5 software~

Terracotta Server Administration Guide

Version 10.15

October 2022

TERRACOTTA

This document applies to Terracotta 10.15 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: TC-SRV-AG-1015-20221101

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About This DOCUMENtAtION......cciiiiiriririiiniitiiiiiiiiiiiessssasssssssssssasssssssasassssssssas 7
Online Information and SUPPOTt.........ccuiiiiiiiiiiciic s 8
Data ProteCtion........ccoiiiiiiiiiiiiiiii s 9

1 Cluster ATCRIteCtUTe......uvcuiueeiicteteeitctncetceteseeesese s sssssesessssssssesssssssssssssssassssssasaens 11

2 Active and Passive SEIVEIS......iiiiiiiiniiiiiisiisssssssssssssssssssssssssssssssses 13

3 L0gical SEIVer States.......iiiiiiiiiiiiiciciiiiiinese e ss s bne 17

4 Clients iN @ CIUSTET......ccuiniiriiiiititceiiictceeeisee s sesssssessssesssssssssssssassssnsssssasssansssssns 19

5 Electing an ACHVE SEIVeTL.......ciiiininiiriniiiiiniiiisiniinssscsssssssesssssssssssssssssssssssssssssssssssssses 21

6 FAILOVET ..uuniriiriniittiiiittctnscssssassssessssstsssssssssssssasassssssssssassssssssssasssassssssasassssssasnsns 23

7 Starting and Stopping the Terracotta Server........ i, 25

8 Safe Cluster Shutdown and Restart Procedure............uiiinririirnninncrieninniiniisnsnnsesnesnsnssesennes 31

9 Configuration Terms and CONCEPLS........ccuveveererererererieeieeeeeeeeseeesesse s ssssasssasssas 33

10 Planning @ Configuration..........uceniiininnniiisninniiiisniiiiiismsisssssssssssssssssies 39

11 The TerracottaConfiguration File.........iciiinriiiiniiniiiiiiiiinninnnccnsssesssssseenes 45

12 CONLiG TOOL..uueeeittttcttttctctct e as 51
OVEIVIEW ...cuiiiiiii et 52
SEHINGS. ..ottt 55
Performing configuration Changes............cccceeirrieieiininiiiciiiceciceeeee e 63
Diagnosing and Repairing Problems...........ccccccviiiiiniiiiiininiiiciiceceeeeeeeeeeee e 71
Config Tool Troubleshooting GuUide...........cccvuvuiuiinininiiiiiniiicce s 75

13 Parameter SubStItUION.. ...ttt sssseseaens 89

14 Configuring the Terracotta SEIVET.......iiirinicninininiiniiniiniisiississesssssssssessssessssessssens 91

Terracotta Server Administration Guide 10.15 iii

Table of Contents

15 System Recommendations for Hybrid Caching...........cueeeeeeeeeeeeceeeeeeeeeeeeeenennes 95
16 System Recommendations for Fast Restart (FRS).........ccccvvuviniriirninririisininneniinisnnscsicsnsnsseseaens 97
17 FaIlOVer TUNING ...ttt sssssssssssssssssssssssssasssasasaes 99
18 ConNection Leasing........eereerereeeneeeeeeeeeeeeee s ssenes 105
19 CIUSEET TOOL..uueeeteeeteteteeeeeeeteeeee s as 107
20 Importing and Exporting Datasets.........cccouuueeerereiiiieiiiincceeesssssssssssssseas 121
OVEIVIEW ... ittt 122
IMpPOTt-EXPOrt TOOL.....coovoiiiiii e 122
ImpOort-EXport APL.......co 129
2] LICENSING ucuirirririrririrnnrisissiinaiissiissisissisissssessssessssessssestssssessessssstsssssssssssssssssssssesssssssstsssssssssssssasssens 135
22 Backup, Restore and Data Migration.........iciiinnnniiiininiiiiniinisss 137
Overview of Backup and ReStOre..........ccoeueiiiiiiiiiiniiiiiicciec e 138
Data Directory STrUuCtUTre..........ccooiiiiiiiiiiiiiiic e 138
ONlINE BaCKUP.....cuiiiiiiiiiiic et 139
OffliN€ BACKUP.....ciiiiiiiiiiicii e 140
RESEOTC....eiiiiic e 141
Data Migration of Ehcache data..........ccooiuiiininiiiiiiiiiicccccceee 142
Technical Details.........cciiiiiiiiiiiiiiii s 143
23 Migrating from older Terracotta versions t0 10.7.........uuevevererereseseeeeseeeseeeeseeeeeesnsnns 145
24 Migrating from 10.7 t0 @ NneWer 10.7 VeISiON........cceeeeeererereresernsesnsnsnssssssssssssssssssssssssssssssssseses 147
25 Restarting a Stripe.... ettt ss s s s snens 149
26 IPV6 support in Terracotta........einiiniiininininiinniinncisinseieissinssssissessssssssssessssssess 151
27 SSL / TLS Security Configuration in Terracotta.........ucveniirisesisninisesnnnsiscsesnssseisssssseseneas 155
Security Core CONCEPLS. ..ottt 156
CIUSEET SECUTILY ...ovviiii s 161
TMS SECUTIEY ...ttt 167
LDADP PIOPEIties.....ccooviiiiiiiiiictiitcttt ettt 172
SSL / TLS Troubleshooting guide...........c.cceueveieiiieininieiiceeecce s 174

iv Terracotta Server Administration Guide 10.15

Table of Contents

28 Terracotta Server Migration from BigMemory to Terracotta...........cocoeveerrrevueccnnncsurcrnnncnnnne

29 Using Command Central to Manage Terracotta.......

30 Terracotta in Network Environments with Subnets

Terracotta Server Administration Guide 10.15

Table of Contents

Vi Terracotta Server Administration Guide 10.15

About This Documentation

B Online Information and SUPPOITcoooiiiiiiiiiee e

I B F-\ = W =l (o] (=1 (o] o IO

Terracotta Server Administration Guide 10.15

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

m Browse through our vast knowledge base.

m Ask questions and find answers in our discussion forums.
® Get the latest Software AG news and announcements.

® Explore our communities.

= Go to our public GitHub and Docker repositories at https://github.com/softwareag and https://
hub.docker.com/u/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once

you have an account, you can, for example:

® Download products, updates and fixes.

m Search the Knowledge Center for technical information and tips.
m Subscribe to early warnings and critical alerts.

®m Open and update support incidents.

® Add product feature requests.

8 Terracotta Server Administration Guide 10.15

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/u/softwareag/
https://hub.docker.com/u/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Terracotta Server Administration Guide 10.15

10

Terracotta Server Administration Guide 10.15

1 Cluster Architecture

The Terracotta cluster can be viewed topologically as a collection of clients communicating with
a Terracotta Server Array (TSA).

The server array is composed of one or more logically independent stripes. The total storage and
computing capacity of the TSA can be increased with the addition of more stripes.

A stripe is composed of one or more servers. Each stripe contains a single active server and zero
or more passive servers. These stripe members share a common configuration in order for any
one of them to fill the "active" role. Refer to the section “The TerracottaConfiguration File” on
page 45 for more details.

"Scale-up" is achieved by configuring the servers to utilize more storage (e.g. memory) from the
machines that they are deployed on.

"Scale-out" is achieved by adding more stripes to the TSA.

Greater levels of "HA" (high availability) are achieved by adding more members and/or voters to
each stripe.

For more information on clients, active servers and passive servers, see the sections “Clients in a
Cluster” on page 19 and “Active and Passive Servers” on page 13.
TSA Topologies

There are multiple types of TSA topology, each offering different resource and availability
capabilities.

TSA Topology Description

Single-server This is a TSA which consists of one stripe containing a single server. This
server is always the active server.

This scheme offers the least amount of both resource and availability
capabilities:

m [f this server should become unavailable, your client end-points will
fail to operate.

® The resource services exposed to your clients are limited to those of
the underlying server JVM and OS.

Terracotta Server Administration Guide 10.15 1

1 Cluster Architecture

TSA Topology

Description

High-availability

This refers to a TSA where each stripe consists of at least two servers. In
addition to the active server there will be at least one passive server. The
stripe may continue operating in the event of an active server failure, as
long as at least one passive server is available.

Note that stripes do not share passive servers, so each stripe will need at
least one passive server to possess high-availability.

Depending upon your overall topology, the use of external voters may
also help achieve greater levels of HA.

See “Failover” on page 23 and “Failover Tuning” on page 99 for more
discussion on HA topics.

Multi-stripe

Multi-stripe refers to a TSA that consists of multiple independent stripes.

This scheme offers the ability for increased storage and computation
resources, with each stripe contributing to the available total amount of
storage.

For a multi-stripe TSA to possess high-availability, each stripe must consist
of more than one server. This setup offers the maximum of both resource
and availability capabilities.

Client perspective

Each client is logically independent of other clients. It sees the TSA as a collection of one or more
stripes. It connects to the active server of each stripe in order to issue messages to the cluster.

Stripe perspective

Each stripe is logically independent of other stripes in the TSA. Each stripe member only concerns
itself with the clients connected to it and its sibling servers.

Specifically, the active server is the key point in each stripe: each stripe has exactly one active
server and it is this server which interacts directly with each connected client and each passive
server within the same stripe.

12

Terracotta Server Administration Guide 10.15

2 Active and Passive Servers

Introduction

Terracotta Servers exist in two modes, active and passive. The description of each mode is given
below.

Active servers

Within a given stripe of a cluster, there is always an active server. A server in a single-server stripe
is always the active server. A multi-server stripe will only ever have one active server at a given
point in time.

The active server is the server which clients communicate with directly. The active server relays
messages on to the passive servers independently.

How an active server is chosen

When a stripe starts up, or a failover occurs, the online servers perform an election to decide which
one will become the active server and lead the stripe. For more information about elections, see
the section “Electing an Active Server” on page 21.

How clients find the active server

Clients will attempt to connect to each server in the stripe, and only the active server will accept
the connection.

The client will continue to only interact with this server until the connection is broken. It then
attempts the other servers if there has been a failover. For more information about failover, see the
section “Failover” on page 23.

Responsibilities of the active server

The active server differs from passive servers in that it receives all messages from the clients. It is
then responsible for sending back responses to the calling clients.

Additionally, the active server is responsible for replicating the messages that it receives on the
passive servers.

When a new server joins the stripe, the active server is responsible for synchronizing its internal
state with the new server, before telling it to enter a standby state. This state means that the new
server is now a valid candidate to become a new active server in the case of a failover.

Terracotta Server Administration Guide 10.15 13

2 Active and Passive Servers

Passive servers

Any stripe of a cluster which has more than one running server will contain passive servers. While
there is only one active server per stripe, there can be zero, one, or several passive servers.

Passive servers are also referred to as "mirrors", because they contain a copy of the data that is
present within the active server.

Passive servers go through multiple states before being available for failover:

UNINITIALIZED This passive server has just joined the stripe and has no data.

SYNCHRONIZING This passive server is receiving the current state from the active server.
It has some of the stripe data but not yet enough to participate in
failover.

STANDBY This passive contains the stripe data and can be a candidate to become
the active, in the case of a failover.

Passive servers only communicate with the active server, not with each other, and not with any
clients.

How a server becomes passive
When a stripe starts up and a server fails to win the election, it becomes a passive server.

Additionally, newly-started servers which join an existing stripe which already has an active server
will become passive servers.

Responsibilities of the passive server

The passive server has far fewer responsibilities than an active server. It only receives messages
from the active server, not communicating directly with other passive servers or any clients
interacting with the stripe.

Its key responsibility is to be ready to take over the role of the active server in the case that the
active server crashes, loses power/network, or is taken offline for maintenance/upgrade activities.

All the passive server does is apply messages which come from the active server, whether the
initial state synchronization messages when the passive server first joined, or the on-going
replication of new messages. This means that the state of the passive server is considered consistent
with that of the active server.

Lifecycle of the passive server

When a passive server first joins a stripe and determines that its role will be passive, it is in the
UNINITIALIZED state.

If it is a restartable server and also discovers existing data from a previous run, it makes a backup
of that data for safety reasons. Refer to the section “Clearing Automatic Backup Data” on page 15
for more details.

14 Terracotta Server Administration Guide 10.15

2 Active and Passive Servers

Refer to the section Restarting a Stripe in the Terracotta Server Administration Guide for information
on the proper order in which to restart a restartable stripe.

From here, the active server begins sending it messages to rebuild the active server's current state
on the passive server. This puts the passive server into the SYNCHRONIZING state.

Once the entire active state has been synchronized to the passive server, the active server tells it
that synchronization is complete and the passive server now enters the STANDBY state. In this
state, it receives messages replicated from the active server and applies them locally.

If the active server goes offline, only passive servers in the STANDBY state can be considered
candidates to become the new active server.

Clearing Automatic Backup Data

After a passive server is restarted, for safety reasons, it may retain artifacts from previous runs.
This happens when the server is restartable, even in the absence of restartable cache managers.
The number of copies of backups that are retained is unlimited. Over time, and with frequent
restarts, these copies may consume a substantial amount of disk space, and it may be desirable to
clear up that space.

Backup rationale: If, after a full shutdown, an operator inadvertently starts the stripe members in
the wrong order, this could result in data loss wherein the new active server initializes itself from
the, possibly, incomplete data of a previous passive server. This situation can be mitigated by (1)
ensuring all servers are running, and (2) the cluster is quiesced, prior to taking the backup. This
ensures that all members of the stripe contain exactly the same data.

Clearing backup data manually: The old fast restart and platform files are backed up under the
server's data directories in the format terracotta.backup.{date&time}/ehcache/ and
backup-platform-data-{date&time}/platform-data respectively. Simply change to the data root
directory, and remove the backups.

It may be desirable to keep the latest backup copy. In that case, remove all the backup directories
except the one with the latest timestamp.

Terracotta Server Administration Guide 10.15 15

2 Active and Passive Servers

16 Terracotta Server Administration Guide 10.15

3 Logical Server States

Possible server states

A server could be in any one of the following logical server states:

STARTING server is starting.

UNREACHABLE server is unreachable.

UNKNOWN server state is unknown.

UNINITIALIZED server has started and is ready for election.
SYNCHRONIZING server is synchronizing its data with the current active server.
ACTIVE server is active and ready to accept clients.

ACTIVE_RECONNECTING

server is active but waits for previously known clients to rejoin
before accepting new clients.

ACTIVE_SUSPENDED

server is active but blocked in the election process (consistency
mode).

PASSIVE

server is passive and ready for replication.

START_SUSPENDED

server startup is suspended for all of its peers to come up.

PASSIVE_SUSPENDED

server is passive but blocked in the election process (consistency
mode).

DIAGNOSTIC

server is not activated (has no configuration) or has been asked
to start in diagnostic mode. This mode is used to configure the
nodes or repair them.

Terracotta Server Administration Guide 10.15

17

3 Logical Server States

18 Terracotta Server Administration Guide 10.15

4 Clients in a Cluster

Within the overall structure of the cluster, the clients represent the application end-points. They
work independently but can communicate through the active servers of the stripes to which they
are connected.

Note that a client only ever interacts with an active server, never directly communicating with a
passive server.

In a single-stripe cluster, each client is connected to the active server of that stripe. In a multi-stripe
cluster, each client is connected to the active server of each stripe, interacting with them
quasi-independently.

Within the logical structure of the cluster, the client isn't the process making the connection, but
the connection itself. This means that a single JVM opening multiple connections to the same stripe
will be seen by the stripe as multiple, independent clients.

How a client finds an active server

When establishing a connection to a stripe, the client must find the active server. It does this by
attempting to connect to each server in the stripe, knowing that only the active server will not
reject the connection attempt.

How a client handles failover or restart

If an active server to which a client is attached goes offline, the client will attempt to reconnect to
one of the other servers in the stripe, if there are any. This is similar to what happens during its
initial connection.

Note that there is no default time-out on this reconnection attempt. In the case that each stripe
member is unavailable, this means that it is possible for all clients to wait, blocking their progress,
until a server is restarted, potentially days later.

Terracotta Server Administration Guide 10.15 19

4 Clients in a Cluster

20 Terracotta Server Administration Guide 10.15

5 Electing an Active Server

When a new stripe comes online, the first thing the servers within it need to do is elect an active
server which will coordinate the client interactions and passive servers within the stripe.

Additionally, if the active server of an existing stripe goes offline, the remaining passive servers
need to elect a replacement active server. Note that only passive servers in the STANDBY state
are candidates for this role. For related information, see the section “Failover” on page 23.

In either of these situations, the servers involved address this problem by holding an election.

A server that is started up from rest needs to get votes from all of its peer servers to get elected as
an active server. In contrast, votes from a smaller set of peers are sufficient for a running
PASSIVE-STANDBY server to become elected as an active server.

If for some reason, not all servers in a stripe can be started up, you can still forcefully get a candidate
server elected as active using the cluster tool. For more information about this manual intervention
using the cluster tool, see the section The promote command of the “Cluster Tool” on page 107.

High-level process

In an election, each server will construct a "vote" which it sends to the other involved servers. The
vote with the highest score can be determined statically, so each server knows it has agreement
on which server won the election.

In the case of a tie, the election is re-run until consensus is achieved.

Vote construction

The vote is a list of "weights" which represent the factors which should be considered when electing
the most effective active server. The list is ordered in a way that the next element is only considered
if the current element is a tie. This allows the earlier elements of the vote to be based around
important concepts (such as how many transactions the server has processed), followed by concrete
concepts (such as server up-time), then ending in more arbitrary concepts designed to break
edge-case ties (such as a randomly generated number).

Terracotta Server Administration Guide 10.15 21

5 Electing an Active Server

22 Terracotta Server Administration Guide 10.15

6 Failover

In a high-availability stripe, the failure of a single server represents only a small disruption, but
not outright failure, of the cluster and the client operations (for related information on high
availability, see the section “Cluster Architecture” on page 11).

In the case of a failing passive server, there is no disruption at all experienced by the clients.

In the case of a failing active server, however, there is a small disruption of client progress until
a new active server is elected and the client can reconnect to it. Failover is the name given to this
scenario.

Client Reconnect Window

When a failover happens, the clients connected to the previous active server automatically switch
to the new active server. However, these clients have a limited window of time called the client
reconnect window to complete the failover (120 seconds, by default). The new active server will stop
processing any client requests until all the previously known clients connect back or until this
window expires. This could cause all the clients to stall even if a single client fails or takes too long
to fail over to the new active server.

If clients fail to connect back to the new active server within the reconnect window, the server will
consider them unreachable and will continue processing requests from the connected clients.
Clients reconnecting after the reconnect window will be rejected by the server and they will rejoin
the cluster as a new client by establishing a new connection.

This reconnect window can be configured in the config file or during startup using the
client-reconnect-window property.
Server-side implications

Once all clients have reconnected (or the reconnect window closes), the server will process all
re-sent messages it had seen before for which the client had not been notified of completion.

After this, message processing resumes as normal.

Client-side implications

Clients will experience a slight stall while they reconnect to the new active server. This reconnection
process involves re-sending any messages the client considers to be in-flight.

Terracotta Server Administration Guide 10.15 23

6 Failover

After this, client operations resume as normal.

24 Terracotta Server Administration Guide 10.15

7 Starting and Stopping the Terracotta Server

Starting the Terracotta Server

The command line script to start the Terracotta Server is located in the server/bin/ directory of
the server kit. UNIX users use start-tc-server.sh while Windows users use start-tc-server.bat.
All arguments are the same for both.

Options to the script

1.

-port

Port to be used for this node. Default: 9410.

-bind-address

Bind address to be used for the node port. Default: 0.0.0.0.
—-group—-port

Port to be used for intra-stripe communication. Default: 9430.
-group-bind-address

Bind address to be used for node group port. Default: 0.0.0.0.
-hostname

Host name for this node. Must be a valid DNS name, or an IP address. Default: %h.
—Nname

Name to be used for this node. Needs to be unique in the cluster. Default: a randomly generated
string.

-public-hostname

Public host name for this node. Needs to be set on all the nodes in the cluster. See “Terracotta
in Network Environments with Subnets” on page 189 for more details about this feature.

-public-port

Public node port for this node. Needs to be set on all the nodes in the cluster. See “Terracotta
in Network Environments with Subnets” on page 189 for more details about this feature.

Terracotta Server Administration Guide 10.15 25

7 Starting and Stopping the Terracotta Server

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

-config-dir

Directory containing configuration bookkeeping information generated by the node. Default:
%H/terracotta/config.

-backup-dir

Directory to be used to contain cluster backups. Needs to be set on all nodes in the cluster. See
the section “The "backup” Command” on page 112 of the cluster tool for more details about
performing backups.

-log-dir
Directory to be used to contain logs for this node. Default: %H/terracotta/logs.
-metadata-dir

Directory to be used to contain server persistence data. Default: %H/terracotta/metadata. See
the section “Server Persistence” on page 92 for more details about this setting.

-repair-mode
Whether to start the node in repair mode. Default: false.
-client-lease-duration

Lease duration for the client connections. Default: 150s. Needs to be the same throughout the
cluster. See “Connection Leasing” on page 105 for more details about this property.

-client-reconnect-window

Time window for clients to reconnect to a new Active server after failover. Default: 120s. Needs
to be the same throughout the cluster.

-cluster-name

Name to assign to the cluster this node will become a part of. Needs to be the same throughout
the cluster.

-config-file

Config file to start the node with. See the section “The TerracottaConfiguration File” on page 45
for more details about this property.

-failover-priority

The failover priority setting to be used. Valid values are availability and consistency. Needs
to be the same throughout the cluster. This is the only mandatory option if the node is started
using console parameters. See “Failover Tuning” on page 99 for more details about this

property.
-data-dirs
Directory to contain client data. Default: main:%H/terracotta/user-data/main. Data directory

names needs to be the same throughout the cluster - the disk locations could vary. See
“Configuring the Terracotta Server” on page 91 for more details about this property.

26

Terracotta Server Administration Guide 10.15

7 Starting and Stopping the Terracotta Server

20. -offheap-resources

Offheap resources to be used. Default: main:512MB. Needs to be the same throughout the cluster.
See “Configuring the Terracotta Server” on page 91 for more details about this property.
Oftheap resources is the only property which is validated against the license. The total
offheap-resources for the cluster (i.e. offheap-resources for all stripes summed up) should be
within the license limit. See “Licensing” on page 135 for more details about licensing.

21. -audit-log-dir

Directory containing the node's security audit logs. Needs to be set on all the nodes. Needs
some form of security to be enabled.

22. —authc

Security authentication setting to be used. Valid values are file,1dap and certificate. Needs
to be the same throughout the cluster.

23. -security-dir
The security root directory for this node.
24. -ssl-tls

Whether to enable SSL/TLS based security. Default: false. Needs to be the same throughout
the cluster.

25. -whitelist

Whether to enable IP whitelist security. Default: false. Needs to be the same throughout the
cluster.

See “Cluster Security” on page 161 for more details about configuring security.

Use cases

The server startup script can be used in different ways, depending on the needs and convenience
of the server admin:

Starting nodes with console parameters

A server can be started in unconfigured node, with console parameters alone (i.e. without the need
of having any config files).

Example:

./start-tc-server.sh -config-dir /data/tc/nodel
-port 9410 -group-port 9430 -name nodel -failover-priority consistency
-offheap-resources primary:250GB,caching:100GB

Note: the config-dir in question must be empty, as it only makes sense to use the command with
these parameters to load a new server with its initial set of configuration properties.

After startup, it will then be necessary to execute the config tool attach and activate commands
respectively to define the cluster topology and to make the cluster ready for client operations.

Terracotta Server Administration Guide 10.15 27

7 Starting and Stopping the Terracotta Server

Before activating, the config tool could also be used to set various other configuration options on
the node.

Starting nodes with config file

An unconfigured server can be also be started with a parameter specifying a config file which was
exported from an existing cluster, or constructed by hand. See the section “Export” on page 68
for related information.

Example:

./start-tc-server.sh -config-dir /data/tc/nodel
-config-file myCluster.properties

In this case it is not necessary to execute the config tool attach command since the cluster topology
is already defined in the config file. The execution of the activate command, however, would still
be required to make the cluster ready for client operations.

Note:
The config-dir in question must be empty, as it only makes sense to use the command with
these parameters to load a new server with its initial set of configuration properties.

Note:

It is important to understand that the configuration file used in this command is not what will
be used by the server each time it starts. Rather, it is simply a convenience for passing the initial
configuration properties to the server, instead of specifying each config property on the command
line and/or setting it via config tool. Once the config file is read, the server's internal configuration
is stored in its config-dir. The config-dir contains the configuration that will be used on
subsequent restarts.

Starting nodes with config dir

A previously configured server can be started with the specification of a configuration directory
(config-dir), in activated mode directly.

Example:

./start-tc-server.sh -config-dir /data/tc/nodel

This is used when the server was restarted after having been activated previously, but can also be
used on a fresh server startup after completing the migration process from an older Terracotta
cluster. See the sections “Migrating from older Terracotta versions to 10.7” on page 145 or “Migrating
from 10.7 to a newer 10.7 version” on page 147 for related details

Note that when you start a server this way (which will be the most common way, over time), any
other parameters passed will be effectively ignored, because the server will use its internal
configuration.

After starting a node this way; it is not necessary to run the config tool attach or activate
commands since the cluster topology and configuration are ready.

28 Terracotta Server Administration Guide 10.15

7 Starting and Stopping the Terracotta Server

Environment variables read by the script

®m JAVA_HOME - Points to the JRE installation which the server should use (the Java launcher in
this JRE will be used to start the server).

® JAVA_OPTS - Any additional options which should be passed to the underlying JVM can be
passed via this environment variable and they will be added to the Java command line.

Stopping the Terracotta Server

If your server is not running in a Terracotta cluster, you can use the standard procedure offered
by your operating system to terminate the server process.

If you are running the server as part of a Terracotta cluster, you can safely shut down all servers
in the cluster using the cluster tool. See the section “Safe Cluster Shutdown” on page 31 of the
cluster tool for details.

Terracotta Server Administration Guide 10.15 29

7 Starting and Stopping the Terracotta Server

30 Terracotta Server Administration Guide 10.15

8 Safe Cluster Shutdown and Restart Procedure

Although the Terracotta Server Array is designed to be crash tolerant, like any distributed system
with HA capabilities, it is important to consider the implications of shutting down and restarting
servers, what sequence that is done in, and what effects that has on client applications and potential
loss of some data.

The safest shutdown procedure
For the safest shutdown procedure, follow these steps:

1. Shut down all clients and ensure no critical operations such as backup are running on the
cluster. The Terracotta client will shut down when you shut down your application.

2. Use the shutdown command of the cluster tool to shut down the cluster.

If you want to partially shut down a stripe with passive servers configured, you can use the partial
shutdown commands provided by the cluster tool. See the section “Cluster Tool” on page 107 for
details.

The safest restart procedure

To restart a stripe for which the failover priority is consistency, servers can be started up in any
order as it is guaranteed that the last active server is re-elected as the active server, thus preventing
data loss. This is guaranteed even if there are multiple former active servers in the stripe at the
time of shutdown (for example, one active server and one or more suspended active servers or
former active servers that were shut down, decommissioned or had crashed).

However, if the failover priority is availability, restarting the servers in any random order might
result in data loss. For example, if an older active server is started up before the last active server,
it could win the election and become the active server with its old data. To avoid such data loss
scenarios, the last known active server must be restarted first. All other servers must be started
up after this last known active server becomes the active server again.

However, if you do not know the most recent active server at the time of restart and still want to
restart the stripe safely without data loss, it can still be done by starting all the servers in that stripe
using the --consistency-on-start option of the server startup script. When the servers are started
up using this option, they will wait for all peer servers to come up and then elect the most recent
active server as the new active server.

Terracotta Server Administration Guide 10.15 31

8 Safe Cluster Shutdown and Restart Procedure

If there are multiple active servers at the time of shutdown, which can happen if the failover
priority of the cluster is availability, one of them will be chosen automatically on restart. This choice
is made based on factors like the number of clients connected to those servers at the time of
shutdown, the server that was started up first, etc.

Considerations and implications of not following the above procedure
Facts to understand:

= Servers that are in "active" status have the "master" or "source of full truth" copy of data for
the stripe they belong to. They also have state information about in-progress client transactions,
and client-held locks.

® Mirror servers (in "passive standby" state) have a "nearly" up to date copy of the data and state
information. (Any information that they don't have is redundant between the active server
and the client.)

m [f the active server fails (or is shut down purposely), not only does the standby server need to
reach active state, but the clients also need to reconnect to it and complete their open
transactions, or data may be lost.

m A Terracotta Server Array, or "Cluster" instance has an identity, and the stripes within the TSA
have a "stripe ID". In order to protect data integrity, running clients ensure that they only "fail
over" to servers with matching IDs to the ones they were last connected to. If cluster or stripe
is completely "wiped" of data (by purposely clearing persisted data, or having persistence
disabled and having all stripe members stopped at the same time), that will reset the stripe
ID.

What happens if clients are not shut down
If clients are not shut down:

m Client applications will continue sending transactions (data writes) to the active server(s) as
normal, right up until the active server is stopped. This may leave some successful transactions
unacknowledged, or falsely reported as failed to the client, possibly resulting in some data
loss.

= Clients will continue to try and connect and when the server is restarted, the clients will fail
the current operation and enter a reconnect path to try and complete the operation. When
clients enter a reconnect path, it is left to the client to ensure idempotency of the ongoing
operation as the operation might either have been made durable just before shutdown or it
may have been missed during shutdown.

What happens if the active server is shut down explicitly
If the active server is shut down first:

m Before shutting down any other servers, or restarting the server, ensure that you wait until
any other servers in the stripe (that were in 'standby’' status) have reached active state, and
that any running clients have reconnected and re-sent their partially completed transactions.
Otherwise there may be some data loss.

32 Terracotta Server Administration Guide 10.15

9 Configuration Terms and Concepts

To have a solid grasp of how to configure a Terracotta Server Array (TSA), one must first have a
strong understanding of the basic concepts of what a TSA is, what it uses as resources, and how
its configuration system works.

Review of Terracotta Server Array Concepts

As a quick review of high-level TSA concepts:

® A Terracotta Server Array (TSA) is composed of one or more "stripes".
® A stripe is composed of one or more Terracotta Servers

m Each stripe contributes to the total storage and computing capacity of the TSA. If there are five
stripes, then each one will contain roughly one-fifth of the stored data.

m Within a stripe, one server is "active" (serves workload from clients), and any others act as
"mirrors” for HA purposes.

® Because any member of the stripe may be elected as the "active" server, the configuration and
system resources of all stripe members must be equivalent.

Stripes have names (which can be assigned during configuration time), and nodes (servers) that
are members of the stripe also have names. These names are useful when "targeting" configuration
or operational commands.

For more information on the above concepts, please review the sections “Cluster Architecture” on
page 11 and “Active and Passive Servers” on page 13.

Server Resource Concepts

Terracotta Servers utilize resources in order to provide services and features such as network
connectivity, data storage, durability, backups, etc.

Notable items that need to be configured (or considered whether the default value is appropriate)
include:

® Network ports - This includes a "port" for receiving client requests, and a "group-port" for
communicating with other stripe members (servers). The default values are 9410 and 9430
respectively.

Terracotta Server Administration Guide 10.15 33

9 Configuration Terms and Concepts

m Server metadata directory - This is a directory where the server stores important metadata
about its internal state. The default location is <user-home-dir>/terracotta/metadata.

m Configuration directory - This is a directory where the server stores its internal configuration.
The default location is <user-home-dir>/terracotta/config.

m Offheap storage resources - Servers need one or more offheap (memory) resources defined in
order to have space in which to store data (via Caches or Datasets). For proper operation, all
servers in a cluster (TSA) need to have the same set of offheap resources defined (because
Cache and Dataset configurations will reference them for use). The default is to create one
offheap resource named main with size 512MB.

® Data directories - Optional, but commonly used, data directories are used for durable (persistent)
storage of data. For proper operation, all servers in a cluster (TSA) need to have the same set
of data directories defined (because Cache and Dataset configurations will reference them for
use). The default is to create one data directory named main with location
<user-home-dir>/terracotta/user-data/main.

m Backup directory - Used as the destination for backups.

m Logging directory - Used as the destination for server logs. Default location is
<user-home-dir>/terracotta/logs.

