

ARIS PROCESS PERFORMANCE MANAGER
PPM CUSTOMIZING

April 2019

VERSION 10.4

SOFTWARE AG

This document applies to ARIS Process Performance Manager Version 10.4 and to all subsequent
releases.
Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.
Copyright © 2000 - 2019 Software AG, Darmstadt, Germany and/or Software AG USA Inc.,
Reston, VA, USA, and/or its subsidiaries and/or its affiliates and/or their licensors.
The name Software AG and all Software AG product names are either trademarks or registered
trademarks of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its
affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.
Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is
located at http://softwareag.com/licenses.
Use of this software is subject to adherence to Software AG's licensing conditions and terms.
These terms are part of the product documentation, located at http://softwareag.com/licenses
and/or in the root installation directory of the licensed product(s).
This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices
and Disclaimers of Third Party Products". For certain specific third-party license restrictions,
please refer to section E of the Legal Notices available under "License Terms and Conditions for
Use of Software AG Products / Copyright and Trademark Notices of Software AG Products". These
documents are part of the product documentation, located at http://softwareag.com/licenses
and/or in the root installation directory of the licensed product(s).

PPM CUSTOMIZING

I

Contents
1 Text conventions ... 1

2 General .. 2

3 Overview .. 3
3.1 Configuration components .. 3
3.2 Command line programs ... 4
3.3 Methodological procedure ... 5
3.4 Configuration component hierarchy .. 5

4 Interface languages ... 7
4.1 User interface languages .. 7
4.2 Interface language for display of configuration elements 8

4.2.1 Using multi-byte character sets for configuration elements 9

5 Internal names .. 10

6 Attribute types and attribute type groups ... 11
6.1 Data types .. 11

6.1.1 Internal data types .. 11
6.1.2 User-defined data types .. 13

6.1.2.1 User-defined data types in multi-byte character sets 14
6.2 Definition of attribute types and attribute type groups 15

6.2.1 Definition of attribute types ... 15
6.2.2 Definition of attribute type groups.. 15
6.2.3 Configuration of attribute types and attribute type groups 15

6.2.3.1 Attribute type and attribute type group definition in multi-byte
character sets .. 18

7 Process merge .. 19
7.1 Process hierarchies .. 19
7.2 Key rules .. 20

7.2.1 Process key rules ... 21
7.2.2 Hierarchy key rules .. 22
7.2.3 Shared fragment key rules .. 23
7.2.4 Merge key rules ... 24

7.2.4.1 Key-based merge ... 27
7.2.4.2 Merge based on sort order .. 27
7.2.4.3 Combining merge methods.. 29

7.2.5 Object key rules .. 30
7.2.6 Output behavior of messages .. 31
7.2.7 Configuration file ... 31

7.3 Process fragment merge ... 33
7.3.1 Merge mode "Replace" ... 33
7.3.2 Merge mode "Update" .. 34

7.4 Merge events .. 37
7.4.1 Parallel paths with multi-valued keys .. 37
7.4.2 Merge mode .. 38

PPM CUSTOMIZING

II

7.5 Attribute copy rules.. 39
7.6 Anonymizing ... 40

8 Process typification .. 43
8.1 Create typification rules .. 43

8.1.1 Measure configuration .. 43
8.1.2 Process tree configuration ... 44

8.1.2.1 Prioritization .. 45
8.1.3 Definition of attribute calculations .. 45

8.1.3.1 Calculation classes ... 49
8.1.3.1.1 Log output for calculation classes ... 49
8.1.3.1.2 Time measures .. 50
8.1.3.1.3 Function measures ... 51
8.1.3.1.4 Process measures .. 55
8.1.3.1.5 Frequency measures... 55

8.1.3.1.5.1 Function measures ... 55
8.1.3.1.5.2 Process measures... 57
8.1.3.1.5.3 Process cost rates .. 59
8.1.3.1.5.4 More process measures ... 60
8.1.3.1.5.5 Environmentally relevant calculations 61

8.1.3.1.6 Relation measures .. 68
8.1.3.1.7 Process conformance .. 70

8.1.3.1.7.1 Conformance rate measure ... 70
8.1.3.1.7.2 Conformance issue relation ... 70

8.1.3.1.8 Convert time spans in milliseconds 71
8.1.3.1.9 Mark as large EPC .. 71

8.1.3.2 Operands .. 72
8.1.3.2.1 Set of values (XML element attribute) 72
8.1.3.2.2 Values (XML element filteredattribute) 74
8.1.3.2.3 Constants (XML element constant) 76
8.1.3.2.4 Determining attribute values ... 78

8.1.3.2.4.1 Attribute values without object reference 78
8.1.3.2.4.2 Attribute values with object reference 79

8.1.3.3 Conditional attribute type access.. 80
8.1.3.4 Operators ... 81

8.1.3.4.1 Mathematic operators ... 83
8.1.3.4.2 Operators resulting in a set of values 91
8.1.3.4.3 Operators producing a value .. 94
8.1.3.4.4 Logical operators... 100
8.1.3.4.5 Conditional operator .. 111
8.1.3.4.6 String operators .. 112
8.1.3.4.7 Time operators ... 115
8.1.3.4.8 Conditional attribute type calculation 120

