S software*

A SOFTWARE GMBH BRAND

Predict

Predict and Other Systems

Version 8.6.1

October 2025

ADABAS & NATURAL

This document applies to Predict Version 8.6.1 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.
Copyright © 1983-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software GmbH
Products / Copyright and Trademark Notices of Software GmbH Products”. These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: PRD-OTHERSYS-861-20251001

Table of Contents

Predict and Other SyStemsccccocuiiiiiiiiiiiiiiiiiii i vii
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
2 Verifications And Processing Rulesccccoooooiiiiiiiiiiiii 5
TEIMINOLOZY ...eeiiiiiiieie e 6
General Informationcccooiiiiiiiiiiiii 7
Using Rules of Verifications in an External Environmentccocoocviviiiiiinnnn. 8
How Predict Stores Processing Rulesccccooeiiiiiiiiiiiiiiiniiiiiiciecn 11
Generating Processing Rules from Verificationsc.cccoviiiiiiiiiiiiiii, 12
Editing the Rule of a Verificationcccociiiiiiiiiiiiiniiiiiiiccccccee 13
Changing the Status of a Verificationc.cocoviiiiiiiiiiii 14
EXamPe c..ooiiiii 15
Rippling Verificationscccoocviiiiiiiiiiiiiiiiiiiiiicc 16
3 StePlib SUPPOIt ...oviiiiiiiic 19
General Informationc.cocoiiiiiiiiiiiii 20
Documenting Dynamic Structures ..o 21
Steplib Support with Active Retrieval FUNCHONScccoevviiiiiiiiiiiiiiiiiiiie 23
Steplib Support with LIST XREF for Naturalc.cccooiiiiiiiiiiis 27
4 Adabas ViStaccoovuiiiiiiiiiiiiiiiicc 33
Different Types of Data Distributionc.cccccooiiiiiiiiiiis 34
Defining the Distribution of Data in Predict ..o 35
Defining a Network, Virtual Machine and Database Structurec.ccccceeeee. 36
Defining the File Structure ..o 39
Retrieving Information on the Use of Vista Numbersc.ccocceeeiiiiiiiiiniinnnnne 48
Generating, Incorporating, Comparing and Maintaining Data Definitions under
Adabas ViStac.cccuiiiiiiiiiiiiii 48
5 VSAM oo 51
Documenting VSAM ... 52
Generating DDMs from Predict VSAM Objectscccccooviviiiiiiiniiiniiiiiiiciceen, 56
Using Natural for VSAM with Physical VSAM Filescccccooiiiiiiiiiiiin 56
Using a Record Layout Conceptccocouviiiiiiiiiiiiiiiiiiiiiiiiiiiccec e 56
6 Natural FOr DL/Tcooiiiiiiiii e 59
General Informationcccooiiiiiiiiiiiiii 60
Documenting IMS/DL/I Data Structurescccccovviviiiiiiiiiiiiiiiiiiiccicceecene 60
Creating Objects for IMS/DL/I with Incorporation Functionsc.cccceeeiinnne 62
Maintaining Documentation for IMS/DL/Tcccoiiiiiiiiiiiiiiiiiiicccecce, 62
Generation Functions for Files of Type I, Jand Kc.cccooiiiiii 63
7 DB2 and SQL/DScciiiiiiiiiiiiiiiici s 65
Documenting DB2 in Predictcccoociiiiiiiiiiiiiiiiiiiiiic 66
Naming Conventions for DB2c.cccoiiiiiiiiii 79
Generating, Incorporating and Comparing DB2 Objectsccccceviiviiiiiiinnnnnen. 83

Predict and Other Systems

Administrating Implemented DB2 Objectsccccoviiiiiiiiiiiiiiiiiiiiiie 87
BOTACIE ..o 89
Documenting Oracle in Predictcccccoooiiiiiiiiiiiiiiii 90
Naming Conventions for Oraclecccocoiiiiiiiiiiiiii 95
Generating, Incorporating and Comparing Oracle Objectsccccccuiiviiiiiinnnnn 98
Administrating Implemented Oracle Objectsc.ccooiiiiiiiiiii, 99
9 Static SQL ..o 101
General Information ... 102
Documenting the Use of Static SQLc.cccooiiiiiiiiiiiiic 102
Generating DBRMs from Predict Documentationcccecvvciiiiiiiiinininnn. 103
Retrieval Functions and Consistency Checkingc.ccccoovveviiiiiiiiiiiiiiis 105
Using Predict Information when Binding Application Planscccccccevninee. 105
10 Adabas D and Other SQL Systemsccoceeviiiiiiiiiiiiiiiecccceceee 107
General Informationcccociiiiiiiiiiiiii 108
Documenting SQL Systems in Predictccccooviiiiiiiiiiiiiin, 109
Naming Conventions for SQL Objectsccccceiiiiiiiiiiiiiiiic, 112
Generating SQL CREATE Statementscccccoviiiiiiiiiiiiiiiiiiiiicees 113
Generating DDMs from SQL ODbjectscccovviiiiiiiiiiiiiiicec 114
Incorporating Tables / Views of SQL Database Systemsccccccecveeviiriiinnnnnnn. 115
Administrating SQL Objectscccccooviiiiiiiiiiiiiiiiiii 116
11 Adabas SQL SEIVETcccoiiiiiiiiiieieeeeeeeeee e 117
General Information ... 118
Documenting Adabas SQL Server in Predict ... 118
Naming Conventions for Adabas SQL Serverccccocevviiniiiiiiiiiiniinicceee, 122
Generating, Incorporating and Comparing Adabas SQL Objectsc............ 123
Administrating Adabas SQL Server ObjJectsccccceeviiiiiiiiiniiiiiiiiicieceeeee, 125
XRef Data for Adabas SQL Server Objectscccocviiiiiiiiiiiiiiiiiiiiiiicieen, 126
12 Adabas SQL GateWayc..cceeuiiiiiiiiiiiiiieiccee e 129
General Informationcccocoiiiiiiiiiiii 130
Documenting Adabas SQL Gateway in Predictccocoviiiiiiiiii, 130
Naming Conventions for Adabas SQL Gatewaycccccceevviiiiiiiiiniiniiieennn. 133
Creating Adabas Cluster Tables Using Program CXXGTDc.ccccovieiiiiinnne. 134
Generating, Incorporating and Comparing Adabas SQL Objects 138
Administrating Adabas SQL Gateway ODbjectsccccevviiiiiiiiiiiiiiiiiiciien, 139
13 Third Generation Languagesccccuevuieiiiiiiiiiiiciiccecece e 141
Documenting 3GL Applicationscccceeviiiiiiiiiiiiiiiiiiiiiiie e 142
Documenting 3GL Programscoccooiiiiiiiiiiiiii 143
XRef Data for 3GL Applications and Programsccccceeceevviiiiiniiiiiiniecneenen. 149
Using Predict Functions When Developing 3GL Applicationsc..ccccee.e. 151
Redocumenting of 3GL Applicationsccoceeviiiiiiiiiiiiiiiiicccc, 152
Redocumenting COBOL Record Structuresccccevviiiiiiiiiiiiiiiiiiiiiccieen, 152
14 Predict and Natural Development Serverccccooiiiiiiiiiiiiiicc 153
Documenting Natural Development Server in Predictcccocceviiiinninnnn. 154
Documenting Base Application Descriptionscccocvevieiiiiiiiiiiniciicicic, 155
Documenting Compound Applications Descriptionscccccceevvvieiiiniieniennen. 156

Predict and Other Systems

Predict and Other Systems

Documenting Data Definition Modules (DDM)ccccocooviiiiiiiiiiiiiice, 156
Documenting Natural Programming Objectsc.cccooiiiiiiiiiiiiiiiis 156
Documenting Librariescccoccoiviiiiiiiiiiiiiiiiiii 157

Predict and Other Systems v

vi

Predict and Other Systems

Predict supports a wide variety of application development environments, database management
systems and programming languages. Many functions support the active use of data stored in the
dictionary when developing applications and when using these applications in a production

environment.

This documentation describes how Predict is used with specific systems or facilities.

Verifications and
Processing Rules

The interaction between verification objects in Predict and processing rules in
Natural.

Steplib Support

Provides an overview of the areas in Predict affected by the Steplib concept in
Natural. documentation.

Adabas Vista

How to define distributed data structures for working with Adabas Vista in
Predict, and how to generate from these definitions the objects you need for
the physical implementation of these structures.

VSAM

How to document physical and logical VSAM structures in Predict; how to
generate DDMs from VSAM objects in Predict; using Natural for VSAM with
physical VSAM; using a record layout concept.

Natural for DL/I

How to document IMS/DL/I data structures; how to create objects for IMS/DL/I
with incorporation functions; how to maintain documentation for IMS/DL/I;
generation functions for files of types I,] and K.

DB2 and SQL/DS

How to document DB2 objects in Predict; generating, incorporating comparing
and administering DB2 objects.

Oracle How to document Oracle objects in Predict; generating, incorporating comparing
and administering Oracle objects.

Static SQL Describes how to document the use of Static SQL in Predict and how to generate
DBRMs from the Predict documentation. Retrieval functions and consistency
checking is discussed, along with a description of how to use Predict information
when binding application plans.

Adabas D and Other SQL |Predict support of the following DBMS: Adabas D, Oracle, Ingres, Informix,

Systems Sybase. How to document SQL objects in Predict; generating and incorporating

SQL objects.

Adabas SQL Server

Describes how to document Adabas SQL Server objects in Predict. Generation,
Incorporation, Comparison and Administration functions which process Adabas
SQL Server objects are described. This section also discusses XRef data created
for Adabas SQL Server.

Adabas SQL Gateway

Describes how to document Adabas SQL Gateway objects in Predict. Generation,
Incorporation, Comparison and Administration functions which process Adabas
SQL Gateway objects are described.

Vii

Predict and Other Systems

Third Generation
Languages

Describes the documentation of 3GL applications and programs and how XRef
data for these applications is generated and maintained. The Predict functions
used when developing a 3GL application are explained here.

Predict and Natural
Development Server

Describes the documentation of Natural Development Server objects.

viii

Predict and Other Systems

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON ..o e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-

ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

Predict and Other Systems

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

About this Documentation

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Get the latest Software GmbH news and announcements.

® Explore our communities.

® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
at https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Predict and Other Systems 3

https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

2 Verifications And Processing Rules

L (=T 401110 To) (oo PP PP T UPPPRPTUPPRR 6
B General INfOMMALIONeeee e s 7
= Using Rules of Verifications in an External EnVIronment ... 8
= How Predict Stores Processing RUIESccoiiiiiiiiiiii s 11
= Generating Processing Rules from VErificationscoiiiiiiiiiiiii e 12
= Editing the Rule of @ VEIfICAtoNouiiiiii s 13
= Changing the Status of @ VENfiCationooiiiiiiii e 14
B AMIPIE et ee et e e e e e e et e e e et aaeeaaen e 15
B RIPPING VEFIICALIONS ...t e et e e e e e e e e 16

Verifications And Processing Rules

Terminology

Automatic Rule
An automatic rule is used automatically whenever a field to which a verification of status
automatic has been linked via "Is verified by VE" is included in a map. Automatic rules cannot
be changed in the Natural map editor, which guarantees consistent use of these processing
rules throughout an application.

Automatic - Verification Status
A verification has the status automatic if it contains a rule that is linked to at least one field of
at least one file for which a DDM has been generated.

Conceptual - Verification Status
A verification of status conceptual contains a rule that has not yet been cataloged with CAT
FREE or SA[VE] FREE.

Documented - Verification Status
A verification of status documented does not contain a rule and cannot be used in a Natural
map. It is used in the early phases of application design.

Free Rule
A free rule is used in a Natural map by specifying the ID of a verification of status free. The
Natural code of the processing rule stored with the verification will be included into the map
when the map is cataloged. Free rules can be defined and modified with the Natural map ed-
itor and directly in Predict.

Free - Verification Status
A verification has the status free if it contains a rule that has been cataloged with CAT FREE or
SALVE] FREE.

Inline Rule
Inline processing rules are defined within a Natural map source and do not have a name as-
signed. Inline rules in Natural can be used independently of Predict.

Natural Construct - Verification Status
A verification of status Natural Construct is created by entering command CAT N or SA[VE]
N in the Rule Editor. These verifications are only used by Natural Construct.

Processing Rule
Rule for validating data entry in a Natural map or SQL database. The following types of pro-
cessing rules can be defined:
For Natural:
* Inline processing rules
® Free rules

= Automatic rules

6 Predict and Other Systems

Verifications And Processing Rules

For SQL.:
" SQL
Rule Editor

The Rule Editor is a modified Natural Editor in Predict which is used to edit the rule of a
verification. See the section Editors in Predict in the Predict Reference documentation.

SQL - Verification Status
A verification of status SQL is created by entering command CAT S or SA[VE] S in the Rule
Editor. See Verifications of Status SQL.

Verification
A verification is a predefined object type in Predict and can contain the Natural or SQL code
of a processing rule.

General Information

Natural processing rules perform validity checks on input data to ensure that the data to be pro-
cessed is suitable. For example, in a program controlling traffic lights, the only input values allowed
for the field colour might be red, green and amber.

Natural processing rules can be defined and stored centrally in Predict.
Benefits

Storing processing rules in Predict has the following advantages:

® Programming costs and the number of errors can be reduced by using free rules stored in Predict.

® The use of processing rules can be forced by linking automatic rules to fields via association "Is
verified by VE". Automatic rules cannot be changed in the Natural map editor. This guarantees
consistent use of these processing rules throughout an application.

® The use and design of processing rules can be planned and revised by using verifications of
status documented and conceptual.

Rules Applying to Processing Rules in Predict

The following general rules apply to processing rules in Predict:

® Processing rules of status documented or conceptual can be linked to fields via "Is verified by
VE".

® Natural inline processing rules can be integrated into Predict as free rules by giving them a
name in the Natural map editor.

" Automatic rules can be used as free rules by specifying their name in the map.

Predict and Other Systems 7

Verifications And Processing Rules

" Processing rules can be written in either structured mode or report mode.

" A GENERATE command creates the Natural code of a processing rule from the rule of a verification.
The generated code can then be changed to meet specific requirements.

® Links from fields to verifications linked via "Is verified by VE" are rippled. See Rippling Verific-
ations

Using Rules of Verifications in an External Environment

The status of the Predict verification object determines how a rule stored with the verification is
used in an external environment. Six status types are distinguished:

® Documented

® Conceptual

® Free

Automatic

Natural Construct

SQL

The characteristics of the different status types are described below.
Verifications of Status Documented
Verifications of status documented can be used in the early phases of application design when the

parts of an application that have to be implemented are listed. verifications of status documented
do not contain processing rules and cannot be used in Natural maps.

Documented
ID: Xyz
Type: |equal

Format:|alpha

Value |'xyz

Verifications of type documented are not connected to an external environment.

8 Predict and Other Systems

Verifications And Processing Rules

Verifications of Status Conceptual

Verifications containing a processing rule that has not yet been cataloged with CAT FREE or SA[VE]
FREE have the status conceptual.

Verifications of Status Free
A verification has the status free if it contains a processing rule that has been cataloged with CAT

FREE or SA[VE] FREE and can therefore be used in any Natural map by linking it explicitly to a
field.

Predict Verification Matural Map
D Xz —— ————
IF — —
) + [Processing rule xyz| ¥
2 Is used when the verification
END-IF 1D comesponds to the name —
of the processing rule in the ———————
Status' FREE Natural map. —————
—————————
Code in Map
Inline Rule
Free ndes can also be derived from Matural
inline ndes by giving them a name in the Natural IF
map aditor. 2
EMD-IF

A free ruleis used in a Natural map by specifying the verification ID. A Select function is provided
for selecting free rules from Predict. Only free rules with a format compatible with the format of
the input field of the map for which they are to be used will be displayed by the select function.
The Natural code of the processing rules stored under the given verification ID will be included
into the map when the map is cataloged.

Free rules can be defined and modified with the Natural map editor and directly in Predict.
Verifications of Status Automatic

A verification has the status automatic if it contains a processing rule that is linked to at least one
field of at least one file for which a DDM has been generated. An automatic rule is automatically
used every time a field to which it has been linked is included in a map. Automatic rules are
centrally defined by the administrator who generates DDMs and cannot be modified by individual
programmers with the Natural map editor. Defining an automatic rule is a two-stage process:

1. Link the verification containing the rule to a field of a file (a real file or a userview) in Predict.

2. Activate the rule by generating a DDM for that file.

Predict and Other Systems 9

Verifications And Processing Rules

Rules Applying to Automatic Rules
The following rules apply for the use of automatic rules:

® Up to 50 automatic rules can be linked to a field.

= If the code contained in an automatic rule is changed but its links to fields remain, the Predict
Replace Verification Rule function can be used to update the active code which is used by the
fields. There is no need to regenerate the DDM. Natural maps using processing rules that have
been modified should be recataloged to ensure that they use the new version of the processing
rule.

® The LIST XREF function with the option Save set set to Y can be used to recatalog maps efficiently.

® An automatic rule can also be used as a free rule by specifying the name of the corresponding
verification in a Natural map. Automatic rules that have been used in this fashion cannot be
modified with the Natural map editor.

® Automatic rules cannot be changed with the Natural map editor.
Verifications of Status Natural Construct

Verifications of status Natural Construct can be accessed only from Natural Construct.

These verifications must be linked to a field so that Natural Construct can access them. Unlike
verifications of status Automatic, it is not necessary to generate a DDM for a verification of status
Natural Construct in order that the rule is used.

Predict Verification Natural Construct
ID: xyz + Rule-Name xyz

IF Rude is included in the
2 code at generation.

END-IF

Status: Natural Construct Program

Verifications of Status SQL

The following rules apply:

® Verifications of status SQL are skipped by functions Generate DDM and Replace Verification
rule.

® The syntax of the processing rules is not checked by Predict.

® These processing rules may only contain references to the field to which they are linked. Am-
persand notation is used instead of a fixed allocation.

® The ampersand references are replaced by the corresponding field name when the CREATE TABLE
statement is generated.

10 Predict and Other Systems

Verifications And Processing Rules

= If you execute the command GEN[ERATE] S in the Rule Editor, a corresponding SQL clause is
created for all rule types except user routine. When the code of the rule is saved, the status of
the verification is changed to SQL.

® Only one verification of status SQL (and 49 of a status other than SQL) may be linked to a field.
This condition is checked only when the CREATE TABLE statement is generated.

® Comments are removed when the CREATE TABLE statement is generated.

® Otherwise the handling of these verifications corresponds to verifications of status Natural
Construct. See Verifications of Status Natural Construct.

How Predict Stores Processing Rules

Processing rules are stored in Predict as attributes of verifications. If a verification has been linked
to a field of a map, the Natural code of the rule is inserted when that map is cataloged.

Variable Names in Processing Rules

In the source code of a processing rule, the name of a variable can be represented by an ampersand
(&). The Natural compiler or Predict generation function will substitute the name of the field (or
PF key for a PF key rule) for the ampersand. This allows the use of a rule for different fields.

Example:
IF & = ' ' REINPUT "ENTER NAME' MARK *&
Priority of Processing Rules

1. Processing rules assigned to function keys have highest priority.

2. Rules linked to different fields of a map are executed in the order in which the fields appear on
a terminal screen.

3. A rank from 0 to 99 can be allocated to each inline rule or free rule linked to a field of that map.
Additionally a rank can be allocated to all automatic rules linked to a field. The rules linked to
that field will then be executed in ascending order of rank.

4. Automatic rules linked to a field in Predict are executed in the order their Predict verification
IDs appear in the verification list of the field.

Processing Rules and Field Formats

Every rule is allocated a format to ensure that the rule will be compatible with the field format.
The following table lists the compatible combinations of field format and rule format.

Predict and Other Systems 11

Verifications And Processing Rules

Field Format |Compatible Rule Format
A AB

N,P N

LE B

B=<4 A,B,N

B>4 AB

D (date/time)|D (date/time)

L L

The rule format K (function key) applies exclusively to free rules.

Generating Processing Rules from Verifications

Processing rules can be created from Predict objects of type verification. Follow the steps below:
1. Enter Y in the field labelled Additional attributes in an Add, Copy or Modify Verification screen
and select Rule code or execute the Edit rule of a Verification function (code R).

2. Enter the GENERATE [S|N] command in the Rule Editor to generate a first version of the pro-
cessing rule from the definitions in the verification.

3. Modify the processing rule as required.
4. Test the rule with the RUN or CHECK command (Natural rules only).
5. The rule is cataloged/saved with either one of the following commands:
= SACVE] [LFREE] RETLURNI]
® CAT [LFREE] RETLURNI]
= SALVE] [S|N]
= CAT [S|N]

If FREE is used, the rule is stored as a free rule.

| Note: Commands SAVE or CAT do not perform a syntax check. The syntax is checked when

you catalog a map that uses the rule or when the CREATE TABLE statement is executed.

12 Predict and Other Systems

Verifications And Processing Rules

Editing the Rule of a Verification

The rule of a verification is edited with the Predict Rule Editor. This editor can be invoked in one

of the following ways:

® Enter Y in the field Additional attributes in the bottom line of the Add, Copy or Modify Verific-
ation screen and select Rule code.

= Call function Edit rule in the Verification Maintenance Menu.

® Enter command EDIT VERIFICATION RULE <Verification-ID>

Editor Commands

| Note: This section describes rule-specific editor commands. General editor commands are

described in the section Editors in Predict in the Predict Reference documentation.

CAT [[FREE]

Catalog/save the edited rule as a free rule. This command is only available when

RETLURN]T] creating new rules and when editing conceptual rules.

;ég\[/ E E%N 5 5 FREE] Note: The commands SAVE and CAT do not perform a syntax check. The syntax
is checked however, when you catalog a map that uses a rule.

CLHECK] Checks whether the edited rule's Natural syntax is valid and reports errors.

GENLERATE] Generates a processing rule from the values defined in the rule of the verification

and adds it to the end of the Natural source in the rule editor. This command is
not available for verifications of type User routine.

A table which shows the Natural and SQL statements generated for the different
verification types can be found in the section Rule Editor in the Predict Reference
documentation.

GENLERATE] N

Generates a rule for Natural Construct from a verification of status documented
(D). The status of the verification is changed to N.

GENLERATE] S

Generates an SQL clause for all verification types except user routine. When the
code is saved, the status of the verification is changed to S.

GLOBALS SM=0FF

Switch to the reporting mode of Natural.

GLOBALS SM=0ON

Switch to the structured mode of Natural.

RENUMIBER], N

Renumber the source lines in steps of N and renumber references to them
accordingly.

RUN

Checks the edited rule. If no errors are found, a map is produced with which the
user can test the rule by entering input values. The following rules apply:

® Length and format of the input field are derived from the rule format. For rules
with format A, B or N, an additional window is displayed, where the derived
field length can be overwritten.

Predict and Other Systems

13

Verifications And Processing Rules

Rule Format |Format of the derived field |Length of the derived field
A A 66

B B 33

D D

L L 1

N N 27

the code.

= RUN tests a rule of format K (function key) without input data.

= For a rule of format L (logical), a blank space means false and any other input
value means true.

® The stack must not be changed.

® The contents of the source area must not be changed.
Note: All variables used except the ampersand (&) must be defined within

® The variablenames SYSDIC-C1 and SYSDIC-CZ2 are used for internal purposes
and must not be used within the rule.

® The source will be renumbered.

Changing the Status of a Verification

Predict assigns the status of verifications itself. The following table shows which actions cause a

change of status.

Old Status New Status Action

inline free Give the rule a name in the map editor.

documented conceptual Add arule to the verification.

conceptual free Either catalog the rule in the rule editor with the command SAVE
FREE or CAT FREE or use the Rename Verification function to
change the status explicitly.

conceptual SQL, Natural Catalog the rule in the rule editor with the command SAVE S|N

Construct or CAT S|N. Atleast one line must have been changed before

cataloging.

free inline Change the rule's name to a blank in the map editor. The rule will
still exist in Predict with status free.

conceptual automatic Link the rule to at least one field (with the field maintenance
function Link Verification), then generate a DDM for the file which
includes it.

14 Predict and Other Systems

Verifications And Processing Rules

Old Status New Status Action
free automatic Link the rule to at least one field (with the field maintenance
function Link verification), then generate a DDM for the file which
includes it.
free conceptual, Natural |Use the Rename Verification function. The status of a free rule
Construct cannot be changed to conceptual if the rule is used in any Natural
map.
automatic conceptual Unlink all fields from the rule (with the field maintenance function
Link Verification) then regenerate the related DDMs. If the rule
is also used as a free rule, the status of the verification will be
changed to free.
documented SQL, Natural Generate a rule for Natural Construct from a verification of status
Construct documented (D) using the GENLERATE] N command of the Rule
Editor; for SQL using the command GEN[ERATE] S.
Natural Construct|free, conceptual Use the Rename Verification function.
Example

One of six town names is allowed as input. The verification describing this validity check is created
with values as shown below:

10:13:40 wissss PR ED I C T wessess 2007-05-31
- Modify Verification -

Verification ID . TEST-TOWN Modified 2007-05-31 at 09:46
Status Free by HNO
Keys Zoom: N
Format * A Alphanumeric Modifier Zoom: N
Type oo, * T Table of values
Message nr
Replacement 1
Replacement 2
Replacement 3
Message text No SAG-office in that town.
Abstract Zoom: N Values Zoom: N

BRUESSEL

RESTON

PARIS

DERBY

CAMBRIDGE

DARMSTADT

Additional attributes ..* N Associations ..* N

Predict and Other Systems

15

Verifications And Processing Rules

The following processing rule is generated if the GENERATE command in the Rule Editor is applied
to this verification.