= Failover priority - a cluster-wide setting that affects HA behavior when nodes are shut down
or fail. A choice must be made as to whether the cluster should favor availability of service
or consistency of data when situations occur that could lead to split-brain scenarios (e.g. when
servers are still running but cannot communicate with each other).

For more information on about these items, please review the sections “Config Tool” on page 51,
“The TerracottaConfiguration File” on page 45, and “Configuring the Terracotta Server” on
page 91.

Configuration Concepts

Perhaps the most important thing to understand about a Terracotta server's configuration, is that
it is stored and updated "internally" to the server, not in a human-editable file that is read each
time the servers starts.

After a node has been configured and is running, everything that is needed to restart it, and get
it running again (with the same configuration and internal state) is stored within the node's
config-dir.

The mechanisms for adding to or changing the internally stored configuration of servers is therefore
the focus of what needs to be understood next.

Fundamental, Required Settings

There are a few very fundamental items related to a server instance (node) that are necessary for
its existence. This includes: network ports, config-dir and metadata-dir. The ports are of course
used to make the node accessible. The config-dir is where the server will store (and later find) its
internal configuration. And the metadata-dir is where the server will store (and later find) its
internal state information.

34 Terracotta Server Administration Guide 10.15

9 Configuration Terms and Concepts

Necessarily Equivalent Settings

Some configuration settings need to be consistent or equivalent across all nodes in a stripe and/or
across all nodes in all stripes of a cluster. The reasoning for this is fairly clear and logical, if we
give a few examples.

Settings that need not be (or, in some cases must not be) the same across nodes include things such
as thenode name. Clearly, the node name must be unique, or it wouldn't be useful for identification
of the node. The network port can be any legal and available port number, and there is no need
for any two servers to use the same port, though it probably is most clear if they all use the same
port. (Note that they obviously must not use the same port if they are on the same host, but for
other reasons (resources, and HA) it is strongly recommended not to run servers on the same
host).

Some examples of settings that need to be equivalent across nodes are offheap resources and data
directories. This is because these are referenced (by name) in configurations for Datasets and
Caches, and are expected to exist on all servers. For example, if a user configures a new Dataset
to utilize (store its data in) an oftheap resource named "primary’, then, as the Dataset is created on
each server member of the cluster, an offtheap resource named "primary' must be found on each,
or the creation of the dataset will fail. It also makes sense that the offheap resource named 'primary’
should have an identical size on each server, such that mirrors can hold a copy of all the same data
the active server has, etc. For data-dirs, it is similar: when a Cache or Dataset configuration instructs
the usage of a data-dir, one with that name must exist on each server in the TSA. (However, in the
case of a data-dir, while the data-dir name needs to be known by all servers, the file path that it
refers to does not have to be identical on all servers. Hence, we say that all server nodes should
have the equivalent set of data-dirs.)

Initial Configuration Steps
The typical steps for initial configuration of a TSA are:

1. Start each server node (as unconfigured servers, they will enter 'diagnostic mode', and await
configuration)

2. Provide each server with configuration settings
3. Attach nodes to each other to form stripes

4. Attach stripes to each other to form a cluster

5. Activate the cluster

The first two steps can be accomplished in one command-line, if the user specifies configuration
settings as parameters to the start-tc-server script.

All of the steps can be accomplished in one command-line, if the user specifies a config file
containing all of the settings for all nodes of the cluster. Note that such a file is only used to initialize
the set of configuration properties in each node's internal configuration (stored in its config-dir)
- it is never read or utilized again.

After these steps, the server nodes will restart themselves (to leave diagnostic mode) and form
the configured cluster. As the servers restart, they will use the configuration stored in their

Terracotta Server Administration Guide 10.15 35

9 Configuration Terms and Concepts

config-dir. With any subsequent restarts of a node, the user must specify (to the start-tc-server
script) the location of the config-dir (or the script will attempt to use the default location).

Once the cluster is activated, some configuration properties (such as node name and config-dir)
cannot be changed. Others can be changed or added later, as necessary (such as oftheap resources).

Understanding the Configuration Directory and Config Tool
Configuration Directory

As previously noted, a server node's config-dir is where its internal storage, or "source of truth",
for configuration is kept. The files under this directory are not to be edited by the user, as (for reasons
that will be made more clear below) they are solely managed by the server node itself.

If you are restarting a server process, and want it to be the same server node that it was before,
you need to ensure that the start-tc-server script specifies (or defaults to) the appropriate
config-dir.

Config Tool

The config tool (see “Config Tool” on page 51) is used to add or modify configuration settings for
servers, both before they are activated as part of a cluster, and afterward. It can also be used to
see what a server's current configuration settings are, or export them for use as a template or
backup for recreating clusters.

The config tool connects to server nodes and issues commands, such as to set a configuration
property. Some config tool commands may target a single node, while others may target all nodes
of a stripe, or all nodes of a cluster. In all cases, the server responds to the config tool's requests
by reading and/or updating the configuration state files contained in the server's config-dir.

Configuration Operations and Outcomes

As noted in the previous paragraphs, a server node responds or reacts to config-tool requests by
reading or updating the contents of its internal configuration (which is contained in the config-dir,
once the cluster has been activated).

Because many configuration settings must be the same on all member nodes of a stripe and some
must be the same on all members of the cluster, changes to configuration must be coordinated,
and therefore complex outcomes are possible.

For example, if the number of "voters" for a stripe is to be changed, it is only safe for that change
to go into effect if it does so at the same time on all nodes in the stripe. Otherwise, "bad things"
could happen when a failover situation occurs (e.g. one node may make a bad decision as to
whether or not it should move to "active" state.) Similarly the adjustment of offheap resource sizes,
or the attachment of an additional node to a stripe needs to be synchronized across servers.

This coordination, or synchronization is accomplished via a two-phase commit protocol, wherein
configuration changes are staged and validated on each server (to determine that the change can
be successful on all servers), and then committed (or activated) on each server in the second phase.

Typically, (in most cases), the config tool and the server's internal configuration manager handle
the complexities of the coordination just fine. However, if a failure occurs during a configuration

36 Terracotta Server Administration Guide 10.15

9 Configuration Terms and Concepts

change, or one of the nodes is not running when a configuration change is made, there are possible
outcomes that may require follow-up on the user's part.

Most of the non-typical cases are automatically corrected by the servers, such as when a node
restarts (if it was down during the configuration change, or if it crashed after the configuration
change was staged but before it was committed or rolled back). When servers that are restarting
connect to the other members of their stripe, they discover whether their configuration state is out
of sync, and if so, then they receive the appropriate updates from the other server(s).

Very rarely the config tool's repair command may need to be used to force a commit or rollback
of a config change after careful inspection of the configuration state via the config tool's get or
export commands.

In all cases the config tool will inform you about the success or failure of a configuration operation,
and hint to you any next steps that may be necessary.

Terracotta Server Administration Guide 10.15 37

9 Configuration Terms and Concepts

38 Terracotta Server Administration Guide 10.15

10 Planning a Configuration

To be successful, most deployments require at least a little planning before beginning the
configuration process in order to avoid missteps or even the need for starting over.

If you have not already done so, please familiarize yourself with the material presented in
“Configuration Terms and Concepts” on page 33.

Naming and Addressing
Naming Servers and Stripes

Because Terracotta deployments typically involve at least two servers, and often very many more,
you should put a little planning into how you name them. Doing so will help keep the nodes and
stripes easily identifiable within configuration and management commands and monitoring views.
It is not actually necessary to name them, in which case they will be assigned auto-generated
names, but using names that are meaningful to you will likely be helpful.

Some things to consider when deciding upon the scheme for naming stripes and nodes:

® You may want to include within the name of a stripe or node something that hints at its purpose,
such as whether it is part of a development, test, or production environment. For example,
"DevStripe-A".

® Youmay want to include within a node's name something related to the name of the host upon
which the server runs. On the other hand, in dynamic/container environments you may want
to purposely avoid this.

m If you expect that you'll be changing your TSA topology in the future (i.e. adding or removing
stripes from the cluster, or adding or removing servers from stripes), you may want to purposely
avoid using sequential numbering in the names, such as "server-1" or "stripe-1", because over
time you may end up with gaps or other oddities in the numbering. This will actually work
fine, but may be confusing to users who try to assemble within their minds a mental map of
the topology.

As you form your cluster, the cluster itself can also be named. It makes good sense to use a name
that clearly identifies its purpose, e.g. "MyApp-PROD-TSA" or "MyApp-DEV-TSA", etc.

Addressing Servers

Terracotta Server Administration Guide 10.15 39

10 Planning a Configuration

As you plan the set of servers that you will need, and where they are to be deployed, it would be
wise to make, and keep handy during the configuration process, a clear listing of which host names
(or addresses) and ports will be used for each server.

You have the choice of addressing servers by hostname or by IP address. Using host names (that
can be resolved by DNS) is favorable. Note that you can also specify bind-address (for port) and
group-bind-address (for group-port) in case of any ambiguity of which IP address the ports will
be opened on (with the default being to open the ports on all of the host's addresses).

Data Consistency and Availability

One of the most important actions in planning your configuration is that of determining which
guarantees you would like to favor in the case of a fail-over situation.

Please refer to “Failover Tuning” on page 99 for a full discussion of that feature.

The well-known CAP Theorem causes the need for a choice in which guarantees the TSA should
sacrifice in order to preserve the others, in the case of a fail-over situation.

If you plan to store data in the TSA and have its integrity protected with priority, you should
strongly consider using the consistency setting for the cluster's failover-priority setting.

If you plan only to cache data in the TSA, you may prefer to use the availability setting for
failover-priority.

In either case, the likelihood of the cluster ever needing to resort to compromising on either data
availability or data consistency can be greatly reduced by careful choices and resourcing related
to High Availability.

High Availability

High Availability (HA) of the Terracotta Server Array is achieved through the use of mirror servers
within each stripe, and the optional use of "voters".

When an active server is shut down or fails, other stripe members become eligible for becoming
the new active server for that stripe's set of data. If there are no other members of the stripe running,
then the stripe's data is not available, and that typically results in the complete unavailability of
the Terracotta cluster, until the stripe is back online.

As you plan your TSA configuration, you should consider what levels of service are required, and
plan the proper number of servers per stripe and any requisite external voters (to assist with
tie-breaking during elections when quorum is not otherwise present).

For more information on these topics, see “Active and Passive Servers” on page 13, “Electing an
Active Server” on page 21, and “Failover Tuning” on page 99 (including discussion of External
Voters).

Storage and Persistence Resources

In-Memory Storage

40 Terracotta Server Administration Guide 10.15

10 Planning a Configuration

As part of planning for your configuration, you need to put some thought into how you will
organize the storage of your data.

Typically, data is stored within "offheap resources" which represent pools of memory reserved
from the underlying operating system. You configure one or more offheap resources, giving each
aname and a size (such as 700MB or 512GB, etc.). After your cluster is up and running, you can
create Caches and Datasets for storing your data, and as you do so, you will need to indicate which
offheap resource will be used by each.

There is nothing inherently wrong with simply defining only one offheap resource and having all
Datasets and Caches us it. However, some users may find it useful to be sure particular amounts
of memory are reserved for particular Datasets or Caches.

Note that the total amount of memory for a particular offheap resource is actually the configured
size of the resource multiplied by the number of stripes in the TSA, because the configured amount
is for a given server. Thus if you configure an offheap resource name ‘primary’ with a size of 50GB,
and your TSA has 3 stripes, then you will be able to store a total of 150GB of data (including any
related secondary indexes) within the "‘primary' offheap resource.

See also the topic Necessarily Equivalent Settings in the section”Configuration Terms and
Concepts” on page 33.

Disk Storage and Persistence

Most users desire to have at least some sets of their data persisted, or in other words, durable
between restarts of the servers in the TSA. Terracotta's FRS and Hybrid features provide such
capability.

FRS (Fast Restartable Store) is a transaction log structured in such a way that it can be very efficiently
replayed upon server restart, in order to recover all of the stored data as it existed when the server
went down. (Note that passive/mirror servers would instead sync the latest state of the data from
the active server). When FRS is enabled, data writes (additions, updates, deletions) are recorded
in FRS, but all data reads (gets and queries) occur within memory.

Hybrid storage mode utilized FRS capabilities, but also expands storage capacity to include the
disk, not just memory. In Hybrid mode, memory (offtheap resources) is used to store keys,
pointers/references and search indexes (for extremely fast resolution of lookups and queries), but
values are read from disk, such that memory does not need to have the capacity to contain them
all. Like FRS, all data is recovered in its last state when the server restarts.

For your configuration planning, you should note that both FRS and Hybrid features require a
location on disk where they can store the data. Because data is written to disk when modifications
occur, the speed of the disk is a major factor on the latency and throughput of Dataset and Cache
operations, and the speed of server restarts. Many users find it beneficial to dedicate a highly
performant file system for FRS/Hybrid data, while having the server use a different file system
for storing configuration, logs, etc. Some users find it useful to have multiple file system paths
(e.g. mount points) for storing different sets of data (different Caches or Datasets) both for
performance and organizational (e.g. for backups) purposes.

Locations for user data storage are specified with the data-dirs configuration property, which
can contain a comma-separated list of one or more data directories. Each data-dir has an identifying
name, that is used in the configuration of Caches and Datasets to enable persistence of the data

Terracotta Server Administration Guide 10.15 41

10 Planning a Configuration

that is put into them. Recall that an equivalent set of data-dirs (with the same names), should exist
on all nodes of the cluster.

Your planning should consider what filesystem path(s) you will use for data persistence (if any),
and what names you would like to identify each of those locations with.

See also the topic Necessarily Equivalent Settings in the section”Configuration Terms and
Concepts” on page 33.

Config and Metadata Directories

Terracotta servers require locations for storing their internal configuration (set with the config-dir
property), and their state metadata (set with the metadata-dir property).

For each server instance you'll want to make sure that the locations of these are always available
to the server (perhaps ideally on a local disk).

You may want to plan to name the directories after the server node's name, or similar - in order
to help keep things organized and clear for yourself and others who administer the system.

Backup Directory

In order to use the data backup feature of Terracotta, you will need to configure a location for the
backup to be written to. This is done with the backup-dir config property.

The location should ideally be performant (such that the backup files can be written quickly, with
minimal impact to the server), and large enough to contain the backup to be made, plus any other
backups that you may have previously made and not removed.

See also: “Backup, Restore and Data Migration” on page 137.

Logging Directory

You should also put some planning into where your server's logs will be written. This is configured
with the log-dir property.

Like the server's metadata directory and config directory, the log directory should be available to
the server at all times, and you likely want to ensure that its path and name make clear sense to
you and others who will be administering the system, as to which server's logs the directory
contains.

Security

Your configuration planning should also consider whether you wish to enable security features
on your cluster. Security features include encryption of network communications via TLS/SSL,
and authentication, authorization and auditing (AAA) features.

If so, you will need to become familiar with these features to properly plan your configuration.
See also: “Security Core Concepts” on page 156 and “Cluster Security” on page 161.

42 Terracotta Server Administration Guide 10.15

10 Planning a Configuration

Public Addresses

Will the clients need to address the servers differently than the servers address each other (such
as due to being within a managed container environment that has an "internal" network)?

If so, you may want to review whether hostnames will resolve to legal addresses both inside and
outside of the containers, and whether you need to use the public-address configuration setting
on your servers.

See also: “Terracotta in Network Environments with Subnets” on page 189.

Terracotta Server Administration Guide 10.15 43

10 Planning a Configuration

44

Terracotta Server Administration Guide 10.15

11 The TerracottaConfiguration File

This document describes the elements of the Terracotta configuration file (a.k.a. config file), which
serves to define the configuration of a Terracotta cluster including its stripes and nodes. Refer to
“ Cluster Architecture” on page 11 for details on different TSA topologies.

A sample config file is provided in the kit under server/conf. It can be used as the starting point.
Some entries in the file have inline comments describing the configuration elements. Be sure to
start with a clean file for your configuration.

Use cases

Unlike previous Terracotta releases, a config file isn't needed to configure or start the servers.
However, a config file is handy for the following purposes:

1. “Export” on page 68 and viewing the configuration of a given cluster.

2. Backing up and version-controlling the configuration of a given cluster.

3. Using the current configuration as a foundation to build up a new configuration.

4. “Import” on page 70 the cluster configuration on running nodes of an unconfigured cluster.
5. “Starting nodes using the exported config” on page 25 in a new cluster.

The config file is only used as a convenience to feed the configuration settings into unconfigured
servers. Once that is performed, the servers will never again utilize or reference the config file,
but will instead utilize their internal configuration (which is persisted in the server’s config-dir).

Configuration File Format

To help illustrate the format of the config file, consider a cluster that comprises two stripes and
four nodes. Nodes nodel and node2 belong to Stripe-A. Nodes node3 and node4 belong to
Stripe-B.

The configuration file format requires that all stripes defined for the cluster are declared with the
stripe-names property:

stripe-names:<stripe_name_1>,<stripe_name_2>,...,<stripe_name_n>

The declaration of stripes for our example is:

stripe-names:Stripe-A,Stripe-B

Terracotta Server Administration Guide 10.15 45

11 The TerracottaConfiguration File

The configuration file format also requires that all nodes belonging to a stripe are declared with
the node-names property:

<stripe_name_1>:node-names:<node_name_1-1>,<node_name_1-2>,...,<node_name_1l-n>
<stripe_name_2>:node-names:<node_name_2-1>,<node_name_2-2>,...,<node_name_2-n>
<stripe_name_m>:node-names:<node_name_m-1>,<node_name_m-2>,...,<node_name_m-n>

The declaration of nodes for our example is:
Stripe-A:node-names:nodel,node2

Stripe-B:node-names:node3,node4

With the node and stripe names declared, settings are defined at cluster, stripe or node level by
referencing the appropriate stripe name, node name or no name (in the case of cluster level setting):
1. Node-level scope:

<node_name>:<setting> OR node:<node_name>:<setting>

2. Stripe-level scope:

<stripe_name>:<setting> OR stripe:<stripe_name>:<setting>

3. Cluster-level scope:

<setting>

4. When the same setting appears multiple times in the config file and that setting is directly or
indirectly ascribed to the same node, lower scoped entries will take precedence over higher
scoped entries when determining that setting's value for that particular node, where node-scope
< stripe-scope < cluster-scope.

For example, consider this snippet:

backup-dir=pathA
node2:backup-dir=pathB
StripeB:backup-dir=pathC

The above snippet will effectively impart the following configuration to the cluster:

nodel:backup-dir=pathA
node2:backup-dir=pathB
node3:backup-dir=pathC
node4:backup-dir=pathC

In the above example, the cluster-scoped entry backup-dir=pathA is applied to every node in
the cluster. But the lower scoped entry node2:backup-dir=pathB overrides the cluster-scoped
entry for node2 and assigns its backup directory as pathB. Similarly, the stripe-scoped entry
StripeB:backup-dir=pathC overrides the backup directory which backup-dir=pathA would
have ascribed to nodes node3 and node4, with the value pathA.

Examples

This section describes the various properties supported in a config file.

46 Terracotta Server Administration Guide 10.15

11 The TerracottaConfiguration File

Minimal configuration

A config file can get pretty large, especially when the cluster contains a large number of nodes.
However, most configuration properties have default values, because of which the config file can
be reduced in size if the default values are acceptable. The only mandatory property for a
single-node cluster is:

<node_name>:hostname=1localhost

which specifies the hostname to localhost. The following default values are used:

Property Default value Comments

offheap-resources main:512MB Defines one “offheap resource” on
page 91 with name main and size 512MB.

client-lease-duration 150 seconds Defines the “lease duration” on page 105
for the client connections as 150
seconds.

client-reconnect-window |120 seconds Defines the client reconnect time

window as 120 seconds.

<node_name>:hostname %h Sets the host name of the node to the
tully-qualified host name of the
machine.

<node_name>:port 9410 Sets the port for this server process to
9410.

<node_name>:bind-address|0.0.0.0 Sets the bind address for the port to the
wildcard address 0.0.0.0

<node_name>:group-port |9430 Sets the intra-stripe communication port

for this server process to 9430.

<node_name>group-bind-address | 0.0.0.0 Sets the bind address for the group port
to the wildcard address 0.0.0.0

<node_name>:metadata-dir|%H/terracotta/metadata |Sets the “server persistence” on page 92
directory to %H/terracotta/metadata.

<node_name>:data-dirs main%eH/terracotta/user-data/main | Defines a “user data directory” on
page 91 with name main and path
%H/terracotta/user-data/main.

<node_name>:log-dir %H/terracotta/logs Sets the server logging directory to
%H/terracotta/logs

Note:

Terracotta Server Administration Guide 10.15 47

11 The TerracottaConfiguration File

%h and %H in the above default values point to the hostname of the machine and home directory
of the current user respectively. See the section “Parameter Substitution” on page 89 for more
information.

Several other configuration properties are omitted (i.e. not assumed to have defaults), which are:

Property Comments

cluster-name The name of the cluster

whitelist Whether to enable IP whitelist security

ssl-tls Whether to enable SSL/TLS based security

authc Security authentication setting to be used

security-dir The security root directory for this node

audit-log-dir Directory containing the node's security audit logs

backup-dir Directory to be used to contain the “backup” on page 137 of this node
public-hostname “Public hostname” on page 189 for this node

public-port “Public port ” on page 189 or this node

Security configuration

The following snippet demonstrates how to enable IP whitelisting and SSL/TLS based “security” on
page 155 along with security event auditing on a single node cluster (with node named nodel):

)

failover-priority=availability
whitelist=true

ssl-tls=true

authc=certificate
nodel:hostname=1localhost
nodel:audit-log-dir=/path/to/audit/dir
nodel:security-dir=/path/to/security/dir

High availability configuration

High-availability can be enabled by configuring more than one node in a stripe. The following
snippet defines two nodes in a cluster containing a single stripe:

failover-priority=availability
nodel:hostname=1localhost
nodel:port=9410
nodel:group-port=9430
node2:hostname=1localhost
node2:port=9510
node2:group-port=9530

Multistripe with HA configuration

48 Terracotta Server Administration Guide 10.15

11 The TerracottaConfiguration File

Stripes can be added to a Terracotta cluster to scale it out. Additionally, high-availability in a stripe
can be enabled by configuring more than one node. The following snippet defines a cluster with

two stripes with two nodes each:

failover-priority=availability
nodel:hostname=1localhost
nodel:port=9410
nodel:group-port=9430
node2:hostname=1localhost
node2:port=9510
node2:group-port=9530
node3:hostname=1localhost
node3:port=9610
node3:group-port=9630
node3:hostname=1localhost
node3:port=9710
node3:group-port=9730

The preceding snippet can be simplified:

failover-priority=availability
hostname=1localhost
nodel:port=9410
nodel:group-port=9430
node2:port=9510
node2:group-port=9530
node3:port=9610
node3:group-port=9630
node4:port=9710
node4:group-port=9730

Terracotta Server Administration Guide 10.15

49

11 The TerracottaConfiguration File

50

Terracotta Server Administration Guide 10.15

12 Config Tool

B OVEBIVIEBW ittt ettt e oo e e e et e e et e e e e ettt e e e e e e n e e e e e e e e e e 52
B S BHiNgS oo ———————————————————— 55
B Performing configuration CRanQEscooiiiiiiiiiiiiie e 63
m Diagnosing and Repairing ProbIEmMSoooiiiiiiiiiiii e 71
B Config Tool TroubleShooting GUIAEccooiiiiiiiiiiiiiie e 75

Terracotta Server Administration Guide 10.15 51

12 Config Tool

Overview

The Config Tool is a command-line utility typically used by administrators of the Terracotta Server
Array. It is used to perform a variety of cluster management tasks. The tasks are carried out by
executing one or more Config Tool commands against Terracotta servers.

The Config Tool is executed by running the appropriate config-tool script located in the tools/bin
folder inside the Terracotta installation directory:

® config-tool.bat - used on Windows platforms

® config-tool.sh - used on Unix/Linux platforms

Config Tool script executions utilize the following syntax:

config-tool.sh|bat [<common_options>] <command> <command_specific_options>

Note that common_options are optional, while one or more of the command_specific_options are

required.

Commands

The supported Config Tool commands include:

Command

Description

“activate” on page 59

Activate unconfigured nodes in a cluster.

“attach” on page 61

Attach nodes to a stripe; attach stripes to a cluster.

“detach ” on page 62

Detach nodes from a stripe; detach stripes from a cluster.

“get” on page 64

Read the value of one or more cluster, stripe or node settings in the
cluster.

“set” on page 65

Write a value for one or more cluster, stripe or node settings in the
cluster.

“unset” on page 67

Remove a previously set value for one or more cluster, stripe or node
settings in the cluster.

“export” on page 68

Export the complete cluster definition to a configuration properties file.

“import” on page 70

Import a configuration properties file containing the definition of a
cluster and its associated stripes and node.

“diagnostic” on page 71

Retrieve detailed status information for all nodes comprising the cluster.

“repair” on page 74

Repair a node within a cluster which is in an incorrect state.

“log” on page 74

Retrieve details about all changes made to a node in the cluster.

52

Terracotta Server Administration Guide 10.15

12 Config Tool

Refer to the “Configuration Terms and Concepts” on page 33 section to gain a deeper understanding
of what the Config Tool commands do and under what circumstances you might use them.

Important:
Refer to the “Config Tool Troubleshooting Guide” on page 75 when encountering errors that
prevent the desired command from executing successfully.

Common Command Options

Each Config Tool command supports a unique set of options (detailed in the sections throughout
this document). But all commands support the following common options:

Option Description Default
-connection-timeout | Timeout value for connections to be established. 10
seconds
-request-timeout |Timeout value for command requests to be executed. 10
seconds
-security-dir Specifies the location of the security root directory folder. Used to

communicate with a server that is configured with any of the
supported security schemes (e.g. TLS/SSL). For more details on
configuring security in a Terracotta cluster see “Security Core
Concepts” on page 156 and “Cluster Security” on page 161.

-verbose Generates a verbose output. Useful for debugging error conditions. |false

-help Displays help information for commands and their options.

Example Cluster

The Config Tool usage examples used throughout this document reference the example cluster
shown below.

m This three-stripe cluster utilizes HA with Stripe-A and Stripe-C employing a single mirror
(node2 and node7 respectively) and Stripe-B employing two mirrors (node3 and node4).

®m Each node is configured to operate on a distinct port. This is only for illustrative purposes in
order to provide clarity when reading the Config Tool commands. In fact, multiple Terracotta
servers - each running on a distinct host - may be configured to use the same port, including
the default port (9410).

| STRIPE: Stripe-A |

Fom Fomm e Fom Fomm e +
| Node Name | Host-Port | IP Address + Status |
Fom Fomm e Fom Fomm e +
| nodel | host1:9410 | 10.0.0.1 + ACTIVE |
___ e
| node2 | host2:9412 | 10.0.0.2 + PASSIVE |
Fom Fomm e Fom Fomm e +

| STRIPE: Stripe-B |

Terracotta Server Administration Guide 10.15 53

12 Config Tool

Fom e — Fom Fom e — Fom +
| Node Name | Host-Port | IP Address + Status |
Fom e — Fom Fom e — Fom +
| node3 | host3:9413 | 10.0.0.3 + PASSIVE |
___ o
| node4 | host4:9414 | 10.0.0.4 + PASSIVE |
___ o
| node5 | host5:9415 | 10.0.0.5 + ACTIVE |
Fom e — Fom Fom e — Fom +
| STRIPE: Stripe-C |

Fom e — Fom Fom e — Fom +
| Node Name | Host-Port | IP Address + Status |
Fom e — Fom Fom e — Fom +
| node6 | host6:9416 | 10.0.0.6 + ACTIVE |
___ o
| node7 | host7:9417 | 10.0.0.7 + PASSIVE |
Fom e — Fom Fom e — Fom +

Namespace Syntax

Many of the settings permit their values to be accessed (read/write via get, set and unset commands)
at different topology levels (i.e. cluster, stripe or node). This is achieved through the use of a
namespace syntax where the name of the topology entity is used to qualify the setting’s access level:

[namespace] .<setting> --> [(stripe:<stripe_name>: | node:<node_name>:)]<setting>
or
[namespace] .<setting> --> [(<stripe_name>: | <node_name>:)]<setting>

The following examples illustrate this namespace usage. For additional details describing this
namespace syntax refer to “The Terracotta Configuration File” on page 45.
® Access host7's port setting. The name of host7 is node7:

node:node7.port or node7:port

m Access the backup directories (backup-dir) for all nodes belonging to Stripe-B:
stripe:Stripe-B:backup-dir or Stripe-B:backup-dir

® The log directories (log-dir) for all nodes in the cluster is accessed by NOT including any
namespace before the setting:

log-dir
m If a cluster has a node and stripe possessing the same name (e.g. SERVER-A), then accessing

a setting at the stripe or node level must incorporate the stripe: qualifier or node: qualifier,
otherwise the request would be ambiguous. For example:

node: SERVER-A:backup-dir // the backup directory for node: SERVER-A

stripe:SERVER-A:backup-dir // the backup directory for all nodes belonging
to stripe: SERVER-A
SERVER-A:backup-dir // ERROR: because SERVER-A 1is ambiguous when

not qualified

54 Terracotta Server Administration Guide 10.15

12 Config Tool

Settings

A cluster topology is defined and behaves according to the configuration of the cluster, its stripes,
and their constituent nodes. The configuration of each of these entities is established by ascribing
values to one or more of their supported settings.

Each setting has the potential to be queried (via the get command), modified (via the set command)
and in some cases 'removed' or 'undone’ (via the unset command). Importation of settings (via
the import command) is another avenue to configure an entity.

Each setting possesses a unique set of rules governing how it can be changed. These rules depend
upon the setting's applicable scope (i.e. cluster, stripe, or node) and whether the entity is
CONFIGURED (i.e. Activated) or UNCONFIGURED.

Configuration Rules for UNCONFIGURED (not Activated) Nodes and Clusters

An unconfigured cluster offers the greatest flexibility where modifying settings is concerned. This
is because the settings of UNCONFIGURED nodes can always be modified and changing them
will never require a restart. However, once a node is activated, certain settings can not be modified
and in some cases, modifying a node's settings will require the node to be restarted.

The following table shows which Config Tool commands can be executed against each supported
setting when the node is UNCONFIGURED (i.e. not Activated).

Setting Node Stripe |Cluster |Default
license-file set unset |-
cluster-name get set -

unset

import
client-reconnect-window get set 120 seconds

unset

import
client-lease-duration get set 150 seconds

unset

import
failover-priority get set -

unset

import
stripe-name get set [get <generated>

import
name get set get get <generated>
import

Terracotta Server Administration Guide 10.15 55

12 Config Tool

Setting Node Stripe |Cluster |Default
hostname get get get %h
import
port get get get 9410
import
public-hostname get set |get set |[get set -
unset unset unset
import
public-port get set |get set |[get set -
unset unset unset
import
group-port get set get set |get set 9430
unset unset unset
import
bind-address get set |get set |[get set 0.0.0.0
unset unset unset
import
group-bind-address get set |get set |[get set 0.0.0.0
unset unset unset
import
data-dirs get set get set |get set main:%H/terracotta/user-data/main
unset unset unset
import
metadata-dir get set |get set |get set %H/terracotta/metadata
unset unset unset
import
log-dir get set |get set |get set %H/terracotta/logs
unset unset unset
import
backup-dir get set |get set |get set -
unset unset unset
import
tc-properties get set get set [get set -
unset unset unset
import
logger-overrides get set |get set |get set -
unset unset unset
import

56

Terracotta Server Administration Guide 10.15

12 Config Tool

Setting Node Stripe |Cluster |Default
security-dir get set |get set |[get set -
unset unset unset
import
audit-log-dir get set |get set |get set -
unset unset unset
import
authc get set -
unset
import
ssl-tls get set FALSE
unset
import
whitelist get set FALSE
unset
import
offheap-resources get set main:512MB
unset
import
config-dir -
node-uid get get get <generated>
import
stripe-uid get get <generated>
import
cluster-uid get import|<generated>
lock-context import -

Configuration Rules for CONFIGURED (Activated) Nodes and Clusters

Once a cluster is activated and its underlying nodes are CONFIGURED, there is less flexibility as
to which settings can be modified including whether the requested setting modification can be
incorporated at runtime or if one or more Terracotta server restarts will be required.