8.1.3.5 Nesting of operators .. 122
8.1.3.6 Calculation functions ... 123
8.1.3.7 Change the attribute type .. 125
8.1.3.8 Summary ... 125
8.1.3.9 Example attribute calculations .. 125
8.1.3.10 Special features of attribute calculation.. 129

8.1.3.10.1 AT_INTERNAL_NO_CUBE_ENTRY function attribute 129
8.1.4 Typification rules in CTK .. 130

PPM CUSTOMIZING

III

8.2 Typification by attribute calculation ... 130

9 Definition of measures, dimensions, attribute calculations, and relations 132
9.1 Terminology ... 132

9.1.1 Measures ... 132
9.1.1.1 Process instance-dependent measures ... 133
9.1.1.2 Process instance-independent measures (PIKIs) 133

9.1.2 Dimensions .. 134
9.2 Definition of measures ... 134

9.2.1 Definition of standard measures ... 135
9.2.1.1 Formatting measure values .. 138
9.2.1.2 Definition of process cost measures ... 139

9.2.2 Measure definition in multi-byte character sets 140
9.2.3 Definition of cardinality measures ... 141
9.2.4 Definition of process instance-independent measures 143

9.2.4.1 Usage (type) of a data series .. 148
9.2.4.2 Dimension reference ... 149
9.2.4.3 Definition of process instance-independent measures in multi-byte

character sets ... 150
9.2.4.4 Configuration import ... 151
9.2.4.5 Data series migration .. 152
9.2.4.6 Additional information: User-defined measures based on process

instance-independent measures .. 153
9.2.5 Definition of measure groups .. 154

9.2.5.1 Visible measure groups .. 157
9.2.5.2 Group of invisible measures ... 158

9.3 Definition of dimensions .. 158
9.3.1 Definition of dimension groups ... 160
9.3.2 Text dimensions ... 161

9.3.2.1 General XML structure ... 162
9.3.2.1.1 One-level dimension .. 162
9.3.2.1.2 Two-level dimension .. 162
9.3.2.1.3 N-level dimension ... 163

9.3.2.2 Configuration .. 167
9.3.2.2.1 One-level dimensions .. 167
9.3.2.2.2 Two-level dimensions .. 169
9.3.2.2.3 N-level dimensions .. 171

9.3.2.3 Import dimension values .. 172
9.3.3 Floating point dimensions .. 172
9.3.4 Time dimensions ... 174

9.3.4.1 Time dimensions with dimension table ... 175
9.3.4.2 Incube time dimensions ... 175
9.3.4.3 Time dimensions for the Early alert system 176

9.3.4.3.1 Special feature for calculation of critical time attributes 176
9.3.5 Time range dimensions .. 179
9.3.6 Time of day dimensions ... 181
9.3.7 Search dimensions .. 183
9.3.8 Variant dimension ... 185

9.3.8.1 Attribute configuration ... 185
9.3.8.2 Measure configuration - dimension type 185
9.3.8.3 Process tree configuration .. 186
9.3.8.4 Usage of variant attributes during import 186

PPM CUSTOMIZING

IV

9.3.9 Shared function dimension ... 187
9.3.10 Using organizational units as dimensions ... 189

9.4 Definition of data access dimensions ... 189
9.4.1 Using data access dimensions .. 191

9.5 Process tree definition ... 192
9.5.1 Registration of measures and dimensions at the PPM system 195

9.5.1.1 Register measure .. 195
9.5.1.1.1 Register relation measure .. 196
9.5.1.1.2 Register measures and dimensions of process

instance-independent data series .. 197
9.5.1.1.2.1 Special case: Register referenced dimensions 197

9.5.1.2 Register dimension .. 198
9.5.1.2.1 Register reference dimension .. 199
9.5.1.2.2 Register relation dimension .. 200

9.5.2 Automatic process tree expansion ... 200
9.5.3 Manual process tree expansion ... 201
9.5.4 Definition of process tree in multi-byte character sets 201

9.6 Relations ... 203
9.6.1 Definition of relations .. 203

9.6.1.1 Reference dimensions .. 204
9.6.2 Definition of relation calculations .. 205
9.6.3 Definition of relation measures ... 210
9.6.4 Definition of relation and organizational dimensions 212

10 Change aggregation behavior ... 214
10.1 Configure the internal aggregation attribute ... 215
10.2 Assign aggregation values ... 215

11 System connections .. 218
11.1 SAP executables ... 218

11.1.1 Software requirements .. 218
11.1.2 Privileges in the SAP system .. 218
11.1.3 Transaction call .. 218
11.1.4 Configuration ... 218

11.1.4.1 Configuration examples ... 220
11.1.4.2 Explanations regarding the DTD .. 236

12 Legal information.. 241
12.1 Documentation scope .. 241
12.2 Data protection .. 242

PPM CUSTOMIZING

1

1 Text conventions
Menu items, file names, etc. are indicated in texts as follows:

 Menu items, key combinations, dialogs, file names, entries, etc. are displayed in bold.

 User-defined entries are shown <in bold and in angle brackets>.

 Single-line example texts (for example, a long directory path that covers several lines due to
a lack of space) are separated by at the end of the line.

 File extracts are shown in this font format:

This paragraph contains a file extract.

 Warnings have a colored background:

Warning

This paragraph contains a warning.