R R B B R R B R R B e R e R e R e e R e R e i e b e e e e e b b e e e b e e b 4
* Verification: TEST-TOWN generated by PREDICT %3
* with format: Alphanumeric; Type: Table of values; W
* on: 2007-05-31; at: 10:13:33; from user: HNO *
R B R B B B B B R R R R e e R e b e e b e b e e b e e b e e b e i b e b e b o 4
IF NOT (& = 'BRUESSEL' OR = 'RESTON' OR = 'PARIS' OR = 'DERBY'

OR = 'CAMBRIDGE' OR = 'DARMSTADT')

REINPUT 'No SAG-office in that town.'
MARK *&

Rippling Verifications

Rippling Verifications from Standard Files

Each field of a standard file can have a list of verifications via association "Is verified by VE", which
apply to that field. When the list is edited, corresponding changes are automatically made in the
verification list of every field related to that standard field, according to the following rules:

® Every verification contained in the verification list of a standard field must also be contained in
the verification list of a field related to that standard field. However, the sequence of verifications
in the lists can differ.

® If a verification ID is changed, the same change is automatically made to that verification ID
everywhere it appears in a verification list of related fields.

® If a verification ID is deleted, every instance of that verification ID is automatically deleted from
the verification list of every related field.

® If a verification ID is added anywhere in the list, the same verification ID is automatically added
to the end of the verification list of every related field.

= A verification ID can be removed from verification lists of related fields that are marked as no
check against standard.

16 Predict and Other Systems

Verifications And Processing Rules

Rippling Verifications from Physical Files to Userviews

Fields of physical files can have verifications linked to them via "Is verified by VE". When a list of
verifications linked to a field in a physical file is modified, corresponding changes are automatically
made in the verification list of userview fields related to that field in the file. The following rules

apply:
= The verification list of a field in a userview does not have to contain all the verifications that are
contained in the list of the physical file field from which the userview field has been related.

Hence, verifications can be deleted from the verification lists of userview fields, after these have
been related to physical files.

® If a verification ID is changed, the verification ID is changed in the verification lists of all related
fields.

= If a verification ID is deleted, every instance of that verification ID is automatically deleted from
the verification list of every related field.

= Jf a verification ID is added, it is added to the verification lists of related fields.

Predict and Other Systems 17

18

3 Steplib Support

= General Informationcccoeoiieene
= Documenting Dynamic Structures

= Steplib Support with Active Retrieval FUNCHONScooiiiiiiiiiii e,

= Steplib Support with LIST XREF for Natural

19

Steplib Support

Natural as well as 3GL applications allow up to 8 steplibs for one main library. This structure can
be documented in Predict with the object type library structure. This structure is evaluated by
LIST XREF and active retrieval functions for programs and systems.

General Information

Predict supports the Natural steplib concept using the features listed below.
Object Type Library Structure

An object of type library structure documents a structure which describes a runtime or development
environment (for example libraries for copy code). The system objects which document these lib-
raries are linked as children to the library structure via "Contains SY". The following rules apply:
® The first entry in the link list is the main library, the following entries are steplibs.
® The link list of a library structure can contain up to 10 systems of type A (Application):

* the first system in the list is the main library

* the default steplib *STEPLIB plus up to 8 additional steplibs can be defined.

® The link list can contain additional systems of type G (3GL Application), but the maximum
number of linked systems is 15.

® Dummy objects and systems without an implementation pointer for Library are permitted in
the link list, but these objects are ignored when the library structure is evaluated for active re-
trieval function Program using programs and all LIST XREF functions.

See the section Library Structure in the Predefined Object Types in Predict documentation.
Program Type Dynamic

Programs of type dynamic are used to document calls of programs of the same name from different
steplibs depending on the library structure. The following rules apply:

" Because programs of type dynamic document any number of implemented members, no check
is performed as to whether the members documented by the program are actually implemented.

® With the active retrieval function Programs using programs, programs of type dynamic are ig-
nored as current objects.

® Programs of this type can only have children of type program (via "Uses PR concept"). The
linked programs document the possible implementations. Therefore they all must use the same
programtype and member name.

See Documenting Dynamic Structures.

20 Predict and Other Systems

Steplib Support

Metadata Diagram

The diagram below is an extract of the metadata structure in Predict showing the object type library
structure and its associations.

A library structure can have system children of type Application Library.
The first system of type Application Library is the main library, the other child systems are the

steplibs. The order of the children in the link list reflects the steplib hierarchy.

LIBRARY
STRUCTURE

Contains 8Y I

SYSTEM

Uses PR concept. I O
FPROGRAM

Active Retrieval Functions

The following active retrieval functions evaluate library structures to retrieve documentation and
XRef data according to a specified steplib structure:

® Programs using programs

® Systems containing programs

Documenting Dynamic Structures

Example

In the example below, member MENU calls one of two INIT members depending which library
is active at runtime.

Predict and Other Systems 21

Steplib Support

Matural Library LIB

Predict
Subprogram

DOC-INIT1

™

Matwral Library LIB1

Predict
Program
DOC-MENU
Predict
Subprogram
DOC-INIT2

Documentation without Library Structure

The following table shows the objects needed to document the structure above without evaluating

the steplib structure.

Object Type Subtype Implementation Pointer
Member |Library Fnr |DBnr

DOC-LIB-MAIN|System |Application Library |- LIB-MAIN|54 |180
DOC-LIB System |Application Library |- LIB 54 |180
DOC-LIB1 System |Application Library |- LIB1 64 |180
DOC-MENU Program |Program MENU |LIB 54 180
DOC-INIT1 Program |Subprogram INIT |LIB 54 180
DOC-INIT2 Program|Subprogram INIT |LIB1 64 |180

Enter DOC-INIT1 and DOC-INIT2 in the Program>Program link list of DOC-MENU. This has the
disadvantage that you cannot tell which INIT member will be called by member MENU at runtime.

Documentation with Library Structure

The following table shows the objects needed to document the structure above in such a way that

the steplib structure is evaluated.

Object Type Subtype Implementation Pointer
Member |Library Fnr |DBnr
DOC-LS1 Lib. Structure
DOC-LS2 Lib. Structure
DOC-LIB-MAIN |System Application Library |- LIB-MAIN|54 |180
DOC-LIB System Application Library |- LIB 54 (180
DOC-LIB1 System Application Library |- LIB1 64 |180
DOC-MENU Program Program MENU LIB 54 (180
22 Predict and Other Systems

Steplib Support

Object Type Subtype Implementation Pointer
Member | Library |Fnr ’DBnr
DOC-INIT Program Dynamic INIT |See note below
DOC-INIT1 Program Subprogram INIT |LIB 54 (180
DOC-INIT2 Program Subprogram INIT |LIB1 64 |180

Enter DOC-INIT (program of type Dynamic) in the link list of DOC-MENU. Member MENU will
call up the member documented by DOC-INIT1 or DOC-INIT2 at runtime depending on the library
structure.

Steplib Support with Active Retrieval Functions

The following active retrieval functions use library structures:

® Programs using programs
® Systems containing programs
" Programs using files

If the first two functions listed above are executed with the parameter Library structure, the steplib
structure documented by the corresponding library structure object is evaluated.

| Note: These functions are also described in the section Active Retrieval in the Predict Reference

documentation. The descriptions there apply without evaluating the steplib structure.
Function Program using Program

This section describes the active retrieval function Program using program where a library structure
is evaluated. See the section Active Retrieval in the Predict Reference documentation for a description
of this function without evaluating the library structure.

Specifying the Library Structure

* Enter fully qualified library structure ID. Asterisk notation can be used to select one library
structure from a list.

*® If the implementation pointer of the main library in the library structure is incomplete, a window
appears in which you must enter the missing parameters Library, Fnr, or DBnr.

Predict and Other Systems 23

Steplib Support

R Additional
Main Library/first Natural
Library Structure DOC-LS1

Retrieval t
Qutput mode

Program ID has no qualified Implementation Pointer.
in system . Please enter following parameters:
Member

Library ... Library ARH1

Library str Fnr ..o oo 64

Entry DBnr, 180

Restriction
Qutput opti

criteriag =============-- n
Library of the

If the main library in the library structure is a 3GL library, the first Natural library is taken as
main library and must be given a fully qualified implementation pointer if required.

® The implementation pointer defined for the main library (or first Natural library) is used to
append all other incomplete implementation pointers for all other libraries in the library structure.

= If you set the output option Cover page to Y, the library structure with complete implementation

pointers for all libraries is displayed:

Program ID ... DOC*

Library structure ID .. DOC-LSI1

Library Fnr

ARH1
ARH3
ARH

ARH3GL2 255

DBnr
180
180
180
255

In the example above, the missing values have been appended with the DBnr 180 specified under

Additional criteria above.
Determining the Current Objects to be Output

The following rules apply:

" Programs of type Dynamic are ignored as current objects.

® Only programs with identical implementation information to a system contained in the library

structure are output:

24

Predict and Other Systems

Steplib Support

* if theimplementation pointer of the program object is complete (Member, Library, Fnr, DBnr),
this is evaluated,;

* if the implementation pointer of the program object is incomplete, the XRef data is evaluated.
Determining the Related Objects to be Output

Related objects are evaluated against documentation data (implementation pointer) and XRef data.
The following rules apply:

® If a program of type Dynamic is linked to the current object via "Uses PR concept", this link
must be resolved. The programs represented by the program of type Dynamic are checked, and
the program with the implementation pointer that best matches the library structure replaces
the program of type Dynamic.

® During checks as to whether a program is implemented, the entire library structure is evaluated.
If the implemented member is found in a steplib, the program is marked as I and the comment
>>>impl. in steplib XXXXXXXX DBnr 99999 Fnr 99999<<<.

Sample Output

The screen below shows sample output for function Programs using Programs.

13:27:36 wekdese PR E D I C T weessess 2007-05-31
- List Program Using Programs -

Program ID * DOC-MENU
Type i, Program

ImpTementation

Member .. MENU Library .. ARH Fnr .. 54 DBnr .. 180
Cnt Program ID Ty La Member Library Fnr DBnr L D I U
1 DOC-INIT2 P N INIT ARH1 64 180 L D

>>> Dynamic call defined in DOC-INIT <K<

*** End of report ***

Command === Scroll ==> CSR
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Quit RFind Flip - e Left Right

Predict and Other Systems 25

Steplib Support

Comments

Program DOC-INIT?2 is linked via "Uses PR concept" to a program of type Dynamic named DOC-
INIT. The link list of the dynamic program DOC-INIT is checked and the program with the most
complete implementation pointer is given.

Function Systems containing Programs

This section describes the active retrieval function Systems containing programs where a library
structure is evaluated. See the section Active Retrieval in the Predict Reference documentation for a
description of this function without evaluating the library structure.

Specifying the Library Structure
" Enter fully qualified library structure ID. Asterisk notation can be used to select one library

structure from a list.

* If the implementation pointer of the main library in the library structure is incomplete, a window
appears in which you must enter the missing parameters Library, Fnr, or DBnr.

Fo Additional criteria --------------- +
Retrieval t ! Main Library/first Natural Library of the
Qutput mode ! Library Structure DOC-LSI1

Restriction
Output opti

| |
| |
Program ID ! has no qualified Implementation Pointer. '
in system . | Please enter following parameters:
Member ! !
Library ... ! Library ARH1 !
Library str ! Fnr 64
Entry ! DBnr ... 180 !
| |
| |

If the main library in the library structure is a 3GL library, the first Natural library is taken as
main library and must be given a fully qualified implementation pointer if required.

® The implementation pointer defined for the main library (or first Natural library) is used to
append all other incomplete implementation pointers for all other libraries in the library structure.

® If you set the output option Cover page to Y, the library structure with complete implementation
pointers for all libraries is displayed:

26 Predict and Other Systems

Steplib Support

System ID ... DOC*
Library structure ID .. DOC-LS1

Library Fnr DBnr

ARH1 64 180
ARH3 64 180
ARH 54 180

ARH3GLZ 255 255
In the example above, the missing values have been appended with the DBnr 180 specified under
Additional criteria above.
Determining the Current Objects for Output

XRef data is evaluated, and only systems with an identical implementation pointer to one of the
systems in the library structure are given.

Determining the Related Objects for Output

A program is marked as implemented if it is contained in the current library. The current library
is the library documented by the system specified.

A program is also marked as implemented if it is linked via "Uses PR concept" to a system docu-
mented as a steplib. (The program would not be marked as implemented if you were working
without a library structure.)

A note is given indicating in which other steplib(s) of the library structure the program is imple-
mented.

Steplib Support with LIST XREF for Natural

The three possible methods of evaluating XRef data are listed below. Select the method you require
in the LIST XREF menu before you call a function. This option is valid for the duration of your
session or until you select another option in the LIST XREF menu.

See also section LIST XREF for Natural in the Predict Reference documentation.

Using the command INFO you can display at any time during your LIST XREF session all libraries
that will be evaluated by LIST XREF functions. The current library is marked with an arrow.

Predict and Other Systems 27

Steplib Support

The Library Structure Documented in Predict

The link list Library structure to System is evaluated via "Contains SY". Each system in the list is
checked as follows:
® If no information is present in the implementation pointer of the system, the system is ignored.

= If the implementation pointer is incomplete, the system searches for possible XRef data. This
XRef data is used to supply the missing Fnr and DBnr information in the implementation
pointer.

® If no XRef data is found, the values of the current FUSER file are used to supply the missing
DBnr and Fnr information in the implementation pointer.

= If the current library is a Natural library, the structure is appended with --> *STEPLIB <--.
Runtime Structure

The runtime structure is determined as follows. The following rules apply:

* The current library always appears first in the list. If this library is documented in Predict, the
corresponding system ID is also displayed.

® With Natural Security, up to 8 Libraries can be specified as steplibs with Library, DBnr and Fnr.

® The default steplib is declared in the Natural parameter moduleNATPARM parameter file or
allocated with the dynamic parameter STEPLIB when starting Natural (*STEPLIB).

Without any Structure

The LIST XREF functions evaluate XRef data without specification of steplibs. Only objects in the
current library are displayed.

Steplib Support in Batch Mode

In batch mode, too, there are three possible methods of evaluating XRef data:

® STRUCTURE <structure-name>
With this command you can specify which library structure is to be used for evaluating XRef
data.

® STRUCTURE *R
This command specifies that the runtime structure is to be used for evaluating XRef data.

® No Structure specified
If you do not specify any structure, LIST XREF functions work without evaluation of steplib
specification.

28 Predict and Other Systems

Steplib Support

Effects of Steplib Support on LIST XREF

Steplib support affects LIST XREF functions as follows. A distinction is made between Top-down
and Bottom-up functions:

Top-down

Example: Function Program using program

09:50:43 wissss PR E D I C T wesssesis 2007-05-31
Library: PDLX - Invoked Programs - DBnr: 180 Fnr: 54
Command: PROG * (*) USING PROG * (*) WITH * VIA * Page: 1
T:Program using via
1 P:ZPDFIELD 1 N:N-BUFEDT <<- nfnd Callnat
2 P:7ZPDPO 1 P:ZPDP1 Fetch
via ZPDP&

2 S:7ZPDS1 (NEWDICLX,180,54) Perform
Function: SUB-IN-ZPDS

Comments

Only programs in the current library that call other programs are displayed.

to 1| The note <<- nfnd means that the called program was not found within the structure specified. “Not
found” in this context means that no XRef data is present.

to 2|If the called program is not contained in the current library, it is displayed in parentheses with DBnr
andFnr.

Predict and Other Systems 29

Steplib Support

Bottom-up

Example: Function Programs referenced in programs

09:53:09 mawEs PRED I C T 0w 2007-05-31

Library: PDLX - Invoked Programs - DBnr: 180 Fnr: 54

Command: PROG * (*) REF PROG * (*) WITH * VIA * Page: 1
T:Program referenced in via

1 ?:*DYNAMIC

1 P:ZPDP3 Fetch
2 ?7:N-BUFEDT
1 P:ZPDFIELD Callnat
3 M:ZPDM1
1 P:ZPDP1 Map
2 P:ZPDP2 (NEWDIC,180,54) Map
4 P:PGMCO002 (*SYSCOB*,255,255)
Entry : PGMCO002
1 P:ZPDP1 Call
2 P:ZPDP2 Call
3 S:7ZPDS1 Call
Comments

tol

*DYNAMIC produces a list of all programs that call up other programs by means of variables:

ASSIGN #fA = 'SUBL'
FETCH ftA

to2

The question mark means that the program N-BUFEDT was not found within the specified structure.
“Not found” in this context means that no XRef data was found for the program object.

The program is, however, referenced by program P:ZPDFIELD via CALLNAT.

to3

Member ZPDM1 was found within the current library.

If the called program is contained in the current library (here ZPDM1), programs not contained in the
current library that call this program are also displayed (here ZPDP2 in Library NEWDIC). Library,
DBnr, Fnr are displayed in parentheses.

to4

The called program (PGMCO002) was found, but in another library within the structure (library
*SYSCOB¥). In this case only calling programs within the current library are displayed.

30

Predict and Other Systems

Steplib Support

Example: Function Program referenced in programs recursively

13:44:35 wwww P RED I C T wewwss 2007-05-31
Library: NEWDICLX - Invoked Programs - DBnr: 180 Fnr: 54
Command: PROG XHMENU10 (*) REF REC * (*) WITH * VIA * Page: 1
DEPTH 7
1 M:XHMENU10
Il ========= 2 ========= J ========= ll ========= B =c======= B ========= J =========

P:XPHELP P:XPCIMPL P:XPVERI M:XMCIMPOO P:XPCIMPL <--- rec
M:XMREFEOO P:XPREFE P:XPVERI {--- rec
P:XPCIMPL <--- rec
P:XPCMDP M:XMCIMPOO <--- suppr
M:XMCONSOO P:XPVCONS P:XPVERI

<{--- rec
M:XMCOPYOO P:XPCOPY P:XPMENU
<--- steplib

Comments

The note <--steplib means that the evaluation was stopped at this point because the called program
is contained in another library.

09:44:21 s PR ED I C T weessssis 2007-05-31
Library: NEWDICLX = XRef Menu = DBnr: 180 Fnr: 54
Structure: LS-NEWDICLX
System Id Library Fnr DBnr
PD-COB *SYSCOB* 255 255
-->PD-NEWDICLX NEWDICLX 180 54
--> *STEPLIB <-- SYSTEM 180 54

Predict and Other Systems 31

32

4 Adabas Vista

= Different Types of Data Distributioncoooiiiiiiiiiii
= Defining the Distribution of Data in PrediCt ...
= Defining a Network, Virtual Machine and Database Structurecccccvvviiiieiiiiinnnnn.
= Defining the File StrUCtUre ...
= Retrieving Information on the Use of Vista Numberscccccciiiiiiiiiii e,

= Generating, Incorporating, Comparing and Maintaining Data Definitions under Adabas Vista

33

Adabas Vista

Storing data in individual files of databases on local machines that are not integrated in any network
is a rather limited approach when designing large and complex applications. To gain flexibility
and safety, data can be distributed across several Adabas databases which may reside on different
machines. Such distributed data structures can be realized with the Software AG product Adabas
Vista.

Distributed data structures for use with Adabas Vista and can be defined in Predict, and the objects
necessary to implement the structures physically can be generated from these definitions.

Itis important to understand that storing data in the good old-fashioned way (simple files residing
in isolated databases on local machines) also establishes a data distribution structure, albeit a very
simple one. The description given below therefore also applies to the definition of simple files.

. Note: This section applies exclusively to Adabas files. See the Adabas Vista documentation

for a complete description of this product.

The Software GmbH product Entire Transaction Propagator can also be used to define distributed
data structures.

Different Types of Data Distribution

Adabas Vista offers various options for distributing data across a network.

® Storing Data Locally in an Isolated Database
Adabas Vista is not required if data is stored locally in a single database. In this case, the database
is called an isolated database and the logical distribution type of all files is either simple or ex-
panded.

* Distributing/Duplicating Data Across Several Databases (Adabas Vista)
With Adabas Vista, data belonging to one logical file can be physically distributed across several
physical files (that may reside in different databases).

Data logically belonging to one file can be split between several physical files. For example: A
(logical) file is defined to store information on all customers of a company. Data of customers

living in the north is to be stored separately from the data of customers living in the south of

the country. The zip code is used as the distribution criterion.

A file with the logical Distribution type partitioned can be used to store data in this fashion.

" Storing Data in Remote Databases (Net-work)
With Net-work, data stored in databases on remote systems can be accessed as if it were stored
locally. The use of this product is described in the documentation of Net-work.

34 Predict and Other Systems

Adabas Vista

* Distributing/Duplicating Data Across Several Databases on Different Machines
By combining Net-work and Adabas Vista, data belonging to one file can be distributed across
several databases residing on different machines.

Defining the Distribution of Data in Predict

General Information

Predict objects of type network, virtual machine, database and file are used to define where exactly
data is stored.

Adabas attributes of Predict file objects define how files are implemented in a database, for example
partitioned. Adabas attributes document the physical links between files and databases.

Vista elements document the accessibility of the physical files with Adabas Vista.

Ke!
¥ A is parent of ¥
NETWORK Ko

P: is chid of X
Y is entered
as Attribute of X
i ———— —*
VIRTUAL
MACHINE
I A: Active
DATABASE P: Passive
* 3
1
¥
T~ dtributes
Vista |
alements |
|
% + 3
L_—— s« FILE

Links between networks, virtual machines, databases and files are defined as follows:

® Links between networks, virtual machines, databases are defined with attributes of the respective
lower level objects, for example: the link between a network and a virtual machine is defined
with the parameter in Network of the virtual machine.

Each virtual machine object must be linked to a network object, and each database object must
be linked to a virtual machine object.

Predict and Other Systems 35

Adabas Vista

= Links between databases and files are defined with the function Link children of association
"Contains FI".

* Information on how files are implemented in a database is stored in the Adabas attributes of

file objects.

Adabas attributes can be modified by entering the line command . A when editing the file list
of a database or with the file maintenance function Modify Adabas attributes.

Defining the Distribution of Data

Defining the distribution of data is a two-step process:

1. Define the structure of the data distribution by creating and linking the respective network,
virtual machine, database and file objects. See the sections Defining a Network, Virtual Machine
and Database Structure and Defining the File Structure.

2. Determine the accessibility of data by creating Vista elements for physical file definitions. A
Vista translation table can be generated from Vista elements. See the section Vista Translation
Table in the section Generation in the External Objects in Predict documentation.

Defining a Network, Virtual Machine and Database Structure

Since data can be distributed across several databases, the exact location of data storage has to be
specified: each database object must be linked to a virtual machine and each virtual machine must
be assigned to one network.

Defining Networks and Virtual Machines

Networks and virtual machines identify the location of databases.
What is a Network?

® A network contains all virtual machines and databases that are to be accessed. In the case of
databases that reside on local machines without any remote databases being connected, a network
may in fact identify a local machine.

® A network object HOME is provided by Predict.
What is a Virtual Machine?
® A Predict object Virtual Machine identifies a machine and operating system environment of

databases. A virtual machine represents one Adabas SVC (supervisor call).

® Each virtual machine can contain one Transaction Manager used to distribute Adabas calls
across the network. However, a virtual machine does not necessarily have to contain a Transaction
Manager.

36 Predict and Other Systems

Adabas Vista

® Each virtual machine can contain one or more Vista databases providing access to partitioned
data. However, a virtual machine does not necessarily have to contain a Vista database.

Attributes of Networks and Virtual Machines

® Anetwork object has all the standard attributes of Predict objects (for example extended descrip-
tion and abstract) and no type-specific attributes.

® A virtual machine object has all the standard attributes plus the type-specific attribute Operating
system type.

Note: Network and virtual machine attributes are described in detail in the respective sec-

tions of the Predefined Object Types in Predict documentation.

Defining a Database

Physical database number ..

13:36:38 g PR ED I C T s 2007-05-31
- Add a database -
Database ID DATABASE-TEST FAN | ======== Run mode---------- +
1 Isolated !
L Local !
'V Vista !
Database type * A Adabas ' !
Belongs to VM * HOME I _ !
Run modeco.u... * * Vista I !
* | l
! !

Note: Database attributes are described in detail in the section Database in the Predefined
Object Types in Predict documentation.

Parameters

Belongs to VM |Associates the database to a virtual machine. Must be specified for all databases except
types Conceptual, DB2 and IMS. A default virtual machine can be defined in the profile.
See Maintenance Options in the section Predict User Interface in the Introduction to Predict.

Run mode Determines the use of the database with respect to the distribution of data with Adabas
Vista.

Valid Values: Isolated, Local and Vista.

Note: The Predict parameter Run mode corresponds to the ADARUN parameters Vista

and Local. The corresponding values in Predict and ADARUN are shown in the table
below:

Predict and Other Systems 37

Adabas Vista

Parameters

Predict |ADARUN

Run mode |Vista|Local

Isolated - -

Local - | Yes

Vista Yes | -

I Isolated. Vista is not used. The database may be
accessible using Net-work. A database of type isolated
can only contain files of the types simple and
expanded.

L Local. The database cannot be accessed using
Net-work.

A% Vista. Adabas Vista is used.

Physical
database
number

Identifies a database in a virtual machine and, in the case of databases that can be accessed
using Adabas Vista, in a network.