The following table shows which Config Tool commands can be executed against each supported
setting when the node is CONFIGURED (i.e. Activated).

Requirements (see Table below)

m CO - Cluster Online - All nodes must be online in order for the set or unset command to be
accepted.

Terracotta Server Administration Guide 10.15 57

12 Config Tool

m CR- Cluster Restart - Every node in the cluster must be restarted after executing a set or unset

command.

® NR - Node Restart - Only the node(s) directly impacted by the set and unset command must

be restarted. The Config Tool will list these impacted nodes following successful execution of

the command, asking for them to be restarted.

®m AoN - All or None - All nodes in the cluster, or zero nodes in the cluster, can possess a

configured value for the specified setting.

Note:

When executing set or unset against a setting which does not possess any requirements (CO,
CR, NR or AoN) the setting may be automatically incorporated at runtime, without requiring

a server restart. However, the system may determine that a restart of one or more nodes is
required. Following successful execution of the command, the system will list the node(s), if
any, that will require a restart.

Note:

Whenever the set or unset command is executed, the Active server for each stripe comprising

the cluster must be online in order for the command to be accepted. That is, no setting can be

modified unless every Active server in the cluster is online. This rule applies to all settings.

Setting Node Stripe Cluster Requirements
license-file set unset

cluster-name get set
client-reconnect-window get set unset
client-lease-duration get set unset
failover-priority get set CO, CR
stripe-name get get

name get get get

hostname get get get

port get get get

public-hostname get set unset |get set unset |get set unset |AoN
public-port get set unset |get set unset |get set unset |AoN
group-port get get get

bind-address get get get

group-bind-address get get get

data-dirs get set get set get set AoN

58 Terracotta Server Administration Guide 10.15

12 Config Tool

Setting Node Stripe Cluster Requirements
metadata-dir get set get set get set

log-dir get set unset [get set unset |get set unset |[NR
backup-dir get set unset |get set unset |get set unset |AoN
tc-properties get set unset [get set unset |get set unset |[NR
logger-overrides get set unset [get set unset |get set unset
security-dir get set unset |get set unset |get set unset [NR, AoN
audit-log-dir get set unset |get set unset |get set unset [NR, AoN
authc get set unset |CO, CR
ssl-tls get set unset |CO, CR
whitelist get set unset |CO, CR
offheap-resources get set

config-dir

node-uid* get get get

stripe-uidx get get

cluster-uidx* get

lock-contextx set unset

*Internally used system property

Config Tool Commands

The following sections describe each supported Config Tool “ command” on page 52 and provide
examples on their usage.

In some cases, we also show examples of start_tc_server.sh|bat script usage. Refer to “Starting
and Stopping the Terracotta Server” on page 25 for complete details on using this script.

Note:
Any command requiring a hostname : port parameter can be substituted with the ipAddress:port
of the target node.

Cluster Activation and Topology Changes

Activate

Terracotta Server Administration Guide 10.15 59

12 Config Tool

The activate command is used to activate the nodes of a cluster when the nodes are
UNCONFIGURED. The activation process will automatically perform the following steps:

1. Validate the configuration consistency

2. Validate the license

3. Write the validated cluster configuration inside the configuration directory of all nodes
4. Restart all activated nodes

Once a cluster is activated, it becomes usable for Terracotta clients.

Syntax:

activate [-connect-to <hostname[:port]> [-config-file <file>]] [-cluster-name <name>]
[-license-file <file>] [-restart-wait-time <duration>] [-restart-delay <duration>]
[-restrict]

Option Description

-connect-to <hostname[:port]> |Terracotta server instance to which the Config Tool will
connect and execute the command.

-cluster-name <name> The name given to the activated cluster.

-config-file <file> Configuration file containing the node definitions, including
their stripe topology, to be activated.

-license-file <file> File path to the license file.

-restart-wait-time <duration> |Maximum time to wait for the nodes to restart. Default: 120
seconds.

-restart-delay <duration> Delay before the server restarts itself. Default: 2 seconds.

-restrict Restricts the activation process to only the -connect-to node.

Examples:

1. Activating an unconfigured cluster whose topology has already been defined (e.g. through a
series of previously executed node/stripe/cluster attach commands):
config-tool.sh activate -connect-to host1:9410 -cluster-name MyCluster -Tlicense-file

/path/to/license.xml

2. Activating an unconfigured cluster whose topology has been defined inside a cluster.cfg
configuration file. See “The Terracotta Configuration File” on page 45 for details.

In this scenario, each of the nodes must be online and running in DIAGNOSTIC mode in order
for the activation to proceed.

Note that the connect-to option cannot be used as the node connection details used by the
Config Tool are defined inside the configuration file.

60 Terracotta Server Administration Guide 10.15

12 Config Tool

This flag shouldn't be used as a general way to activate a cluster. To work, this flag requires
that the targeted node is unconfigured and has a topology that is the same as the cluster it
needs to join, and other nodes also need to know about this node.

This is an action that can help recover from a broken configuration state, or when an “attach’
command has failed. Examples of scenario where this command can be useful:

® Repair a node when normal activation has failed

® Repair an ‘attach’ command that did not complete (topology was updated in existing
nodes, but new nodes failed to be activated)

m Re-activate a node after it has been reset

® attach new nodes to a cluster where some nodes have already been started with
“-auto-activate’

config-tool.sh activate -license-file /path/to/license.xml -config-file cluster.cfg

3. Activating an unactivated node belonging to an already activated cluster.

In this scenario, node7 has entered an UNCONFIGURED state but is still part of the cluster
and thus needs to be re-activated. Restricted activation will only run the activation process on
the targeted node.

config-tool.sh activate -connect-to host7:9417 -config-file cluster.cfg -restrict

Attach

The attach command is used to add nodes to a cluster by either (1) adding nodes to a stripe or (2)
adding whole stripes and their child nodes to the cluster.

Syntax:

attach (-to-cluster <hostname[:port]> -stripe <hostname[:port]> | -to-stripe
<hostname[:port]> -node <hostname[:port]>) [-restart-wait-time <duration>]
[-restart-delay <duration>]

Option Description

-stripe <hostname[:port] Stripe to add; identified by any node (as hostname:port)
belonging to stripe.

-to-cluster <hostname[:port] |Destination cluster; identified by any node (as hostname:port)
belonging to any other stripe within the cluster.

-node <hostname[:port]> Node to add; identified as hostname:port.

-to-stripe <hostname[:port]> |Destination stripe; identified by any node (as hostname:port)
belonging to to-stripe.

-restart-wait-time <duration>|Maximum time to wait for the nodes to restart. Default: 120
seconds.

Terracotta Server Administration Guide 10.15 61

12 Config Tool

Option Description
-restart-delay <duration> Delay before the server restarts itself. Default: 2 seconds.
Note:

In the event that errors are reported by the Config Tool when executing the attach command,
note the error messages and refer to the “Troubleshooting Guide” on page 75 for guidance.

Examples:
1. Attaching two UNCONFIGURED nodes to form a single stripe:
Start node3 as UNCONFIGURED:

start-tc-server.sh -failover-priority=availability -name=node3 -hostname=host3
-port=9413 -config-dir=/path/to/node3/repository

Start node4 as UNCONFIGURED:

start-tc-server.sh -failover-priority=availability -name=node4 -hostname=host4
-port=9414 -config-dir=/path/to/node4/repository

Attach node4 to node3 to form a stripe with two nodes:

config-tool.sh attach -to-stripe host3:9413 -node host4:9414

2. Attaching a node to an existing stripe:

Start node5 as UNCONFIGURED:

start-tc-server.sh -failover-priority=availability -name=node5 -hostname=host5
-port=9415 -config-dir=/path/to/node5/repository

Attach node5 to the stripe containing nodes node3 and node4:

config-tool.sh attach -to-stripe host3:9413 -node host5:9415

3. Attaching a stripe to a cluster:

In the previous step we created a 3-node stripe (Stripe-B in our “example cluster” on page 53).

Assuming that Stripe-A has already been constructed, we can attach Stripe-B to the cluster

by specifying any node belonging to Stripe-B (node3 in this case) and any other node belonging

to another stripe in the cluster (nodel in Stripe-A in this case):

config-tool.sh attach -to-cluster host1:9410 -stripe host3:9413

Similarly, Stripe-C can be attached to the cluster. Here we pick node7 from Stripe-C and node3

from Stripe-B:
config-tool.sh attach -to-cluster host3:9413 -stripe host7:9417

Detach

The detach command is used to remove nodes from a cluster by either (1) removing nodes from

their parent stripes or (2) removing whole stripes and their child nodes from the cluster.

62 Terracotta Server Administration Guide 10.15

12 Config Tool

Syntax:

detach (-from-cluster <hostname[:port]> -stripe <hostname[:port]> | -from-stripe
<hostname[:port]> -node <hostname[:port]>) [-stop-wait-time <duration>] [-stop-delay
<duration>]

Option Description

-stripe <hostname[:port] Stripe to remove; identified by any node (as hostname:port)
belonging to stripe.

-from-cluster <hostname[:port] |Destination cluster;identified by any node (as hostname:port)
belonging to any other stripe within the cluster.

-node <hostname[:port]> Node to remove; identified as hostname:port.

-from-stripe <hostname[:port]> |Destination stripe;identified by any node (as hostname:port)
belonging to from-stripe.

-stop-wait-time <duration> Maximum time to wait for the nodes to restart. Default: 120
seconds.

-stop-delay <duration> Delay before the server restarts itself. Default: 2 seconds.

Note:

In the event that errors are reported by the Config Tool when executing the detach command,
note the error messages and refer to the “Troubleshooting Guide” on page 75 for guidance.

Examples:

1. Detach a node from a stripe. In our”example cluster” on page 53 we could detach node4 from
Stripe-B with:
config-tool.sh detach -from-stripe host3:9413 -node host4:9414

2. Detach a stripe from a cluster. Specify any node (active or passive) within the cluster
(from-cluster) that does not belong to the stripe we wish to detach, and specify any node
(active or passive) belonging to the stripe we wish to detach. Here we detach Stripe-C from
Stripe-A:

config-tool.sh detach -from-cluster host2:9412 -stripe host7:9417

Note:
When detaching a stripe, all nodes in the detached stripe are stopped.

Performing configuration changes

Examples shown in this section follow the “ Namespace Syntax” on page 54 where the namespace
determines the scope of the get, set and unset commands. The formats are:

B stripe.<stripeld>.node.<nodeld> to read/write settings for a single, specific node.

B stripe.<stripeId> to read/write settings for all nodes within a stripe.

Terracotta Server Administration Guide 10.15 63

12 Config Tool

® no namespace to read/write settings for all nodes of the cluster.
Note:

Refer to “Configuration Rules for UNCONFIGURED (not Activated) Nodes and Clusters” on
page 55 and “ Configuration Rules for CONFIGURED (Activated) Nodes and Clusters” on
page 57 to understand exactly which of get, set and unset are supported for each setting and
at what cluster/stripe/node scope they are supported.

Note:

The get, set, and unset commands support specifying multiple setting <setting> parameters
on the command line in order to read/write multiple settings simultaneously. Together, these
settings constitute a change-set which is applied transactionally (i.e. applied fully or not applied
at all).

Get

The get command is used to read the configuration data that defines the cluster, its stripes, and
their nodes.
Syntax:

get -connect-to <hostname[:port]> [-runtime] [-output-format <cfg|properties>] -setting
<[namespace:]setting> -setting <[namespace:]setting> ...

Option Description

-connect-to <hostname[:port] Terracotta server instance to which the Config Tool will
connect and execute the command.

-setting <[namespace:]setting> List of settings for which to retrieve the values.
-setting <[namespace:]setting> ..

-runtime Returns the current, runtime values of the specified
setting(s). When using this option, the connect-to node
should be the node for which you wish to retrieve the
runtime values.

Examples

1. Get the offheap-resources cluster-wide setting:

config-tool.sh get -connect-to host2:9412 -setting offheap-resources

2. Get each offheap-resource separately (there are two in our example cluster):

config-tool.sh get -connect-to host2:9412 -setting offheap-resources.main -setting
offheap-resources.other

offheap-resources.main=512MB

offheap-resources.other=512MB

64 Terracotta Server Administration Guide 10.15

12 Config Tool

3. Get the cluster-name:

config-tool.sh get -connect-to host2:9412 -setting cluster-name

4. Get the hostname for all nodes in Stripe-B:

config-tool.sh get -connect-to host2:9412 -setting Stripe-B:hostname
node:node3:hostname=host3
node:node4:hostname=host4
node:node5:hostname=host5

5. Get the log-dir location belonging to node7 :

config-tool.sh get -connect-to host2:9412 -setting node7:log-dir

6. Get the runtime value for a setting.

In this example we assume the log directory for node7 was previously updated to
dirs\node7\logs\updated. But the node was not restarted, which is required for the change to
take effect. In this case, since the node was not restarted, the current runtime log directory will
continue to use the original folder location until the node is restarted. We can see this by
querying for log-dir using the runtime option:

config-tool.sh get -connect-to host7:9417 -setting node7:log-dir -runtime

Without specifying the runtime option, the updated value will be returned:

config-tool.sh get -connect-to host7:9417 -setting node7:log-dir

Note:

Whenever querying for a particular node's runtime setting value, the connect-to server should
always be that particular node. For example, in the previous example, we queried for the node7
runtime value using the stripe.3.node.2 namespace. Therefore, we needed to connect-to node?
as host7:9417. We could have connected-to any node in the cluster. But any node other than
node7 would have returned the updated setting value, even if we had specified the runtime
option.

Set

The set command is used to make configuration changes for the cluster, its stripes, and their nodes
by writing values for the various supported settings.

Syntax:

set -connect-to <hostname[:port]> -setting <[namespace:]setting=value> -setting
<[namespace:]setting=value>

Option Description

-connect-to <hostname[:port] Terracotta server instance to which the Config Tool
will connect and execute the command.

Terracotta Server Administration Guide 10.15 65

12 Config Tool

Option Description

-setting <[namespace:]setting =value> |List of settings and their values to set.
-setting <[namespace:]setting=value>

-auto-restart Will automatically restart passive servers then active

servers if a change requires some nodes to be restarted

-restart-wait-time <duration> Maximum time to wait for the nodes to restart.

Default: 120 seconds.

-restart-delay <duration> Delay before the server restarts itself. Default: 2
seconds.
Examples
1. Change the name of the cluster:
config-tool.sh set -connect-to host3:9413 -setting cluster-name=MyCluster
2. Establish a new offheap resource:
config-tool.sh set -connect-to host3:9413 -setting offheap-resources.other=512MB
3. Simultaneously update the size of each of the cluster's oftheap resources:
config-tool.sh set -connect-to host4:9414 -setting offheap-resources.main=1GB
-setting offheap-resources.other=1GB
4. Configure the cluster's failover priority (consistency) to include 1 voter. Refer to “Failover
Tuning” on page 99.
config-tool.sh set -connect-to host4:9414 -setting failover-priority=consistency:1
5. Attempt to change the name for node4 (post activation):
config-tool.sh set -connect-to hostl:9410 -setting node4:name=new-node4-name
Error: Invalid input: 'node4:name=new-node4-name'. Reason: Setting 'name' cannot
be set when node is activated
Node names are immutable after cluster activation. Therefore the set command is an invalid
operation for the name setting (see “ Configuration Rules for CONFIGURED (Activated) Nodes
and Clusters” on page 57.
6. Update a cluster's license
config-tool.sh set -connect-to host1:9410 -setting license-file=path/to/license.xml
It is also possible to remove an installed license file. For example, a misplaced license file can
be removed using;:
config-tool.sh unset -connect-to host1:9410 -setting license-file
66 Terracotta Server Administration Guide 10.15

12 Config Tool

Pay attention that if a license file is removed from an activated cluster with some connected
clients, some features could then be refused and clients could malfunction because the cluster
would become unlicensed.

Configure SSL/TLS security for the cluster. Note that in this example, every node in the cluster
is assigned the same security root directory path on their local nodes:

config-tool.sh set -connect-to hostl1:9410 -setting
security-dir=path/to/server/security-dir
-setting authc=certificate -setting ssl-tls=true

For details on configuring security in a Terracotta cluster see “ Security Core Concepts” on
page 156 and “Cluster Security” on page 161.

After having configured security for our cluster in the previous example, we now set the
backup directories for all seven nodes of our “ example cluster” on page 53 to a unique folder
location. In this example, we connect-to a node using a secure connection:

config-tool.sh -security-dir path/to/client/security-dir set
-connect-to hostl1:9410 -setting nodel:backup-dir=nodel/backup/folder
-setting node2:backup-dir=node2/backup/folder

-setting node3:backup-dir=node3/backup/folder

-setting node4:backup-dir=node4/backup/folder

-setting node5:backup-dir=node5/backup/folder

-setting node6:backup-dir=node6/backup/folder

-setting node7:backup-dir=node7/backup/folder

Unset

The unset command is used to remove (i.e. undo) previously configured setting for the cluster,

its stripes, and their nodes.

Syntax:

unset -connect-to <hostname[:port]> -setting <[namespace:]setting> -setting
<[namespace:]setting> ... [-auto-restart] [-restart-wait-time <duration>]

[-restart-delay <duration>]

Option

Description

-connect-to <hostname[:port]

Terracotta server instance to which the Config Tool
will connect and execute the command.

-setting <[namespace:]setting>

-setting <[namespace:]setting> ..

List of settings and their values to unset.

—auto-restart

Will automatically restart passive servers then active
servers if a change requires some nodes to be restarted.

-restart-wait-time <duration>

Maximum time to wait for the nodes to restart. Default:
120 seconds.

-restart-delay <duration>

Delay before the server restarts itself. Default: 2
seconds.

Terracotta Server Administration Guide 10.15

67

12 Config Tool

Examples

1. Remove logger-overrides for a particular node:

config-tool.sh unset -connect-to hostl1:9410 -setting nodel:logger-overrides

2. Remove the backup directory configuration from each node in the cluster:

config-tool.sh unset -connect-to hostl1:9410 -setting backup-dir

3. When configured as a secure cluster, the audit log directory is an optional, all-or-none setting.
Here we remove the audit log directory configuration from all nodes in the cluster.

config-tool.sh -security-dir path/to/client/security-dir unset -connect-to host1:9410
-setting audit-log-dir

Export

The export command is used to export all information pertaining to the cluster, its stripes, and
their nodes.
Syntax:

export -connect-to <hostname[:port]> [-output-file <config-file>] [-include-defaults]
[-runtime]

Option Description

-connect-to <hostname[:port] |Terracotta server instance to which the Config Tool will connect
and execute the command.

-output-file <config-file> |The output configuration file. If this option is not specified, the
configuration is displayed on the console.

-include-defaults Include the settings having system default values as well.
Default: false

-runtime Export the runtime configuration instead of the on-disk
configuration. Default: false

Examples

1. Export the on-disk configuration of our 3-stripe, 7-node “example cluster” on page 53 to the
console (line spacings added for readability):

config-tool.sh export -connect-to host1:9410 -include-defaults
Timestamp of configuration export: 2021-05-01T12:00:00.000Z
User-defined configurations
stripe-names=Stripe-A,Stripe-B,Stripe-C
stripe:Stripe-A:node-names=nodel,node2
stripe:Stripe-B:node-names=node3,node4,node5
stripe:Stripe-C:node-names=node6,node7

cluster-name=MyCluster

failover-priority=consistency
offheap-resources=main:1GB,other:1GB

68 Terracotta Server Administration Guide 10.15

12 Config Tool

node:nodel

node:nodel
node:nodel

node:nodel

node:nodel
node:node2

node:node2
node:node2

node:node2
node:node2
node:node2

node:node3
node:node3
node:node3

node:node3
node:node3
node:node3
node:node4

node:node4
node:node4

node:node4

node:node4
node:node5

node:node5

node:node5

node:node5
node:node5
node:node5

node:node6
node:node6
node:node6

node:node6
node:node6
node:node6
node:node7

node:node7
node:node7
node:node7

:backup-dir=dirs\nodel\backup
node:nodel:
node:nodel:

bind-address=0.0.0.0
data-dirs=main:dirs\nodel\main

:group-bind-address=0.0.0.0
:group-port=8430
node:nodel:
:log-dir=dirs\nodel\logs
node:nodel:
:port=9410
:backup-dir=dirs\node2\backup
node:node2:
:data-dirs=main:dirs\node2\main
:group-bind-address=0.0.0.0
node:node2:
node:node2:
:log-dir=dirs\node2\logs
:metadata-dir=dirs\node2\metadata
port=9412

node:node3:
node:node3:
:data-dirs=main:dirs\node3\main
:group-bind-address=0.0.0.0
:group-port=8433

node:node3:
:log-dir=dirs\node3\logs
:metadata-dir=dirs\node3\metadata
:port=9413
:backup-dir=dirs\node4\backup
node:node4:
node:node4:

hostname=host1l

metadata-dir=dirs\nodel\metadata

bind-address=0.0.0.0

group-port=8432
hostname=host2

backup-dir=dirs\node3\backup
bind-address=0.0.0.0

hostname=host3

bind-address=0.0.0.0
data-dirs=main:dirs\node4\main

:group-bind-address=0.0.0.0
:group-port=8434
node:node4:
:log-dir=dirs\node4\logs
node:node4:
:port=9414
:backup-dir=dirs\node5\backup
node:node5:
:data-dirs=main:dirs\node5\main
node:node5:

hostname=host4

metadata-dir=dirs\node4\metadata

bind-address=0.0.0.0

group-bind-address=0.0.0.0

:group-port=8435
node:node5:
:log-dir=dirs\node5\logs
:metadata-dir=dirs\node5\metadata
:port=9415

node:node6:
node:node6:
:data-dirs=main:dirs\node6\main
:group-bind-address=0.0.0.0
:group-port=8436

node:node6:
:log-dir=dirs\node6\logs
:metadata-dir=dirs\node6\metadata
:port=9416
:backup-dir=dirs\node7\backup
node:node7:
:data-dirs=main:dirs\node7\main
:group-bind-address=0.0.0.0
:group-port=8437

node:node7:

hostname=host5

backup-dir=dirs\node6\backup
bind-address=0.0.0.0

hostname=host6

bind-address=0.0.0.0

hostname=host7

Terracotta Server Administration Guide 10.15

69

12 Config Tool

node:node7:log-dir=dirs\node7\logs
node:node7:metadata-dir=dirs\node7\metadata
node:node7:port=9417
Default configurations
client-lease-duration=150s
client-reconnect-window=120s
ssl-tls=false
whitelist=false
Hidden dinternal system configurations (only for informational, import and repair
purposes): please do not alter, get, set, unset them.
cluster-uid=bBxeCPytSX6zzu6QE17YUw
node:nodel:node-uid=MDIUxIFuS3e901ljgAnqga6bw
node:node2:node-uid=ez1BtxKHRMuQ8mff_fWjXg
stripe:Stripe-A:stripe-uid=eQR_OuF9QeupUaflUH40yg
node:node3:node-uid=kA43NxI1QVi8T3AwZeOPiw
node:node4:node-uid=dtPHkxOCRJIOfTd5_uaKqgcg
node:node5:node-uid=8y6eHs1EQgayukK2iD-zgRQ
stripe:Stripe-B:stripe-uid=M7zsScxITXu68cA4_6VkAg
node:node6:node-uid=W50QW761RhSU2dalzK4E1A
node:node7:node-uid=j2YmJoyRTGCSXZt41i3MFsA
stripe:Stripe-C:stripe-uid=jEZZ6hXyR-mpNWz0J1ly4JA

2. Export the on-disk configuration of a cluster, omitting default values and saving it to a file:

config-tool.sh export -connect-to host1:9410 -output-file
/path/to/output/configuration.cfg

Import

The import command is used to define a cluster topology including its stripes and nodes by
importing those configuration settings via a configuration file. This import operation can only be
executed on an UNCONFIGURED cluster (i.e. an unactivated cluster).

Syntax:

import -config-file <configuration-file> [-connect-to <hostnamel[:port]>]

Option Description
-config-file The configuration properties file holding the cluster, stripe, and
<configuration-file> node configuration information. See “The Terracotta

Configuration File” on page 45

-connect-to <hostname[:port]> |A single node to which the configuration file will be imported.
If this setting is omitted, then all nodes represented in the
configuration file will be updated.

Examples

1. Assume we have multiple unconfigured nodes started in diagnostic mode for which we want
to form an activated cluster. First we import a configuration file (similar to the one we exported
in our export example above) containing the detailed cluster, stripe, and node configuration
information for all the nodes making up the cluster. We import that file to one of the running
nodes (nodel in this example):

70 Terracotta Server Administration Guide 10.15

12 Config Tool

config-tool.sh import -config-file configuration.cfg -connect-to host1:9410

Then we activate the cluster as we showed earlier in our “activate” on page 59 example (note that
we can omit the cluster-name setting because our configuration.properties file happened to
already contain an entry for that):

config-tool.sh activate -connect-to host1:9410 -Tlicense-file /path/to/license.xml

Note:
If any one of the nodes listed in the configuration.cfg file is not online, running as an

unconfigured node (i.e. started in diagnostic mode) or is already activated, then the activate
command will fail.

Diagnosing and Repairing Problems

Diagnostic

The diagnostic command displays detailed status information for each node in the cluster including;:
online, activation, health, restart and state. Last changed configuration details are also displayed.

Syntax

diagnostic -connect-to <hostname[:port]>

Option Description

-connect-to <hostname[:port] |Terracotta server instance to which the Config Tool will connect
and execute the command.

Example of detailed status/diagnostic information for the cluster:

config-tool.sh diagnostic -connect-to host1:9410
Diagnostic result:

[Cluster]

- Nodes: 7 (nodel@hostl1:9410, node2@host2:9412, node3@host3:9413, node4@host4:9414,
node5@host5:9415, node6@host6:9416, node7@host7:9417)

- Nodes online: 7 (hostl1:9410, host2:9412, host3:9413, host4:9414, host5:9415,
host6:9416, host7:9417)

- Nodes online, configured and activated: 7 (hostl1:9410, host2:9412, host3:9413,
host4:9414, host5:9415, host6:9416, host7:9417)

- Nodes online, configured and in repair: 0

- Nodes online, new and being configured: 0

- Nodes pending restart: 7 (host1:9410, host2:9412, host3:9413, host4:9414, host5:9415,
host6:9416, host7:9417)

- Configuration state: The cluster configuration is healthy and all nodes are online.
No repair needed. New configuration changes are possible.

[nodel@host1:9410]

- Node state: PASSIVE

- Node online, configured and activated: YES

- Node online, configured and in repair: NO

- Node online, new and being configured: NO

- Node restart required: YES

- Node configuration change in progress: NO

Terracotta Server Administration Guide 10.15 71

12 Config Tool

- Node
- Node
- Node
- Node

can accept new changes: YES

current configuration version: 3
highest configuration version: 3
last

Node
Node
Node
Node
Node

last
last
last
last
last

configuration
configuration
configuration
configuration
configuration
configuration

change UUID: 7a37809c-e6c0-42f8-8c61-e2a47142b38f
state: COMMITTED

created at: 2021-02-18T14:57:54.063

created from: COMPANY-PC

created by jdoe

change details: set backup-dir=new-backup-dir

- Node
- Node
- Node

last
last
last

[node2@host2:
state:

- Node

mutation at: 2021-02-18T14:57:54.333
mutation from: COMPANY-PC

mutation by: jdoe

9412]

ACTIVE

- Node
- Node
- Node
- Node
- Node
- Node
- Node
- Node

restart required: YES

can accept new changes: YES
current configuration version: 3
highest configuration version: 3

online, configured and activated:
online, configured and in repair:
online, new and being configured:

configuration change in progress:

YES
NO
NO

NO

Node
Node
Node
Node
Node
Node

last
last
last
last
last
last

configuration
configuration
configuration
configuration
configuration
configuration

change UUID: 7a37809c-e6c0-42f8-8c61-e2a47142b38f
state: COMMITTED

created at: 2021-02-18T14:57:54.063

created from: COMPANY-PC

created by: jdoe

change details: set backup-dir=new-backup-dir

- Node
- Node
- Node

last
last
last

[node3@host3:
state:

- Node

mutation at: 2021-02-18T14:57:54.333
mutation from: COMPANY-PC

mutation by: jdoe

9413]

ACTIVE

- Node
- Node
- Node
- Node
- Node
- Node
- Node
- Node

restart required: YES

can accept new changes: YES
current configuration version: 3
highest configuration version: 3

online, configured and activated:
online, configured and in repair:
online, new and being configured:

configuration change in progress:

YES
NO
NO

NO

- Node

Node
Node
Node
Node
Node

last
last
last
last
last
last

configuration
configuration
configuration
configuration
configuration
configuration

change UUID: 7a37809c-e6c0-42f8-8c61-e2a47142b38f
state: COMMITTED

created at: 2021-02-18T14:57:54.063

created from: COMPANY-PC

created by: jdoe

change details: set backup-dir=new-backup-dir

- Node last

mutation at: 2021-02-18T14:57:54.333

mutation from: COMPANY-PC
mutation by: jdoe

9414]

PASSIVE

- Node last
- Node last
[node4@host4:
- Node state:
- Node
- Node
- Node
- Node
- Node
- Node
- Node
- Node

restart required: YES

can accept new changes: YES
current configuration version: 3
highest configuration version: 3

online, configured and activated:
online, configured and in repair:
online, new and being configured:

configuration change in progress:

YES
NO
NO

NO

72

Terracotta Server Administration Guide 10.15

12 Config Tool

- Node last configuration change UUID: 7a37809c-e6c0-42f8-8c61-e2a47142b38f
- Node last configuration state: COMMITTED
- Node last configuration created at: 2021-02-18T14:57:54.063

- Node last
- Node last
- Node last

configuration
configuration
configuration

created from: COMPANY-PC
created by: jdoe
change details: set backup-dir=new-backup-dir

- Node last mutation at: 2021-02-18T14:57:54.333
- Node last mutation from: COMPANY-PC

- Node last mutation by: jdoe

[node5@host5:9415]

- Node state: PASSIVE

- Node online, configured and activated: YES
- Node online, configured and in repair: NO
- Node online, new and being configured: NO
- Node restart required: YES

- Node configuration change in progress: NO
- Node can accept new changes: YES

- Node current configuration version: 3

- Node highest configuration version: 3

- Node last configuration change UUID: 7a37809c-e6c0-42f8-8c61-e2a47142b38f
- Node last configuration state: COMMITTED

- Node last configuration created at: 2021-02-18T14:57:54.063

- Node last configuration created from: COMPANY-PC

- Node last
- Node last

configuration
configuration

created by: jdoe
change details: set backup-dir=new-backup-dir

- Node last mutation at: 2021-02-18T14:57:54.333
- Node last mutation from: COMPANY-PC

- Node last mutation by: jdoe
[node6@host6:9416]

- Node state: PASSIVE

- Node online, configured and activated: YES
- Node online, configured and in repair: NO
- Node online, new and being configured: NO
- Node restart required: YES

- Node configuration change in progress: NO
- Node can accept new changes: YES

- Node current configuration version: 3

- Node highest configuration version: 3

- Node last configuration

- Node last
- Node last
- Node last
- Node last
- Node last

configuration
configuration
configuration
configuration
configuration

change UUID: 7a37809c-e6c0-42f8-8c61-e2a47142b38f
state: COMMITTED

created at: 2021-02-18T14:57:54.063

created from: COMPANY-PC

created by: jdoe

change details: set backup-dir=new-backup-dir

- Node last mutation at: 2021-02-18T14:57:54.333
- Node last mutation from: COMPANY-PC

- Node last mutation by: jdoe
[node7@host7:9417]

- Node state: ACTIVE

- Node online, configured and activated: YES
- Node online, configured and in repair: NO
- Node online, new and being configured: NO
- Node restart required: YES

- Node configuration change in progress: NO
- Node can accept new changes: YES

- Node current configuration version: 3

- Node highest configuration version: 3

- Node last configuration change UUID: 7a37809c-e6c0-42f8-8c61-e2a47142b38f

- Node last configuration state: COMMITTED
- Node last configuration created at: 2021-02-18T14:57:54.063

Terracotta Server Administration Guide 10.15

73

12 Config Tool

- Node last configuration created from: COMPANY-PC

- Node last configuration created by: jdoe

- Node last configuration change details: set backup-dir=new-backup-dir
- Node last mutation at: 2021-02-18T14:57:54.333

- Node last mutation from: COMPANY-PC

- Node last mutation by: jdoe

In the above example, the diagnostic output contains the following Configuration state message
near the top of the listing;:

Configuration state: The cluster configuration is healthy and all nodes are online.
No repair needed. New configuration changes are possible.