PPM CUSTOMIZING

2

2 General
This manual describes the configuration of ARIS Process Performance Manager (PPM). It provides
the PPM system administrator with basic knowledge and configuration know-how to support him
in configuration for different usage scenarios and analysis tasks.

The user guide is aimed at PPM Customizing Toolkit users who are application configuration
experts.

As an application configuration expert you are responsible for customizing all ETL processes
(Extracting source system data, Transforming the data, Loading the data into the target
database), which includes process nesting, process typification, as well as measure and
dimension calculation.

Please note that this guide is not intended to replace user or configuration training. It is a source
of reference containing information that supplements the information provided in the manuals
and online help.

PPM CUSTOMIZING

3

3 Overview
Before you can import data into PPM, you need to break down the processes in the source system
to be analyzed and, on that basis, create a configuration for the PPM system. This process is
referred to as customizing. Once customizing has been completed, a set of specific XML
configuration files is available, which can be used to initialize the PPM system.

The import adapters for importing process instance fragments into the PPM database are
described in the PPM Data Import manual.

3.1 Configuration components
Configuration components are divided into the following categories:

INTERFACE LANGUAGES

PPM differentiates between two categories of interface languages: the user interface language
and the language for displaying database contents that have been imported using the
configuration files.

DATA TYPES

In PPM, a distinction is made between internal and user-defined data types. Internal data types
cannot be changed. An XML file can be used to import any number of new data types into the PPM
system.

SPECIFIC PPM ATTRIBUTES

Attributes are the information carriers of the PPM system. Attribute values allow data from the
source system to reach the PPM system. Calculation results are also saved as attributes. PPM is
supplied with a comprehensive set of default attributes, which can be supplemented with
user-defined attributes.

PROCESS KEY RULES

Process key rules determine how process keys are calculated.

Process keys identify associated process instance fragments. Associated process instance
fragments are written into a process instance unlinked using the process keys. Process keys are
created when importing the process instance fragments.

MERGE KEY RULES

Merge key rules determine the attributes used by PPM to create merge keys when importing the
process instance fragments. When merging events (event merge), the merge events with an
identical merge key are used to link the process instance fragments.

PPM CUSTOMIZING

4

OBJECT KEY RULES

Object key rules determine how object keys are calculated.

Object keys identify identical objects. This ensures that these objects are overwritten if the data
is imported again and rules out unintentional multiple occurrences of identical objects within a
process instance.

ATTRIBUTE COPY RULES

Attribute copy rules define the object attributes that are copied to the merged process instance
after the merge process. These attributes are required to calculate process measures and to
create dimensions.

TYPIFICATION RULES

With typification rules, the imported process instances are allocated to a particular process type.

MEASURE DEFINITION

The measure definition is made up of the definition of the measures (type and calculation rule)
and the definition of a process tree.
PPM already contains the calculation rule for many standard measures and a default process tree.
If you require further measures, you can define supplementary indicators and their calculation.

3.2 Command line programs
After creation of the configuration files, the source system data is imported into the PPM system
as follows:

Process PPM command Documentation

Initialize PPM
database

runinitdb -init -client
<client>

PPM Operation
Guide

Import process
instance fragments
(XML import
 adapter or other
import adapter)

runxmlimport -client
<client> -user ...

PPM data import

Create process
instances from
imported process
instance fragments,
typify process
instances and
calculate measures

runppmimport -client
<client> ...

PPM Operation
Guide

PPM CUSTOMIZING

5

After the process instances have been imported and calculated, they can be analyzed and
evaluated in the PPM system front-end.

3.3 Methodological procedure
Before you start to create the PPM configuration files, you must define the source system activity
flows or processes you are analyzing and the variables you want to use. The information required
to calculate and process the process instances is identified in the source system (values for
process merging, typification and measure calculation).

The procedure for extracting data from the source system and storing the process instance
fragments in the PPM system is defined by configuring the relevant PPM import adapter.
Importing XML data into the PPM system is described in detail in the technical reference PPM
Data Import.

If all of the required source system information is known, an assignment of source system
information carriers to PPM attributes is created. Depending on the desired analysis results data
types and attributes for the measures are determined, along with their calculation rules and
attributes for the creation of dimensions.

3.4 Configuration component hierarchy
The table below shows the assignment of XML configuration files to the PPM components.

PPM component XML file (in the xml directory of the
default client templates)

Process tree *_processtree.xml

Measure calculation *_keyindicator.xml
*_kigroup.xml

Creation of keys and
merge

*_keyrules.xml
*_merger.xml

Fragment definition and
mapping

No default files. Files must be created using
PPM Customizing Toolkit.

Attributes *_attributetypes.xml
*_attributenames_<language>.xml (one file
for each language)

Data types *_datatypes.xml

Interface languages *_locales.xml

PPM CUSTOMIZING

6

Then default client templates of the PPM system are stored under <PPM installation
directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run-pr
od-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\.

The graphic below illustrates the dependencies between the different PPM configuration
components.

When initializing the PPM database, ensure that the configuration steps are performed in the
correct sequence:

1. Languages

2. Data types

3. Attributes

4. Process merge and typification

5. Measure calculation

6. Process tree

PPM CUSTOMIZING

7

4 Interface languages
PPM differentiates between two categories of interface languages: the user interface language,
which is used for menu items, dialog boxes, etc., and the language for displaying configuration
elements (measure names, dimensions, etc.).

