
Ehcache API Developer Guide

Version 10.15

October 2022

This document applies to Terracotta 10.15 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: TC-EHC-DG-1015-20221101

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About This Documentation..7
Online Information and Support...8
Data Protection...9

1 Caching Basics...11
Primary Classes..12
Comparison of CacheManager to UserManagedCache..12

2 Creating and Configuring a CacheManager Using Java...15
Going Through the Lifecycle of a Cache...16
Configuring Storage Tiers using Java..17
Creating a Cache Manager with Clustering Support..18
Data Freshness..19

3 Configuring a CacheManager Using XML...21
Configuring Storage Tiers using XML..22
The XML Schema Definition...23
Property replacement in XML configuration files...25
XML Programmatic Parsing..25
Programmatic configuration to XML..26
Multiple XML Configurations in one Document...27

4 Configuration Derivation..33
Principles...34
Core Configuration Changes..34
Extended Configuration Changes..35

5 The JCache (JSR-107) Cache Provider...39
Overview of JCache..40
Using Ehcache as a JCache Provider...40
Getting Started with Ehcache and JCache (JSR-107)...40
Integrating JCache and Ehcache Configurations...41
Differences in Default Behavior between Ehcache and Ehcache through JCache..................48

6 User Managed Caches..51
Overview of User Managed Caches..52
API Extensions..52
Code examples for User Managed Caches...54

7 Cache Usage Patterns..57

Ehcache API Developer Guide 10.15 iii

8 Data Freshness and Expiry..59
Data Freshness..60
Expiry...61

9 Transactions Support..65
What is supported and what are the limitations?..66
Configuring it all in Java...66
Configuring it with XML...71

10 Tiering Options...73

11 Cache Loaders and Writers..83
Introduction to Cache Loaders and Writers...84
Implementing Cache-Through...85

12 Cache Event Listeners...87
Introduction...88
Registering Event Listeners during runtime..89
Event Processing Queues..90

13 Eviction Advisors..91

14 Serializers and Copiers..93
Overview of Serializers and Copiers...94
Serializers...94
Copiers...98

15 Thread Pools...103
Introduction to Thread Pools..104
Configuring Thread Pools with Code...105
Configuring Thread Pools with XML..108

16 Code Examples...109

17 Ehcache XSDs...113
XSD namespaces and locations..114

18 Management and Monitoring with Ehcache...115
Introduction...116
Making use of the ManagementRegistry..116
Capabilities and contexts...117
Actions...119
Managing multiple cache managers..119

iv Ehcache API Developer Guide 10.15

Table of Contents

Rules for Statistics Calculation...121

19 Class Loading...125
About Class Loading..126
Handling User Types...126

20 Clustered Caches...129
Introduction...130
Clustering Concepts...130
Starting the Terracotta Server...132
Creating a Cache Manager with Clustering Capabilities...133
Cache Manager Configuration and Usage of Server Side Resources.....................................134
Ehcache Cluster Tier Manager Lifecycle...135
Configuring a Clustered Cache..136
Creating a Cluster with Multiple Stripes..139

21 Fast Restartability..141
Overview of Fast Restartability..142
Creating a Restartable Cache Manager...142
Creating a Restartable Cache..143
Creating Restartable Resource Pools...143
Example of a Restartability Scenario...144
General Notes on Configuring Restartability...145

22 Hybrid Caching...147
Overview of Hybrid Caching...148
Configuring a Hybrid Cache Manager..148
Configuring a Hybrid Cache..149
Example of a Hybrid Scenario..149
General Notes on Configuring Hybrid...150

23 Migrating Code from Ehcache v2...151

Ehcache API Developer Guide 10.15 v

Table of Contents

vi Ehcache API Developer Guide 10.15

Table of Contents

About This Documentation

■ Online Information and Support ... 8

■ Data Protection ... 9

Ehcache API Developer Guide 10.15 7

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
knowledge.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/u/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

8 Ehcache API Developer Guide 10.15

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/u/softwareag/
https://hub.docker.com/u/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Ehcache API Developer Guide 10.15 9

10 Ehcache API Developer Guide 10.15

1 Caching Basics

■ Primary Classes ... 12

■ Comparison of CacheManager to UserManagedCache .. 12

Ehcache API Developer Guide 10.15 11

Primary Classes

At the core of the concept of the Ehcache API are three classes:

CacheManager

Cache

UserManagedCache

A CacheManager provides all necessary functionality to manage Caches and associated Services.

A Cache contains mappings of key to value, so-called entries. There are methods to create, access,
update and delete these key-value pairs.

A UserManagedCache allows to actively define a specific cache handling in cases where the full
functionality of CacheManager may not be necessary, for instance when the lifecycle of the cache is
shorter than the application lifecycle.

For more information on these three classes refer to the following sections ...

“Comparison of CacheManager to UserManagedCache” on page 12

“Creating and Configuring a CacheManager Using Java” on page 15

“User Managed Caches” on page 51

... and the Java API docs of the Ehcache API on http://www.ehcache.org/documentation/.

Comparison of CacheManager to UserManagedCache

The first step is to create an instance that manages a cache, and the second step is to create the
cache itself.

There are two variations of managing a cache:

By means of a CacheManager

or ...

By means of a UserManagedCache

The decision when to use either the standard CacheManager or the 'lightweight' UserManagedCache
depends on the particular use case, since each approach has pros and cons:

CacheManager

Pros:

Offers numerous standard services out of the box - a good starting point for setting
up the basic framework.

12 Ehcache API Developer Guide 10.15

1 Caching Basics

http://www.ehcache.org/documentation/

Cons:

Brings along a certain level of richness and complexity that in some cases might offer
more than needed.

UserManagedCache

Pros:

Offers a lightweight approach for examples such as Method local caches, thread local
caches, and a cache lifecycle shorter than the application lifecycle.

Cons:

Does not offer out-of-the-box services, which must be configured on-instance basis.

A CacheManager can be created using either Ehcache directly or the JSR 107 JCACHE - Java Temporary
Caching API.

Programmatically configuring the instance of a CacheManager and its cache can be done either in
Java or via XML.

Ehcache API Developer Guide 10.15 13

1 Caching Basics

14 Ehcache API Developer Guide 10.15

1 Caching Basics

2 Creating and Configuring a CacheManager Using

Java

■ Going Through the Lifecycle of a Cache .. 16

■ Configuring Storage Tiers using Java ... 17

■ Creating a Cache Manager with Clustering Support .. 18

■ Data Freshness .. 19

Ehcache API Developer Guide 10.15 15

Going Through the Lifecycle of a Cache

Java configuration is most easily achieved through the use of builders that offer a fluent API.

The canonical way of dealing with a Cache is through a CacheManager. Creating, using and closing
a cache with CacheManager is illustrated in this example:
CacheManager cacheManager

= CacheManagerBuilder.newCacheManagerBuilder() // <1>
.withCache("preConfigured",

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class, ResourcePoolsBuilder.heap(10))) // <2>

.build(); // <3>
cacheManager.init(); // <4>
Cache<Long, String> preConfigured = cacheManager.getCache("preConfigured",

Long.class, String.class); // <5>
Cache<Long, String> myCache =

cacheManager.createCache("myCache", // <6>
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,

String.class, ResourcePoolsBuilder.heap(10)));
myCache.put(1L, "da one!"); // <7>
String value = myCache.get(1L); // <8>
cacheManager.removeCache("preConfigured"); // <9>
cacheManager.close(); // <10>

The following list items refer to the commented numbers in the code.

<1> Using the Builders
The staticmethod org.ehcache.config.builders.CacheManagerBuilder.newCacheManagerBuilder
returns a new org.ehcache.config.builders.CacheManagerBuilder instance.

<2> Declare a cache configuration
Use the builder to define a Cachewith alias "preConfigured". This cache will be created when
cacheManager.build() is invoked on the actual CacheManager instance.
The first String argument is the cache alias, which is used to retrieve the cache from the
CacheManager.
The second argument, org.ehcache.config.CacheConfiguration, is used to configure the Cache.
In this case, the static newCacheConfigurationBuilder()method is used on
org.ehcache.config.builders.CacheConfigurationBuilder to create a default configuration.

<3> Instantiate a CacheManager
Invoking build() returns a fully instantiated, but uninitialized, CacheManager ready to use.

<4> Initialize the CacheManager
Before using the CacheManager it needs to be initialized, which can be done in 1 of 2 ways:

Calling CacheManager.init() on the CacheManager instance, or

Calling the CacheManagerBuilder.build(boolean init)methodwith the boolean parameter
set to true.

<5> Retrieving the preConfigured Cache and Type-Safety

16 Ehcache API Developer Guide 10.15

2 Creating and Configuring a CacheManager Using Java

A cache is retrieved by passing its alias, key type and value type to the CacheManager. For
instance, to obtain the cache declared in step 2 you need its alias=preConfigured,
keyType=Long.class and valueType=String.class.
Asking for both key and value types to be passed in ensures type-safety. Should these differ
from the ones expected, the CacheManager throws a ClassCastException early in the application’s
lifecycle. This also guards the Cache from being polluted by random types.

<6> Create a new Cache
The CacheManager can also be used to create new Cache as needed.
Just as in step 2, it requires passing an alias as well as a CacheConfiguration.
The instantiated and fully initialized Cache addedwill be returned and/or accessed through the
CacheManager.getCache API.

<7> Store and ...
The newly added Cache can now be used to store entries, which are comprised of key value
pairs. The put method's first parameter is the key and the second parameter is the value.
Remember the key and value types must be the same types as those defined in the
CacheConfiguration. Additionally the keymust be unique and is only associatedwith one value.

<8> Retrieve data
A value is retrieved from a cache by calling the cache.get(key)method. It only takes one
parameter which is the key, and returns the value associated with that key. If there is no value
associated with that key then null is returned.

<9> Remove and close a given Cache
With CacheManager.removeCache(String) any given Cache can be removed.
The CacheManagerwill not only remove its reference to the Cache, butwill also close it. The Cache
releases all locally held transient resources (such as memory). References to this Cache become
unusable.

<10> Close all Cache instances
In order to release all transient resources (memory, threads, ...) that a CacheManager provides
to itsmanaged Cache instances, CacheManager.close() needs to be invoked. This closes all Cache
instances known at the time.

Configuring Storage Tiers using Java

Ehcache offers a tiering model that allows storing increased amounts of less frequently used data
on slower tiers (which are generally more abundant).

More frequently used data (the "hottest data") would preferably be stored on faster (commonly
less abundant) storage, whereas less frequently used data (less "hot" data) can bemoved to slower
(commonly more abundant) storage tiers.

Three Tiers

A classical example would be using 3 tiers with a persistent disk storage.
PersistentCacheManager persistentCacheManager =

CacheManagerBuilder.newCacheManagerBuilder()

Ehcache API Developer Guide 10.15 17

2 Creating and Configuring a CacheManager Using Java

.with(CacheManagerBuilder.persistence(
new File(getStoragePath(), "myData"))) // <1>

.withCache("threeTieredCache",
CacheConfigurationBuilder.newCacheConfigurationBuilder(

Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()

.heap(10, EntryUnit.ENTRIES) // <2>

.offheap(1, MemoryUnit.MB) // <3>

.disk(20, MemoryUnit.MB, true) // <4>
)

).build(true);
Cache<Long, String> threeTieredCache =

persistentCacheManager.getCache("threeTieredCache",
Long.class, String.class);

threeTieredCache.put(1L, "stillAvailableAfterRestart"); // <5>
persistentCacheManager.close();

1. If you wish to use disk storage (in the same way as for persistent Cache instances), you have
to provide a location where data should be stored on disk to the
CacheManagerBuilder.persistence() static method.

2. Define a resource pool for the heap. This will be your faster but smaller pool.

3. Define a resource pool for the off-heap. This is still quite fast and a bit bigger.

4. Define a persistent resource pool for the disk. It is persistent because the last parameter is true.

5. All values stored in the cache will be available after a JVM restart (assuming the CacheManager
has been closed cleanly by calling close()).

Creating a Cache Manager with Clustering Support

To enable clustering with Terracotta, firstly you will have to start the Terracotta server configured
with clustered storage. In addition, for creating the cache manager with clustering support, you
will need to provide the clustering service configuration:
CacheManagerBuilder<PersistentCacheManager>

clusteredCacheManagerBuilder =
CacheManagerBuilder.newCacheManagerBuilder() // <1>

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create(
"terracotta://localhost:9410/my-application")) // <2>
.autoCreate()); // <3>

PersistentCacheManager cacheManager =
clusteredCacheManagerBuilder.build(true); // <4>

cacheManager.close(); // <5>

<1>
Returns the org.ehcache.config.builders.CacheManagerBuilder instance;

<2>
Use the ClusteringServiceConfigurationBuilder's static method cluster(URI) for connecting
the cache manager to the clustering storage at the URI specified that returns the clustering
service configuration builder instance. The sample URI provided in the example points to the
clustered storage with clustered storage identifier my-application on the Terracotta server

18 Ehcache API Developer Guide 10.15

2 Creating and Configuring a CacheManager Using Java

(assuming the server is running on localhost and port 9410); the query-param auto-create
creates the clustered storage in the server if it doesn't already exist.

<3>
Returns a fully initialized cache manager that can be used to create clustered caches.

<4>
Close the cache manager.

Data Freshness

In Ehcache, data freshness is controlled through Expiry. The following example illustrates how
to configure a time-to-live expiry.
CacheConfiguration<Long, String> cacheConfiguration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class, ResourcePoolsBuilder.heap(100)) // <1>
.withExpiry(Expirations.timeToLiveExpiration(// <2>

Duration.of(20, TimeUnit.SECONDS)))
.build();

1. Expiry is configured at the cache level, so start by defining a cache configuration,

2. then add to it an Expiry, here using the predefined time-to-live one, configuredwith the required
Duration.

Ehcache API Developer Guide 10.15 19

2 Creating and Configuring a CacheManager Using Java

20 Ehcache API Developer Guide 10.15

2 Creating and Configuring a CacheManager Using Java

3 Configuring a CacheManager Using XML

■ Configuring Storage Tiers using XML ... 22

■ The XML Schema Definition ... 23

■ Property replacement in XML configuration files .. 25

■ XML Programmatic Parsing .. 25

■ Programmatic configuration to XML ... 26

■ Multiple XML Configurations in one Document .. 27

Ehcache API Developer Guide 10.15 21

Configuring Storage Tiers using XML

As an alternative to programmatic configuration, a CacheManager can also be configured using
XML, as illustrated in this example:
<config>
<cache alias="foo"> <!--1-->

<key-type>java.lang.String</key-type> <!--2-->
<resources>

<heap unit="entries">2000</heap> <!--3-->
<offheap unit="MB">500</offheap> <!--4-->

</resources>
</cache>
<cache-template name="myDefaults"> <!--5-->

<key-type>java.lang.Long</key-type>
<value-type>java.lang.String</value-type>
<heap unit="entries">200</heap>

</cache-template>
<cache alias="bar" uses-template="myDefaults"> <!--6-->

<key-type>java.lang.Number</key-type>
</cache>
<cache alias="simpleCache" uses-template="myDefaults" /> <!--7-->

</config>

1. Declares a Cache aliased to foo.

2. The keys of foo are declared as type String.

Since the value type is not specified, the values will be of type java.lang.Object.

3. foo is declared to hold up to 2,000 entries on heap ...

4. ... as well as up to 500 MB of off-heap memory before the Cache starts evicting

5. <cache-template> elements create an abstract configuration that can be extended by further
<cache> configurations

6. bar is an example for such a Cache.

bar uses the <cache-template> named myDefaults and overrides its key-type to a wider type.

7. simpleCache is another such Cache.

simpleCache uses myDefaults configuration for its sole CacheConfiguration.

The schema and format of the XML is explained in detail in the following section The XML Schema
Definition.

The type XmlConfiguration allows for parsing an XML configuration:
URL myUrl = getClass().getResource("/my-config.xml"); // <1>
Configuration xmlConfig = new XmlConfiguration(myUrl); // <2>
CacheManager myCacheManager =

CacheManagerBuilder.newCacheManager(xmlConfig); // <3>

As the steps are ...

22 Ehcache API Developer Guide 10.15

3 Configuring a CacheManager Using XML

1. Obtain a URL to the location of the XML file.

2. Instantiate an XmlConfiguration passing the URL of the XML file.

3. Use the static
org.ehcache.config.builders.CacheManagerBuilder

.newCacheManager(org.ehcache.config.Configuration)

creates the CacheManager instance using the Configuration from the XmlConfiguration.

The XML Schema Definition

The following schema elements are availablewhenusing anXMLfile for configuring a CacheManager
at creation time:

<config> - root element
This is the root element of our XML configuration.
One <config> element in an XML file provides the definition for a CacheManager.

Note:

You can create multiple CacheManager instances using the same XML configuration file.

Advanced:

In contrast to the JSR-107 javax.cache.spi.CachingProvider, Ehcache does not maintain a
registry of CacheManager instances.

<service>
<service> elements are extension points for specifying services managed by the CacheManager.
Each such Service defined in this way is managed with the same lifecycle as the CacheManager.
The Service.start is called during CacheManager.init processing.
The Service.stopmethod is called during CacheManager.close processing.
These Service instances can then be used by Cache instances managed by the CacheManager.

Note:
JSR-107 uses this extension point of the XML configuration (and Ehcache's modular
architecture). For more information see section The JSR-107 Provider.

<default-serializers>
A <default-serializers> element represents Serializers configured at CacheManager level. It
is a collection of <serializer> elements that require a type and a fully qualified class name of
the Serializer.

<default-copiers>
A <default-copiers> element represents Copiers configured at CacheManager level. It is a
collection of <copier> elements that requires a type and a fully qualified class name of the
Copier.

<persistence>

Ehcache API Developer Guide 10.15 23

3 Configuring a CacheManager Using XML

A <persistence> element that represents Persistence and that needs to be used when creating
a PersistentCacheManager.
It requires the directory location where data will be stored on disk.

<cache>
A <cache> element represent a Cache instance that will be created and managed by the
CacheManager.
Each <cache> requires the alias attribute, used at runtime to retrieve the corresponding Cache<K,
V> instance using the org.ehcache.CacheManager.getCache(String, Class<K>, Class<V>)
method.
The optional uses-template attribute references a <cache-template> element’s name attribute.
See the section XML Programmatic Parsing for more details.
Following nested elements are optionally available:

<key-type>

the fully qualified class name (FQCN) of the keys (<K>) held in the Cache<K, V>; defaults
to java.lang.Object

<value-type>

FQCN of the values (<V>) held in the Cache; defaults to java.lang.Object

<expiry>

control the expiry type and its parameters

<eviction-advisor>

FQCNof a org.ehcache.config.EvictionAdvisor<K, V> implementation, defaults to null,
i.e. none

<integration>

configure a CacheLoaderWriter for a cache-through pattern

<resources>

configure the tiers and their capacity. When using on-heap only, you can replace this
element by the <heap> one.

<cache-template>
<cache-template> elements represent a uniquely named template for <cache> elements to inherit
from.
This unique name is specified by using the mandatory name attribute.
A <cache> element that references a <cache-template> by its name using the uses-template
attribute, will inherit all properties of the <cache-template>. A <cache> can override these
properties as it needs.
A <cache-template> element may contain all the same child elements as a <cache> element.

24 Ehcache API Developer Guide 10.15

3 Configuring a CacheManager Using XML

Property replacement in XML configuration files

Certain elements inside XML configuration files can use ${property-name} syntax. When this
syntax is used, the referenced Java system property value will replace the property reference
during configuration parsing.

Note:
If the system property does not exist, this will make the configuration parsing fail.

A classical use case for this feature is for providing a disk file location inside the directory attribute
of the persistence tag:
<persistence directory="${user.home}/cache-data"/> <!-- 1 -->

1. Here user.homewill be replaced by the value of the system property, for example /home/user.

The following attributes in the core configuration support system property replacement:

Local persistence directory (supports substitution within a string).

Thread pool minimum and maximum size attributes.

Write-behind queue size, concurrency, batch size and maximum batch delay.

Cache TTI and TTL.

Core resource sizes (heap, offheap and disk).

Disk store writer concurrency and segment count.

XML Programmatic Parsing

The following section goes through the steps and possibilities of automatically configuring a
CacheManager using XML.

Note:
If you are obtaining your CacheManager through API calls based on JSR-107, what follows is
done automatically when invoking
javax.cache.spi.CachingProvider.getCacheManager(java.net.URI, java.lang.ClassLoader).

final URL myUrl =
getClass().getResource("/configs/docs/getting-started.xml"); // <1>

XmlConfiguration xmlConfig = new XmlConfiguration(myUrl); // <2>
CacheManager myCacheManager =

CacheManagerBuilder.newCacheManager(xmlConfig); // <3>
myCacheManager.init(); // <4>

1. Obtain a URL to your XML file's location

2. Instantiate an XmlConfiguration passing the URL of the XML file to it.

3. Create your CacheManager instance using the Configuration from the XmlConfiguration.

4. Initialize the CacheManager before it is used.

Ehcache API Developer Guide 10.15 25

3 Configuring a CacheManager Using XML

We can also use <cache-template> declared in the XML file to seed instances of
CacheConfigurationBuilder. In order to use a <cache-template> element from an XML file, the
XML file contains the following XML fragment:

<cache-template name="example">
<key-type>java.lang.Long</key-type>
<value-type>java.lang.String</value-type>
<heap unit="entries">200</heap>

</cache-template>

Creating a CacheConfigurationBuilder of that example <cache-template> element would be done
as follows:
XmlConfiguration xmlConfiguration = new XmlConfiguration(getClass()

.getResource("/configs/docs/template-sample.xml"));
CacheConfigurationBuilder<Long, String> configurationBuilder =
xmlConfiguration.newCacheConfigurationBuilderFromTemplate("example",

Long.class, String.class); // <1>
configurationBuilder = configurationBuilder.

withResourcePools(ResourcePoolsBuilder.heap(1000)); // <2>

1. Creates a builder, inheriting the capacity constraint of 200 entries.

2. The inherent properties can be overridden by simply providing a different value prior to
building the CacheConfiguration.

Programmatic configuration to XML

You can now create an XML configuration file from a cache manager configuration. To do so, you
have to construct an XmlConfiguration object by passing Configuration to the cachemanager. The
string representation of the XmlConfiguration objectwill be the XMLequivalent of the configuration
of that cache manager.
XmlConfiguration xmlConfiguration = new
XmlConfiguration(getClass().getResource("/configs/docs/template-sample.xml"));
CacheConfigurationBuilder<Long, String> configurationBuilder =
xmlConfiguration.newCacheConfigurationBuilderFromTemplate("example", Long.class,
String.class); //1
configurationBuilder =
configurationBuilder.withResourcePools(ResourcePoolsBuilder.heap(1000)); //2

Creates a builder, inheriting the capacity
constraint of 200 entries.

1

You can override the inherent properties by
providing a different value prior to building the
CacheConfiguration

2

CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
.with(CacheManagerBuilder.persistence(tmpDir.newFile("myData")))
.withCache("threeTieredCache",

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
.heap(10, EntryUnit.ENTRIES)
.offheap(1, MemoryUnit.MB)

26 Ehcache API Developer Guide 10.15

3 Configuring a CacheManager Using XML

.disk(20, MemoryUnit.MB, true))
.withExpiry(ExpiryPolicyBuilder.timeToIdleExpiration(Duration.ofSeconds(20)))

).build(false);
Configuration configuration = cacheManager.getRuntimeConfiguration();
XmlConfiguration xmlConfiguration = new XmlConfiguration(configuration); //1
String xml = xmlConfiguration.toString(); //2

Instantiate an XmlConfiguration object and
passing Configuration as a paramater to the
cache manager.

1

Retrieve the XML representation using the
`toString` method.

2

Not every programmatic configuration can be translated to XML in this manner. Translation is
not supported if the cache manager configuration contains a cache that has any of the following
configured:

EvictionAdvisor

A custom ExpiryPolicy other than timeToLiveExpiration or timeToIdleExpiration from
ExpiryPolicyBuilder

Using an instance of the following instead of their classes:

Serializer

Copier

CacheLoaderWriter

CacheEventListener

ResilienceStrategy

Multiple XML Configurations in one Document

The XmlMultiConfiguration class and the associated ehcache-multi.xsd XML schema provide
support to have multiple Ehcache configurations housed within a single XML container format.

Multiple Ehcache Manager Configurations
The simplest use of the multi-configuration features is to embed multiple cache manager
configurations in a single XML file:
<multi:configurations
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns='http://www.ehcache.org/v3'
xmlns:multi='http://www.ehcache.org/v3/multi'
xsi:schemaLocation='http://www.ehcache.org/v3

http://www.ehcache.org/schema/ehcache-core.xsd
http://www.ehcache.org/v3/multi http://www.ehcache.org/schema/ehcache-multi.xsd'>
//1

Ehcache API Developer Guide 10.15 27

3 Configuring a CacheManager Using XML

<multi:configuration identity="foo-manager"> //2
<config>

<cache alias="foo">
<key-type>java.lang.String</key-type>
<value-type>java.lang.String</value-type>
<resources>

<heap unit="entries">20</heap>
<offheap unit="MB">10</offheap>

</resources>
</cache>

</config>
</multi:configuration>
<multi:configuration identity="bar-manager">

<config>
<cache alias="bar">
<key-type>java.lang.String</key-type>
<value-type>java.lang.String</value-type>
<resources>

<heap unit="entries">20</heap>
<offheap unit="MB">10</offheap>

</resources>
</cache>

</config>
</multi:configuration>

</multi:configurations>

A top-level <configurations> container with
namespace declarations for the multi and core
schemas.

1

Each Ehcache configuration is embedded inside
a configuration tag with a required (unique)
identity attribute.

2

These embedded configurations can then be retrieved via an XmlMultiConfiguration instance built
from the XML document.
XmlMultiConfiguration multipleConfiguration = XmlMultiConfiguration
.from(getClass().getResource("/configs/docs/multi/multiple-managers.xml")) //1
.build(); //2

Configuration fooConfiguration = multipleConfiguration.configuration("foo-manager");
//3

The XmlMultiConfiguration is assembled from
the XML resource.

