulk operation is performed using
a Java Stream over the records in the dataset through the
com.terracottatech.store.DatasetReader.recordsmethod. With this pattern, bulk update is
performed using TCStore:
Bulk Update
import static com.terracottatech.store.UpdateOperation.allOf;
import static com.terracottatech.store.UpdateOperation.remove;

30 About Terracotta 10.15

3 What is TCStore?

import static com.terracottatech.store.UpdateOperation.write;
...

try (final Stream<Record<String>> recordStream =
counterAccess.records()) { // <1>
recordStream

.filter(stoppedCell.isFalse()) // <2>

.forEach(counterAccess.functions() // <3>
.update(

allOf(write(stoppedCell, true), // <4>
write(stoppedByCell, "Albin"),
remove(counterCell))));

}

1. Retrieve a Stream<Record<String>> throughwhich updateswill be performed. Aswith the
previous Stream-based examples, note the use of the try-with-resources statement to enforce
closure of the stream when operations are complete.

2. Filters the Record instances in the streamdropping those forwhich stoppedCell is true. Only
the non-stopped records get past.

3. forEach is the terminal operation for the stream. forEach takes a java.util.function.Consumer.

In this example, a special consumer is used: one obtained from the
com.terracottatech.store.DatasetWriterReader.functionsmethod.

A consumer formed from DatasetWriterReader.functions can be used to update or delete
records in the dataset from which the consumer was obtained.

4. Aswith some previous "Update" examples, an update operationwith twowritemutations
and one remove mutation is specified. The update is applied to each selected record
atomically - each record in its own atomic update.

Cell Indexes

To improve the performance of operations using streams obtained from DatasetReader.records(),
cell indexesmay be created for a Dataset. A cell index is defined against a CellDefinition instance.
Entries are created in the index for all distinct Cell values for cells in the Dataset typed by the
indexed CellDefinition. Each index entry associates that Cell valuewith the keys of all the Record
instances containing that Cell value.When a stream pipeline refers to an indexed CellDefinition,
particularly in a filter operation Predicate expressed using the TCStore DSL, iteration over the
records in the dataset may be driven using the associated cell index.

A cell index may only be defined on a CellDefinition if its data type is BOOL, CHAR, DOUBLE, INT,
LONG, or STRING.

An index may NOT be defined for a CellDefinition of type BYTES.

There are two ways to define an index:

(1) through the DatasetConfigurationBuilder.withIndexmethod during dataset creation or

(2) through the Indexing instance obtained from the dataset.

Defining an Index During Dataset Creation

About Terracotta 10.15 31

3 What is TCStore?

StringCellDefinition LAST_NAME = CellDefinition.defineString("lastName");
DoubleCellDefinition NICENESS = CellDefinition.defineDouble("niceness");
...
DatasetManager datasetManager =

DatasetManager.clustered(connectionURI).build();
DatasetConfiguration configuration =

datasetManager.datasetConfiguration() // <1>
.offheap("offheap")
.index(Person.LAST_NAME, IndexSettings.btree()) // <2>
.index(Person.NICENESS, IndexSettings.btree()) // <3>
.build();

Dataset<String> persons =
datasetManager.createDataset(

"people", Type.STRING, configuration) // <4>

1. Create a DatasetConfiguration ...

2. ... specifying indexes for the LAST_NAME ...

3. and NICENESS cell definitions.

4. Create a Dataset using the configuration with the indexes.

Adding an Index to a Dataset After Creation
Indexing indexing = counterSet.getIndexing(); // <1>
Operation<Index<Boolean>> indexOp =

indexing.createIndex(stoppedCell, IndexSettings.btree()); // <2>
try {
indexOp.get(); // <3>

} catch (InterruptedException | ExecutionException e) {
throw new AssertionError(e);

}

1. Get the Indexing instance for the Dataset. The Indexing instance for a Datasetmay be used to
add or delete a dataset’s indexes.

2. Define an index specifying a CellDefinition identifying the cells whose values make up the
index keys.

3. Runtime index creation is asynchronous; call the getmethod to await completion of the indexing
operation.

Advanced Topics

As TCStoreAPI is a storageAPI targeted for distributed datasets, the picturewouldn't be complete
without addressing ...