Data that has been imported by importing process instance fragments into the PPM system is
always displayed in the source system language, regardless of the selected interface language.

4.1 User interface languages
The user sets the user interface language when logging into the system.

PPM supports English and German interface texts for menu items, dialog boxes, etc. The interface
texts are contained in the code for the PPM software.

Warning

In order to be able to use PPM in multiple languages, an international version of Java Runtime
Environment (JRE) must be installed.

The languages available for selection in the Login dialog can be set separately for each PPM client
in the file *_locales.xml. The file is structured as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE locales SYSTEM "Locales.dtd">
<locales>
 <defaultlocale value="en" />
 <locale value="de" />
 <locale value="fr" />
</locales>

If the language for the specified language code cannot be determined, for example, an unknown
language code is entered in a login URL, the default language is used:

http://<Web server>/ppm/html/index.html?language=1234

You can only specify one of the languages available for the user interface as the default language.

The XML configuration file *_locales.xml is defined by the following DTD:

PPM CUSTOMIZING

8

4.2 Interface language for display of configuration
elements

All PPM interface elements that are based on configuration files (name of measures, measure
groups and dimensions) can be specified in any language. The naming of elements in the different
languages is defined by the description XML element, which is used in all XML configuration files.
In addition, a language-specific description can be added for each of these interface elements,
which is displayed as a tooltip in the front-end.

DTD for XML element description (file _description.dtd):

Example

Extract from the XML measure configuration:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <kidef name="PNUM" type="PROCESS" attrname="AT_KI_PNUM"
 calculated="TRUE" distribution="FALSE"
 standarddeviation="FALSE" retrievertype=
 "NUM_KEYINDICATOR" sharedfunctionki="FALSE"
 functionspanki="FALSE" dimreferring="LOOSE"
 importmode="OPTIONAL">
 <description language="de" name="Prozessanzahl">
 Anzahl der tatsächlich durchlaufenen Prozesse
 </description>
 <description language="en" name="Number of processes">
 Number of processes actually passed through
 </description>
 </kidef>
 ...
</keyindicatorconfig>

The content of the text specified in the #PCDATA tag of the relevant description element is
displayed as a language-specific tooltip in the PPM interface.

Warning

To configure the PPM system successfully, you must enter at least the description in the default
language for every configuration element.

Depending on the PPM login language used, the dialog boxes in the PPM front-end show the
language-specific name of the configuration elements, for example in the process attribute dialog

PPM CUSTOMIZING

9

box the names of attribute type groups and attribute types. The language-specific names are
defined in XML configuration files.

4.2.1 Using multi-byte character sets for configuration
elements

PPM supports the display of source system data and certain configuration elements using local
character sets that are not included in the ANSI character set and are coded with a multi-byte
character set (MBCS). Examples are Japanese Kanji and Greek characters.

All XML files imported into the PPM system and not based on the character set for a Western
European language, must reference the UTF-8 character set as encoding:

<?xml version="1.0" encoding="UTF-8"?>
<...>
...
</...>

In principle, tooltips and all language-specific names displayed in the PPM user interface can be
displayed using a multi-byte character set. Specifically, this applies to the following elements:

 Attribute types

 Attribute type groups

 Measures

 Measure groups

 Dimensions

 Process instance-independent measures (PIKIs)

 Process types

 Process type groups

Furthermore, the language-specific names of user-defined data types can be entered using a
multi-byte character set.

For attribute types and attribute type groups, the internal names (key XML attribute) can also be
configured with a multi-byte character set.

PPM CUSTOMIZING

10

5 Internal names
In the PPM configuration files, configuration elements are referenced using a unique,
language-independent internal name. This table shows the XML attributes that define the internal
name.

PPM configuration element XML attribute

Attributes key

Data types name

Dimensions name

Measures name

Calculation functions
(for example, typification rules)

name

Warning

Internal names are used to reference configuration elements. The internal name of an object in a
process instance is specified in the AT_OBJNAME_INTERN object attribute.

Internal names begin with a letter and consist of capital letters with no special characters (A-Z),
figures (0-9), and the _ (underscore) character.

In practice, the following guidelines for creating internal names have proved useful:

PPM configuration element Prefix

Attribute names AT_

Attribute group names AG_

Measure groups KI_GROUP_

Dimension groups DIM_GROUP_

Measure attributes AT_KI_

Measure names KI_

Dimension names D_

Typification rules TYP_

PPM CUSTOMIZING

11

6 Attribute types and attribute type groups
Attributes are the data repository of the PPM system. Attributes with a corresponding data type
must be defined for instance data extracted, all measures and all dimensions. Attributes can be
summarized into attribute groups.