1

Once assembled, the configuration is built.2

You can retrieve a specific Configuration
instance by using its identity.

3

28 Ehcache API Developer Guide 10.15

3 Configuring a CacheManager Using XML

Multiple Cache Manager Variants
Multiple variant configurations for a given manager can be provided by including a sequence of
<variant> tags, each with a required type attribute:
<multi:configuration identity="foo-manager">
<multi:variant type="heap">

<config>
<cache alias="foo">

<key-type>java.lang.String</key-type>
<value-type>java.lang.String</value-type>
<resources>
<heap unit="entries">1000</heap>

</resources>
</cache>

</config>
</multi:variant>
<multi:variant type="offheap">

<config>
<cache alias="foo">

<key-type>java.lang.String</key-type>
<value-type>java.lang.String</value-type>
<resources>
<heap unit="entries">1000</heap>
<offheap unit="MB">128</offheap>

</resources>
</cache>

</config>
</multi:variant>

</multi:configuration>

You can retrieve a specific cache configuration by choosing both a variant and an identity on
retrieval.
XmlMultiConfiguration variantConfiguration = XmlMultiConfiguration
.from(getClass().getResource("/configs/docs/multi/multiple-variants.xml"))
.build();

Configuration fooConfiguration = variantConfiguration.configuration("foo-manager",
"offheap");

Variant types can be used to represent any kind of differences, for example development vs
production, clustered vs unclustered, red vs blue, etc.

Note:
Configurations with multiple variants must have a variant type specified when retrieved. An
IllegalStateExceptionwill be thrown otherwise. Configurations without multiple variants
will always return their single configuration for all requested variants.

Multiple Cache Manager Retrieval
Multiple cache managers can be retrieved from an XmlMultiConfiguration by iterating over the
contained identities():
Map<String, Configuration> allConfigurations =
multipleConfiguration.identities().stream() //1

Ehcache API Developer Guide 10.15 29

3 Configuring a CacheManager Using XML

.collect(Collectors.toMap(i -> i, i -> multipleConfiguration.configuration(i)));
//2
Map<String, Configuration> offheapConfigurations =
variantConfiguration.identities().stream()
.collect(Collectors.toMap(i -> i, i -> variantConfiguration.configuration(i,

"offheap"))); //3

From a stream over the set of identities in a
multi-configuration.

1

Map each identity to it's unique (non-varianted)
configuration.

2

Alternatively, map each identity to a specific
variant configuration.

3

Building XML Multi Configurations
An XmlMultiConfiguration instance can be assembled and modified using the associated builder
API. The previous examples of parsing XML multi-configuration documents are all just simple
invocations of the richer builder API.

Multi-configurations can be built from scratch:
XmlMultiConfiguration multiConfiguration = XmlMultiConfiguration.fromNothing() //1
.withManager("bar", barConfiguration) //2
.withManager("foo").variant("heap", heapConfiguration).variant("offheap",

offheapConfiguration) //3
.build(); //4

Start with an empty set of configurations.1

Add a configuration without variants.2

Add a configurationwith two different variants:
heap and offheap.

3

Build the final configuration instance.4

Multi-configurations can also be built from existing configurations:
XmlMultiConfiguration modified = XmlMultiConfiguration.from(multiConfiguration) //1
.withManager("foo") //2
.build();

Startingwith an existing XmlMultiConfiguration.1

Remove the configuration with identity "foo".2

Once built, a multi-configuration can be retrieved in an XML format:
String xmlString = multiConfiguration.asRenderedDocument(); //1

30 Ehcache API Developer Guide 10.15

3 Configuring a CacheManager Using XML

Document xmlDocument = multiConfiguration.asDocument(); //2

Retrieve the XML as a rendered string.1

Retrieve the XMLas aDOM (org.w3c.Document).2

Ehcache API Developer Guide 10.15 31

3 Configuring a CacheManager Using XML

32 Ehcache API Developer Guide 10.15

3 Configuring a CacheManager Using XML

4 Configuration Derivation

■ Principles .. 34

■ Core Configuration Changes .. 34

■ Extended Configuration Changes .. 35

Ehcache API Developer Guide 10.15 33

Principles

The configuration derivation feature allows you to create a new Ehcache configuration object via
a transformation on an existing configuration object. This can be useful for:

Pre-processing an externally sourced configuration, adding additional settings before creating
the cache manager.

Processing the configuration of an existing cache manager to generate a new configuration.

The basis of the configuration derivationAPI is the Configuration.derive()method that generates
a builder seeded with the configurations values.
FluentConfigurationBuilder<?> derivedBuilder = configuration.derive(); //1
Configuration configurationCopy = derivedBuilder.build(); //2

Creates a builder seededwith the configuration’s
state.

1

Configurations built using the builder are then
functionally identical to the original
configuration.

2

Core Configuration Changes

The configuration builder returned by the derive method provides direct methods for modifying
core configuration concepts:

Setting a custom class loader:
Configuration withClassLoader = configuration.derive()
.withClassLoader(classLoader)
.build();

Adding a cache:
Configuration withCache = configuration.derive()
.withCache("cache", CacheConfigurationBuilder.newCacheConfigurationBuilder(

Long.class, String.class, ResourcePoolsBuilder.heap(10)))
.build();

<ehcache>
<cache alias="cache">
<key-type>Long.class</key-type>

<value-type>Object.class</value-type>
<heap>10</heap>

</cache>
</ehcache>

--><ehcache>
</ehcache>

Removing a cache:

34 Ehcache API Developer Guide 10.15

4 Configuration Derivation

Configuration withoutCache = configuration.derive()
.withoutCache("cache")
.build();

<ehcache>
</ehcache>--><ehcache>

<cache alias="cache">
<key-type>Long.class</key-type>

<value-type>Object.class</value-type>
<heap>10</heap>

</cache>
</ehcache>

Updating a cache configuration uses a UnaryOperator that is run against a cache configuration
builder seeded by the existing cache configuration.

Updating a cache, by adding a resource:
Configuration withOffHeap = configuration.derive()
.updateCache("cache", cache -> cache.updateResourcePools(

resources -> ResourcePoolsBuilder.newResourcePoolsBuilder(resources)
.offheap(100, MemoryUnit.MB)
.build()))

.build();

<ehcache>
<cache alias="cache">
<key-type>Long.class</key-type>

<value-type>Object.class</value-type>
<resources>
<heap>10</heap>
<offheap unit="MB">100</offheap>

</resources>
</cache>

</ehcache>

--><ehcache>
<cache alias="cache">

<key-type>Long.class</key-type>

<value-type>Object.class</value-type>
<heap>10</heap>

</cache>
</ehcache>

Extended Configuration Changes

Ehcache is a pluggable system, so modifying many of the more complex configurations requires
modifying both service creation configurations and service configurations:

Adding a service creation configuration (constraining the default thread pool)
Configuration withBoundedThreads = configuration.derive()
.withService(new PooledExecutionServiceConfiguration()

.addDefaultPool("default", 1, 16))
.build();

Ehcache API Developer Guide 10.15 35

4 Configuration Derivation

<ehcache>
<thread-pools>
<thread-pool alias="default"

default="true"
min-size="1"

max-size="16"/>
</thread-pools>

</ehcache>

--><ehcache>
</ehcache>

Updating a service creation configuration (changing the persistence path)
Configuration withUpdatedPersistence = configuration.derive()
.updateServices(DefaultPersistenceConfiguration.class,

existing -> new File("/var/persistence/path"))
.build();

<ehcache>
<persistence

directory="/var/persistence/path"/>
</ehcache>

--><ehcache>
<persistence

directory="/some/thing/else"/>
</ehcache>

Adding a service configuration (setting a resilience strategy)
Configuration withThrowingStrategy = configuration.derive()
.updateCache("cache", existing -> existing.withService(

new DefaultResilienceStrategyConfiguration(new ThrowingResilienceStrategy<>())
))
.build();

<ehcache>
<cache alias="cache">
<key-type>Long.class</key-type>

<value-type>Object.class</value-type>
<heap>10</heap>
<resilience>

com.example.ThrowingResilienceStrategy
</resilience>

</cache>
</ehcache>

--><ehcache>
<cache alias="cache">

<key-type>Long.class</key-type>

<value-type>Object.class</value-type>
<heap>10</heap>

</cache>
</ehcache>

Updating a service configuration (changing a clustered cache’s consistency)
Configuration changedConsistency = configuration.derive()
.updateCache("cache", cache -> cache.updateServices(

ClusteredStoreConfiguration.class,
existing -> Consistency.EVENTUAL)

)
.build();

36 Ehcache API Developer Guide 10.15

4 Configuration Derivation

<ehcache>
<service>
<tc:cluster>
<tc:connection

url="terracotta://example.com/cachemanager"/>
</tc:cluster>

</service>
<cache alias="cache">
<resources>
<tc:clustered-dedicated

unit="MB">50</tc:clustered-dedicated>
</resources>
<tc:clustered-store

consistency="eventual"/>
</cache>

</ehcache>

--><ehcache>
<service>

<tc:cluster>
<tc:connection

url="terracotta://example.com/cachemanager"/>
</tc:cluster>

</service>
<cache alias="cache">

<resources>
<tc:clustered-dedicated

unit="MB">50</tc:clustered-dedicated>
</resources>
<tc:clustered-store

consistency="strong"/>
</cache>

</ehcache>

Removing a service

Removing a service often involves removing both the service creation instance and the service
configuration instances because they are usually very connected:

Removing a service (making a cache manager non-clustered)
Configuration withoutClustering = configuration.derive()
.updateCaches(cache -> cache //1

.withoutServices(ClusteredStoreConfiguration.class) //2

.updateResourcePools(existing -> {
ResourcePoolsBuilder poolsBuilder =

ResourcePoolsBuilder.newResourcePoolsBuilder(); //3
for (ResourcePool pool : existing.getResourceTypeSet().stream() //4

.filter(p -> !(p instanceof ClusteredResourceType)) //5

.map(existing::getPoolForResource)

.toArray(ResourcePool[]::new)) {
poolsBuilder = poolsBuilder.with(pool); //6

}
return poolsBuilder.build();

}))
.withoutServices(ClusteringServiceConfiguration.class) //7
.build();

From all cache configurations…1

remove any existing
ClusteredStoreConfigurationinstances.

2

Create a new resource pool builder…3

From the existing resource pools…4

filter out any clustered resources.5

Add all remaining pools to the new resource
pools instance.

6

Ehcache API Developer Guide 10.15 37

4 Configuration Derivation

Remove the clustering service creation
configuration.

7

<ehcache>
<cache alias="cache">
<resources>
<heap>100</heap>

</resources>
</cache>

</ehcache>

--><ehcache>
<service>

<tc:cluster>
<tc:connection

url="terracotta://example.com/cachemanager"/>
</tc:cluster>

</service>
<cache alias="cache">

<resources>
<heap>100</heap>
<tc:clustered-dedicated

unit="MB">50</tc:clustered-dedicated>
</resources>
<tc:clustered-store

consistency="strong"/>
</cache>

</ehcache>

38 Ehcache API Developer Guide 10.15

4 Configuration Derivation

5 The JCache (JSR-107) Cache Provider

■ Overview of JCache ... 40

■ Using Ehcache as a JCache Provider .. 40

■ Getting Started with Ehcache and JCache (JSR-107) ... 40

■ Integrating JCache and Ehcache Configurations ... 41

■ Differences in Default Behavior between Ehcache and Ehcache through JCache 48

Ehcache API Developer Guide 10.15 39

Overview of JCache

The Java Temporary Caching API (JSR-107), also referred to as JCache, is a specification (not a
software implementation) that defines the javax.cache API. The specification was developed
under the Java Community Process, and its purpose is to provide standardized caching concepts
and mechanisms for Java applications.

The API is simple to use, it is designed as a caching standard and is vendor-neutral. It eliminates
the stark contrast that has in the past existed between APIs of different vendors, which caused
developers to stick with the proprietary API they were already using, rather than investigating a
new API, as the bar to investigating other products was too high.

So it is easy for you as an application developer to develop an application using the JCache API
from one vendor, then if you so choose, try out another vendor's JCache support without having
to change a single line of your application code. All you have to do is use the JCache caching
library from your chosen vendor. Thismeans you can avoid having to rewrite a lot of your caching
related code in an application just to try out a new caching solution.

Using Ehcache as a JCache Provider

To use JCache API calls in an application, you require both of the following jar files:

The JCache jar, which defines the JCache APIs.

The Ehcache jar, which is the caching provider jar that implements the JCacheAPIs. It translates
the JCache API calls to their Ehcache API equivalent.

You can use the JCacheAPI to develop a complete application,without the need to use any Ehcache
API calls.

Setting up Ehcache as the Caching Provider for JCache

To use Ehcache as the caching provider for your application, add the file javax.cache:cache-
api:1.y.y.jar (where y.y is a version-dependent string) to your application's classpath. This is of
course assuming Ehcache is already on that same classpath.

No other setup steps are required.

The JCache jar file is available as a download from the JSR-107 section of the web pages of the Java
Community Process.

Note:
If you were already using JCache with another caching provider, ensure that you remove the
other provider's jar file before starting your application.

Getting Started with Ehcache and JCache (JSR-107)

In addition to the Cache interface, the JCache specification defines the interfaces CachingProvider
and CacheManager. Applications need to use a CacheManager to create/retrieve a Cache. Similarly a
CachingProvider is required to get/access a CacheManager.

40 Ehcache API Developer Guide 10.15

5 The JCache (JSR-107) Cache Provider

Here is a code sample that demonstrates the usage of the basic JCache configuration APIs:
CachingProvider provider = Caching.getCachingProvider(); // <1>
CacheManager cacheManager = provider.getCacheManager(); // <2>
MutableConfiguration<Long, String> configuration =

new MutableConfiguration<Long, String>() // <3>
.setTypes(Long.class, String.class) // <4>
.setStoreByValue(false) // <5>
.setExpiryPolicyFactory(

CreatedExpiryPolicy.factoryOf(Duration.ONE_MINUTE)); // <6>
Cache<Long, String> cache =

cacheManager.createCache("jCache", configuration); // <7>
cache.put(1L, "one"); // <8>
String value = cache.get(1L); // <9>

Citations from the previous code example:

Retrieves the default CachingProvider implementation from the application's classpath.
This method will work if and only if there is exactly one JCache implementation jar in

1

the classpath. If there aremultiple providers in your classpath then use the fully qualified
name org.ehcache.jsr107.EhcacheCachingProvider to retrieve the Ehcache caching
provider. You can do this by using the Caching.getCachingProvider(String) static
method instead.

Retrieve the default CacheManager instance using the provider.2

Create a cache configuration using MutableConfiguration…3

with key type and value type as Long and String respectively…4

configured to store the cache entries by reference (not by value)…5

and with an expiry time of one minute defined for entries from the moment they are
created.

6

Using the cache manager, create a cache named jCache with the configuration created
in step 3.

7

Put some data into the cache.8

Retrieve the data from the same cache.9

Integrating JCache and Ehcache Configurations

Asmentioned already, JCache offers a minimal set of configuration that is ideal for an in-memory
cache. But Ehcache nativeAPIs support topologies that aremuchmore complex and providemore
features. At times, application developers might want to configure caches that are much complex
(in terms of topology or features) than the ones that the JCache MutableConfiguration permits,
and still be able to use JCache's caching APIs. Ehcache provides several ways to achieve this, as
described in the following sections.

Ehcache API Developer Guide 10.15 41

5 The JCache (JSR-107) Cache Provider

Accessing the underlying Ehcache configuration from a JCache configuration

When you create a Cache on a CacheManager using a MutableConfiguration - in other words, using
only JCache types - you can still get to the underlying Ehcache CacheRuntimeConfiguration:
MutableConfiguration<Long, String> configuration =

new MutableConfiguration<Long, String>();
configuration.setTypes(Long.class, String.class);
Cache<Long, String> cache = cacheManager.createCache("someCache",

configuration); // <1>
CompleteConfiguration<Long, String> completeConfiguration =

cache.getConfiguration(CompleteConfiguration.class); // <2>
Eh107Configuration<Long, String> eh107Configuration =

cache.getConfiguration(Eh107Configuration.class); // <3>
CacheRuntimeConfiguration<Long, String> runtimeConfiguration =

eh107Configuration.unwrap(CacheRuntimeConfiguration.class); // <4>

Citations from the previous code example:

Create a JCache cache using the MutableConfiguration interface from the JCache
specification.

1

Get to the JCache CompleteConfiguration.2

Get to the configuration bridge connecting Ehcache and JCache.3

Unwrap to the Ehcache CacheRuntimeConfiguration type.4

CacheManager level configuration

If you need to configure features at the CacheManager level, like the persistence directory, you will
have to use provider specific APIs.

The way you do this is as follows:
CachingProvider cachingProvider = Caching.getCachingProvider();
EhcacheCachingProvider ehcacheProvider =

(EhcacheCachingProvider) cachingProvider; // 1
DefaultConfiguration configuration =
new DefaultConfiguration(ehcacheProvider.getDefaultClassLoader(),
new DefaultPersistenceConfiguration(getPersistenceDirectory())); // 2

CacheManager cacheManager = ehcacheProvider.getCacheManager(
ehcacheProvider.getDefaultURI(), configuration); // 3

Citations from the previous code example:

Cast the CachingProvider into the Ehcache specific implementation
org.ehcache.jsr107.EhcacheCachingProvider,

1

Create a configuration using the specific Ehcache DefaultConfiguration and pass it some
CacheManager level configurations,

2

42 Ehcache API Developer Guide 10.15

5 The JCache (JSR-107) Cache Provider

Create the CacheManager using the method that takes an Ehcache configuration as a
parameter.

3

Cache level configuration

You can also create a JCache Cache using an Ehcache CacheConfiguration. When using this
mechanism, no JCache CompleteConfiguration is used and so you cannot get to one.

CacheConfiguration<Long, String> cacheConfiguration =
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,

String.class,
ResourcePoolsBuilder.heap(10)).build(); // <1>

Cache<Long, String> cache = cacheManager.createCache("myCache",
Eh107Configuration.fromEhcacheCacheConfiguration(cacheConfiguration)); // <2>

Eh107Configuration<Long, String> configuration =
cache.getConfiguration(Eh107Configuration.class);

configuration.unwrap(CacheConfiguration.class); // <3>
configuration.unwrap(CacheRuntimeConfiguration.class); // <4>
try {
cache.getConfiguration(CompleteConfiguration.class); // <5>
throw new AssertionError("IllegalArgumentException expected");

} catch (IllegalArgumentException iaex) {
// Expected

}

Citations from the previous code example:

Create anEhcache CacheConfiguration. You canuse a builder as shownhere, or alternatively
use an XML configuration (as described in the following section).

1

Get a JCache configuration by wrapping the Ehcache configuration.2

Get back to the Ehcache CacheConfiguration.3

... or even to the runtime configuration.4

No JCache CompleteConfiguration is available in this context.5

Building the JCache configuration using an Ehcache XML configuration

Another way to have the full Ehcache configuration options on your JCache caches while having
no code dependency on Ehcache as the cache provider is to use XML-based configuration. See
“Configuring a CacheManager Using XML” on page 21 for more details on configuring caches in
XML.

The following is an example of an XML configuration:
<config

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns='http://www.ehcache.org/v3'
xsi:schemaLocation="
http://www.ehcache.org/v3 http://www.ehcache.org/schema/ehcache-core-3.0.xsd">

Ehcache API Developer Guide 10.15 43

5 The JCache (JSR-107) Cache Provider

<cache alias="ready-cache">
<key-type>java.lang.Long</key-type>
<value-type>com.pany.domain.Product</value-type>
<loader-writer>

<class>com.pany.ehcache.integration.ProductCacheLoaderWriter</class>
</loader-writer>
<heap unit="entries">100</heap>

</cache>
</config>

Here is an example of how to access the XML configuration using JCache:

CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager manager = cachingProvider.getCacheManager(// <1>

getClass().getResource("/org/ehcache/docs/ehcache-jsr107-config.xml").toURI(), //
<2>

getClass().getClassLoader()); // <3>
Cache<Long, Product> readyCache = manager.getCache("ready-cache", Long.class,
Product.class); // <4>

Citations from the previous code example:

Invoke javax.cache.spi.CachingProvider.getCacheManager(java.net.URI,
java.lang.ClassLoader)

1

... and pass in a URI that resolves to an Ehcache XML configuration file.2

The second argument is the ClassLoader to use to load user types if needed; i.e. Class
instances that are stored in the Cachemanaged by our CacheManager.

3

Get the configured Cache out of the CacheManager.4

Note:
You can alternatively use the CachingProvider.getCacheManager()method that takes no
arguments. The URI and ClassLoaderused to configure the CacheManagerwill then use the vendor
specific values returned by CachingProvider.getDefaultURI and .getDefaultClassLoader
respectively. Be aware that these are not entirely specified for Ehcache currently andmay change
in future releases!

Enabling/Disabling MBeans for JCache using an Ehcache XML configuration

Whenusing an EhcacheXML configuration, youmaywant to enablemanagement and / or statistics
MBeans for JCache caches. This gives you control over the following:

javax.cache.configuration.CompleteConfiguration.isStatisticsEnabled

javax.cache.configuration.CompleteConfiguration.isManagementEnabled

You can do this at two different levels:
<config

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns='http://www.ehcache.org/v3'

44 Ehcache API Developer Guide 10.15

5 The JCache (JSR-107) Cache Provider

xmlns:jsr107='http://www.ehcache.org/v3/jsr107'
xsi:schemaLocation="

http://www.ehcache.org/v3
http://www.ehcache.org/schema/ehcache-core-3.0.xsd
http://www.ehcache.org/v3/jsr107
http://www.ehcache.org/schema/ehcache-107-ext-3.0.xsd">

<service>
<jsr107:defaults enable-management="true" enable-statistics="true"/> <!--1-->

</service>
<cache alias="stringCache"> <!--2-->

<key-type>java.lang.String</key-type>
<value-type>java.lang.String</value-type>
<heap unit="entries">2000</heap>

</cache>
<cache alias="overrideCache">

<key-type>java.lang.String</key-type>
<value-type>java.lang.String</value-type>
<heap unit="entries">2000</heap>
<jsr107:mbeans enable-management="false" enable-statistics="false"/> <!--3-->

</cache>
<cache alias="overrideOneCache">

<key-type>java.lang.String</key-type>
<value-type>java.lang.String</value-type>
<heap unit="entries">2000</heap>
<jsr107:mbeans enable-statistics="false"/> <!--4-->

</cache>
</config>

Citations from the previous code example:

Using the JCache service extension, you can enable MBeans by default.1

The cache stringCachewill have both MBeans enabled, according to the service
configuration.

2

The cache overrideCachewill have both MBeans disabled, overriding the service
configuration.

3

The cache overrideOneCachewill have the statistics MBean disabled, whereas the
management MBean will be enabled according to the service configuration.

4

Supplementing JCache cache configurations using Ehcache XML extensions

You can also create cache-templates. See theCache Templates topic of the section “The XML Schema
Definition” on page 23 for more details. Ehcache as a caching provider for JCache comes with an
extension to the regular XML configuration so you can:

1. Configure a default template fromwhich all programmatically created Cache instances inherit,
and

2. Configure a given named Cache to inherit from a specific template.

This feature is particularly useful to configure Cache beyond the scope of the JCache specification,
for example, giving Cache a capacity constraint. To do this, add a jsr107 service in your XML
configuration file:

Ehcache API Developer Guide 10.15 45

5 The JCache (JSR-107) Cache Provider

<config
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns='http://www.ehcache.org/v3'
xmlns:jsr107='http://www.ehcache.org/v3/jsr107'
xsi:schemaLocation="

http://www.ehcache.org/v3
http://www.ehcache.org/schema/ehcache-core-3.0.xsd

http://www.ehcache.org/v3/jsr107
http://www.ehcache.org/schema/ehcache-107-ext-3.0.xsd"> <!--1-->

<service> <!--2-->
<jsr107:defaults default-template="tinyCache"> <!--3-->

<jsr107:cache name="foos" template="clientCache"/> <!--4-->
<jsr107:cache name="byRefCache" template="byRefTemplate"/>
<jsr107:cache name="byValCache" template="byValueTemplate"/>
<jsr107:cache name="weirdCache1" template="mixedTemplate1"/>
<jsr107:cache name="weirdCache2" template="mixedTemplate2"/>

</jsr107:defaults>
</service>
<cache-template name="clientCache">

<key-type>java.lang.String</key-type>
<value-type>com.pany.domain.Client</value-type>
<expiry>

<ttl unit="minutes">2</ttl>
</expiry>
<heap unit="entries">2000</heap>

</cache-template>
<cache-template name="tinyCache">

<heap unit="entries">20</heap>
</cache-template>
<cache-template name="byRefTemplate">

<key-type copier=
"org.ehcache.impl.copy.IdentityCopier">java.lang.Long</key-type>

<value-type copier=
"org.ehcache.impl.copy.IdentityCopier">com.pany.domain.Client</value-type>

<heap unit="entries">10</heap>
</cache-template>
<cache-template name="byValueTemplate">

<key-type copier=
"org.ehcache.impl.copy.SerializingCopier">java.lang.Long</key-type>

<value-type copier=
"org.ehcache.impl.copy.SerializingCopier">com.pany.domain.Client</value-type>

<heap unit="entries">10</heap>
</cache-template>
<cache-template name="mixedTemplate1">

<key-type copier=
"org.ehcache.impl.copy.IdentityCopier">java.lang.Long</key-type>

<value-type copier=
"org.ehcache.impl.copy.SerializingCopier">com.pany.domain.Client</value-type>

<heap unit="entries">10</heap>
</cache-template>
<cache-template name="mixedTemplate2">

<key-type copier=
"org.ehcache.impl.copy.SerializingCopier">java.lang.Long</key-type>

<value-type copier=
"org.ehcache.impl.copy.IdentityCopier">com.pany.domain.Client</value-type>

<heap unit="entries">10</heap>
</cache-template>

</config>

Citations from the previous code example:

46 Ehcache API Developer Guide 10.15

5 The JCache (JSR-107) Cache Provider

First, declare a namespace for the JCache extension, e.g. jsr107.1

Within a service element at the top of your configuration, add a jsr107:defaults
element.