This specific message represents a perfectly healthy cluster. But if the cluster is not healthy, then
the reason for the unhealthy state will be captured in the 'Configuration state' message block. Refer
to the ” Troubleshooting Guide” on page 75 for guidance on how to interpret these messages and
for guidance on how to effect the necessary repairs to the cluster.

Repair

The repair command is used to repair the cluster health by fixing cluster configuration inconsistency
issues on one or more nodes targeting single node repairs. Repairs only work on activated nodes
- not nodes that are running in diagnostic mode. Running this command on a healthy cluster has
no effect.

Important:
Please contact Software AG support before running this command.

Syntax:

repair —connect-to <hostname[:port]>

Option Description

-connect-to <hostname[:port] |Terracotta server instance to which the Config Tool will connect
and execute the repair.

Important:

In the event that problems are reported by the Config Tool when executing the repair command,
note the error message and refer to the “ Troubleshooting Guide” on page 75 for guidance.

Example of repairing a node:

config-tool.sh repair -connect-to host1:9410

Log
Retrieve details about all changes made to a node in the cluster.

Syntax:

74 Terracotta Server Administration Guide 10.15

12 Config Tool

log -connect-to <hostname[:port]>

Option Description

-connect-to <hostname[:port] |Terracotta server instance to which the Config Tool will connect
and execute the command to retrieve the node'slogged changes.

Example of a query to a node (node?) for all configuration changes:

config-tool.sh log -connect-to host7:9417

1 2021-02-18T14:21:46.030 c7ac4b3c-bb5e-4481-a259-bacedcedabbb
c3745cb968cd289ddabab70c9634e749823289cd COMMITTED | jdoe@COMPANY-PC - Activating
cluster: MyCluster

2 2021-02-18T14:57:11.298 64efd21b-5806-4d38-b3d2-a68f9e045378
1fe50acacbdb1732e76bce60a9494bdde5dd80a5 COMMITTED | jdoe@COMPANY-PC - unset backup-dir
3 2021-02-18T14:57:54.063 7a37809c-e6c0-42f8-8c61-e2a47142b38f
€3661632e53ae15245ad8632c0b0dacd9faf1449 COMMITTED | jdoe@COMPANY-PC - set
backup-dir=new-backup-dir

Config Tool Troubleshooting Guide

Overview

The Config Tool provides detailed validation and error reporting when executing any of its
commands. Most of the reported messages also include guidance on how to address/correct the
underlying issue.

Some of the more import occurrences of failed validation scenarios and how to address them are
described here in” Validation and Warning Messages” on page 76.

Occurrences of unexpected errors and how to identify and correct them are described in”
Diagnosing Unexpected Errors” on page 81.

Before Performing Any Troubleshooting

Before performing any troubleshooting, please read and understand this section as it contains
important background information.

When a cluster is activated, any Config Tool mutative operation such as “attach” on page 61,
“detach” on page 62, “set” on page 65, “unset” on page 67, or “activate” on page 59 will proceed
through the following steps:

1. Validation / Sanity checks: validation of the CLI input and sanity checks against the cluster.
2. Execution of the change process in three phases:

a. DISCOVERY: the cluster configuration is verified to ensure that all nodes are ready to
accept a new change.

a. Success: the PREPARE phase is started.

Terracotta Server Administration Guide 10.15 75

12 Config Tool

b. Error: Nothing has been changed thus far; we can simply retry or consult this guide
for additional help.

b. PREPARE: the change is sent to the targeted nodes for validation purposes and is written

into a file which keeps track of the changes of a node. This phase does not update the
runtime configuration, or the configuration used at startup. This is a validation step that
indicates to the nodes what will be the next configuration to use if the validation passes
on all the nodes.

a. Success: the COMMIT phase is started.

b. Failure: the ROLLBACK phase is started and the change that has been prepared will
be marked as rolled back.

COMMIT: if all the nodes have validated and accepted the change, the Config Tool asks
all nodes to commit the change, which will change the runtime configuration if the change
supports being applied at runtime. The cluster configuration used to start the nodes will

be changed accordingly.

a.

b.

Success: the change process is completed.

Failure: Failure during a commit should never occur because the change has been
validated and accepted upfront. These failures are caused by either a programmatic
error or an environment change between the time the change has been validated and
the time the commit has commenced. Hopefully the repair command can be used to
replay this commit phase.

d. ROLLBACK

a.

b.

3. Restart

Success: the change process is cancelled.

Failure: Failure during a rollback should never occur. Hopefully the repair command
can be used to replay this rollback phase.

of the nodes: some commands require some or all nodes to be restarted - either

automatically, or performed manually by the user after having been warning to do so by the

Config

Tool. This is especially true for changes requiring nodes to be restarted because the

changes cannot be applied at runtime.

Validation and Warning Messages

Attaching a Node to a Stripe
Command |“attach” on page 61 a node to a stripe
Symptom The following message is returned:

Source node: <node_name> cannot be attached since it is part of an existing

cluster with name: <cluster_name>

76

Terracotta Server Administration Guide 10.15

12 Config Tool

Diagnosis The source node is active and already belongs to an existing cluster which is
different than the one to which it is being attached.

Action 1. Detach the source node from its existing source stripe.
2. Re-run the original attach command which generated this error.

Command |“attach” on page 61 a node to a stripe

Symptom The following message is returned:
Source node: <node_name> is part of a stripe containing more than 1 nodes.
It must be detached first before being attached to a new stripe. Please
refer to the “Troubleshooting Guide” on page 75 for more help.

Diagnosis The source node already belongs to a multi-node cluster which is different than
the one to which it is being attached.

Action Option A:

1. Detach the node, which is to be attached to the destination stripe, from its
existing source stripe.

2. Re-run the original attach command which generated this error.
Option B:

1. Re-run the original attach command which generated this error but include
the -force option. For example:

config-tool.sh attach -to-stripe <destination_stripe:port> -node
<source_node:port> -force

Attaching a Stripe to a Cluster

Command |“attach” on page 61 a stripe to a cluster

Symptom The following message is returned:
Source stripe from node: <node_name> is part of a cluster containing more
than 1 stripes. It must be detached first before being attached to a new
cluster. Please refer to the Troubleshooting Guide for more help.

Diagnosis The source stripe already belongs to a multi-node cluster which is different than
the one to which it is being attached.

Action Option A:

1. Detach the stripe that is to be attached to the destination cluster from its existing
source cluster.

Terracotta Server Administration Guide 10.15 77

12 Config Tool

2. Re-run the original attach command which generated this error.
Option B:

1. Re-run the original attach command which generated this error but include
the -force option. For example:

config-tool.sh attach -to-cluster <destination_cluster:port> -stripe
<source_stripe:port> -force

Attaching Nodes or Stripes

Command “attach” on page 61 a node to a stripe or a stripe to a cluster

Symptom The following message is returned:

Impossible to do any topology change. Node: <node_endpoint> 1is waiting
to be restarted to apply some pending changes. Please refer to the
Troubleshooting Guide for more help.

Diagnosis One or more nodes belonging to the destination cluster have pending changes
that require a restart. Ideally, topology changes should only be performed on
clusters where the nodes have no pending updates.

Action Option A:

1. Restart the node identified by <node_endpoint>.
2. Re-run the original attach command which generated this error.
Option B:
1. Re-run the original attach command which generated this error but include
the -force option. For example:
config-tool.sh attach -to-cluster <destination_cluster:port> -stripe
<source_stripe:port> -force

Command |“attach” on page 61 a node to a stripe or a stripe to a cluster

Symptom The following message is returned:

An error occurred during the attach transaction. The node/stripe information
may still be added to the destination cluster: you will need to run the
diagnostic / export command to check the state of the transaction. The
node/stripe to attach won't be activated and restarted, and their topology
will be rolled back to their initial value.

Diagnosis The transaction applying the new topology has failed (the reason is detailed in the

logs). It can be caused by an environmental problem (such as network issue, node

78

Terracotta Server Administration Guide 10.15

12 Config Tool

shutdown, etc) or a concurrent transaction. If the failure occurred during the
commit phase (partial commit), some nodes may need to be repaired.

Action

An 'auto-rollback' will be attempted by the system. Examine output to determine
if the auto-rollback was successful. If it was not, then run the “diagnostic” on
page 71 command.

Detaching Nodes or Stripes

Command |“detach” on page 62 a node from a stripe, or a stripe from a cluster.

Symptom The following message is returned:

Impossible to do any topology change. Node: <node_name> is waiting to be
restarted to apply some pending changes. Please refer to the Troubleshooting
Guide for more help.

Diagnosis One or more nodes belonging to the destination cluster have pending changes
that require a restart. Ideally, topology changes should only be performed on
clusters where the nodes have no pending updates.

Action Option A:

1. Restart the node identified by <node_name>.
2. Re-run the original detach command which generated this error.
Option B:
1. Re-run the original detach command which generated this error but include
the -force option. For example:
config-tool.sh detach -from-cluster <destination_cluster:port> -stripe
<source_stripe:port> -force

Command |“detach” on page 62 a node from a stripe.

Symptom The following message is returned:

Nodes to be detached: <node_names> are online. Nodes must be safely shutdown
first. Please refer to the Troubleshooting Guide for more help.

Diagnosis Ideally, nodes should only be detached when they are not running. Note that when
detaching a stripe, the system will automatically stop all detached nodes. But for
node detachments, this must be performed manually.

Action Option A:

1. Manually stop the node identified by <node_name>.

2. Re-run the original detach command which generated this error.

Terracotta Server Administration Guide 10.15 79

12 Config Tool

Option B:
1. Re-run the original detach command which generated this error but include
the -force option. For example:

config-tool.sh detach -from-stripe <destination_stripe:port> -node
<source_node:port> -force

Split Brain Warning

Command |Commands that alter a stripe's total node count including “attach” on page 61,
“detach” on page 62, and “import” on page 70.

Symptom The following message is returned:
IMPORTANT: The sum (<x>) of voter count (<y>) and number of nodes (<z>)
in stripe <stripe_name> is an even number. An even-numbered configuration
is more likely to experience split-brain situations.

Diagnosis Even-numbered counts of voters plus nodes for a given stripe can increase the
chances of experiencing split-brain situations.

Action Consider making the total count for the stripe an odd number by adding a voter.

Errors or unexpected issues

"Some nodes may have failed to restart within.."

Command

Any mutative command including “attach” on page 61, “detach” on page 62,
“activate” on page 59, “set” on page 65, or “unset” on page 67

Symptom

The following message is returned:

Some nodes may have failed to restart within <wait_time> seconds. This
should be confirmed by examining the state of the nodes listed below.
Note: if the cluster did not have security configured before activation
but has security configured post-activation, or vice-versa, then the nodes
may have in fact successfully restarted. This should be confirmed. Nodes:
<node_name_list>

Diagnosis

Some mutative commands restart the nodes and then wait for the nodes to come
back online. This error message is displayed when the Config Tool was not able
to see the node be back online within a delay given by the Config Tool parameter
-restart-wait-time. Make sure the value is not too low.

Action

Execute the following steps:

80

Terracotta Server Administration Guide 10.15

12 Config Tool

1. Execute the “diagnostic” on page 71 command for all the nodes that have
failed to restart.

2. Examine the Node state value (refer to “node states” on page 17 for more
information about the different node states):

a. If one of ACTIVE, ACTIVE_RECONNECTING, PASSIVE: the node has restarted
correctly. The -restart-wait-time value used with the Config Tool was
not high enough.

b. If one of ACTIVE_SUSPENDED, PASSIVE_SUSPENDED: the node startup is blocked
because the vote count if not correct to pass the desire level of consistency.

c. If one of STARTING, SYNCHRONIZING: the node is still starting... Just wait.

d. If one of DIAGNOSTIC or UNREACHABLE: the node was unable to start, or has
been started in diagnostic mode. Please look at the logs for any error and
seek support if necessary.

"Please run the 'diagnostic' command to diagnose the configuration state.."

Command

Any mutative command including “attach” on page 61, “detach” on page 62,
“activate” on page 59, “set” on page 65, “unset” on page 67, or “repair” on
page 74

Symptom

The following message is returned:

Please run the 'diagnostic' command to diagnose the configuration state
and try to run the 'repair' command. Please refer to the “Troubleshooting
Guide” on page 75 for more help.

Diagnosis

An inconsistency has been found in the cluster configuration and the operation
cannot continue without a manual intervention or repair.

Action

Execute the following steps:
1. Execute the diagnostic command on the cluster.
2. Read the 'configuration state' message block near the top of the output.

3. Find the message in “ Diagnosing Unexpected Errors” on page 81 to
understand the underlying problem and how to address it.

Diagnosing Unexpected Errors

Even if command validations pass, commands can still fail as a result of unexpected errors. The
“diagnostic” on page 71 command is used to help identify the underlying error condition of the

cluster.

Terracotta Server Administration Guide 10.15 81

12 Config Tool

The diagnostic command output reveals detailed status information for each node in the cluster
including its: online, activation, health, restart, and state statuses. Last changed configuration
details are also displayed.

The command also reveals details about certain unexpected failure conditions. This information
is included in the Configuration state message block that appears near the top of the diagnostic

output.

The following 'Configuration state' messages require attention and action.

Symptom

The Configuration state of the “diagnostic” on page 71 command output
contains:

Failed to analyze cluster configuration.

Diagnosis

The discovery process has failed. Possibly because another client is currently
doing a mutative operation. This situation requires to retry the command.

Action

Run the command again

Symptom

The configuration state message block of the diagnostic command output
contains this message:

Cluster configuration is inconsistent: Change <change_uuid> is committed
on <committed_nodes_list> and rolled back on <rolled_back_nodes_list>.

Diagnosis

Certain changes were found that were committed on some servers and rolled back
on other servers. This situation requires a manual intervention, possibly by
resetting the node and then re-syncing it after a restricted activation.

Action

The repair of such a broken configuration state requires rewriting the configuration
of certain nodes which will make them temporarily unavailable. To repair such
issues, the nodes requiring a reset (nodes that have rolled back) and nodes
requiring a reconfiguration (nodes that have committed the change) must be
identified. There is no right or wrong answer as it depends on the specific case at
hand and the user's intimate knowledge about what command(s) were issued.

If the nodes that were committed have started satisfying requests in relation to
the addition of a setting (e.g. offheap addition), then such changes need to be
forced on the rolled-back node and it must be ensured that these nodes can accept
such changes (e.g. enough offheap exists). At the opposite end, if it is known that
a committed change has not been used then it can be safely removed. In this case
you can consider maintaining the rolled-back nodes and resetting the committed
ones.

See “Repairing a Broken Configuration” on page 86

Symptom

The configuration state of the diagnostic command output contains:

82

Terracotta Server Administration Guide 10.15

12 Config Tool

Cluster configuration is partitioned and cannot be automatically repaired.
Some nodes have a different configuration that others.

Diagnosis

Some nodes ending with a different change UUID leading to different configuration
results have been found. Some nodes are running with one configuration, while
other nodes are running with a different one. This situation requires a manual
intervention, eventually by resetting the node and re-syncing it after a restricted
activation.

Action

This requires a manual intervention analogous to the previously discussed 'Action'
- i.e. resetting the configuration of certain nodes. See “Repairing a Broken
Configuration” on page 86.

Symptom

The Configuration state message block of the diagnostic command output
contains this message:

A new cluster configuration has been prepared on all nodes but not yet
committed. No further configuration change can be done until the 'repair'
command is run to finalize the configuration change.

Diagnosis

All nodes are online and all online nodes have prepared a new change. This
situation requires a commit to be replayed, or a rollback to be forced.

Action

Execute this command:

config-tool.sh repair -connect-to <host:port>

Symptom

The configuration state of the diagnostic command output contains:

A new cluster configuration has been prepared but not yet committed or
rolled back on online nodes. Some nodes are unreachable, so we do not know
if the last configuration change has been committed or rolled back on
them. No further configuration change can be done until the offline nodes
are restarted and the 'repair' command is run again to finalize the
configuration change. Please refer to the “Troubleshooting Guide” on page 75
if needed.

Diagnosis

Some nodes are online (not all) and all online nodes have prepared a new change.
Because some nodes are down, we do not know if some offline nodes have some
more changes in their append.log. This situation requires a commit or a rollback
to be forced (only the user knows).

Action

Because some of the nodes are down, the Config Tool is not able to determine if
the change process should be continued and committed, or if it should be rolled
back. Only the user knows which action is required. The user must therefore
provide the necessary hint to the Config Tool to either force a commit or force a
rollback.

1) config-tool.sh repair -connect-to <host:port> -force commit

Terracotta Server Administration Guide 10.15 83

12 Config Tool

2) config-tool.sh repair -connect-to <host:port> -force rollback

Symptom The Configuration state of the diagnostic command output contains:

A new cluster configuration has been partially prepared (some nodes didn't
get the new change). No further configuration change can be done until
the 'repair' command dis run to rollback the prepared nodes.

A new cluster configuration has been partially rolled back (some nodes
didn't rollback). No further configuration change can be done until the
'repair' command is run to rollback all nodes.

Diagnosis A specific change has been prepared on some nodes, while other nodes, which
didn't receive that specific change, are ending with a different change. This can
happen if a transaction has ended during its prepare phase when the client asks
the nodes to prepare themselves. This situation requires a rollback to be replayed.

Action Execute this command:

config-tool.sh repair -connect-to <host:port>

Symptom The Configuration state of the diagnostic command output contains:

A new cluster configuration has been partially committed (some nodes didn't
commit). No further configuration change can be done until the 'repair'
command is run to commit all nodes.

Diagnosis A change has been prepared, then committed, but the commit process didn't
complete on all online nodes. This situation requires a commit to be replayed.

Action Execute this command:

config-tool.sh repair -connect-to <host:port>

Symptom The Configuration state of the diagnostic command output contains:

Unable to determine the global configuration state. There might be some
configuration inconsistencies. Please look at each node details. A manual
intervention might be needed to reset some nodes.

Diagnosis Unable to determine the configuration state of the cluster.

Action The user might need to reset the configuration of some nodes. See “Repairing a

Broken Configuration” on page 86.

But to be able to determine which nodes to reset and how, some additional support
is required. The user has to send all the server logs and configuration directories
to the support team.

84

Terracotta Server Administration Guide 10.15

12 Config Tool

Errors from the repair command

The repair command is used to repair the cluster's health by fixing cluster configuration
inconsistency issues on one or more nodes. Repairs only work on activated nodes - not on nodes
that are running in diagnostic mode. The following errors might be observed when executing the
repair command:

Symptom Any of the following messages are observed when executing the repair command:
B Failed to analyze cluster configuration.

B Cluster configuration 1is inconsistent: Change <change_uuid> 1is
committed on <committed_nodes_list> and rolled back on
<rolled_back_nodes_Tlist>.

B Cluster configuration is partitioned and cannot be automatically
repaired. Some nodes have a different configuration that others.

B Unable to determine the global configuration state. There might be
some configuration inconsistencies. Please look at each node details.
A manual intervention might be needed to reset some nodes

Diagnosis Refer to the same message in the “Diagnostic Command Troubleshooting” on
page 75 section.

Action Refer to the same message in the “Diagnostic Command Troubleshooting” on
page 75 section.

Symptom One of following messages is observed when executing the repair command:
B The configuration is partially prepared. A rollback 1is needed.

B The configuration is partially rolled back. A rollback is needed.

Diagnosis The repair tool has detected that a rollback is necessary, but the user specified
the wrong action.

Action Execute one of these commands:

config-tool.sh repair -connect-to <host:port>
config-tool.sh repair -connect-to <host:port> -force rollback

Symptom The following message is observed when executing the repair command:

The configuration is partially committed. A commit is needed.

Diagnosis The repair tool has detected that a commit is necessary, but the user specified the
wrong action.

Action Execute one of these commands:

Terracotta Server Administration Guide 10.15 85

12 Config Tool

config-tool.sh repair -connect-to <host:port>
config-tool.sh repair -connect-to <host:port> -force commit

Symptom The following message is observed when executing the repair command:

Some nodes are offline. Unable to determine what kind of repair to run.
Please refer to the Troubleshooting Guide.

Diagnosis The repair is unable to determine whether it needs to complete an incomplete
change by committing or it needs to rollback because some nodes are down. This
is up to the user to hint the repair command about what to do.

Action Execute one of these commands:

config-tool.sh repair -connect-to <host:port>
config-tool.sh repair -connect-to <host:port> -force commit

Manual Repair

Unlocking a Locked Configuration

If a dynamic scale operation fails, it is possible for it to leave the cluster configuration locked,
which will prevent any further mutation actions from being performed.

A locked cluster configuration can be unlocked with the following command:

config-tool.sh repair -connect-to <host:port> -force unlock

Repairing a Broken Configuration

If some nodes possess a broken configuration, which makes the cluster configuration inconsistent,
these nodes can be repaired. This procedure will "force" the repaired node to acquire the same
configuration as the nodes that are considered to be sane (i.e. correct).

Note:

It is up to the user to decide which nodes are considered to be correct and which nodes should
be repaired.

When forcing a configuration onto certain nodes, the cluster configuration will become
consistent, but other issues can occur if it is not verified that the environment can support the
new configuration.

Steps:

1. Decide which nodes are sane and which nodes require repairing. In our example, node1 is sane
and node2 will be repaired. We will attempt to force the configuration from node1 to be installed
in node2.

86 Terracotta Server Administration Guide 10.15

12 Config Tool

2. We backup the cluster configuration:

config-tool.sh export -connect-to nodel -output-file <config-file>

3. If node2 is down, restart it with the exact same command-line that was previously used but
append -repair-mode at the end of the file in order for it to enter repair mode.
4. node2 starts in diagnostic mode. Reset its configuration and stop it with:

config-tool.sh repair -force reset -connect-to node2

5. Optional step: if you need to cleanup the data of this node, this is a good time to do that. To
do so, backup and remove all the content of the metadata-dir and all the content of every
data-dir. Backing up and removing the data will allow your node to start completely like new.
You can keep your data ONLY in cases where you know the node can restart safely with it.

6. Start node2 again, but this time start it normally, without -repair-mode. node2 should start in
diagnostic mode once again, waiting for a configuration to be pushed.

7. Runarestricted activation on node2. The node should activate, restart, sync with current active
and become passive.

config-tool.sh activate -restrict -connect-to node2 -config-file <config-file>

Terracotta Server Administration Guide 10.15 87

12 Config Tool

88

Terracotta Server Administration Guide 10.15

13 Parameter Substitution

Parameter substitution provides a way to substitute variables with pre-defined system properties
in the Terracotta Server configuration file. Thus, a significant number of fields can be intelligently
populated based on machine specific properties. Parameter substitution is commonly done for
hostnames, IP addresses and directory paths.

The following predefined substitutions are available for use:

Parameter Description

%h the fully-qualified host name of the machine

Yol the IP address of the machine corresponding to localhost

%D the time stamp corresponding to the current date-time in
yyyyMMddHHmmssSSS format

%H the user's home directory corresponding to the user . home Java system
property

%on the username corresponding to the user.name Java system property

%0 the operating system name corresponding to the os . name Java system
property

%oa the processor architecture corresponding to the os.arch Java system
property

%ov the operating system version corresponding to the os.version Java
system property

Yot the temporary directory corresponding to the java.io.tmpdir Java
system property

%d unique temporary directory

%(system property) a standard or custom Java system property. If a custom Java property
needs to be used, it should be first set in the JVM by setting it in
JAVA_OPTS in the -Djava.custom.property=value format.

Note:

Terracotta Server Administration Guide 10.15

89

13 Parameter Substitution

The variable %1 is expanded into a value determined by the host's networking setup. In many

cases that setup is in a hosts file containing mappings that may influence the value of %i. Test
this variable in your production environment to check the value it interpolates.

90

Terracotta Server Administration Guide 10.15

14 Configuring the Terracotta Server

Overview

For your application end-points to be useful, they must be able to utilize storage resources
configured in your Terracotta Servers. The services offered make use of your server's underlying
JVM and OS resources, including direct-memory (offheap) and disk persistence.

Offheap Resources

The use of JVM Direct-Memory (offheap) is a central part of the operation of a Terracotta Server.
In effect, you must allocate and make available to your server enough offheap memory for the
proper operation of your application.

In your config file you define one or more named offheap resources of a fixed size. These named
resources are then referred to in the configuration of your application end-points to allow for their
usage.

Refer to the section Clustered Caches in the Ehcache API Developer Guide for more details about the
use of offheap resources.

Offheap Resource Configuration

Offheap resources can be configured with the offheap-resources property. By default, an offheap
resource with name main and size 512MB is defined on the server.

The following snippet shows the configuration of two offheap resources - primary-server-resource
with size 384MB, and secondary-server-resource with size 256 MB.

offheap-resources=primary-server-resource:384MB,secondary-server-resource:256MB

Data Directories

A data directory is a location on disk, identified by a name, and mapped to a disk location, where
a Terracotta Server's data resides.

Data directories are commonly configured by server administrators and specified in the Terracotta
Server configuration. Data directory names can be used by products that need durable storage for
persistence and fast restart from crashes. For example, restartable cache managers need to be
supplied with a data directory name to persist the restartable CacheManager specific data.

Terracotta Server Administration Guide 10.15 91

14 Configuring the Terracotta Server

For information on restartable servers, see the section “Server Persistence” on page 92 below. See
also the sections Fast Restartability and Creating a Restartable Cache Manager in the Ehcache API
Developer Guide.

Data Directories Configuration

Data directories can be configured with the data-dirs property. By default, a data directory with
name main is defined which maps to disk location %(user.home) /terracotta/user-data/main.

The following snippet shows the configuration of two data directories - someData with disk location
/mntl/data, and otherData with location %(logs.path) /data.

data-dirs=someData:/mntl/data,otherData:%(logs.path)/data

%(logs.path) gets substituted with the logs path system property. Visit the section “Parameter
Substitution” on page 89 for the complete list of substitutable parameters.

General Notes on Configuring Data Directories

® A data directory specified on a server must be specified on all the servers in the cluster.
® Each data directory must be given a unique mount point (or disk location).

m The data directories are created if they do not exist already.

® Changing the disk location of the data directory between server restarts, without copying the
data, is equivalent to erasing that data. It will cause unpredictable runtime errors that depend
on the exact data lost.

Server Persistence

The Terracotta server saves its internal state on a disk which enables server restarts without loss
of data.

Care must be taken to avoid losing data when restarting the stripe. Refer to the section “Restarting
a Stripe” on page 149 for more details. Passive restartable servers automatically back up their data
at restart for safety reasons. Refer to the topic Passive servers in the section “Active and Passive
Servers” on page 13 for more details.

Server Persistence Configuration

Server persistence is configured with the metadata-dir property. By default, it is set to
%(user.home) /terracotta/metadata.

The following snippet shows the configuration of metadata-dir to disk location
/path/to/metadata-dir:

metadata-dir=/path/to/metadata-dir

Relation to Fast Restartability

The Ehcache Fast Restartability feature depends on, and makes use of, server persistence.

92 Terracotta Server Administration Guide 10.15

14 Configuring the Terracotta Server

Refer to the section Fast Restartability in the Ehcache API Developer Guide for more information.

Terracotta Server Administration Guide 10.15 93

14 Configuring the Terracotta Server

94

Terracotta Server Administration Guide 10.15

15 System Recommendations for Hybrid Caching

Hybrid Caching supports writing to one single mount, so all of the Hybrid capacity must be
presented to the Terracotta process as one continuous region, which can be a single device or a
RAID.

The mount should be used exclusively for the Terracotta server process. The software was designed
for usage on local drives (SSD/Flash in particular) - SAN/NAS storage is not recommended. If you
utilize SAN/NAS storage you will experience notably reduced and inconsistent performance - any
support requests related to performance or stability on such deployments will require the user to
reproduce the issue with local disks.

Note:

System utilization is higher when using Hybrid Caching, and it is not recommended to run
multiple servers on the same machine. Doing so could result in health checkers timing out, and
killing or restarting servers. Therefore, it is important to provision sufficient hardware, and it
is highly recommended to deploy servers on different machines.

Hybrid Caching is described in detail in the Developer Guide.

Terracotta Server Administration Guide 10.15 95

15 System Recommendations for Hybrid Caching

96

Terracotta Server Administration Guide 10.15

16 System Recommendations for Fast Restart (FRS)

Fast Restart (FRS) supports writing to one single mount, which can be a single device or a RAID.

The mount should be used exclusively for the Terracotta server process. The software was designed
for usage on local drives (SSD/Flash in particular) - SAN/NAS storage is not recommended. If you
utilize SAN/NAS storage you will experience notably reduced and inconsistent performance - any
support requests related to performance or stability on such deployments will require the user to
reproduce the issue with local disks.

Fast Restartability is described in detail in the Developer Guide.

Terracotta Server Administration Guide 10.15 97

16 System Recommendations for Fast Restart (FRS)

98

Terracotta Server Administration Guide 10.15

17 Failover Tuning

Overview

A Terracotta Server Array (TSA), being a distributed system, is subject to the constraints of the
CAP Theorem. The CAP Theorem states that it is impossible for a distributed system to
simultaneously provide guarantees for consistency, availability, and partition tolerance. A TSA
always seeks to be tolerant of network partitions so a choice must be made between data consistency
and service availability. This choice is declared with the failover-priority setting which instructs
the cluster to favor either consistency or availability. When a network or hardware failure occurs
resulting in disconnected servers, the cluster's behavior is governed by this setting.

If a cluster is defined to favor consistency, then failures resulting in disconnected servers will
result in all client requests being halted. This is due to an inability to guarantee consistent reads
and writes when the cluster is partitioned.

If a cluster is defined to favor availability, then failures resulting in disconnected servers will still
permit the cluster to respond to client requests. However, client responses are not guaranteed to
be consistent because there can potentially be multiple active servers working on the same data
set.

In the absence of any error-induced cluster partitioning, the cluster will provide both consistency
and availability.

Elections and Split-Brains

When a failure that results in disconnected servers within a cluster configured to favor availability
over consistency occurs, each set of partitioned servers will perform an election. Servers that can
communicate with each other will elect an active server among themselves and continue operations.
If the failure results in a single server being isolated, that server will elect itself as active. Opting
to favor availability over consistency comes with the possibility of experiencing a so-called split-brain
situation.

For a TSA, a split-brain occurs when multiple servers within a stripe are simultaneously acting as
active servers. For example, if an active server becomes partitioned from its peers in the stripe,
the active server will remain active and the passive servers on the other side of the partition, unable
to reach the active server, will elect a new active server from their own isolated group. Any further
operations performed on the data are likely to result in inconsistencies because there can be multiple
active servers working on the same data set.

Terracotta Server Administration Guide 10.15 99

17 Failover Tuning

When configured for consistency, a stripe requires a majority of servers connected with each other
to elect an active server. Thus, even if the stripe gets partitioned into two sets of servers due to
some network failure, the set with the majority of servers will elect an active server among them
and proceed. In the absence of a majority, an active server will not be elected and hence the clients
will be prevented from performing any operations, thereby preserving data consistency by
sacrificing availability.

Server configuration

When configuring the cluster, you must choose between availability or consistency as the failover
priority of the cluster. To prevent split-brain scenarios and thereby preserve data consistency,
failover priority must be set to consistency. However, if availability is preferred, failover-priority
can be set to availability at the risk of running into split-brain scenarios. The following snippet
shows how to configure a stripe for consistency:

Configured via config file:

failover-priority=consistency

Configured via command line during server startup (use -failover-priority option):

start-tc-server.sh -failover-priority consistency

Similarly, the cluster can be tuned for availability as follows:

failover-priority=availability

Note:
failover-priority is a mandatory parameter that must be provided during server startup if
the cluster configuration contains more than one node.