= If a database can be accessed using Vista (Run mode V is set to Y or N), the Physical
database number must be unique throughout the network.

= If a database is of type isolated or local, the Physical database number must be unique
only within a virtual machine.

However, it is recommended to use physical database numbers that are unique
throughout a network for local and isolated databases as well.

The uniqueness of physical database numbers can be forced by setting the parameter
Unique-DBnr/Fnr in the second Miscellaneous screen of the General Defaults function.
See the section Defaults in the Predict Administration documentation.

38

Predict and Other Systems

Adabas Vista

Defining the File Structure

Logical File Level

Logical file:

File |1D: Test-file
File type: Adabas
Logical distribution
type: Partitionad
Logical For: 11

Description of the Structure
The above diagram shows how data distribution is defined on two levels:

® The logical level
The file Test-file has the logical distribution type partitioned.

® The physical level

Physical File Level

Physical file:

DBnr: 3

Frr: 13

Physical distribution
type: Partitioned

Database 3

Physical file:

DBnr: 2

Frr: 12

Physical distribution
type: Partitioned

Database 2

Physical file:

DEnr: 1

Frr: 11

Physical distribution
type: Simple

Database 1

The data is distributed across the physical files 12 and 13 in databases 2 and 3. It also exists as

physical file 11 of type simple in database 1 (for example for evaluation purposes).

Predict and Other Systems

39

Adabas Vista

Defining a File Structure Logically and Physically

The diagram shows that files are defined on the logical and the physical file level:

® On the logical level
Defining a logical file includes the definition of the fields in a file. Files of type simple, expanded,
partitioned and PROPAGATOR can be defined on the logical level. See Defining a Logical File.

® On the physical level
The exact physical implementation for the storage of data is defined. Depending on the logical
distribution type, different types of physical files can be implemented. The following table shows
which types of physical files can be used for files with different logical Vista types. See Defining
the Physical Implementation of Logical Files.

Logical Level Physical Level

simple simple

expanded expanded, simple

partitioned partitioned, simple

PROPAGATOR |PROPAGATOR master, PROPAGATOR replicated, simple

Defining a Logical File

In the first screen that is displayed when you define a file, basic attributes of the file are specified.
The parameters that are important when defining files for use with Adabas Vista are described
below. See also section File in the Predefined Object Types in Predict documentation.

40 Predict and Other Systems

Adabas Vista

13:01:26 wukt PRED T C T wseswsss 2007-05-31
- Add a file -
File ID ADABADA-33 +A11---Distribution types----- H
Ik Expanded file ©
!
! _ P Partitioned ©
!
' N PROPAGATOR file ©
!
' _ ' " Simple file <
|
[©
!
I ©
!
File type ..o, .. * A Adab ! _ ©
|
Master file % (. ©
|
File number * 123 [©
|
Logical distribution type .* * Simp ! _ <
!
Contained in DA % I <
!
Parameters

File number

If a database is specified, the file number of the logical file is taken as a physical file
number automatically (if this is possible). If not, a free physical number can be selected
from a selection window. The file number must be in the range 1 - 32767.

Logical distribution
type

Determines how the file can be implemented in an Vista or Entire Transaction
Propagator environment.

E Expanded: to be implemented in several physical files with
identical FDT but different data in each physical file
(continuous file). All files are located in the same database.

P Partitioned: as expanded but data is accessed with Adabas
Vista and can be distributed over several databases.

N Propagator file: to support multiple, partially replicated copies
of one physical file with Entire Transaction Propagator.

blank Simple file (default).

Contained in DA

A link to this database is established.

Predict and Other Systems 41

Adabas Vista

Defining the Physical Implementation of Logical Files

A logical file definition does not contain any information on the physical implementation of the
file. To specify the physical implementation of a file, a physical file definition has to be added.
Physical file definitions are identified by both a physical database number (PDBnr) and a physical
file number (PFnr).

The physical database number and a physical file number are specified in one of the following
ways:

" A database is specified by adding the logical file (with the in database parameter). The PDBnr
is taken from the Predict database object. The PFnr is the same as the logical file number (the
File number) if this is possible. If not, a free physical number can be selected from a selection
window.

® By specifying a database ID when adding new physical file in the Select one or more physical
files window as described in the next section.

® By executing the . A line command in the list editor when maintaining the file list of a database
object. If a file is not yet in the database, a new physical file is added.

. Note: If no physical file has yet been defined for a logical file, the string ** default record

** is displayed in the Select one or more physical files window.
Adding, Modifying and Purging Physical Files

Physical file definitions are added or modified using the Select one or more physical files window.
This window appears when either

® the Modify Adabas Attributes Function (Code]) in the File Maintenance menu is executed or

* the Additional attributes parameter in the first Add/Modify file screen is set to Y.

The Select one or more physical files window contains a list of all physical files belonging to the
logical file.

Physical file definitions are added, modified or purged with one-letter commands in the column
Cmd.

| Note: The Select one or more physical files window is also displayed if the logical file con-

tains only one physical file (as shown in the screen below).

42 Predict and Other Systems

Adabas Vista

08:57:25

File ID
Type ...

wisesk PR ED I C T woessss 2007-05-31
- Add a file -
......... JPE-PARTS +--- Additional attributes ---+
......... Adabas, Partitioned I --> Mark one or more !

File number 923 AAIT-------- Select one or more physical file------- A

Containe
Keys

Literal
Average

Stability

Sequence
Vista Ac
Vista Ac
Adabas S
Abstract

EDIT:

d in DA . HNO-D Cmd Database name T PDBnr PFnr

** new **

name HNO-DA-A P 134 125

count

field
cess DBnr
cess Fnr
QL usage
Zoom: N

Owner: N Desc: N Has Field+----------------------------- +

Commands in the Select one or more physical files window

A Add a new physical file definition. A can only be entered in the line **new** at the
top of the list. The Add command displays a window to enter a physical database
ID and subsequently the Modify Adabas Attributes screen.

M, Xor/ Modify the physical file definition. The Modify Adabas Attributes screen is displayed.

p Purge the physical file definition. Additional confirmation is requested. The physical

file is removed from the file list of the database.

Predict and Other Systems 43

Adabas Vista

Specifying the Vista Attributes of Physical Files

13:47:38 wiss PR E D I C T weeessses 2007-05-31

- Add Adabas attributes -
File ID JPE-PART4 +----- Additional attributes----- +
Type ..., Adabas, Partitioned --> Mark one or more

Contained in DA . HEB-DA-3 (PDBnr: 33333) attributes

Phys. distribution attr.

! !

! !

! !

Required attributes Ph ! _ Miscellaneous attributes !

Phys. file number ..* 146 [ADAM key definition !

Min ISN 1 I Extent allocation !

Max ISN I Distribution criteria !

I Encodings !

Device Cylinder Blocks Paddin ! !

Woz=== 0 —o=-===2== =—=-—=-=--=== —o===-= | |

ASSO 3380 Ul ! !

NI ! !

DATA 3380 DS ! !

| |

Loading attributes Lo ! !

Max recl. ! !

ISN reusage N (Y,N) ! !

User ISN N (Y,N) fpe====cc==ss2ccs22c0s52c=022220 A
Additional attributes ..* N Associations ..* N

The Additional attributes window that is displayed by entering Y in the Additional attributes field
of the Modify Adabas Attributes screen (see screen above) contains two topics needed for defining
data distribution:

® Physical distribution attributes
® Distribution criteria
Both topics are described in the sections Specifying Physical Distribution Attributes and Specifying

Distribution Criteria for Partitioned Files below. All general attributes of physical file definitions
are described in the section Adding, Modifying and Purging Physical Files.

Specifying Physical Distribution Attributes

To specify or modify the Vista attributes of a physical file, select the topic Phys. distribution attr.
in the Additional Attributes window. Physical distribution attributes is not contained in the Ad-
ditional attributes window if no association to a database exists or the logical distribution type is
simple.

44 Predict and Other Systems

Adabas Vista

13:58:35 wistdr DR E D I € T wesseesw 2007-05-31

- Modify Adabas attributes -
File ID PD-A-EXP Modified 2007-05-31 at 13:24
Type «.oovein... Adabas, Expanded file by PD

Contained in DA . PD-AAA (PDBnr: 28)

Distribution attribute
Phys. distribution attr. = [E Expanded file

Loading attributes

Min ISN oo, 1
i@ ISN ooccoooooacocconooa
One AC extent Y (Y,N)
Parameters
Type The distribution types to be assigned to a physical file. The table below shows which types

of physical distribution types apply to different logical distribution types:

Logical distribution type | Physical distribution type

simple simple

expanded expanded, simple

partitioned partitioned, simple

PROPAGATOR PROPAGATOR master, PROPAGATOR replicated, simple

Loading attributes

Min ISN ADALOD LOAD parameter MINISN

Max ISN ADALOD LOAD parameter MAXISN

One AC extent| ADALOD LOAD parameter NO AC EXTENSION.

Specifying Distribution Criteria for Partitioned Files

The distribution criteria are used as follows:

For files with logical distribution type partitioned, the distribution criteria determine how data is
split across several physical files.

Any field of a file can be taken as the distribution criterion. An example: The field zip_code is
evaluated. Only if a record has a zip_code starting with 6 (identifying the area around Frank-
furt/Main) but equal or less than 61999 is a record to be included into the file. The respective input
is shown in the diagram below.

Predict and Other Systems 45

Adabas Vista

08:13:12 wittdr DR E D I € T wesseesw 2007-05-31
- Modify Adabas attributes -

File ID PD-A-PAR
Contained in DA . PD-AQ

Modified 2007-05-31 at 08:12
by SMR

PDBnr 16 PFnr ... 151

Ty Partitioning field

S

ZIP-CODE

1 Access* GE Critical
Part. name . Frankfurt
High value . 61999

1 Access* GE Critical
Part. name . Munich
High value . 82999

1 Access* GE Critical

Part. name . Hamburg
High value . 22999

Additional attributes ..* N

N 5.00 AH N
(Y,N) Shared Partition .. (Y,N)

Zoom: N
(Y,N) Shared Partition .. (Y,N)

Zoom: N
(Y,N) Shared Partition .. (Y,N)

Zoom: N

Associations ..* N Scroll to:

For an explanation of the valid parameters and values see Specifying Restrictions on Input Data -
Distribution Criteria in the section Adabas Files, File Type A in the Predefined Object Types document-

ation.

Including the Definition in the Vista Table

To access data in physical files with Adabas Vista, the file definitions must be contained in the
Vista translation table of the Adabas Vista translator database. Exactly one Vista translator database
must exist in any Virtual Machine (see also description of the Vista parameter in the section Defining

a Database).

Vista translation tables can be generated from Vista elements defined in Predict. See Vista Translation
Table in the section Generation in the External Objects in Predict documentation.

Vista elements on file level are defined with the file maintenance functions Add/Modify Vista

elements.

Vista elements on database level are defined with the database maintenance functions

Add/Modify Vista elements.

The function uses the following screen:

46

Predict and Other Systems

Adabas Vista

13:30:02 wsis PRED LI C T s 2007-05-31
- Add Vista element -
File ID HNO-FI-V Added 2007-05-31 at 13:30
Type ..., Adabas, Partitioned by HNO
Network * HOME
Simple Y (Y,N) Partition ID assignment ..* V Vista
Vista Max number of partitions .. 255
Environment ID . Enable Read-by-ISN Y (Y,N)
DBnr Part. file concurrency 8
Fnr ..o ... Store control option * 1 Reject
NEME ccooocooone HNO-FI-V
Database PDBnr PFnr Criterion
g g S
1
Additional attributes ..* N Associations ..* N Scroll to:
Parameters
Type Type of the logical file (for example Adabas, Partitioned). A read-only field.
Note: The subsequent parameters Network, Environment ID and Simple can be specified
when adding a Vista element. When modifying a Vista element, these fields are read-only.
Network The Vista element is available throughout the given network.
Simple Y [Only physical files of type simple can be accessed with this Vista element.

N [Physical files of all other suitable types can be accessed with this Vista element. Which
types are suitable depends on the logical Vista type of the file. See Specifying Vista
Attributes.

Environment ID

The Vista element can be used exclusively by the given environment. If, for example, a
data administrator wants to access a file for administration purposes, he might create a
Vista element for his privileged use.

DBnr Database number used for access from the application. This number is translated into the
PDBnr by Vista.

Fnr File number used for access from the application. This number is translated into the PFnr
by Vista.

Name Name of the translation element in Vista.

Database Database containing the physical file.

Predict and Other Systems

47

Adabas Vista

Parameters

PDBnr Physical database number.

PFnr Physical file number.

Criterion Name of the distribution criterion.
Vista Key

The Vista element attributes Network, Environment ID and Vista numbers together identify how
a Vista element can be used. These attributes are also referred to as the Vista Key. The following
rules apply:

® Environment ID and Vista numbers must be unique for each Vista element within each network.

® If the parameter Unique DBnr/Fnr in the Predict defaults is set to Y, Environment ID and Vista
number must additionally be unique throughout all networks.

Retrieving Information on the Use of Vista Numbers

The function Vista number (code N) in the Network Retrieval Menu can be used to determine
how Vista numbers are referenced in databases, physical files and Vista elements. See the section
Network in the Predefined Object Types in Predict documentation.

Generating, Incorporating, Comparing and Maintaining Data Definitions under
Adabas Vista

Predict generation, incorporation and comparison functions can be applied to data definitions
under Adabas Vista. The following functions are designed especially for maintaining Vista trans-
lation tables:

" Generation of Vista translation tables (command: GENERATE STARTAB)

* Incorporation of entries in Vista translation tables as Vista elements of Predict database and file
objects of type A with the function Incorporate Adabas Database/File. Incorporating Vista ele-
ments requires that either a Predict file object for the implemented physical file does not exist,
or an existing Predict file object has the correct physical distribution type.

® Comparison of Vista translation tables with Adabas file definitions in Predict (command: COMPARE
VISTA-FI).

Using the above functions requires the following:

" An interface that is provided with Adabas Vista Version 7.4. If you want to use this interface
together with Adabas Vista Version 7.3, please contact Software GmbH.

48 Predict and Other Systems

Adabas Vista

® LFILE 152 must be set and must point to the Vista system file.

For detailed descriptions of the above options see the respective parts of the sections Generation,
Incorporation and Comparison in the External Objects in Predict documentation.

Predict and Other Systems 49

50

5 VSAM

= Documenting VSAM

= Generating DDMs from Predict VSAM ODBJECESovvviiiiiiiiie e
= Using Natural for VSAM with Physical VSAM FileSoiiiiiiiiiieiiee e

= Using a Record Layout Concept

51

VSAM

Documenting VSAM

VSAM files and userviews can be documented in Predict with four different types of Predict file
objects.

* File type V
Physical VSAM file (master file)

* File type L
Logical VSAM file (master file). This type can only be applied to VSAM files using KSDS (key-
sequenced data set).

® File type W
Userview of physical VSAM file

® File type R
Userview of logical VSAM file. This type can only be applied to VSAM files using KSDS (key-
sequenced data set).

The different file types are described in detail below.
Physical VSAM file - Master File, File Type V

File type V is used for the documentation of a physical VSAM file in Predict.

Field definitions of a physical VSAM file have the same structure as definitions of a sequential
file: the position of a field cannot be specified directly but is determined by its offset. The offset is
calculated from the lengths of the fields already defined. Therefore DUMMY fields must be defined
if space is to be left free between two fields (see examples below).

Example

File ID..: EXAMPLE-V
File-Type: V

DD name..: EXAMDD

L Field-name F Length D Offset Remark
1 DUMMY1 A 10.0 0
1 PRIM-KEY A 15.0 P 10 Primary key

52 Predict and Other Systems

VSAM

1 DUMMY2 A 8.0 25
1 ALT-KEY1 A 5.0 A 33 Alternate Key
1 ALT-KEY2 B 7.0 A 38 Alternate Key

In this physical file definition, only the keys of the VSAM file (DD name: EXAMDD) are defined.
This physical VSAM file is to be used in connection with the two logical VSAM files (EXAMPLE-
L1 and EXAMPLE-L2) which are shown below.

The primary key field has the length 15.0. In the definition of logical VSAM files EXAMPLE-L1
and EXAMPLE-L2 below, these 15 places are used for the storage of the record type specifying
VSAM prefix (length 9.0) and the primary key of the logical file (length 6.0). The DUMMY field
(A 10.0) in the beginning ensures that the primary key field position matches the field definitions
for the VSAM prefix and primary key in the logical files.

Logical VSAM File - Master File, File type L

Logical VSAM files can be documented with file type L. A logical VSAM file defines a record
layout for use in a physical VSAM file. By using logical VSAM files information objects of different
types (and correspondingly different record layouts) can be stored in one physical VSAM file. See
also Using a Record Layout Concept.

The following rules apply when defining a logical VSAM file:

" Before a logical VSAM file can be documented in Predict, the physical VSAM file to which the
logical file belongs must have been documented.

" Position and length of fields in logical VSAM files are defined in the same way as in physical
VSAM files.

" Records in a VSAM data set belonging to a logical file are identified by a VSAM prefix. For use
with Natural for VSAM the field for the VSAM prefix has to start at the same position as the
primary key in the physical VSAM file.

® Therefore the length of the field for the primary key in a logical file can be calculated as follows
(see also examples below):

length of primary key in logical file =
length of primary key in physical file - length of VSAM prefix

® The value of the prefix can be specified explicitly for each logical file. If the VSAM prefix is to
be specified with trailing blanks, each blank must be replaced with a special VSAM trailing
blank character. This special character is defined with the Modify DDM defaults function.

® If no VSAM prefix is specified explicitly, the rightmost three digits of the file number are used
as the VSAM prefix. The field defined for the prefix then has to have the length 3.0.

Predict and Other Systems 53

VSAM

" Alternate keys must be defined with the same offset and length in a logical and the corresponding

physical VSAM file.
Examples
File ID.....: EXAMPLE-L1
File-Type...: L

Related file: EXAMPLE-V

VSAM prefix.: RECTYPE-A

L Field-name F Length D Offset Remark

1 FIELD-A-1 A 2.0 0

1 FIELD-A-2 A 8.0 2

1 VSAM-PREFIX A 9.0 10 VSAM prefix

1 PRIMKEY-A A 6.0 p 19 Primary key

1 FIELD-A-3 A 1.0 25

1 FIELD-A-4 A 2.0 26

1 FIELD-A-5 A 5.0 28

1 ALT-KEY1 A 5.0 A 33 Alternate Key
1 ALT-KEY2 B 7.0 A 38 Alternate Key
1 FIELD-A-6 P 2.5 45

1 FIELD-A-7 N 8.2 49

54 Predict and Other Systems

VSAM

File ID.....: EXAMPLE-LZ?
File-Type...: L
Related file: EXAMPLE-V

VSAM prefix.: RECTYPE-B

L Field-name F Length D Offset Remark

1 FIELD-B-1 B 6.0 0

1 FIELD-B-2 A 4.0 2

1 VSAM-PREFIX A 9.0 10 VSAM prefix

1 PRIMKEY-B A 6.0 P 19 Primary key

1 FIELD-B-3 A 3.0 25

1 FIELD-B-5 A 5.0 28

1 ALT-KEY1 A 5.0 A 33 Alternate Key
1 ALT-KEY2 B 7.0 A 38 Alternate Key
1 FIELD-B-6 N 5.3 45

1 FIELD-B-7 B 18.0 53

The fields for storage of the VSAM prefix identifying the record type starts in the same position
as the primary key in the corresponding physical VSAM file EXAMPLE-V above. The length of
the fields VSAM-PREFIX and PRIMKEY-A (or PRIMKEY-B) together is 15.0 as is the length of the
primary key in EXAMPLE-V above.

Predict and Other Systems 95

VSAM

File Type W and R - Userview of Physical / Logical VSAM File

File types W (userview of physical VSAM file) and R (userview of logical VSAM files) are used to
document DDMs for Natural for VSAM. DDMs documented with Predict objects of this type are
used to access parts of the VSAM file record structure defined in the related physical/logical VSAM
file.

The following rules apply:

® The relationship between a userview and physical VSAM fields is established by the two-char-
acter field attribute short name. Therefore field names can be changed in userviews and the
connection to the corresponding field definition of a file remains.

® Only fields which are defined in the physical/logical VSAM file may be defined in the userview.
* The position of the field in the userview is independent from the VSAM file layout.

* Before a DDM can be generated from a file object of type W or R, the DDM of the corresponding
physical/logical VSAM file must have been generated.

Generating DDMs from Predict VSAM Objects

When generating a DDM from a Predict object documenting a VSAM file, the file must already
have been linked to a Predict database object of type V via "Contains FI". The database number is
included in the DDM. The database number of this database must have been specified as a VSAM
database in the Natural parameter module by the NTDB macro (e.g. NTDB VSAM,254).

Using Natural for VSAM with Physical VSAM Files

When a DDM generated from a VSAM file layout is used by Natural for VSAM, this DDM must
always be available at runtime (it is not incorporated into the program at compile time).

Using a Record Layout Concept

Predict enables the use of different record layouts within a physical file (record layout concept)
by the concept of logical VSAM files. When Natural for VSAM uses a DDM generated from a lo-
gical VSAM file only records with the VSAM prefix identifying that logical file will be returned.

When a logical VSAM file is used it is not necessary to define all fields in the physical VSAM file.
Only the primary and alternate keys must be entered. The correct position of fields for keys must
be ensured by insertion of DUMMY fields.

56 Predict and Other Systems

VSAM

If Natural for VSAM is used in connection with logical VSAM files the rules outlined above have
to be followed. This is especially true for the following point:

® The VSAM prefix must be a fixed-length constant and it must precede the primary key in the
logical file. Therefore the VSAM prefix plus primary key together in the logical file must have
the same position and length as the primary key in the physical file.

Using a Record Layout Concept Without Logical VSAM Files

If the record type is not a constant or not the first part of the primary key, the logical VSAM files
may not be used to generate DDMs for Natural for VSAM. In this case the following actions have
to be taken if different record layouts are to be used in the same VSAM data set:

® The layout of the different record type structures must be specified as multiple physical VSAM
files containing the same DD name and therefore pointing to the same VSAM data set.

® Check in the Natural program after the FIND/READ statement that the DDM corresponds to the
record type. When a record does not correspond to the DDM, the record can be read again using
the correct DDM. In these circumstances it is sometimes helpful to know the current record
length. Natural for VSAM offers a subprogram which returns the record length.

Predict and Other Systems o7

58

6 Natural For DL/I

= General Informationccccooiiiiiiinnenn
= Documenting IMS/DL/I Data Structures

= Creating Objects for IMS/DL/I with Incorporation FUNCHONSceviieiiiiiiiiiiicee e

= Maintaining Documentation for IMS/DL/I

= Generation Functions for Files of Type |, J and K

59

Natural For DL/I

General Information

Natural for DL/I allows use of data stored in IMS/DL/I databases with Natural applications. Nat-
ural for DL/I uses the following control blocks:

® Natural for DL/I database descriptions (NDB) containing the information about the segment
structure of an IMS/DL/I database and about the key fields of the segments.

® Natural for DL/I program specification blocks (NSB) reflecting an external view of a database,
as it is used by an application program.

" User-defined fields (UDF) establishing a field structure in a database segment.
For more details see the description of the Natural SYSDDM Utility in the Natural Utilities Menu.

Predict supports the use of Natural for DL/I in the following ways:

IMS/DL/I databases can be documented.

User-defined fields can be documented (as segment layouts).

" Userviews of segments can be defined.

Natural DDMs for IMS/DL/I segments and their userviews can be generated.

Copy code for segment layouts in third generation languages can be generated.

User-defined fields for Natural for DL/I can be generated.

The documentation of NSBs (Natural for DL/I program specification blocks) is currently not sup-
ported by Predict.

Documenting IMS/DL/I Data Structures

IMS/DL/I data structures are documented with objects of the following types:

® Databases are documented with database objects of type I.
" Segments are documented with file objects of type I.

" Sequence fields, search fields and alternate index fields are documented with field objects in
these files.

Segment layouts are documented with file objects of type J.

" Userviews are documented with file objects of type K.

60 Predict and Other Systems

Natural For DL/I

Databases

There are two types of IMS/DL/I databases: physical and logical. The file list of a database object
of type I consists only of files of type L.

Segments

Segments of an IMS/DL/I database are documented with file objects of type I. There are four types
of IMS/DL/I segments:

" logical segments (only in logical databases);
" physical segments (only in physical databases);
* logical children (only in physical databases);

® virtual logical children (only in physical databases).

Each file of type I belonging to a physical database contains the sequence field, the search fields
and the alternate index fields of the segment it documents. These fields are referred to below as
“IMS/DL/I fields”.

Each file of type I belonging to a logical database contains the IMS/DL/I fields of the segment of
a physical database from which it is derived. A concatenated segment in a logical database contains
the IMS/DL/I fields of both the logical child (virtual logical child) and the logical parent (physical
parent of paired real logical child) from which it is derived.

Segment Layouts

User-defined layouts for an IMS/DL/I segment are documented with files of type J. Each file of
type] has a master file of type I that documents the segment. Field definitions of a segment layout
have the same structure as definitions of a sequential file: the position of a field cannot be specified
directly butis determined by its offset. The offset is calculated from the lengths of the fields already
defined. Therefore dummy fields must be defined if space is to be left free between two fields.

The IMS/DL/I fields of a file object of type I can be contained in the file of type] but they must
have the same format, length and offset as in the file of type L.