2

The element takes an optional attribute default-template, which references the
cache-template to use for all javax.cache.Cache elements created by the application

3

at runtime using javax.cache.CacheManager.createCache. In this example, the default
cache-template used will be tinyCache, meaning that in addition to their particular
configuration, any programmatically created Cache instances will have their capacity
constrained to 20 entries.

Nested within the jsr107:defaults element, add specific cache-templates to use for
the given named Cache. So, for example, when creating the Cache named foos at

4

runtime, Ehcache will enhance its configuration, giving it a capacity of 2000 entries,
as well as ensuring that both key and value types are String.

Note:
The XSD schema definitions that describe the syntax used for the Ehcache XML configuration
are referenced at “XSD namespaces and locations” on page 114.

Using the above configuration, you can not only supplement but also override the configuration
of JCache-created caches without modifying the application code.

MutableConfiguration<Long, Client> mutableConfiguration =
new MutableConfiguration<>();

mutableConfiguration.setTypes(Long.class, Client.class); // <1>
Cache<Long, Client> anyCache =

manager.createCache("anyCache", mutableConfiguration); // <2>
CacheRuntimeConfiguration<Long, Client> ehcacheConfig =

(CacheRuntimeConfiguration<Long, Client>)anyCache.getConfiguration(
Eh107Configuration.class).unwrap(CacheRuntimeConfiguration.class); // <3>

ehcacheConfig.getResourcePools().
getPoolForResource(ResourceType.Core.HEAP).getSize(); // <4>

Cache<Long, Client> anotherCache =
manager.createCache("byRefCache", mutableConfiguration);

assertFalse(anotherCache.
getConfiguration(Configuration.class).isStoreByValue()); // <5>

MutableConfiguration<String, Client> otherConfiguration =
new MutableConfiguration<>();

otherConfiguration.setTypes(String.class, Client.class);
otherConfiguration.setExpiryPolicyFactory(CreatedExpiryPolicy.

factoryOf(Duration.ONE_MINUTE)); // <6>
Cache<String, Client> foosCache =

manager.createCache("foos", otherConfiguration);// <7>
CacheRuntimeConfiguration<Long, Client> foosEhcacheConfig =

(CacheRuntimeConfiguration<Long, Client>)foosCache.getConfiguration(
Eh107Configuration.class).unwrap(CacheRuntimeConfiguration.class);

Client client1 = new Client("client1", 1);
foosEhcacheConfig.getExpiry().getExpiryForCreation(42L, client1).toMinutes(); // <8>
CompleteConfiguration<String, String> foosConfig =

foosCache.getConfiguration(CompleteConfiguration.class);
try {
final Factory<ExpiryPolicy> expiryPolicyFactory =

Ehcache API Developer Guide 10.15 47

5 The JCache (JSR-107) Cache Provider

foosConfig.getExpiryPolicyFactory();
ExpiryPolicy expiryPolicy = expiryPolicyFactory.create(); // <9>
throw new AssertionError("Expected UnsupportedOperationException");

} catch (UnsupportedOperationException e) {
// Expected

}

Citations from the previous code example:

Assume existing JCache configuration code, which is store-by-value by default1

... that creates JCache Cache.2

If you were to get to the Ehcache RuntimeConfiguration3

... you could verify that the template configured capacity is applied to the cache and
returns 20 here.

4

The cache template will override the JCache cache's store-by-value configuration to
store-by-reference, since the byRefTemplatetemplate that is used to create the cache is
configured explicitly using IdentityCopier.

5

Templates will also override the JCache configuration, in this case using a configuration
with Time to Live (TTL) 1 minute.

6

Create a cache where the template sets the TTL to 2 minutes.7

And we can indeed verify that the configuration provided in the template has been
applied; the duration will be 2 minutes and not 1 minute.

8

One drawback of this is that when getting at the CompleteConfiguration, you no longer
have access to the factories from JCache.

9

Note:
As mentioned in step 5, in order to override the store-by-value configuration of a JCache cache
using templates, you can explicitly configure the template using IdentityCopier. But the usage
of IdentityCopier is not mandatory to get a store-by-reference cache. You can use any custom
copier implementation that does not perform any "copying" but returns the exact same reference
that gets passed into the copymethods. IdentityCopier is just an example thatwe have provided
for your convenience.

Differences in Default Behavior between Ehcache and Ehcache
through JCache

Ehcache used natively and Ehcache used through JCache do not always agree on default behavior.
While native Ehcache can behave the way JCache specifies, depending on the used configuration
mechanism, you may see differences in defaults.

by-reference or by-value

Ehcache and Ehcache through JCache disagree on the default mode for heap-only caching.

48 Ehcache API Developer Guide 10.15

5 The JCache (JSR-107) Cache Provider

Ehcache configuration with JCache MutableConfiguration

Unless you invoke MutableConfiguration.setStoreByValue(boolean), the default value is “true”.
This means that you will be limited to Serializable keys and values when using Ehcache.

Under the cover, this will trigger the use of serializing copiers and pick the appropriate serializer
from the default ones. See the section “Serializers andCopiers” on page 93 for related information.

Ehcache configuration with native XML or code

Heap only: When using heap only caches, the default is by-reference unless you configure a
Copier.

Other tiering configuration: When using any other tiers, since serialization comes into play
the default is “by-value”.

See the sections “Copiers” on page 98 and “Serializers” on page 94 for related information.

Cache-through and compare-and-swap operations

Ehcache andEhcache through JCache disagree on the role of the cache loader for compare-and-swap
operations.

Ehcache through JCache behaviour

When using compare-and-swap operations, such as putIfAbsent(K, V), the cache loader will not
be used if the cache has no mapping present. If the putIfAbsent(K, V) succeeds then the cache
writer will be used to propagate the update to the system of record. This could result in the cache
behaving like INSERT but effectively causing a blind update on the underlying system of record.

Native Ehcache behaviour

The CacheLoaderWriterwill always be used to load missing mappings with and to write updates.
This enables the putIfAbsent(K, V) in cache-through to behave as an INSERT on the system of
record.

If you need Ehcache through JCache behaviour, the following shows the relevant XML configuration:
<service>
<jsr107:defaults jsr-107-compliant-atomics="true"/>

</service>

Ehcache API Developer Guide 10.15 49

5 The JCache (JSR-107) Cache Provider

50 Ehcache API Developer Guide 10.15

5 The JCache (JSR-107) Cache Provider

6 User Managed Caches

■ Overview of User Managed Caches ... 52

■ API Extensions ... 52

■ Code examples for User Managed Caches .. 54

Ehcache API Developer Guide 10.15 51

Overview of User Managed Caches

What are user managed caches and what do they offer?

Ausermanaged cache gives you a simpleway to configure a cache directly, without the complexity
of setting up or using a CacheManager. The choice whether to use a UserManagedCache rather than
a CacheManager usually depends on whether you need all of the built-in functionality of a
CacheManager. In cases where your cache requirements are relatively straightforward, and you do
not require the full range of features of a CacheManager, consider using a UserManagedCache instead.

Typical scenarios for using a UserManagedCache are: method local caches, thread local caches or
any other place where the lifecycle of the cache is shorter than the application lifecycle.

API Extensions

User Managed Cache

If you use a UserManagedCache, you need to configure all required services by hand.

The UserManagedCache class extends the Cache class by offering additional methods:

init() - initializes the cache

close() - releases the cache resources

getStatus() - returns a status

The init and closemethods deal with the lifecycle of the cache and need to be called explicitly,
whereas these methods are hidden when the cache is inside a CacheManager.

The interface definition is shown in this code:
package org.ehcache;
import java.io.Closeable;
/**
* Represents a {@link Cache} that is not managed by a
* {@link org.ehcache.CacheManager CacheManager}.
* <P>
* These caches must be {@link #close() closed} in order to release
* all their resources.
* </P>
*
* @param <K> the key type for the cache
* @param <V> the value type for the cache
*/
public interface UserManagedCache<K, V> extends Cache<K, V>, Closeable {
/**
* Transitions this {@code UserManagedCache} to
* {@link org.ehcache.Status#AVAILABLE AVAILABLE}.
* <P>
* If an error occurs before the {@code UserManagedCache} is {@code AVAILABLE},
* it will revert to {@link org.ehcache.Status#UNINITIALIZED UNINITIALIZED}
* and attempt to properly release all resources.

52 Ehcache API Developer Guide 10.15

6 User Managed Caches

* </P>
*
* @throws IllegalStateException if the {@code UserManagedCache} is not
* {@code UNINITIALIZED}
* @throws StateTransitionException if the {@code UserManagedCache} could not
* be made {@code AVAILABLE}
*/

void init() throws StateTransitionException;
/**
* Transitions this {@code UserManagedCache} to
* {@link Status#UNINITIALIZED UNINITIALIZED}.
* <P>
* This will release all resources held by this cache.
* </P>
* <P>
* Failure to release a resource will not prevent other resources from being
* released.
* </P>
*
* @throws StateTransitionException if the {@code UserManagedCache} could not
* reach {@code UNINITIALIZED} cleanly
* @throws IllegalStateException if the {@code UserManagedCache} is not
* {@code AVAILABLE}
*/

@Override
void close() throws StateTransitionException;
/**
* Returns the current {@link org.ehcache.Status Status} of this
* {@code UserManagedCache}.
*
* @return the current {@code Status}
*/

Status getStatus();
}

User Managed Persistent Cache

A user managed persistent cache holds cached data in a persistent store such as disk, so that the
stored data can outlive the JVM in which your caching application runs.

If you want to create a user managed persistent cache, there is an additional interface
PersistentUserManagedCache that extends UserManagedCache and adds the destroymethod.

The destroymethod deletes all data structures, including data stored persistently on disk, for a
PersistentUserManagedCache.

The destroymethod deals with the lifecycle of the cache and needs to be called explicitly.

The interface definition is shown in this code:
package org.ehcache;
/**
* A {@link UserManagedCache} that holds data that can outlive the JVM.
*
* @param <K> the key type for the cache
* @param <V> the value type for the cache
*/

public interface PersistentUserManagedCache<K, V>

Ehcache API Developer Guide 10.15 53

6 User Managed Caches

extends UserManagedCache<K, V> {
/**
* Destroys all persistent data structures for this
* {@code PersistentUserManagedCache}.
*
* @throws java.lang.IllegalStateException if state
* {@link org.ehcache.Status#MAINTENANCE MAINTENANCE} couldn't be reached
* @throws CachePersistenceException if the persistent data cannot be destroyed
*/

void destroy() throws CachePersistenceException;
}

Code examples for User Managed Caches

Example of a basic cache lifecycle

Here is a simple example showing a basic lifecycle of a user managed cache:

UserManagedCache<Long, String> userManagedCache =
UserManagedCacheBuilder.newUserManagedCacheBuilder(Long.class, String.class)

.build(false); // <1>
userManagedCache.init(); // <2>
userManagedCache.put(1L, "The one!"); // <3>
userManagedCache.close(); // <4>

Create a UserManagedCache instance. You can either pass true to have the builder init() it
for you, or you can pass false and it is up to you to init() it prior to using it.

1

Since falsewas passed in <1>, you have to init() the UserManagedCache prior to using it.2

You can use the cache exactly as a managed cache.3

In the same vein, a UserManagedCache requires you to close it explicitly using
UserManagedCache.close(). If you are also using managed caches simultaneously, the
CacheManager.close() operation would not impact the user managed cache(s).

4

From this basic example, explore the API of UserManagedCacheBuilder in code or through Javadoc to
discover all the directly available features. The following features apply in the exact same way to
user managed caches:

Serializers and copiers. See the section “Serializers and Copiers” on page 93 for related
information.

Eviction advisor. See the section “Eviction Advisors” on page 91 for related information.

Simply use the methods from UserManagedCacheBuilderwhich are equivalent to the ones from
CacheConfigurationBuilder.

Below we will describe a more advanced setup where you need to maintain a service instance in
order to have a working user managed cache.

54 Ehcache API Developer Guide 10.15

6 User Managed Caches

Example with disk persistence and lifecycle

If youwant to use disk persistent cache, youwill need to create and lifecycle the persistence service.
LocalPersistenceService persistenceService = new DefaultLocalPersistenceService(

new DefaultPersistenceConfiguration(
new File(getStoragePath(), "myUserData"))); // <1>

PersistentUserManagedCache<Long, String> cache =
UserManagedCacheBuilder.newUserManagedCacheBuilder(Long.class, String.class)
.with(new UserManagedPersistenceContext<Long, String>("cache-name",

persistenceService)) // <2>
.withResourcePools(ResourcePoolsBuilder.newResourcePoolsBuilder()

.heap(10L, EntryUnit.ENTRIES)

.disk(10L, MemoryUnit.MB, true)) // <3>
.build(true);

// Work with the cache
cache.put(42L, "The Answer!");
assertThat(cache.get(42L), is("The Answer!"));
cache.close(); // <4>
cache.destroy(); // <5>
persistenceService.stop(); // <6>

Create the persistence service to be used by the cache for storing data on disk.1

Pass the persistence service to the builder as well as a name for the cache. Note that this
will make the builder produce a more specific type: PersistentUserManagedCache.

2

As usual, indicate here if the data should outlive the cache.3

Closing the cache will not delete the data it saved on disk, since the cache is marked as
persistent.

4

To delete the data on disk after closing the cache, you need to invoke the destroymethod
explicitly.

5

You need to stop the persistence service once you have finished using the cache.6

Example with cache event listeners

Cache event listeners require executor services in order to work. You will have to provide either
a CacheEventDispatcher implementation ormake use of the default one by providing two executor
services: one for ordered events and one for unordered ones.

Note:
The ordered events executor must be single threaded to guarantee ordering.

Formore information on cache event listeners, see the section “Cache Event Listeners” on page 87.
UserManagedCache<Long, String> cache =

UserManagedCacheBuilder.newUserManagedCacheBuilder(Long.class, String.class)
.withEventExecutors(Executors.newSingleThreadExecutor(),

Executors.newFixedThreadPool(5)) // <1>
.withEventListeners(CacheEventListenerConfigurationBuilder

.newEventListenerConfiguration(ListenerObject.class, EventType.CREATED,

Ehcache API Developer Guide 10.15 55

6 User Managed Caches

EventType.UPDATED)
.asynchronous()
.unordered()) // <2>

.withResourcePools(ResourcePoolsBuilder.newResourcePoolsBuilder()
.heap(3, EntryUnit.ENTRIES))

.build(true);
cache.put(1L, "Put it");
cache.put(1L, "Update it");
cache.close();

Provide the ExecutorService for ordered and unordered event delivery.1

Provide a listener configuration using CacheEventListenerConfigurationBuilder.2

56 Ehcache API Developer Guide 10.15

6 User Managed Caches

7 Cache Usage Patterns

There are several common access patterns when using a cache. Ehcache supports the following
patterns:

“Cache-aside” on page 57

“Cache-as-SoR” on page 57

“Read-through” on page 58

“Write-through” on page 58

“Write-behind” on page 58

Cache-aside

With the cache-aside pattern, application code uses the cache directly.

This means that application code which accesses the system-of-record (SoR) should consult the
cache first, and if the cache contains the data, then return the data directly from the cache, bypassing
the SoR. Otherwise, the application code must fetch the data from the system-of-record, store the
data in the cache, and then return it. When data is written, the cache must be updated along with
the system-of-record.

Pseudocode for reading values
v = cache.get(k)
if(v == null) {

v = sor.get(k)
cache.put(k, v)

}

Pseudocode for writing values
v = newV
sor.put(k, v)
cache.put(k, v)

Cache-as-SoR

The cache-as-SoR pattern implies using the cache as though it were the primary system-of-record
(SoR).

Ehcache API Developer Guide 10.15 57

The pattern delegates SoR reading and writing activities to the cache, so that application code is
(at least directly) absolved of this responsibility. To implement the cache-as-SoR pattern, use a
combination of the following read and write patterns:

read-through

write-through or write-behind

Advantages of using the cache-as-SoR pattern are:

Less cluttered application code (improvedmaintainability through centralized SoR read/write
operations)

Choice of write-through or write-behind strategies on a per-cache basis

Allows the cache to solve the thundering-herd problem

A disadvantage of using the cache-as-SoR pattern is:

Less directly visible code-path

Read-through

Under the read-through pattern, the cache is configuredwith a loader component that knows how
to load data from the system-of-record (SoR).

When the cache is asked for the value associatedwith a given key and such an entry does not exist
within the cache, the cache invokes the loader to retrieve the value from the SoR, then caches the
value, then returns it to the caller.

The next time the cache is asked for the value for the same key it can be returned from the cache
without using the loader (unless the entry has been evicted or expired).

Write-through

Under thewrite-through pattern, the cache is configuredwith awriter component that knows how
to write data to the system-of-record (SoR).

When the cache is asked to store a value for a key, the cache invokes the writer to store the value
in the SoR, as well as updating the cache.

Write-behind

The write-behind pattern changes the timing of the write to the system-of-record. Rather than
writing to the system-of-recordwhile the threadmaking the updatewaits (aswithwrite-through),
write-behind queues the data for writing at a later time. This allows the user's thread to move
along more quickly, at the cost of introducing some lag in time before the SoR is updated.

58 Ehcache API Developer Guide 10.15

7 Cache Usage Patterns

8 Data Freshness and Expiry

■ Data Freshness .. 60

■ Expiry ... 61

Ehcache API Developer Guide 10.15 59

Data Freshness

Many databases and other systems of record (SORs) are not built to accommodate caching outside
of the database. This means that they do not normally come with any default mechanism for
notifying external processes when data has been updated or modified. If Ehcache is used to cache
data from such a database or SOR, Ehcache will not be automatically informed if data in the
database or SOR has changed.

This leads to the idea of data freshness: if a set of data in the cache still largely matches (in other
words, most of the cached data entries are still in sync with) the data in the original data in the
database or SOR, the data is termed fresh, but if many changes in the database or SOR have
occurredwithout the cache also being updated, the data in the cache becomes increasing less fresh
- it becomes stale.

When using Ehcache as a caching system, the following strategies can help to keep the data in the
cache fresh, i.e. in sync with the database or SOR:

Data Expiry: Use the eviction algorithms included with Ehcache, along with the time-to-idle
(TTI) and time-to-live (TTL) settings, to enforce a maximum time for elements to live in the
cache (forcing a re-load from the database or SOR). See the section “Expiry” on page 61 for
related information.

MessageBus:Use an application tomake all updates to the database.When updates aremade,
post a message onto a message queue with a key to the item that was updated. All application
instances can subscribe to the message bus and receive messages about data that is updated,
and can synchronize their local copy of the data accordingly (for example by invalidating the
cache entry for updated data).

Triggers:Using a database trigger can accomplish a similar task as the message bus approach.
Use the database trigger to execute code that can publish a message to a message bus. The
advantage to this approach is that updates to the database do not have to bemade only through
a special application. The downside is that not all database triggers support full execution
environments and it is often inadvisable to execute heavy-weight processing such as publishing
messages on a queue during a database trigger.

The Data Expiry strategy is the simplest and most straightforward. It gives you the most control
over the data synchronization, and doesn't require cooperation from any external systems. You
simply set a data expiry policy and let Ehcache expire data from the cache, thus allowing fresh
reads to re-populate and re-synchronize the cache.

If you choose theData Expiry strategy, themost important consideration is balancing data freshness
with database load. The shorter you make the expiry settings - meaning the more "fresh" you try
to make the data - the more load you will place on the database.

Try out some numbers for time-to-idle and time-to-live and seewhat kind of load your application
generates. Even modestly short values such as five or ten minutes can produce significant load
reductions.

60 Ehcache API Developer Guide 10.15

8 Data Freshness and Expiry

Expiry

Introduction

Expiry is one of the key aspects of caching. In Ehcache this is addressed with the Expiry interface
and its use in controlling the age of cache mappings.

Data entries expire based on parameters with configurable values. When eviction occurs, expired
elements are the first to be removed. Having an effective expiry configuration is critical to
optimizing the use of resources such as heap storage and maintaining overall performance.

Both Java and XML offer direct support for three types of expiry:

If this setting is selected, cache entries do not expire, so they remain in the
cachewithout a time limit; however theymay be evicted. This setting overrides

no expiry

any finite TTI/TTL values that have been set. Individual cache elements may
also receive this setting.

Themaximumnumber of seconds an element can exist in the cache, regardless
ofwhether it is used or not. The element expires at this limit andwill no longer
be returned from Ehcache.

time-to-live (TTL)

The default value is 0, which means no TTL eviction takes place (infinite
lifetime).

The maximum number of seconds an element can exist in the cache without
being accessed. The element expires at this limit andwill no longer be returned
from Ehcache.

time-to-idle (TTI)

The default value is 0, which means no TTI eviction takes place (infinite
lifetime).

For Java configuration, see org.ehcache.expiry.Expirations. For XML configuration, see the XSD
schema.

Configuration

Expiry is configured at the cache level, in Java or in XML:
CacheConfiguration<Long, String> cacheConfiguration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class, ResourcePoolsBuilder.heap(100)) // 1

.withExpiry(Expirations.timeToLiveExpiration(Duration.of(20,
TimeUnit.SECONDS))) // 2

.build();

Expiry is configured at the cache level, so start by defining a cache configuration,1

then add to it an Expiry, here using the predefined time-to-live one, configured with the
required Duration.

2

Ehcache API Developer Guide 10.15 61

8 Data Freshness and Expiry

<cache alias="withExpiry">
<expiry>

<ttl unit="seconds">20</ttl> <!-- 1 -->
</expiry>
<heap>100</heap>

</cache>

At the cache level, using the predefined time-to-live again.1

Read on to implement your own expiration scheme.

Custom expiry

Support your own expiration scheme simply means implementing the Expiry interface:
/**
* A policy object that governs expiration for mappings
* in a {@link org.ehcache.Cache Cache}.
* <P>
* Previous values are not accessible directly but are rather available
* through a {@link ValueSupplier value supplier}
* to indicate that access can require computation (such as deserialization).
* </P>
* <P>
* NOTE: Some cache configurations (eg. caches with eventual consistency) may
* use local (ie. non-consistent) state
* to decide whether to call {@link #getExpiryForUpdate(Object, ValueSupplier,
* Object)} vs. {@link #getExpiryForCreation(Object, Object)}.
* For these cache configurations it is advised to return the same
* value for both of these methods
* </P>
* <P>
* See {@link Expirations} for helper methods to create common {@code Expiry}
* instances.
* </P>
*
* @param <K> the key type for the cache
* @param <V> the value type for the cache
*
* @see Expirations
*/
public interface Expiry<K, V> {
/**
* Returns the lifetime of an entry when it is initially added to a
* {@link org.ehcache.Cache Cache}.
* <P>
* This method must not return {@code null}.
* </P>
* <P>
* Exceptions thrown from this method will be swallowed and result in
* the expiry duration being
* {@link Duration#ZERO ZERO}.
* </P>
*
* @param key the key of the newly added entry
* @param value the value of the newly added entry
* @return a non-null {@link Duration}

62 Ehcache API Developer Guide 10.15

8 Data Freshness and Expiry

*/
Duration getExpiryForCreation(K key, V value);
/**
* Returns the expiration {@link Duration} (relative to the current time)
* when an existing entry is accessed from a
* {@link org.ehcache.Cache Cache}.
* <P>
* Returning {@code null} indicates that the expiration time
* remains unchanged.
* </P>
* <P>
* Exceptions thrown from this method will be swallowed and result
* in the expiry duration being
* {@link Duration#ZERO ZERO}.
* </P>
*
* @param key the key of the accessed entry
* @param value a value supplier for the accessed entry
* @return an expiration {@code Duration}, {@code null} means unchanged
*/

Duration getExpiryForAccess(K key, ValueSupplier<? extends V> value);
/**
* Returns the expiration {@link Duration} (relative to the current time)
* when an existing entry is updated in a
* {@link org.ehcache.Cache Cache}.
* <P>
* Returning {@code null} indicates that the expiration time
* remains unchanged.
* </P>
* <P>
* Exceptions thrown from this method will be swallowed and
* result in the expiry duration being
* {@link Duration#ZERO ZERO}.
* </P>
*
* @param key the key of the updated entry
* @param oldValue a value supplier for the previous value of the entry
* @param newValue the new value of the entry
* @return an expiration {@code Duration}, {@code null} means unchanged
*/

Duration getExpiryForUpdate(K key, ValueSupplier<? extends V> oldValue,
V newValue);

}

The main points to remember on the return value from these methods:

indicates that themappingwill expire after that duration,some Duration

indicates that the mapping is immediately expired,Duration.ZERO

indicates that the mapping will never expire,Duration.INFINITE

indicates that the previous expiration time is to be left
unchanged, illegal at mapping creation time.

null Duration

Note that you can access the details of the mapping, thus providing expiration times that are
different per mapping.

Ehcache API Developer Guide 10.15 63

8 Data Freshness and Expiry

Also when used from XML, Ehcache expects your expiry implementation to have a no-arg
constructor.

Once you have implemented your own expiry, simply configure it.

In Java:
CacheConfiguration<Long, String> cacheConfiguration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class,
ResourcePoolsBuilder.heap(100))

.withExpiry(new CustomExpiry()) // 1

.build();

Simply pass your custom expiry instance into the cache builder.1

In XML:
<cache alias="withCustomExpiry">
<expiry>

<class>com.pany.ehcache.MyExpiry</class> <!-- 1 -->
</expiry>
<heap>100</heap>

</cache>

Simply pass the fully qualified class name of your custom expiry.1

For an example of how to migrate per-mapping code from Ehcache v2, see the section “Migrating
Code from Ehcache v2” on page 151.

64 Ehcache API Developer Guide 10.15

8 Data Freshness and Expiry

9 Transactions Support

■ What is supported and what are the limitations? ... 66

■ Configuring it all in Java ... 66

■ Configuring it with XML .. 71

Ehcache API Developer Guide 10.15 65

What is supported and what are the limitations?

Important:

The Ehcache 3.1+ jar no longer contains the transaction related code. This is now available
through a different binary:

<groupId>org.ehcache</groupId>
<artifactId>ehcache-transactions</artifactId>

In addition, Ehcache 3.1 added clustering support but this is not yet compatiblewith transactional
caches.