Choosing Consistency versus Availability

For a TSA supporting only Ehcache users, choosing availability over consistency can be an effective
and proper choice. If a network partition occurs leaving two servers unable to communicate with
each other (to coordinate data) but each able to serve clients, choosing availability allows continuing
operations using both servers running independently. Data residing on the separated servers will
no longer be coordinated (consistency is abandoned) and will drift apart. Once the network partition
is resolved and the servers are able to communicate with each other again, consistency rules are
re-applied and one server is chosen as the holder of the current data - the data on the other servers is
discarded. For a caching application, this may result in some cache misses and delays in some
processing but, since a cache is not the system of record for the data being processed, no data is
lost.

When using a TSA configured for availability over consistency to support TCStore users, data loss
is a real possibility - if a network partition occurs and clients are actively updating TSA servers
on both sides of the partition, data loss will occur once the network partition is resolved. If the
applications using TCStore are tolerant of missing/inconsistent data - not an easy task - then
configuring for availability over consistency is appropriate for the TSA. However, if a TCStore
dataset is used as the system of record, this data loss or other inconsistency is generally undesirable
if not catastrophic. If the TSA is used for a TCStore dataset which is either a system of record or

100 Terracotta Server Administration Guide 10.15

17 Failover Tuning

for which loss/inconsistency is an undesirable outcome, then the TSA must be configured for
consistency over availability.

You may use a single TSA supporting both Ehcache and TCStore but the choice of availability
versus consistency is a cluster-level configuration - both Ehcache and TCStore users in a TSA are
subject to that configuration. If your Ehcache users need high availability and your TCStore users
need data consistency, you must use a separate TSA for each user base.

External voter for two-server stripes

In certain topologies, mandating a voter majority for an active server election can introduce
availability issues. For example, in a two-server stripe the majority quorum is two votes. If these
servers were to become disconnected from each other due to a network partition or because of a
server failure, the surviving server would not be able to promote itself to the active server as it
requires two votes to win the election. Since one of the two servers is not available/reachable, the
missing second vote will render the stripe unavailable.

Adding a third server is the best option. A three-server stripe can provide data redundancy and
high availability at the same time even when one server fails. In this topology, if one server fails,
there is still a majority of surviving servers (2 out of 3) to elect an active server. If adding a third
server is not feasible, an option to get high availability without risking data consistency (via
split-brain scenarios) is to use an external voter. This configuration cannot offer data redundancy
(like a three-server stripe) if a server fails.

An external voter is a client that is able to cast a vote in an election for a new active server in cases
where a majority of servers in a stripe are unable to reach a consensus on electing a new active
server.

External voter configuration

The number of external voters must be defined in the server configuration. It is recommended
that the total number of servers and external voters be kept as an odd number.

External voters must be registered with the servers in order to get added as voting members in
their elections. If there are n voters configured in the server, then the first n voting clients requesting
registration will be added as voters. Registration requests of other clients will be declined and put
on hold until one of the registered voters becomes deregistered.

Voters can de-register themselves from the cluster so that the voting rights can be transferred to
other clients waiting to get registered, if there are any. A voting client can deregister itself by using
APIs or by getting disconnected from the cluster.

When a voting client gets disconnected from the server it will automatically get deregistered by
the server. When the client reconnects, it will only get re-registered as a voter if another voter has
not taken its place while this client was disconnected.

Server configuration

A maximum count for the number of external voters allowed can optionally be added to the
failover-priority configuration if the cluster is tuned for consistency, as follows:

failover-priority=consistency:3

Terracotta Server Administration Guide 10.15 101

17 Failover Tuning

1 Here, the total number of voting clients is restrictred to three.

The failover priority setting and the specified maximum number of external voters across the
stripes must be consistent and will be validated during the cluster configuration step. For more
information on how to activate a cluster, see the “Settings” on page 59 section.

Client configuration

External voters can be of two variants:

1. Standalone voter

2. Clients using the voter library (client voter)
Standalone voter

An external voter can be run as a standalone process using the start_tc_voter script located in
the tools/voter/bin/ folder under the product installation directory. The script accepts the
<hostname>:<port> for the cluster's servers as arguments.

Each -connect-to option argument must be a comma separated list of <hostname>: <port>
combinations of servers within a single stripe. To register a multi-stripe cluster, multiple -connect-to
options can be provided for each stripe.

Usage:

start-tc-voter. (sh|bat) -connect-to hostname:port[,hostname:port]... [-connect-to
hostname:port[,hostname:port]...]...

To connect the voter to a secure cluster, the path to the security root directory must also be specified
using the -security-dir option. For more details on setting up security in a Terracotta cluster, see
“SSL / TLS Security Configuration in Terracotta” on page 155.

Client voter

Any TCStore or Ehcache client can act as an external voter as well by using a voter library
distributed with the kit. A client can join the cluster as a voter by creating a TCVoter instance and
registering itself with the cluster.

Note:
The cluster must be activated using the config tool before a client voter can be registered with
it.

When the voter is no longer required, it can be deregistered from the cluster either by disconnecting
that client, or by using the deregister APL

import com.terracottatech.voter.EnterpriseTCVoterImpl;

import org.terracotta.voter.TCVoter;

TCVoter voter = new EnterpriseTCVoterImpl(); //1

voter.register ("my-cluster-0" //2
"<hostname>:<port>","<hostname>:<port>"); //3

voter.deregister ("my-cluster-0") //4

102 Terracotta Server Administration Guide 10.15

17 Failover Tuning

1 Instantiate a TCVoter instance

2 Register the voter with a cluster by providing a cluster name ...

3 and <hostname>:<port > combinations of all servers in the cluster.

4 Deregister from the cluster using the same cluster name that was used to register it.

To connect to a secure cluster, the voter must be instantiated using the overloaded constructor of
EnterpriseTCVoterImpl that accepts the security root directory path.

Manual promotion with override voter

Since an external voter is itself a running process, there is no guarantee that it too will always be
up and available. The moment the client voter leaves, the external voter leaves with it.

In the rare event that a failure occurs (i.e. a partition splitting the active and passive servers or the
active server crashing/stopping) with the external voter no longer being present, none of the
surviving servers can automatically become an active server. The servers will be stuck in a
suspended state whereby operations from regular clients will be stalled.

In this scenario, a manual intervention is required in order to move the cluster out of this partitioned
state by either (1) fixing the cause of the partition or (2) restarting the crashed server. If neither
option is feasible, then a third option of manually promoting a server to the active state by casting
an override vote from an external voter is required.

The voter process can be started in override mode to promote a single server to become an active
server, when that server is stuck in an intermediate state. When the voter process is started in this
mode it will connect to the specified server to be promoted and give it an override vote. The voter
process will then exit. The voter process is started in override mode as follows:

start-tc-voter. (sh|bat) -vote-for <hostname>:<port>

Running this command will forcibly promote the server at <hostname>: <port> to be an active
server (if it is stuck in that intermediate state).

Note:
This override voting will work even if external voters are not configured in the server
configuration.

Warning;:
Be cautious not to start two different override voters on both sides of the partition separately
so that both sides win and cause a split-brain.

Server startup

When the failover priority of the stripes is tuned for consistency, it has an impact on server startup
as well. In a multi-server stripe, when the servers are started up fresh, a server will not get elected
as an active server until it gets votes from all of its peers. This will require all the servers of that

stripe to be brought up. Bringing up regular voters is not going to help as they need to communicate

Terracotta Server Administration Guide 10.15 103

17 Failover Tuning

with all the active servers in the cluster to get registered. But if bringing up the other servers is
not feasible for some reason, then an override voter can be used to forcibly promote that server.

104 Terracotta Server Administration Guide 10.15

18 Connection Leasing

Why Leasing

When a client carries out a write with IMMEDIATE or STRONG consistency, the server ensures
that every client that could be caching the old value is informed, and the write will not complete
until the server can ensure that clients will no longer serve a stale value.

Where network disruptions prevent the server communicating with a client in a timely manner,
the server will close that client's connection to allow the write to progress.

To achieve this, each client maintains a lease on its connections to the cluster. If a client's lease
expires, the server may decide to close that client's connection. A client may also close the connection
if it realises that its lease has expired.

Lease Duration

When selecting the duration of lease, consider the range of possible client to server round-trip
latencies over a network connection that can be considered as functional. The lease should be
longer than the largest possible such latency.

On a server that is heavily loaded, there may be some additional delay in processing a client's
request for a lease to be extended. Such a delay should be added into the round-trip network
latency.

In addition, leases are not renewed as soon as they are issued, instead the client waits until some
portion of the lease has passed before renewing. A guideline suitable for the current implementation
is that leases should be approximately 50% longer to allow for this.

Setting long leases, however, has the downside that, when clients are unreachable by a server,
IMMEDIATE writes could block for up to the duration of a lease.

The default duration of lease is currently 150 seconds.

Lease Configuration

To configure the lease duration, use the client-lease-duration property in the config file, or
during server startup.

Terracotta Server Administration Guide 10.15 105

18 Connection Leasing

106 Terracotta Server Administration Guide 10.15

19 Cluster Tool

The cluster tool is a command-line utility that allows administrators of the Terracotta Server Array
to perform a variety of cluster management tasks. For example, the cluster tool can be used to:

® Obtain the running status of servers

® Dump the state of running servers

m Take backups of running servers

®m Promote a suspended server on startup or failover
® Shut down an entire cluster

m Perform a conditional partial shutdown of a cluster having one or more passive servers
configured for high availability (for upgrades etc.)

The cluster tool script is located in tools/bin under the product installation directory as
cluster-tool.bat for Windows platforms, and as cluster-tool.sh for Unix/Linux.

Cluster Tool commands

The cluster tool provides several commands. To list them and their respective options, run
cluster-tool.sh (or cluster-tool.bat on Windows) without any arguments, or use the option
-help.

The following section provides a list of options common to all commands, and thus need to be
specified before the command name:

Precursor options
1. -verbose

This option gives you a verbose output, and is useful to debug error conditions. Default: false.
2. -security-dir

This option can be used to communicate with a server which has TLS/SSL-based security
configured. For more details on setting up security in a Terracotta cluster, see the section
“Security Core Concepts” on page 156.

3. -connection-timeout

Terracotta Server Administration Guide 10.15 107

19 Cluster Tool

This option lets you specify a custom timeout value (in milliseconds) for connections to be
established in cluster tool commands. Default: 10s.

-request-timeout

This option lets you specify a request timeout value for operations. Default: 10s.

The "status" Command

The status command displays the status of a cluster, or particular server(s) in the same or different
clusters.

Syntax:

status [-cluster-name <cluster-name>] [-format json]
-connect-to <hostnamel[:port]>,<hostnamel[:port]>...

Parameters:

-cluster-name <cluster-name>

The name of the configured cluster.

m -format json
Output in JSON format. Default is tabular.
B -connect-to <hostname[:port]>,<hostname[:port]>...
The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -s option. When provided with option -n, a reachable server in the provided list will
be used. Otherwise, the command will be individually executed on each server in the list.
Examples
m The example below shows the execution of a cluster-level status command.
./cluster-tool.sh status -cluster-name tc-cluster -connect-to localhost
| STRIPE: 1 |
e e B e +
| Server Name | Host:Port | Status |
e e B e +
| server-1 | localhost:9410 | ACTIVE |
| server-2 | localhost:9510 | PASSIVE |
e e B e +
| STRIPE: 2 |
e e B e +
| Server Name | Host:Port | Status |
e e B e +
| server-3 | localhost:9610 | ACTIVE |
| server-4 | localhost:9710 | PASSIVE |
e e B e +
® The example below shows the execution of a server-level status command. No server is running

at localhost:9910, hence the UNREACHABLE status.

108

Terracotta Server Administration Guide 10.15

19 Cluster Tool

./cluster-tool.sh status -connect-to localhost:9410 -connect-to localhost:9510
-connect-to localhost:9910

| Host-Port | Status | Member of Cluster |
Additional Information |

| localhost:9410 | ACTIVE | tc-cluster |

- I

| localhost:9510 | PASSIVE | tc-cluster |
- I

| localhost:9910 | UNREACHABLE | = |

localhost:9910=Connection refused; |

Error (PARTIAL_FAILURE): Command completed with errors.

To learn more about server states, visit the section “Logical Server States” on page 17.

The "promote" command

The promote command can be used to promote a server stuck in a suspended state. For more
information about suspended states, refer to the topics Server startup and Manual promotion with
override voter in the section “Failover Tuning” on page 99.

Syntax:

promote -connect-to <hostname[:port]>,<hostname[:port]>...

Parameters:
B -connect-to <hostname[:port]>,<hostname[:port]>...

The hostname:port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -s option. The command will be individually executed on each server in the list.

Note:
There is no cluster-wide flavor for this command.

Examples

m The example below shows the execution of the promote command on a server stuck in suspended
state at localhost:9410.

./cluster-tool.sh promote -connect-to localhost
Following sub-operations were successful:

localhost:9410: Server promotion successful
Command completed successfully.

® The example below shows the erroneous execution of a server-level promote command. The
server running at localhost:9510 is not in a suspended state to be promoted, hence the failure.

./cluster-tool.sh promote -connect-to localhost:9510
Following sub-operations were unsuccessful:

localhost:9510:
com.terracottatech.tools.clustertool.exceptions.ClusterToolException:

Terracotta Server Administration Guide 10.15 109

19 Cluster Tool

Promote command failed as the server is not in a suspended state
Error (FAILURE): Command failed.

The "dump" Command

The dump command dumps the state of a cluster, or particular server(s) in the same or different
clusters. The dump of each server can be found in its logs.

Syntax:

dump [-cluster-name <cluster-name>] -connect-to <hostnamel[:port]>,<hostnamel[:port]>...

Parameters:
B -cluster-name <cluster-name>
The name of the configured cluster.
B -connect-to <hostnamel[:port]>,<hostname[:port]>...

The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -connect-to option. When provided with option -cluster-name, a reachable server
in the provided list will be used. Otherwise, the command will be individually executed on
each server in the list.

Examples

® The example below shows the execution of a cluster-level dump command.

./cluster-tool.sh dump -cluster-name tc-cluster -connect-to localhost:9410
Contacting servers: [localhost:9410]
Using reachable server: localhost:9410 to carry out the operation
Following sub-operations were successful:

localhost:9410: Dump successful

localhost:9510: Dump successful

localhost:9610: Dump successful

localhost:9710: Dump successful
Command completed successfully.

®m The example below shows the execution of a server-level dump command. No server is running
at localhost:9510, hence the dump failure.

./cluster-tool.sh dump -connect-to localhost:9410 -connect-to localhost:9510 -connect-to
localhost:9910
Following sub-operations were successful:
localhost:9410: Dump successful
localhost:9510: Dump successful
Following sub-operations were unsuccessful:
localhost:9910:
org.terracotta.diagnostic.client.connection.DiagnosticServiceProviderException:
com.terracotta.connection.api.DetailedConnectionException:
java.util.concurrent.TimeoutException: localhost:9910=Connection refused;
Error (PARTIAL_FAILURE): Command completed with errors.

110 Terracotta Server Administration Guide 10.15

19 Cluster Tool

The "ipwhitelist-reload” Command

The ipwhitelist-reload command reloads the IP whitelist on a cluster, or particular server(s) in
the same or different clusters. See the section “IP Whitelisting” on page 163 for details.

Syntax:

ipwhitelist-reload [-cluster-name <cluster-name>] -connect-to
<hostname[:port]>,<hostname[:port]>...

Parameters:
B -cluster-name <cluster-name>
The name of the configured cluster.
B -connect-to <hostname[:port]>,<hostname[:port]>...

The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -connect-to option. When provided with option -cluster-name, a reachable server
in the provided list will be used. Otherwise, the command will be individually executed on
each server in the list.

Examples

® The example below shows the execution of a cluster-level ipwhitelist-reload command.

./cluster-tool.sh ipwhitelist-reload -cluster-name tc-cluster -connect-to localhost
Contacting servers: [localhost:9410]
Using reachable server: localhost:9410 to carry out the operation
Following sub-operations were successful:
localhost:9410: IP whitelist reload successful
localhost:9510: IP whitelist reload successful
localhost:9610: IP whitelist reload successful
localhost:9710: IP whitelist reload successful
Command completed successfully.

m The example below shows the execution of a server-level ipwhitelist-reload command. No
server is running at localhost:9910, hence the IP whitelist reload failure.

./cluster-tool.sh ipwhitelist-reload -connect-to localhost:9410 -connect-to
localhost:9510 -connect-to localhost:9910
Following sub-operations were successful:
localhost:9410: IP whitelist reload successful
localhost:9510: IP whitelist reload successful
Following sub-operations were unsuccessful:
localhost:9910:
org.terracotta.diagnostic.client.connection.DiagnosticServiceProviderException:
com.terracotta.connection.api.DetailedConnectionException:
java.util.concurrent.TimeoutException: localhost:9910=Connection refused;
Error (PARTIAL_FAILURE): Command completed with errors.

Terracotta Server Administration Guide 10.15 111

19 Cluster Tool

The "backup” Command

The backup command takes a backup of the running Terracotta cluster. The backup is taken on
active servers only. Before taking backup of a cluster, backup-dir needs to be set on each server.
For more details about this feature, see “Backup, Restore and Data Migration” on page 137.

Syntax:

backup -cluster—-name <cluster—-name> -connect-to <hostname[:port]>,<hostnamel[:port]>...

Parameters:

-cluster-name <cluster-name>

The name of the configured cluster.

B -connect-to <hostname[:port]>,<hostname[:port]>...
The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -connect-to option. A reachable server in the provided server list will be used for
connection.

Note:

There's no server-level flavor of this command, as backup works at the cluster level only.

Examples

® The example below shows the execution of a successful backup command. Note that the server

at localhost:9610 was unreachable.

./cluster-tool.sh backup -cluster-name tc-cluster -connect-to localhost:9710
—-connect-to localhost:9410
Contacting servers: [localhost:9710, localhost:9410]
Following sub-operations were unsuccessful:
localhost:9710:
org.terracotta.diagnostic.client.connection.DiagnosticServiceProviderException:
com.terracotta.connection.api.DetailedConnectionException:
java.util.concurrent.TimeoutException: localhost:9710=Connection refused;
Using reachable server: localhost:9410 to carry out the operation
PHASE 0: SETTING BACKUP NAME TO : 996e7e7a-5c67-49d0-905e-645365c5fe28
localhost:9710: TIMEOUT
localhost:9410: SUCCESS
localhost:9510: SUCCESS
localhost:9610: SUCCESS
PHASE (1/4): PREPARE_FOR_BACKUP
localhost:9710: TIMEOUT
localhost:9410: SUCCESS
localhost:9510: NOOP
localhost:9610: SUCCESS
PHASE (2/4): ENTER_ONLINE_BACKUP_MODE
localhost:9410: SUCCESS
localhost:9610: SUCCESS
PHASE (3/4): START_BACKUP
localhost:9410: SUCCESS
localhost:9610: SUCCESS
PHASE (4/4): EXIT_ONLINE_BACKUP_MODE
localhost:9410: SUCCESS

12

Terracotta Server Administration Guide 10.15

19 Cluster Tool

localhost:9610: SUCCESS
Command completed successfully.

The example below shows the execution of a failed backup command.

./cluster-tool.sh backup -cluster-name tc-cluster -connect-to localhost:9610
Contacting servers: [localhost:9610]

Using reachable server: localhost:9610 to carry out the operation
PHASE 0: SETTING BACKUP NAME TO : 93cdb93d-ad7c-42aa-9479-6efbdd452302
localhost:9410: SUCCESS

localhost:9510: SUCCESS

localhost:9610: SUCCESS

localhost:9710: SUCCESS

PHASE (1/4): PREPARE_FOR_BACKUP

localhost:9410: SUCCESS

localhost:9510: NOOP

localhost:9610: SUCCESS

localhost:9710: NOOP

PHASE (2/4): ENTER_ONLINE_BACKUP_MODE

localhost:9410: BACKUP_FAILURE

localhost:9610: SUCCESS

PHASE (CLEANUP): ABORT_BACKUP

localhost:9410: SUCCESS

localhost:9610: SUCCESS

Error (FAILURE): Unable to complete backup.

The "shutdown" Command

The shutdown command shuts down a running Terracotta cluster. During the course of the shutdown
process, it ensures that:

Shutdown safety checks are performed on all the servers. Exactly what safety checks are
performed will depend on the specified options and is explained in detail later in this section.

All data is persisted to eliminate data loss.

All passive servers are shut down first before shutting down the active servers.

The shutdown command follows a multi-phase process as follows:

1.

Check with all servers whether they are OK to shut down. Whether or not a server is OK to
shut down will depend on the specified shutdown options and the state of server in question.

If all servers agree to the shutdown request, all of them will be asked to prepare for the
shutdown. Preparing for shutdown may include the following:

a. Persist all data.

b. Block new incoming requests. This ensures that the persisted data will be cluster-wide
consistent after shutdown.

If all servers successfully prepare for the shutdown, a shutdown call will be issued to all the
servers.

Terracotta Server Administration Guide 10.15 113

19 Cluster Tool

The first two steps above ensure an atomic shutdown to the extent possible as the system can be
rolled back to its original state if there are any errors. In such cases, client-request processing will
resume as usual after unblocking any blocked servers.

In the unlikely event of a failure in the third step above, the error message will clearly specify the
servers that failed to shut down. In this case, use the --force option to forcefully terminate the
remaining servers. If there is a network connectivity issue, the forceful shutdown may fail, and
the remaining servers will have to be terminated using operating system commands.

Note:
The shutdown sequence also ensures that the data is stripe-wide consistent. Although, it is
recommended that clients are shut down before attempting to shut down the Terracotta cluster.

Syntax:

shutdown [-cluster-name <cluster—-name> [-force -now]] -connect-to
<hostname[:port]>,<hostname[:port]>...

Parameters:
B -cluster-name <cluster-name>
The name of the configured cluster.
m -force
Forcefully shut down the cluster, even if the cluster is only partially reachable.
u —now
Do an immediate shutdown of the cluster, even if clients are connected.
B -connect-to <hostname[:port]>,<hostname[:port]>...

The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -connect-to option.

If the -cluster-name option is not specified, this command forcefully shuts down only the servers
specified in the list. For clusters having stripes configured for high availability (with at least one

passive server per stripe), it is recommended that you use the partial cluster shutdown commands
explained in the section below, as they allow conditional shutdown, instead of using the shutdown
variant without the -cluster-name option.

If the -cluster-name option is specified (i.e. a full cluster shutdown), this command shuts down
the entire cluster. Servers in the provided list will be contacted for connectivity, and the command
will then verify the cluster configuration with the given cluster name by obtaining the cluster
configuration from the first reachable server. If all servers are reachable, this command checks if
all servers in all the stripes are safe to shut down before proceeding with the command.

A cluster is considered to be safe to shut down provided the following are true:
® No critical operations such as backup and restore are going on.

m No Ehcache or TCStore clients are connected.

114 Terracotta Server Administration Guide 10.15

19 Cluster Tool

All servers in all the stripes are reachable.

If either the -force or -now option is specified, this command works differently than above as
follows:

If the -now option is specified, this command proceeds with the shutdown even if clients are
connected.

If the -force option is specified, this command proceeds with the shutdown even if none of
the conditions specified for safe shutdown above are met.

For all cases, the shutdown sequence is performed as follows:

1.
2.
3.

Flush all data to persistent store for datasets or caches that have persistence configured.
Shut down all the passive servers, if any, in the cluster for all stripes.

Once the passive servers are shut down, issue a shutdown request to all the active servers in
the cluster.

The above shutdown sequence is the cleanest way to shut down a cluster.

Examples

The example below shows the execution of a cluster-level successful shutdown command.

./cluster-tool.sh shutdown -cluster-name tc-cluster -connect-to localhost:9410
Contacting servers: [localhost:9410]

Using reachable server: localhost:9410 to carry out the operation

Shutting down cluster: tc-cluster

STEP (1/3): Preparing to shut down

STEP (2/3): Stopping all passive servers first

STEP (3/3): Stopping all active servers

Command completed successfully.

The example below shows the execution of a cluster-level successful shutdown command that
fails as one of the servers in the cluster was not reachable.

./cluster-tool.sh shutdown -cluster-name tc-cluster -connect-to localhost:9410
Contacting servers: [localhost:9410]
Using reachable server: localhost:9410 to carry out the operation
Error (FAILURE): Timed out trying to reach the server
Detailed Error Status for Cluster "tc-cluster’
ServerError{host="'localhost:9510', Error='Timed out trying to reach the server'}.
Unable to process safe shutdown request.
Command failed.

The example below shows the execution of a cluster-level successful shutdown command with
the force option. Note that one of the servers in the cluster was already down.

./cluster-tool.sh shutdown -force -cluster-name tc-cluster -connect-to localhost:9410
Contacting servers: [localhost:9410]
Using reachable server: localhost:9410 to carry out the operation
Timed out trying to reach the server
Detailed Error Status for Cluster ‘“tc-cluster’
ServerError{host="'1localhost:9510', Error='Timed out trying to reach the server'}.
Continuing forced shutdown.
Shutting down cluster: tc-cluster

Terracotta Server Administration Guide 10.15 115

19 Cluster Tool

STEP (1/3): Preparing to shut down
Timed out trying to reach the server
Detailed Error Status :
ServerError{host="'1localhost:9510', Error="'Timed out trying to reach the server'}.
Continuing forced shutdown.
STEP (2/3): Stopping all passive servers first
STEP (3/3): Stopping all active servers
Command completed successfully.

Partial Cluster Shutdown Commands

Partial cluster shutdown commands can be used to partially shut down nodes in the cluster without
sacrificing the availability of the cluster. These commands can be used only on a cluster that is
configured for redundancy with one or more passive servers per stripe. The purpose of these
commands is to allow administrators to perform routine and planned administrative tasks, such
as rolling upgrades, with high availability.

The following flavors of partial cluster shutdown commands are available:
B shutdown-if-passive

B shutdown-if-active

B shutdown-all-passives

B shutdown-all-actives

As a general rule, if these commands are successful, the specified servers will be shut down. If
there are any errors due to which these commands abort, the state of the servers will be left intact.

From the table of server states described in “Logical Server States” on page 17, the following are
the different active states that a server may find itself in:

B ACTIVE
B ACTIVE_RECONNECTING

B ACTIVE_SUSPENDED

Note:
In the following sections, the term 'active servers' means servers in any of the active states
mentioned above, unless explicitly stated otherwise.

Similarly, the following are the passive states for a server:
B PASSIVE_SUSPENDED
B SYNCHRONIZING

B PASSIVE

Note:
In the following sections, the term 'passive servers' means servers in any of the passive states
mentioned above, unless explicitly stated otherwise.

116 Terracotta Server Administration Guide 10.15

19 Cluster Tool

The "shutdown-if-passive” Command

The shutdown-1if-passive command shuts down the specified servers in the cluster, provided the
following conditions are met:

= All the stripes in the cluster are functional and there is one healthy active server with no
suspended active servers per stripe.

m All the servers specified in the list are passive servers.

Syntax:

shutdown-1if-passive -connect-to <hostname[:port]>,<hostnamel[:port]>...

Parameters:
B -connect-to <hostnamel[:port]>,<hostname[:port]>...

The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -connect-to option.

Note:
There's no cluster-level flavor of this command.

Examples

® The example below shows the execution of a successful shutdown-1if-passive command.

./cluster-tool.sh shutdown-if-passive -connect-to localhost:9510
Contacting servers: [localhost:9510]

Stopping passive node(s): [localhost:9510] of cluster: tc-cluster
STEP (1/2): Preparing to shutdown

STEP (2/2): Stopping if Passive

Command completed successfully.

m The example below shows the execution of a failed shutdown-1if-passive command, as it tried
to shut down a server which is not a passive server.

./cluster-tool.sh shutdown-if-passive -connect-to localhost:9410

Contacting servers: [localhost:9410]

Error (FAILURE): Unable to process the partial shutdown request.

One or more of the specified server(s) are not in passive state
or may not be 1in the same cluster

Discovered state of all servers are as follows:

Reachable Servers : 2

Stripe #: 1

Node: {localhost:9410} State: ACTIVE

Node: {localhost:9510} State: PASSIVE

Please check server logs for more details.

Command failed.

The "shutdown-if-active" Command

The shutdown-1if-active command shuts down the specified servers in the cluster, provided the
following conditions are met:

Terracotta Server Administration Guide 10.15 117

19 Cluster Tool

m Al the servers specified in the list are active servers.

m All the stripes corresponding to the given servers have at least one server in 'PASSIVE' state.

Syntax:

shutdown-if-active -connect-to <hostname[:port]>,<hostname[:port]>...

Parameters:
B -connect-to <hostname[:port]>,<hostname[:port]>...

The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -connect-to option.

Note:
There's no cluster-level flavor of this command.

Examples

® The example below shows the execution of a successful shutdown-1if-active command:

./cluster-tool.sh shutdown-if-active -connect-to localhost:9410
Contacting servers: [localhost:9410]

Stopping active node(s): [localhost:9410] of cluster: tc-cluster
STEP (1/2): Preparing to shut down

STEP (2/2): Shut down if active server

Command completed successfully.

m The example below shows the execution of a failed shutdown-1if-active command as the
specified server was not an active server.

./cluster-tool.sh shutdown-if-active -connect-to localhost:9510

Contacting servers: [localhost:9510]

Error (FAILURE): Unable to process the partial shutdown request.

One or more of the specified server(s) are not in active state
or may not be in the same cluster.

Reachable Servers : 2

Stripe #: 1

Node : {localhost:9410} State : ACTIVE

Node : {localhost:9510} State : PASSIVE

Please check server logs for more details

Command failed.

The "shutdown-all-passives” Command

The shutdown-all-passives command shuts down all the passive servers in the specified cluster,
provided the following is true:

m All the stripes in the cluster are functional and there is one active server in 'ACTIVE' state with
no suspended active servers per stripe.

All passive servers in all the stripes of the cluster will be shut down when this command is run.

Syntax:

118 Terracotta Server Administration Guide 10.15

19 Cluster Tool

shutdown-all-passives -cluster-name <cluster-name> -connect-to
<hostname[:port]>,<hostname[:port]>...

Parameters:
B -cluster-name <cluster-name>
The name of the configured cluster.
B -connect-to <hostname[:port]>,<hostname[:port]>...

The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -connect-to option. These host(s) need not be passive servers.

Note:
There's no server-level flavor of this command, as it can be used only to shut down all the
passive servers in the entire cluster.

The command shuts down all the passive servers in a multi-phase manner as follows:
1. Check with all servers whether it is safe to shut down as a passive server.

2. Flush any data that needs to be made persistent across all servers that are going down and
block any further changes.

3. Issue a shutdown request to all passive servers if all passive servers succeed in step 2.

4. If any servers fail in step 2 or above, the shutdown request will fail and the state of the servers
will remain intact.

Examples

m The example below shows the execution of a successful shutdown-all-passives command.

./cluster-tool.sh shutdown-all-passives -cluster-name tc-cluster -connect-to
localhost:9410

Contacting servers: [localhost:9410]

Using reachable server: localhost:9410 to carry out the operation

Stopping passive node(s): [localhost:9510] of cluster: tc-cluster

STEP (1/2): Preparing to shutdown

STEP (2/2): Stopping if Passive

Command completed successfully.

The "shutdown-all-actives" Command

The shutdown-all-actives command shuts down the active server of all stripes in the cluster,
provided the following are true:

m There are no suspended active servers in the cluster.
m There is at least one passive server in 'PASSIVE' state in every stripe in the cluster.

The active server of all stripes of the cluster will be shut down when this command returns success.
If the command reports an error, the state of the servers will be left intact.

Terracotta Server Administration Guide 10.15 119

19 Cluster Tool

Syntax:

shutdown-all-actives -cluster-name cluster-name -connect-to
<hostname[:port]>,<hostname[:port]>...

Parameters:

-cluster-name cluster-name

The name of the configured cluster.

B -connect-to <hostname[:port]>,<hostname[:port]>...
The hostname: port(s) or hostname(s) (default port being 9410) of running servers, each specified
using the -connect-to option. These host(s) need not be active servers.

Note:

There's no server-level flavor of this command as it can be used only to shut down all the active
servers in the entire cluster.

The command shuts down all the active servers in a multi-phase manner as explained below:

1. Check with all servers whether they are safe to be shut down as active servers.

2. Flush any data that needs to be made persistent across all servers that are going down and
block any further changes.

3. Issue a shutdown request to all active servers if they succeed in step 2.

4. If any servers fail in step 2 or above, the shutdown request will fail and the state of the servers
will remain as before.