Recommendations

Predict allows field IDs longer than 19 characters for files of type J; IDs of this length are not sup-
ported by SYSDDM. For this reason we recommend the following:

® Only use Predict to generate DDMs from files of this type. Do not use the utility SYSDDM. This
can be enforced by setting the general default parameter Protection > SYSDDM utility to C or
D.

* Only use the Predict Coordinator to transfer DL/I structures. If you use Natural utilities, field
IDs longer than 19 characters will be truncated.

Predict and Other Systems 61

Natural For DL/I

Userviews
Userviews of the segment are documented with file type K. Userviews have as master files the

files of type I that document the segment. A userview (file type K) can contain the IMS/DL/I fields
of the segment (type I) and fields of each layout (type]J) of the segment.

Creating Objects for IMS/DL/I with Incorporation Functions

Databases and file objects of type I are created by incorporating Natural for DL/I NDBs using the
Incorporate NDB function. These objects cannot be created manually using Predict maintenance
functions Add Database/File.

The following rules apply for incorporation of IMS/DL/I databases and segments:

® A Natural for DL/I NDB is generated by assembling an IMS/DL/I database description (DBD)
with the Natural for DL/I macro library according to the Natural Utilities documentation. When
this has been done, the NDB can be incorporated into Predict.

® Before a logical NDB is incorporated, the physical NDB or NDBs from which the logical NDB
is derived should be incorporated so that the references to source segments can be established.
Also, if a physical NDB contains a virtual logical child and the paired real logical child is located
in a different NDB, the NDB containing the real logical child should be incorporated first. If this
is not possible, because there are either references back to the first NDB, or references to source
segments inside the same NDB, the incorporation must be run twice to make sure that all source
references are established.

® If user-defined fields for a segment have been defined in the SYSDDM DL/I services before the
NDB is incorporated, the Incorporate NDB function incorporates the user-defined fields as well.
In this case, at least one file of type] is created. If there are redefinitions in the user-defined
fields, several layouts are created for the segment.

For details and options of the NDB incorporation function, see the section Incorporation in the Ex-
ternal Objects in Predict documentation.

Maintaining Documentation for IMS/DL/I

The segment structure of an IMS/DL/I database and the format, length, offset and type of the
IMS/DL/I fields can be changed by carrying out the following three steps:

® rewrite the IMS/DL/I database description
* reassemble the IMS/DL/I database description with the Natural for DL/I macro library

" incorporate the resulting NDB into Predict using the Replace option.

62 Predict and Other Systems

Natural For DL/I

Note: These attributes cannot be changed with maintenance functions as described in the

section Maintenance in the Predict Reference documentation.

When an NDB is replaced, existing segment layouts in Predict are not replaced. Hence, user-defined
fields are only incorporated once, and should from then on be maintained only in Predict.

Only certain attributes of Predict field objects contained in files of type I can be changed, for ex-
ample, Field ID, Natural edit mask and Abstract. Certain changes to field formats are allowed, as
described in the section Field in the Predefined Object Types in Predict documentation.

Maintaining Documentation of IMS/DL/I Segment Layouts

Segment layouts (type J) can be modified without restrictions. Also, new layouts can be created
and existing layouts can be deleted.

Maintaining Documentation of IMS/DL/I Userviews
A userview (file of type K) can be created by selecting fields of a segment (file of type I) and fields

of layouts (files of type]J) that belong to that segment. Attributes such as field ID, Natural edit
mask and field comments can be changed in Predict objects belonging to files of type K.

Generation Functions for Files of Type |, J and K

Generating DDMs

DDMs can be generated for files of type I,] and K.

The generation of a DDM requires the existence of the corresponding Natural for DL/I user-defined
fields (UDF). The required UDF is generated automatically whenever a DDM for a segment is
generated (or regenerated if the segment layouts have been changed). A UDF can also be generated
independently from the generation of a DDM. When generating the UDF, Predict automatically
selects a valid database number (for example a database number which is defined in an IMS or
DL/I macro) and a free file number. These numbers are later used for the DDM generation.

The position and length of fields in a UDF is determined from the layouts of the segment (file type
D-

Each DDM contains the IMS/DL/I fields of the given segment and the higher level segments. Ad-
ditionally the following definitions will be contained for the different file types:

® The DDM of a file of type I contains the fields of all layouts of that segment.

® The DDM of a file of type J contains the fields of that layout.

® the DDM of a file of type K contains the fields of that userview.

Predict and Other Systems 63

Natural For DL/I

Generating Copy Code

Copy code for record buffers in third generation programming languages can be generated for a
given layout (file of type J). Synchronized and align options are not allowed: for FORTRAN copy
code, fields must already lie within the appropriate boundary.

64 Predict and Other Systems

7 DB2 and SQL/DS

= Documenting DB2 in Predict
= Naming Conventions for DB2
= Generating, Incorporating and Comparing
= Administrating Implemented DB2 Objects

DB2 ODJECES ...

65

DB2 and SQL/DS

DB2 objects can be documented in Predict and generation, incorporation, comparison and admin-
istration functions can be applied to them.

] Note: Touse functions of Predict that support DB2, Natural for DB2 or Natural SQL Gateway

in a z/OS environment or Entire Access in a Windows, Linux or OS/2 environment must be
installed. Most functions described in this section apply both to DB2 and SQL/DS. Exceptions
to this rule are listed as appropriate.

Documenting DB2 in Predict

The following topics are covered below:

= General Information

= Documenting DB2 Storagegroups or Database partition groups
= Documenting DB2 Databases

= Documenting DB2 Tablespaces and SQL/DS Dbspaces
= Documenting DB2 Tables and Views

= Documenting Referential Constraints

= Documenting DB2 Application Plans

= Documenting DB2 Packages

= Documenting DB2 Triggers

= Documenting DB2 Procedures and Functions

= Documenting Other DB2 Objects

General Information
DB2 storagegroups or database partition groups, databases, tablespaces, tables, views, columns,

column masks, row permissions, distinct types, indexes, referential constraints, triggers, packages,
application plans, procedures and functions can be documented in Predict.

66 Predict and Other Systems

DB2 and SQL/DS

r Database
>

|
|
| Dataspace
|
1

em
['I'abl:.u%ace, c.ﬁppi?:‘:fnn Plan)
: Dbspace)
[

oo

Packagelist
Storagespace

(Storagegroup)
| M BN Pk {?_T
[, Package,
File:

| . Procedure, Function)
abla/\Vi

| (T ew)

|

1 File Relation

|

|

|

(Referantial
Constraint) Trigger

" Verification
Standard Field

(Calumn,
(Distinct Type) Check Censtraint)

The following table gives an overview of how different DB2 objects are documented.

Documenting DB2 objects is described in the sections below.

DB2 Object Documented in Predict with

Database Database object of type D

Storagegroup (z/OS) / Database partition |Storagespace object
group (Linux)

DB2 tablespace / SQL/DS Dbspace Dataspace object

Table / view File object of type D or E

Table check constraint Attribute of file object (type D)

Column check constraint Verification object

Column mask Access Definition object of type M

Row permission Access Definition object of type M

Application plan (z/OS) System object of type P

DBRM (z/OS) Program object of type P and language Q

Package (z/OS) Program object of type P and language B, C, F, H, P or Q or

user-defined. Packages are linked to application plans with
objects of type packagelist.

Collection (z/OS) Packagelist attributes Collection name and Location name.
Index Field attributes.

Column Field objects.

Distinct Type Field object of standard file SAG-DISTINCT-TYPE.

Trigger Trigger object.

Predict and Other Systems 67

DB2 and SQL/DS

DB2 Object Documented in Predict with
Procedure Program object of type R.
Function Program object of type U.

Documentation of multiple server

You are able to document several implementations of DB2 objects in different servers. A DB2
server is documented as a database object with Type S (SQL server).

With the means of SQL servers, it is possible to document one logical database design and to assign
different physical database implementations to DB2 objects. The object types affected are Stor-
agespace, Dataspace, Database, File, Field and Program. For objects of these types, the maintenance
function Physical attributes is available to assign an individual setting of physical attributes to an
object in a specific server.

For example, you may have two DB2 servers named DB2PROD and DB2TEST. It is then possible
to define a tablespace named TABSPAC in the DB2PROD server as partitioned and in the DB2TEST

server as simple or segmented tablespace.

There is one specific server named <Default Server>, that is always available and must not be
documented. This server represents the DB2 server you are automatically connected to from your
Natural or TP monitor environment on mainframe platforms. On a Windows or Linux platform,
the server defined for DBID 250 is used. Which real DB2 server is denoted by <Default Server>
depends on your current environment.

When a DB2 object is added, it has a set of physical attributes in the <Default Server>. This set of
attributes can be modified but can not be deleted. In the Add, Copy and Modify object function,

you can edit attributes of the logical database design as well as attributes of the physical database
design in one preferred server. You can specify your preferred server in the maintenance options
of your profile. If your preferred server is not <Default Server>, the physical attributes for <Default
Sever> will be taken from the general defaults when an object is added.

There are general defaults for DB2 objects such as Storagegroup, Database, Tablespace, Table, Index,
Procedure and Function. You may adapt the defaults to meet the requirements of your enterprise.
These default values will be preset and may be modified when an object is added.

When executing the retrieval model #S for an SQL server, all implementations of DB2 objects in
this server are shown.

Generation, Administration, Incorporation and Comparison

If you are using IBM's Distributed Relational Database Architecture (DRDA) you will be able to
connect to a specific DB2 server and perform the above mentioned functions for this specific
server. This allows the administration of all DB2 servers in the network with one Predict installation.
If you don't want to use explicitly documented servers, use <Default Server> to connect to your
current DB2 server. When a function that has established a connection to a DB2 server other than

68 Predict and Other Systems

DB2 and SQL/DS

<Default Server> terminates, this connection is released and the connection to <Default Server> is
reestablished. Therefore, the user will have the same database connection after leaving Predict,
that he had when he started his Natural session.

As indicated above, it is possible to define an index as clustered in one server and as not clustered
in a second server. This influences whether the component fields of the index may be updated or
not. Whether a field may be updated or not is indicated by special short names in the DDM for
Natural. In the DDM generation defaults you can specify the server that should be used for data
access from Natural.

Support of DB2 in Natural for Windows and Natural for Linux

Predict offers the support of DB2 also on Windows and Linux platforms. To be able to access DB2,
Natural for DB2 or Natural for SQL/DS is required on mainframe platforms. On Windows and
Linux platforms, Entire Access is required for access to DB2.

On Windows and Linux platforms the DBID 250 is used to access DB2. DBID 250 must be defined
as SQL in the Natural global configuration section. The connect string defined for DBID 250 is
used to establish the connection to <Default Server>. After the execution of a function, that has
established a connection to a DB2 server, the connection to <Default Server> is reestablished. It is
therefore required, that the same user ID and password are defined for <Default Server>and every
other DB2 server used.

When a connection to a server is established, a user ID and password may be required. The user
ID and password can be changed within a Predict session by executing the command SET
CATALOG_USER. This allows you to overwrite the previously entered user ID and password.
This user ID and the password are then also used for every other connection to an SQL server.

Documenting DB2 Storagegroups or Database partition groups
Storagegroups or Database partition groups are documented as objects of type storagespace.
Documenting DB2 Databases

Databases are documented as objects of type database with database type D.
Only files of type D (DB2 table) can be linked to databases of type D.

Note: DB2 databases on z/OS need only be documented with Predict database objects if you
intend to generate the DB2 database from the Predict database object. If you use the option
to create the DB2 database implicitly when generating tablespaces, tables or views, the
database need not be documented with a Predict database object.

Predict and Other Systems 69

DB2 and SQL/DS

Documenting DB2 Tablespaces and SQL/DS Dbspaces

In DB2/SQL/DS, tables/views are not directly linked to databases: a DB2 tablespace or SQL/DS
Dbspace establishes the connection of tables/views and databases.

DB?2 tablespaces and SQL/DS Dbspaces are documented with Predict dataspace objects of type D
(DB2) or S (SQL/DS) in a z/OS environment and type 2 in a Linux environment.

Notes:

1. DB2 tablespaces on z/OS need only be documented with Predict dataspace objects if you intend
to generate the DB2 tablespace from the Predict dataspace object. If you use the option to create
the DB2 tablespace implicitly when generating tables/views, the tablespace need not be docu-
mented with a Predict dataspace object. Partitioned or segmented tablespaces are not created
implicitly.

2. DB2 tablespaces in a Linux environment need only be documented with Predict dataspace objects
if you intend to generate the DB2 tablespace from the Predict dataspace object. If you use the
option to use IBMDEFAULTGROUP when generating tables/views, the tablespace need not be
documented with a Predict dataspace object.

An SQL/DS Dbspace must be documented with a Predict tablespace object because a Dbspace
cannot be created implicitly.

No auxiliary tablespaces are supported. See Columns With Format LOB for further information.

For tablespaces with partition type G (Partition by growth) it is possible to specify the number of
partitions to be initialized with the function Partitions initialized. This function can be set in the
Generation Defaults for DB2 tablespaces.

Refer to the parameter description given in DB2 Tablespace of the section Generation of External
Objects in the External Objects in Predict documentation for details.

Documenting DB2 Tables and Views

Tables are documented as files of type D. Views are documented as files of type E.

Note: If a table contains a partitioning index, the number of partitions must be documented

as an attribute of the file if the file is not linked to a dataspace via association "Contains FI".
Subselect Clauses and Expressions in Field Definitions

The documentation of views is supported by an additional editor to specify the part of the subselect
clause starting from the first FROM clause.

The selection clause of the subselect clause is documented by the specification of the field list of
the view. The specified list of tables/views in the first FROM clause of the subselect clause is generated

70 Predict and Other Systems

DB2 and SQL/DS

by Predict and will be updated if a field from an additional table/view is added to the view. Cor-
relation names can be added to the tables and views in the list (using editor functions). The remain-
ing part of the subselect clause is left unchanged.

The expression used to define DB2 or SQL/DS fields can contain complex expressions. Fields that
are defined not only by a single column name but use either a constant or a more complex expres-
sion are called derived fields. A special editor is provided for specifying the expression of derived
fields.

In the field expression and in the subselect clause, comment lines (lines starting with * or **) and
remarks within a line (starting with /*) are allowed.

DB2 offers the possibility to use subqueries and joined tables in the FROM clause of the view
definitions. This functionality is also supported under Predict.

You can define in the subquery of a view whether the FROM clause is made up of an EXCEPT, EXCEPT
ALL, INNER, INTERSECT, INTERSECT ALL, LEFT OUTER, RIGHT OUTER, FULL OUTER JOIN, UNION or
UNION ALL. Use the subquery editor to add and modify joined views.

Predict has a file of type IV (Intermediate View) that enables you to use subselects in the FROM
clause of a view definition. Files of type IV have a field list to show the selection clause and a
subquery to show the search condition. Just like views, files of type IV can have a Join type. They
can be used as master files for views and files of type IV. When a view is generated that has a file
of type IV as a master file, a SELECT partial statement is generated into the FROM clause. Files of
type IV are not in the DB2 catalog. Nevertheless, the same naming standards are valid for files of
type IV as for tables and views. See Naming Conventions for DB2 for further information.

When using Incorporate and Compare, files of type IV are created in addition to the view in order
to represent subselects in the FROM clause. Files of type IV are implemented as file objects in Predict,
in order to ensure the consistency of the field definitions via rippling.

The maximum number of master files for a view or file of type IV is 100 in Predict.
Common Table Expression

A common-table-expression used in the definition of a DB2 view or a materialized query table is
documented by means of an intermediate view (file with file type IV). This intermediate view can
then be referenced in the WITH clause of the subquery.

Assume the following example view definition in DB2:

CREATE VIEW SMR.FIRST_CTE_VIEW AS

WITH DTOTAL (DEPTNO, TOTALPAY) AS

(SELECT WORKDEPT, SUM(SALARY+BONUS)

FROM DSN8810.EMP

GROUP BY WORKDEPT)

SELECT DEPTNO

FROM DTOTAL

WHERE TOTALPAY = (SELECT MAX(TOTALPAY) FROM DTOTAL)

Predict and Other Systems 71

DB2 and SQL/DS

The common table expression is documented as intermediate view named SMR-FIRST_CTE_IV_1.

The subquery editor of the DB2 view SMR.FIRST_CTE_VIEW looks like this:

WITH
SMR-FIRST_CTE_IV_1
FROM
SMR-FIRST_CTE_IV_1
WHERE SMR-FIRST_CTE_IV_1-TOTALPAY = (SELECT MAX(TOTALPAY) FROM
SMR-FIRST_CTE_IV_1)

And the subquery editor of SMR-FIRST_CTE_IV_1 looks like this:

FROM
DSN8810-EMP
GROUP BY DSN8810-EMP-WORKDEPT

The field TOTALPAY of file SMR-FIRST_CTE_IV_1 has field type DV (derived field) and has the
expression:

SUM(DSN8810-EMP-SALARY+DSN8810-EMP-BONUS)

Note: In DB2 common table expressions can be used to create recursive SQL. Views based

on such recursive definitions can not be incorporated or compared. It is also not possible
to document and generate such views.

Temporal Tables

DB2 supports so-called temporal tables. A temporal table is a table that records the period of time
when a row is valid.

DB2 supports two types of periods, which are the system period (SYSTEM_TIME) and the applic-
ation period (BUSINESS_TIME).

A system-period temporal table is a base table that is defined with system-period data versioning.
You can modify an existing table to become a system-period temporal table by specifying the ADD
PERIOD SYSTEM_TIME clause on the ALTER TABLE statement. After creating a history table that
corresponds to the system-period temporal table, you can define system-period data versioning
on the table by issuing the ALTER TABLE ADD VERSIONING statement with the USE HISTORY table
clause.

An application-period temporal table is a base table that includes an application period (BUSI-
NESS_TIME). You can modify an existing table to become an application-period temporal table
by specifying the ADD PERIOD BUSINESS_TIME clause on the ALTER TABLE statement.

A bi-temporal table is a table that is both a system-period temporal table and an application-period
temporal table. You can use a bi-temporal table to keep application period information and system-
based historical information.

72 Predict and Other Systems

DB2 and SQL/DS

In Predict, a temporal table is documented as a file of type D using specific superfields. These
fields are named either SYSTEM_TIME or BUSINESS_TIME, depending on the type of temporal
table.

For system-period temporal tables it is required to specify a field of type TS to be used AS
TRANSACTION START ID. This field specifies that a timestamp value is assigned when the row is
inserted or any column in the row is updated. A table can have only one transaction-start-id
column.

Archive-enabled and Archive Tables

DB2 supports so-called archive tables. An archive table is a table that stores older rows from an-
other table. The original table is called an archive-enabled table.

DB2 can automatically store rows that are deleted from an archive-enabled table in an associated
archive table. When you query an archive-enabled table, you can specify whether you want those
queries to include data from the archive table.

In Predict, an archive table is documented as a file of type D using specific attributes to link the
archive table to a specific base table and also to define how the archive table is maintained.

Hash key

When you create or alter a table, you can organize the table by hash to improve the performance
queries that access individual rows.

When you create or alter tables on universal table spaces, you can enable hash access to that table
by adding the organization-clause to your CREATE TABLE or ALTER TABLE statement.

In Predict you can document hash-organized tables with files of type D or MT. You have to specify
a hash size that will be preallocated for an associated partition.

If hash size is specified it is also required to specify a field as hash key.
Refer to your DB2 documentation for further information on hash-organized tables.
Clone Tables

DB2 supports so-called clone tables. A clone table is a table that has the exact same attributes as
an already existing base table.

® In Predict, a clone table is documented as a file of type D. Base and clone table are documented

in Predict as separate files of type D which allows the creation of an individual DDM for each
file.

® Clone tables can be incorporated, compared and dropped using the Incorporate DB2 Table/View
and Compare DB2 Table/View functions and purged using option P of the External File Admin-
istration function.

Predict and Other Systems 73

DB2 and SQL/DS

® The Predict maintenance does not guarantee that the individual files of type D that represent
the base and the clone table in Predict have identical field lists. The user has to make the required
field list checks.

® The Generate DB2 Table/View function does not allow the modification of field lists of existing
cloned DB2 tables. This restriction also applies to the corresponding base table documented in
Predict.

® Predict does not create clone tables nor does Predict generate an EXCHANGE DATA statement. Such
statements have to be submitted by the user from outside Predict (for example, using SYSDB2
or any other tool that can issue interactive SQL statements).

Documenting Referential Constraints

Referential constraints are documented as file relations of type R (referential constraint). The relation
is established between a unique constraint and a foreign key. Unique constraint and foreign key
can belong to the same or to different tables.

Documenting DB2 Application Plans
DB2 application plans are documented as Predict system objects of type P.
Documenting DB2 Packages

With DB2 Version 2.3 or above, DBRMs can be grouped to packages. Packages are linked to plans
dynamically (at run-time). DB2 packages are documented in Predict with program objects of with
language B, C, F, H, P or Q or user-defined.

Linking Packages to Application Plans with Packagelists

Packages are linked to application plans with objects of type packagelist (PG). The subtypes of
the object type packagelist determine the type of inclusion of packages into an application plan
when binding a plan. Valid values are:

"Q

DBRM
=T

total collection
=S

subcollection

The different subtypes are described in the section Using Predict Information when Binding Ap-
plication Plans.

74 Predict and Other Systems

DB2 and SQL/DS

Packages are referenced in a plan by collections. Any collection is a virtual summary of packages,
used to simplify references to packages. Any package can be contained in several collections.
Collections are documented as attributes of packagelists.

Documenting DB2 Triggers

Trigger objects represent DB2 triggers.

You can link an unlimited number of triggers to a table. Update triggers that can only be executed
if certain table fields are changed are then linked to these fields. The appropriate update-clauses
are created during the table generation process. All triggers must be linked to file.

Using Incorporate and Compare on the tables creates the trigger objects in Predict and establishes
the links to the file and to the fields. The connection to the DB2 catalog is not the Predict object
ID, but an attribute Triggername. See Naming Conventions for DB2 for further information.

In addition, triggers contain information as to when they are executed (during Insert, Update or
Delete) and whether they are to be executed before or after a certain statement is executed. The
code that is to be executed is noted in the trigger body, which is a text attribute in Predict. The use
of procedures in triggers is retrieved from the text of the trigger body.

If two or more triggers contained in a trigger list are assigned the same trigger action (for example
Insert), trigger type (for example Before) and event (the code that is to be executed) then the trigger
positioned first in the trigger list will be executed first. The following triggers will then be executed
according to their position in the trigger list.

Documenting DB2 Procedures and Functions

DB2 gives you the possibility to write procedures and user-defined functions. These objects can
be documented as programs in Predict. The program type R (SQL procedure) can accept many

specifications that are only related to DB2. Procedures can be implemented in third generation

programming languages or SQL.

DB2 functions are documented as Programs of type U (Database function) in Predict. These func-
tions can return a table as a result. There are two associations between PR and FI with the names
"Input FI" and "Returns FI". The association names are supposed to indicate that the linked files
represent the structure of the input parameter or the structure of the results table.

Only files of type IT (Intermediate Table) can be linked (see below). If the entered value or the
results table is a scalar value, then you still must create a file that has exactly one field. In DB2,
you can use table functions in the definition from views. Predict does not support this.

Files of Type IT

There is a new file type IT (Intermediate Table) for documenting the formal parameters of database
functions. They do not exist in DB2. Their fields can, like tables, have a link to the standard file
SAG-DISTINCT-TYPE, that is interpreted as being distinct type.

Predict and Other Systems 75

DB2 and SQL/DS

Documenting Other DB2 Objects

DB2 Distinct Types

In Predict, distinct types are implemented with the help of an indicated standard file called SAG-
DISTINCT-TYPE.

The connection with the DB2 catalog is established by the names of the fields of this standard file.
The field names of SAG-DISTINCT-TYPE consist of a SCHEMA_NAME and a TYPE_ NAME. See
Naming Conventions for DB2 for further information. Table fields that are connected to a standard
tield in SAG-DISTINCT-TYPE have the predefined format which is the basis for the type. Changes
in the type definition are spread via rippling to the derived fields.

Note: The name of the standard field is not a valid column name. After copying from SAG-

DISTINCT-TYPE via the SEL command into the field list of a table, the field name must be
changed so that it conforms with the SQL naming standards.

When a table is generated, a CREATE DISTINCT TYPE statement is created for every type in the
fields with distinct type, if the type has not already been defined in the DB2 catalog. The type
definition of the table field is in this case the distinct type name.

When using the commands Incorporate and Compare on the table, the connections to the type
definition are also compared. If the type definition in Predict is different from the one in DB2, then
the field format of the table field is adapted to the catalog entry, and the field is marked as NON-
Standard.

The type definitions are always regarded by the tables using it. Therefore, there are no explicit
Generate, Incorporate and Compare distinct type functions. A type definition in DB2 is also deleted
via Drop if the last table using it is dropped by Administration (Database, dataspace or file). Since
every distinct type is based on a predefined type, the table fields derived from these types are
represented in the DDM with the predefined type.

Arrays

Arrays can be used as parameters or return values of functions. When generating such a function,
the appropriate type definitions will also be generated.

Array types are documented as multiple value fields in file SAG-DISTINCT-TYPE. The occurrences
can be used to define the dimension of the array. To use associative arrays that are indexed by
values of a second data type, link a field of file SAG-DISTINCT-TYPE that serves as index type
definition into association "Indexed by" to the array type field.

DB2 Columns

DB2 columns are documented as field objects.