6.1 Data types
In PPM, a distinction is made between internal and user-defined data types.

6.1.1 Internal data types
The PPM system provides the following internal data types. These cannot be changed.

Data type Example
(Description)

Units or scaling
levels

Units (Description)

BOOLEAN "true" - -

TEXT "Example text"
String

- -

TEXTPAIR "Text 1\Text 2"
2 strings separated
by a
backslash

LEVEL1SCALE
LEVEL2SCALE

Rough level
Detailed level

LONG "-231456789"
Integers

- -

DOUBLE "3.1428"
Floating point
numbers separated
by a
decimal point

- -

DAY "24.03.2003"
Date in the format
dd.MM.yyyy

DAYSCALE
WEEKSCALE
MONTHSCALE
QUARTERSCALE
YEARSCALE

No unit, but levels of
accuracy:
correct to day
correct to week
correct to month
correct to quarter
correct to year

PPM CUSTOMIZING

12

Data type Example
(Description)

Units or scaling
levels

Units (Description)

TIME "01.01.2002
08:15:23"
Date and time in the
format
dd.MM.yyyy
hh:mm:ss

The data type is
identical to the data
types DATE and
TIMESTAMP

SECONDSCALE
MINUTESCALE
HOURSCALE
DAYSCALE
WEEKSCALE
MONTHSCALE
QUARTERSCALE
YEARSCALE

No unit, but levels of
accuracy:
correct to second
correct to minute
correct to hour
correct to day
correct to week
correct to month
correct to quarter
correct to year

TIMEOFDAY "12:41:56"
Time of the day in
format hh:mm:ss

SECOND_OF_DAY
_SCALE
MINUTE_OF_DAY
_SCALE
HOUR_OF_DAY
_SCALE

No unit, but levels of
accuracy:
correct to second

correct to minute

correct to hour

TIMESPAN "23 SECOND"
Time span

SECOND
MINUTE
HOUR
DAY
WEEK
MONTH
YEAR

Second
Minute
Hour
Day
Week
Month
Year

FACTORY TIMESPAN "23 FACTORY_HOUR"
Time span based on
the factory calendar.
Only the pure
working time is taken
into account.

FACTORY_SECOND
FACTORY_MINUTE
FACTORY_HOUR
FACTORY_DAY
FACTORY_WEEK
FACTORY_MONTH
FACTORY_YEAR

Person-second
Person-minute
Person-hour
Person-day
Person-week
Person-month
Person-year

FREQUENCY "86400 PER_DAY"
Number per unit of
time

PER_SECOND
PER_MINUTE
PER_HOUR
PER_DAY
PER_WEEK
PER_MONTH
PER_YEAR

per second
per minute
per hour
per day
per week
per month
per year

PPM CUSTOMIZING

13

Data type Example
(Description)

Units or scaling
levels

Units (Description)

PERCENTAGE "63 PERCENT"
Percentage

PERCENT
VALUE_ONLY

Percent
no unit (factor display)

For the time-based data types, the base unit is always seconds. The PERCENTAGE data type
does not have a base unit.

Warning

The TEXTPAIR data type is used internally by PPM to process binary query results (for
example, process type group\process type). This data type is not suitable for direct data
exchange, as the backslash (\) separator is replaced by the slash (/) character when importing
an XML file.

6.1.2 User-defined data types
An XML file can be used to import any number of new data types into the PPM system. The
following example file creates a new Costs data type (internal name COST) with a base unit of
Euros (EUR) and the additional unit of Dollars (USD) with a corresponding conversion factor.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE datatypelist SYSTEM 'userdefdatatypes.dtd'>
<datatypelist>
 ...
 <!-- Data type: Costs -->
 <datatype name="COST">
 <description language="de" name ="Kosten"/>
 <description language="en" name ="Costs"/>
 <basescale name="EUR">
 <description language="de" name="EUR"/>
 <description language="en" name="EUR"/>
 </basescale>
 <scale name="USD" factor="0.9">
 <description language="de" name="US Dollar"/>
 <description language="en" name="US Dollars"/>
 </scale>
 </datatype>
 ...
</datatypelist>

PPM CUSTOMIZING

14

Document type definition of the XML file for the definition of new PPM data types (file
userdefdatatypes.dtd):

IMPORT AND EXPORT OF USER-DEFINED DATA TYPES

You perform the import and export of user-defined data types by executing the command
runppmconfig with the option -datatypes on the PPM server computer (see PPM Operation
Guide). When importing, the internal name (datatype name XML tag) of the data type to be
imported is checked. If a data type with the same name already exists in the PPM system, this
data type is not imported and a corresponding message is output.

Once imported, user-defined data types cannot subsequently be deleted from the PPM system. It
is possible to overwrite their definition only by specifying the -overwrite option in the
runppmconfig command line program.

6.1.2.1 User-defined data types in multi-byte character
sets

The following extract from the XML configuration file for data types shows an example of the
definition options for a user-defined data type when using a multi-byte character set:

Example with base scaling and one other scaling:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE datatypelist SYSTEM "userdefdatatypes.dtd">
<datatypelist>
...
<datatype name="COST">
<description language="en" name="Costs"/>
<description language="en" name="Costs" />
<description language="el" name="έξοδα"/>
 <basescale name="EUR">
 <description language="de" name="EUR"/>
 <description language="en" name="EUR"/>
 <description language="el" name="ΕYP"/>
 </basescale>
 <scale factor="0.001" name="TEUR">
 <description language="de" name="TEUR" />
 <description language="en" name="EUR Thousands" />

PPM CUSTOMIZING

15

 <description language="el" name="Χ.EYP"/>
 </scale>
</datatype>
...
</datatypelist>

You can also carry out the user-specific configuration of the file DataTypes.xml using PPM
Customizing Toolkit.

6.2 Definition of attribute types and attribute type
groups

All attribute types and attribute type groups known to the PPM system are defined in the XML
configuration files *_AttributeNames_<language>.xml and *_AttributeTypes.xml.