Examples

m The example below shows the execution of a successful shutdown-all-actives command. Note

that the specified host was a passive server in this example. As the specified host is used only
to connect to the cluster and obtain the correct state of all the servers in the cluster, the command
successfully shuts down all the active servers in the cluster, leaving the passive servers intact.

./cluster-tool.bat shutdown-all-actives -cluster-name tc-cluster -connect-to
localhost:9510

Contacting servers: [localhost:9510]

Using reachable server: localhost:9510 to carry out the operation

Stopping active node(s): [localhost:9410] of cluster: tc-cluster

STEP (1/2): Preparing to shut down

STEP (2/2): Shut down if active server

Command completed successfully.

120

Terracotta Server Administration Guide 10.15

20 Importing and Exporting Datasets

m Overview

m Import-Export Tool

m Import-Export API

Terracotta Server Administration Guide 10.15

121

20 Importing and Exporting Datasets

Overview

Dataset records and their cells can be exported to file in both Apache Parquet format and TSON
format. Records and cells can also be imported into a dataset from a TSON file. This import-export
capability is provided through both a command-line utility and a TCStore API via libraries and
scripts that are distributed with the kit.

Parquet is a commonly used, open source, column-oriented, binary data format designed for
efficient data storage and retrieval. As a binary format, Parquet files are consumed by software
systems, which in turn target other storage systems and formats.

The TSON format is a kind of typed JSON where each data value is described with a type declaration
wherever it appears within the body of the file.

Import-Export Tool

The Import-Export Tool is executed by running the appropriate import-export-tool script located
in the tools/import-export/bin folder inside the Terracotta installation directory:

B import-export-tool.bat - used on Windows platforms
B import-export-tool.sh - used on Unix/Linux platforms.
Import-Export Tool script executions utilize the following syntax:

import-export-tool.sh|bat [<common_options>] <command> <command_specific_options>

Note that the common_options are optional, while one or more of the command_specific_options
are required.

The supported commands include:

Command Description

“export-parquet” on page 123 Export records from a dataset into a parquet file.
“export-tson” on page 126 Export records from a dataset into a TSON file.
“import-tson” on page 127 Import records from a TSON file into a dataset.

Common Command Options

Each Import-Export Tool command supports a unique set of options (detailed in the sections
throughout this document). All commands support the following common options:

Option Description Default
-connection-timeout Timeout value for connections |10 seconds
to be established.

122 Terracotta Server Administration Guide 10.15

20 Importing and Exporting Datasets

Option Description Default

-security-dir Specifies the location of the
security root directory folder.
Used to communicate with a
server that is configured with
any of the supported security
schemes (e.g. TLS/SSL). For
more details on configuring
security in a Terracotta cluster,
see “Security Core Concepts” on
page 156 and “Cluster
Security” on page 161.

-verbose Generates a verbose output. |false
Useful for debugging error
conditions.

-help Displays help information for

commands and their options.

Import-Export Tool Commands

The following sections describe each supported command and provide examples on their usage.

Note:
When running the import-export tool, connecting to a Terracotta server is established via the
-connect-to option and specifying a URI connection string (e.g. terracotta://<host>:<port>)

Exporting a Dataset to a Parquet File

The export-parquet command is used to export a dataset's records to a parquet file. A sample of
the dataset's records (-schema-sample-size) is used to construct the parquet file's schema, which
is based on the unique set of cells contained with the sampled records. Useful features include
filtering the returned records via the -filter-cell-name/type option, explicitly excluding or
including cells in the exported records, and truncating and nullifying String and Byte array type
cells respectively based on size and length of those cell values.

Syntax:

export-parquet -connect-to <connectionURI>
—dataset-name <datasetName>
-dataset-type <datasetType>
-output-folder <outputFolder>
[-filter-cell-name <cellName>
-filter-cell-type <cellType>
~filter-low-range <lowValue>
-filter-high-range <highValue>]
[-schema-sample-size <schemaSampleSize>]
[-append-cell-type]
[-max-columns <maxColumns>]

Terracotta Server Administration Guide 10.15 123

20 Importing and Exporting Datasets

[-no-abort-when-exceed-max-columns]
[-multi-output-files]

[-max-string-length <maxStringlLength>]
[-max-byte-length <maxBytelLength>]
[-include-cells <cellname>, <celltype> [, ...]]
[-exclude-cells <cellname>, <celltype> [, ...]]
[-exclude-empty-records]

[-log-stream-plan]

Option

Description

—append-cell-type

When constructing the parquet schema’s field
names, always append the cell’s Type to the cell’s
Name (default: false - only append when
required in order to avoid field name clashes)

—-connect-to

Server URI to connect to

-dataset-name

Name of dataset to export

-dataset-type

Type of dataset to export [BOOL | CHAR | INT
| LONG | DOUBLE | STRING]

-exclude-cells

A comma-separated list of cell definitions as
<cellname, celltype> to be excluded from the
export. Include cells (-include-cells) takes
precedence over exclude cells

-exclude-empty-records

Do not export records that contain zero cells

-filter-cell-name

Cell name used as a range filter to apply to the
queried dataset records

-filter-cell-type

Cell type of the range filter [INT | LONG |
DOUBLE]

-filter-high-range

High value for the range filter

-filter-low-range

Low value for the range filter

-help

Help

-include-cells

A comma-separated list of cell definitions as
<cellname, celltype> to be included in the export.
Only these cells will be exported

-log-stream-plan

Log the details of the stream plan

-max-byte-length

For byte array values, the maximum byte length
in byte count that will be exported, null
otherwise (default: all byte arrays are exported
regardless of length)

124

Terracotta Server Administration Guide 10.15

20 Importing and Exporting Datasets

Option Description

-max-columns Maximum allowed number of columns (i.e.

unique cell definitions) in the output file (default:
800 columns)

-max-string-length For string values, the maximum string length in

number of characters that will be exported,
truncated otherwise (default: no strings are
truncated)

-multi-output-files Generate multiple output files when the number

of cells exceed the maximum allowed number
of columns (default: false - write all cells to a
single file)

-no-abort-when-exceed-max-columns Do not abort the export when the number of cells

exceeds the maximum allowed number of
columns

-output-folder Output folder where exported file(s) will be

written

-schema-sample-size Number of dataset records to query upon which

the schema will be based (default: 5 records)

Examples

1.

Exporting an entire dataset to a parquet file:

import-export-tool.sh export-parquet -connect-to terracotta://localhost:9410
-dataset-name DS1 -dataset-type LONG
-output-folder /path/to/output_folder

Exporting a subset of a dataset to a parquet file using a filter cell:

import-export-tool.sh export-parquet -connect-to terracotta://localhost:9410

-dataset-name DS1 -dataset-type LONG

—output-folder /path/to/output_folder —-filter-cell-name MyLongCell -filter-cell-type
LONG -filter-low-range 10 -filter-high-range 50

Exporting a subset of a dataset to a parquet file using a filter cell and only including specific
cells in the output for each record.

import-export-tool.sh export-parquet -connect-to terracotta://localhost:9410

-dataset-name DS1

-dataset-type LONG -output-folder /path/to/output_folder -filter-cell-name MyLongCell
-filter-cell-type LONG -filter-low-range 10

~filter-high-range 50 -include-cells
MyLongCell,LONG,MyDoubleCell,DOUBLE,MyBooleanCell,BOOL

Note:
For parquet export, when specifying one or more -include-cells and a -filter-cell, the filter
cell/type must also appear in the included-cells list.

Terracotta Server Administration Guide 10.15 125

20 Importing and Exporting Datasets

Exporting a Dataset to a TSON File

The export-tson command is used to export a dataset to a TSON-formatted file. The file can be
compressed if necessary.

Syntax:

export-

tson -connect-to <connectionURI>
-dataset-name <datasetName>
-dataset-type <datasetType>
-output-file <outputFile>
[-filter-cell-name <cellName>
-filter-cell-type <cellType>
-filter-low-range <lowValue>
-filter-high-range <highValue>]
[-max-string-length <maxStringlLength>]
[-max-byte-length <maxBytelength>]

[-include-cells <cellname>, <celltype> [, ...]]
[-exclude-cells <cellname>, <celltype> [, ...]]
[-pretty-print]
[-compress]
[-exclude-empty-records]
[-log-stream-plan]
Option Description
-compress Compress the generated output file after export

-connect-to

Server URI to connect to

-dataset-name

Name of dataset to export

-dataset-type

Type of dataset to export [BOOL | CHAR | INT
| LONG | DOUBLE | STRING]

-exclude-cells

A comma-separated list of cell definitions as
<cellname, celltype> to be excluded from the
export. Include cells (-include-cells) takes
precedence over exclude cells

-exclude-empty-records

Do not export records that contain zero cells

-filter-cell-name

Cell name used as a range filter to apply to the
queried dataset records

-filter-cell-type

Cell type of the range filter [INT | LONG |
DOUBLE]

-filter-high-range

High value for the range filter

-filter-low-range

Low value for the range filter

-help

Help

126

Terracotta Server Administration Guide 10.15

20 Importing and Exporting Datasets

Option Description

-include-cells A comma-separated list of cell definitions as
<cellname, celltype> to be included in the export.
Only these cells will be exported

-log-stream-plan Log the details of the stream plan

-max-byte-length For byte array values, the maximum byte length
in byte coutnt that will be exported, null
otherwise (default: all byte arrays are exported
regardless of length)

-max-string-length For string values, the maximum string length in
number of characters that will be exported,
truncated otherwise (default: no strings are
truncated)

-output-file Full pathname of output file to create and write
the exported dataset records to (parent folder
must exist)

-pretty-print Include line breaks and indentations when
writing records to the file

Examples

1. Exporting an entire dataset to a TSON file:

import-export-tool.sh export-tson -connect-to terracotta://localhost:9410
-dataset-name DS1 -dataset-type LONG
-output-file path\to\file\myfile.tson

2. Exporting an entire dataset to a compressed TSON file:

import-export-tool.sh export-tson -connect-to terracotta://localhost:9410
-dataset-name DS1 -dataset-type LONG
-output-file path\to\file\myfile.tson.gz -compress

3. Exporting an entire dataset to a TSON file truncating all string values greater than 256 characters
long and excluding all byte array values greater than 1024 bytes and excluding all data for a
specific cell:

import-export-tool.sh export-tson -connect-to terracotta://localhost:9410
-dataset-name DS1 -dataset-type LONG

—output-file path\to\file\myfile.tson -max-string-length 256 -max-byte-length 1024
—exclude-cells MyBooleanCell,BOOL

Importing Data from aTSON File

The import-tson command is used to add records and cells into an existing dataset by importing
them from a TSON-formatted file, which can be optionally compressed.

Terracotta Server Administration Guide 10.15 127

20 Importing and Exporting Datasets

Note:

When importing a TSON file into a dataset, the target dataset must already exist within the
cluster. If the specified dataset does not exist, the import operation will fail.

Syntax:

import-tson -connect-to <connectionURI>
-dataset-name <datasetName>
-dataset-type <datasetType>
—input-file <inputFile>
[-compressed]
[-clear-dataset]
[-exclude-empty-records]

Option Description

-clear-dataset Delete all records from the target dataset before
performing the import

-compressed Specifies that the input file is compressed

-connect-to Server URI to connect to

-dataset-name Name of dataset to import

-dataset-type Type of dataset to import [BOOL | CHAR | INT
| LONG | DOUBLE | STRING]

-exclude-empty-records Do not import records that contain zero cells

-help Help

—input-file Full pathname of TSON-formatted input file
whose records will be added to the specified
dataset

Examples

1. Import a TSON file into a dataset, first clearing all contents from the target dataset:

import-export-tool.sh import-tson -connect-to terracotta://localhost:9410
-dataset-name DS2 -dataset-type LONG
—input-file path\to\input_file.tson -clear-dataset

2. Import a compressed TSON file into a dataset without clearing the target dataset’s contents
and excluding any records in the import file which have zero cells (i.e. empty records):

import-export-tool.sh import-tson -connect-to terracotta://localhost:9410
-dataset-name DS2 -dataset-type LONG

—input-file path\to\input_file.tson.gz -compressed -exclude-empty-records
output results:

Import Result: Success

1,000 records processed.

5 empty records (with no cells) were omitted

17 records failed to be added to the Dataset.

128 Terracotta Server Administration Guide 10.15

20 Importing and Exporting Datasets

Note:

When importing records without first clearing the target dataset, any records in the import file
that have existing keys in the target dataset will not be imported. The count of these skipped
records will appear in the output results of the import operation as 'records failed to be added
to the Dataset'.

Import-Export API

The ability to import and export datasets to and from a terracotta cluster can be performed by any
TCStore client using the import-export libraries distributed with the kit. The following code sample
shows the required import paths for the key import-export classes:

import com.terracottatech.store.importexport.api.parquet.ParquetDatasetExport; // (1)

import com.terracottatech.store.importexport.api.tson.TSONDatasetExport; /] (2)
import com.terracottatech.store.importexport.api.tson.TSONDatasetImport; // (3)
1 Exporting to Parquet requires imports for

ParquetDatasetExport (shown),
ParquetExportOptions and ParquetExportStats.

2 Exporting to TSON requires imports for
TSONDatasetExport (shown), TSONExportOptions
and TSONExportStats.

3 Importing from TSON requires imports for
TSONDatasetImport (shown), TSONImportOptions
and TSONImportStats.

The following example illustrates how to export a dataset to a Parquet file format using the
import-export API:

try (DatasetManager dsManager =
DatasetManager.clustered(URI.create(connectionURI)).build()) { // (1)

ParquetExportOptions options = new ParquetExportOptions(); // (2)
options.setDatasetName("DS1"); /] (3)
options.setDatasetType (LONG) ; /] (4)
options.setOutputFolder (Paths.get(outputFolderFullPath)); // (5)
ParquetDatasetExport exporter
= new ParquetDatasetExport(dsManager, options); // (6)

ParquetExportStats stats = exporter.exportDataset(); /] (7)
System.out.println(stats.toString()); // (8)

}

1 Create a DatasetManager against a server in the

cluster supplying a URI connection string (e.g.
terracotta://<hostname>:<hostport>)

2 Create an ExportOptions instance corresponding
to the desired file format (ParquetExportOptions
in this example).

Terracotta Server Administration Guide 10.15 129

20 Importing and Exporting Datasets

3 Specify the name of the dataset from which to
export records (DS1 in this example).

4 Specify the Type of the dataset identified in 3
above.

5 Specify the full Path of an existing folder where
the generated output file will be created and into
which records will be written.

6 Create a DatasetExport instance corresponding
to the desired format (ParquetDatasetExport in
this example) supplying the DatasetManager and
ExportOptions instances.

7 Perform the export by calling exportDataset().

8 Understand the results of the completed export

operation contained within the returned
ExportStats instance (ParquetExportStats in
this example):

Export Result: Success
Output Files (1):

C:\temp\datasetl_2022-08-11-09-24-49-777.parquet
1,000 records processed.
1,000 complete records written to parquet file

(o]

partial

records

[oNoNoNoNo]

Note:

records written to parquet file

entire records NOT written to parquet file

failed writing to parquet file

empty records excluded writing to parquet file
string values were truncated
large-size byte arrays were omitted

In the above example, the system automatically created the export file with name

datasetl_2022-08-11-09-24-49-777.parquet. In fact, for Parquet export, the system will always
construct the filename. However, when exporting in TSON format, the name of the generated

file must be supplied by the client, as illustrated in the next example.

The following example illustrates how to export a dataset to TSON file format using the
import-export API. The example also illustrates how to configure cell filtering:

try (DatasetManager dsManager =
DatasetManager.clustered (URI.create(connectionURI)) .build()) { //

TSONExportOptions options = new TSONExportOptions();
options.
options.
options.
options.
options.
options.

setDatasetName ("DS1") ;
setDatasetType (LONG) ;

setOutputFileName (outputFilenameFullPath) ;
setFilterCell("myFilterCell", LONG);
setFilterLowValue(0);
setFilterHighValue(50);

/1
/!
/1
/1
/1
/1
/1

TSONDatasetExport exporter = new TSONDatasetExport(dsManager, options); //
TSONExportStats stats = exporter.exportDataset();

/7

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

130

Terracotta Server Administration Guide 10.15

20 Importing and Exporting Datasets

System.out.println(stats.toString());

/1 (11)

Create a DatasetManager against a server in the
cluster supplying a URI connection string (e.g.
terracotta://<hostname>: <hostport>).

Create an ExportOptions instance corresponding
to the desired file format (TSONExportOptions in
this example).

Specify the name of the dataset from which to
export records (DsS1 in this example).

Specify the Type of the dataset identified in 3
above.

Specity the full path filename which the system
will create and into which records will be
written. The file's parent directory must exist.

Specify a named cell and its Type that is present
in the dataset identified in 3 above. That cell will
be used to filter the exported records.

Specify the low range numeric value of the filter
cell for which records containing the specified
filter cell and whose value is greater than or
equal to the low range will be included in the
export file.

Specify the high range numeric value of the filter
cell for which records containing the specified
filter cell and whose value is less than the high
range will be included in the export file.

Create a DatasetExport instance corresponding
to the desired format (TSONDatasetExport in this
example) supplying the DatasetManager and
ExportOptions instances.

10

Perform the export by calling exportDataset().

11

Understand the results of the completed export
operation contained within the returned
ExportStats instance (TSONExportStats in this
example):

Export Result: Success

1,000 records processed.

0 string values were truncated

0 large-size byte arrays were omitted

Terracotta Server Administration Guide 10.15

131

201

mporting and Exporting Datasets

0 empty records (with no cells) were omitted

The following example illustrates how to import dataset records contained within a TSON-formatted
file using the import-export API:

tr

y (DatasetManager dsManager =

DatasetManager.clustered(URI.create(connectionURI)).build()) { // (1)
TSONImportOptions options = new TSONImportOptions(); /] (2)

options.setDatasetName("DS2");
options.setDatasetType (LONG) ;

/1 (3)
/1 (4)

options.setInputFileName (inputFilenameFullPath) ; // (5)

options.setCompressed(false);

/1 (6)

options.setClearDatasetBeforeImport(true); /] (7)

TSONDatasetImport exporter

= new TSONDatasetImport(dsManager, options); // (8)
TSONImportStats stats = exporter.importDataset(); // (9)

System.out.println(stats.toString());

/] (10)

Create a DatasetManager against a server in the
cluster supplying a URI connection string (e.g.
terracotta://<hostname>:<hostport>)

Create an ImportOptions instance corresponding
to the desired file format (TSONImportOptions in
this example).

Specify the name of an existing dataset into
which records will be added (Ds2 in this
example).

Specify the Type of the dataset identified in 3
above.

Specify the full path filename of the file that you
want to import.

Specify whether the input file identified in 5
above has been compressed (both ZIP and GZIP
formats are supported).

Specify if all records present in the target dataset
identified in 3 above should first be deleted
before the new records are added from the
import file.

Create a DatasetImport instance corresponding
to the desired format (TSONDatasetImport in this
example) supplying the DatasetManager and
ImportOptions instances.

Perform the import by calling importDataset().

132

Terracotta Server Administration Guide 10.15

20 Importing and Exporting Datasets

10 Understand the results of the completed import
operation contained within the returned
ImportStats instance (TSONImportStats in this
example):

Import Result: Success

1,000 records processed.

0 empty records (with no cells) were omitted
0 records failed to be added to the Dataset.

Terracotta Server Administration Guide 10.15 133

20 Importing and Exporting Datasets

134 Terracotta Server Administration Guide 10.15

21 Licensing

This document describes the installation and update procedures for Terracotta Ehcache and
Terracotta licenses.

Installing a license

A Terracotta license is installed on a Terracotta cluster using the config tool either:
® during the cluster activation process using the activate command, or

® any later desired time by using the set command

These commands ensure that:

m The license is a valid Software AG license.

® The license has not expired already.

m The Terracotta configuration files do not violate the license.

The following example activates a Terracotta cluster and installs the license file:

./config-tool.sh activate -license-file license.xml -cluster-name tc-cluster -connect-to
localhost:9410

Activating nodes: localhost:9410

License installation successful

Restarting nodes: localhost:9410

Node: localhost:9410 has restarted in state: ACTIVE

All nodes came back up

Command successful!

See the set command for a detailed explanation of the command usage.

License expiration

License expiry checks are done every midnight (UTC time) to ensure that the license in use did
not expire. Midnight here is the time at the start of the day, i.e. '00:00" hours. As an example, for
a license which is valid till December 31, the midnight check on December 31 will pass, but the
check on January 1 midnight will fail, and license will be deemed as expired. When a license
expires, a warning message like the following will be logged every 30 minutes in the server logs:

ATTENTION!! LICENSE expired. Time since expiry 1 day(s)

Terracotta Server Administration Guide 10.15 135

21 Licensing

The license must be renewed within 7 days of expiry. If it is not done, the cluster will be shut down
with the following message in the server logs:

Shutting down the server as a new license is not installed within 7 days.

License renewal

If your license expires, a new license can be obtained by contacting Software AG support. The

new license can then be installed using the config tool set command as follows:
./config-tool.sh set -setting license-file=license.xml -connect-to localhost:9410
Connecting to: localhost:9410 (this can take time if some nodes are not reachable)

License validation passed: configuration change(s) can be applied
Applying new configuration change(s) to activated cluster: localhost:9410

Command successful!

See the set command for a detailed explanation of the command usage.

136 Terracotta Server Administration Guide 10.15

22 Backup, Restore and Data Migration

Overview of Backup and RESIOIEcciiieeiiiiiiiii e e e 138
Data DIreCtOry STIUCKUIEcooeii e 138
(O a1 g[Sl = = 1ot (U] o PP 139
OFFliNE BACKUP ...t e e e e e e e e 140
ST] (0] TR TPPPPT 141
Data Migration of ENCACNE datauueiiiiiiiiiiiiiiiiiiiie et 142
TeChNICAl DELAIIS ... 143

Terracotta Server Administration Guide 10.15 137

22 Backup, Restore and Data Migration

Overview of Backup and Restore

The Backup and Restore feature enables you as an administrator of a Terracotta cluster to take a
backup of the cluster and restore it from the backed up data when required.

Terracotta supports two ways of taking a backup:
1. Online backup using the cluster-tool. This is the recommended method.
2. Manual offline backup

Restore and Ehcache data migration are manual offline processes.

Note:
Migration of TCStore data is currently not supported.

When a passive server starts and discovers it has data, the data is automatically backed up for
safety reasons. However, this data is not cluster-wide consistent, and must not be used for
restoration. Refer to the section “Active and Passive Servers” on page 13 for more information.

Terms

Backup and Restore : Taking a snapshot of the cluster data such that it can later be installed back
on the same cluster, bringing it back to the initial state.

Data Migration : Taking a snapshot of the cluster data, but installing it on a different cluster,
bringing it to the state of the original cluster. Data Migration is also desirable in cases when only
Ehcache data is needed, and not the platform data.

Data Directory Structure

Following is a sample data directory structure of a server containing Ehcache and TCStore data:

/tmp/datal/
server-1
—— ehcache
L— frs
L — default-frs-container
default-cachedata
FRS.lck
frs.backup.lck
segf00000000. frs
metadata
FRS.lck
frs.backup.lck
segf00000000. frs
— platform-data
entityData
FRS.lck
frs.backup.lck

segf00000000. frs
segf00000001. frs

138 Terracotta Server Administration Guide 10.15

22 Backup, Restore and Data Migration

L — transactionsData

— FRS.1lck

—— frs.backup.lck
— segf00000000. frs
— seg@00000001. frs
store
data

— FRS.1lck

—— frs.backup.lck
— segl00000000. frs
meta

— FRS.1lck

—— frs.backup.lck
— segl00000000. frs

where:

1. /tmp/datal is the data directory path (for a given data directory) defined in the server config
file

server-1is the server name defined in the server config file
ehcache is the directory containing Ehcache data

platform-data is the directory containing platform specific logs

A

store is the directory containing TCStore data

Online Backup

Online backup of a Terracotta cluster is performed by the cluster-tool, and is the recommended
method to take a backup. The following section describes the online backup feature and the process:

Configuring the Backup feature

To be able to take cluster backups, a backup directory must be configured. If the directory specified
by the backup location path is not present, it will be created during backup. This can be done using
one of the following ways:

1. Using the CLI option -backup-dir during server startup
2. Using the backup-dir property in the config property file during server startup

3. Using the config tool set command to set the backup-dir property at runtime

Prerequisites

Before proceeding with the online backup, ensure that:

1. At least one server in each stripe is up and running.

2. The servers have read and write permissions to the backup location.

3. Backup location has enough space available to store the backup data.

Terracotta Server Administration Guide 10.15 139

22 Backup, Restore and Data Migration

4. cluster-tool has fast connectivity to all the servers and the cluster is not heavily loaded with
application requests.

Taking an online Backup

A backup is taken using the cluster-tool. Visit “Cluster Tool” on page 107 for details on the backup
command. If the backup fails for some reason, you can check the server logs for failure messages.
Additionally, running the backup command using the -verbose option might help.

Backup directory structure

The following diagram shows an example of the directory structure that results from a backup:

/tmp/backupl/
7c868f83-5075-4b32-bef5-56f29fdcc6f0
server-1
L— datadir
—— ehcache
frs
L— default-frs-container
default-cachedata
L — segoo0000000. frs
metadata
L — sego00000000. frs
— platform-data
entityData
segf00000000. frs
segf00000001. frs
transactionsData
segf00000000. frs
segf00000001. frs

— store
data
L — segoo0000000. frs
meta
L — sego00000000. frs

where:
1. /tmp/backupl/ is the backup location defined in the config file

2. 7c868f83-5075-4b32-bef5-56f29fdcc6f0 is an ID created by the backup command to uniquely
identify a backup instance

3. server-1is the server name

4. datadir is the data directory name (for a given data directory) defined in the server config file

Offline Backup

In the rare scenario when an online backup cannot be taken, an offline backup can be taken. The
process is described as follows:

140 Terracotta Server Administration Guide 10.15

22 Backup, Restore and Data Migration

Taking an offline Backup
Follow the steps in the specified order to back up cluster data:
1. Shut down the cluster, while taking a note of the current active servers.

2. Copy the contents of the required data directories of all the servers which were actives prior
to the shutdown to a desired location.

3. Name the directories in the manner described in the “Backup directory structure” on page 140
section above. Although this step is optional, it helps identify different instances of backup,
and keeps the restore steps consistent for online and offline backup procedures.

4. Save the config files as well. These files will be used to start the stripes after a restore is
performed.

Restore

The restore operation is a manual operation. During the Restore operation, you use standard
operating system mechanisms to copy the complete structure (directories, subdirectories and files)
of the backup into the original location. Some small structural and/or naming changes are required
in the restored directories after the copy, as described in the sections below.

Note:
Restoring cache data will bring back cache entries which might have become stale by the time
a restore is finished.

Performing a Restore

Before you start the Restore operation, ensure that all activity has stopped on the cluster and that
the cluster is not running.

If you compare the structure of the backup under /tmp/backup1 with the original structure under
/tmp/datal (see both structural diagrams above), you will see some differences. You will also see
that this is a single stripe cluster. Therefore, when you copy the /tmp/backupl/<backup-name>
directory structure back to /tmp/datal, you need to make the following changes:

1. First choose a server as the active server for your stripe.
2. Note down the name of that server.

3. Create an empty directory for each path specified by the data directory. This will be the target
directory for your restored data. Repeat this step for every data directory path specified in
your config file.

4. Create a sub-directory with the name of the server under the data directories created above.
For example, if the name attribute is server-2 for the chosen active server for this stripe and
the location specified for the data directory datadir is /tmp/datal, your target directory should
look like /tmp/datal/server-2.

Terracotta Server Administration Guide 10.15 141

22 Backup, Restore and Data Migration

From the backup, copy the contents of <server-name>/<data-directory> to this newly created
directory. For example, in the example given above, copy from
/tmp/backupl/<backup-name>/server-1/data to /tmp/datal/server-2

Start the server with the newly created data directory with the config file which was backed
up from the original cluster.

You can now bring up the passive servers in the stripe. Please note that you don't need to copy
the backup data to the passive servers as they will automatically receive the data when they
synchronize with the active server. It is advisable to remove any old data on the passive servers
before you bring up the passive servers.

Repeat the above steps for other stripes in the cluster.

Data Migration of Ehcache data

Note:
As noted above, data migration is currently not available for TCStore data.

Data migration can be performed to move Ehcache data to a new cluster without moving the
platform data. Please note that only restartable caches contained in a restartable cache manager
can be recovered. Since the data migration works at the data directory level, all the data of all
restartable cache managers that use the same data directory will be recovered together.

How to perform an offline data migration

Follow the steps in the specified order to perform a migration of cluster data:

1.

Shut down the source cluster and copy the contents of all encache directories from all required
data directories of all active servers in the cluster. You can skip copying data directories
containing restartable cache managers that you do not wish to migrate.

Start the target cluster (you can just start the active servers at this time) with the same number
of stripes as the source cluster. Create the desired cache manager configuration using a client.
The cluster URI (including the cluster tier manager name for the cache manager) can be different
in the new cluster. If the name part of the URI is different, specify the old name as the restart
identifier when using the cache manager configuration API, so that the system can map the
data corresponding to a given cache manager correctly. If there are more than one cache
managers under the same data directory, use the configuration API to create all the cache
managers in the target cluster.

For related information, see the section Fast Restartability of the Ehcache API Developer Guide.

Shut down the target cluster and copy the data to the matching data directories. The data
directory paths can be different on the target cluster, but must have sufficient space to contain
the data being copied over.

Once the data is available in all the stripes, you can start the target cluster. It now loads all the
cache data that was moved from the source cluster.

142

Terracotta Server Administration Guide 10.15

22 Backup, Restore and Data Migration

Technical Details

Causal and Sequential Consistency across stripes

Since TCStore and Ehcache support only causal consistency (per key) and sequential consistency
(across keys for a single thread of execution), the backup image across the cluster (be it single
stripe or multi-stripe) must be consistent cluster wide for the point-in-time when the backup was
taken.

For instance, suppose a single thread of execution from a single client synchronously made changes
to keys A, then B, then C and then D in that order. Now if the backup was captured when the
client had made changes to C, intuitively the backup MUST have all the previous changes made
to A and B, regardless of the stripe where those mutations occurred. Thus on a restore of this
point-in-time backup, if the restored data has C, then it MUST contain the changes made to A and
B. Of course, it is to be expected that such a restoration may have permanently lost D, due to the
point-in-time nature of restoring from backups.

As another example, say a system had long keys from 1 to 1000 and mutated them one by one
exactly in that order. If the backup had 888 as the largest key, then all keys from 1 to 887 MUST
also exist in the backup.

Causal consistency (per key) is always implied, as a key is always within a stripe. The backup
taken must be consistent for a point in time snapshot, which implies that when a snapshot is taken,
all mutations/changes that happen in the system AFTER the snapshot is taken MUST not reflect
in the backup.

Consistency of multiple FRS logs within a stripe

Since platform data is also backed up, there are at least two FRS logs that needs to be backed up
in a consistent fashion even within a single stripe.

Terracotta Server Administration Guide 10.15 143

22 Backup, Restore and Data Migration

144 Terracotta Server Administration Guide 10.15

23 Migrating from older Terracotta versions to 10.7

A major feature of the 10.7 release is dynamic configuration of the Terracotta cluster, which changes
cluster startup and configuration mechanisms. This documents briefly lists the new concepts,
tooling information, and the steps to be followed to migrate from an earlier 10.x to a 10.7 cluster.

Before proceeding with this document, please make sure that you have familiarized yourself with
the material presented in “Configuration Terms and Concepts” on page 33.

What has changed
1. Node startup mechanism

start-tc-server. (bat|sh) does not support a tc-config XML file anymore. Several new options
have been added to this script. More information can be found in the startup script section.

2. Cluster configuration format

Cluster configuration can no more be specified using tc-config XML files. The old tc-configs
can be migrated to the new configuration format using config converter tool.

3. Cluster configuration mechanism

The cluster tool configure command has been removed in favor of the config tool activate
command. The cluster tool reconfigure command has been removed in favor of the config
tool set command.