76 Predict and Other Systems

DB2 and SQL/DS

Columns With Format LOB

LOBs are represented as the field format LO. The character set determines whether it is a BLOB,
CLOB or a DBCLOB. The lengths of these fields can be declared in the following units: bytes,
kilobytes, megabytes or gigabytes.

In order to create a connection between a row in the original table and a LOB value, DB2 uses so-
called auxiliary tablespaces, auxiliary tables and an index to save the LOB values. Predict does
not support the creation of these database objects.

Instead Predict uses the DB2 feature that automatically create these auxiliary objects. This is
achieved by generating a statement SET CURRENT RULE='STD' whenever a table with LOB column
is to be generated, provided that the Special Register Current Rule does not already have this
setting.

It is possible to provide an inline length integer value for BLOB and CLOB columns. It specifies
the maximum number of bytes that are stored in the base table space for the column.

The inline length can be set in the Base Extensions screen available for fields of type D with format
LO.

Columns With Format ROWID

ROWID fields are documented with fieldtype QN. Their format is A and their length is 40. The
field maintenance ensures that only one ROWID field exists per table. It also ensures that every
table containing a LOB column also contains a ROWID column. This is necessary, so that DB2 can
create the index to connect the row in the original table with the auxiliary table.

When deleting databases, tablespaces and tables, the auxiliary objects are deleted as well. It is
possible to define an identity property for numeric fields. The contents of these fields can be gen-
erated by DB2. This is an easy way to created a primary key.

LOB fields are skipped during the DDM generation process, since NAT 3.x does not make any
dynamic variables available. ROWID fields are only represented by A40 fields in the DDM.

Column Masks

A column mask in DB2 is used for column access control and specifies the value that should be
returned for a specified column. Exactly one mask per column is allowed.

In DB2 an enabled column mask does not take effect until the ALTER TABLE statement with the
ACTIVATE COLUMN ACCESS CONTROL clause is used to activate column access control for
the table.

Column masks for DB2 fields are documented with Access definitions of type M.

If a DB2 table documented in Predict uses column masks and the table is dropped, the correspond-
ing column masks are also deleted in Predict.

Predict and Other Systems 7

DB2 and SQL/DS

Row Permissions
Multiple row permissions can be created for a table.

In DB2 an enabled row permission does not take effect until the ALTER TABLE statement with
the ACTIVATE ROW ACCESS CONTROL clause is used to activate row access control for the
table.

Row permissions for files of type D are documented with Access definitions of type P.

If a DB2 table documented in Predict uses row permissions and the table is dropped, the corres-
ponding row permissions are also deleted in Predict.

DB2 Indexes
DB2 indexes are documented with field objects as follows:

® Field attributes
® index name
® definition of index
" using- and free-block

= If the index consists of only one column, the field documenting the column is marked as a
descriptor with descriptor type D, P or F.

*® If the index consists of multiple columns, it is documented as a field with field type SP (superfield)
and descriptor type D, P or F. The descriptor types have the following meaning:

=D
Field is an index.
= F
Field is a foreign key and an index.
=P
Field is a primary key. This always implies that the field is also a unique index.

Unique Constraints
Unique constraints are documented as follows:

* If the unique constraint applies to only one column, the field documenting the column is marked
U in column Unique option.

= If the unique constraint applies to multiple columns, it is documented as a field of type SP (su-
perfield) with descriptor type D, F or P, and U in column Unique option. The descriptor types
have the following meaning;:

78 Predict and Other Systems

DB2 and SQL/DS

=D
Field is a unique index.

= F
Field is a foreign key with unique index.

=P
Field is a primary key. This always implies that the field has a unique constraint.

Foreign Keys
Foreign keys are documented as follows:

= If the foreign key consists of only one column, the field documenting the foreign key is marked
as a descriptor with descriptor type F or E.

= If the foreign key consists of multiple columns, it is documented as a field with field type SP
(superfield) and descriptor type F or E. The descriptor type F means the field is a foreign key
and an index. E means the field is a foreign key without an index.

Column Check Expressions

Check expressions for single columns are documented with verifications of status SQL. The check
expression is stored as the rule of the verification.

Check expressions can be edited with the Predict Rule Editor.
Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.
Table Check Expression

A table check expression is a check expression that applies to more than one column. A table check
expression is an attribute of a file.

To edit table check expressions, enter Y in the field Check expression of the corresponding file
object.

Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.

Naming Conventions for DB2

DB2 naming conventions must be observed when creating or maintaining Predict objects for DB2.
The following rules apply:

= General Rules

= Storagegroup Name
= Collection Name

= Constraint Name

Predict and Other Systems 79

DB2 and SQL/DS

= Correlation Name

= Distinct Type

= Procedure Name

= |ndex Name

= Table/View Name

= Function Name

= Column Name

= Trigger Name

= Delimited Identifier

General Rules

Valid identifiers are from 2 to 32 characters long, must start with an alpha character (A - Z) and
may be followed by either an alpha, US national character (#, $, @), a digit or underscore character.
Identifiers must comply with these rules if Predict maintenance and generation functions are to
be applied.

Concatenated names must not consist of more than 32 characters including the hyphen. See the
following paragraphs for details.

Hyphens in names are treated as follows:

When a table/view is generated from a Predict file object, the hyphen will be transformed into
a period (.).

Because hyphens are used as delimiters, only one hyphen can occur in the file ID.

The hyphen can be used as a minus sign or negative sign in the field expression or the subselect
clause and must then be preceded by a blank.

Column names must not contain a hyphen.

] Notes:

. Incorporation functions accept object and creator names as selection criteria according to the

restrictions mentioned here and in the following sections. DB2 objects with a name longer than
the described ones are not offered for incorporation.

. Names that apply to the restrictions mentioned here and in the following sections but can not

be shown in full length are indicated by ">" as last character.

. For views and intermediate tables use the editor commands FLIP Cand FLIP T to edit the field

names and their derivation in full length.

80

Predict and Other Systems

DB2 and SQL/DS

Storagegroup Name

Storagegroup names can consist of up to 18 characters.

Collection Name

Collection names can consist of up to 18 characters.

Constraint Name

Contraint names can consist of up to 32 characters.

Correlation Name

Correlation names can be defined in the subselect clause of a view. If a correlation name is defined
for a table/view in the subselect clause, all references (in field expressions as well as in the field
editor of the view) to columns of the table/view must be qualified with the correlation name. If
no correlation name is defined for a table/view in the subselect clause, all references to columns

of the table/view must be fully qualified with creator-tablename-columnname (for example: SYSIBM-
SYSCOLUMNS-COLNAME).

Correlation names can consist of up to 18 characters.
Distinct Type

Distinct types consist of SCHEMA_NAME and TYPE_NAME concatenated by a hyphen (used as
qualification character).

SCHEMA_NAME and TYPE_NAME each can consist of up to 32 characters, but a concatenation
of both (including the hyphen as qualification character) must not exceed a length of 32 characters.

Procedure Name

Procedure names must be defined in unqualified form (a long SQL identifier). Procedure names
can consist of up to 32 characters.

Predict and Other Systems 81

DB2 and SQL/DS

Index Name

Index names consist of the creator name and the actual name of the index concatenated by a hyphen
(used as qualification character).

Creator name and actual name of the index each can consist of up to 32 characters, but a concaten-
ation of both (including the hyphen as qualification character) must not exceed a length of 32
characters.

Table/View Name

Table/View names consist of the creator name and the actual name of the table/view concatenated
by a hyphen (used as qualification character).

Creator name and actual name of the table/view each can consist of up to 32 characters, but a
concatenation of both (including the hyphen as qualification character) must not exceed a length
of 32 characters.

Function Name

Function names must be defined in unqualified form (a long SQL identifier). Function names can
consist of up to 32 characters.

Column Name
Column names can consist of up to 30 characters.
Trigger Name

Trigger names consist of the creator name and the actual name of the trigger concatenated by a
hyphen (used as qualification character).

Creator name and actual name of the trigger each can consist of up to 32 characters, but a concat-
enation of both (including the hyphen as qualification character) must not exceed a length of 32
characters.

82 Predict and Other Systems

DB2 and SQL/DS

Delimited Identifier

With DB2 or SQL/DS, special characters can be used in identifiers of tables and views. Identifiers
that contain special characters have to be delimited (usually with single or double quotes) and are
therefore called delimited identifiers.

DB2 or SQL/DS tables and views with delimited identifiers can be incorporated. They can then be
renamed with Predict maintenance functions and retrieval functions can be applied to them. It is
strongly advisable to rename delimited identifiers for the following reasons:

® The only Predict functions that can be applied without restriction to objects with delimited
identifiers are Incorporate and Rename.

= If identifiers contain special characters such as blank or asterisk, results of retrieval functions
are unpredictable.

" Views can only be generated if the subselect clause and the column expressions do not contain

references to delimited identifiers enclosed by quotation marks.

As the SQL escape character Predict uses quotation marks (") and as the SQL string delimiter
apostrophes (') are used. The Predict Incorporate function converts other escape characters or
string delimiters to quotation marks (") and apostrophes ().

Generating, Incorporating and Comparing DB2 Objects

Prerequisites

Generation, Incorporation and Comparison are subject to DB2 security mechanisms. The following
mechanisms apply for DB2 on z/OS:

® To perform the Generate function and administration functions Purge and Refresh, the user
must have the appropriate privileges within DB2 / SQL/DS.

® To perform Incorporation and Comparison functions, the user must have SELECT privilege on
nearly all catalog tables.

® The SELECT privilege in DB2 is the minimum prerequisite for incorporation of DB2
tables/Views (see GRANT (TABLE or VIEW PRIVILEGES) in your DB2 documentation for the
following tables:

SYSIBM-SYSCHECKDEP
SYSIBM-SYSCHECKS
SYSIBM-SYSCOLUMNS
SYSIBM-SYSDATABASE
SYSIBM-SYSDATATYPES
SYSIBM-SYSDUMMY1

Predict and Other Systems 83

DB2 and SQL/DS

SYSIBM-SYSFIELDS
SYSIBM-SYSFOREIGNKEYS
SYSIBM-SYSINDEXES
SYSIBM-SYSINDEXPART
SYSIBM-SYSKEYCOLUSE
SYSIBM-SYSKEYS
SYSIBM-SYSPLAN
SYSIBM-SYSPARMS
SYSIBM-SYSSTOGROUP
SYSIBM-SYSRELS
SYSIBM-SYSROUTINES
SYSIBM-SYSSEQUENCES
SYSIBM-SYSSEQUENCESDEP
SYSIBM-SYSTABCONST
SYSIBM-SYSTRIGGERS
SYSIBM-SYSSYNONYMS
SYSIBM-SYSTABLEPART
SYSIBM-SYSTABLES
SYSIBM-SYSTABLESPACE
SYSIBM-SYSVIEWDEP
SYSIBM-SYSVIEWS
SYSIBM-SYSVOLUMES
SYSIBM-SYSDATATYPES
SYSIBM-SYSTRIGGERS

* To use the SQL statements generated by Predict, the corresponding DB2 privileges are also re-
quired.

* To incorporate the SQL/DS tables contained in the following list, the SELECT privilege in SQL/DS
is also a prerequisite:

SYSTEM-SYSCATALOG
SYSTEM-SYSCOLUMNS
SYSTEM-SYSDBSPACES
SYSTEM-SYSFIELDS
SYSTEM-SYSINDEXES
SYSTEM-SYSKEYCOLS
SYSTEM-SYSKEYS
SYSTEM-SYSSYNONYMS
SYSTEM-SYSUSAGE
SYSTEM-SYSVIEWS

The following mechanisms apply for DB2 on Linux:

® To perform the Generate function and administration functions Purge and Refresh, the user
must have the appropriate privileges within DB2 / SQL/DS.

84 Predict and Other Systems

DB2 and SQL/DS

* To perform Incorporation and Comparison functions, the user must have SELECT privilege on
nearly all catalog tables.

® The SELECT privilege in DB2 is the minimum prerequisite for incorporation of DB2
tables/Views (see GRANT (TABLE or VIEW PRIVILEGES) in your DB2 documentation for the
following tables:

SYSCAT-BUFFERPOOLS
SYSCAT-CHECKS
SYSCAT-COLCHECKS
SYSCAT-COLUMNS
SYSCAT-CONSTDEP
SYSCAT-DATATYPES
SYSCAT-INDEXCOLUSE
SYSCAT-INDEXES
SYSCAT-KEYCOLUSE
SYSCAT-NODEGROUPDEF
SYSCAT-NODEGROUPS
SYSCAT-REFERENCES
SYSCAT-ROUTINEDEP
SYSCAT-ROUTINEPARMS
SYSCAT-ROUTINES
SYSCAT-SEQUENCES
SYSCAT-TABCONST
SYSCAT-TABLES
SYSCAT-TABLESPACES
SYSCAT-TRIGGERS
SYSCAT-VIEWDEP
SYSCAT-VIEWS

® To use the SQL statements generated by Predict, the corresponding DB2 privileges are also re-
quired.

Generation

DB2 objects can be generated from Predict documentation objects.

DB2 database The function is not available for SQL/DS.
The function is not available for DB2 on Linux.

Command: GENERATE DBZ2-DATABASE

DB2 storagegroup Command: GENERATE STORAGEGROUP
DB2 database partition group

DB2 tablespace Command: GENERATE TABLESPACE
SQL/DS Dbspace

Predict and Other Systems 85

DB2 and SQL/DS

DB2/SQL/DS table/view Columns, indexes, referential constraints, triggers and distinct types are
automatically included when generating DB2 tables and views.

Command: GENERATE TABLE

Rules Applying when Generating DB2 / SQL/DS Objects

® All objects are generated by first generating the SQL statements that are necessary to implement
the object and then executing these statements. An additional confirmation is requested before
a DB2 object is actually implemented.

® The generated SQL statements can be saved in a protocol.

= If a generation function is executed for an object that is already implemented, the existing DB2
object can be updated.

= Tables with LOB column: Statement SET CURRENT RULE='STD' is created when a table with LOB
column is generated.

® Auxiliary tablespaces, tables and indexes are created automatically by DB2.

See respective sections in Generation in the External Objects in Predict documentation for more in-
formation.

Incorporation

The incorporation functions create Predict documentation objects for databases (not for SQL/DS),
tablespaces, storagegroups, tables/views, (including columns, indexes and referential constraints)
from the system catalog.

See the section Incorporation in the External Objects in Predict documentation.
Comparison

The comparison functions list differences between the current implementation in DB2 / SQL/DS
and the corresponding documentation. The documentation can be updated to match the imple-
mentation.

See the section Comparison in the External Objects in Predict documentation.

86 Predict and Other Systems

DB2 and SQL/DS

Administrating Implemented DB2 Objects

Functions for administrating DB2 objects are provided to display, purge or refresh DB2 objects
that have been implemented from Predict documentation.
® The Display function lists generation protocols.

® The Purge function drops a table/view physically in DB2 or SQL/DS. If a table holds the last
reference to a distinct type, the distinct type is also dropped.

® The Refresh function deletes all data in an implemented table but keeps the table structure.

See the section Administration of External Objects in the External Objects in Predict documentation.
Locking the Functions of the DB2 Utilities SYSDB2 and SYSSQL

With the Natural for DB2 utilities SYSDB2 (for DB2) and SYSSQL (for SQL/DS) storagegroups,
databases, tablespaces/Dbspaces, tables/views and indexes can be created or modified. To avoid
undocumented changes to DB2 or SQL/DS concerning these object types, your data dictionary
administrator (DDA) may have set the parameter SYSDB2 utility in the Defaults > General Defaults
> Protection screen.

A|Allowed: all SYSDB2 functions can be executed.
D|Disallowed: the following SYSDB2 functions cannot be executed:

CREATE DATABASE
CREATE STORAGEGROUP
CREATE TABLE

CREATE TABLESPACE
CREATE VIEW

CREATE INDEX

I |Incorporate: all SYSDB2 functions can be executed outside of Predict. If one of the following statements
is submitted to DB2, an automatic incorporation in Predict is performed:

CREATE DATABASE
CREATE STORAGEGROUP
CREATE TABLE
CREATE TABLESPACE
CREATE VIEW

Predict and Other Systems 87

88

8 Oracle

= Documenting Oracle in Predict
= Naming Conventions for Oracle

= Generating, Incorporating and Comparing Oracle ODJECEScouvrieiiiiiiee e
= Administrating Implemented Oracle ODJECEScoiiiiiiiiiiii e

89

Oracle

Oracle objects can be documented in Predict and generation, incorporation, comparison and ad-
ministration functions can be applied to them.

] Note: To use functions of Predict that support Oracle in a Linux or Windows environment,

Entire Access in a Linux or Windows environment must be installed.

Documenting Oracle in Predict

The following topics are covered below:

= General Information

= Documenting Oracle Tables and Views
= Documenting Referential Constraints
= Documenting Other Oracle Objects

General Information

Oracle tables, views, columns, indexes and referential constraints can be documented in Predict.

File I

’7 (Tablaiew)

File Relation
(Referantial
Constraint)

Verfication
(Column,
Check Consiraint)

The following table gives an overview of how different Oracle objects are documented.

Documenting Oracle objects is described in the sections below.

90 Predict and Other Systems

Oracle

Oracle Object Documented in Predict with

Table / view File object of type OT or OV
Table check constraint | Attribute of file object (type OT)

Column check constraint | Verification object

Index Field attributes.

Column Field objects.

Documentation of multiple server

You are able to document several implementations of Oracle objects in different servers. An Oracle
server is documented as a database object with Type O (Oracle handler).

With the means of Oracle handlers, it is possible to document one logical database design and to
assign different physical database implementations to Oracle objects. The object types affected are
File and Field. For objects of these types, the maintenance function Physical attributes is available
to assign an individual setting of physical attributes to an object in a specific server.

There is one specific server named <Unassigned>, that is always available and must not be docu-
mented. This server is used for all objects not assigned to a documented Oracle handler.

When a Oracle object is added, it has a set of physical attributes in the <Unassigned>. This set of
attributes can be modified but can not be deleted. In the Add, Copy and Modify object function,
you can edit attributes of the logical database design as well as attributes of the physical database
design in one preferred server. You can specify your preferred server in the maintenance options
of your profile. If your preferred server is not <Unassigned>, the physical attributes for <Unas-
signed> will be taken from the general defaults when an object is added.

There are general defaults for Oracle objects such as Table and Index. You may adapt the defaults
to meet the requirements of your enterprise. These default values will be preset and may be
modified when an object is added.

Generation, Administration, Incorporation and Comparison

As indicated above, it is possible to define an index as partitioned in one server and as not parti-
tioned in a second server.

Support of Oracle in Natural for Windows and Natural for Linux

Predict offers the support of Oracle also on Windows and Linux platforms. On Windows and
Linux platforms, Entire Access is required for access to Oracle.

When a connection to a server is established, a user ID and password may be required.

Predict and Other Systems N

Oracle

Documenting Oracle Tables and Views

Tables are documented as files of type OT. Views are documented as files of type OV.

Note: If a table is partitioned, the number of partitions must be documented as an attribute
of the file.

Subselect Clauses and Expressions in Field Definitions

The documentation of views is supported by an additional editor to specify the part of the subselect
clause starting from the first FROM clause.

The selection clause of the subselect clause is documented by the specification of the field list of
the view. The specified list of tables/views in the first FROM clause of the subselect clause is generated
by Predict and will be updated if a field from an additional table/view is added to the view. Cor-
relation names can be added to the tables and views in the list (using editor functions). The remain-
ing part of the subselect clause is left unchanged.

The expression used to define Oracle fields can contain complex expressions. Fields that are defined
not only by a single column name but use either a constant or a more complex expression are
called derived fields. A special editor is provided for specifying the expression of derived fields.

In the field expression and in the subselect clause, comment lines (lines starting with * or **) and
remarks within a line (starting with /*) are allowed.

Oracle offers the possibility to use subqueries and joined tables in the FROM clause of the view
definitions. This functionality is also supported under Predict.

You can define in the subquery of a view whether the FROM clause is made up of an EXCEPT, EXCEPT
ALL, INNER, INTERSECT, INTERSECT ALL, LEFT OUTER, RIGHT OUTER, FULL OUTER JOIN, UNION or
UNION ALL. Use the subquery editor to add and modify joined views.

Predict has a file of type IV (Intermediate View) that enables you to use subselects in the FROM
clause of a view definition. Files of type IV have a field list to show the selection clause and a
subquery to show the search condition. Just like views, files of type IV can have a Join type. They
can be used as master files for views and files of type IV. When a view is generated that has a file
of type IV as a master file, a SELECT partial statement is generated into the FROM clause. Files of
type IV are not in the Oracle catalog. Nevertheless, the same naming standards are valid for files
of type IV as for tables and views. See Naming Conventions for Oracle for further information.

When using Incorporate and Compare, files of type IV are created in addition to the view in order
to represent subselects in the FROM clause. Files of type IV are implemented as file objects in Predict,
in order to ensure the consistency of the field definitions via rippling.

The maximum number of master files for a view or file of type IV is 100 in Predict.

92 Predict and Other Systems

Oracle

Archive Tables

Oracle supports so-called archive tables. An archive table is a table that stores older rows from
another table.

Oracle can automatically store rows that are deleted from a table in an associated archive table.
Documenting Referential Constraints

Referential constraints are documented as file relations of type R (referential constraint). The relation
is established between a unique constraint and a foreign key. Unique constraint and foreign key
can belong to the same or to different tables.

Documenting Other Oracle Objects

Oracle Columns
Oracle columns are documented as field objects.
Columns With Format LOB

LOBs are represented as the field format LO. The character set determines whether it is a BLOB,
CLOB or a DBCLOB. The lengths of these fields can be declared in the following units: bytes,
kilobytes, megabytes or gigabytes.

Columns With Format ROWID

ROWID fields are documented with fieldtype QN. Their format is A. The field maintenance ensures
that only one ROWID field per table exists.

It is possible to define an identity property for numeric fields. The contents of these fields can be
generated by Oracle. This is an easy way to create a primary key.

Oracle Indexes
Oracle indexes are documented with field objects as follows:

® Field attributes
® index name
" definition of index
® index attributes

= If the index consists of only one column, the field documenting the column is marked as a
descriptor with descriptor type D, P or F.

= If the index consists of multiple columns, it is documented as a field with field type SP (superfield)
and descriptor type D, P or F. The descriptor types have the following meaning:

Predict and Other Systems 93

Oracle

=D
Field is an index.
= F
Field is a foreign key and an index.
=P
Field is a primary key. This always implies that the field is also a unique index.

Unique Constraints
Unique constraints are documented as follows:
® If the unique constraint applies to only one column, the field documenting the column is marked

U in column Unique option.

= If the unique constraint applies to multiple columns, it is documented as a field of type SP (su-
perfield) with descriptor type D, F or P, and U in column Unique option. The descriptor types
have the following meaning;:

=D
Field is a unique index.

= F
Field is a foreign key with unique index.

=P
Field is a primary key. This always implies that the field has a unique constraint.

Foreign Keys
Foreign keys are documented as follows:

= If the foreign key consists of only one column, the field documenting the foreign key is marked
as a descriptor with descriptor type F or E.

= If the foreign key consists of multiple columns, it is documented as a field with field type SP
(superfield) and descriptor type F or E. The descriptor type F means the field is a foreign key
and an index. E means the field is a foreign key without an index.

Partitioning Keys
Partitioning keys are documented as field objects in Predict as follows:

If the partitioning key consists of only one column, the field documenting the partitioning key is
marked by specification of the partitioning schema in the DBMS extensions

If the partitioning key consists of multiple columns, it is documented as a field with field type SP
(superfield) and is marked by specification of the partitioning schema in the DBMS extensions

= If the partitioning key consists of only one column, the field documenting the partitioning key
is marked by specification of the partitioning schema in the DBMS extensions.

94 Predict and Other Systems

Oracle

= If the partitioning key consists of multiple columns, it is documented as a field with field type
SP (superfield) and is marked by specification of the partitioning schema in the DBMS extensions.

Cluster Columns
Cluster columns are documented as field objects in Predict as follows:

® To define a field as a cluster column, enter Y in the field Cluster column of the corresponding
file object.

Column Check Expressions

Check expressions for single columns are documented with verifications of status SQL. The check
expression is stored as the rule of the verification.

Check expressions can be edited with the Predict Rule Editor.
Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.
Table Check Expression

A table check expression is a check expression that applies to more than one column. A table check
expression is an attribute of a file.

To edit table check expressions, enter Y in the field Check expression of the corresponding file
object.

Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.

Naming Conventions for Oracle

Oracle naming conventions must be observed when creating or maintaining Predict objects for
Oracle. The following rules apply:

= General Rules

= Constraint Name
= Correlation Name
= [ndex Name

= Table/View Name
= Column Name

Predict and Other Systems 95

Oracle

= Delimited Identifier

General Rules

Valid identifiers are from 2 to 32 characters long, must start with an alpha character (A - Z) and
may be followed by either an alpha, US national character (#, $, @), a digit or underscore character.
Identifiers must comply with these rules if Predict maintenance and generation functions are to
be applied.

Concatenated names must not consist of more than 32 characters including the hyphen. See the
following paragraphs for details.

Hyphens in names are treated as follows:

When a table/view is generated from a Predict file object, the hyphen will be transformed into
a period (.).

Because hyphens are used as delimiters, only one hyphen can occur in the file ID.

The hyphen can be used as a minus sign or negative sign in the field expression or the subselect
clause and must then be preceded by a blank.