Ehcache supports caches that work within the context of an XA transaction controlled by a Java
Transaction API (JTA) transaction manager. Within this context, Ehcache supports the two-phase
commit protocol, including crash recovery.

Bitronix Transaction Manager 2.1.4, which is an open source project hosted on GitHub, is the
only tested transaction manager. Other transaction managers may work but have not yet been
tested.

Read-Committed is the only supported isolation level.

The isolation level is guaranteed by the use of the Copiermechanism. When no copiers are
configured for either the key or the value, default ones are automatically used instead. You
cannot disable the Copiermechanism for a transactional cache.

Accessing a cache outside of a JTA transaction context is forbidden.

There is no protection against the ABA problem.

Everything else works orthogonally.

Configuring it all in Java

The simplest case

The simplest possible configuration is to configure a cache manager as transactionally aware by
using the provided Bitronix transaction manager integration.

This INFO level log entry informs you of the detected transaction manager:
INFO org.ehcache.transactions.xa.txmgr.btm.BitronixTransactionManagerLookup -
Using looked up transaction manager :

a BitronixTransactionManager with 0 in-flight transaction(s)

Here is an example:
BitronixTransactionManager transactionManager =

TransactionManagerServices.getTransactionManager(); // 1
CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()

.using(new LookupTransactionManagerProviderConfiguration(
BitronixTransactionManagerLookup.class)) // 2

66 Ehcache API Developer Guide 10.15

9 Transactions Support

.withCache("xaCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class, // 3
ResourcePoolsBuilder.heap(10)) // 4
.withService(new XAStoreConfiguration("xaCache")) // 5
.build()

)
.build(true);

Cache<Long, String> xaCache = cacheManager.getCache("xaCache", Long.class,
String.class);

transactionManager.begin(); // 6
{
xaCache.put(1L, "one"); // 7

}
transactionManager.commit(); // 8
cacheManager.close();
transactionManager.shutdown();

First start the Bitronix transaction manager. By default, Ehcache will auto-detect it but
will throw an exception during the cache manager initialization if BTM isn't started.

1

Configure the cache manager such as it can handle transactions by having a
TransactionManagerProvider loaded and configured to use Bitronix.

2

Register a cache the normal way.3

Give it the resources you wish.4

Add a XAStoreConfiguration object to make the cache XA transactional. You must also
give the cache a unique XAResource identifier as some transaction managers require
this.

5

Begin a JTA transaction the normal way.6

Work with the cache the normal way, all operations are supported. Note that concurrent
transactions will not see those pending changes.

7

Commit the JTA transaction. Other transactions can now see the changes you made to
the cache.

8

Configuring your transaction manager

While only the Bitronix JTA implementation has been tested so far, plugging-in another one is
possible.

You will need to implement a
org.ehcache.transactions.xa.txmgr.provider.TransactionManagerLookup and make sure you
understand its expected lifecycle as well as the one of the
org.ehcache.transactions.xa.txmgr.provider.LookupTransactionManagerProvider.

If such a lifecycle does not match your needs, you will have to go one step further and implement
your own org.ehcache.transactions.xa.txmgr.provider.TransactionManagerProvider.

Ehcache API Developer Guide 10.15 67

9 Transactions Support

XA write-through cache

When a XA cache is configured in write-though mode, the targeted SoR will automatically
participate in the JTA transaction context. Nothing special needs to be configured for this to happen,
just ensure that the configured CacheLoaderWriter is configured to work with XA transactions.
BitronixTransactionManager transactionManager =

TransactionManagerServices.getTransactionManager(); // 1
Class<CacheLoaderWriter<?, ?>> klazz =

(Class<CacheLoaderWriter<?, ?>>) (Class) (SampleLoaderWriter.class);
CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()

.using(new LookupTransactionManagerProviderConfiguration(
BitronixTransactionManagerLookup.class)) // 2

.withCache("xaCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class, // 3
ResourcePoolsBuilder.heap(10)) // 4

.withService(new XAStoreConfiguration("xaCache")) // 5

.withService(new DefaultCacheLoaderWriterConfiguration(klazz,
singletonMap(1L, "eins"))) // 6

.build()
)
.build(true);

Cache<Long, String> xaCache = cacheManager.getCache("xaCache",
Long.class, String.class);

transactionManager.begin(); // 7
{
assertThat(xaCache.get(1L), equalTo("eins")); // 8
xaCache.put(1L, "one"); // 9

}
transactionManager.commit(); // 10
cacheManager.close();
transactionManager.shutdown();

First start the Bitronix transaction manager. By default, Ehcache will auto-detect it but will
throw an exception during the cache manager initialization if BTM isn't started.

1

Configure the cache manager such as it can handle transactions by having a
TransactionManagerProvider loaded and configured to use Bitronix.

2

Register a cache the normal way.3

Give it the resources you wish.4

Add a XAStoreConfiguration object to make the cache XA transactional. You must also
give the cache a unique XAResource identifier as some transaction managers require this.

5

Add a CacheLoaderWriter configuration. This one is a mocked SoR backed by a map for
illustration purpose that is filled with 1L/"eins" key/value pair at startup.

6

Begin a JTA transaction the normal way.7

The cache is empty at startup, so the CacheLoaderWriterwill be called to load the value.8

Update the value. This will make the CacheLoaderWriterwrite to the SoR.9

68 Ehcache API Developer Guide 10.15

9 Transactions Support

Commit the JTA transaction. Other transactions can now see the changes you made to the
cache and the SoR.

10

Transactional scope

A XA cache can only be accessed within a JTA transaction's context. Any attempt to access one
outside of such context will result in XACacheException to be thrown.
BitronixTransactionManager transactionManager =

TransactionManagerServices.getTransactionManager(); // 1
CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()

.using(new LookupTransactionManagerProviderConfiguration(
BitronixTransactionManagerLookup.class)) // 2

.withCache("xaCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class, // 3
ResourcePoolsBuilder.heap(10)) // 4
.withService(new XAStoreConfiguration("xaCache")) // 5
.build()

)
.build(true);

Cache<Long, String> xaCache = cacheManager.getCache("xaCache",
Long.class, String.class);

try {
xaCache.get(1L); // 6
fail("expected XACacheException");

} catch (XACacheException e) {
// expected

}
cacheManager.close();
transactionManager.shutdown();

First start the Bitronix transaction manager. By default, Ehcache will auto-detect it but will
throw an exception during the cache manager initialization if BTM isn't started.

1

Configure the cache manager such as it can handle transactions by having a
TransactionManagerProvider loaded and configured to use Bitronix.

2

Register a cache the normal way.3

Give it the resources you wish.4

Add a XAStoreConfiguration object tomake the cache XA transactional. Youmust also give
the cache a unique XAResource identifier as some transaction managers require this.

5

The cache is being accessedwith no prior call to transactionManager.begin()whichmakes
it throw XACacheException.

6

Note:

There is one exception to that rule: the Cache.clear()method will always wipe the cache's
contents non-transactionally.

Ehcache API Developer Guide 10.15 69

9 Transactions Support

XA cache with three tiers and persistence

When a cache is configured as persistent, the in-doubt transactions are preserved and can be
recovered across restarts.

This INFO log informs you about that in-doubt transactions journaling is persistent too:
INFO o.e.t.x.j.DefaultJournalProvider - Using persistent XAStore journal

Here is an example:
BitronixTransactionManager transactionManager =

TransactionManagerServices.getTransactionManager(); // 1
PersistentCacheManager persistentCacheManager =

CacheManagerBuilder.newCacheManagerBuilder()
.using(new LookupTransactionManagerProviderConfiguration(

BitronixTransactionManagerLookup.class)) // 2
.with(new CacheManagerPersistenceConfiguration(new File(getStoragePath(),

"testXACacheWithThreeTiers"))) // 3
.withCache("xaCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(

Long.class, String.class, // 4
ResourcePoolsBuilder.newResourcePoolsBuilder() // 5

.heap(10, EntryUnit.ENTRIES)

.offheap(10, MemoryUnit.MB)

.disk(20, MemoryUnit.MB, true)
)
.withService(new XAStoreConfiguration("xaCache")) // 6
.build()

)
.build(true);

Cache<Long, String> xaCache = persistentCacheManager.getCache("xaCache",
Long.class, String.class);

transactionManager.begin(); // 7
{
xaCache.put(1L, "one"); // 8

}
transactionManager.commit(); // 9
persistentCacheManager.close();
transactionManager.shutdown();

First start the Bitronix transactionmanager. By default, Ehcache will auto-detect it but will
throw an exception during the cache manager initialization if BTM isn't started.

1

Configure the cache manager such as it can handle transactions by having a
TransactionManagerProvider loaded and configured to use Bitronix.

2

Configure persistence support to enable the use of the disk tier.3

Register a cache the normal way.4

Give it the resources you want.5

Add a XAStoreConfiguration object to make the cache XA transactional. You must also
give the cache a unique XAResource identifier as some transaction managers require this.

6

Begin a JTA transaction the normal way.7

70 Ehcache API Developer Guide 10.15

9 Transactions Support

Update the value.8

Commit the JTA transaction. Other transactions can now see the changes you made to the
cache and the SoR.

9

Configuring it with XML

You can create a XML file to configure a CacheManager, lookup a specific transaction manager and
configure XA caches:

<service>
<tx:jta-tm transaction-manager-lookup-class=
"org.ehcache.transactions.xa.txmgr.btm.BitronixTransactionManagerLookup"/>

<!-- 1 -->
</service>
<cache alias="xaCache"> <!-- 2 -->
<key-type>java.lang.String</key-type>
<value-type>java.lang.String</value-type>
<heap unit="entries">20</heap>
<tx:xa-store unique-XAResource-id="xaCache" /> <!-- 3 -->

</cache>

Declare a TransactionManagerLookup that will lookup your transaction manager.1

Configure a xaCache cache the normal way.2

Configure xaCache as an XA cache, giving it xaCache as its unique XAResource ID.3

In order to parse an XML configuration, you can use the XmlConfiguration type:

BitronixTransactionManager transactionManager =
TransactionManagerServices.getTransactionManager(); // 1

URL myUrl = this.getClass().getResource("/docs/configs/xa-getting-started.xml");
// 2

Configuration xmlConfig = new XmlConfiguration(myUrl); // 3
CacheManager myCacheManager = CacheManagerBuilder.newCacheManager(xmlConfig);

// 4
myCacheManager.init();
myCacheManager.close();
transactionManager.shutdown();

The Bitronix transaction manager must be started before the cache manager is initialized.1

Create a URL to your XML file's location.2

Instantiate a XmlConfiguration passing it the XML file's URL.3

Using the staticorg.ehcache.config.builders.CacheManagerBuilder.newCacheManager (
org.ehcache.config.Configuration) lets you create your CacheManager instance using the
Configuration from the XmlConfiguration.

4

Ehcache API Developer Guide 10.15 71

9 Transactions Support

And here is what the BitronixTransactionManagerLookup implementation looks like:
public class BitronixTransactionManagerLookup

implements TransactionManagerLookup { // 1
private static final Logger LOGGER = LoggerFactory.getLogger(

BitronixTransactionManagerLookup.class);
@Override
public TransactionManagerWrapper lookupTransactionManagerWrapper() { // 2

if (!TransactionManagerServices.isTransactionManagerRunning()) { // 3
throw new IllegalStateException("BTM must be started beforehand");

}
TransactionManagerWrapper tmWrapper = new TransactionManagerWrapper(

TransactionManagerServices.getTransactionManager(),
new BitronixXAResourceRegistry()); // 4

LOGGER.info("Using looked up transaction manager : {}", tmWrapper);
return tmWrapper;

}
}

The TransactionManagerLookup interface must be implemented and the offer a no-arg
constructor.

1

The lookupTransactionManagerWrapper()methodmust return a TransactionManagerWrapper
instance.

2

Here is the check that makes sure BTM is started.3

The TransactionManagerWrapper class is constructed with both the
javax.transaction.TransactionManager instance aswell as a XAResourceRegistryinstance.

4

The latter is used to register the javax.transaction.xa.XAResource instances of the cache
with the transaction manager using an implementation-specific mechanism. If your JTA
implementation doesn't require that, you can use the NullXAResourceRegistryinstead.

72 Ehcache API Developer Guide 10.15

9 Transactions Support

10 Tiering Options

Ehcache supports the concept of tiered caching. This section covers the different available
configuration options. It also explains rules and best practices to benefit the most from tiered
caching.

For a general overview of storage tiers, see the section Storage Tiers in the About Terracotta Ehcache
guide.

Moving out of heap

The moment you have a tier other than the heap tier in a cache, a few things happen:

Adding a mapping to the cache means that the key and value have to be serialized.

Reading a mapping from the cache means that the key and value may have to be deserialized.

With these two points above, you need to realize that the binary representation of the data and
how it is transformed to and from serialized datawill play a significant role in caching performance.
Make sure you know about the options available for serializers (see the section “Serializers” on
page 94). Also this means that some configurations, while making sense on paper, may not offer
the best performance depending on the real use case of the application.

Single tier setups

All tiering options can be used in isolation. For example, you can have caches with data only in
offheap or only clustered.

The following possibilities are valid configurations:

heap

offheap

disk

clustered

For this, simply define the single resource in the cache configuration:
CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class, // 1
ResourcePoolsBuilder.newResourcePoolsBuilder()

Ehcache API Developer Guide 10.15 73

.offheap(2, MemoryUnit.GB)).build(); // 2

Start with defining the key and value type in the configuration builder.1

Then specify the resource (the tier) you want to use. Here we use off-heap only.2

Heap Tier

The starting point of every cache and also the faster since no serialization is necessary. You can
optionally use copiers (see the section “Serializers and Copiers” on page 93) to pass keys and
values by-value, the default being by-reference.
ResourcePoolsBuilder.newResourcePoolsBuilder()

.heap(10, EntryUnit.ENTRIES); // 1
// or
ResourcePoolsBuilder.newResourcePoolsBuilder()

.heap(10); // 2

Only 10 entries are allowed on heap. Eviction will occur when full.1

A shortcut to specify 10 entries.2

Byte-sized heap

Warning:

Byte based heap resources are deprecated and will be removed in a future version.

For every tier except the heap tier, calculating the size of the cache is fairly easy. You more or less
sum the size of all byte buffers containing the serialized entries.

When heap is limited by size instead of entries, it is a bit more complicated.

Note:

Byte sizing has a runtime performance impact that depends on the size and graph complexity
of the data cached.

CacheConfiguration<Long, String> usesConfiguredInCacheConfig =
CacheConfigurationBuilder.newCacheConfigurationBuilder(

Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
.heap(10, MemoryUnit.KB) // 1
.offheap(10, MemoryUnit.MB)) // 2

.withSizeOfMaxObjectGraph(1000)

.withSizeOfMaxObjectSize(1000, MemoryUnit.B) // 3

.build();
CacheConfiguration<Long, String> usesDefaultSizeOfEngineConfig =
CacheConfigurationBuilder.newCacheConfigurationBuilder(

Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
.heap(10, MemoryUnit.KB))

74 Ehcache API Developer Guide 10.15

10 Tiering Options

.build();
CacheManager cacheManager =
CacheManagerBuilder.newCacheManagerBuilder()
.withDefaultSizeOfMaxObjectSize(500, MemoryUnit.B)
.withDefaultSizeOfMaxObjectGraph(2000) // 4
.withCache("usesConfiguredInCache", usesConfiguredInCacheConfig)
.withCache("usesDefaultSizeOfEngine",

usesDefaultSizeOfEngineConfig)
.build(true);

This will limit the amount of memory used by the heap tier for storing key-value pairs.
There is a cost associated with sizing objects.

1

The settings are only used by the heap tier. So off-heap won't use it at all.2

The sizing can also be further restrained by 2 additional configuration settings:3

The first one specifies the maximum number of objects to traverse while walking the object
graph (default: 1000), the second defines the maximum size of a single object (default:
Long.MAX_VALUE, so almost infinite). If the sizing goes above any of these two limits, the
entry won't be stored in cache.

A default configuration can be provided at CacheManager level to be used by the caches
unless defined explicitly.

4

Off-heap Tier

If you wish to use off-heap, you'll have to define a resource pool, giving the memory size you
want to allocate.
ResourcePoolsBuilder.newResourcePoolsBuilder()

.offheap(10, MemoryUnit.MB); // 1

Only 10 MB are allowed off-heap. Eviction will occur when full.1

The example above allocates a very small amount of off-heap. Youwill normally use amuch bigger
space.

Remember that data stored off-heapwill have to be serialized and deserialized - and is thus slower
than heap.

You should thus favor off-heap for large amounts of data where on-heap would have too severe
an impact on garbage collection.

Do not forget to define in the Java options the -XX:MaxDirectMemorySize option, according to the
off-heap size you intend to use.

Disk Tier

For the Disk tier, the data is stored on disk. The faster and more dedicated the disk is, the faster
accessing the data will be.

Ehcache API Developer Guide 10.15 75

10 Tiering Options

PersistentCacheManager persistentCacheManager =
CacheManagerBuilder.newCacheManagerBuilder() // <1>
.with(CacheManagerBuilder.persistence(new File(

getStoragePath(), "myData"))) // <2>
.withCache("persistent-cache",

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
.disk(10, MemoryUnit.MB, true)) // <3>

)
.build(true);

persistentCacheManager.close();

Obtain a PersistentCacheManager, which is a normal CacheManager but with the ability to
destroy caches. See the section “Destroying Persistent Tiers” on page 80 for further
information.

1

Provide a location where data should be stored.2

Define a resource pool for the disk that will be used by the cache. The third parameter is
a boolean value which is used to set whether the disk pool is persistent. When set to true,

3

the pool is persistent.When the versionwith 2 parameters disk(long, MemoryUnit) is used,
the pool is not persistent.

The example above allocates a very small amount of disk storage. You will normally use a much
bigger storage.

Persistence means the cache will survive a JVM restart. Everything that was in the cache will still
be there after restarting the JVMand creating a CacheManager disk persistence at the same location.

Note:
A disk tier can't be shared between cache managers. A persistence directory is dedicated to one
cache manager at the time.

Remember that data stored on disk will have to be serialized / deserialized and written to / read
from disk - and is thus slower than heap and offheap. So disk storage is interesting if:

You have a large amount of data that can't fit off-heap

Your disk is much faster than the storage it is caching

You are interested in persistence

Note:
The open source disk tier offers no data integrity guarantee in the case of a crash. There is an
enterprise version that provides this and more, see below.

Segments

Disk storage is separated into segments which provide concurrency access but also hold open file
pointers. The default is 16. In some cases, you might want to reduce the concurrency and save
resources by reducing the number of segments.

76 Ehcache API Developer Guide 10.15

10 Tiering Options

String storagePath = getStoragePath();
PersistentCacheManager persistentCacheManager =
CacheManagerBuilder.newCacheManagerBuilder()
.with(CacheManagerBuilder.persistence(new File(storagePath, "myData")))
.withCache("less-segments",

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()

.disk(10, MemoryUnit.MB))
.withService(new OffHeapDiskStoreConfiguration(2)) // 1

)
.build(true);

persistentCacheManager.close();

Define an OffHeapDiskStoreConfiguration instance specifying the required number of segments.1

Clustered

A clustered tier means the client connects to the Terracotta Server Array where the cached data
is stored. It is also as way to have a shared cache between JVMs.

See the section “Clustered Caches” on page 129 for details of using the cluster tier.

Multiple tier setup

If you want to use more than one tier, you have to observe some constraints:

1. There must always be a heap tier in a multi-tier setup.

2. You cannot combine disk tiers and clustered tiers.

3. Tiers should be sized in a pyramidal fashion, i.e. tiers higher up the pyramid are configured
to use less memory than tiers lower down.

For 1, this is a limitation of the current implementation.

For 2, this restriction is necessary, because having two tiers with content that can outlive the life
of a single JVM can lead to consistency questions on restart.

For 3, the idea is that tiers are related to each other. The fastest tier (the heap tier) is on top, while
the slower tiers are below. In general, heap is more constrained than the total memory of the
machine, and offheap memory is more constrained than disk or the memory available on the
cluster. This leads to the typical pyramid shape for a multi-tiered setup.

Illustration that displays the tiers stacked as pyramid. On top, the mandatory, fastest
but smallest heap tier. Beneath, the off-heap tier. As base, the large but slow disk
tier, which could alternatively but not simultaneously be on a cluster.

Ehcache API Developer Guide 10.15 77

10 Tiering Options

Ehcache requires the size of the heap tier to be smaller than the size of the offheap tier, and the
size of the offheap tier to be smaller than the size of the disk tier. While Ehcache cannot verify at
configuration time that a count-based sizing for the heap tier will be smaller than a byte-based
sizing for another tier, you should make sure that is the case during testing.

Taking the above into account, the following possibilities are valid configurations:

heap + offheap

heap + offheap + disk

heap + offheap + clustered

heap + disk

heap + clustered

Here is an example using heap, offheap and clustered.
PersistentCacheManager persistentCacheManager =
CacheManagerBuilder.newCacheManagerBuilder()
.with(cluster(CLUSTER_URI).autoCreate(c -> c)) // 1
.withCache("threeTierCache",

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
.heap(10, EntryUnit.ENTRIES) // 2
.offheap(1, MemoryUnit.MB) // 3
.with(ClusteredResourcePoolBuilder.clusteredDedicated(

"primary-server-resource", 2, MemoryUnit.MB)) // 4
)

).build(true);

Cluster-specific information telling how to connect to the Terracotta cluster1

Define the Heap tier, which is the smallest but fastest caching tier.2

Define the Offheap tier. Next in line as caching tier.3

Define the Clustered tier. The authoritative tier for this cache4

78 Ehcache API Developer Guide 10.15

10 Tiering Options

Resource Pools

Tiers are configured using resource pools. Most of the time using a ResourcePoolsBuilder. Let's
revisit an example used earlier:
PersistentCacheManager persistentCacheManager =
CacheManagerBuilder.newCacheManagerBuilder()
.with(CacheManagerBuilder.persistence(

new File(getStoragePath(), "myData")))
.withCache("threeTieredCache",

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()

.heap(10, EntryUnit.ENTRIES)

.offheap(1, MemoryUnit.MB)

.disk(20, MemoryUnit.MB, true)
)

).build(true);

This is a cache using 3 tiers (heap, offheap, disk). They are created and chained using the
ResourcePoolsBuilder. The declaration order doesn't matter (e.g. offheap can be declared before
heap) because each tier has a height. The higher the height of a tier is, the closer the tier will be to
the client.

It is really important to understand that a resource pool is only specifying a configuration. It is
not an actual pool that can be shared between caches. Consider for instance this code:
ResourcePools pool = ResourcePoolsBuilder.heap(10).build();
CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
.withCache("test-cache1", CacheConfigurationBuilder.newCacheConfigurationBuilder(

Integer.class, String.class, pool))
.withCache("test-cache2", CacheConfigurationBuilder.newCacheConfigurationBuilder(

Integer.class, String.class, pool))
.build(true);

You will end up with two caches that can contain 10 entries each. Not a shared pool of 10 entries.
Pools are never shared between caches. The exception being clustered caches, that can be shared
or dedicated.

Updating Resource Pools

Limited size adjustment can be performed on a live cache.

Note:

updateResourcePools() only allows you to change the heap tier sizing, not the pool type. Thus
you can't change the sizing of off-heap or disk tiers.

ResourcePools pools = ResourcePoolsBuilder
.newResourcePoolsBuilder().heap(20L, EntryUnit.ENTRIES).build(); // 1

cache.getRuntimeConfiguration().updateResourcePools(pools); // 2
assertThat(cache.getRuntimeConfiguration().getResourcePools()
.getPoolForResource(ResourceType.Core.HEAP).getSize(), is(20L));

Ehcache API Developer Guide 10.15 79

10 Tiering Options

You will need to create a new ResourcePools object with resources of the required size,
using ResourcePoolsBuilder. This object can then be passed to the said method so as to
trigger the update.

1

To update the capacity of ResourcePools, the updateResourcePools(ResourcePools)method
in RuntimeConfiguration can be of help. The ResourcePools object created earlier can then
be passed to this method so as to trigger the update.

2

Destroying Persistent Tiers

The disk tier and cluster tier are the two persistent tiers. Thismeans that when the JVM is stopped,
all the created caches and their data still exist on disk or on the cluster.

Once in awhile, youmightwant to fully remove them. Their definition as PersistentCacheManager
gives access to the following methods:

destroy()
This method destroys everything related to the cache manager (including caches, of course).
The cache manager must be closed or uninitialized to call this method. Also, for a cluster tier,
no other cachemanager should currently be connected to the same cachemanager server entity.

destroyCache(String cacheName)
Ths method destroys a given cache. The cache shouldn't be in use by another cache manager.

Sequence Flow for Cache Operations with Multiple Tiers

In order to understand what happens for different cache operations when using multiple tiers,
here are examples of Put and Get operations. The sequence diagrams are oversimplified but still
show the main points.

Multiple tiers using Put: Diagram showing the Get operation and its variations. As
in the previous graphic, there is from left to right the sequence of the Cache, the
Caching Tier and the Authorative Tier. Following the direction of the tiers, the get
reaches the Cache and is handed to the Caching Tier.

Multiple tiers using Get: Diagram showing the alternative, interdependent partial
operational.The implemented behaviour depends on whether the get delivers a hit

80 Ehcache API Developer Guide 10.15

10 Tiering Options

or a miss on the tier following their hierarchical sequence. Procedure A:The get
delivers a hit in the Caching tier and returns the value. Or ..The get results in a miss
in the Caching Tier and is handed straight on to the Authorative Tier. Depending
on whether the Autorative Tier delivers a hit or a miss, Procedure B kicks in: If the
Authorative Tier delivers a hit, the value is handed on to the preceding Caching
Tier. Here the value is stored and from there returned as result of the Get request.
Or ... If the Authorative Tier delivers a miss, a null value is handed to the preceding
Caching Tier and from there returned as null to the Get request.

You should then notice the following:

When putting a value into the cache, it goes straight to the authoritative tier, which is the
lowest tier.