Converting old configuration files

The config converter tool can be used to convert from tc-config XML files used with Terracotta
versions up to 10.5 to the new configuration format. The tool can be located under
tools/upgrade/bin in the product installation directory, and has the following usage:

> config-converter. (bat|sh) convert -tc-config <tc-config>,<tc-config>... [
-stripe-names <foo>,<bar>,<baz>...](-format directory [-license <license-file>]
-new-cluster-name <new-cluster-name> | -format properties [-new-cluster-name

<new-cluster-name>])
[-destination <destination-dir>] [-force]

Warning;
Do not forget to assign stripe names in the same order of the xml config files, otherwise
random default names will be generated for you.

Terracotta Server Administration Guide 10.15 145

23 Migrating from older Terracotta versions to 10.7

When the output format is config directory (i.e. -format directory or no -format specification),
a license file can be supplied.

Note:
In a fresh install of Terracotta using the Software AG installer, the license file can be found
under the Terracotta installation root.

This way, the generated config directory will be ready-for-use by Terracotta clients. This is the
recommended output format. Note that there is no change in the license file, or the licensing
policies. Thus, existing Terracotta licenses will continue to work with 10.7 until their expiration.

When the output format is config properties (i.e. -format properties), the generated config file
contains information from all the tc-config XML files, and can also be used to start up the nodes.
However, an additional cluster activation step will be required after the migrated cluster is started
using this config file.

Migrating old data

If you want to use old data with 10.7 server, you need to run the create permanent entities tool.
One host-port per stripe needs to be specified so that the tool can connect to all the stripes.

> create-permanent-entities. (bat|sh) -connect-to <hostname[:port]>,...

Updates to the server startup script

The start-tc-server script does not support tc-config XML files anymore. Instead, it supports
several options which let you specify a node's configuration via the command itself.

See the section “Starting and Stopping the Terracotta Server” on page 25 for details.

Migration steps

1. Shut down all Terracotta clients and ensure no critical operations (like backup) are running
on the cluster. Note down the hosts the nodes are running on.

Use the cluster tool shutdown command to shut down the Terracotta cluster.
Use the config converter tool to convert tc-config.xml files to config directory format.

Copy the config directories generated from the step above to the hosts from the first step.

SAN

Start the nodes using the startup script with option -config-dir, supplying the config directory
path.

6. Use the create-permanent-entity-tool if you want to use the old data with the 10.7 server.
Ensure that you run this script before connecting any clients.

7. Replace the old client jars with 10.7 jars in the client classpath.

8. Connect the clients back with the cluster.

146 Terracotta Server Administration Guide 10.15

24 Migrating from 10.7 to a newer 10.7 version

This section applies when migrating from a 10.7 version using dynamic configuration (config-tool)
to a new version.

Preparation steps

1. Ensure all your nodes are up and running.

2. Run config-tool diagnostic to ensure:
a. that the configuration state is not broken on each node (nodes can accept changes).
b. that all nodes have the same configuration (last change UUID).
c. thatno node need to be restarted (because of a pending change requiring a restart).

Important:
m Please restart the nodes that need a restart first.
m Please repair any incoherent state: refer to the “Config Tool Troubleshooting Guide.” on
page 75
Migration steps WITHOUT downtime

An upgrade without downtime is possible if not stated otherwise. There can be some cases
sometimes where a node running with a newer version won’t be compatible with a node still
running with an old version.

1. First start by upgrading the passive nodes
a. Shutdown passive nodes by using the cluster tool shutdown-1if-passive command
b. Swap their kit with the new version
c. Restart them
d. Wait until they become PASSIVE
2. Then upgrade the active nodes
a. Shutdown active nodes by using the cluster tool shutdown-1if-active command

b. Existing PASSIVE nodes will become ACTIVE (failover)

Terracotta Server Administration Guide 10.15 147

24 Migrating from 10.7 to a newer 10.7 version

c. Swap the kit of the shutdown nodes with the new version
d. Restart them

e. Wait until they become PASSIVE

Migration steps WITH downtime
1. Shutdown nodes by using the cluster tool shutdown command
2. Swap their kit with the new version

3. Restart them

148 Terracotta Server Administration Guide 10.15

25 Restarting a Stripe

Restart behavior is closely related to failover, but the difference is that the interruption period is
typically much longer. On a restart, every server waits for the last active server to return instead
of electing a different server as active. If a server other than the last active is elected as the active
on a restart, it could cause data loss. To avoid such a data loss, every restarted server will wait in
a suspended state until all of its peers are also started up so that the last active can be found and
elected as the leader.

Unless a timeout is set, the time the clients will wait for the server to return is indefinite.

Note that a stripe can be both restartable and possess high-availability, if it is configured for restart
support but also contains multiple servers. In this case, failover will progress as normal unless the
entire stripe is taken offline.

Comparison with failover

The process of a client reconnecting to a restarted server is very similar to a newly-promoted active
server after a fail-over. Both scenarios involve the clients reconnecting to re-send their in-flight
transactions. Also, both will progress as normal once all clients have reconnected or the reconnect
window closes.

The primary difference is that restart only requires one server, whereas high-availability requires
at least two.

Terracotta Server Administration Guide 10.15 149

25 Restarting a Stripe

150 Terracotta Server Administration Guide 10.15

26 IPv6 support in Terracotta

This document describes the changes needed in config files, tooling, and client side APIs toward
enabling IPv6 connections between clients and Terracotta cluster.

Terracotta supports IPv6 addresses as defined in the RFC 5952. Thus, all of following are acceptable:
m Full IPv6 address, e.g. 2001:db8:a0b:12f0:0:0:0:1.
® Full IPv6 address enclosed in square brackets, e.g. [2001:db8:a0b:12f0:0:0:0:1].

m Full IPv6 address enclosed in square brackets along with port, e.g.
[2001:db8:a0b:12f0:0:0:0:1]:9410.

m Shortened IPv6 address, e.g. 2001:db8:a0b:12f0: : 1.
m Shortened IPv6 address enclosed in square brackets, e.g. [2001:db8:adb:12f0::1].

m Shortened IPv6 address enclosed in square brackets along with port, e.g.
[2001:db8:aBb:12f0::1]:9410.

Note that enclosing an IPv6 address in square brackets is mandatory only if a port is to be specified
along with it.
Terracotta Server

Consider the following example:

nodel:hostname=2001:db8:a0b:12f0::1 (1)
node2:hostname=[2001:db8:a0b:12f0:0:0:0:2] (2)
node3:hostname=terracotta-host (3)

(1) Specifies a server host IP 2001:db8:a0b:12f0: :1 as hostname for the node named node1.

(2) Specifies a server host IP 2001:db8:a0b:12f0:0:0:0:2 enclosed in square brackets as hostname
for the node named node2.

(3) Specifies a server DNS host name terracotta-host which resolves to an IPv6 address as hostname
for the node named node3s.

IPv6 server sockets bind to : : 0 by default, which can be overridden using the bind attribute in the
<server> element.

Terracotta Server Administration Guide 10.15 151

26 IPv6 support in Terracotta

Command-line tools

Command-line tools which accept server addresses need to provide the IPv6 addresses of Terracotta
servers as shown in the examples below:

m This example below shows the execution of the cluster tool status command for two IPv6
addresses - one enclosed in square brackets, and the other not enclosed in square brackets (and
using the default port).

./cluster-tool.sh status -connect-to [2001:db8:a0b:12f0::2]:9510 -connect-to
2001:db8:a0b:12f0::1

Tt e e +
| Host:Port | Status | Member of Cluster

|
Tt e e +
| [2001:db8:a0b:12f0::2]:9510 | ACTIVE | tc—cluster

|
| 2001:db8:a0b:12f0::1 | PASSIVE | tc-cluster

|
Tt e e +

Command line tools that don't accept server addresses directly do not need any change to work
with IPvé.

Ehcache Client

An Ehcache client can specify the IPv6 addresses of the servers it wants to connect to either through
Java APIs or XML configuration, as shown below:

API Example

InetSocketAddress firstServer =
InetSocketAddress.createUnresolved("2001:db8:a0b:12f0::1", 0);
InetSocketAddress secondServer =
InetSocketAddress.createUnresolved("2001:db8:a0b:12f0:0:0:0:2", 9510);
List<InetSocketAddress> servers = Arrays.aslList(firstServer, secondServer);
String cacheManagerIdentifier = "cacheManager-1";
PersistentCacheManager cacheManager = CacheManagerBuilder
.newCacheManagerBuilder ()
.with(EnterpriseClusteringServiceConfigurationBuilder.enterpriseCluster(servers,

cacheManagerIdentifier) // (1)
.autoCreate())
.build(true);

1 EnterpriseClusteringServiceConfigurationBuilder.enterpriseCluster(Iterable, String)
lets you create a CacheManager by specifying IPv6 addresses of the servers. The first

argument is the Iterable<InetSocketAddress> of the servers in the cluster, while the second
argument is the cache manager identifier.

Like other Ehcache APIs, the above API has a secure variant as well with the signature
EnterpriseClusteringServiceConfigurationBuilder.enterpriseSecureCluster(Iterable, String,
Path), where the last argument is the path to the client's security root directory.

152 Terracotta Server Administration Guide 10.15

26 IPv6 support in Terracotta

XML Example

<ehcache:config
xmlns:ehcache="http://www.ehcache.org/v3"
xmlns:tc="http://www.terracottatech.com/v3/terracotta/ehcache">
<ehcache:service>
<tc:cluster>
<tc:cluster-connection cluster-tier-manager="cacheManager-1"> <!-- 1 -->
<tc:server host="[2001:db8:aGb:12f0::1]"/> Cl== 2 ==>
<tc:server host="2001:db8:a0b:12f0:0:0:0:2" port="9510" /> <!-- 3 -->
</tc:cluster-connection>
</tc:cluster>
</ehcache:service>
</ehcache:config>

1 Cache manager identifier.

2 Terracotta server IP [2001:db8:a0b:12f0: :1]. Since the port is not specified, it will default
to 9410.

3 Terracotta server IP 2001:db8:a0b:12f0:0:0:0:2 and port 9510.

TCStore Client

InetSocketAddress firstServer =
InetSocketAddress.createUnresolved("2001:db8:a0b:12f0::1", 0);
InetSocketAddress secondServer =
InetSocketAddress.createUnresolved("2001:db8:a0b:12f0:0:0:0:2", 9510);
List<InetSocketAddress> servers = Arrays.asList(firstServer, secondServer);
DatasetManager datasetManager = DatasetManager.clustered(servers) // 1
Lbuild();

1 DatasetManager.clustered(Iterable) lets you create a DatasetManager by specifying IPv6
addresses of servers.

Like other TCStore APIs, the above API has a secure variant as well with the signature
DatasetManager.clustered(Iterable, Path), where the last argument is the path to the client's
security root directory.

XML Example
<clustered xmlns="http://www.terracottatech.com/v3/store/clustered"> <!-- 1 -->
<cluster-connection>
<server host="[2001:db8:a0b:12f0::1]"/> SUS=EHI=b

<server host="2001:db8:a0b:12f0:0:0:0:2" port="9510" /> <!l-- 3 -->
</cluster-connection>

</clustered>

1 Declares a clustered DatasetManager configuration.

2 Terracotta server IP [2001:db8:a0b:12f0::1]. Since the port is not specified, it will
default to 9410.

Terracotta Server Administration Guide 10.15 153

26 IPv6 support in Terracotta

3 Terracotta server IP 2001:db8:a6b:12f0:0:0:0:2 and port 9516.

Terracotta Management Console

To connect to a Terracotta cluster running on IPv6, you can specity the server IPv6 addresses in
the Connection URL as shown in the snapshot:

Screenshot: Terracotta Management Console, field for Connection URL

TERRACOTTA
Management Console

Connection URL: ‘ terracotta://2001:db8:a0b:12f0::1,[2001:dbB:a0b:12f0:0:0:0:2):9510 Next Cancel

154 Terracotta Server Administration Guide 10.15

27 SSL /TLS Security Configuration in Terracotta

Y= Tt U] AV O o £ T @0 [0 o £ SRR 156
B CIUSIEr SECUILY cooiiieiieeeiee e 161
L T Y IS =Tt U 1 YOS PSP PPPPPPPPP 167
B LDAP PIOPEITIES ...eiiiiiiiiiiiiitite ettt ettt e e e e ettt e e e e e e et n e e e e e e e e anne 172
B SSL/TLS TroubleShooting QUIEcooiiiiiiiiii e 174

Terracotta Server Administration Guide 10.15 155

27 SSL / TLS Security Configuration in Terracotta

Security Core Concepts

Security features in Terracotta
Terracotta provides the following security features:

1. Connection encryption - encrypts client-server and server-server connections using the SSL/TLS
protocol.

2. Cluster authentication - validates the identity of processes initiating connections to a server
in a Terracotta cluster.

3. 1P whitelisting - restricts access to only allow clients from known IP addresses.
4. TMS authentication - validates the identity of users attempting to use the TMS.

5. TMS authorization - determines if an authenticated user has access to perform a given operation
in TMS.

6. Auditing - writes security-relevant events to audit logs.

Security Root Directory

To configure security features in Terracotta, each server and, in most cases, each client, must have
a security root directory. The security root directory is a filesystem location for certificates,
passwords and other security-related files.

The security root directory, and the files and subdirectories contained in it should be readable by
the respective client or server process.

Important:
Ensure that the security root directory is accessible only by users who are permitted to run the
respective Terracotta client or server.

Structure of the Security Root Directory

The directory structure below lists all possible subdirectories and files that can be present in a
security root directory. Note that any one security root directory will have only a subset of these.

<security-dir>
— access-control
ldap.properties
users.xml
— ddentity
credentials.properties
<common-name>-<timestamp>.jks
—— trusted-authority
L trusted-authority-<timestamp>.jks
— whitelist.txt

Note:

156 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

It is recommended to keep only the required files and directories under the security root directory
to prevent configuration errors. If any unidentifiable files or directories are found, an appropriate
warning message will be logged.

Access control subdirectory

The access-control subdirectory should only be specified on the server-side. It contains files to
configure authentication and authorization:

ldap.properties - configuration properties for using an LDAP server for authentication or
authorization

users.xml - used for file-based authentication or authorization

Identity subdirectory

The identity subdirectory can be specified on both the client-side and the server-side. It contains
certificates or password-based credentials to prove the identity of the process.

credentials.properties - a standard Java properties file containing two properties: username and
password. These credentials are sent to the server when the connection is established, in order to
authenticate. This file should be present when file-based authentication or LDAP-based
authentication is configured.

<common-name>-<timestamp>.jks - a keystore containing a certificate for proving identity. Note
that the <common-name> part of the filename must match the Common Name specified in the
certificate and the <timestamp> represents the time that the certificate was created.

Trusted authority subdirectory

The trusted-authority subdirectory can be specified both client-side and server-side. It contains
trusted root certificates.

trusted-authority-<timestamp>.jks - a truststore containing a trusted root certificate for validating
identity certificates. Note that the <timestamp> represents the time that the certificate was created.

The whitelist.txt file

The whitelist.txt file should only be specified on the server-side. It contains details of client IP
addresses permitted to establish connections with the cluster.

Certificates

This section assumes a good understanding of SSL/TLS fundamentals.

Certificate creation

Note:
Certificates must be created using the RSA algorithm, preferably with a key size of 4096.

Terracotta Server Administration Guide 10.15 157

27 SSL / TLS Security Configuration in Terracotta

The keystores and truststores, that are deployed to the identity and trusted-authority directories
respectively, can be created in any way desirable as long as the following rules are followed:

Keystore creation rules
m Keystore must be of type jks.

m Keystore filename must be in ${common name}-${yyyyMMddThhmmss}.jks format (e.g.
com.organization.host-20180223T7102319.jks). yyyyMMddThhmmss should represent the time of
creation (timestamp) of the file. When multiple keystores are present, the keystore with the
latest timestamp is used.

m Keystore must have only one terracotta_security_alias entry, and it should contain the
identity certificate and the corresponding private key.

® Common Name field in the Distinguished Name in the certificate must match the common
name fragment in the keystore filename. For a server the common name must match the host
name.

m The identity certificate must be within its period of validity.

® The password for the keystore and the terracotta_security_alias store entry must be
terracotta_security_password.

m The certificate must be created using the RSA algorithm, preferably with a key size of 4096.

Truststore creation rules
m Truststore must be of type "jks".

m Truststore filename must be in trusted-authority-${yyyyMMddThhmmss}.jks format (e.g.
trusted-authority-20180223T102319.jks). When multiple truststores are present, all of them
are used irrespective of their timestamps.

m Truststore must have only one terracotta_security_alias entry, and it should contain a
trusted certificate.

m The trusted certificate must be within its period of validity.
m The password for the truststore must be terracotta_security_password.

m The certificate must be created using the RSA algorithm, preferably with a key size of 4096.

Certificate rotation

If the certificates expire or get compromised, they must be rotated. Following are the different
ways of rotating them:

Certificate rotation with cluster shutdown

The followed steps need to be performed in order:

158 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

1. Generate new keystore and truststore files following the rules mentioned in the Keystore creation
and Truststore creation sections above.

2. Shut down all the servers and clients.

3. Replace the old keystores and truststores with the new keystores and truststores in the
corresponding identity and trusted-authority directories of each client and server.

4. Start all the servers and the clients for the new certificates to take effect.

The above sequence has the advantage that it is simple to perform, with the drawback of requiring
the entire cluster and the clients to be restarted.

Certificate rotation with rolling restarts

The followed steps need to be performed in order:

1. Generate new keystore and truststore files following the rules mentioned in the Keystore creation
and Truststore creation sections above.

2. Deploy new truststores in corresponding trusted-authority directories of each client and
server.

3. Restart all the passive servers and clients. Once the passive servers reach PASSIVE-STANDBY
status, restart all the active servers.

4. Replace old keystores with the new keystores in corresponding identity directories of each
client and server.

5. Restart all the passive servers and clients. Once the passive servers reach PASSIVE-STANDBY
status, restart all the active servers.

6. Delete old truststores from corresponding trusted-authority directories of each client and
server.

7. Restart all the passive servers and clients. Once the passive servers reach PASSIVE-STANDBY
status, restart all the active servers.

The above sequence has the advantage that it does not require cluster downtime, with the drawback
of having a significant number of steps.
Auditing

The Terracotta server can audit when security-relevant events occur. You can configure this by
specifying an audit directory.

Important:
Ensure that the audit directory is accessible only by users who are permitted to run the respective
Terracotta server or by users who are allowed to read the audit log.

Terracotta Server Administration Guide 10.15 159

27 SSL / TLS Security Configuration in Terracotta

Audit directory structure

The auditing process creates a hierarchical filesystem structure under the audit directory:

<audit-directory>
cluster-audit-logs
<server-name>
L— <yyyy-MM-dd>
terracotta-server-audit-<yyyy-MM-dd>.0. log
terracotta-server-audit-<yyyy-MM-dd>.1. log
tmc-audit-logs
L— <tMC spring app name>
<yyyy-MM-dd>
tmc-audit-<yyyy-MM-dd>.0.log
tmc-audit-<yyyy-MM-dd>.1.log

When an auditable event occurs, an appropriate message is written to the audit log file. Each line
in the audit log corresponds to a single event.

Audit log files generated by a server in a Terracotta cluster are stored under the cluster-audit-
logs directory. Audit log files generated by the TMS are stored under the tmc-audit-1logs directory.

Each server has a separate directory named after the server name. This allows multiple servers to
use the same base audit directory.

Under the server-specific directory, logs are organised by date. If any audit log file exceeds 10 MB,
a new audit log file is created.

Audit entry sanitization

Audit entries are sanitized to prevent attackers rendering the audit logs illegible. The sanitization
process follows the rules :

m All ASCII control characters, and extended ASCII characters are sanitized.
m All non-ASCII characters will be sanitized.
= Tilde ('~), asterisk (**"), pipe ('|"), plus ('+') and backtick (*) characters are sanitized.

® Any number of occurrences of the disallowed characters, and more than one consecutive
occurrence of space (' ') is sanitized.

® Input larger than 2000 characters is truncated, and a *' is added at the end to indicate the
truncation.

If the sanitization process finds no unacceptable characters or character sequences, then the
information is logged surrounded with backticks. For example, if the user 'alex' successfully
authenticated, that is audited as:

LDAP authentication success:- IP: '203.0.113.1°, User: "alex’

However, if the sanitization process finds unacceptable characters or character sequences, the
information is logged surrounded with tildes and prefixed with sanitized. Characters replaced
in the sanitization process appear in the format |U+xxxx| where the xxxx is the unicode codepoint

160 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

of the sanitized character in hexadecimal. For example, if the user jiirgen successfully authenticated,
that is audited as:

LDAP authentication success:- IP: '203.0.113.1°, User: ~sanitized j|U+00fc|rgen~

Note that there may be more than four digits in the hex codepoint due to supplementary unicode
characters.

Cluster Security

Connection encryption

You can enable connection encryption using the ss1-tls property. When <ss1-tls> is specified,
you must also supply:

B security-dir with the path to the security root directory.

® authc with the authentication scheme to use. See “ Authentication” on page 161 for more
information.

With SSL/TLS configured, the specified security root directory must contain a valid truststore in
the trusted-authority subdirectory and a valid keystore in the identity subdirectory. The identity
certificate is required even if file-based or LDAP-based authentication is chosen. The choice of
authentication scheme may require presence of additional files in the security root directory.

On the client, the security root directory must contain a trusted authority certificate in the
trusted-authority subdirectory. Again, the choice of authentication scheme may mean other files,
including an identity certificate, are also required in the security root directory.

Authentication

To configure authentication in the cluster, use authc with the appropriate authentication scheme.
Supported authentication schemes are file, ldap, and certificate. When authentication is
configured, a security-dir, with the path to the security root directory, must also be specified.

Important:

It is highly recommended that if you configure an authentication scheme, you also configure
encrypted connections using the ss1-t1s property, otherwise an attacker could acquire credentials
by eavesdropping on the unencrypted connection.

To configure certificate-based authentication, use the certificate authentication scheme in the
authc property, and set ss1-tls to true. Also, clients must have an appropriate identity certificate
keystore in their security root directory.

To configure file-based authentication, use the file authentication scheme in the authc property.

Terracotta Server Administration Guide 10.15 161

27 SSL / TLS Security Configuration in Terracotta

The server's security root directory must contain a users. xml file, which is a list of all valid users
with a password hash for each user. The only password hashing algorithm currently supported
is berypt.

Example of a users.xml file for authentication:

<users>
<user>
<username>alex</username>
<password>
<algorithm>bcrypt</algorithm>
<hash>$2a$10$UoM85/5I4SnIbrOQuFZ43ekffuQKSxZmL93bR9VMcdr2URmPyjyX2</hash>
</password>
</user>
<user>
<username>beth</username>
<password>
<algorithm>bcrypt</algorithm>
<hash>$2a$10$6D6c791EOk/OSxrEtnfhGe2Yr.ygGOrFP1QzeyD9qshIMRrpUMOAS</hash>
</password>
</user>
</users>

Note:
Hashes should start with berypt version $2as.

The command-line utility for generating berypt password hashes is located in tools/security/bin
under the product installation directory as bcrypt.bat for Windows platforms, and as berypt.sh
for Unix/Linux.

When running the berypt script, you must specify the number of rounds. The number depends
on the performance of the server hardware and how you decide to trade off security with speed.
A higher number creates hashes that are harder for attackers to crack, but are also harder for your
servers to verify. Increasing the number of rounds by 1 doubles the difficulty. You may find that
a value between 10 and 13 is suitable.

The berypt script can read the input from the console:

bcrypt.sh -n 10

or directly from the command line:

bcrypt.sh -n 10 pa$$word

The console flavor of the command should be preferred to prevent the shell from saving the input
password in its history.

To configure LDAP-based authentication, use the 1dap authentication scheme in the authc property.

The server's security root directory must contain an ldap.properties file. The properties in the
ldap.properties file are the same properties that are used to configure LDAP integration in other
Software AG products. See “ LDAP Properties” on page 172 for a full list of supported properties.

162 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

Example of an ldap.properties file for authentication:

url=1ldap://ldapserver.example.com:389
userrootdn=ou=People,dc=example,dc=com
uidprop=uid

personobjclass=person

Auditing

To configure security event auditing, use the audit-log-dir property along with security-dir
and at least one form of security (i.e. one of ss1-tls, authc, or whitelist). The directory specified
in audit-log-dir must exist already, and must be appropriately access controlled to prevent
illegitimate access to audit logs.

IP Whitelisting

The IP whitelisting feature enables you as the cluster administrator to ensure that only clients
from known IP addresses can access the TSA. You can use this feature to prevent malicious clients
from establishing connections to the TSA.

Note:

It should be understood that usage of this feature in itself does not provide a strong level of
security for the TSA. The ideal way to enforce connection restrictions based on IP addresses
would be to use host-level firewalls.

A whitelist file is a plain-text file containing a list of IPs. Only clients configured with these IPs
are allowed to access the TSA. The server IPs specified in the config file, and the localhost IPs of
the server are always whitelisted. The whitelist file must be named whitelist.txt and placed in
the security root directory.

Note:
An empty whitelist file has the semantics of blacklisting all IPs, except the ones fetched from
the config file, and those corresponding to localhost.

The whitelist file follows these parsing rules:

1. The entries can be IP addresses, or CIDR notations (to represent IP ranges). Any entry that is
not a valid IP address or a valid CIDR is ignored.

2. Each line in the file can contain either a single IP address, or a comma-separated list of IP
addresses.

3. Lines beginning with # are considered as comments, and are ignored during parsing.
4. Blank lines are ignored.

The following is an example of a valid whitelist file:

Terracotta Server Administration Guide 10.15 163

27 SSL / TLS Security Configuration in Terracotta

Caching clients

192.168.5.28, 192.168.5.29, 192.168.5.30
10.60.98.0/28

Other clients

192.168.10.0/24

To configure IP whitelisting, use whitelist along with the security-dir property.

If the whitelist. txt file is not found in the security root directory, or there is an error reading the
file, the server startup will fail with an appropriate error message.

If hostnames are used in the config file, the server attempts to resolve these hostnames to IPs. If
the resolution fails, the server startup fails with an appropriate error message. Note that hostname
resolution is done for the config file only, and any hostnames present inside the whitelist.txt
file are ignored.

A multi-stripe cluster should be started with the same whitelist.txt file contents. Any updates
to this file should be performed on all the stripes, as described in the following section.

After a cluster is started with whitelisting enabled, entries can be dynamically added to or removed
from the whitelist without the need for server restarts. To perform a dynamic update, edit the
whitelist.txt file contained in the server security root directories, and run the ipwhitelist-reload
command to notify the servers in the cluster to reload the whitelist. txt file. Refer to the “The
"ipwhitelist-reload" Command” on page 111 section for more details.

Errors during whitelist reload, if any, are logged in respective server logs. Thus, after every update
operation, server logs should be checked to verify that the updates took effect on all the servers.

If a cluster is not yet activated and the whitelist file needs to be reloaded on the servers, the
server-level ipwhitelist-reload command can be used. It may also be helpful when the machine
from where the cluster tool is to be used is itself not whitelisted initially. In this scenario, adding
this machine's IP to the whitelist, and running the server-level ipwhitelist-reload command
ensures that cluster tool can configure the cluster later.

Note:
If any failures happen while reading the whitelist. txt file during a dynamic update, the update
is ignored and the server continues with the current whitelist. No partial updates are applied.

When a client connects to a server, the server accepts the socket connection, and verifies the IP of
the incoming client connection against the whitelist. If it finds that the client IP is not whitelisted,
it closes the socket connection.

If a whitelisted client is removed from the whitelist via a dynamic update, it remains connected
to the cluster as long as there is no network disconnection or explicit connection closure from the
client. Subsequent connection attempts from the client to cluster will fail.

164 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

Full example of secure server configuration

This example illustrates the security configuration section in the configuration file of a single stripe,
two node cluster (with node names nodel and node2), that configures auditing, encrypted
connections, LDAP authentication and IP whitelisting:

authc=1ldap

ssl-tls=true

whitelist=true
nodel:audit-log-dir=/path/to/audit-directory-1
nodel:security-dir=/path/to/security-dir-1
node2:audit-log-dir=/path/to/audit-directory-2
node2:security-dir=/path/to/security-dir-2

With the configuration in the above example, the server's security root directory would contain a
truststore in the trusted-authority subdirectory, a keystore and a credentials.properties in the

identity directory, an ldap.properties in the access-control subdirectory and a whitelist. txt
file.

The credentials.properties file is required so that the server can connect to other servers in the
stripe.

Client configuration

To configure a client to connect to a secured cluster, you need to give the client a path to the client's
security root directory. This should contain, for example, the credentials that the client needs to
connect to the cluster.

Command line tools

To enable command-line tools to connect to a secure cluster, a command must be prefixed with
-security-dir.

The following example shows the use of the config tool get command with the -security-dir
option specified:
> config-tool.sh -security-dir /path/to/security-dir get -connect-to localhost -setting

data-dirs
node:nodel:data-dirs=main:%H/terracotta/user-data/main

Attempting to connect to a secure cluster without the -security-dir option will fail. Commands
without this option retain their behavior.

Ehcache Client

An Ehcache client can define either an XML or a programmatic configuration, both of which
support security configuration. The following are the examples of usages of each:

1. API Example

PersistentCacheManager cacheManager = CacheManagerBuilder
.newCacheManagerBuilder ()
.with(EnterpriseClusteringServiceConfigurationBuilder

.enterpriseSecureCluster (connectionURI,

Terracotta Server Administration Guide 10.15 165

27 SSL / TLS Security Configuration in Terracotta

securityRootDirectoryPath) // 1
.autoCreate())
.build(true);

1 EnterpriseClusteringServiceConfigurationBuilder enterpriseSecureCluster (URI,
Path) lets you create a CacheManager using a secure connection. The first argument is
the URI of the Terracotta cluster, appended with the cacheManager name. The second
argument is the Path to the client's security root directory.
EnterpriseClusteringServiceConfigurationBuilder

enterpriseSecureCluster (Iterable<InetSocketAddress>, String, Path) serves the
same function, with the added support for IPv6 addresses.

Note:
If the URI or Iterable<InetSocketAddress> contains host names, make sure that they match

the host names specified in the server certificates.

2. XML Example

<ehcache:config
xmlns:ehcache="http://www.ehcache.org/v3"
xmlns:tc="http://www.terracottatech.com/v3/terracotta/ehcache">
<ehcache:service>
<tc:cluster>
<tc:connection url="${cluster-uri}/CM"
security-root-directory="${security-dir}"/> //1
<tc:server-side-config auto-create="true"/>
</tc:cluster>
</ehcache:service>
</ehcache:config>

1 security-root-directory lets you specify the path to the client's security root directory.
Not passing this option retains the behavior of communicating with an unsecured cluster.

1. API Example

DatasetManager datasetManager = DatasetManager.secureClustered(
connectionURI, securityRootDirectoryPath) // 1
Lbuild();

1 DatasetManager.secureClustered(URI, Path)letS}KnlcreateziDatasetManager ushlg
a secure connection. The first argument is the URI of the Terracotta cluster. The second
argument is the Path to the security root directory which is to be used for the connection.
DatasetManager.secureClustered(Iterable<InetSocketAddress>, Path) serves the
same function, with the added support for IPv6 addresses.

Note:
If the URT or Iterable<InetSocketAddress> contains host names, make sure that they match

the host names specified in the server certificates.

166 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

2. XML Example

<clustered xmlns=
"http://www.terracottatech.com/v3/store/clustered"> <!--1-->
<cluster-connection>
<server host="localhost" port="9410"/>
<security-root-directory>/path/to/security-dir
</security-root-directory> Cl==2==>
</cluster-connection>
</clustered>

1 Declares a clustered DatasetManager configuration.

2 security-root-directory lets you specify the path to the client's security root directory.
Not specifying this element retains the behavior of communicating with an unsecured
cluster.

TMS Security

TMS security is configured using the tmc.properties file.

Setting the security root directory

If you need to set the security root directory to use for connections between a browser and the
TMS, then you should set the tms.security.root.directory property to the path for the security
root directory.

Windows platforms

Note that Windows paths often contain backslashes. The Java properties format requires backslashes
to be escaped, so C:\tcdb\security-root-directory would be configured using:

tms.security.root.directory=C:\\tcdb\\security-root-directory

Alternatively, you can use forward slashes:

tms.security.root.directory=C:/tcdb/security-root-directory

Encrypted connections between the browser and the TMS
You can enable HTTPS by setting:

tms.security.https.enabled=true

When HTTPS is enabled, you must also set the tms.security.root.directory property to the path
for the security root directory. See “Setting the security root directory” on page 167.