Column names must not contain a hyphen.

] Notes:

. Incorporation functions accept object and creator names as selection criteria according to the

restrictions mentioned here and in the following sections. Oracle objects with a name longer
than the described ones are not offered for incorporation.

. Names that apply to the restrictions mentioned here and in the following sections but can not

be shown in full length are indicated by ">" as last character.

. For views use the editor commands FLIP Cand FLIP T to edit the field names and their deriv-

ation in full length.

Constraint Name

Contraint names can consist of up to 32 characters.

96

Predict and Other Systems

Oracle

Correlation Name

Correlation names can be defined in the subselect clause of a view. If a correlation name is defined
for a table/view in the subselect clause, all references (in field expressions as well as in the field
editor of the view) to columns of the table/view must be qualified with the correlation name. If
no correlation name is defined for a table/view in the subselect clause, all references to columns
of the table/view must be fully qualified with creator-tablename-columnname (for example:
SYSORACLE-SYSCOLUMNS-COLNAME).

Correlation names can consist of up to 18 characters.
Index Name

Index names consist of the creator name and the actual name of the index concatenated by a hyphen
(used as qualification character).

Creator name and actual name of the index each can consist of up to 32 characters, but a concaten-
ation of both (including the hyphen as qualification character) must not exceed a length of 32
characters.

Table/View Name

Table/View names consist of the creator name and the actual name of the table/view concatenated
by a hyphen (used as qualification character).

Creator name and actual name of the table/view each can consist of up to 32 characters, but a
concatenation of both (including the hyphen as qualification character) must not exceed a length
of 32 characters.

Column Name
Column names can consist of up to 32 characters.
Delimited Identifier

With Oracle, special characters can be used in identifiers of tables and views. Identifiers that contain
special characters have to be delimited (usually with single or double quotes) and are therefore
called delimited identifiers.

Oracle tables and views with delimited identifiers can be incorporated. They can then be renamed
with Predict maintenance functions and retrieval functions can be applied to them. It is strongly
advisable to rename delimited identifiers for the following reasons:

® The only Predict functions that can be applied without restriction to objects with delimited
identifiers are Incorporate and Rename.

Predict and Other Systems 97

Oracle

= If identifiers contain special characters such as blank or asterisk, results of retrieval functions
are unpredictable.

" Views can only be generated if the subselect clause and the column expressions do not contain

references to delimited identifiers enclosed by quotation marks.

As the SQL escape character Predict uses quotation marks (") and as the SQL string delimiter
apostrophes (') are used. The Predict Incorporate function converts other escape characters or
string delimiters to quotation marks (") and apostrophes ().

Generating, Incorporating and Comparing Oracle Objects

Prerequisites

Generation, Incorporation and Comparison are subject to Oracle security mechanisms. The following
mechanisms apply:

® To perform the Generate function and administration functions Purge and Refresh, the user
must have the appropriate privileges within Oracle.

® To perform Incorporation and Comparison functions, the user must have SELECT privilege on
nearly all catalog tables.

® The SELECT privilege in Oracle is the minimum prerequisite for incorporation of Oracle
tables/Views (see GRANT (TABLE or VIEW PRIVILEGES) in your Oracle documentation.

® To use the SQL statements generated by Predict, the corresponding Oracle privileges are also
required.

Generation

Oracle objects can be generated from Predict documentation objects.

Oracle table/view |Columns, indexes and referential constraints are automatically included when generating
Oracle tables and views.

Command: GENERATE ORACLE-TABLE

Rules Applying when Generating Oracle Objects

® All objects are generated by first generating the SQL statements that are necessary to implement
the object and then executing these statements. An additional confirmation is requested before
an Oracle object is actually implemented.

® The generated SQL statements can be saved in a protocol.

98 Predict and Other Systems

Oracle

® If a generation function is executed for an object that is already implemented, the existing Oracle
object can be updated.

See respective sections in Generation in the External Objects in Predict documentation for more in-
formation.

Incorporation

The incorporation functions create Predict documentation objects for tables/views (including
columns, indexes and referential constraints) from the system catalog.

See the section Incorporation in the External Objects in Predict documentation.
Comparison

The comparison functions list differences between the current implementation in Oracle and the
corresponding documentation. The documentation can be updated to match the implementation.

See the section Comparison in the External Objects in Predict documentation.

Administrating Implemented Oracle Objects

Functions for administrating Oracle objects are provided to display, purge or refresh Oracle objects
that have been implemented from Predict documentation.

® The Display function lists generation protocols.
* The Purge function drops a table/view physically in Oracle.

® The Refresh function deletes all data in an implemented table but keeps the table structure.

See the section Administration of External Objects in the External Objects in Predict documentation.

Predict and Other Systems 99

100

9 Static SQL

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 102
= Documenting the Use of Static SQILooiiiiiiiiiii e 102
= Generating DBRMs from Predict DOCUMENTationcooiiiiiiiiiiiii e 103
= Retrieval Functions and Consistency CheCKiNGuviiiiiiiiiiiie e 105
= Using Predict Information when Binding Application PIanscooovviiiiiiiiiiiiiiie e 105

101

Static SQL

With static SQL, data in an SQL-based DBMS (DB2 or SQL/DS) is accessed using an application
plan. Accessing data with static SQL is faster than with dynamic SQL.

Natural for DB2 supports the use of static SQL. If a Natural program uses static SQL, a DBRM
(database request module) must be generated for that program. In DB2, this DBRM must be included
in an application plan.

General Information

Predict supports static SQL in several ways:

® DBRMs can be generated with the Natural for DB2 function CREATE DBRM from information
stored in Predict, and Predict documentation of DBRMs can be partially generated from XRef
data of existing DBRMs with the program maintenance function Redocument program. Hence
Predict supports implementing and documenting static SQL no matter which one of them is
done first.

® Programs that use dynamic SQL instead of static SQL can be detected easily.

= If a program that uses static SQL has been modified and recataloged, the information stored
in the DBRM for that program is no longer correct. In this case, the program automatically
switches back to the use of dynamic SQL. No action has to be taken by the programmer. The
switch back to dynamic SQL is therefore not necessarily recognized by the user (only increasing
response times might indicate that dynamic SQL is being used again).

® Renaming a program that uses static SQL leads to an error at execution time.

® With Predict active retrieval functions, programs that have switched back to the use of dynamic
SQL because of modifications or that have been renamed after DBRM generation can be found
easily.

Documenting the Use of Static SQL

DBRMs are documented with program objects with language Q (Static SQL). Static SQL is treated
in Predict like a Third Generation Language (3GL).

® An implemented DBRM is referenced in a Predict program object by an 8-character member
name. A member is a set of XRef data created for the DBRM (as with 3GL programs).

® With members, an 8-character 3GL library name can be specified to identify the load library of
the DBRM. A library must have been documented with a Predict system object of type G (3GL
Application). This system object can be used to document the load library. If a 3GL application
has not yet been documented with a system of type G, the default DBRM library *SYSSTA* is
used.

102 Predict and Other Systems

Static SQL

Both the 8-character member name and the 8-character library name belong to the implementation
pointer of the program object documenting the DBRM and hence connect the documentation object
to the implemented DBRM.

Documenting Which Natural Programs Use a DBRM

A DBRM is typically used by several Natural programs, which may or may not belong to the same
library. Programs using the same DBRM must be stored in the same user system file.

For each Natural program using a DBRM, an entry point must be defined in the documentation
of the DBRM. The procedure is as follows:

The Natural program is entered in the entry point list with the Link Editor and Predict generates
a unique entry point name for this program in the entry point list. Each entry point name is con-
catenated from

® the DBRM library name (not if the default library *SYSSTA* is used)

® the DBRM member name

* the Natural library name

= the Natural member name.
The Natural-based Link Editor is available for maintaining entry point lists in Predict:
® Natural programs documented in Predict can be selected from a list. See command SELECT in

the section Editors in Predict in the Predict Reference documentation.

= If the DBRM has already been implemented and XRef data exists, the entry points can be derived
with the commands ACTIVE or UPDATE.

" ACTIVE reads the entry point names from the XRef data of the DBRM into the editor workspace
and marks them as < active. Entry point names that have been entered manually but are not
in the XRef data are marked as < unused.

" UPDATE additionally deletes the entry points marked as < unused from the editor workspace.

Generating DBRMs from Predict Documentation

DBRMs can be generated from Predict program objects of language Q with the Natural for DB2
function CREATE DBRM. XRef data for the DBRM can then be created as well.

The names of Natural programs for which DBRMs are to be generated can be specified in two
ways:

® Directly as input data to the Natural for DB2 function CREATE DBRM.

Predict and Other Systems 103

Static SQL

" By using the entry point list of the Predict object. In this case, the Predict object to be used for
the DBRM creation must be specified with the following options of the CREATE DBRM function:

® The option USING PREDICT DOCUMENTATION must be specified.
® The 8-character member name of the DBRM (CREATE DBRM <member name> ...).

® The 3GL library the DBRM is assigned to can be specified with the parameter LIB <library
name>. Predict then searches for a DBRM documentation with the <member name> and
<library name> in the implementation pointer. If no <library name> is specified, the default
library *SYSSTA* is searched for the given <member name>.

In both cases, XRef data can be created (provided that all Natural members themselves have been
cataloged with XRef data). The XREF option (N, Y, F) of the Natural for DB2 function CREATE
DBRM determines how the generation function behaves with respect to documentation and XRef
data for the DBRM:

= If the XREF option is N, no XRef data will be written. Existing XRef data will be deleted.

= If the XREF option is Y, XRef data will be written. Existing XRef data will be overwritten.

= If the XREF option is F, the DBRM generation is only executed if the DBRM has already been
documented in Predict. If this is true, XRef data will be written and existing XRef data will be
overwritten.

A default value for the XREF option for DBRMs can be defined (use function Defaults > General
Defaults > Miscellaneous > Static SQL XREF). This default value can be changed for a single exe-
cution of the CREATE DBRM function

" fromNtoYorF or

" fromYtoF

It cannot be changed from
" fromFtoYorN, or

" from Y to N.

Which Information is Stored in XRef Data

XRef data for a DBRM contains the following information:

® which files and fields are accessed via the DBRM,

® which Natural members use the DBRM. A list of entry names of the DBRM are generated from
the names of the Natural members for which the DBRM is generated. The construction of the
entry names is the same as in the documentation of the DBRM.

Creation of a DBRM with the XREF option set to Y or F also affects the XRef data of the Natural
programs for which the DBRM was created. Since the Natural program now “uses” the DBRM to

104 Predict and Other Systems

Static SQL

access the database with Static SQL, this is noted in the XRef data of the Natural program as a
CALL reference to the corresponding entry point in the DBRM (special call-type Static SQL).

Retrieval Functions and Consistency Checking

If a Natural program using static SQL has been modified and recataloged, the DBRM must be re-
generated. Otherwise the program will automatically switch back to the use of dynamic SQL. This
is reflected in the XRef data written when recataloging the program: It no longer contains a CALL
reference to the DBRM.

However, an unused entry point in the documentation of the DBRM remains. This indicates that
a Natural program designed for the use of static SQL via a DBRM in fact uses dynamic SQL. It is
therefore possible to check if DBRMs have to be regenerated by comparing the Predict program
object documenting a DBRM and the corresponding DBRM member (XRef data).

The following functions are available:

= LIST XREF for 3GL functions show XRef data for DBRMs.

® The Verify consistency function of LIST XREF shows all programs which have been renamed
after DBRM generation.

® The File Active Retrieval function List files accessed via dynamic SQL shows all DB2 files that
are accessed by Natural without using a DBRM.

® The Member Active Retrieval function List members using dynamic SQL shows all Natural
members using DB2 files without using a DBRM.

Using Predict Information when Binding Application Plans

Natural for DB2 can use information in Predict to bind plans. See your Natural for DB2 document-
ation for details. Information in Predict packagelist objects is then used to build the MEMBER and
the PKLIST CLAUSE of a BIND statement. The following is created depending on the type of pack-
agelist:

Type of Packagelist |PKLIST CLAUSE or MEMBER Created

Total collection (T) | PKLIST (location.collection., ...)
Subcollection (S) |PKLIST (location.collection.package_ID, ...)
Member (Q) MEMBER (DBRM_name, ...)

. Note: The member name of the Predict program object documenting a package is interpreted
as the package_ID or DBRM_name.

Predict and Other Systems 105

106

10 Adabas D and Other SQL Systems

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 108
= Documenting SQL Systems in PrediClooiiiiiiiiiiiii i 109
= Naming Conventions for SQL ODJECSviiiiiiiiie i 112
= Generating SQL CREATE StatemMeNtScoiuiiiiiiiiiii i 113
= Generating DDMSs from SQL ODJECESvvvrieiiiiiie e 114
= |ncorporating Tables / Views of SQL Database SYStemSscoooiiiiiiiiiiiiiiiiie e 115
® AdmINiStrating SQL ODJECESeiviiiie ettt 116

107

Adabas D and Other SQL Systems

General Information

Predict offers enhanced support for the following SQL systems:

Adabas D
Ingres
Informix

Sybase

The following SQL objects and attributes can be documented in Predict. Not all attributes are ap-
plicable for all SQL systems.

Tables and Views
Columns

Referential constraints
Unique constraints
Check constraints
Stored procedures

Triggers

Database
(only far DOM
generation)
+

* Program
{Stored edure)

File
’7 (Table/View)
File Relation l I

|Referential

Canatraint) Trigger

Field
[Columns, Keys,

Unigue Conatraints)

Verification
{Columns Check
Constraint)

108

Predict and Other Systems

Adabas D and Other SQL Systems

Documenting SQL Systems in Predict

Documenting SQL Tables and Views

The following table gives an overview of how different SQL objects are documented in Predict.

SQL Object Documented in Predict with File of Type

Adabas D Table, View |BT, BV
Ingres Table, View JT,JV

Informix Table, View |[XT, XV
Sybase Table, View YT, YV
Other SQL systems |X

Subselect Clauses and Derived Field Expressions

The documentation of views is supported by the Natural-based Subquery Editor in Predict to
specify the part of the subselect clause starting from the first FROM clause.

The selection clause of the subselect clause is documented by the specification of the field list of
the view. The specified list of tables/views in the first FROM clause of the subselect clause is generated
by Predict and will be updated if a field from an additional table/view is added to the view. Cor-
relation names can be added to the tables and views in the list (using editor functions). The remain-
ing part of the subselect clause is left unchanged.

The expression used to define SQL fields can contain complex expressions. fields that are defined
not only by a single column name but use either a constant or a more complex expression are
called derived fields. These derived fields can be edited with the Subquery Editor.

Comment lines (starting with * or **) and remarks within a line (starting with /*) are allowed in
derived field expressions and subselect clauses.

Documenting Other SQL Objects

SQL Object Valid for Documented in Predict with [Note
BT,BV[JTJV|XTXV YT,V |Obiect of Type

Trigger Y | Y Y |Trigger “Triggers” are referred to
as “Rules” in Ingres.

Table Check Constraint Y Y Y Attribute of file

Column Check Constraint| Y Y Y Y |Verification of status SQL |A “Column check
constraint” is referred to as

Predict and Other Systems 109

Adabas D and Other SQL Systems

SQL Object Valid for Documented in Predict with |Note
BTBV[JT,JV[XTXV]YT,Yv | Object of Type

“Integrity” in Ingres and
“Rule” in Sybase.

Stored Procedure YY) |Y Y Y |Program of type R

Column Y Y Y Y |Field

Common Key Y |Field

Primary Key Y Y Y Y |Field

Foreign Key Y Y Y Y |Field

Unique constraint Y Y Y Y |Field

Referential constraint Y Y Y Y |File Relation of type R

] Note: Objects marked with (Y) can be documented in Predict but are not included in the

respective CREATE statement.
SQL Columns
SQL columns are documented as field objects.
Keys
SQL keys are documented as follows:
* If the key consists of only one column, the field documenting the column is marked as a descriptor

with descriptor type P, E or K.

= If the key applies to multiple columns, it is documented as a field of type SP (superfield) with
descriptor type D, E or K. The descriptor types have the following meaning:
" E
Field is a foreign key.
" K
Field is a common key.
=P
Field is a primary key. This always implies that the field has a unique constraint.

Unique Constraints
Unique constraints are documented as follows:

® If the unique constrain applies to only one column, the field documenting the column is marked
U in column Unique option.

= If the unique constraint applies to multiple columns, it is documented as a field of type SP (su-
perfield) with descriptor type P, E or K, and U in column Unique option. The descriptor types
have the following meaning:

110 Predict and Other Systems

Adabas D and Other SQL Systems

" E
Field is a unique foreign key.

" K
Field is a unique common key.

=P
Field is a primary key. This always implies that the field has a unique constraint.

Common Keys

Common keys (columns that are frequently joined between two tables or views) are documented
in Predict with a file relation of type K. The two fields for which the relationship is to be established
must have descriptor type K.

Common keys are only applicable to Sybase.
Referential Constraints

Referential constraints are documented as file relations of type R (referential constraint). A rela-
tionship is established between a unique key and a foreign key. Unique and foreign key can belong
to the same or to different tables.

Column Check Expressions

Check expressions for single columns are documented with verifications of status SQL. The check
expression is stored as the rule of the Verification.

Check expressions can be edited with the Predict Rule Editor.
Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.
Table Check Expressions

A table check expression is a check expression that applies to more than one column. A table check
expression is an attribute of a file.

To edit table check expressions, enter Y in the field Trigger of the corresponding file object.
Comment lines (lines starting with * or **) and remarks within a line (starting with /*) are allowed.
Triggers

See the section Trigger in the Predefined Object Types in Predict documentation

Stored Procedure

Stored procedures are documented the procedure code of programs of type R (SQL procedure)
and language S (SQL). If the trigger of a file of type XT, YT or JT contains the text EXECUTE pro-

Predict and Other Systems 11

Adabas D and Other SQL Systems

cedure_name, and the procedure_name corresponds to a program of type R and language Q, then
the procedure code of the program object is included in the generated CREATE statement.

Naming Conventions for SQL Objects

Special naming conventions apply to the following objects in Predict:

= SQL file types. See table below.

Fields linked as children to these file types

" Constraint names

Correlation names

Procedure/Function name
The file IDs must be fully qualified.
A fully qualified ID consists of three parts:

® Creator of up to 8 characters
® Hyphen to separate creator from table/view name

* Table/view name. The maximum length depends on the SQL system. See table below.

Fully qualified IDs may not exceed 32 characters. For SQL objects where the table/view name may
not exceed 18 characters, the maximum length of the fully qualified ID in Predict is 27.

The permitted characters listed in the table below apply to creator and table/view name.

Convention File Type
BT, BV |JT, JV | XT, XV | YT, YV

Maximum length of table/view name 18 | 24 | 18 30

Upper case
Upper/lower case Y Y Y Y
"_" allowed at first position Y Y

"#" allowed at first position

"$" allowed at first position

"@" allowed at first position

"non

_"allowed from second position

"#" allowed from second position

"$" allowed from second position

<= =] =] =] =] =
< =] =] =
< =] =] =

"@" allowed from sec. position

112 Predict and Other Systems

Adabas D and Other SQL Systems

Convention File Type
BT, BV |JT, JV | XT, XV | YT, YV

Numbers allowed from second position| Y Y Y Y

Correlation Names

Correlation names can be defined in the subselect clause of a view. If a correlation name is defined
for a table/view in the subselect clause, all references (in field expressions as well as in the field
editor of the view) to columns of the table/view must be qualified with the correlation name. If
no correlation name is defined for a table/view in the subselect clause, all references to columns
of the table/view must be fully qualified with creator-tablename-columnname (for example: SYSIBM-
SYSCOLUMNS-COLNAME).

Delimited Identifiers

It is possible to incorporate SQL tables and views that have delimited identifiers. These tables and
views can then be renamed with Predict maintenance functions, and retrieval functions can be
applied to them. It is strongly advisable to rename delimited identifiers for the following reasons:

® The only Predict functions that can be applied without restriction to objects with delimited
identifiers are Incorporate and Rename.

= If identifiers contain special characters such as blank or asterisk, results of retrieval functions
are unpredictable.

" Views can only be generated if the subselect clause and the column expressions do not contain
references to delimited identifiers enclosed by quotation marks.

Generating SQL CREATE Statements

Functional Scope

The following table gives an overview of the CREATE statements that can be generated from Predict
objects with the function Generate SQL CREATE Statement. These SQL statements are stored as
Natural members.

If a CREATE statement is not available for a particular SQL system, a corresponding clause is gen-
erated in the CREATE TABLE or CREATE VIEW statement if applicable.

Predict and Other Systems 13

Adabas D and Other SQL Systems

CREATE STATEMENT File Type
BT,BV [D,E|JTJV | X |XTXV|YTYV

TABLE, VIEW Y |Y| Y |[Y] Y Y
INDEX Y

DEFAULT Y Y
RULE Y Y Y
PROCEDURE Y Y Y
TRIGGER Y Y Y
LABEL ON Y

COMMENT ON Y

The statements can be punched to an operating system member for further processing, for example
execution with an interactive SQL tool or a user program.

More Information

For more information see the section Generation in the External Objects in Predict documentation.

Generating DDMs from SQL Objects

The following rules apply when generating a DDM for Natural from an SQL file object:

® The file must be linked via "Contains FI" to a database of a compatible type:

File Type Compatible Database Type

BT, BV |Adabas D Table, View B Adabas D Handler
JT,JV |Ingres Table, View] Ingres Handler
XT, XT |Informix Table, View X Informix Handler
YT, YV |Sybase Table, View Y Sybase Handler

* Files documenting both tables and views must be linked to a database of the corresponding

type.

® The file must be linked via "Contains FI" to a database of which the database number is defined
in the NATCONEF.CFG file of type OSQ. For more information see Data Definition Module in the

section Generation in the External Objects in Predict documentation.

14

Predict and Other Systems

Adabas D and Other SQL Systems

Incorporating Tables / Views of SQL Database Systems

Incorporation of tables and views of SQL systems is subject to security mechanisms of the respective
system.

Tables and views of the following SQL systems can be incorporated.

= Adabas D
® Ingres
= Informix

" Sybase
Required Access
Access is required to the following in the respective SQL system:

Adabas D
® Command SHOW
Ingres
= IICOLUMNS
= [IDBDEPENDS
= IIINTEGRITIES
= JIRELATION
= IITABLES
= [IVIEWS
Informix
® SYSCOLUMNS
® SYSCONSTRAINTS
= SYSDEPEND
= SYSINDEXES
= SYSTABLES
= SYSUSERS
= SYSVIEWS
Sybase
® master.dbo.spt_values

" syscolumns

Predict and Other Systems 115

Adabas D and Other SQL Systems

" syscomments
® sysdepends
" syskeys

" sysobjects

" systypes

More Information

For more information see the section Incorporation in the External Objects in Predict documentation.

Administrating SQL Objects

You can display and purge the generation protocols created by Predict from the function Generate
SQL CREATE statement. You cannot process objects in the external SQL environment with admin-
istration functions.

More Information

For more information see the section Administration of External Objects in the External Objects in
Predict documentation.

116 Predict and Other Systems

11 Adabas SQL Server

B General INFOMALION ... 118
= Documenting Adabas SQL Server in PrediClcuoiiiiiiiii e 118
= Naming Conventions for Adabas SQL SEIVETcciiiiiiiiiiiii e 122
= Generating, Incorporating and Comparing Adabas SQL ODJECESccoiiviiiiiiiiiiiiii e 123
= Administrating Adabas SQL Server ODJECEScoiiiiiiiiiiiie e 125
= XRef Data for Adabas SQL Server ODJECLSooouiiiiiiiiiii e 126

"7

Adabas SQL Server

The Adabas SQL catalog contains all the necessary information on Adabas tables and views. This
information can be documented in Predict, and from this documentation a table or view can be
created with a Predict generation, incorporation or administration function.

General Information

Predict supports the following SQL statements:

CREATE TABLE DESCRIPTION
CREATE CLUSTER DESCRIPTION
CREATE VIEW

DROP TABLE DESCRIPTION
DROP CLUSTER DESCRIPTION
DROP VIEW

] Note: The statements CREATE TABLE DESCRIPTION and CREATE CLUSTER DESCRIPTION are

supported instead of CREATE TABLE and CREATE CLUSTER to pass existing data structures
to the Adabas SQL Server. Also, Predict descriptions already take account of a variety of
Adabas-specific features.

Prerequisites

Parts of the ADVANCED Interactive Facilities of Adabas SQL Server must be installed within
Natural. For detailed information see the requirements table in the respective part of the Predict
Installation documentation.

Documenting Adabas SQL Server in Predict

The following Adabas SQL Server objects can be documented in Predict:

Adabas tables

Adabas Views

Indexes

Unique elements
Primary and foreign keys

Referential constraints

118 Predict and Other Systems

Adabas SQL Server

Documenting Adabas Tables

There are two methods of documenting Adabas tables:
With Files of Type A - with Adabas SQL usage setto Y

If an Adabas file corresponds exactly to a base table in Adabas SQL Server, it can be documented
as a file of type A (SQL).

The Adabas file must not contain groups structures or multiple value fields. Rotated fields are not
supported with this method.

This method is retained for reasons of compatibility with earlier Predict versions.
With Files of Type AT

Tables can also be documented with files of type AT (Adabas cluster table). Files of this type can
be understood as userviews to an Adabas file.

Files of type AT have the following additional attribute:

Table level | 0|Only “flat” structures are permitted (no MU or PE
fields).