A following getwill push the value upwards in the caching tiers.

Ehcache API Developer Guide 10.15 81

10 Tiering Options

Of course, as soon as a value is put in the authoritative tier, all higher-level caching tiers are
invalidated.

A full cachemiss (the value isn't on any tier)will always go all theway down to the authoritative
tier.

Note:
The slower your authoritative tier, the slower your put operations will be. For normal cache
usage, the authoritative tier speed usually doesn't matter because get operations aremuchmore
frequent than put operations. The opposite would mean you probably shouldn't be using a
cache in the first place.

82 Ehcache API Developer Guide 10.15

10 Tiering Options

11 Cache Loaders and Writers

■ Introduction to Cache Loaders and Writers .. 84

■ Implementing Cache-Through .. 85

Ehcache API Developer Guide 10.15 83

Introduction to Cache Loaders and Writers

This section documents the specifics behind the cache-through implementation in Ehcache. Refer
to the section “Cache Usage Patterns” on page 57 if you are not familiar with terms like
cache-through, read-through, write-through or system of record.

Ehcache merges the concepts of read-through and write-through behind a single interface, the
CacheLoaderWriter.

As indicated by its API, this interface provides methods with logical grouping:

read-through
The load(K) and loadAll(Iterable<? super K>)methods cover the read-through part of
cache-through.

write-through
The write(K, V), writeAll(Iterable<? extends Map.Entry<? extends K, ? extends V>>),
delete(K) and deleteAll(Iterable<? super K>)methods cover the write-through part of
cache-through.

The reasoning behind having a unified interface is that if you want a read-through only cache, you
need to decide what to do about mutative method calls. What happens if someone calls put(K,
V) on the cache? This risks making it inconsistent with the underlying system of record.

In this context, the unified interface forces you to make a choice: either no-op write* / delete*
methods or throwing when mutation happens.

For a write-through only cache, it remains possible by simply having no-op load*methods.

Write-behind

An additional feature provided by Ehcache iswrite-behind, wherewrites aremade asynchronously
to the backing system of record. The way this works in Ehcache is by simply telling the system to
register a wrapper around your provided CacheLoaderWriter implementation.

From there, you will have extra configuration options around batching and coalescing of writes.

Ehcache does not support retry of failed writes at the write-behind wrapper level. You, as the
application developer and system of record owner, know better when a retry should happen and
how. So if you need that functionality, make it part of your CacheLoaderWriter implementation.

Write-behind introduces the following concepts:

queue size
Indicates how many pending write operations there can be before applying back pressure on
cache operations.

concurrency level
Indicates how many parallel processing threads and queues there will be for write behind.
Effectively the maximum number of in-flight writes is “concurrency level * queue size”.

batching and batch size

84 Ehcache API Developer Guide 10.15

11 Cache Loaders and Writers

Mutative operations will be grouped in batch size sets before reaching the CacheLoaderWriter.
When batching, the queue size is effectively the number of pending batches there can be. This
means that the maximum number of in-flight writes becomes “concurrency level * queue size
* batch size”.

coalescing
When batching, coalescing means that you only send the latest mutation on a per key basis to
the CacheLoaderWriter.

maximum write delay
When batching, you can indicate the maximumwrite delay for an incomplete batch. After this
time has elapsed, the batch is processed even if incomplete.

Implementing Cache-Through
CacheManager cacheManager =

CacheManagerBuilder.newCacheManagerBuilder().build(true);
Cache<Long, String> writeThroughCache =

cacheManager.createCache("writeThroughCache",
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,

String.class, ResourcePoolsBuilder.heap(10))
.withLoaderWriter(new SampleLoaderWriter<Long,

String>(singletonMap(41L, "zero"))) // <1>
.build());

assertThat(writeThroughCache.get(41L), is("zero")); // <2>
writeThroughCache.put(42L, "one"); // <3>
assertThat(writeThroughCache.get(42L), equalTo("one"));
cacheManager.close();

We register a sample CacheLoaderWriter that knows about the mapping ("41L" maps to
"zero") .

1

Since the cache has no content yet, thiswill delegate to the CacheLoaderWriter. The returned
mapping will populate the cache and be returned to the caller.

2

While creating this cache mapping, the CacheLoaderWriterwill be invoked to write the
mapping into the system of record.

3

Adding Write-Behind
CacheManager cacheManager =

CacheManagerBuilder.newCacheManagerBuilder().build(true);
Cache<Long, String> writeBehindCache =

cacheManager.createCache("writeBehindCache",
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,

String.class, ResourcePoolsBuilder.heap(10))
.withLoaderWriter(new SampleLoaderWriter<Long,

String>(singletonMap(41L, "zero"))) // <1>
.withService(WriteBehindConfigurationBuilder // <2>

.newBatchedWriteBehindConfiguration(1, TimeUnit.SECONDS, 3) // <3>

.queueSize(3) // <4>

.concurrencyLevel(1) // <5>

.enableCoalescing()) // <6>
.build());

Ehcache API Developer Guide 10.15 85

11 Cache Loaders and Writers

assertThat(writeBehindCache.get(41L), is("zero"));
writeBehindCache.put(42L, "one");
writeBehindCache.put(43L, "two");
writeBehindCache.put(42L, "This goes for the record");
assertThat(writeBehindCache.get(42L), equalTo("This goes for the record"));
cacheManager.close();

For write-behind you need a configured CacheLoaderWriter.1

Additionally, register a WriteBehindConfiguration on the cache by using the
WriteBehindConfigurationBuilder.

2

Here we configure write behind or batching with a batch size of 3 and a maximum write
delay of 1 second.

3

We also set the maximum size of the write-behind queue.4

Define the concurrency level of write-behind queue(s). This indicates how many writer
threads work in parallel to update the underlying system of record asynchronously.

5

Enable thewrite coalescing behavior, which ensures that only one update per key per batch
reaches the underlying system of record.

6

Note:
BatchedWriteBehindConfigurationBuilder configurations are not honoured by clustered caches.

86 Ehcache API Developer Guide 10.15

11 Cache Loaders and Writers

12 Cache Event Listeners

■ Introduction ... 88

■ Registering Event Listeners during runtime ... 89

■ Event Processing Queues .. 90

Ehcache API Developer Guide 10.15 87

Introduction

Cache listeners allow implementers to register callback methods that will be executed when a
cache event occurs.

Listeners are registered at the cache level - and therefore only receive events for caches that they
have been registered with.
CacheEventListenerConfigurationBuilder cacheEventListenerConfiguration =

CacheEventListenerConfigurationBuilder
.newEventListenerConfiguration(new ListenerObject(), EventType.CREATED,

EventType.UPDATED) // 1
.unordered().asynchronous(); // 2

final CacheManager manager = CacheManagerBuilder.newCacheManagerBuilder()
.withCache("foo",

CacheConfigurationBuilder.newCacheConfigurationBuilder(String.class,
String.class, ResourcePoolsBuilder.heap(10))

.withService(cacheEventListenerConfiguration) // 3
).build(true);

final Cache<String, String> cache = manager.getCache("foo", String.class, String.class);
cache.put("Hello", "World"); // 4
cache.put("Hello", "Everyone"); // 5
cache.remove("Hello"); // 6

Create a CacheEventListenerConfiguration using the builder indicating the listener and
the events to receive (in this case create and update events)

1

Optionally indicate the delivery mode - defaults are asynchronous and un-ordered (for
performance reasons)

2

Pass the configuration of the listener into the cache configuration3

You will be notified on creation4

And on update5

But not on removal, because it wasn't included at step 16

Created, updated, and removed events are triggered by user execution of mutative methods as
outlined in the table below. Eviction and expiration events can be triggered by both internal
processes and by user execution of methods targeting both related and unrelated keys within the
cache.

Cache entry event firing behaviors for mutative methods

event {key, old-value,
new-value}

outputoperationinput

created {K, null, V}{K, V}put(K, V){}

updated {K, V1, V2}{K, V2}put(K, V2){K, V1}

88 Ehcache API Developer Guide 10.15

12 Cache Event Listeners

event {key, old-value,
new-value}

outputoperationinput

none{}put(K, V) [immediately
expired]

{}

none{}put(K, V2)
[immediately expired]

{K, V1}

created {K, null, V}{K, V}putIfAbsent(K, V){}

none{}putIfAbsent(K, V)
[immediately expired]

{}

updated {K, V1, V2}{K, V2}replace(K, V2){K, V1}

none{}replace(K, V2)
[immediately expired]

{K, V1}

updated {K, V1, V2}{K, V2}replace(K, V1, V2){K, V1}

no events{}replace(K, V1, V2)
[immediately expired]

{K, V1}

removed {K, V, null}{}remove(K){K, V}

Note:Ehcache provides an abstract class CacheEventAdapter for convenient implementation of
event listeners when you are interested only on specific events.

Registering Event Listeners during runtime

Cache event listeners may also be added and removed while the cache is being used.
ListenerObject listener = new ListenerObject(); // 1
cache.getRuntimeConfiguration().registerCacheEventListener(listener,

EventOrdering.ORDERED,
EventFiring.ASYNCHRONOUS, EnumSet.of(EventType.CREATED,

EventType.REMOVED)); // 2
cache.put(1L, "one");
cache.put(2L, "two");
cache.remove(1L);
cache.remove(2L);
cache.getRuntimeConfiguration().deregisterCacheEventListener(listener); // 3
cache.put(1L, "one again");
cache.remove(1L);

Create a CacheEventListener implementation instance.1

Register it on the RuntimeConfiguration, indicating the deliverymode and events of interest.
The following put() and remove() cache calls will make the listener receive events.

2

Ehcache API Developer Guide 10.15 89

12 Cache Event Listeners

Unregister the previously registered CacheEventListener instance. The following put()
and remove() cache calls will have no effect on the listener anymore.

3

Event Processing Queues

Advanced users may want to tune the level of concurrency which may be used for delivery of
events.
CacheConfiguration<Long, String> cacheConfiguration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class, ResourcePoolsBuilder.heap(5L))

.withDispatcherConcurrency(10) // 1

.withEventListenersThreadPool("listeners-pool")

.build();

Indicate the level of concurrency desired1

This will enable parallel processing of events at the cost of more threads being required by the
system.

90 Ehcache API Developer Guide 10.15

12 Cache Event Listeners

13 Eviction Advisors

Note:
This is an advanced topic/feature that will not be of interest to most users.

You can affect which elements are selected for eviction from the cache by providing a class that
implements the org.ehcache.config.EvictionAdvisor interface.

Note:
Eviction advisors are not used for clustered storage tiers. For example, in a cache with a heap
tier and clustered storage tier, the heap tier will use the eviction advisor but the clustered storage
tier will evict independently, irrespective of the eviction advisor. The description below applies
to using an eviction advisor for the cache tiers other than a clustered storage tier.

EvictionAdvisor implementations are invoked when Ehcache is attempting to evict entries from
the cache (in order to make room for new entries) in order to determine whether the given entry
should not be considered a good candidate for eviction. If the eviction is advised against, Ehcache
will try to honor the preference of preserving that entry in the cache, though there is no full
guarantee of such.
CacheConfiguration<Long, String> cacheConfiguration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class,
ResourcePoolsBuilder.heap(2L)) // 1
.withEvictionAdvisor(new OddKeysEvictionAdvisor<>()) // 2
.build();

CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
.withCache("cache", cacheConfiguration)
.build(true);

Cache<Long, String> cache = cacheManager.getCache("cache", Long.class,
String.class);

// Work with the cache
cache.put(42L, "The Answer!");
cache.put(41L, "The wrong Answer!");
cache.put(39L, "The other wrong Answer!");
cacheManager.close();

Configure a constrained heap, as the eviction advisor is only relevant when mappings
get evicted from the cache.

1

If you want to give the eviction algorithm a hint to advise against the eviction of some
mappings, you have to configure an instance of EvictionAdvisor.

2

Ehcache API Developer Guide 10.15 91

In this particular example, the OddKeysEvictionAdvisor class will advise against eviction of any
key that is an odd number. The cache is constrained to only be allowed to contain two entries,
however the code has put three entries into the cache - which will trigger capacity eviction. By the
time the cache manager gets closed, only mappings with odd keys should be left in the cache as
their prime candidacy for eviction would have been advised against.

Note:

1. The eviction advisor may only be invoked when a mapping is written to the cache. This
means that proper eviction advisor implementations are expected to be constant for a
key-value pair.

2. Please keep in mind that configuring an eviction advisor can slow down eviction: the more
often you advise against eviction, the harder the cache has towork to evict an elementwhen
room is required. After a certain time, if a cache determines that the configured eviction
advisor rejected too many eviction candidates, the cache can decide to completely bypass
the eviction advisor and evict anything it sees fit.

92 Ehcache API Developer Guide 10.15

13 Eviction Advisors

14 Serializers and Copiers

■ Overview of Serializers and Copiers .. 94

■ Serializers ... 94

■ Copiers ... 98

Ehcache API Developer Guide 10.15 93

Overview of Serializers and Copiers

While Ehcache is a Java cache, it cannot always store its mappings as Java objects.

The on-heap store is capable of storing cached objects either by reference (where the given key
and value references are stored) or by value (where a copy of the given key and value are made
and those copies are then stored). All other stores are only capable of storing a byte representation
of the key/value pair. See the section “Heap Tier” on page 74 for more details.

Serializer and Copier are the abstractions to enable these different storage options.

Serializers

All stores but the on-heap one need some form of serialization/deserialization of objects to be able
to store and retrieve mappings. This is because they cannot internally store plain java objects but
only binary representations of them.

Serializer is the Ehcache abstraction solving this: every cache that has at least one store that
cannot store by reference is going to use a pair of Serializer instances, one for the key and another
one for the value.

A Serializer is scoped at the cache level and all stores of a cache will be using and sharing the
same pair of serializers.

How is a serializer configured?

There are two places where serializers can be configured:

at the cache level where one can use

CacheConfigurationBuilder.withKeySerializer(Class<? extends Serializer<K>>
keySerializerClass),

CacheConfigurationBuilder.withKeySerializer(Serializer<K> keySerializer),

CacheConfigurationBuilder.withValueSerializer(Class<? extends Serializer<V>>
valueSerializerClass),

and CacheConfigurationBuilder.withValueSerializer(Serializer<V> valueSerializer),

which allow by instance or by class configuration.

at the cache manager level where one can use

CacheManagerBuilder.withSerializer(Class<C> clazz, Class<? extends Serializer<C>>
serializer)

If a serializer is configured directly at the cache level, it will be used, ignoring any cache manager
level configuration.

If a serializer is configured at the cache manager level, upon initialization, a cache with no
specifically configured serializerwill search through its cachemanager's registered list of serializers

94 Ehcache API Developer Guide 10.15

14 Serializers and Copiers

and try to find one that directly matches the cache's key or value type. If such search fails, all the
registered serializers will be tried in the added order to find one that handles compatible types.

For instance, let's say you have a Person interface and two subclasses: Employee and Customer. If
you configure your cache manager as follows:
CacheManagerBuilder.newCacheManagerBuilder().withSerializer(Employee.class,
EmployeeSerializer.class).withSerializer(Person.class, PersonSerializer.class)

then configuring a Cache<Long, Employee>would make it use the EmployeeSerializerwhile a
Cache<Long, Customer>would make it use the PersonSerializer.

A Serializer configured at the cache level by class will not be shared to other caches when
instantiated.

Note:
Given the above, it is recommended to limit Serializer registration to concrete classes and not
aim for generality.

Bundled implementations

Bydefault, cachemanagers are pre-configuredwith specially optimized Serializer that can handle
the following types, in the following order:

java.io.Serializable

java.lang.Long

java.lang.Integer

java.lang.Float

java.lang.Double

java.lang.Character

java.lang.String

byte[]

All bundled Serializer implementations support both persistent and transient caches.

Note:

A consequence of providing serializers registered by default is that you will not be able to
register a generic Serializer for Number or any other super type and expect it to be picked
instead of the default ones for the types listed above.

However, registering a different Serializer for one of the given type means it will be used
instead of the default.

Ehcache API Developer Guide 10.15 95

14 Serializers and Copiers

Lifecycle: instances vs. class

When a Serializer is configured by providing an instance, it is up to the provider of that instance
to manage its lifecycle. It will need to dispose of any resource the serializer might hold, persisting
or reloading the serializer's state.

When a Serializer is configured by providing a class either at the cache or cache manager level,
since Ehcache is responsible for creating the instance, it also is responsible for disposing of it. If
the Serializer implements java.io.Closeable then close()will be calledwhen the cache is closed
and the Serializer no longer needed.

Writing your own serializer

Serializer defines a very strict contract. So if you're planning to write your own implementation
you have to keep in mind that the class of the serialized object MUST be retained after
deserialization, that is:
object.getClass().equals(

mySerializer.read(mySerializer.serialize(object)).getClass())

This is especially important when you are planning to write a serializer for an abstract type, e.g.
a serializer of type com.pany.MyInterface should

deserialize a com.pany.MyClassImplementingMyInterfacewhen the serialized object is of class
com.pany.MyClassImplementingMyInterface

return a com.pany.AnotherClassImplementingMyInterface object when the serialized object is
of class com.pany.AnotherClassImplementingMyInterface

Implement the following interface, from package org.ehcache.spi.serialization:
/**
* Defines the contract used to transform type instances to and from a serial form.
* <p>
* Implementations must be thread-safe.
* <p>
* When used within the default serialization provider, there is an additional
requirement.
* The implementations must define a constructor that takes in a {@code ClassLoader}.
* The {@code ClassLoader} value may be {@code null}. If not {@code null}, the class
loader
* instance provided should be used during deserialization to load classes needed by
the deserialized objects.
* <p>
* The serialized object's class must be preserved; deserialization of the serial form
of an object must
* return an object of the same class. The following contract must always be true:
* <p>
* {@code object.getClass().equals(
mySerializer.read(mySerializer.serialize(object)).getClass())}
*
* @param <T> the type of the instances to serialize
*
* @see SerializationProvider
*/

96 Ehcache API Developer Guide 10.15

14 Serializers and Copiers

public interface Serializer<T> {
/**
* Transforms the given instance into its serial form.
*
* @param object the instance to serialize
*
* @return the binary representation of the serial form
*
* @throws SerializerException if serialization fails
*/

ByteBuffer serialize(T object) throws SerializerException;
/**
* Reconstructs an instance from the given serial form.
*
* @param binary the binary representation of the serial form
*
* @return the de-serialized instance
*
* @throws SerializerException if reading the byte buffer fails
* @throws ClassNotFoundException if the type to de-serialize to cannot be found
*/

T read(ByteBuffer binary) throws ClassNotFoundException, SerializerException;
/**
* Checks if the given instance and serial form {@link Object#equals(Object)

represent} the same instance.
*
* @param object the instance to check
* @param binary the serial form to check
*
* @return {@code true} if both parameters represent equal instances, {@code false}

otherwise
*
* @throws SerializerException if reading the byte buffer fails
* @throws ClassNotFoundException if the type to de-serialize to cannot be found
*/

boolean equals(T object, ByteBuffer binary) throws ClassNotFoundException,
SerializerException;
}

As the Javadoc states, there are some constructor rules, see the section “Persistent vs. transient
caches” on page 97 for that.

You can optionally implement java.io.Closeable. If you do, Ehcache will call close()when a
cache using such a serializer gets disposed of, but only if Ehcache instantiated the serializer itself.

ClassLoaders

When Ehcache instantiates a serializer itself, it will pass it a ClassLoader via the constructor. Such
class loadermust be used to access the classes of the serialized types as theymight not be available
in the current class loader

Persistent vs. transient caches

All custom serializers must have a constructor with the following signature:
public MySerializer(ClassLoader classLoader) {
}

Ehcache API Developer Guide 10.15 97

14 Serializers and Copiers

Attempting to configure a serializer that lacks such a constructor on a cache using either of
CacheConfigurationBuilder.withKeySerializer(Class<? extends Serializer<K>>
keySerializerClass) or CacheConfigurationBuilder.withValueSerializer(Class<? extends
Serializer<V>> valueSerializerClass)will cause an exception upon cache initialization.

But if an instance of the serializer is configured using either of
CacheConfigurationBuilder.withKeySerializer(Serializer keySerializer) or
CacheConfigurationBuilder.withValueSerializer(Serializer valueSerializer) it will work
since the instantiation is done by the user code itself.

Registering a serializer that lacks such a constructor at the cache manager level will prevent it
from being chosen for caches.

Custom serializer implementations could have some state that is used in the
serialization/deserialization process. When configured on a persistent cache, the state of such
serializers needs to be persisted across restarts.

To address these requirements you can have a StatefulSerializer implementation.
StatefulSerializer is a specialized Serializerwith an additional initmethodwith the following
signature:
public void init(StateRepository repository) {
}

The StateRepository.getPersistentStateHolder(String name, Class<K> keyClass, Class<V>
valueClass, Predicate<Class<?>> isClassPermitted, ClassLoader classLoader) provides a
StateHolder (a map like structure) that you can use to store any relevant state. Here name is the
name of the StateHolderwhich maps objects of keyClass to objects of valueClass. The Predicate
isClassPermitted authorizes the classes for deserialization as part of key or value deserialization.
If a Class fails the isClassPermitted test, a RuntimeException is thrown. The deserialization uses
the ClassLoader to resolve classes.

Note:
StateRepository.getPersistentStateHolder(String name, Class<K> keyClass, Class<V>
valueClass) has been deprecated in favour of the abovemethodwhich takes in isClassPermitted
and classLoader also as parameters.

The StateRepository is provided by the authoritative tier of the cache and hence will have the
same persistence properties of that tier. For persistent caches it is highly recommended that all
state is stored in these holders as the users won't have to worry about the persistence aspects of
this state holder as it is taken care of by Ehcache.

In the case of a disk persistent cache, the contents of the state holder will be persisted locally
on to the disk.

For clustered caches, the contents are persisted in the cluster itself so that other clients using
the same cache can also access the contents of the state holder.

Copiers

As the on-heap store is capable of storing plain Java objects as such, it is not necessary to rely on
a serialization mechanism to copy keys and values in order to provide by value semantics. Other

98 Ehcache API Developer Guide 10.15

14 Serializers and Copiers

forms of copy mechanism can be a lot more performant, such as using a copy constructor but it
requires custom code to be able to copy user classes.

Copier is the Ehcache abstraction solving this: it is specific to the on-heap store.

By default, the on-heap mappings are stored by reference. The way to store them by value is to
configure copier(s) on the cache for the key, value or both.

Of course, the exact semantic of by value in this context depends heavily on the Copier
implementation.

How is a copier configured?

There are two places where copiers can be configured:

at the cache level where one can use

CacheConfigurationBuilder.withKeyCopier(Class<? extends Copier<K>> keyCopierClass),

CacheConfigurationBuilder.withKeyCopier(Copier<K> keyCopier),

CacheConfigurationBuilder.withValueCopier(Class<? extends Copier<V>>
valueCopierClass),

and CacheConfigurationBuilder.withValueCopier(Copier<V> valueCopier).

which allow by instance or by class configuration.

at the cache manager level where one can use

CacheManagerBuilder.withCopier(Class<C> clazz, Class<? extends Copier<C>> copier)

If a copier is configured directly at the cache level, it will be used, ignoring any cache manager
level configuration.

If a copier is configured at the cachemanager level, upon initialization, a cachewith no specifically
configured copier will search through its cache manager's registered list of copiers and try to find
one that directlymatches the cache's key or value type. If such search fails, all the registered copiers
will be tried in the added order to find one that handles compatible types.

For instance, let's say you have a Person interface and two subclasses: Employee and Customer. If
you configure your cache manager as follows:
CacheManagerBuilder.newCacheManagerBuilder().withCopier(Employee.class,
EmployeeCopier.class).withCopier(Person.class,
PersonCopier.class)

then configuring a Cache<Long, Employee>would make it use the EmployeeCopierwhile a
Cache<Long, Customer>would make it use the PersonCopier.

A Copier configured at the cache level by classwill not be shared to other cacheswhen instantiated.

Note:
Given the above, it is recommended to limit Copier registration to concrete classes and not aim
for generality.

Ehcache API Developer Guide 10.15 99

14 Serializers and Copiers

Bundled implementations

A SerializingCopier class exists in case you want to configure store by value on-heap using the
configured (or default) serializer. Note that this implementation performs a serialization /
deserialization on each read or write operation.

Add builder methods to section about serializing copier

The CacheConfigurationBuilder provides the following methods to make use of this specialized
copier:

CacheConfigurationBuilder.withKeySerializingCopier() for the key.

CacheConfigurationBuilder.withValueSerializingCopier() for the value.

Lifecycle: instances vs class

When a Copier is configured by providing an instance, it is up to the provider of that instance to
manage its lifecycle. It will need to dispose of any resource it used after it is no longer required.

When a Copier is configured by providing a class either at the cache or cachemanager level, since
Ehcache is responsible for creating the instance, it also is responsible for disposing of it. If the
Copier implements java.io.Closeable then close()will be called when the cache is closed and
the Copier no longer needed.

Writing your own Copier

Implement the following interface:
/**
* Defines the contract used to copy type instances.
* <p>
* The copied object's class must be preserved. The following must always be true:
* <p>
* <code>object.getClass().equals(myCopier.copyForRead(object).getClass())</code>
* <code>object.getClass().equals(myCopier.copyForWrite(object).getClass())</code>
* </p>
* </p>
* @param <T> the type of the instance to copy
*/
public interface Copier<T> {
/**
* Creates a copy of the instance passed in.
* <p>
* This method is invoked as a value and is read from the cache.
* </p>
*
* @param obj the instance to copy
* @return the copy of the {@code obj} instance
*/

T copyForRead(T obj);
/**
* Creates a copy of the instance passed in.
* <p>
* This method is invoked as a value is written to the cache.

100 Ehcache API Developer Guide 10.15

14 Serializers and Copiers

* </p>
*
* @param obj the instance to copy
* @return the copy of the {@code obj} instance
*/

T copyForWrite(T obj);
}

T copyForRead(T obj) is invoked when a copy must be made upon a read operation (like a
cache get()),

T copyForWrite(T obj) is invoked when a copy must be made upon a write operation (like a
cache put()).