Durability

Atomicity guarantees

Asynchronicity

32 About Terracotta 10.15

3 What is TCStore?

Durability Guarantees

TCStore API will always aim for maximum durability. The exact meaning of this depends on the
configuration of the store itself:

For non-persistent, non-replicated stores, it means the data made it to the server.

For persistent, non-replicated stores, it means the data made it to the disk of the server.

For persistent, replicated stores, it means the data made it to the disk of the servers and all
replicas.

Atomicity

Beside the previously discussed read and write settings, TCStore API makes a Record the atomic
unit of work.

So when you build a Stream<Record<?>>where you filter and then mutate (a bulk update), it will
make sure you never mutate a Record<?> that doesn’t pass that Predicate you used to filter, even
if some other writer mutated the given Record<?> concurrently.

Also, if you mutate two Cell instances of one Record, depending on the write and read settings
either both new or old values would be observed, but a reader would never be able observe one
old and one new value for that given write.

The underlying principle is that a Record instances are effectively immutable.

Asynchronicity

As mentioned previously, TCStore API is targeted at distributed deployments. As such, it is
inherently asynchronous.Although all theAPI examplesweused in this document are synchronous,
TCStore exposes an asynchronous API for you to use:

Asynchronous Operations
AsyncDatasetWriterReader<String> asyncAccess =

counterAccess.async(); // <1>
Operation<Boolean> addOp =

asyncAccess.add("counter10", counterCell.newCell(10L)); // <2>
Operation<Optional<Record<String>>> getOp =

addOp.thenCompose((b) -> asyncAccess.get("counter10")); // <3>
Operation<Void> acceptOp = getOp.thenAccept(or -> or.ifPresent(// <4>

r -> System.out.println("The record with key " + r.getKey() +
" was added")));

try {
acceptOp.get(); // <5>

} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();

}

1. Retrieves an asynchronous accessor to the Dataset in the form of AsyncDatasetWriterReader.

2. Schedule awrite a newRecord, identified by the key counter10with an initial value of counterCell
as 10. This returns an Operation instance which can then be waited upon (as a

About Terracotta 10.15 33

3 What is TCStore?

java.util.concurrent.Future) or combined with other operations (as a
java.util.concurrent.CompletionStage).

3. Chain a get, to be performed once the write is complete, to the write operation.

This does NOT affect the write nor does it combine the write and the get into an atomic unit.

The result of this combination is also an Operation instance.

4. To the get Operation instance, chain a Consumer that processes the Optional<Record<String>>
returned from the get. The result of this chain construction returns an Operation<Void>. Consumer
returns no result.

5. As with addOp and getOp, the acceptOp Operation is a handle to an operation scheduled for
background completion. This operation sequence will complete on its own but, to await
completion, one of the Future.getmethods must be called.

The default API is synchronous, as it is probably more obvious for everyone to get started with.
But the power of the asynchronous API is exposed as well.

Note:
When using the asynchronous API, operation sequencing is not maintained. If, in the example
above, the get was not chained to the write, the get could be executed before the write even
though the Operation instanceswere created in the opposite order.Mind, that two asynchronous
operations are independent.

Frequently Asked Questions

What About my Caching Use Cases?

This part of the documentation covers the data storage API that is available as TCStore API.

Caching use cases are covered by the Ehcache API. This API covers caching use cases exclusively,
and has a JSR-107-compliant interface.

To understand which API matches your particular use case we recommend for you to read
"Introduction to Terracotta > TCStore API Versus Ehcache: Why Two Different APIs?".

The Ehcache API and the TCStore API can operate on the same Terracotta Server Array instance
simultaneously. However, their data setswill be segregated. I.e. you cannot "put"with the Ehcache
API and expect to "get" the same entry with the TCStore API.

How Do I Store my Java Objects with the TCStore API?

The base TCStore API does not handle conversion of Java objects into records with typed cells.

In order to store objects, a common practice may be to store them serialized (in a byte[] cell) and
supplement that with additional cells on the same record that contain the extracted fields (or any
other values) that may be of interest for search and compute.

34 About Terracotta 10.15

3 What is TCStore?

No Strong Schemas, Really?

Really! And this is a very powerful thing!