When HTTPS is configured, the specified security root directory must contain a valid truststore
in the trusted-authority subdirectory and a valid keystore in the identity subdirectory.

When HTTPS is configured, the TMS is only accessible over HTTPS. Thus, any URL used to access
the TMS must start with https:// .

Terracotta Server Administration Guide 10.15 167

27 SSL / TLS Security Configuration in Terracotta

Browser warnings

If you are using self-signed certificates, you may see a security warning in your browser when
connecting to the TMS. This is because the certificate was not signed by a certificate authority
registered with the browser as a trusted certificate authority. We suggest that you check the
certificate and verify its authenticity.

Furthermore, you should add the certificate to your browser's list of trusted root certificate
authorities.

Note:
Each cookie entry is associated with a certain domain (not including port), and some browsers
may remember the protocol under which the cookie has been set. So if you switch between http

and https, or between localhost and 127.0.0.1, you should clear related cookies before reloading
TMC in the browser.

Authentication

To configure TMS to require users to log in, you should set the tms.security.authentication.scheme
property. There are two options: file and ldap, for file-based authentication and LDAP-based
authentication respectively.

When authentication is configured, you must also set the following properties:
B tms.security.root.directory - see “Setting the security root directory” on page 167.
B tms.security.authorization.scheme - see “Authorization” on page 168.

File-based authentication requires a users.xml file to be added to the security root directory;
LDAP-based authentication requires an ldap.properties file. See “Authentication” on page 161
for more details.

Authorization

To control which access to TMS operations, you should set the tms.security.authorization.scheme
property. There are three options: authenticated, file and ldap. The authenticated option allows
access to all operations to all authenticated users. The file and 1dap options correspond to file-based
authorization and LDAP-based authorization respectively.

When authorization is configured, you must also set the following properties:
B tms.security.root.directory - see “Setting the security root directory” on page 167.
B tms.security.authentication.scheme - see “Authentication” on page 168.

TMS supports one role: admin. Users with no role can use most of the TMS functionality, but some
operations, such as shutting down a server, require the admin role.

168 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

File-based authorization

File-based authorization requires a users. xml file to be added to the security root directory. See
“Authentication” on page 161 for more details.

For file-based authorization, the users.xml file must contain role information.

Example of a users.xml file for authorization:

<users>
<user>
<username>alex</username>
<roles/>
</user>
<user>
<username>beth</username>
<roles>
<role>admin</role>
</roles>
</user>
</users>

In this example users.xml file, beth has the admin role whereas alex does not.

Note that you can use a mixture of authentication and authorization schemes. For example, you
could use LDAP-based authentication with file-based authorization. As in the example above, the
users.xml file need not contain password hash information, if it is not being used for authentication.
However, if you use specify file for both the authentication and authorization schemes, then you
must specify both password hashes and role information.

Example of a users.xml file for both authentication and authorization:

<users>
<user>
<username>alex</username>
<password>
<algorithm>bcrypt</algorithm>
<hash>$2a$10SUoM85/514SnIbrOQuFZ43ekffuQKSxZmL93bR9VMcdr2URmPyjyX2</hash>
</password>
<roles/>
</user>
<user>
<username>beth</username>
<password>
<algorithm>bcrypt</algorithm>
<hash>$2a$10$6D6c791EOk/OSxrEtnfhGe2Yr.ygGOrFP1QzeyD9qshIMRrpUMOAS</hash>
</password>
<roles>
<role>admin</role>
</roles>
</user>
</users>

Terracotta Server Administration Guide 10.15 169

27 SSL / TLS Security Configuration in Terracotta

LDAP-based authorization

LDAP-based authorization requires an ldap.properties file. See “Authentication” on page 161 for
more details.

The properties in the 1dap.properties file are the same properties that are used to configure LDAP
integration in other Software AG products. See “LDAP Properties” on page 172 for a full list of
supported properties.

Example of an ldap.properties file for authorization:

url=1ldap://ldapserver.example.com:389
userrootdn=ou=People,dc=example,dc=com
uidprop=uid

personobjclass=person
memberinfoingroups=true
mattr=uniqueMember
grouprootdn=ou=Group,dc=example,dc=com
gidprop=gid

groupobjclass=group

You may wish to map the role defined in the LDAP server to the TMS admin role, in which case,
you can add the tcdb.roleMap property to the 1dap.properties file. For example:

tcdb.roleMap=terracottaTmsAdmin=admin

would map the terracottaTmsAdmin group defined in the LDAP server onto the TMS admin role.

Auditing

To configure auditing for the TMS, set the tms.security.audit.directory property to the audit
directory.

Connecting the TMS to secured clusters

To allow the TMS to connect to a secure cluster, you should set the
tms.security.root.directory.connection.default property to the path for the security root
directory containing, for example, credentials to connect to the secured cluster.

After configuring a secured cluster and setting up the TMS client security root directory, you
should see a padlock icon in TMC:

170 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

TERRACOTTA

Manageman Corsole

+ Create New Connection

|Secured Connection|

4 MyCluster

Ehgache = TCSiore = Server » Evenilog Vemsons Export Disgnostic Dats & O 7 [

* Server Amay stripes(2): active(2) passive(4) unreachable{d)

4+ giripeld] active(T) passive(2) uwnreachable(0)

o localhost-9410 (stripe-1-server-1) Wiew Diagnostic Details = Exporl Diagnostc Data | Terminate Sarver
localhost: 9411 (stripe-1-server-2) Wiew Diagnostic Details = Export Disgnostec Data | Terminate Server
© localhost9412 (siripe-1-server-3) View Disgnostic Details = | Export Disgnostic Date | Terminate Server

+ giripell] active(T) passive(2) unreachabled0)

localhost 9420 [stripe-2-server-1) View Disgrostic Detaili = Exporl Diagnostsc Dats Terminale Server
'0 localhos1:9421 (siripe-2-semver-2) Wiew Disgniostic Details = Export Disgnoats: Date | Terminats Server
o localhosi9422 (siripe-2-server-3) View Disgnostic Details = Export Diagnostic Dats | Terminats Samver

When you click on the padlock, a pop-up window shows some security related information:

Client Connection Security Information (Global)

Security reot direciory: Misars, I - iem_socuily
true

S5L enabled:

Certificate authentication: false
Has password to present: trus
Connection username: dave

Note:
This security root directory and its configuration relates to the connection between the TMS

server and the secured cluster. It is independent of the connection security between browser
and TMS server.

SSL enabled Connection is SSL enabled - i.e. the security root directory has a
trusted authority certificate.

Terracotta Server Administration Guide 10.15 171

27 SSL / TLS Security Configuration in Terracotta

Certificate authentication |Connection is2-way SSL enabled - i.e. the security root directory
has an identity certificate.

Has password to present The TMS/TMC client has a credentials.properties file.

Windows platforms

Note that Windows paths often contain backslashes. The Java properties format requires backslashes
to be escaped, so C:\tcdb\audit-directory would be configured using;:

tms.security.audit.directory=C:\\tcdb\\audit-directory

Alternatively, you can use forward slashes:

tms.security.audit.directory=C:/tcdb/audit-directory

LDAP Properties

The minimum set of properties to specify is:

url

userrootdn
uidprop
personobjclass

If you are using LDAP for authorization, you must also specify:

memberinfoingroups
mattr

and, if you set memberinfoingroups to true, you must also specify:

grouprootdn
gidprop
groupobjclass

Most other properties need only be used if you have specific requirements.

Connection related properties
url - The URL of the LDAP server (e.g ldap://ldapserver:389 or ldaps://ldapserver:636).

keystoreUrl - The URL from which a keystore can be retrieved (e.g.
file:///usr/local/ldap/keystore.jks) - used to authenticate to the LDAP server.

keystoreType - The store type of the keystore (e.g. JKs).
keystorePassword - The password to verify the integrity of the keystore.
keyAlias - The alias in the keystore where the certificate and key are stored.

keyPassword - The password to allow access to the specified alias. Defaults to store password.

172 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

truststoreUrl-The URL from which a truststore can be retrieved. Used to to validate the certificate
presented by the LDAP server during an SSL/TLS handshake.

truststoreType - The store type of the truststore (e.g. Ks).

truststorePassword - The password to verify the integrity of the truststore.
noPrinIsAnonymous - Set to true for LDAP servers that allow anonymous connections.
prin - The username to use to authenticate to the LDAP server.

cred - The password to use to authenticate to the LDAP server.

Note:

If prin and cred are not specified and noPrinIsAnonymous is not set to true, then the username
and password of the user attempting to authenticate to the cluster / TMS will be used to
authenticate to the LDAP server.

watt.server.ldap.ignore.serverCertificatevalidity - If true, then invalid certificates presented
by the LDAP server are ignored.

watt.server.ldap.extendedProps - Extra properties to add to the LDAP context. Format:
keyl=valuel;key2=value2

watt.server.ldap.retryCount - How many times to retry a connection if it fails.

watt.server.ldap.retryWait - How many milliseconds to wait between connection retries.

Properties related to how to interact with the LDAP server

timeout - LDAP query timeout in milliseconds.

watt.server.ldap.DNescapeChars - A list of characters that should be escaped.
watt.server.ldap.DNescapePairs - A list of characters that should not be re-escaped.

watt.server.ldap.DNstripQuotes - If false, then quotes that get added when escaping are not
striped from DNss.

watt.server.ldap.DNescapeURL - If true, then the start of a DN is escaped. This is useful for referrals
when DNs can start with a URL.

watt.server.jndi.searchresult.maxlimit - The maximum number of results to return from an
LDAP search. Zero means unlimited.

Properties related to the schema of a user

userrootdn - The DN under which users can be found (e.g. ou=People,dc=example,dc=com).
uidprop - The attribute on a user which contains the primary ID of the user (e.g. uid).
personobjclass - The LDAP schema class for users (e.g. person).

useaf - If true, then the dnprefix and dnsuffix properties should be used.

Terracotta Server Administration Guide 10.15 173

27 SSL / TLS Security Configuration in Terracotta

dnprefix - A string added to the beginning of a username for the LDAP lookup.

dnsuffix - A string added to the end of a username for the LDAP lookup.

Properties related to the schema of a group
grouprootdn - The DN under which groups can be found (e.g. ou=Group,dc=example,dc=com).
gidprop - The attribute on a group which contains the primary ID of the group (e.g. gid).

groupobjclass - The LDAP schema class for groups (e.g. group).

Properties related to how the schema connects users and groups
group - A role automatically given to every user.

memberinfoingroups - If true, then group membership is in the group definitions under the
grouprootdn. If false, then group membership is in the user definitions under the userrootdn.

mattr - The attribute on a user that specifies a group to which the user belongs OR the attribute
on a group that specifies a user is a member. The semantics depends on the choice of
memberinfoingroups.

recursiveSearchDepth - How deep to search for groups that are members of other groups.

Properties that Terracotta supports in addition to other Software AG products

tcdb.roleMap - A mapping from group names on the LDAP server to roles used in Terracotta.
Format: groupl=tcdbRolel;group2=tcdbRole2

Note:
Multiple LDAP groups can map to the same role.

SSL /TLS Troubleshooting guide

This document provides a list of the most commonly seen problems related to “Cluster Security” on
page 161, and their solutions:

Problem category: Host fails to start

This section describes the most commonly seen problems related to a host (server or a client)
startup.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
configured security-dir /path/to/security-dir does not exist

Diagnosis

174 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

The specified security root directory does not exist.
Action

Make sure that the directory exists and contains identity and trusted-authority directories with
valid keystores and truststores in them.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
identity directory doesn't exist in configured

security-dir /path/to/security-dir

Diagnosis

The specified security root directory does not contain an identity directory.

Action

Make sure that the directory exists inside the security root directory and contains valid keystores.
Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
trusted-authority directory doesn't exist in configured

security-dir /path/to/security-dir

Diagnosis

The specified security root directory does not contain a trusted-authority directory.

Action

Make sure that the directory exists inside the security root directory and contains valid truststores.
Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No acceptable keystore files found in identity directory
/path/to/security-dir/identity

Diagnosis
Either of:
® identity directory does not contain any keystores.

® identity directory contains keystores, but their file names are not in the format ${common
name}-${yyyyMMddThhmmss}. jks (e.g. com.organization.host-20180223T102319.jks).

Terracotta Server Administration Guide 10.15 175

27 SSL / TLS Security Configuration in Terracotta

Action

Make sure that identity directory contains keystores which follow the keystore creation rules as
described in the section “Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No acceptable truststore files found in trusted-authority directory
/path/to/security-root-directory/trusted-authority

Diagnosis

Either of:

B trusted-authority directory does not contain any truststores.

B trusted-authority directory contains truststores, but their file names are not in the format
${common name}-${yyyyMMddThhmmss}.jks G&g. trusted-authority-201802237102319.jks).

Action

Make sure that trusted-authority directory contains truststores which follow the truststore
creation rules as described in the section “Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Tried to use the password terracotta_security_password to load the

keystore file
/path/to/security-dir/identity/com.organization.host-20180131T120830. jks
but that failed

Diagnosis

Latest keystore file does not have terracotta_security_password as its password, where latest
keystore file is the keystore file with the latest timestamp string in the filename (e.g.,
host-20180131T120830. jks is considered newer than both host-201701317120830.jks and
host-20180131T120822.jks).

Action

Make sure the keystores follow the keystore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:

176 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

Tried to use the password terracotta_security_password to read the
keystore entry with alias terracotta_security_alias in the keystore

file
/path/to/security-dir/identity/com.organization.host-20180131T120830. jks
but that failed

Diagnosis

Latest keystore file does not have terracotta_security_password as terracotta_security_alias
entry password, where latest keystore file is the keystore file with the latest timestamp string in the
filename (e.g., host-20180131T120830. jks is considered newer than both host-201701317120830. jks
and host-20180131T120822. jks).

Action

Make sure the keystores follow the follow the keystore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Unable to find required private key/certificate chain entry using

alias terracotta_security_alias in keystore file
/path/to/security-dir/identity/com.organization.host-20180131T120830. jks

Diagnosis

Latest keystore file does not have terracotta_security_alias as certificate alias, where latest
keystore file is the keystore file with the latest timestamp string in the filename (e.g.,
host-20180131T120830. jks is considered newer than both host-201701317120830.jks and
host-20180131T120822.jks).

Action

Make sure the keystores follow the keystore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Certificate in keystore file
/path/to/security-dir/identity/com.organization.host-20180131T120830. jks

is expired

Diagnosis

Latest keystore file contains an expired certificate, where latest keystore file is the keystore file with
the latest timestamp string in the filename (e.g., host-20180131T120830. jks is considered newer
than both host-201701317120830. jks and host-20180131T120822.jks).

Action

Terracotta Server Administration Guide 10.15 177

27 SSL / TLS Security Configuration in Terracotta

Make sure the keystores follow the keystore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Certificate in keystore file
/path/to/security-dir/identity/com.organization.host-20180131T120830.jks

is not valid yet

Diagnosis

Latest keystore file contains a certificate with a future start date, where latest keystore file is the
keystore file with the latest timestamp string in the filename (e.g., host-201801317120830. jks is
considered newer than both host-20170131T120830.jks and host-201801317120822. jks).

Action

Make sure the keystores follow the keystore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
The common name org.host of the certificate that was loaded from

keystore file
/path/to/security-dir/identity/com.organization.host-20180131T120830.jks
doesn't match the common name com.organization.host in the filename
com.organization.host-20180131T120830.jks

Diagnosis

Common Name field in the Distinguished Name in the host's certificate does not match the common
name fragment in the latest keystore filename.

Action

Make sure the keystores follow the keystore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No valid trusted certificates found in trusted-authority directory
/path/to/security-dir/trusted-authority; Unable to find

required trusted certificate entry using alias

terracotta_security_alias in truststore file
/path/to/security-dir/trusted-authority/trusted-authority-20180131T120832.jks

178 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

Diagnosis

No valid truststores were found. The specific truststore reported in the Exception message contains
a certificate which uses an alias other than terracotta_security_alias. Note that this Exception
can be followed by one or more Suppressed Exceptions that can indicate why other truststores
could not be used.

Action

Make sure the truststores follow the truststore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No valid trusted certificates found in trusted-authority directory
/path/to/security-dir/trusted-authority; Certificate in

truststore file

/path/to/security-dir/trusted-authority/trusted-authority-20180131T120834.jks
is expired

Diagnosis

No valid truststores were found. The specific truststore reported in the Exception message contains
an expired certificate. Note that this Exception can be followed by one or more Suppressed
Exceptions that can indicate why other truststores could not be used.

Action

Make sure the truststores follow the truststore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No valid trusted certificates found in trusted-authority directory
/path/to/security-dir/trusted-authority; Certificate in

truststore file

/path/to/security-dir/trusted-authority/trusted-authority-20180131T7120834.jks
is not valid yet

Diagnosis

No valid truststores were found. The specific truststore reported in the Exception message contains
a certificate with a future start date. Note that this Exception can be followed by one or more
Suppressed Exceptions that can indicate why other truststores could not be used.

Action

Make sure the truststores follow the truststore creation rules as described in the section
“Certificates” on page 157.

Terracotta Server Administration Guide 10.15 179

27 SSL / TLS Security Configuration in Terracotta

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No valid trusted certificates found in trusted-authority directory
security-dir\trusted-authority; Tried to use the password
terracotta_security_password to load the truststore file

security-dir\trusted-authority\trusted-authority-20180131T120832.jks
but that failed

Diagnosis

No valid truststores were found. The specific truststore reported in the Exception message does
not have terracotta_security_password as its password. Note that this Exception can be followed
by one or more Suppressed Exceptions that can indicate why other truststores could not be used.

Action

Make sure the truststores follow the truststore creation rules as described in the section
“Certificates” on page 157.

Symptom

Host fails to start with an Exception message similar to:

java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Unable to validate certificate chain with alias

terracotta_security_alias in keystore file

/path/to/security-dir/identity/com.organization.host-20180131T120830. jks
using truststore file(s)

Diagnosis

Host certificate in latest keystore file is not signed by any of the known trusted authorities, and
thus cannot be validated by any of the truststore files. Latest keystore file here is the keystore file
with the latest timestamp string in the filename (e.g., host-20180131T120830. jks is considered
newer than both host-201701317120830.jks and host-20180131T120822. jks).

Action

Make sure that the latest keystore file contained in the identity directory is signed by the truststores
in the trusted-authority directory.

Problem category: Connection fails to establish
Symptom

org.terracotta.connection.ConnectionException:
com.terracottatech.connection.ProbableSecurityConfigurationException:
Handshake with server failed when this client tried to initiate a
non-secure connection. Possible reason: server is running with
security enabled.

180 Terracotta Server Administration Guide 10.15

27 SSL / TLS Security Configuration in Terracotta

Diagnosis

The client which tried to establish a connection to a server running with SSL/TLS configuration is
not using an SSL/TLS configuration.

Action

Make sure the client uses a correct SSL/TLS configuration (via a secure API, an XML config,
command parameters etc.) so that it can establish a secure connection with an SSL/TLS
security-enabled server.

Symptom

org.terracotta.connection.ConnectionException:
com.terracottatech.connection.ProbableSecurityConfigurationException:
Handshake with server failed when this client tried to initiate a
secure connection. Possible reasons: client security configuration

is not valid, or server is not running with security
enabled.

Diagnosis
Either of:

1. The client is using an SSL/TLS security configuration but the server is not.

2. The client cannot validate the server because the server's CA certificate is not present in the
client's trusted certificates.

3. The server cannot validate the client because the client's CA certificate is not present in the
server's trusted certificates.

Action

Make sure that:

1. The client uses an unsecured configuration (via an unsecured API, an XML config, command
parameters etc.) if the server is running with an unsecured configuration.

2. The client and the server certificates are signed by the same CA and their trusted-authority
directories contain the same truststores.

Terracotta Server Administration Guide 10.15 181

27 SSL / TLS Security Configuration in Terracotta

182 Terracotta Server Administration Guide 10.15

28 Terracotta Server Migration from BigMemory to

Terracotta

The new generation of Terracotta Server and platform has very significant changes from BigMemory
with respect to handling of cluster topology, data storage formats, and various other aspects.

Because of this, there is no possibility of direct migration of data and configuration from a
BigMemory installation to a Terracotta installation.

If you intend to reuse the same host systems in Terracotta that you were using in BigMemory, the
Terracotta Server configuration file(s) from an existing BigMemory installation may be a useful
reference when you create your new Terracotta configuration file(s). The BigMemory configuration
file(s) contain the host names, addresses, etc. that you have been using so far.

Terracotta Server Administration Guide 10.15 183

28 Terracotta Server Migration from BigMemory to Terracotta

184 Terracotta Server Administration Guide 10.15

29 Using Command Central to Manage Terracotta

Software AG Command Central is a tool that release managers, infrastructure engineers, system
administrators, and operators can use to perform administrative tasks from a centralized location.
It assists with configuration, management, and monitoring tasks in a simple and flexible manner.

Terracotta server instances can be managed from Command Central like other Software AG
products. Both the Command Line and Web Interfaces of Command Central are supported.

Supported Commands

Terracotta supports the following Command Central CLI (Command Line Interface) commands:

1.

Inventory
® sagcc list inventory components : Lists information about run-time components.

B sagcc get inventory components : Retrieves information about a specified run-time
component.

Lifecycle

B sagcc exec lifecycle: Executes a lifecycle action against run-time components. See “
Lifecycle Actions for Terracotta” on page 186 for Terracotta-specific information about
Lifecycle Actions.

Monitoring

B sagcc get monitoring state:Retrieves the run-time status and run-time state of a run-time
component.

B sagcc get monitoring alerts : Lists the alerts for a specified run-time component.

B sagcc get monitoring runtimestatus : Retrieves the run-time status of a run-time
component.

Configuration

B sagcc get configuration data: Retrieves data for a specified configuration instance that
belongs to a specified run-time component.

Terracotta Server Administration Guide 10.15 185

29 Using Command Central to Manage Terracotta

B sagcc list configuration types : Lists information about configuration types for the
specified run-time component. See “ Supported Configuration Types” on page 186 for
Terracotta-specific information about configuration types.

® sagcc list configuration instances : Retrieves information about a specific configuration
instance that belongs to a specified run-time component.

5. Diagnostics

B sagcc list diagnostics logs : Lists the log files that a specified run-time component
supports.

B sagcc get diagnostics logs:Retrieves log entries from a log file. Log information includes
the date, time, and description of events that occurred with a specified run-time component.

For information about Command Central CLI commands, see the Command Central Help.

Supported Configuration Types
Terracotta supports creating instances of the following configuration types:

® JVM-OPTIONS: The JVM memory settings for the Terracotta Server instance in JAVA_OPTS
environment variable format.

Changes to this configuration will be effective upon a server restart.

B TC-SERVER-NAME: The name for the Terracotta Server instance. Editing this property is not
allowed.

Lifecycle Actions for Terracotta

Terracotta supports the following lifecycle actions with the sagcc exec lifecycle CLI command
and the Command Central Web Interface:

® Start: Start a server instance.
m Restart: Restart a running server instance.

® Stop: Stop a running server instance.

Runtime Monitoring Statuses for Terracotta

Terracotta can return the following statuses from sagcc get monitoring runtimestatus and sagcc
get monitoring state CLI commands and the Command Central Web Interface:

m Starting: The server instance is starting. This is usually shown when:
® The server was just started.
m The server is a slave (Passive) synchronizing with its master (Active).

m The server is recovering from an error condition.

186 Terracotta Server Administration Guide 10.15

29 Using Command Central to Manage Terracotta

Not Ready: The server is not ready to accept client requests. To make it ready, follow the steps
defined in the section Making server ready.

Online Master: The server instance is running and is the master (Active) in its stripe.
Online Slave: The server instance is running and is a slave (Passive) in its stripe.
Stopping: The server instance is stopping.

Stopped: The server instance is not running.

Failed: The server instance was running, but crashed or was killed without the SPM plugin's
knowledge. If the server had crashed, checking its logs may help uncover the reason.

Unresponsive: The server instance is running, but is not responding.

Unknown: The state of the server instance is not known. This is most likely because of an
unexpected exception or error that occurred while trying to fetch the server status.

Directory structure

The Terracotta server and SPM related files can be found under
${INSTALL_ROOT}/TerracottabB/server/SPM. This directory contains the following:

1. bin
Contains scripts to start and shut down the server.

2. conf
Contains the Terracotta config file cluster.properties. If any changes to the configuration are
required, such as increasing the offheap, this file needs to be updated manually. See the
“Updating the config file” on page 188 section for more details.
Note:
This is the only directory in which content can be changed.

3. idnstance
Contains Terracotta SPM instance related metadata files.

4. server-data
Contains data maintained by Terracotta server. The contents of this directory are useful for
troubleshooting problems with the server. The table below summarizes the contents of this
directory:

Directory Description

logs Contains Terracotta server logs

metadata Contains Terracotta server metadata

user-data Contains Terracotta client data

Terracotta Server Administration Guide 10.15 187

29 Using Command Central to Manage Terracotta

Directory Description

config Contains Terracotta server configuration repository

Updating the config file

A Terracotta configuration file is a Java properties file containing configuration and topology
information of the entire Terracotta cluster. Any changes to the config file must be done manually.

To find out more, visit “The TerracottaConfiguration File” on page 45.

Making configuration changes

Configuration changes in the default configuration cluster.properties file can be done freely
before cluster activation. It's advised to make all the important changes before activating the
cluster. After the cluster has been activated, the configuration can still be changed, but that's subject
to certain constraints.

To find out more, visit “Performing configuration changes” on page 63.

Making topology changes

Topology changes in the default configuration cluster.properties file can be done freely before
cluster activation. If the configuration of a new node is added to this file, remember to use the
same file across all installations. Also, the server name for the current installation must be updated
in the server-name file (located next to cluster.properties).

The cluster topology can be changed dynamically as well.

To find out more, see “attaching nodes dynamically” on page 61 and “detaching nodes
dynamically” on page 62 in the description of the config tool.

Making the server ready

When the Terracotta server is started for the first time from Command Central, it will be in the
'Not Ready' state. To make the server ready to accept client requests, it needs to be part of an
activated cluster. The activate command of the config tool (located under
${INSTALL_ROOT}/TerracottaDB/tools/bin) can be used to activate the cluster.

See the config tool section “Activate” on page 59 for more details.

188 Terracotta Server Administration Guide 10.15

30 Terracotta in Network Environments with

Subnets

If Terracotta nodes reside in a given subnet (for example in a Kubernetes cluster) and clients in
another (for example outside of the Kubernetes cluster), node addresses (host name or IP address)
are not resolvable by clients. Administrators of the Terracotta cluster can use public addresses in
this scenario to assign public names to Terracotta cluster nodes, using which clients can establish
connections.

Configuring public addresses

A node's public address is defined by its public-hostname and public-port properties. Public
addresses must be defined for all nodes in a cluster or none of them. When configured, each node's
public address must be unique within the cluster.

Consider a 2x2 cluster (2-stripes, 2 nodes per stripe) with node names: nodel, node2, node3 and
node4. Public addresses can be configured using one of the following methods:

Using command-line parameters during node startup

This example illustrates starting each of the four nodes by passing the same public hostname
(tc-cluster.public.com) to the startup script but specifying a unique public-port for each node:

> start-tc-server.sh -name nodel public-hostname=tc-cluster.public.com public-port=1111
> start-tc-server.sh -name node2 public-hostname=tc-cluster.public.com public-port=2222
> start-tc-server.sh -name node3 public-hostname=tc-cluster.public.com public-port=3333

> start-tc-server.sh -name node4 public-hostname=tc-cluster.public.com public-port=4444

Using config file during node startup

Public addresses for an entire cluster can be saved in a Terracotta “ configuration file” on page 45,
which can later be used to start a cluster.

This example illustrates the configuration file entries required for specifying the same public
hostname (tc-cluster.public.com) for all nodes but specifying a unique public-port for each node
(as in the previous example):

public-hostname=tc-cluster.public.com
nodel:port=1111

Terracotta Server Administration Guide 10.15 189

30 Terracotta in Network Environments with Subnets

node2:port=2222
node3:port=3333
node4:port=4444

Using config tool "set" command

The config tool “set” on page 65 command can be used to dynamically configure public addresses
on a cluster. NOTE: Public addresses can be updated without having to restart the cluster.

The following example illustrates how to set the same public hostname (tc-cluster.public.com)
for all nodes but setting a unique public-port for each node:

> config-tool.sh set -connect-to tc-cluster.internal.com:9410
-setting public-hostname=tc-cluster.public.com

-setting nodel:public-port=1111
-setting node2:public-port=2222
-setting node3:public-port=3333
-setting node4:public-port=4444

SSL/TLS considerations

The SSL/TLS certificates of the Terracotta nodes will need to include Subject Alternative Names
(SANs) that match the public addresses.

Using public addresses

Once the public addresses have been set, all tools (e.g. config tool, cluster tool etc.) would use the

public addresses by default.

The following example illustrates the execution of the cluster tool status command on the cluster
with public addresses configured. Take note of how the internal to public address mapping is

displayed in the Host-Port column:

> cluster-tool.sh status -cluster-name tc-cluster -connect-to tc-cluster.public.com:1111

| STRIPE: stripeA |

| Node Name |

Host-Port |
Status |
| nodel | tc-cluster.internal.com:9410=tc-cluster.public.com:1111 |
ACTIVE |
| node2 | tc-cluster.internal.com:9420=tc-cluster.public.com:2222 |

PASSIVE |

| STRIPE: stripeB |

| Node Name |

Host-Port |
Status |
| node3 | tc-cluster.internal.com:9430=tc-cluster.public.com:3333 |
ACTIVE |
| node4 | tc-cluster.internal.com:9440=tc-cluster.public.com:4444 |

PASSIVE |

190

Terracotta Server Administration Guide 10.15

	Table of Contents
	About This Documentation
	Online ​Information ​and ​Support
	Data ​Protection

	1 Cluster ​Architecture
	2 Active ​and ​Passive ​Servers
	3 Logical ​Server ​States
	4 Clients ​in ​a ​Cluster
	5 Electing ​an ​Active ​Server
	6 Failover
	7 Starting ​and ​Stopping ​the ​Terracotta ​Server
	8 Safe ​Cluster ​Shutdown ​and ​Restart ​Procedure
	9 Configuration ​Terms ​and ​Concepts
	10 Planning ​a ​Configuration
	11 The TerracottaConfiguration ​File
	12 Config ​Tool
	Overview
	Settings
	Performing ​configuration ​changes
	Diagnosing ​and ​Repairing ​Problems
	Config ​Tool ​Troubleshooting ​Guide

	13 Parameter ​Substitution
	14 Configuring ​the Terracotta ​Server
	15 System ​Recommendations ​for ​Hybrid ​Caching
	16 System ​Recommendations ​for ​Fast ​Restart ​(FRS)
	17 Failover ​Tuning
	18 Connection ​Leasing
	19 Cluster ​Tool
	20 Importing ​and ​Exporting ​Datasets
	Overview
	Import-​Export ​Tool
	Import-​Export ​API

	21 Licensing
	22 Backup, ​Restore ​and ​Data ​Migration
	Overview ​of ​Backup ​and ​Restore
	Data ​Directory ​Structure
	Online ​Backup
	Offline ​Backup
	Restore
	Data ​Migration ​of ​Ehcache ​data
	Technical ​Details

	23 Migrating ​from ​older ​Terracotta ​versions ​to ​10.7
	24 Migrating ​from ​10.7 ​to ​a ​newer ​10.7 ​version
	25 Restarting ​a ​Stripe
	26 IPv6 ​support ​in ​Terracotta
	27 SSL ​/​ ​TLS ​Security ​Configuration ​in ​Terracotta
	Security ​Core ​Concepts
	Cluster ​Security
	TMS ​Security
	LDAP ​Properties
	SSL ​/​ ​TLS ​Troubleshooting ​guide

	28 Terracotta ​Server ​Migration ​from ​BigMemory ​to Terracotta
	29 Using ​Command ​Central ​to ​Manage ​Terracotta
	30 Terracotta ​in ​Network ​Environments ​with ​Subnets