The separation between copying for read and for write can be useful when you want to store a
lighter version of your objects into the cache.

Alternatively, you can extend from org.ehcache.impl.copy.ReadWriteCopier if copying for read and
copying for write implementations are identical, in which case you only have to implement:

public abstract T copy(T obj)

Ehcache API Developer Guide 10.15 101

14 Serializers and Copiers

102 Ehcache API Developer Guide 10.15

14 Serializers and Copiers

15 Thread Pools

■ Introduction to Thread Pools ... 104

■ Configuring Thread Pools with Code .. 105

■ Configuring Thread Pools with XML ... 108

Ehcache API Developer Guide 10.15 103

Introduction to Thread Pools

Some services work asynchronously, hence they require thread pools to perform their tasks. All
thread pooling facilities are centralized behind the ExecutionService interface.

Let's start with a bit of theory.

What ExecutionService provides

ExecutionService is an interface providing:

ScheduledExecutorService to schedule tasks, i.e.: tasks that happen repeatedly after a
configurable delay.

Unordered ExecutorService to execute tasks as soon as a thread is available.

Ordered ExecutorService to execute tasks as soon as a thread is available, with the guarantee
that tasks are going to be executed in the order they were submitted.

Available ExecutionService implementations

There currently are two bundled implementations:

OnDemandExecutionService creates a newpool each time an executor service (scheduled or not)
is requested. This implementation is the default one and requires no configuration at all.

PooledExecutionService keeps a configurable set of thread pools and divides them to handle
all executor service requests. This implementation must be configured with a
PooledExecutionServiceConfigurationwhen used.

Configuring PooledExecutionService

When you want total control of the threads used by a cache manager and its caches, you have to
use a PooledExecutionService that itself must be configured as it does not have any defaults.

The PooledExecutionServiceConfigurationBuilder can be used for this purpose, and the resulting
configuration it builds can simply be added to a CacheManagerBuilder to switch the
ExecutionService implementation to a PooledExecutionService.

The builder has two interesting methods:

defaultPool that is used to set the default pool. There can be only one default pool, its name
does not matter, and if thread-using services do not specify a thread pool, this is the one that
will be used.

pool that is used to add a thread pool. There can be as many pools as you wish but services
must explicitly be configured to make use of them.

Using the configured thread pools

Following is the list of services making use of ExecutionService:

104 Ehcache API Developer Guide 10.15

15 Thread Pools

Disk store: disk writes are performed asynchronously.

OffHeapDiskStoreConfiguration is used to configurewhat thread pool to use at the cache level,
while OffHeapDiskStoreProviderConfiguration is used to configure what thread pool to use
at the cache manager level.

Write Behind: CacheLoaderWriterwrite tasks happen asynchronously.

DefaultWriteBehindConfiguration is used to configure what thread pool to use at the cache
level, while WriteBehindProviderConfiguration is used to configure what thread pool to use
at the cache manager level.

Eventing: produced events are queued and sent to the listeners by a thread pool.

DefaultCacheEventDispatcherConfiguration is used to configure what thread pool to use at
the cache level, while CacheEventDispatcherFactoryConfiguration is used to configure what
thread pool to use at the cache manager level.

The different builders will make use of the right configuration class, you do not have to use those
classes directly. For instance, calling CacheManagerBuilder.withDefaultDiskStoreThreadPool(String
threadPoolAlias) actually is identical to calling CacheManagerBuilder.using(new
OffHeapDiskStoreProviderConfiguration(threadPoolAlias)).

The thread pool to use can be configured on a service through the builders by using the methods
carrying a ThreadPool related name. When a service is not told anything about which thread pool
to use, the default thread pool is used.

Configuring Thread Pools with Code

Following are examples of describing how to configure the thread pools the different services will
use.

Disk store
CacheManager cacheManager

= CacheManagerBuilder.newCacheManagerBuilder()
.using(PooledExecutionServiceConfigurationBuilder
.newPooledExecutionServiceConfigurationBuilder() // 1

.defaultPool("dflt", 0, 10)

.pool("defaultDiskPool", 1, 3)

.pool("cache2Pool", 2, 2)

.build())
.with(new CacheManagerPersistenceConfiguration(new File(getStoragePath(),

"myData")))
.withDefaultDiskStoreThreadPool("defaultDiskPool") // 2
.withCache("cache1",

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()

.heap(10, EntryUnit.ENTRIES)

.disk(10L, MemoryUnit.MB)))
.withCache("cache2",

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class,

Ehcache API Developer Guide 10.15 105

15 Thread Pools

ResourcePoolsBuilder.newResourcePoolsBuilder()
.heap(10, EntryUnit.ENTRIES)
.disk(10L, MemoryUnit.MB))

.withDiskStoreThreadPool("cache2Pool", 2)) // 3
.build(true);

Cache<Long, String> cache1 =
cacheManager.getCache("cache1", Long.class, String.class);

Cache<Long, String> cache2 =
cacheManager.getCache("cache2", Long.class, String.class);

cacheManager.close();

Configure the thread pools. Note that the default one (dflt) is required for the events
even when no event listener is configured.

1

Tell the CacheManagerBuilder to use a default thread pool for all disk stores that don't
explicitly specify one.

2

Tell the cache to use a specific thread pool for its disk store.3

Write Behind
CacheManager cacheManager

= CacheManagerBuilder.newCacheManagerBuilder()

.using(PooledExecutionServiceConfigurationBuilder.newPooledExecutionServiceConfigurationBuilder()
//1

.defaultPool("dflt", 0, 10)

.pool("defaultWriteBehindPool", 1, 3)

.pool("cache2Pool", 2, 2)

.build())
.withDefaultWriteBehindThreadPool("defaultWriteBehindPool") //2
.withCache("cache1",

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder().heap(10, EntryUnit.ENTRIES))
.withLoaderWriter(new SampleLoaderWriter<>(singletonMap(41L, "zero")))
.withService(WriteBehindConfigurationBuilder

.newBatchedWriteBehindConfiguration(1, TimeUnit.SECONDS, 3)

.queueSize(3)

.concurrencyLevel(1)))
.withCache("cache2",

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder().heap(10, EntryUnit.ENTRIES))
.withLoaderWriter(new SampleLoaderWriter<>(singletonMap(41L, "zero")))
.withService(WriteBehindConfigurationBuilder

.newBatchedWriteBehindConfiguration(1, TimeUnit.SECONDS, 3)

.useThreadPool("cache2Pool") //3

.queueSize(3)

.concurrencyLevel(2)))
.build(true);

Cache<Long, String> cache1 =
cacheManager.getCache("cache1", Long.class, String.class);

Cache<Long, String> cache2 =
cacheManager.getCache("cache2", Long.class, String.class);

106 Ehcache API Developer Guide 10.15

15 Thread Pools

cacheManager.close();

Configure the thread pools. Note that the default one (dflt) is required for the events
even when no event listener is configured.

1

Tell the CacheManagerBuilder to use a default thread pool for all write-behind caches that
don't explicitly specify one.

2

Tell the WriteBehindConfigurationBuilder to use a specific thread pool for itswrite-behind
work.

3

Events
CacheManager cacheManager

= CacheManagerBuilder.newCacheManagerBuilder()
.using(PooledExecutionServiceConfigurationBuilder

.newPooledExecutionServiceConfigurationBuilder() // 1

.pool("defaultEventPool", 1, 3)

.pool("cache2Pool", 2, 2)

.build())
.withDefaultEventListenersThreadPool("defaultEventPool") // 2
.withCache("cache1",

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class, ResourcePoolsBuilder.newResourcePoolsBuilder().heap(10,
EntryUnit.ENTRIES))
.withService(CacheEventListenerConfigurationBuilder

.newEventListenerConfiguration(new ListenerObject(),
EventType.CREATED, EventType.UPDATED)))

.withCache("cache2",
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,

String.class, ResourcePoolsBuilder.newResourcePoolsBuilder().heap(10,
EntryUnit.ENTRIES))

.withService(CacheEventListenerConfigurationBuilder
.newEventListenerConfiguration(new ListenerObject(),
EventType.CREATED, EventType.UPDATED))

.withEventListenersThreadPool("cache2Pool")) // 3
.build(true);

Cache<Long, String> cache1 =
cacheManager.getCache("cache1", Long.class, String.class);

Cache<Long, String> cache2 =
cacheManager.getCache("cache2", Long.class, String.class);

cacheManager.close();

Configure the thread pools. Note that there is no default one so all thread-using services
must be configured with explicit defaults.

1

Tell the CacheManagerBuilder to use a default thread pool to manage events of all caches
that don't explicitly specify one.

2

Tell the CacheEventListenerConfigurationBuilder to use a specific thread pool for sending
its events.

3

Ehcache API Developer Guide 10.15 107

15 Thread Pools

Configuring Thread Pools with XML

Following is an example describing how to configure the thread pools the different services will
use.

<thread-pools> <!-- 1 -->
<thread-pool alias="defaultDiskPool" min-size="1" max-size="3"/>
<thread-pool alias="defaultWriteBehindPool" min-size="1" max-size="3"/>
<thread-pool alias="cache2Pool" min-size="2" max-size="2"/>

</thread-pools>
<event-dispatch thread-pool="defaultEventPool"/> <!-- 2 -->
<write-behind thread-pool="defaultWriteBehindPool"/> <!-- 3 -->
<disk-store thread-pool="defaultDiskPool"/> <!-- 4 -->
<cache alias="cache1">

<key-type>java.lang.Long</key-type>
<value-type>java.lang.String</value-type>
<resources>

<heap unit="entries">10</heap>
<disk unit="MB">10</disk>

</resources>
</cache>
<cache alias="cache2">

<key-type>java.lang.Long</key-type>
<value-type>java.lang.String</value-type>
<loader-writer>

<class>org.ehcache.docs.plugs.ListenerObject</class>
<write-behind thread-pool="cache2Pool"> <!-- 5 -->
<batching batch-size="5">

<max-write-delay unit="seconds">10</max-write-delay>
</batching>

</write-behind>
</loader-writer>
<listeners dispatcher-thread-pool="cache2Pool"/> <!-- 6 -->
<resources>

<heap unit="entries">10</heap>
<disk unit="MB">10</disk>

</resources>
<disk-store-settings thread-pool="cache2Pool"

writer-concurrency="2"/> <!-- 7 -->
</cache>

Configure the thread pools. Note that there is no default one.1

Configure the default thread pool this cache manager will use to send events.2

Configure the default thread pool this cache manager will use for write-behind work.3

Configure the default thread pool this cache manager will use for disk stores.4

Configure a specific write-behind thread pool for this cache.5

Configure a specific thread pool for this cache to send its events.6

Configure a specific thread pool for this cache's disk store.7

108 Ehcache API Developer Guide 10.15

15 Thread Pools

16 Code Examples

Peeper - a simple message board

The demo directory in the Ehcache sources includes a sample applications with two (2)
implementations demonstrating Ehcache use. Implemented as a simple browser-basedweb service,
the sample application, Peeper, displays any messages (peeps) previously entered and accepts
newpeeps recording the peeps in a database. The peeps database, shared among implementations
of the Peeper application, is located at $HOME/ehcache-demo-peeper.mv.db. This file may be safely
erased while the application is not running. While running, information about the operation of
Peeper application (database access, cache access, etc.) is written to the console.

While the sample applicationmay be run, the application is very simplistic - the code implementing
the sample is the interesting bit. Running the sample application requires the use of Gradle. This
sample may be accessed from GitHub by cloning the Ehcache git repository:
Create and/or change to a directory to hold the Ehcache git repository clone
git clone https://github.com/ehcache/ehcache3.git

Peeper without Caching - 00-NoCache

The first sample, located in demos/00-NoCache, is a base Peeper application that does notuse caching.
Each peep is stored in the database and all peeps are read from the database to display the Peeper
web page. To run this implementation:
cd ehcache3/demos/00-NoCache
../../gradlew appStart

This builds the necessary components, starts a Jetty web service, and displays the URL of the web
server on the console. The URL will be something like
http://localhost:8080/ehcache-demos/00-NoCache/.

While running, lines like the following are displayed to the console:
11:23:53.536 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from
DB

11:24:03.226 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Adding peep into
DB

11:24:03.234 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from
DB

11:24:13.312 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Adding peep into
DB

Ehcache API Developer Guide 10.15 109

https://gradle.org/
http://eclipse.org/jetty/

11:24:13.317 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from
DB
11:24:41.238 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from
DB
11:24:50.896 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Adding peep into
DB
11:24:50.901 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from
DB
11:24:56.295 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Adding peep into
DB
11:24:56.298 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from
DB

Note the absence of indications of interactions with a cache.

Peeper with Cache-aside Caching - 01-CacheAside

The second sample, located in demos/01-CacheAside, is a version of the Peeper application that
makes use of Ehcache. As each peep is being read from the database (for display in the web page),
it is written to an Ehcache instance. If the Peeper web page is refreshed (without adding a new
peep) or a new Peeper client connects, the peeps are read from the cache (instead of the database)
to form the web page. If a new peep is posted, the cache is cleared. To run this implementation:
cd ehcache3/demos/01-CacheAside
../../gradlew appStart

This builds the necessary components, starts a Jetty web service, and displays the URL of the web
server on the console. The URL will be something like
http://localhost:8080/ehcache-demos/01-CacheAside/.

While running, lines like the following are displayed to the console:
11:26:20.557 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Loading peeps from
DB
11:26:20.572 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Filling cache with
peeps
11:26:33.422 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Adding peep into
DB
11:26:33.428 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Clearing peeps
cache
11:26:33.431 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Loading peeps from
DB
11:26:33.432 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Filling cache with
peeps
11:26:50.025 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Adding peep into
DB
11:26:50.027 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Clearing peeps
cache
11:26:50.030 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Loading peeps from
DB
11:26:50.031 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Filling cache with
peeps
11:27:10.742 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Getting peeps from
cache

Note the presence of the Filling cache with peeps, Clearing peeps cache, and Getting peeps from
cache lines indicating cache interactions.

110 Ehcache API Developer Guide 10.15

16 Code Examples

http://eclipse.org/jetty/

XML with 107 extension
<ehcache:config

xmlns:ehcache="http://www.ehcache.org/v3"
xmlns:jcache="http://www.ehcache.org/v3/jsr107">

<!--
OPTIONAL
services to be managed and lifecycled by the CacheManager

-->
<ehcache:service>

<!--
One element in another namespace, using our JSR-107 extension as an example here

-->
<jcache:defaults>

<jcache:cache name="invoices" template="myDefaultTemplate"/>
</jcache:defaults>

</ehcache:service>
<!--

OPTIONAL
A <cache> element defines a cache, identified by the mandatory 'alias' attribute,
to be managed by the CacheManager

-->
<ehcache:cache alias="productCache">

<!--
OPTIONAL, defaults to java.lang.Object

The FQCN of the type of keys K we'll use with the Cache<K, V>
-->
<ehcache:key-type copier=

"org.ehcache.impl.copy.SerializingCopier">java.lang.Long</ehcache:key-type>
<!--

OPTIONAL, defaults to java.lang.Object
The FQCN of the type of values V we'll use with the Cache<K, V>

-->
<ehcache:value-type copier=

"org.ehcache.impl.copy.SerializingCopier">com.pany.domain.Product</ehcache:value-type>
<!--

OPTIONAL, defaults to no expiry
Entries to the Cache can be made to expire after a given time

-->
<ehcache:expiry>

<!--
time to idle, the maximum time for an entry to remain untouched
Entries to the Cache can be made to expire after a given time
other options are:

* <ttl>, time to live;
* <class>, for a custom Expiry implementation; or
* <none>, for no expiry

-->
<ehcache:tti unit="minutes">2</ehcache:tti>

</ehcache:expiry>
<!--

OPTIONAL, defaults to no advice
An eviction advisor, which lets you control what entries should only get
evicted as last resort
FQCN of a org.ehcache.config.EvictionAdvisor implementation

-->

<ehcache:eviction-advisor>com.pany.ehcache.MyEvictionAdvisor</ehcache:eviction-advisor>

Ehcache API Developer Guide 10.15 111

16 Code Examples

<!--
OPTIONAL,
Let's you configure your cache as a "cache-through",
i.e. a Cache that uses a CacheLoaderWriter to load on misses,
and write on mutative operations.

-->
<ehcache:loader-writer>

<!--
The FQCN implementing org.ehcache.spi.loaderwriter.CacheLoaderWriter

-->

<ehcache:class>com.pany.ehcache.integration.ProductCacheLoaderWriter</ehcache:class>
<!-- Any further elements in another namespace -->

</ehcache:loader-writer>
<!--

The maximal number of entries to be held in the Cache, prior to eviction
starting

-->
<ehcache:heap unit="entries">200</ehcache:heap>
<!--

OPTIONAL
Any further elements in another namespace

-->
</ehcache:cache>
<!--

OPTIONAL
A <cache-template> defines a named template that can be used be <cache>
definitions in this same file
They have all the same property as the <cache> elements above

-->
<ehcache:cache-template name="myDefaultTemplate">

<ehcache:expiry>
<ehcache:none/>

</ehcache:expiry>
<!--

OPTIONAL
Any further elements in another namespace

-->
</ehcache:cache-template>
<!--

A <cache> that uses the template above by referencing the cache-template's
name in the uses-template attribute:

-->
<ehcache:cache alias="customerCache" uses-template="myDefaultTemplate">

<!--
Adds the key and value type configuration

-->
<ehcache:key-type>java.lang.Long</ehcache:key-type>
<ehcache:value-type>com.pany.domain.Customer</ehcache:value-type>
<!--

Overwrites the capacity limit set by the template to a new value
-->
<ehcache:heap unit="entries">200</ehcache:heap>

</ehcache:cache>
</ehcache:config>

112 Ehcache API Developer Guide 10.15

16 Code Examples

17 Ehcache XSDs

■ XSD namespaces and locations .. 114

Ehcache API Developer Guide 10.15 113

XSD namespaces and locations

Core namespace: http://www.ehcache.org/v3

Location of the schema used in Terracotta Ehcache: http://www.ehcache.org/schema/
ehcache-core-3.10.xsd

JSR-107 namespace: http://www.ehcache.org/v3/jsr107

Location of the schema used in Terracotta Ehcache: http://www.ehcache.org/schema/
ehcache-107-ext-3.10.xsd

Transactions namespace: http://www.ehcache.org/v3/tx

Location of the schema used in Terracotta Ehcache: http://www.ehcache.org/schema/
ehcache-tx-ext-3.10.xsd

Cluster namespace: http://www.ehcache.org/v3/clustered

Location of the schema used in Terracotta Ehcache: http://www.ehcache.org/schema/
ehcache-clustered-ext-3.10.xsd

Usage example
<eh:config

xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:eh='http://www.ehcache.org/v3'
xmlns:jsr107='http://www.ehcache.org/v3/jsr107'
xsi:schemaLocation="

http://www.ehcache.org/v3
http://www.ehcache.org/schema/ehcache-core-3.10.xsd

http://www.ehcache.org/v3/jsr107
http://www.ehcache.org/schema/ehcache-107-ext-3.10.xsd">

</eh:config>

114 Ehcache API Developer Guide 10.15

17 Ehcache XSDs

http://www.ehcache.org/v3/
http://www.ehcache.org/schema/ehcache-core-3.10.xsd
http://www.ehcache.org/schema/ehcache-core-3.10.xsd
http://www.ehcache.org/v3/jsr107/
http://www.ehcache.org/schema/ehcache-107-ext-3.10.xsd
http://www.ehcache.org/schema/ehcache-107-ext-3.10.xsd
http://www.ehcache.org/v3/tx/
http://www.ehcache.org/schema/ehcache-tx-ext-3.10.xsd
http://www.ehcache.org/schema/ehcache-tx-ext-3.10.xsd
http://www.ehcache.org/v3/clustered/
http://www.ehcache.org/schema/ehcache-clustered-ext-3.10.xsd
http://www.ehcache.org/schema/ehcache-clustered-ext-3.10.xsd

18 Management and Monitoring with Ehcache

■ Introduction ... 116

■ Making use of the ManagementRegistry .. 116

■ Capabilities and contexts ... 117

■ Actions .. 119

■ Managing multiple cache managers ... 119

■ Rules for Statistics Calculation ... 121

Ehcache API Developer Guide 10.15 115

Introduction

Managed objects like caches, cache managers and stores are registered into an
org.ehcache.management.ManagementRegistryService instance.

A ManagementRegistry implementation has to understand the registered object and provide
management and monitoring capabilities for them, including the capabilities' context.

Given a capability and a context, statistics can be collected or calls can be made.

The current ManagementRegistry implementation providesminimal support for Ehcache instances,
providing a minimal set of statistics and actions via a couple of capabilities.

Making use of the ManagementRegistry

By default, a ManagementRegistry is automatically discovered and enabled, but can only be accessed
by Ehcache internal services. If you wish to make use of it, you should create your own instance
and pass it to the cache manager builder as a service:
CacheManager cacheManager = null;
try {
DefaultManagementRegistryConfiguration registryConfiguration =

new DefaultManagementRegistryConfiguration()
.setCacheManagerAlias("myCacheManager1"); // 1

ManagementRegistryService managementRegistry =
new DefaultManagementRegistryService(registryConfiguration); // 2

CacheConfiguration<Long, String> cacheConfiguration =
CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
.heap(1, MemoryUnit.MB).offheap(2, MemoryUnit.MB))
.build();

cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
.withCache("myCache", cacheConfiguration)
.using(managementRegistry) // 3
.build(true);

Object o =
managementRegistry.withCapability("StatisticCollectorCapability")
.call("updateCollectedStatistics",

new Parameter("StatisticsCapability"),
new Parameter(Arrays.asList("Cache:HitCount", "Cache:MissCount"),
Collection.class.getName()))

.on(Context.create("cacheManagerName", "myCacheManager1"))

.build()

.execute()

.getSingleResult();
System.out.println(o);
Cache<Long, String> aCache = cacheManager.getCache(

"myCache", Long.class, String.class);
aCache.put(1L, "one");
aCache.put(0L, "zero");
aCache.get(1L); // 4
aCache.get(0L); // 4
aCache.get(0L);
aCache.get(0L);
Context context = StatsUtil.createContext(managementRegistry); // 5

116 Ehcache API Developer Guide 10.15

18 Management and Monitoring with Ehcache

StatisticQuery query =
managementRegistry.withCapability("StatisticsCapability") // 6
.queryStatistic("Cache:HitCount")
.on(context)
.build();

ResultSet<ContextualStatistics> counters = query.execute();
ContextualStatistics statisticsContext = counters.getResult(context);
Assert.assertThat(counters.size(), Matchers.is(1));

}
finally {
if(cacheManager != null) cacheManager.close();

}

Optional: give a name to your cache manager by using a custom configuration1

Create an instance of org.ehcache.management.registry.DefaultManagementRegistryService.
This is only required because the service is used below.

2

Pass it as a service to the cache manager (if you only want to configure the
ManagementRegistry, you can just pass the configuration instead)

3

Perform a few gets to increment the statistic's counter4

Create the target statistic's context5

Collect the get count statistic6

Obviously, you may use the above technique to pass your own implementation of
ManagementRegistry.

Capabilities and contexts

Capabilities are metadata of what the managed objects are capable of: a collection of statistic that
can be queried and/or remote actions that can be called. Each capability requires a context to run
in. For instance, cache-specific statistics require a cachemanager name and a cache name to uniquely
identify the cache on which you want to query stats or call an action.
CacheConfiguration<Long, String> cacheConfiguration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class, ResourcePoolsBuilder.heap(10))
.build();

CacheManager cacheManager = null;
try {
ManagementRegistryService managementRegistry =

new DefaultManagementRegistryService();
cacheManager = CacheManagerBuilder.newCacheManagerBuilder()

.withCache("aCache", cacheConfiguration)

.using(managementRegistry)

.build(true);
Collection<? extends Capability> capabilities =

managementRegistry.getCapabilities(); // 1
Assert.assertThat(capabilities.isEmpty(), Matchers.is(false));
Capability capability = capabilities.iterator().next();
String capabilityName = capability.getName(); // 2
Collection<? extends Descriptor> capabilityDescriptions =

Ehcache API Developer Guide 10.15 117

18 Management and Monitoring with Ehcache

capability.getDescriptors(); // 3
Assert.assertThat(capabilityDescriptions.isEmpty(),

Matchers.is(false));
CapabilityContext capabilityContext =

capability.getCapabilityContext();
Collection<CapabilityContext.Attribute> attributes =

capabilityContext.getAttributes(); // 4
Assert.assertThat(attributes.size(), Matchers.is(2));
Iterator<CapabilityContext.Attribute> iterator =

attributes.iterator();
CapabilityContext.Attribute attribute1 = iterator.next();
Assert.assertThat(attribute1.getName(),

Matchers.equalTo("cacheManagerName")); // 5
Assert.assertThat(attribute1.isRequired(), Matchers.is(true));
CapabilityContext.Attribute attribute2 = iterator.next();
Assert.assertThat(attribute2.getName(),

Matchers.equalTo("cacheName")); // 6
Assert.assertThat(attribute2.isRequired(), Matchers.is(true));
ContextContainer contextContainer =

managementRegistry.getContextContainer(); // 7
Assert.assertThat(contextContainer.getName(),

Matchers.equalTo("cacheManagerName")); // 8
Assert.assertThat(contextContainer.getValue(),

Matchers.startsWith("cache-manager-"));
Collection<ContextContainer> subContexts =

contextContainer.getSubContexts();
Assert.assertThat(subContexts.size(), Matchers.is(1));
ContextContainer subContextContainer =

subContexts.iterator().next();
Assert.assertThat(subContextContainer.getName(),

Matchers.equalTo("cacheName")); // 9
Assert.assertThat(subContextContainer.getValue(),

Matchers.equalTo("aCache"));
}
finally {
if(cacheManager != null) cacheManager.close();

}

Query the ManagementRegistry for the registered managed objects' capabilities.1

Each capability has a unique name you will need to refer to it.2

Each capability has a collection of Descriptors that contains the metadata of each statistic
or action.

3

Each capability requires a context to which it needs to refer to.4

The first attribute of this context is the cache manager name.5

The second attribute of this context is the cache name. With both attributes, the capability
can uniquely refer to a unique managed object.