For defining multiple fields and periodic groups.

—_

N

For defining multiple fields within a periodic group.

There are two methods of documenting periodic groups and multiple value fields in AT files:
= If the occurrences of PE/MU fields are fixed, you can use rotated fields in the AT file.
= If the occurrences of PE/MU fields are variable, use subtables (AT files at level 1 or level 2).

Documenting Adabas Views

Adabas views can be documented with files of type B.
Subselect Clauses and Expressions in Field Definitions

The documentation of views is supported by an additional editor to specify the part of the subselect
clause starting from the first FROM clause.

The selection clause of the subselect is documented by the specification of the field list of the view.
The specified list of tables/views in the first FROM clause of the subselect is generated by Predict
and will be updated if a field from an additional table/view is added to the view. Correlation
names can be added to the tables and views in the list (using functions of the editor). The remaining
part of the subselect clause is left unchanged.

Predict and Other Systems 119

Adabas SQL Server

The expression used to define Adabas SQL fields can contain complex expressions. Fields that are
defined not only by a single column name but use either a constant or a more complex expression
are called derived fields. A special editor is provided for the specification of the expression of de-
rived fields.

In the field expression and in the subselect clause, comment lines (lines starting with * or **) and
remarks within a line (starting with /*) are allowed.

Documenting Adabas SQL Databases/ Tablespaces

Adabas SQL database and tablespace definitions need not be documented with separate Predict
objects:

" Adabas SQL databases need not be documented with separate Predict objects, because the in-
formation to which Adabas database an Adabas SQL tablespace belongs is documented with
the file-database link.

® The properties of Adabas SQL tablespaces are documented as attributes of Adabas file objects.

The physical implementation of Adabas tables in Adabas can be performed by Predict (with
Generate Adabas file or Generate ADACMP/ADAFDU). The description needed by Adabas SQL
to address the Adabas files can be generated with the function Generate Adabas table description.

Documenting Adabas SQL Columns

Adabas SQL columns are documented as field objects in Predict.

Adabas SQL Server has fields with data type SEQNO. These fields are documented in Predict with
fields of type QN. This data type is used for documenting occurrences of MU or PE fields:

® SEQNO(0) corresponds to the ISN of the underlying Adabas C table

® SEQNO(1) corresponds to the index of a multiple-value or periodic field.

® SEQNO(2) corresponds to a multiple-value field within a periodic group.

For fields of this type, the column Occ represents an individual occurrence of a PE or MU field,
and not the maximum number of occurrences.

These fields can be given a name in a table description and can be selected. However, they are
only necessary if you want to perform a search operation using individual occurrences. If an AT
file contains more than one MU fields or fields from more than one periodic group, it is only possible
to address the same occurrence by means of a SEQNO(1) or SEQNO(2) field.

120 Predict and Other Systems

Adabas SQL Server

Documenting Indexes

® The following attributes of indexes can be specified:
" index name,
* definition of index

= If the index consists of only one column, the field documenting the column is marked as a
descriptor with descriptor type D.

= If the index consists of multiple columns, it is documented as a field with field type SP (superfield)
and descriptor type D.

Documenting Unique Elements

Unique elements are documented as Fields with descriptor type D, unique option U and suppression
option R.

Documenting Primary and Foreign Keys

Primary Keys

A primary key always includes an index with descriptor option P.
Foreign Keys

Foreign keys are documented as follows:

= If the foreign key consists of only one column, the field documenting the foreign key is marked
as a descriptor with descriptor type F or E.

= If the foreign key consists of multiple columns, it is documented as a field with field type SP
(superfield) and descriptor type F or E. The descriptor type F means the field is a foreign key
and an index. E means the field is a foreign key without an index.

Documenting Referential Constraints
Referential constraints are documented as file relations of type R (referential constraint). The relation

is established between a unique element and a foreign key. Primary and foreign key must belong
to different subtables. The subtables themselves must belong to the same Adabas file.

Predict and Other Systems 121

Adabas SQL Server

Naming Conventions for Adabas SQL Server

Adabas SQL naming conventions have to be followed when creating or maintaining Predict objects
for Adabas SQL. The following rules apply:

® Valid identifiers are from 2 to 32 characters long, must start with an alpha character (A - Z) and
may be followed by either an alpha, a digit or underscore. Identifiers must obey these rules if
Predict maintenance and generation functions are to be applied.

® The identifier of a table or view must be given in qualified form: the schema identifier (maximum
length 32 characters), a delimiter and the table/view name (maximum length 32 characters). A
hyphen is used as a delimiter (not a period as in SQL). An example: SYSSAG-SYSCOLUMNS.
Hyphens in names are treated as follows:

® When a table/view is generated from a Predict table/view object the hyphen will be transformed
into a period (.).
® Because hyphens are used as delimiters, only one hyphen can occur in the SQL identifier.

Column names must not contain a hyphen.

® The hyphen can be used as a minus sign or negative sign in the field expression or the
subselect clause and must then be preceded by a blank.

Correlation Names

Correlation names can be defined in the subselect clause of a view. If a correlation name is defined
for a table/view in the subselect clause, all references (in field expressions as well as in the field
editor of the view) to columns of the table/view must be qualified with the correlation name. If
no correlation name is defined for a table/view in the subselect clause, all references to columns
of the table/view must be fully qualified with creator-tablename-columnname (for example: SYS-
SAG-SYSCOLUMNS-COLNAME).

Index Names

Index names must be fully qualified: schema, delimiter, index name.

122 Predict and Other Systems

Adabas SQL Server

Generating, Incorporating and Comparing Adabas SQL Objects

Prerequisites

The following Predict functions are subject to SQL security mechanisms:

® Function Generate Adabas Table/View and administration functions Purge and Refresh: When
the catalog is accessed for the first time, the user ID DBA is used for read access to the catalog.

" Generate Adabas Table/View: If a description is generated into a schema which is not owned
by the catalog user, a window appears in which you can enter the ID and password of the schema
owner. In batch mode, use the command SET SCHEMA_OWNER.

* Incorporation and Comparison functions: User must have SELECT privilege for the schema
definition_schema which is delivered with Adabas SQL Server.

Generate Table Description, Cluster Description
With the Predict function Generate Adabas Table/View, a CREATE TABLE DESCRIPTION statement

or a CREATE CLUSTER DESCRIPTION statement is generated from a file of type A (with SQL usage
set to Y) or from a file of type AT. See table below:

Constellation Generated Command Note

One Adabas file corresponding to one SQL |GENERATE TABLE

table DESCRIPTION

One AT file corresponding to one SQL table

Multiple AT files corresponding to multiple GENERATE CLUSTER Specify only one file in the
SQL tables DESCRIPTION cluster. All files in the cluster

will be used for generation.

The statements add descriptions of multiple tables in an Adabas SQL catalog without creating an
Adabas file (the standard SQL statements CREATE TABLE/CLUSTER generate both an Adabas file
and a description in an Adabas SQL catalog).

This description contains the following;:

B 3 list of fields in the file
* details of descriptors and superdescriptors, unique constraints, primary and foreign keys
" database name and file number. This information is used to access the Adabas file.
The database name is taken from the catalog. If no database name exists, a CREATE DATABASE

statement is generated. If the ID of the Predict database object complies with SQL naming con-
ventions, this name is taken. If not, the database name DB_DBnr is generated.

Predict and Other Systems 123

Adabas SQL Server

The available options are described under Adabas Table/Cluster/View in the section Generation in
the External Objects in Predict documentation.

If the database/file number is a logical file number or the number of an anchor file (with a file of
type Expanded), the table description is appended with "MODIFICATION NOT ALLOWED".
This has the result that ALTER statements for this table are rejected. Only DML (Data Manipulation
Language) statements can be executed for tables marked in this manner; DDL (Data Definition
Language) statements are not possible except DROP TABLE DESCRIPTION.

The generated SQL statements can be saved in a protocol.
Generate View

With the Predict function Generate Adabas Table/View, a CREATE VIEW statement is generated
from a file of type B.

The available options are described under Adabas Table/Cluster/View in the section Generation in
the External Objects in Predict documentation.

Incorporate Table
With the Predict function Incorporate Adabas Table/View, a file of type A (with SQL usage set to

Y) or a file of type AT is documented in Predict from the entry in the Adabas SQL catalog. The
constellation in the catalog determines which file type is incorporated in Predict:

Constellation Incorporated Object
Either File of type A (with SQL usage) set
toY.

= External object is contained in the catalog as a table and created
with CREATE TABLE / CREATE TABLE DESCRIPTION, or

® Cluster with one table and no rotating fields.

Master Adabas file exists in Predict (determined using DBnr/Fnr). |File of type AT.

The database number is interpreted as a physical Adabas database and a link is created from this
database to the Adabas file. The values of the Adabas attributes can either be taken from the ta-
blespace attributes in the catalog, or default values are used which can be adapted to the “real
world” with the function Compare Adabas File.

124 Predict and Other Systems

Adabas SQL Server

Incorporate View

With the Predict function Incorporate Adabas Table/View, a file of type B is documented in Predict
from the entry in the Adabas SQL catalog.

Compare Adabas Table/View
Files of type A (SQL), type AT and type B are compared with information contained in the descrip-

tion of the table/view in an Adabas SQL catalog. See the section Comparison in the External Objects
in Predict documentation for more details.

Administrating Adabas SQL Server Objects

The following administration functions are valid for Adabas table descriptions. Enter function
code L and object code FI in any Predict main menu or the command ADMINISTRATE FILE. File
type is A (SQL), AT or B and external object code is EQ.

For more information see the section Files in the section Administration of External Objects in the
External Objects in Predict documentation.

Disconnect Implementation

Deletes the generation protocol and the generation pointer from the Predict File object to the
Adabas table description, but the table description is left intact.

With files of type AT, all files used for generation are disconnected in a single operation.
Display Implementation

Displays documentation data, generation options and generated table description of specified file
ID(s).

Rename Implementation

Moves the generation protocol to another member and/or library.

Predict and Other Systems 125

Adabas SQL Server

Purge Implementation

Deletes Adabas table descriptions and all dependent views.

A DROP TABLE DESCRIPTION, DROP CLUSTER DESCRIPTION or DROP VIEW statement will delete the
definition from the Adabas SQL catalog and any statements referencing this table / view are marked
as invalid.

When a table / view is dropped, all dependent views are dropped too.

| Note: The function is equivalent to the function Generate with Replace table/view set to Y.

Select Implementation

Selects Adabas table/view for further processing.

XRef Data for Adabas SQL Server Objects

Programs using embedded SQL must be precompiled with the Adabas SQL precompiler before
the host language compiler is executed.

During precompilation, an option is available to create XRef data. The creation of XRef data is
controlled by options specified in the Adabas SQL parameters. See the Adabas SQL documentation
for a detailed description of these options.

As described in the section Third Generation Languages in this documentation, XRef data is always
assigned to members contained in logical libraries. The library containing the member can be
specified explicitly or - if no library is specified - the member is assigned to a default library de-
pending on the host language. See table below.

Host Language | Default-Library

C *Syscce*
COBOL *SYSCOB*
PL/1 *SYSPLI*

FORTRAN |*SYSFOR*

The following XRef data is stored for programs processed by the Adabas SQL precompiler:

* directory information (user ID, terminal ID, date and time of precompilation)
* each Copy/Include Code member used in the program

*® each table name used in certain clauses of DML statements, together with the usage:

126 Predict and Other Systems

Adabas SQL Server

Statement

Clause

Usage

SELECT

FROM

Read

INSERT

INTO

Store

UPDATE

Update

DELETE

FROM

Delete

® each column name used in certain clauses of DML statements, together with the usage:

Statement | Clause Usage
SELECT Read
SELECT |WHERE Search
INSERT |INTO Store
UPDATE |<row amendment expression>|Update
UPDATE |WHERE Search
DELETE |WHERE Search

Predict and Other Systems

127

128

12 Adabas SQL Gateway

B General INFOrMELIONcoiiiiei et e e e e e e e e e e e 130
= Documenting Adabas SQL Gateway in Predictcooviiiiiiiiiiiiii e 130
= Naming Conventions for Adabas SQL GAEWAYeviiiiiiiieeiiiie e 133
= Creating Adabas Cluster Tables Using Program CXXGTDcccoouiiiiiiiiiiiiiiiccie e 134
= Generating, Incorporating and Comparing Adabas SQL ObJECESevviiiiiiiieeiiiiiie e 138
= Administrating Adabas SQL Gateway ODJECESuvviiiiiiiiiiiiiiii e 139

129

Adabas SQL Gateway

The ConnX Data Dictionary (CDD) contains all the necessary information on Adabas tables and
views. This information can be documented in Predict, and from this documentation a table or
view can be created with a Predict generation, incorporation or administration function.

General Information

Predict supports the following SQL statements:

® CREATE TABLE DESCRIPTION

® CREATE CLUSTER DESCRIPTION
® CREATE VIEW

= DROP TABLE DESCRIPTION

® DROP CLUSTER DESCRIPTION

= DROP VIEW

] Note: The statements CREATE TABLE DESCRIPTION and CREATE CLUSTER DESCRIPTION are

supported instead of CREATE TABLE and CREATE CLUSTER to pass existing data structures
to the Adabas SQL Gateway. Also, Predict descriptions already take account of a variety
of Adabas-specific features.

Prerequisites

Natural SQL Gateway must be installed within Natural. For detailed information see the require-
ments table in the respective part of the Predict Release Notes documentation.

When a connection to a server is established, a user ID and password may be required. The user
ID and password can be changed within a Predict session by executing the command SET
CATALOG_USER. This allows you to overwrite the previously entered user ID and password.
This user ID and the password are then also used for every other connection to an SQL server.

Documenting Adabas SQL Gateway in Predict

The following Adabas SQL Gateway objects can be documented in Predict:

Adabas Tables
Adabas Views

Indexes

Unique elements

® Primary and foreign keys

130 Predict and Other Systems

Adabas SQL Gateway

= Referential constraints
Documenting Adabas Tables

There are two methods of documenting Adabas tables:
With Files of Type A - with Adabas SQL usage set to Y

If an Adabas file corresponds exactly to a base table in Adabas SQL Gateway, it can be documented
as a file of type A (SQL).

The Adabas file must not contain groups structures or multiple value fields. Rotated fields are not
supported with this method.

This method is retained for reasons of compatibility with earlier Predict versions.
With Files of Type AT

Tables can also be documented with files of type AT (Adabas cluster table). Files of this type can
be understood as userviews to an Adabas file.

Files of type AT have the following additional attribute:

Table level | 0|Only “flat” structures are permitted (no MU or PE
fields).

For defining multiple fields and periodic groups.

—_

N

For defining multiple fields within a periodic group.

There are two methods of documenting periodic groups and multiple value fields in AT files:

= If the occurrences of PE/MU fields are fixed, you can use rotated fields in the AT file.
= If the occurrences of PE/MU fields are variable, use subtables (AT files at level 1 or level 2).

Documenting Adabas Views

Adabas views can be documented with files of type B or CX.

In files of type B only Adabas tables or views can be referenced. In files of type CX any SQL file
can be referenced.

Subselect Clauses and Expressions in Field Definitions

The documentation of views is supported by an additional editor to specify the part of the subselect
clause starting from the first FROM clause.

Predict and Other Systems 131

Adabas SQL Gateway

The selection clause of the subselect is documented by the specification of the field list of the view.
The specified list of tables/views in the first FROM clause of the subselect is generated by Predict
and will be updated if a field from an additional table/view is added to the view. Correlation
names can be added to the tables and views in the list (using functions of the editor). The remaining
part of the subselect clause is left unchanged.

The expression used to define Adabas SQL fields can contain complex expressions. Fields that are
defined not only by a single column name but use either a constant or a more complex expression
are called derived fields. A special editor is provided for the specification of the expression of de-
rived fields.

In the field expression and in the subselect clause, comment lines (lines starting with * or **) and
remarks within a line (starting with /*) are allowed.

Documenting Adabas SQL Columns

Adabas SQL columns are documented as field objects in Predict.

Adabas SQL Gateway has fields with data type SEQNO. These fields are documented in Predict
with fields of type QN. This data type is used for documenting occurrences of MU or PE fields:
" SEQNO(0) corresponds to the ISN of the underlying Adabas C table

® SEQNO(1) corresponds to the index of a multiple-value or periodic field.

® SEQNO(2) corresponds to a multiple-value field within a periodic group.

For fields of this type, the column Occ represents an individual occurrence of a PE or MU field,
and not the maximum number of occurrences.

These fields can be given a name in a table description and can be selected. However, they are
only necessary if you want to perform a search operation using individual occurrences. If an AT
file contains more than one MU fields or fields from more than one periodic group, it is only possible
to address the same occurrence by means of a SEQNO(1) or SEQNO(2) field.

Documenting Indexes

® The following attributes of indexes can be specified:
" index name,
* definition of index

= If the index consists of only one column, the field documenting the column is marked as a
descriptor with descriptor type D.

= If the index consists of multiple columns, it is documented as a field with field type SP (superfield)
and descriptor type D.

132 Predict and Other Systems

Adabas SQL Gateway

Documenting Unique Elements

Unique elements are documented as Fields with descriptor type D, unique option U and suppression
option R.

Documenting Primary and Foreign Keys

Primary Keys

A primary key always includes an index with descriptor option P.
Foreign Keys

Foreign keys are documented as follows:

= If the foreign key consists of only one column, the field documenting the foreign key is marked
as a descriptor with descriptor type F or E.

= If the foreign key consists of multiple columns, it is documented as a field with field type SP
(superfield) and descriptor type F or E. The descriptor type F means the field is a foreign key
and an index. E means the field is a foreign key without an index.

Documenting Referential Constraints
Referential constraints are documented as file relations of type R (referential constraint). The relation

is established between a unique element and a foreign key. Primary and foreign key must belong
to different subtables. The subtables themselves must belong to the same Adabas file.

Naming Conventions for Adabas SQL Gateway

Adabas SQL naming conventions have to be followed when creating or maintaining Predict objects
for Adabas SQL. The following rules apply:

® Valid identifiers are from 2 to 32 characters long, must start with an alpha character (A - Z) and
may be followed by either an alpha, a digit or underscore. Identifiers must obey these rules if
Predict maintenance and generation functions are to be applied.

® The identifier of a table or view must be given in qualified form: the schema identifier (maximum
length 32 characters), a delimiter and the table/view name (maximum length 32 characters). A
hyphen is used as a delimiter (not a period as in SQL). An example: SYSSAG-SYSCOLUMNS.
Hyphens in names are treated as follows:

® When a table/view is generated from a Predict table/view object the hyphen will be transformed
into a period (.).

® Because hyphens are used as delimiters, only one hyphen can occur in the SQL identifier.
Column names must not contain a hyphen.

Predict and Other Systems 133

Adabas SQL Gateway

® The hyphen can be used as a minus sign or negative sign in the field expression or the
subselect clause and must then be preceded by a blank.

Correlation Names

Correlation names can be defined in the subselect clause of a view. If a correlation name is defined
for a table/view in the subselect clause, all references (in field expressions as well as in the field
editor of the view) to columns of the table/view must be qualified with the correlation name. If
no correlation name is defined for a table/view in the subselect clause, all references to columns
of the table/view must be fully qualified with creator-tablename-columnname (for example: SYS-
SAG-SYSCOLUMNS-COLNAME).

Index Names

Index names must be fully qualified: schema, delimiter, index name.

Creating Adabas Cluster Tables Using Program CXXGTD

The program CXXGTD creates Adabas cluster tables for a given Adabas File.

CXXGTDis located in library SYSDIC. When started, you have to specify the name of the documented
Adabas file for which you want to define the cluster tables. This file has to be documented in
Predict.

The program uses 2 workfiles (each having LRECL=80):
" Work file 1 contains the directives that control the layout of the resulting structure.
The directives are described below in Input File Language Syntax.

] Note: The directives SYSTRANS, DATABASE, PRIMARY and FOREIGN are ignored.

Primary and Foreign keys will always be built using SEQNO columns. Work file 1 must contain
at least a SCHEMA directive.

® Work file 2 will contain the resulting structure in a syntax that can be loaded into Predict using
the program CXXEX. After a successful load, use the Predict function Generate SQL Create
Statements to generate the CREATE TABLE/CLUSTER DESCRIPTION statements.

134 Predict and Other Systems

Adabas SQL Gateway

Input File Language Syntax

The input file is used to provide information to program CXXGTD. All aspects of the generation can
be controlled using the provision of an input file. The file consists of directives. Each directive is
started by a new line and is terminated by an end of line. The order of the directives is of no signi-
ficance. The program CXXGTD is only able to process one Adabas file at a time.

Comments

Comments are delimited by the appearance of a # character in the first column and by a new line.
Schema Identifier

In order to specify the schema identifier, the following directive is used:

SCHEMA schema_name

For example:

SCHEMA production_schema

File Specification

The source Adabas file is specified by the following syntax:

FILE file_nr [DDM=ddm_name] [Lcluster_name] table_name]

Where:

file_nr specifies the Adabas file from which the description statement will be generated.

table_name |optionally specifies the table name which will be used either for the master table or for the
single table if there is no cluster.

cluster_name|optionally specifies the cluster name which will be used in the generated statement. If both
a cluster name and a table name are present, then this forces the generation of a CREATE
CLUSTER DESCRIPTION statement, even if such a statement is not strictly necessary.

For example:

FILE 32 cluster_employees employees
Subtable Specification

A subtable can be built around a PE group, a single MU field or a number of MU fields which act
in parallel. The subtable directive is able to express either of these possibilities and to enable the

optional specification of an identifier for the resulting subtable. In the first two cases, only a single
field is required. In the third case, numerous MU fields can be specified in the form of a list separ-
ated by commas. The syntax is as follows:

Predict and Other Systems 135

Adabas SQL Gateway

short_name [, short_namel... SUBTABLE [table_name]

Where:

short_name|is as it suggests.

table_name|represents the intended table identifier for the subtable.

For example:

AB SUBTABLE

Would map the field AB to a subtable and would generate a table name accordingly.

AC SUBTABLE Employee_number

Would map the field AC to a subtable but would use the name as indicated.

AE, AF SUBTABLE Employee_status

Would map the two MU fields AE and AF to the single subtable Employee_status.
Rotated Field Interpretation

If a field is to be interpreted as a rotated field, then the following syntax applies:
short_name ROTATE value

Where:

short_name|is as it suggests.

value is the fixed number of occurrences to be rotated e.g. 12 in our example above.

For example:

MA ROTATE 12
Would map the twelve occurrences of the field MA to twelve individual SQL columns.
Longalpha Field Interpretation

If an MU field of type character is to be interpreted as a longalpha field, then the following syntax
applies:

short_name LONGALPHA value

Where:

136 Predict and Other Systems

Adabas SQL Gateway

short_name|is as it suggests.

value is the number of bytes which are to be considered in the character field.

For example:

LT LONGALPHA 512

Would map the field LT to a character column of 512 characters.
Long Name Specification

A column identifier for a particular field can be specified as follows:
NAME short_name [index] column_name

Where:

short_name |is as it suggests.

index optionally refers to the occurrence number of an MU if the field is rotated.

column_name|is a valid SQL identifier representing the intended column identifier.

For example:

NAME MA 3 BONUS_MARCH

Field Suppression

If a field is not to be included in a description, then its suppression is specified as follows:
SUPPRESS short_name

Where:

short_name|is as it suggests.

For example:

SUPPRESS BA
Data Type Generation

In general, program CXXGTD does not generate the explicit data type declaration for a column in
the resulting generated statement. The explicit data type declaration is however not strictly neces-
sary as Adabas SQL Gateway can operate on a minimum create table/cluster statement, i.e. the
server will fill in any missing information automatically. In such a case, the resulting generated

Predict and Other Systems 137

Adabas SQL Gateway

statement can be significantly longer. The forced generation of the column’s data type is helpful
for documentation purposes. The syntax is as follows:

DATATYPE
Error Handling

Should program CXXGTD encounter an error condition during execution, then it will generally ter-
minate with an exit code and in addition an error message. The possible exit codes are:

(@)

Successful completion.

4 |Warning generated.

8 |Error detected.

The error text can be found in SYSOUT.

Generating, Incorporating and Comparing Adabas SQL Objects

Generate Table Description, Cluster Description

With the Predict function Generate Connx Dictionary , a CREATE TABLE DESCRIPTION statement
or a CREATE CLUSTER DESCRIPTION statement is generated from a file of type A (with SQL usage
set to Y) or from a file of type AT. See table below:

Constellation Generated Command Note

One Adabeas file corresponding to one SQL|GENERATE TABLE

table DESCRIPTION

One AT file corresponding to one SQL table

Multiple AT files corresponding to multiple | GENERATE CLUSTER Specify only one file in the
SQL tables DESCRIPTION cluster. All files in the cluster

will be used for generation.

The statements add descriptions of multiple tables in an Adabas SQL catalog without creating an
Adabas file (the standard SQL statements CREATE TABLE/CLUSTER generate both an Adabas file
and a description in an Adabas SQL catalog).

This description contains the following:

" alist of fields in the file
" details of descriptors and superdescriptors, unique constraints, primary and foreign keys

"= database name and file number. This information is used to access the Adabas file.

138 Predict and Other Systems

Adabas SQL Gateway

The available options are described under Adabas Table/Cluster/View in the section Generation in
the External Objects in Predict documentation.

The generated SQL statements can be saved in a protocol.
Generate View

With the Predict function Generate Connx Dictionary, a CREATE VIEW statement is generated from
a file of type B or CX.