Specify id="auto" in the attribute type definition if you want attribute type identifiers or
attribute type group identifiers to be automatically generated during the import.

6.2.1 Definition of attribute types
Attributes are defined by specifying a unique identifier (id XML attribute), a unique internal name
(key XML attribute) and a data type (type XML attribute). Attributes can optionally be assigned
to an attribute group (group XML attribute).
The identifiers up to 500 are internally reserved for default attributes. These cannot be used for
configuration.

6.2.2 Definition of attribute type groups
Attribute groups are defined by specifying a unique identifier (id XML attribute) and a unique
internal name (key XML attribute).
The optional specification of the internal name of the superordinate attribute type group (group
XML attribute) allows attribute type groups to be arranged in a tree structure.

The internal name (key XML attribute) is stated in the subsequent name.

Use the AG_INVISIBLE attribute group pre-assigned by the system for attributes you do not
want to be displayed in the PPM user interface in the Object attributes or Process attributes
dialog box in the EPC view .
By default, this attribute group is not defined.

6.2.3 Configuration of attribute types and attribute type
groups

The XML configuration files *_AttributeNames_<language>.xml and
*_AttributeTypes.xml are defined by the following document type definitions:

PPM CUSTOMIZING

16

ATTRIBUTETYPES.DTD

ATTRIBUTENAMES.DTD

The language-specific attribute names are assigned to the attribute definition using the attribute
names (key XML attribute).

The files *_attributetypes.xml and *_attributenames.xml are used to define a PPM attribute
and an attribute group.

XML FILE *_ATTRIBUTETYPES.XML

The file contains the following information:

Attribute type group:

 Unique attribute type group identifier (optional)

 Unique attribute type group name (optional)

 Attribute type group name for higher level group (optional)

Attribute type:

 Unique identifier (number above 501)

 Unique name

 Data type

 Attribute type group (optional)

PPM CUSTOMIZING

17

The following file extract shows the definition of a default attribute type and a user-defined
attribute type:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE attributetypes SYSTEM "attributetypes.dtd">
<attributetypes>
 ...
 <groupdefinition id="2" key="AG_MERGER"
 group="AG_INTERNAL"/>
 ...
 <groupdefinition id="5" key="AG_COSTING"/>
 ...
 <attributedefinition key="AT_EPK_KEY"
 type="TEXT" group="AG_MERGER" />
 ...
 <attributedefinition id="1000" key="AT_LS"
 type="TIMESPAN" group="AG_COSTING"/>
 ...
</attributetypes>

XML FILE *_ATTRIBUTENAMES.XML

The file contains the following information:

 Language-specific attribute type names

 Language-specific attribute type group names

You must create a separate attribute type name and attribute type group configuration file for
each PPM interface language you want to use.

The following extract from the file *_attributenames_de.xml contains the attribute type
names in German:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE attributenames SYSTEM "attributenames.dtd">
<attributenames language="de">
 ...
 <group key="AG_MERGER" name="Merger"/>
 ...
 <attribute key="AT_EPK_KEY" name="EPK-Schlüssel"/>
 ...
</attributenames>

The following extract from the file *_attributenames_en.xml contains the attribute type
names in English:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE attributenames SYSTEM "attributenames.dtd">
<attributenames language="en">
 ...
 <group key="AG_MERGER" name="Merge"/>
 ...
 <attribute key="AT_EPK_KEY" name="EPC key"/>
 ...
</attributenames>

PPM CUSTOMIZING

18

6.2.3.1 Attribute type and attribute type group definition
in multi-byte character sets

The following extracts from the XML configuration files for attribute type definitions show
examples of the definition options for user-defined attribute types and attribute type groups
when using a multi-byte character set.

ENTRIES IN THE FILE ATTRIBUTETYPES.XML:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE attributetypes SYSTEM "attributetypes.dtd">
<attributetypes>
...
<attributedefinition id="5013" key="ΙΔ_ΧΡ_ΕΠΕΞ"
 type="TIMESPAN" group="ΣΥΝ_ΙΔ_ΔΕΙΚΤ_ΧΡΟΝ"/>
...
</attributetypes>

CORRESPONDING ENTRIES IN THE FILE ATTRIBUTENAMES_EL.XML:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE attributenames SYSTEM "attributenames.dtd">
<attributenames language="el">
 ...
 <attribute key="ΙΔ_ΧΡ_ΕΠΕΞ" name="χρόνος επεξεργασίας"/>
 ...
 <group key="ΣΥΝ_ΙΔ_ΔΕΙΚΤ_ΧΡΟΝ" name="δείκτης χρόνου"/>
 ...
</attributenames>

PPM CUSTOMIZING

19

7 Process merge
In order to be able to merge the imported fragments into complete process instances, you require
information from the source system, which PPM uses to identify the fragments belonging to a
process instance and to reconstruct the time sequence of the fragments (process logic).

The process merge runs in two stages.

Procedure

1. All fragments belonging to a process instance are identified and collected into a process
instance (process merge).

2. The unlinked fragments of a process instance are linked to one another (event merge). The
event merge can be either key based or based on sort order.

7.1 Process hierarchies
Similar to the assignments in ARIS, subordinate process instances can be assigned to functions in
PPM. In the EPC view, these functions are given the assignment symbol familiar from ARIS. The
assigned process instance can be displayed using the Open assignment option in the pop-up
menu for the function.