6

Query the ManagementRegistry for the all the registered managed objects' contexts.7

There is only one context here, and its name is the cache manager's name.8

The above context has a subcontext: the cache's name.9

118 Ehcache API Developer Guide 10.15

18 Management and Monitoring with Ehcache

The context containers give you all the attributes of all existing contexts. You canmatch the values
returned by a context container to a capability's context by matching their respective names.

Actions

There are two forms of capabilities: statistics and action ones. The statistic ones offer a set of
predefined statistics that can be queried at will, while the action ones offer a set of actions that can
be taken upon a managed object. Examples of actions could be: clear caches, get their config or
modify a config setting.
CacheConfiguration<Long, String> cacheConfiguration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class, ResourcePoolsBuilder.heap(10))
.build();

CacheManager cacheManager = null;
try {
ManagementRegistryService managementRegistry =

new DefaultManagementRegistryService();
cacheManager = CacheManagerBuilder.newCacheManagerBuilder()

.withCache("aCache", cacheConfiguration)

.using(managementRegistry)

.build(true);
Cache<Long, String> aCache =

cacheManager.getCache("aCache", Long.class, String.class);
aCache.put(0L, "zero"); // 1
Context context =

StatsUtil.createContext(managementRegistry); // 2
managementRegistry.withCapability("ActionsCapability") // 3

.call("clear")

.on(context)

.build()

.execute();
Assert.assertThat(aCache.get(0L),

Matchers.is(Matchers.nullValue())); // 4
}
finally {
if(cacheManager != null) cacheManager.close();

}

Put something in a cache.1

Call the 'clear' action on the managed cache. Refer to the descriptors of the provider to
get the exact list of action names and their required parameters.

2

Call the clear action on the cache.3

Make sure that the cache is now empty.4

Managing multiple cache managers

The default ManagementRegistry instance that is created when none are manually registered only
manages a single cachemanager by default, but sometimes youmaywant one ManagementRegistry
to manage multiple cache managers.

Ehcache API Developer Guide 10.15 119

18 Management and Monitoring with Ehcache

ManagementRegistry instances are thread-safe, so one instance can be shared amongst multiple
cache managers:
CacheConfiguration<Long, String> cacheConfiguration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class, ResourcePoolsBuilder.heap(10))
.build();

CacheManager cacheManager1 = null;
CacheManager cacheManager2 = null;
try {
SharedManagementService sharedManagementService =

new DefaultSharedManagementService(); // 1
cacheManager1 = CacheManagerBuilder.newCacheManagerBuilder()

.withCache("aCache", cacheConfiguration)

.using(new DefaultManagementRegistryConfiguration()
.setCacheManagerAlias("myCacheManager-1"))

.using(sharedManagementService) // 2

.build(true);
cacheManager2 = CacheManagerBuilder.newCacheManagerBuilder()

.withCache("aCache", cacheConfiguration)

.using(new DefaultManagementRegistryConfiguration()
.setCacheManagerAlias("myCacheManager-2"))

.using(sharedManagementService) // 3

.build(true);
Context context1 = Context.empty()

.with("cacheManagerName", "myCacheManager-1")

.with("cacheName", "aCache");
Context context2 = Context.empty()

.with("cacheManagerName", "myCacheManager-2")

.with("cacheName", "aCache");
Cache<Long, String> cache =

cacheManager1.getCache("aCache", Long.class, String.class);
cache.get(1L);//cache miss
cache.get(2L);//cache miss
StatisticQuery query = sharedManagementService

.withCapability("StatisticsCapability")

.queryStatistic("Cache:MissCount")

.on(context1)

.on(context2)

.build();
long val = 0;
// it could be several seconds before the sampled stats
// could become available
// let's try until we find the correct value : 2
do {

ResultSet<ContextualStatistics> counters = query.execute();
ContextualStatistics statisticsContext1 =

counters.getResult(context1);
Number counterContext1 = statisticsContext1.

getStatistic("Cache:MissCount");
// miss count is a sampled stat,
//for example its values could be [0,1,2].
// In the present case, only the last value is important to us,
// the cache was eventually missed 2 times
val = counterContext1.longValue();

} while(val != 2);
}
finally {
if(cacheManager2 != null) cacheManager2.close();
if(cacheManager1 != null) cacheManager1.close();

120 Ehcache API Developer Guide 10.15

18 Management and Monitoring with Ehcache

}

Create an instance of org.ehcache.management.SharedManagementService1

Pass it as a service to the first cache manager2

Pass it as a service to the second cache manager3

This way, all managed objects get registered into a common ManagementRegistry instance.

Rules for Statistics Calculation

This table describes the impact of each cache method on the statistics.

The statistics are:

Hit
An entry was asked for and found in the cache.

Miss
An entry was asked for and not found in the cache.

Put
An entry was added or updated.

Update
An existing entry was updated (this is a subset of put).

Removal
An entry was removed from the cache.

Expiration
An entry has expired and was therefore removed from the cache.

Eviction
An entry was evicted from the cache due to lack of space

NotesEvictionExpirationRemovalUpdatePutMissHitMethod

A bulk remove with no
impact on statistics.

NoNoNoNoNoNoNoclear

Generates no hit or miss
since the value isn't
accessed.

NoNoNoNoNoNoNocontainsKey

Java 8. Will hit each entry
once.

NoYesNoNoNoNoYesforEach

Hit when the entry is
found, miss otherwise.

NoYesNoNoNoYesYesget

Ehcache API Developer Guide 10.15 121

18 Management and Monitoring with Ehcache

NotesEvictionExpirationRemovalUpdatePutMissHitMethod

Like get but calculated per
entry.

NoYesNoNoNoYesYesgetAll

JSR107 specific. Hit and
update when the entry is

YesYesNoYesYesYesYesgetAndPut

found, miss otherwise.
Always put.

JSR107 specific. Hit and
remove when the entry is
found, miss otherwise.

NoYesYesNoNoYesYesgetAndRemove

JSR107 specific. Hit, put
and update when the

YesYesNoYesYesYesYesgetAndReplace

entry is found, miss
otherwise.

JSR107 specific. Depends
on how the EntryProcessor
modifies the MutableEntry.

YesYesYesYesYesYesYesinvoke

JSR107 specific. Like invoke
but calculated per entry.

YesYesYesYesYesYesYesinvokeAll

Will hit each iterated
entry and count a removal
on Iterator.remove.

NoYesYesNoNoNoYesiterator

JSR107 specific.
Background loading that

NoNoNoNoNoNoNoloadAll

has no impact on
statistics.

Put an entry whether it
already existed or not.

YesNoNoYesYesNoNoput

Like put but calculated per
entry.

YesNoNoYesYesNoNoputAll

Will hit if the entry exists.
Will put and miss if it
doesn't.

YesYesNoNoYesYesYesputIfAbsent

Count a removal if the
entry exists.

NoYesYesNoNoNoNoremove(K)

Hit if the key is found.
Miss otherwise.

NoYesYesNoNoYesYesremove(K,V)

122 Ehcache API Developer Guide 10.15

18 Management and Monitoring with Ehcache

NotesEvictionExpirationRemovalUpdatePutMissHitMethod

One removal per entry in
the cache.

NoNoYesNoNoNoNoremoveAll

Like remove but calculated
per entry.

NoNoYesNoNoNoNoremoveAll(keys)

Hit, put and update if the
entry exists. Miss
otherwise.

YesYesNoYesYesYesYesreplace(K,V)

Hit if the entry exists.YesYesNoYesYesYesYesreplace(K,O,N)

Java 8. Will hit for each
iterated entry.

NoYesNoNoNoNoYesspliterator

The statistics are provided by cache and tiers. Cache evictions and expirations are taken from the
lowest (authoritative) tier.

Ehcache API Developer Guide 10.15 123

18 Management and Monitoring with Ehcache

124 Ehcache API Developer Guide 10.15

18 Management and Monitoring with Ehcache

19 Class Loading

■ About Class Loading .. 126

■ Handling User Types .. 126

Ehcache API Developer Guide 10.15 125

About Class Loading

Since Ehcache is a library and supports user types both in configuration and in mapping keys or
values, it must offer flexibility around class loading.

Default ClassLoader in Ehcache

The default ClassLoader from Ehcache will first try to use the thread context class loader, through
Thread.currentThread().getContextClassLoader(). In case this fails to load the requested resource, it will
then use the ClassLoader that loaded the Ehcache internal classes.

Handling User Types

The way to configure a ClassLoader and the scope of its use differ between Java and XML based
configurations. However, regardless of the configuration method, each CacheManager and Cache is
always linked individually to a specific ClassLoader instance.

Java configuration

During the configuration of the CacheManager or Cache, there are multiple extension points where
a user type can be involved. This includes Serializer, CacheLoaderWriter and other similar companion
objects. You can usually give an instance of these types to the configuration or an instance of the
class to use. This effectively negates the need to think in terms of a class loader here.

However you can still pass a specific ClassLoader to the CacheManager configuration. You can also
give a specific ClassLoader per cache if you need to, taking precedence over the one configured at
the CacheManager level. These will be used at runtime (see the section “At runtime” on page 127
below).

If no class loader is specified, the default class loader from Ehcache (see the section “Default
ClassLoader in Ehcache” on page 126) will be used.

XML configuration

When using XML to configure Ehcache, references to custom types are given through a fully
qualified class name. This means that transforming these String names into the proper class
representation may require a specific ClassLoader.

In order to support this, the XmlConfiguration constructors can take ClassLoader parameters:

public XmlConfiguration(URL url)
to use only default ClassLoader

public XmlConfiguration(URL url, final ClassLoader classLoader)
to use a specific ClassLoader at the CacheManager level

public XmlConfiguration(URL url, final ClassLoader classLoader, final Map<String, ClassLoader>
cacheClassLoaders)

126 Ehcache API Developer Guide 10.15

19 Class Loading

to use a specific ClassLoader at the CacheManager level and amap of <String, ClassLoader>whichwill
be used to link a specific ClassLoader to a Cache by its alias

In the same way as for the Java configuration, the Cache level configuration takes precedence over
the CacheManager level one. If no class loaders are specified, the default class loader from Ehcache
will be used.

At runtime

As soon as serialization is involved with Cache keys or values, the class loader plays a role at
runtime. The specific ClassLoader per Cache will be used by the serialization sub-system. It will
allow deserialization to types that may not be visible by the Ehcache ClassLoader.

Ehcache API Developer Guide 10.15 127

19 Class Loading

128 Ehcache API Developer Guide 10.15

19 Class Loading

20 Clustered Caches

■ Introduction ... 130

■ Clustering Concepts ... 130

■ Starting the Terracotta Server .. 132

■ Creating a Cache Manager with Clustering Capabilities .. 133

■ Cache Manager Configuration and Usage of Server Side Resources 134

■ Ehcache Cluster Tier Manager Lifecycle .. 135

■ Configuring a Clustered Cache .. 136

■ Creating a Cluster with Multiple Stripes ... 139

Ehcache API Developer Guide 10.15 129

Introduction

Distributed caching allows you to harness additional benefits of horizontal scale-out, without
losing on low latency offered by local on-heap tiers.

Diagram illustrating two applications accessing a Terracotta Server. In the
application, hot data is cached locally, hotter data in faster tiers.The data cached
by one application instance is available to all cluster members.The full dataset is
available to the cluster. One or more mirror servers may be deployed to provide
High Availability.The ability to span data across multiple active servers for larger
scale deployments is available commercially.

To enable clustering with Terracotta, you will have to deploy a Terracotta Server configured with
clustered cache storage.

You will then need to configure a cache manager to have clustering capabilities such that the
caches it manages can utilize the clustered storage. Finally, any cacheswhich should be distributed
should be configured with a clustered storage tier.

Clustering Concepts

In this section we discuss some Terracotta clustering terms and concepts that you need to
understand before creating cache managers and caches with clustering support.

Server off-heap resource
Server off-heap resources are storage resources defined at the server. Caches can reserve a
storage area for their cluster tiers within these server off-heap resources.

130 Ehcache API Developer Guide 10.15

20 Clustered Caches

Cluster Tier Manager
The EhcacheCluster Tier Manager is the server-side component that gives clustering capabilities
to a cache manager. Cache managers connect to it to get access to the server's storage resources
so that the clustered tiers of caches defined in them can consume those resources. An Ehcache
cluster tier manager at the server side is identified by a unique identifier. Using the unique
identifier of any given cluster tier manager, multiple cache managers can connect to the same
cluster tier manager in order to share cache data. The cluster tier manager is also responsible
for managing the storage of the cluster tier of caches, with the following different options.

Dedicated pool
Dedicated pools are a fixed-amount of storage pools allocated to the cluster tiers of caches. A
dedicated amount of storage is allocated directly from server off-heap resources to these pools.
And this storage space is used exclusively by a given cluster tier.

Shared pool
Shared pools are also fixed-amount storage pools, but can be shared by the cluster tiers of
multiple caches. As in the case of dedicated pools, shared pools are also carved out from server
off-heap resources. The storage available in these shared pools is strictly shared. In otherwords,
no cluster tier can ask for a fixed-amount of storage from a shared pool.
Sharing of storage via shared pools does not mean that the data is shared. That is, if two caches
are using a shared pool as their clustered tier, the data of each cache is still isolated but the
underlying storage is shared. Consequently, when resource capacity is reached and triggers
eviction, the evicted mapping can come from any of the cluster tiers sharing the pool.

Here is a pictorial representation of the concepts explained above:

Illustration showing resources of two caches that are separated while being from
the same shared pool.

Ehcache API Developer Guide 10.15 131

20 Clustered Caches

Starting the Terracotta Server

Information on how to start the Terracotta Server is contained in the Terracotta Server Administration
Guide.

The snippet below defines two offheap resources named primary-server-resource and
secondary-server-resource having sizes 128MB and 96MB respectively:
offheap-resources=primary-server-resource:128MB,secondary-server-resource:96MB

This can be defined either in the config properties file or during server startup.

The rest of the document explains in detail how you can configure cache managers and caches to
consume the server's off-heap resources.

132 Ehcache API Developer Guide 10.15

20 Clustered Caches

Assuming that you have the clustered Ehcache kit available locally, start with extracting the
ehcache-clustered kit. Change to your extracted directory and then execute the start-tc-server
script located under $KIT_DIR/server/bin to start the Terracotta Server.

Activate the cluster using the activate command of the config tool located under
$KIT_DIR/tools/bin.

Note:
You will need to have JAVA_HOME point to a Java 8 installation while starting the Terracotta
Server.

Check for the below INFO log to confirm if the server started successfully,
Terracotta Server instance has started up as ACTIVE node on 0:0:0:0:0:0:0:0:9410

successfully, and is now ready for work.

Creating a Cache Manager with Clustering Capabilities

After starting the Terracotta Server, as described in the previous section, you can now proceed to
create the cache manager. For creating the cache manager with clustering support you will need
to provide the clustering service configuration. Here is a code sample that shows how to configure
a cache manager with clustering service.
CacheManagerBuilder<PersistentCacheManager> clusteredCacheManagerBuilder =

CacheManagerBuilder.newCacheManagerBuilder() // <1>

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create("terracotta://localhost/my-application"))
//2

.autoCreateOnReconnect(c -> c)); // <3>
PersistentCacheManager cacheManager = clusteredCacheManagerBuilder.build(true); //
<4>
cacheManager.close(); // <5>

Returns the org.ehcache.config.builders.CacheManagerBuilder instance;1

Use the ClusteringServiceConfigurationBuilder's static method .cluster(URI) for
connecting the cache manager to the clustered storage at the URI specified that returns

2

the clustering service configuration builder instance. SampleURI provided in the example
is pointing to the clustered storage instance named “my-application” on the Terracotta
Server (assuming the server is running on localhost and port 9410).

Auto-create the clustered storage if it doesn't already exist. We also allow auto-create on
reconnection, since the cluster is not persistent.

3

Returns a fully initialized cache manager that can be used to create clustered caches.4

Close the cache manager.5

Ehcache API Developer Guide 10.15 133

20 Clustered Caches

Cache Manager Configuration and Usage of Server Side
Resources

This code sample demonstrates the usage of the concepts explained in the previous section in
configuring a cache manager and clustered caches by using a broader clustering service
configuration:
CacheManagerBuilder<PersistentCacheManager> clusteredCacheManagerBuilder =

CacheManagerBuilder.newCacheManagerBuilder()

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create("terracotta://localhost/my-application")).autoCreateOnReconnect(server
-> server

.defaultServerResource("primary-server-resource") // <1>

.resourcePool("resource-pool-a", 8, MemoryUnit.MB,
"secondary-server-resource") // <2>

.resourcePool("resource-pool-b", 10, MemoryUnit.MB))) // <3>
.withCache("clustered-cache",

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
String.class, // <4>

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredDedicated(

"primary-server-resource", 8, MemoryUnit.MB)))) // <5>
.withCache("shared-cache-1",

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredShared(

"resource-pool-a")))) // <6>
.withCache("shared-cache-2",

CacheConfigurationBuilder.newCacheConfigurationBuilder(
Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredShared(

"resource-pool-a")))); // <7>
PersistentCacheManager cacheManager =

clusteredCacheManagerBuilder.build(true); // <8>
cacheManager.close();

defaultServerResource(String) on ClusteringServiceConfigurationBuilder instance
sets the default server off-heap resource for the cache manager. From the example, cache

1

manager sets its default server off-heap resource to “primary-server-resource” in the
server.

Adds a resource pool for the cache manager with the specified name (“resource-pool-a”)
and size (28MB) consumed out of the named server off-heap resource

2

“secondary-server-resource”. A resource pool at the cache manager level maps directly
to a shared pool at the server side.

Adds another resource pool for the cache manager with the specified name
(“resource-pool-b”) and size (32MB). Since the server resource identifier is not explicitly

3

passed, this resource pool will be consumed out of default server resource provided in
Step 3. This demonstrates that a cachemanagerwith clustering support can havemultiple
resource pools created out of several server off-heap resources.

134 Ehcache API Developer Guide 10.15

20 Clustered Caches

Provide the cache configuration to be created.4

ClusteredResourcePoolBuilder.clusteredDedicated(String , long , MemoryUnit)
allocates a dedicated pool of storage to the cache from the specified server off-heap

5

resource. In this example, a dedicated pool of 32MB is allocated for clustered-cache from
“primary-server-resource”.

ClusteredResourcePoolBuilder.clusteredShared(String), passing the nameof the resource
pool specifies that “shared-cache-1” shares the storage resources with other caches using
the same resource pool (“resource-pool-a”).

6

Configures another cache (“shared-cache-2”) that shares the resource pool
(“resource-pool-a”) with “shared-cache-1”.

7

Creates fully initialized cache manager with the clustered caches.8

Note:
When a cache is allocated a block of memory from a shared pool, it is retained forever and
would never get reallocated to another cache sharing the pool.

Ehcache Cluster Tier Manager Lifecycle

When configuring a cache manager to connect to a cluster tier manager there are three possible
connection modes:
CacheManagerBuilder<PersistentCacheManager> autoCreate =
CacheManagerBuilder.newCacheManagerBuilder()

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create("terracotta://localhost/my-application"))
.autoCreate(server -> server //1

.resourcePool("resource-pool", 8, MemoryUnit.MB,
"primary-server-resource")))

.withCache("clustered-cache",
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredShared("resource-pool"))));

CacheManagerBuilder<PersistentCacheManager> autoCreateOnReconnect =
CacheManagerBuilder.newCacheManagerBuilder()

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create("terracotta://localhost/my-application"))
.autoCreateOnReconnect(server -> server //2

.resourcePool("resource-pool", 8, MemoryUnit.MB,
"primary-server-resource")))

.withCache("clustered-cache",
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredShared("resource-pool"))));

CacheManagerBuilder<PersistentCacheManager> expecting =
CacheManagerBuilder.newCacheManagerBuilder()

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create("terracotta://localhost/my-application"))
.expecting(server -> server //3

.resourcePool("resource-pool", 8, MemoryUnit.MB,
"primary-server-resource")))

Ehcache API Developer Guide 10.15 135

20 Clustered Caches

.withCache("clustered-cache",
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredShared("resource-pool"))));

CacheManagerBuilder<PersistentCacheManager> configless =
CacheManagerBuilder.newCacheManagerBuilder()

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create("terracotta://localhost/my-application")))
//4

.withCache("clustered-cache",
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredShared("resource-pool"))));

In auto-createmode, if no cluster tiermanager exists, then one is createdwith the supplied
configuration. If it exists, and its configuration matches the supplied configuration, then

1

a connection is established. If the supplied configuration does not match, then the cache
manager will fail to initialize.

In auto create on reconnect mode, we additionally support auto creation of any necessary
entities when reconnecting to a cluster. This behavior is useful in a non-persistent cluster
in case the cluster loses its state due to a restart (planned or accidental).

2

In expectedmode if a cluster tiermanager exists, and its configurationmatches the supplied
configuration, then a connection is established. If the supplied configuration does not

3

match, or the cluster tier manager does not exist, then the cache manager will fail to
initialize.

In config-lessmode, if a cluster tiermanager exists, then a connection is establishedwithout
regard to its configuration. If it does not exist, then the cachemanagerwill fail to initialize.

4

Configuring a Clustered Cache

Clustered Storage Tier
CacheConfiguration<Long, String> config =

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()

.heap(2, MemoryUnit.MB) // <1>

.with(ClusteredResourcePoolBuilder.clusteredDedicated(
"primary-server-resource", 8, MemoryUnit.MB))) // <2>

.withService(ClusteredStoreConfigurationBuilder.withConsistency(Consistency.STRONG))
.build();

Cache<Long, String> cache = cacheManager.createCache("clustered-cache-tiered", config);
cache.put(42L, "All you need to know!");

Configuring the heap tier for cache.1

Configuring the cluster tier of dedicated size from server off-heap resource using
ClusteredResourcePoolBuilder.

2

The equivalent XML configuration is as follows:

136 Ehcache API Developer Guide 10.15

20 Clustered Caches

<cache alias="clustered-cache-tiered">
<resources>

<heap unit="MB">10</heap> <!-- 1 -->
<tc:clustered-dedicated unit="MB">50</tc:clustered-dedicated> <!-- 2 -->

</resources>
<tc:clustered-store consistency="strong"/>

</cache>

Specify the heap tier for cache.1

Specify the cluster tier for cache through a custom service configuration from the clustered
namespace.

2

Specifying consistency level

Ehcache offers two levels of consistency:

Eventual
This consistency level indicates that the visibility of a write operation is not guaranteed when
the operation returns. Other clients may still see a stale value for the given key. However this
consistency level guarantees that for a mapping (K, V1) updated to (K, V2), once a client sees
(K, V2) it will never see (K, V1) again.

Strong
This consistency level provides strong visibility guarantees ensuring thatwhen awrite operation
returns other clients will be able to observe it immediately. This comes with a latency penalty
on the write operation required to give this guarantee.

CacheConfiguration<Long, String> config =
CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredDedicated(
"primary-server-resource", 2, MemoryUnit.MB)))

.withService(ClusteredStoreConfigurationBuilder.withConsistency(Consistency.STRONG))
// <1>

.build();
Cache<Long, String> cache = cacheManager.createCache("clustered-cache", config);
cache.put(42L, "All you need to know!"); // <2>

Specify the consistency level through the use of additional service configuration, using
“strong” consistency here.

1

With the consistency used above, this put operationwill return onlywhen all other clients
have had the corresponding mapping invalidated.

2

The equivalent XML configuration is as follows:
<cache alias="clustered-cache">
<resources>

<tc:clustered-dedicated unit="MB">50</tc:clustered-dedicated>
</resources>
<tc:clustered-store consistency="strong"/> <!-- 1 -->

</cache>

Ehcache API Developer Guide 10.15 137

20 Clustered Caches

Specify the consistency level through a custom service configuration from the clustered
namespace.

1

Clustered Cache Expiry

Expiry in clustered caches work with an exception that Expiry#getExpiryForAccess is handled on
a best effort basis for cluster tiers. It may not be as accurate as in the case of local tiers.

Clustered Unspecified Inheritance

We have included an option which allows a cache to be created inside the cache manager without
having to explicitly define its cluster tier resource pool allocation. In order to use this feature the
cluster tier must already have been created with either a shared or dedicated resource pool.

In this case the definition of the cluster resource is done simply with a clustered() resource pool.
This effectively means unspecified and indicates you expect it to exist already. It will then inherit
the clustered resource pool as it was configured when creating the cluster tier.

This option provides many benefits. The main benefit is it simplifies clustered configuration by
allowing clustered resource pool configuration to be handled by one client, then all subsequent
clients can inherit this configuration. In addition, it also reduces clustered pool allocation
configuration errors. More importantly, sizing calculations only need to be done by one person
and updated in one location. Thus any programmer can use the cache without having to worry
about using matching resource pool allocations.

The example code below shows how this can be implemented.
CCacheManagerBuilder<PersistentCacheManager> cacheManagerBuilderAutoCreate =
CacheManagerBuilder.newCacheManagerBuilder()

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create("terracotta://localhost/my-application"))
.autoCreateOnReconnect(server -> server //1
.resourcePool("resource-pool", 8, MemoryUnit.MB,

"primary-server-resource")));
PersistentCacheManager cacheManager1 = cacheManagerBuilderAutoCreate.build(false);
cacheManager1.init();
try {
CacheConfiguration<Long, String> cacheConfigDedicated =

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(ClusteredResourcePoolBuilder.clusteredDedicated("primary-server-resource",

8, MemoryUnit.MB))) //2
.withService(ClusteredStoreConfigurationBuilder.withConsistency(Consistency.STRONG))
.build();

Cache<Long, String> cacheDedicated = cacheManager1.createCache("my-dedicated-cache",
cacheConfigDedicated); //3
CacheManagerBuilder<PersistentCacheManager> cacheManagerBuilderExpecting =

CacheManagerBuilder.newCacheManagerBuilder()

.with(ClusteringServiceConfigurationBuilder.cluster(URI.create("terracotta://localhost/my-application"))
.expecting(server -> server //4
.resourcePool("resource-pool", 8, MemoryUnit.MB, "primary-server-resource")));

PersistentCacheManager cacheManager2 = cacheManagerBuilderExpecting.build(false);
cacheManager2.init();

138 Ehcache API Developer Guide 10.15

20 Clustered Caches

try {
CacheConfiguration<Long, String> cacheConfigUnspecified =

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()

.with(ClusteredResourcePoolBuilder.clustered())) //5

.withService(ClusteredStoreConfigurationBuilder.withConsistency(Consistency.STRONG))
.build();

Cache<Long, String> cacheUnspecified =
cacheManager2.createCache("my-dedicated-cache", cacheConfigUnspecified); //6
} finally {

cacheManager2.close();
}

} finally {
cacheManager1.close();

}

Configure the first cache manager with auto create on reconnect.1

Build a cache configuration for a clustered dedicated resource pool.2

Create cache “my-dedicated-cache” using the cache configuration.3

Configure the second cache manager as expecting.4

Build a cache configuration for a clustered unspecified resource pool, which will use the
previously configured clustered dedicated resource pool.