The available options are described under Adabas Table/Cluster/View in the section Generation in
the External Objects in Predict documentation.

Incorporate Table
With the Predict function Incorporate Connx Dictionary, a file of type A (with SQL usage set to

Y) or a file of type AT is documented in Predict from the entry in the Adabas SQL catalog. The
constellation in the catalog determines which file type is incorporated in Predict:

Constellation |Incorporated Object

Base table |File of type AT.

View File of type CX.

Incorporate View

With the Predict function Incorporate Connx Dictionary, a file of type B or CX is documented in
Predict from the entry in the Adabas SQL catalog.

Administrating Adabas SQL Gateway Objects

The following administration functions are valid for Adabas table descriptions. Enter function
code L and object code FI in any Predict main menu or the command ADMINISTRATE FILE. File
type is A (SQL), AT, B or CX and external object code is ZD.

For more information see the section Files in the section Administration of External Objects in the
External Objects in Predict documentation.

Predict and Other Systems 139

Adabas SQL Gateway

Disconnect Implementation

Deletes the generation protocol and the generation pointer from the Predict File object to the
Adabas table description, but the table description is left intact.

With files of type AT, all files used for generation are disconnected in a single operation.
Display Implementation

Displays documentation data, generation options and generated table description of specified file
ID(s).

Rename Implementation
Moves the generation protocol to another member and/or library.
Purge Implementation

Deletes Adabas table descriptions and all dependent views.

A DROP TABLE DESCRIPTION, DROP CLUSTER DESCRIPTION or DROP VIEW statement will delete the
definition from the Adabas SQL catalog and any statements referencing this table / view are marked
as invalid.

When a table / view is dropped, all dependent views are dropped too.

Note: The function is equivalent to the function Generate with Replace table/view set to Y.

Select Implementation

Selects Adabas table/view for further processing.

140 Predict and Other Systems

13 Third Generation Languages

m Documenting 3GL APPIICATIONSveiiiiee e 142
® DocUMENtING 3GL PrOGIAMSciiiiiiie e sttt ettt ettt ettt e e e e e et e e e et e e e e e aeeennees 143
= XRef Data for 3GL Applications and Programsoeoiiuriieiiiiiiee i 149
= Using Predict Functions When Developing 3GL AppliCationscoiiiuiiiiiieiiii e 151
= Redocumenting of 3GL APPLICALIONScoiiiiiiiiiei e 152
= Redocumenting COBOL ReCOrd STTUCIUIEScoiuviriiiiiiiiie et 152

141

Third Generation Languages

Predict provides functions for documentation, development and redocumentation of 3GL applic-
ations and programs. The following third generation languages are supported:

® BAL/Assembler
= C

= COBOL
FORTRAN
PL/

® Ada

Not all facilities are available for all of these languages. On the other hand there are areas in Predict
where additional user-specified languages are supported. In other areas, special classes of programs
are used that are treated by Predict like languages. These restrictions and extensions are either
mentioned here or in the relevant section of this documentation or the External Objects in Predict
documentation.

Documenting 3GL Applications

3GL applications are documented in Predict with system objects of type 3GL Application (code
G).

The system object and the 3GL application it represents are connected by an implementation
pointer.

Implementation Pointer for 3GL Application

Parameters

Library This name can be freely chosen when an object of type system is added or modified,
and represents one or more source or load libraries/directories or parts thereof.
Once defined here, this name can be used to document 3GL programs belonging to
the application and for creating and retrieving XRef data.
If XRef data related to this library exists, the name may no longer be changed.

User system Fnr, These attributes are used to distinguish 3GL libraries from Natural libraries. Both

DBnr must be set to 255 for 3GL applications.

142 Predict and Other Systems

Third Generation Languages

Documenting a 3GL Application with a Predict Object of Type System

PREDICT External Object
Documentation s FRED.LOAD.LIB
RN resty | |
ID=FRECAPFL. ! FREDPRG1
XRef Data LIEEI’FFREDUB 1
User system Fnr=255
User system DBnr=255 FREDPRG2

Generated Code

il

FREDPRG3

System implementation pointer Library represents for Predict one or more source or load librar-
ies/directories or parts thereof.

Documenting 3GL Programs

3GL programs are documented in Predict with objects of type Program, with one of the languages
listed on page 2 and one of the following subtypes, depending on the programming language.

" copy code

® documented

¥ program

® function

" subprogram.

Other languages can be defined in the user exit U-PGMLAN. See the section User Exits in the
Predict Administration documentation for more information.

Predict also knows the pseudo-languages System program and Static SOL.

As with applications, the program object and the implemented 3GL member it represents are
connected by an implementation pointer.

Predict and Other Systems 143

Third Generation Languages

Implementation Pointer for 3GL Programs

If Member is not entered for the program implementation pointer, it is not possible to enter a value
for Library. If a Member is specified, the possible values for Library depend on how the maintenance

option Implementation library described below has been defined by your DDA in the General
Defaults function.

Presetting

library

Implementation F |Force. A library that is documented as a 3GL application must be entered. A

default library - for example *SYSCOB* - may not be entered.

A|Allowed. Either a library documented as a 3GL application or a default library
must be entered. See next table for a complete list of default libraries for 3GL
programs.

D|Disallowed. Library concept is not used. Library *SYSALL* must be entered.

Parameters

Member

Corresponds to the name of the implemented program as it is stored in a source or load
library/directory.

Library

The possible values for this parameter depend on the maintenance option Implementation
Library. See Presetting above.

Corresponds to the implemented application to which the program belongs. If a non-default
library is specified, it must be defined in an object of type system if XRef data is to be
created for the program.

The program object does not have to be linked in Predict to the system object containing
the library name. If Member is specified but Library is left blank, and if Implementation
Library is set to A, the program object is connected automatically to the corresponding
default library:

Language Default Library

COBOL *SYSCOB*

BAL/Assembler |*SYSBAL*

PL/1 *SYSPLI*

FORTRAN *SYSFOR*

C *SYsccce*

ADA *SYSADA*

144

Predict and Other Systems

Third Generation Languages

Parameters

Pseudo-Language |Default Library

Static SQL *SYSSTA*

System program |*SYSSYS*

Default libraries do not need to be defined explicitly in a system object.

Note: Programs of language System program must be linked to library *SYSSYS*. Programs
of all other languages in the above list can be linked either to their default library or to a
user-defined library defined in a system object.

User system
Fnr, DBnr

These attributes are used to distinguish implemented 3GL programs from Natural programs.
Both must be set to 255 for 3GL programs.

Predict and Other Systems

145

Third Generation Languages

Documenting a 3GL Program with a Predict Object of Type Program

PREDICT External Object
Documentation FRED.SRC.LIB
E i — N
. ADD SYSTEM -

Type=G ID=FREDPRG 1 1"l FREDPRGt

Library=FREDLIE + — — | Library=FREDLIE W
Member=FREDPRG1 [¢ - *
User system Fnr=255 FREDPRG2
User system DBnr=255

FREDPRG3
XRef Data

Generated Code

Program implementation pointer Member corresponds to the implemented program asitis stored

in the source or load library/directory. Library must be defined in an object of type System if XRef
data is to be created for the program.

146 Predict and Other Systems

Third Generation Languages

Creating XRef Data for Implemented Programs

PREDICT

Documentation

ﬁt&m Object
|ID=FREDAPPL_TEST1
Library=FREDLTE

Program Object
|ID=FREDPRG1
Library=FREDLIB
Member=FREDPRG1

XRef Data

XREF Member
Library=FREDLIB
Member=FREDPRG1

+

Generated Code

PREPROCESS COBOL

MEM=FREDPRG1
LIB=FREDLIB

External Object

FRED.SRC.LIB

FREDPRG1

FREDPRG2

FREDPRG3

—

An implemented program is known to Predict only if XRef data exist. In this example, the XRef
data for COBOL program FREDPRGTI are created by assigning the program source as Workfile 1
and then processing it with the Predict Preprocessor.

The different methods of creating XRef data are listed in the section XRef Data for 3GL Applications

and Programs.

Predict and Other Systems

147

Third Generation Languages

Connecting External and Documentation Objects by Implementation Pointer

PREDICT External Object
Documentation FRED.SRC.LIB
—_—
tem Object
r +EFREDEPPL LOAD FREDPRG1
i |Library=FREDLTB
I
' |Program Object FREDPRG2
' |ID=FREDPRG1
~ HLibrary=FREDLIB
"= - +Member=FREDPRG1 FREDPRG3
L XRef Data
' ' |XREF Member
' L s|Library=FREDLIB —
© — — —{Member=FREDPRG1
Generated Code

The Predict system object is now connected to external library, and the program object is now
connected to the implemented program.

Documenting Entry Points for 3GL Programs

Entry points can be documented in Predict for the following languages:

= Assembler
= C

= COBOL
FORTRAN
PL/

" Ada

Other (language code O)

If a member name is entered in the implementation pointer of a program object, this name is
automatically entered as an entry point. Other entry points can be entered using one of the following
methods:
* Documenting entry points manually

* with program maintenance function Edit entry-points (Code R)

" or by setting Attribute to Y, and then selecting Entry points in the Additional attributes win-
dow.

148 Predict and Other Systems

Third Generation Languages

® Documenting entry points with editor commands
If XRef data already exists for the implemented program, call the function Edit Entry Points
with one of the methods above and enter command ACTIVE or UPDATE in the editor command
line.

" ACTIVE reads the entry names from the XRef data of the program into the editor workspace
and marks them as < active. Entry names that have been entered manually but are not in the
XRef data are marked < unused.

" UPDATE additionally deletes the entries marked <unused from the editor workspace.
See Program List Specific Editor Commands in the section Program in the Predefined Object Types in
Predict documentation.

® Documenting entry points with function Redocument program
See Redocumenting of 3GL Applications or Redocument Program section Program in the Predefined
Object Types in Predict documentation for more information.

XRef Data for 3GL Applications and Programs

XRef data for 3GL programs plays two important roles in Predict:
® It contains information on the dependencies among implemented programs and between pro-
grams and other objects they use.

® It represents the implemented program in Predict. This means an XRef member corresponding
to the implemented program must exist if the program is to be known to Predict.

How is XRef Data Created?

XRef data for applications is created by creating XRef data for one or more programs contained
within the application. The method used for creating XRef data for programs depends on the
program type:

For 3GL Programs

® By Adabas Native SQL (ADA, COBOL, FORTRAN and PL/I).

* By the Predict Preprocessor (Assembler, COBOL and PL/I). See the section Preprocessor in the
External Objects in Predict documentation.

® By Adabas SQL Server precompiler (C, COBOL, FORTRAN and PL/I). See XRef Data for Adabas
SQL Objects.

Predict and Other Systems 149

Third Generation Languages

For Static SQL

If Natural for DB2 is installed, the function CREATE DBRM of Natural for DB2 creates XRef data
for Static SQL access modules (DBRMs) and for Natural programs that use Static SQL. See Static
SQL.

For System Programs

It is not always possible to create XRef data for a 3GL program using one of the above methods.
This applies particularly to operating system routines, TP Monitor programming interfaces or
other programs that are invoked from within a 3GL application but for which no source code is
available. However, these programs can be documented as program objects of type Documented
or External program (subtypes D or E) with pseudo-language System program (language code
Z).

For each program object of this type, Predict creates a minimal set of XRef data, containing directory
information and a list of entry points.

What is Contained in 3GL XRef Data?

The following information is stored for 3GL programs:

® The name of the program and the application to which it belongs.

® The program type (only main program).

® The date and time the program was last cataloged.

® ID of the user who cataloged the program.

® ID of the terminal from which the program was cataloged. In batch mode the job name is given.

® The entry points defined in the program. The member name is always entered as one of the
entry points.

® The entry points of invoked 3GL programs and the methods used to invoke them (only CALL,
static SQL).

® The names of files used in the program and the type of file usage.

® Names of fields of files used in the program and the type of field usage.

150 Predict and Other Systems

Third Generation Languages

How is XRef Data Used?

There are three main areas where XRef data is used:

= Active Retrieval
Predict active retrieval functions evaluate XRef data and Predict documentation data to determine
= if objects documented in the dictionary are not yet implemented
* if implemented programs are not yet documented or

* if documentation data differs from the implementation.

XRef data also provides answers to questions such as
® which programs refer to file ABC*
® which programs call the entry point MAIN in program START in library FREDLIB.

For more information see the section Active Retrieval in the Predict Reference documentation.

® LIST XREF
XRef data for third generation languages is retrieved with functions of the Predict XRef menu.
There are essentially three groups of functions: those which

* retrieve information on specific types of objects in an application

" retrieve information on the consistency of an application as a whole

" manage sets.

For more information see the section LIST XREF for Third Generation Languages in the Predict
Reference documentation.

® Redocumenting of 3GL Applications
3GL applications for which XRef data exists can be redocumented automatically in Predict. See
Redocumenting of 3GL Applications.

Using Predict Functions When Developing 3GL Applications

Two major features are available for the development of 3GL applications:

® Generation of file layouts from Predict file objects in the syntax of several third generation lan-
guages. See appropriate sections in the section Generation in the External Objects in Predict docu-
mentation.

* Insertion of Predict generated file layouts and Adabas format buffers into 3GL source programs
by the Predict Preprocessor. See the section Preprocessor in the External Objects in Predict docu-
mentation for more information.

Predict and Other Systems 151

Third Generation Languages

Redocumenting of 3GL Applications

3GL applications for which XRef data exists can be automatically redocumented in Predict. The
XRef data must have been created using one of the methods described in XRef Data for 3GL Ap-
plications and Programs.

The Redocument program function (see the section Program in the Predefined Object Types in Predict
documentation) creates for each implemented program a new Predict Program object or updates
an existing object and evaluates the XRef data to establish links to other program and file objects.

This results in a basic documentation of the application objects and their relationships, which can
be extended by an abstract, extended description, keywords, owners etc.

Redocumenting COBOL Record Structures

Data definitions in the form of COBOL Copy Code members can be redocumented in Predict using
the function Incorporate COBOL. A file object of type Sequential is created for each Copy Code
member. See appropriate part of section Incorporation in the External Objects in Predict documentation
for more information.

152 Predict and Other Systems

14 Predict and Natural Development Server

= Documenting Natural Development Server in Predictccvviiiiiiiiiiii e 154
= Documenting Base Application DESCIIPHONSuviiiiiiiiii e 155
= Documenting Compound Applications DESCHPLONScovuriiiiiiiiiie e 156
= Documenting Data Definition Modules (DDM)coiiiiiiiiiiiiiiciei e 156
= Documenting Natural Programming ObJECESvvvviiiiiiiiiiiiiee e 156
® DOCUMENTING LIDIAIIES ...ttt et 157

153

Predict and Natural Development Server

Natural Development Server (NDV) stores the following information into Predict:

= Structure of Application Descriptions (APD)
® Locks

] Notes:

1. Locks are internal used objects only and can not be maintained by Predict.

2. For more information about Applications see Introducing Natural Single Point of Development.

Documenting Natural Development Server in Predict

The following NDV objects can be documented in Predict:

" Base Applications Descriptions
® Compound Applications Descriptions

® Data Definition Modules

Natural Programming Objects

®= Libraries

Message files

Compound APD
(SY-0)

Has subappl. SY (CS)

*

Base APD
(SY-B)
Has component Fl Has component PR Has Library 8Y (LI}
(CFI)-"; (CF)
DDM Programming Libra
(FT) (PR-x) (SY-A
1 T

-

The following table provides an overview of how different NDV objects are documented.

154 Predict and Other Systems

Predict and Natural Development Server

Natural Development Server Documented in Predict with

Base APD System object of type B

Compound APD System object of type O

DDM File object

Natural Programming Objects|Program object of corresponding type
Library System object of type A

Message file Program object of type 2

Documenting Base Application Descriptions

Base Application Descriptions are documented as objects of type System with system type B. Base
Application Descriptions have the following specific attributes:

® Server name

" Port

® Profile name

Profile DBnr

Profile Fnr

For Base APDs the following specific associations exists:

® "Has component FI "with association code CF:
which Data Definition Modelues belongs to this Application description.

® "Has component PR "with association code CP:
which Natural Programming Objects belongs to this Application description.

® "Has library SY "with association code LI:
each library of Natural Programming Objects, that are linked to the Base APD with association
"Has component PR", must be linked to the Base APD.

| Note: The association "Has library SY" is built automatically when changing the association

"Has component PR".

Predict and Other Systems 155

Predict and Natural Development Server

Documenting Compound Applications Descriptions

Compound Application Descriptions are documented as objects of type System with system type
O. Compound Application Descriptions have no specific attributes.

The association from Compound APD to Base APD is named "Has subappl. SY" with association
code CS.

Note: Predict Maintenance functions ensure that only Systems of system type B are linked
to Compound APDs.

Documenting Data Definition Modules (DDM)

Data Definition Modules are documented as objects of type File. The association from a Base APD
to the Data Definition Modules is named "Has component FI" with association code CF.

Documenting Natural Programming Objects

Natural Programming Objects are documented as objects of type Program with corresponding

program type.

The association from a Base APD to the Natural Programming Objects is named "Has component
PR" with association code CP.

The following rules apply for Natural Programming Objects linked to a Base APD:

® The implementation pointer must be full qualified.
® All members must be on the same Natural System File.

® For each Natural Programming Object the library this object is in must be documented as a
System of system type A with the association "Has library SY" (association code LI).

® If database number or file number of the implementation pointer is changed, the Natural Pro-
gramming Object is removed from the Base APD. If it is also the last member with the library
in this Base APD, the corresponding system type A, representing the library, must be removed
from association "Has library SY" too.

156 Predict and Other Systems

Predict and Natural Development Server

Documenting Libraries

Libraries are documented as objects of type System with system type A. The association from a
Base APD to the libraries is named "Has library SY" with association code LI.

Predict and Other Systems 157

158

	Predict and Other Systems
	Table of Contents
	Predict and Other Systems
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Verifications And Processing Rules
	Terminology
	General Information
	Benefits
	Rules Applying to Processing Rules in Predict

	Using Rules of Verifications in an External Environment
	Verifications of Status Documented
	Verifications of Status Conceptual
	Verifications of Status Free
	Verifications of Status Automatic
	Verifications of Status Natural Construct
	Verifications of Status SQL

	How Predict Stores Processing Rules
	Variable Names in Processing Rules
	Priority of Processing Rules

	Generating Processing Rules from Verifications
	Editing the Rule of a Verification
	Editor Commands

	Changing the Status of a Verification
	Example
	Rippling Verifications
	Rippling Verifications from Standard Files
	Rippling Verifications from Physical Files to Userviews

	3 Steplib Support
	General Information
	Object Type Library Structure
	Program Type Dynamic
	Metadata Diagram
	Active Retrieval Functions

	Documenting Dynamic Structures
	Example

	Steplib Support with Active Retrieval Functions
	Function Program using Program
	Function Systems containing Programs

	Steplib Support with LIST XREF for Natural
	The Library Structure Documented in Predict
	Runtime Structure
	Without any Structure
	Steplib Support in Batch Mode
	Effects of Steplib Support on LIST XREF

	4 Adabas Vista
	Different Types of Data Distribution
	Defining the Distribution of Data in Predict
	General Information
	Defining the Distribution of Data

	Defining a Network, Virtual Machine and Database Structure
	Defining Networks and Virtual Machines
	Defining a Database

	Defining the File Structure
	Defining a File Structure Logically and Physically
	Defining a Logical File
	Defining the Physical Implementation of Logical Files
	Adding, Modifying and Purging Physical Files
	Specifying the Vista Attributes of Physical Files
	Specifying Physical Distribution Attributes
	Specifying Distribution Criteria for Partitioned Files
	Including the Definition in the Vista Table

	Retrieving Information on the Use of Vista Numbers
	Generating, Incorporating, Comparing and Maintaining Data Definitions under Adabas Vista

	5 VSAM
	Documenting VSAM
	Physical VSAM file - Master File, File Type V
	Logical VSAM File - Master File, File type L
	File Type W and R - Userview of Physical / Logical VSAM File

	Generating DDMs from Predict VSAM Objects
	Using Natural for VSAM with Physical VSAM Files
	Using a Record Layout Concept
	Using a Record Layout Concept Without Logical VSAM Files

	6 Natural For DL/I
	General Information
	Documenting IMS/DL/I Data Structures
	Databases
	Segments
	Segment Layouts
	Userviews

	Creating Objects for IMS/DL/I with Incorporation Functions
	Maintaining Documentation for IMS/DL/I
	Maintaining Documentation of IMS/DL/I Segment Layouts
	Maintaining Documentation of IMS/DL/I Userviews

	Generation Functions for Files of Type I, J and K
	Generating DDMs

	7 DB2 and SQL/DS
	Documenting DB2 in Predict
	General Information
	Documenting DB2 Storagegroups or Database partition groups
	Documenting DB2 Databases
	Documenting DB2 Tablespaces and SQL/DS Dbspaces
	Documenting DB2 Tables and Views
	Documenting Referential Constraints
	Documenting DB2 Application Plans
	Documenting DB2 Packages
	Documenting DB2 Triggers
	Documenting DB2 Procedures and Functions
	Documenting Other DB2 Objects

	Naming Conventions for DB2
	General Rules
	Storagegroup Name
	Collection Name
	Constraint Name
	Correlation Name
	Distinct Type
	Procedure Name
	Index Name
	Table/View Name
	Function Name
	Column Name
	Trigger Name
	Delimited Identifier

	Generating, Incorporating and Comparing DB2 Objects
	Prerequisites
	Generation
	Incorporation
	Comparison

	Administrating Implemented DB2 Objects
	Locking the Functions of the DB2 Utilities SYSDB2 and SYSSQL

	8 Oracle
	Documenting Oracle in Predict
	General Information
	Documenting Oracle Tables and Views
	Documenting Referential Constraints
	Documenting Other Oracle Objects

	Naming Conventions for Oracle
	General Rules
	Constraint Name
	Correlation Name
	Index Name
	Table/View Name
	Column Name
	Delimited Identifier

	Generating, Incorporating and Comparing Oracle Objects
	Prerequisites
	Generation
	Incorporation
	Comparison

	Administrating Implemented Oracle Objects

	9 Static SQL
	General Information
	Documenting the Use of Static SQL
	Documenting Which Natural Programs Use a DBRM

	Generating DBRMs from Predict Documentation
	Which Information is Stored in XRef Data

	Retrieval Functions and Consistency Checking
	Using Predict Information when Binding Application Plans

	10 Adabas D and Other SQL Systems
	General Information
	Documenting SQL Systems in Predict
	Documenting SQL Tables and Views
	Documenting Other SQL Objects
	Common Keys
	Referential Constraints

	Naming Conventions for SQL Objects
	Generating SQL CREATE Statements
	Functional Scope
	More Information

	Generating DDMs from SQL Objects
	Incorporating Tables / Views of SQL Database Systems
	Administrating SQL Objects

	11 Adabas SQL Server
	General Information
	Documenting Adabas SQL Server in Predict
	Documenting Adabas Tables
	Documenting Adabas Views
	Documenting Adabas SQL Databases/ Tablespaces
	Documenting Adabas SQL Columns
	Documenting Indexes
	Documenting Unique Elements
	Documenting Primary and Foreign Keys
	Documenting Referential Constraints

	Naming Conventions for Adabas SQL Server
	Generating, Incorporating and Comparing Adabas SQL Objects
	Prerequisites
	Generate Table Description, Cluster Description
	Generate View
	Incorporate Table
	Incorporate View
	Compare Adabas Table/View

	Administrating Adabas SQL Server Objects
	Disconnect Implementation
	Display Implementation
	Rename Implementation
	Purge Implementation
	Select Implementation

	XRef Data for Adabas SQL Server Objects

	12 Adabas SQL Gateway
	General Information
	Documenting Adabas SQL Gateway in Predict
	Documenting Adabas Tables
	Documenting Adabas Views
	Documenting Adabas SQL Columns
	Documenting Indexes
	Documenting Unique Elements
	Documenting Primary and Foreign Keys
	Documenting Referential Constraints

	Naming Conventions for Adabas SQL Gateway
	Creating Adabas Cluster Tables Using Program CXXGTD
	Input File Language Syntax

	Generating, Incorporating and Comparing Adabas SQL Objects
	Generate Table Description, Cluster Description
	Generate View
	Incorporate Table
	Incorporate View

	Administrating Adabas SQL Gateway Objects
	Disconnect Implementation
	Display Implementation
	Rename Implementation
	Purge Implementation
	Select Implementation

	13 Third Generation Languages
	Documenting 3GL Applications
	Implementation Pointer for 3GL Application
	Documenting a 3GL Application with a Predict Object of Type System

	Documenting 3GL Programs
	Implementation Pointer for 3GL Programs
	Documenting a 3GL Program with a Predict Object of Type Program
	Creating XRef Data for Implemented Programs
	Connecting External and Documentation Objects by Implementation Pointer
	Documenting Entry Points for 3GL Programs

	XRef Data for 3GL Applications and Programs
	How is XRef Data Created?
	What is Contained in 3GL XRef Data?
	How is XRef Data Used?

	Using Predict Functions When Developing 3GL Applications
	Redocumenting of 3GL Applications
	Redocumenting COBOL Record Structures

	14 Predict and Natural Development Server
	Documenting Natural Development Server in Predict
	Documenting Base Application Descriptions
	Documenting Compound Applications Descriptions
	Documenting Data Definition Modules (DDM)
	Documenting Natural Programming Objects
	Documenting Libraries