The chart below illustrates the hierarchical refinement of a process instance:

PPM CUSTOMIZING

20

Each assigned process instance is a separate process instance. The process hierarchy only
represents an assignment between process instances. It can have any level of detail. All process
instances within a refinement make up a hierarchy structure. Each process instance involved in
this hierarchy structure is on a different hierarchy level.

A process instance may not be assigned to multiple functions within a hierarchy structure, as the
multiple consideration of attribute values can lead to incorrect results in the measure calculation.

Warning

When setting up a hierarchy structure for your processes, ensure that each process instance
within the hierarchy structure is assigned to a different process type group.

Each function to which a process instance is assigned represents the subordinate process
instance. The AT_INTERNAL_HIER_REF function attribute is a unique reference to the
subordinate process instance. The value of the hierarchy key for the subordinate process instance
corresponds to the value of the AT_INTERNAL_HIER_REF function attribute. The value of the
function attribute is extracted from the source system adapter.

Warning

The AT_INTERNAL_HIER_REF function attribute cannot be changed later. When setting up
process hierarchies, the attribute value at the time of importing is decisive.

The process attributes of the assigned process instance are copied to the function of the
higher-level process instance as part of measure calculation in addition to the existing function
attributes. Existing attributes of the function are overwritten by attributes of the assigned process
instance with the same name. If different measures are calculated for the assigned process
instance due to assignment to a different process type when processing the imported process
instance fragments (runppmimport), the attributes already copied to the function of the higher
level process instance are not deleted and continue to be included in analyses. The function also
retains the copied attributes if the assigned process instance is deleted.

To delete the copied attributes for functions with an assigned process instance, you need to
re-import the process instance fragments for the higher-level process instance. Appropriate
object key rules ensure that the functions are overwritten when the import is repeated.

7.2 Key rules
The key rules are divided into five categories according to their purpose:

Category XML element Description

Process key
rules

processkeyrule Merge associated
fragments in a process
instance

Hierarchy
key rules

hierarchykeyrule Creation of process
hierarchies

PPM CUSTOMIZING

21

Category XML element Description

Shared fragment
key rules

sharedfragmentkeyrule Copying shared
fragments in process
instances

Merge key
rules

mergekeyrule Combine merge events
within a process
instance

Object key
rules

internalobjectkeyrule Identification of
identical objects

Warning

Do not use leading or trailing whitespace characters (such as a blank space or a tab) in keys
created by key rules, in attributes that contribute to key rules, or in attributes that refer to any of
the keys (for example, AT_INTERNAL_HIER_REF).

7.2.1 Process key rules
Process keys uniquely assign process instance fragments to a process instance. Process instance
fragments with identical process keys are written unlinked to a process instance.

Process keys can be created efficiently by selecting process instance-specific attribute values (for
example, Order number or Processing number).

When importing, at least one process key must be created for each process fragment.

Example

The file extract defines a process key rule, which uses the AT_AUFTRAGSNUMMER attribute
type for the EVT_START and EVT_END events to create the process key.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <processkeyrule>
 <refobjects>
 <refobject objecttype="OT_EVT">
 <objectname name="EVT_START"/>
 <objectname name="EVT_END"/>
 </refobject>
 </refobjects>
 <keyparts>
 <keypart attributetype="AT_AUFTRAGSNUMMER"/>
 </keyparts>
 </processkeyrule>
 ...
</keyrules>

PPM CUSTOMIZING

22

Warning

Process fragment instances, for which no process key can be calculated, are not imported as they
cannot be assigned to a process instance. A warning message is output.

RETAIN ALL PROCESS ATTRIBUTES WHEN MERGING

By default, when merging two process instances only the process attributes of the most recent
fragment (imported later) are retained in the resulting fragment.

When merging two process instance fragments, if the combined set of process attributes for both
fragments is to be transferred to the merged fragment, you need to overwrite the default
behavior by specifying the ZRetainingProcessAttributesPMAlgo class. The following file
extract illustrates the merge configuration:

...
<mergerconfig>
 <mergehandling>
 <processmerge>
 <algorithm classname="com.idsscheer.ppm.server.
 merger.merger.impl.ZRetaining
 ProcessAttributesPMAlgo"/>
 </processmerge>
 ...
 </mergehandling>
</mergerconfig>
...

The Java class used is a component of the standard PPM installation.

7.2.2 Hierarchy key rules
Hierarchy key rules assign process instances to a higher-level function and are used to create
process hierarchies (see chapter Process hierarchies (page 19)). They can be shown as process
hierarchy keys in the detailed view of the process instance.

The hierarchy key rules are applied to all imported process instances.

Example

For the functions with the identifiers FCT_ANGEBOT_ERSTELLEN, FCT_AUFTR_ANLEGEN
and FCT_RECHNG_ERSTELLEN a hierarchy key rule is generated that creates a hierarchy key
from the values of the AT_AUFTRAGSNUMMER, AT_RECHNUNGSNUMMER and
AT_ANGEBOTSSNUMMER attributes.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <hierarchykeyrule>
 <refobjects>
 <refobject objecttype="OT_FUNC">
 <objectname name="FCT_ANGEBOT_ERSTELLEN"/>
 <objectname name="FCT_AUFTR_ANLEGEN"/>
 <objectname name="FCT_RECHNG_ERSTELLEN"/>

PPM CUSTOMIZING

23

 </refobject>
 </refobjects>
 <keyparts>
 <keypart attributetype="AT_AUFTRAGSNUMMER"/>
 <keypart attributetype="AT_RECHNUNGSNUMMER"/>
 <keypart attributetype="AT_ANGEBOTSSNUMMER"/>
 </keyparts>
 </hierarchykeyrule>
 ...
</keyrules>

7.2.3 Shared fragment key rules
Shared fragment keys assign shared fragments to process instance fragments. Shared fragments
are special process fragments, which contain exclusively functions involved in several process
instances. As these functions are only executed once in the source system but occur in several
process instances, they are called shared functions.