5

Create cache with the same name “my-dedicated-cache” and use the clustered unspecified
cache configuration.

6

Creating a Cluster with Multiple Stripes

Server-side tasks for setting up a Multi-Stripe Cluster

Before you create a cluster, start at least one server on each of the stripes which are going to be
part of the cluster.

Use the activate command of the config toolto make the cluster ready for client operations.

For details about usage of the config tool, refer to the section Config Tool in the Terracotta Server
Administration Guide.

Client Side Code

The client-side code for connecting to a cluster will be similar to the following:
PersistentCacheManager cacheManager =

CacheManagerBuilder.newCacheManagerBuilder()
.with(ClusteringServiceConfigurationBuilder.cluster(URI.create(

"terracotta://localhost:9410/multi-stripe-cm")).autoCreate()) // 1
.withCache("myCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(

Long.class, String.class, ResourcePoolsBuilder.heap(10)

Ehcache API Developer Guide 10.15 139

20 Clustered Caches

.with(ClusteredResourcePoolBuilder.clusteredDedicated(
"primary-server-resource", 10, MemoryUnit.MB)))) // 2

.build(true);
Cache<Long, String> myCache = cacheManager.getCache("myCache",

Long.class, String.class);
myCache.put(42L, "Success!");
System.out.println(myCache.get(42L));

Connection to a multi-stripe cluster requires a URI with the host:port of all servers that
belong to one of the stripes.

1

The size of the resource pool on each stripe is the total pool size divided by the numbers
of stripes in the cluster.

2

Note:

It's recommended to check the availability of resources across all stripes in the cluster before
configuring a cache, otherwise cache creation will fail on the stripes with insufficient
resources.
Creating cluster with cluster tool is amandatory first step, otherwise cache creation will
succeed on only one of the stripes represented by the providedURI. Creating a cluster after
creating clustered resources is not supported and will result in errors.

140 Ehcache API Developer Guide 10.15

20 Clustered Caches

21 Fast Restartability

■ Overview of Fast Restartability ... 142

■ Creating a Restartable Cache Manager ... 142

■ Creating a Restartable Cache .. 143

■ Creating Restartable Resource Pools .. 143

■ Example of a Restartability Scenario ... 144

■ General Notes on Configuring Restartability .. 145

Ehcache API Developer Guide 10.15 141

Overview of Fast Restartability

TheFast Restart feature provides enterprise-ready crash resilience by keeping a consistent, real-time
record of in-memory data on a disk. After a shutdown - planned or unplanned - the next time the
application starts up, all of the data that was in memory prior to the shutdown is made available
again. This reduces the load on a remote data source, such as a database serving as a System of
Record (SoR), and enables applications to resume from the state prior to the shutdown. The time
taken for the data to be restored from the disk depends on the quantity of data restored, and the
capabilities of the disk itself.

Creating a Restartable Cache Manager

Configuring a restartable server lays the foundation for application data to be restartable.

Refer to the topic Server Persistence in the section Configuring the Terracotta Server in the Terracotta
Server Administration Guide for information on configuring a restartable server.

Caches must be configured as restartable in a restartable CacheManager. A non-restartable
CacheManager cannot contain restartable Caches. However, a restartable CacheManager can contain
restartable as well as non-restartable Caches. In the latter case, only the Cache configuration is
restored upon a server restart, and not the Cache data.

The following example illustrates a restartable CacheManager creation. Only the parts which are
different in a restartable CacheManager are explained.
EnterpriseServerSideConfigurationBuilder serverSideConfigBuilder =

EnterpriseClusteringServiceConfigurationBuilder
.enterpriseCluster(URI.create(

"terracotta://localhost:9410/my-application")) // 1
.autoCreate()
.defaultServerResource("primary-server-resource")
.restartable("data-directory-name") // 2

PersistentCacheManager cacheManager = CacheManagerBuilder
.newCacheManagerBuilder()
.with(serverSideConfigBuilder) // 3
.build(true);

cacheManager.close();
cacheManager.destroy(); // 4

EnterpriseClusteringServiceConfigurationBuilder's static method enterpriseCluster(URI) connects the
cache manager to the clustered storage at the URI specified. The sample URI provided in

1

the example points to the clustered storage instance named 'my-application' on the Terracotta
Server (assuming the server is running on localhost and port 9410).

The restartable(String)method accepts a logical data directory name to specify where the fast
restart logs should be stored.

2

The string specified here is a logical name, which should be present in the Terracotta Server
configuration. The server configuration has a mapping of this logical name to a directory
path. Using this API is an absoluteMUST to create a restartable CacheManager, in the absence
of which theCacheManagerwill be created as a non-restartable CacheManager.

142 Ehcache API Developer Guide 10.15

21 Fast Restartability

CacheManagerBuilder uses serverSideConfigBuilder created in Step 1 above.3

Calling destroy() on the CacheManagerwill destroy all caches contained inside the
CacheManager, all associated metadata and the CacheManager itself. This can be done to free
up resources and to ensure that cache contents don't re-appear on a server restart.

4

Creating a Restartable Cache

This is the partwhichmakes the application data restartable. Asmentioned in the section “Creating
a Restartable Cache” on page 143, a restartable Cache can be configured only in a restartable
CacheManager.

A restartable CacheConfiguration API is a lot like the regular (non-restartable) CacheConfiguration API,
except that it takes the restartable variant of ClusteredResourcePool, which makes the cache contents
restartable.

Creating Restartable Resource Pools

Let us do a quick recap of restartability:

A restartable server enables you to have restartable objects on the server.

A restartable CacheManager makes the cache configuration restartable.

A restartable resource pool configuration makes your cache data restartable.

As with non-restartable resource pools, restartable resource pools can be dedicated or shared. See
“Clustering Concepts” on page 130 for a refresher on resource pools.
ClusteredResourcePool restartableDedicatedPool =

ClusteredRestartableResourcePoolBuilder
.clusteredRestartableDedicated(

"primary-server-resource", 4, MemoryUnit.MB); // 1
ClusteredResourcePool restartableSharedPool =

ClusteredRestartableResourcePoolBuilder
.clusteredRestartableShared("shared-pool"); // 2

ClusteredRestartableResourcePoolBuilder's static method clusteredRestartableDedicated(String, long,
MemoryUnit) configures a restartable dedicated pool of size 4 MB from the server's

1

primary-server-resource. As the name suggests, this pool will be dedicated to the Cache using
it.

ClusteredRestartableResourcePoolBuilder's static method clusteredRestartableShared(String) specifies
a restartable shared pool with the name shared-pool. This pool can be shared by multiple
caches, and no cache can exclusively reserve this pool for its sole use.

2

Ehcache API Developer Guide 10.15 143

21 Fast Restartability

Example of a Restartability Scenario

The following example illustrates a typical scenario of a CacheManager containing amix of restartable
and non-restartable caches.
EnterpriseServerSideConfigurationBuilder serverSideConfigBuilder =

EnterpriseClusteringServiceConfigurationBuilder
.enterpriseCluster(connectionURI)
.autoCreate()
.defaultServerResource("primary-server-resource")
.resourcePool("shared-pool", 20, MemoryUnit.MB,

"secondary-server-resource") // 1
.restartable("data-directory-name");

PersistentCacheManager cacheManager = CacheManagerBuilder
.newCacheManagerBuilder()
.with(serverSideConfigBuilder)
.build(true);

ClusteredResourcePool restartableDedicatedPool =
ClusteredRestartableResourcePoolBuilder
.clusteredRestartableDedicated(

"primary-server-resource", 4, MemoryUnit.MB);
ClusteredResourcePool restartableSharedPool =

ClusteredRestartableResourcePoolBuilder
.clusteredRestartableShared("shared-pool");

ClusteredResourcePool nonRestartableDedicatedPool =
ClusteredResourcePoolBuilder
.clusteredDedicated(

"primary-server-resource", 8, MemoryUnit.MB); // 2
ClusteredResourcePool nonRestartableSharedPool =

ClusteredResourcePoolBuilder
.clusteredShared("shared-pool"); // 3

Cache<Long, String> restartableDedicatedPoolCache = cacheManager
.createCache("restartableDedicatedPoolCache",

CacheConfigurationBuilder
.newCacheConfigurationBuilder(Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(restartableDedicatedPool))); // 4

Cache<Long, String> restartableSharedPoolCache = cacheManager
.createCache("restartableSharedPoolCache",

CacheConfigurationBuilder
.newCacheConfigurationBuilder(Long.class, String.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(restartableSharedPool))); // 5

Cache<String, Boolean> nonRestartableDedicatedPoolCache = cacheManager
.createCache("nonRestartableDedicatedPoolCache",

CacheConfigurationBuilder
.newCacheConfigurationBuilder(String.class, Boolean.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(nonRestartableDedicatedPool))); // 6

Cache<String, Boolean> nonRestartableSharedPoolCache = cacheManager
.createCache("nonRestartableSharedPoolCache",

CacheConfigurationBuilder
.newCacheConfigurationBuilder(String.class, Boolean.class,

ResourcePoolsBuilder.newResourcePoolsBuilder()
.with(nonRestartableSharedPool))); // 7

cacheManager.close();
cacheManager.destroy();

144 Ehcache API Developer Guide 10.15

21 Fast Restartability

Registers with the CacheManager a resource pool named shared-pool of size 20MB, reserved
from server's secondary-server-resource.

1

Creates a non-restartable dedicated resource pool of size 8 MB from server's
primary-server-resource.

2

Specifies a non-restartable shared resource pool which could be used by multiple caches.3

Creates a Cache using a restartable dedicated pool.4

Creates a Cache using a restartable shared pool.5

Creates a Cache using the non-restartable dedicated pool created in Step 2 above.6

Creates a Cache using the non-restartable shared pool created in Step 3 above. Note here
that the same pool is shared by restartable and non-restartable caches.

7

General Notes on Configuring Restartability

A restartable CacheManagermust be supplied with a data directory name using the
restartable(<data-root-identifier>)API. If not, the CacheManagerwould be created as a non-restartable
CacheManager.

Refer to the topicData Directories in the section Configuring the Terracotta Server in the Terracotta
Server Administration Guide for more details.

The data directory name specified at CacheManager should be any one of the data directories
specified in the server configuration. For example, if a server is configuredwith data directories
root1, root2 and root3, a CacheManager could be supplied any one of these three data directories.
If the data directory specified in the CacheManager configuration does not match the data
directory specified in server configuration, the following Exception is thrown.
org.terracotta.entity.ConfigurationException:
Given identifier (specified_directory) is not present in the server's configuration;
Cannot configure Fast Restart Store for clustered tier manager
(specified_cache_manager) due to invalid configuration specified by client.

Aswith a non-restartable CacheManager, the server resource supplied in the defaultServerResource
API should exist in the Terracotta Server configuration.

As should be obvious, the specified pool size shouldn't exceed the server resource size.

Different clients who want to connect to the same CacheManager should use the exact same
configuration. Once CacheManager is created, any subsequent attempts to create the same
CacheManager with a different configuration will fail.

Ehcache API Developer Guide 10.15 145

21 Fast Restartability

146 Ehcache API Developer Guide 10.15

21 Fast Restartability

22 Hybrid Caching

■ Overview of Hybrid Caching ... 148

■ Configuring a Hybrid Cache Manager .. 148

■ Configuring a Hybrid Cache ... 149

■ Example of a Hybrid Scenario .. 149

■ General Notes on Configuring Hybrid .. 150

Ehcache API Developer Guide 10.15 147

Overview of Hybrid Caching

A full restartable CacheManager stores all of its cache data in server off-heap. A hybrid restartable
CacheManager stores only some (explained in “Configuring a Hybrid Cache” on page 149 section
below) of its cache data in server off-heap. The off-heap tier in this scenario is backed by a disk,
meaning that the entries in the off-heap tier are a subset of the entries in the disk, and the disk
provides crash-resilience to the cache data. This has the following advantages:

Cache size can exceed the available off-heap memory.

Predictable low latencies are guaranteed at very large scale.

Crash-resilience (see “Fast Restartability” on page 141) is provided to the cache data.

Ehcache provides the flexibility of configuring hybrid at the CacheManager level. Thus, we could
have full as well as hybrid cache managers on the same Terracotta Server.

Note:

Because of the random-access read/write pattern of hybrid, it is recommended to use hybrid
with Solid State Drives (SSDs) only.

In the subsequent sections, we'll refer to a hybrid restartable CacheManager simply as a hybrid
CacheManager, because a non-restartable hybrid CacheManager does not exist.

Configuring a Hybrid Cache Manager

Ahybrid CacheManager configuration is verymuch like a full CacheManager (refer to “CacheManager
Configuration and Usage of Server Side Resources” on page 134 for details), except that instead of
taking a FULLRestartableOffHeapMode type, it takes a PARTIALRestartableOffHeapMode type. Everything
else remains the same at this configuration level.
EnterpriseServerSideConfigurationBuilder serverSideConfigBuilder =

EnterpriseClusteringServiceConfigurationBuilder
.enterpriseCluster(URI.create(

"terracotta://localhost:9410/my-application"))
.autoCreate()
.defaultServerResource("primary-server-resource")
.restartable("data-directory-name")
.withRestartableOffHeapMode(RestartableOffHeapMode.PARTIAL); // 1

PersistentCacheManager cacheManager = CacheManagerBuilder
.newCacheManagerBuilder()
.with(serverSideConfigBuilder)
.build(true);

cacheManager.close();
cacheManager.destroy();

EnterpriseClusteringServiceConfigurationBuilder's withRestartableOffHeapMode(RestartableOffHeapMode)
API lets you configure a hybrid CacheManager using the value PARTIAL in enum

1

RestartableOffHeapMode. The value of FULL signifies a full (non-hybrid) CacheManager. If this
API is not used, the CacheManager is created as a full CacheManager by default.

148 Ehcache API Developer Guide 10.15

22 Hybrid Caching

Configuring a Hybrid Cache

Hybrid caches can be configured by specifying a dataPercent value at the ResourcePool configuration
level. dataPercent signifies the percentage of cache data to be kept in the off-heap tier. If the cache
data exceeds this limit, it goes to the disk, provided that the metadata is large enough to store this
information; else cache eviction will be triggered.

Note:

Hybrid caches only support dedicated resource pools. Thus, it would be illegal to create a
hybrid cache using shared restartable resource pools.
Conceptually, a hybrid Cache with a dataPercent of 100 is not equal to a full Cache.

Let us consider an example configuration where a Cache uses a ResourcePool of size 1 GB. Consider
the following:

DescriptionData Percent
value

This is a 'Pure Hybrid' configuration where all cache data will reside on disk
and all metadata will reside in off-heap. The ResourcePoolwill be used only to

0 (default value)

storemetadata, and can containmetadata for approximately 26million entries,
irrespective of the Cache key type.

Evictions will happen when the entries exceed this number.

512MB of the ResourcePoolwill be used to store cache entries, and the remaining
512 MB to store metadata. The number of entries in the cached data portion is

50

not predictable and depends on Cache key size, data size, operations performed
on the Cache etc. The number of entries in the metadata can be computed as
approximately 8 million.

Evictions will happen when the entries exceed this number.

972.8 MB of the ResourcePoolwill be used to store cache entries, and the
remaining 51.2 MB to store metadata. As mentioned above - the number of

95

entries in the cached data portion is not predictable and depends on Cache key
size, data size, operations performed on the Cache etc. The number of entries
in the metadata can be computed as approximately 0.8 million.

Evictions will happen when the entries exceed this number.

Example of a Hybrid Scenario
EnterpriseServerSideConfigurationBuilder serverSideConfigBuilder =

EnterpriseClusteringServiceConfigurationBuilder
.enterpriseCluster(connectionURI.resolve("/cacheManager"))
.autoCreate()
.defaultServerResource("primary-server-resource")
.restartable("data-directory-name")
.withRestartableOffHeapMode(RestartableOffHeapMode.PARTIAL); // 1

Ehcache API Developer Guide 10.15 149

22 Hybrid Caching

PersistentCacheManager cacheManager = CacheManagerBuilder
.newCacheManagerBuilder()
.with(serverSideConfigBuilder)
.build(true);

ClusteredResourcePool pool1 = ClusteredRestartableResourcePoolBuilder
.clusteredRestartableDedicated(
"primary-server-resource", 4, MemoryUnit.MB, 25); // 2

ClusteredResourcePool pool2 = ClusteredRestartableResourcePoolBuilder
.clusteredRestartableDedicated(
"primary-server-resource", 12, MemoryUnit.MB, 50); // 3

Cache<Long, String> restartableDedicatedPoolCache = cacheManager
.createCache("restartableDedicatedPoolCache", CacheConfigurationBuilder

.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder().with(pool1))); // 4

Cache<Long, String> restartableSharedPoolCache = cacheManager
.createCache("restartableSharedPoolCache", CacheConfigurationBuilder

.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder().with(pool2))); // 5

cacheManager.close();
cacheManager.destroy();

Creates a hybrid CacheManager.1

Creates a pool of size 4 MB from primary-server-resource, with a dataPercent value of 25.2

Creates a pool of size 12 MB from primary-server-resource, with a dataPercent value of 50.3

Creates a Cache using pool1 created from Step 2 above.4

Creates a Cache using pool2 created from Step 3 above.5

General Notes on Configuring Hybrid

Permissible values of dataPercent are 0 through 99, both values included.

dataPercent values are not allowed for full caches. If an attempt to configure a full Cache with
any dataPercent value is made, the following Exception is thrown:
org.terracotta.entity.ConfigurationException:
dataPercent attribute has no meaning for a clustered tier manager
with FULL restartable offheap mode

150 Ehcache API Developer Guide 10.15

22 Hybrid Caching

23 Migrating Code from Ehcache v2

This guide provides sample code snippets to help migrate Ehcache v2 code to Ehcache v10 code.

Per Mapping Expiry

Permapping expiry covers use caseswhere a subset ofmappings have different expiration settings
than the ones configured at the cache level.

Ehcache 2.x Code

Here we are creating a cache manager that has a default time-to-live (TTL) expiry.

Before adding, we verify the expiry and set it on the Element only when different than the Cache
expiry.
int defaultCacheTTLInSeconds = 20;
CacheManager cacheManager = initCacheManager();
CacheConfiguration cacheConfiguration = new CacheConfiguration().name("cache")

.maxEntriesLocalHeap(100)

.timeToLiveSeconds(defaultCacheTTLInSeconds); // 1
cacheManager.addCache(new Cache(cacheConfiguration));
Element element = new Element(10L, "Hello");
int ttlInSeconds = getTimeToLiveInSeconds((Long)element.getObjectKey(),

(String)element.getObjectValue()); // 2
if (ttlInSeconds != defaultCacheTTLInSeconds) { // 3
element.setTimeToLive(ttlInSeconds);

}
cacheManager.getCache("cache").put(element);
System.out.println(cacheManager.getCache("cache").get(10L).getObjectValue());
sleep(2100); // 4
// Now the returned element should be null, as the mapping is expired.
System.out.println(cacheManager.getCache("cache").get(10L));

Expiry duration defined at the cache level.1

Compute the mapping expiry using the helper method getTimeToLiveInSeconds.2

Only setting the computed expiry on element if other than default expiry.3

Waiting for 2.1 seconds - assuming 2 seconds is the custom expiry duration - to get the
mapping to be expired.

4

Corresponding Ehcache 10.x Code

Ehcache API Developer Guide 10.15 151

Here we are creating a cache manager with a cache configuration specifying a custom expiry,
having dedicated logic in themethods called during the lifecycle of added and updatedmappings.
CacheManager cacheManager = initCacheManager();
CacheConfigurationBuilder<Long, String> configuration =

CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder

.heap(100))

.withExpiry(new ExpiryPolicy<Long, String>() { //1
@Override
public Duration getExpiryForCreation(Long key, String value) {
return getTimeToLiveDuration(key, value); //2

}
@Override
public Duration getExpiryForAccess(Long key, Supplier<? extends String>

value) {
return null; // Keeping the existing expiry

}
@Override
public Duration getExpiryForUpdate(Long key, Supplier<? extends String>

oldValue, String newValue) {
return null; // Keeping the existing expiry

}
});

cacheManager.createCache("cache", configuration);
Cache<Long, String> cache = cacheManager.getCache("cache", Long.class, String.class);
cache.put(10L, "Hello");
System.out.println(cache.get(10L));
sleep(2100); //3
// Now the returned value should be null, as mapping is expired.
System.out.println(cache.get(10L));

Defining custom expiry to be called during the lifecycle of added mappings.1

During mapping creation, defining expiry duration using the helper method
getTimeToLiveDuration.

2

Waiting for 2.1 seconds - assuming 2 seconds is the custom expiry duration - to get the
mapping to be expired.

3

So, to migrate the former Ehcache per mapping expiry code to the current version of Ehcache,
move the expiry computation logic to the getExpiryForCreationmethod of the created custom expiry.

152 Ehcache API Developer Guide 10.15

23 Migrating Code from Ehcache v2

	Table of Contents
	About This Documentation
	Online ​Information ​and ​Support
	Data ​Protection

	1 Caching ​Basics
	Primary ​Classes
	Comparison ​of ​CacheManager ​to ​UserManagedCache

	2 Creating ​and ​Configuring ​a ​CacheManager ​Using ​Java
	Going ​Through ​the ​Lifecycle ​of ​a ​Cache
	Configuring ​Storage ​Tiers ​using ​Java
	Creating ​a ​Cache ​Manager ​with ​Clustering ​Support
	Data ​Freshness

	3 Configuring ​a ​CacheManager ​Using ​XML
	Configuring ​Storage ​Tiers ​using ​XML
	The ​XML ​Schema ​Definition
	Property ​replacement ​in ​XML ​configuration ​files
	XML ​Programmatic ​Parsing
	Programmatic ​configuration ​to ​XML
	Multiple ​XML ​Configurations ​in ​one ​Document

	4 Configuration ​Derivation
	Principles
	Core ​Configuration ​Changes
	Extended ​Configuration ​Changes

	5 The ​JCache ​(JSR-​107) ​Cache ​Provider
	Overview ​of ​JCache
	Using ​Ehcache ​as ​a ​JCache ​Provider
	Getting ​Started ​with ​Ehcache ​and ​JCache ​(JSR-​107)
	Integrating ​JCache ​and Ehcache ​Configurations
	Differences ​in ​Default ​Behavior ​between Ehcache ​and Ehcache ​through ​JCache

	6 User ​Managed ​Caches
	Overview ​of ​User ​Managed ​Caches
	API ​Extensions
	Code ​examples ​for ​User ​Managed ​Caches

	7 Cache ​Usage ​Patterns
	8 Data ​Freshness ​and ​Expiry
	Data ​Freshness
	Expiry

	9 Transactions ​Support
	What ​is ​supported ​and ​what ​are ​the ​limitations?
	Configuring ​it ​all ​in ​Java
	Configuring ​it ​with ​XML

	10 Tiering ​Options
	11 Cache ​Loaders ​and ​Writers
	Introduction ​to ​Cache ​Loaders ​and ​Writers
	Implementing ​Cache-​Through

	12 Cache ​Event ​Listeners
	Introduction
	Registering ​Event ​Listeners ​during ​runtime
	Event ​Processing ​Queues

	13 Eviction ​Advisors
	14 Serializers ​and ​Copiers
	Overview ​of ​Serializers ​and ​Copiers
	Serializers
	Copiers

	15 Thread ​Pools
	Introduction ​to ​Thread ​Pools
	Configuring ​Thread ​Pools ​with ​Code
	Configuring ​Thread ​Pools ​with ​XML

	16 Code ​Examples
	17 Ehcache ​XSDs
	XSD ​namespaces ​and ​locations

	18 Management ​and ​Monitoring ​with ​Ehcache
	Introduction
	Making ​use ​of ​the ​ManagementRegistry
	Capabilities ​and ​contexts
	Actions
	Managing ​multiple ​cache ​managers
	Rules ​for ​Statistics ​Calculation

	19 Class ​Loading
	About ​Class ​Loading
	Handling ​User ​Types

	20 Clustered ​Caches
	Introduction
	Clustering ​Concepts
	Starting ​the Terracotta ​Server
	Creating ​a ​Cache ​Manager ​with ​Clustering ​Capabilities
	Cache ​Manager ​Configuration ​and ​Usage ​of ​Server ​Side ​Resources
	Ehcache ​Cluster ​Tier ​Manager ​Lifecycle
	Configuring ​a ​Clustered ​Cache
	Creating ​a ​Cluster ​with ​Multiple ​Stripes

	21 Fast ​Restartability
	Overview ​of ​Fast ​Restartability
	Creating ​a ​Restartable ​Cache ​Manager
	Creating ​a ​Restartable ​Cache
	Creating ​Restartable ​Resource ​Pools
	Example ​of ​a ​Restartability ​Scenario
	General ​Notes ​on ​Configuring ​Restartability

	22 Hybrid ​Caching
	Overview ​of ​Hybrid ​Caching
	Configuring ​a ​Hybrid ​Cache ​Manager
	Configuring ​a ​Hybrid ​Cache
	Example ​of ​a ​Hybrid ​Scenario
	General ​Notes ​on ​Configuring ​Hybrid

	23 Migrating ​Code ​from Ehcache ​v2