If you aren’t convinced, spend some time searching the web for articles about "schema-on-write"
vs. "schema-on-read".Modern systems that have sophisticated needs andmust deal withmultiple
and/or quickly evolving data sources highly favor schema-on-read semantics - thus most NoSQL
offerings take this approach.

Use cases such as those in IoT ("Internet of Things") spaces highly favor schema-on-read (weak
or no enforced schema). As an example, different brands/models of sensors may provide data for
the same thing (e.g. "humidity") in various different data types and formats yet the flood of data
needs to be consumed and stored quickly.

TCStore API’s "loose schema" approach - provides a powerful hybrid of schema-on-write and
schema-on-read.

While core TCStore API functionality allows for completely schema-less usage, some use cases
may prefer having some enforcement of some schema-like requirements. As such, some higher
level constraints could be placed upon Dataset instances to enforce some loose Dataset-wide
schemas, even though the underlying store would allow anything.

TCStore API does not include supplemental APIs for such functionality out of the box, however
end-users could utilize patterns such asDecorators upon a Dataset to apply enforcement of schema
(schema-on-write).

In deciding what functionality TCStore API may come to include with respect to enforcing
loose-schemas, the Terracotta team is interested in hearing about your use cases. This is because
there are many possible rule sets/semantics for loose-schema enforcement.

For example, possible meaning of a loose-schema definition could be:

schema defines the minimal set of cells a record must contain before storage

schema defines the maximal set of cells a record can contain before storage

schema defines the absolute set of cells that a record must contain before storage

schema defines theminimal set of cells a recordmust contain for it to be retrieved from storage

schema defines the absolute set of cells a recordmust contain for it to be retrieved from storage

etc ...

About Terracotta 10.15 35

3 What is TCStore?

36 About Terracotta 10.15

3 What is TCStore?

4 What is the Terracotta Server?

The Terracotta Server provides the distributed data platform for Terracotta products. A cluster of
Terracotta Servers configured to work together is referred to as a Terracotta Server Array (TSA).
A Terracotta Server Array can vary from a single server, to a basic two-server tandem for High
Availability (HA), to a multi-server array providing configurable scale, high performance, and
deep failover coverage.

The main features of the Terracotta Server include:

Distributed In-memory Data Management

Manages 10-100x more data in memory than data grids

Scalability Without Complexity

Simple configuration and deployment option for scaling-up and/or scale-out to meet growing
demand and facilitate capacity planning

High Availability

Instant failover for continuous uptime and services

Configurable Health Monitoring

Terracotta health checker monitors client and server health

Persistent Application State

Automatic permanent storage of all current shared in-memory data with ultra-fast recovery
upon server restarts

Automatic Node Reconnection

Temporarily disconnected server instances and clients rejoin the cluster without operator
intervention

About Terracotta 10.15 37

38 About Terracotta 10.15

4 What is the Terracotta Server?

5 What is the Terracotta Management Console?

The Terracotta Management Console (TMC) is a web-based administration and monitoring
application with many capabilities and advantages, including the following:

Feature-rich and easy-to-use interface

Remote management capabilities requiring only a web browser and network connection

Visualize cluster topologies, monitor health, and manage Terracotta Servers

Aggregates performance and usage statistics from multiple Terracotta nodes

Cross-platform deployment

Flexible deployment model, which can plug into both development environments and secure
production architectures

About Terracotta 10.15 39

40 About Terracotta 10.15

5 What is the Terracotta Management Console?

6 JAVADOC Documentation of the APIs

http://www.terracotta.org/documentation/

About Terracotta 10.15 41

http://www.terracotta.org/documentation/

42 About Terracotta 10.15

6 JAVADOC Documentation of the APIs

	Table of Contents
	About This Documentation
	Online ​Information ​and ​Support
	Data ​Protection

	1 Introduction ​to Terracotta
	2 What ​is Ehcache?
	Features
	Basic ​Terms
	Data ​Freshness ​and ​Expiration
	Storage ​Tiers
	Topology ​Types

	3 What ​is TCStore?
	Core ​Concepts ​of TCStore
	API ​Usages
	Advanced ​Topics
	Frequently ​Asked ​Questions

	4 What ​is ​the Terracotta ​Server?
	5 What ​is ​the ​Terracotta ​Management ​Console?
	6 JAVADOC ​Documentation ​of ​the ​APIs