Shared fragments are imported in graph format using the XML import. The definition of the graph
for a shared fragment contains the AT_IS_SHARED_FRAGMENT process instance attribute
with the value TRUE. All functions of a shared fragment must be identified as shared functions by
the value TRUE for the AT_IS_SHARED_FUNCTION function attribute. During importing, at
least one shared fragment key is calculated for each imported shared fragment. Shared
fragments for which no key can be calculated are not imported.

The shared fragment key rules are applied to all imported process instance fragments. During
subsequent processing (rumppmimport) all fragments (shared fragments and process instance
fragments) for which identical shared fragment keys have been calculated are written to a
process instance and then linked using the merge rules.

The shared fragment key copies the shared fragments to a process instance. To link shared
fragments with one another or with normal process instance fragments, appropriate rules are
specified, which depend on the merge procedure used.

You can use a shared fragment key only once for copying a process fragment to a process
instance. After the first use, the key is removed from the process instance. Therefore, copies of
shared fragments are not updated in a process instance when a shared fragment changes.

Example

A shared fragment key rule is created for the events with the identifiers EVT_ACE and EVT_GIK,
which generates a shared fragment key from the value of the AT_XYZ attribute.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <sharedfragmentkeyrule>
 <refobjects>
 <refobject objecttype="OT_EVT">
 <objectname name="EVT_ACE"/>
 <objectname name="EVT_GIK"/>
 </refobject>
 </refobjects>
 <keyparts>

PPM CUSTOMIZING

24

 <keypart attributetype="AT_XYZ"/>
 </keyparts>
 </sharedfragmentkeyrule>
 ...
</keyrules>

7.2.4 Merge key rules
Merge key rules are used for merging merge events within a process instance. In this way, the
process instance fragments assigned using process keys are linked to form a process instance.

Merge keys are calculated from particular object attributes of the process instance fragment.
They are used to reconstruct the process logic of the process instance and the unlinked fragments
are linked accordingly.

PPM differentiates between two merge procedures:

 Key-based merge

 Merge based on sort order

The relevant merge procedure is specified in the XML configuration file *_merger.xml. The
structure of this file is specified by the DTD mergerconfig.dtd.

FILE MERGERCONFIG.DTD (PART 1)
<!ELEMENT mergerconfig (mergehandling, connectorhandling?)>
<!ELEMENT mergehandling (sharedfragmentmerge?, processmerge?, eventmerge+)>
<!ATTLIST mergehandling eventmode (startevent | endevent | importtime) "importtime">
<!ELEMENT sharedfragmentmerge (algorithm)>
<!ELEMENT processmerge (algorithm?, mergeattributes?)>
<!ATTLIST processmerge

mode (replace|update) 'replace'>

<!ELEMENT eventmerge (mode, condition?, algorithm?)>
<!ATTLIST eventmerge

key ID #IMPLIED
priority CDATA #IMPLIED>

<!ELEMENT condition EMPTY>
<!ATTLIST condition

classname NMTOKEN #REQUIRED
value (TRUE|FALSE) 'TRUE'
comment CDATA #IMPLIED>

<!ELEMENT algorithm EMPTY>
<!ATTLIST algorithm

classname NMTOKEN #REQUIRED
comment CDATA #IMPLIED>

<!ELEMENT mergeattributes (attribute+)>
<!ELEMENT attribute EMPTY>
<!ATTLIST attribute

key CDATA #REQUIRED>

<!ELEMENT mode (keymerge | sortmerge)>
<!ELEMENT keymerge EMPTY >
<!ELEMENT sortmerge (criterion*, algorithm?)>
<!ELEMENT criterion EMPTY>
<!ATTLIST criterion

name NMTOKEN #REQUIRED>

PPM CUSTOMIZING

25

XML tag Description

mergerconfig Grouping of merge configuration

mergehandling Merge type to be configured. At least the
eventmerge element must be specified.

sharedfragmentmerge
(optional)

Algorithm differing from the default algorithm
for merging the shared fragments with process
instance fragments

processmerge
(optional)

Algorithm differing from the default algorithm
for merging the process instance fragments.
Available for selection are the modes Replace
or Update. The default value is Replace.

eventmerge Algorithm differing from the default algorithm
for merging the merge events

key
(optional)

ID that can be used to reference the
eventmerge element.

priority
(optional)

Priority of the eventmerge element – the lower
the integer value, the higher the priority.

condition
(optional)

Condition for merging of merge events

classname Name of JAVA class, which checks the specified
condition

value
(optional)

Condition is met if checking by the JAVA class
returns the specified value (TRUE or FALSE).
The default value is TRUE.

algorithm
(optional)

Calculation rule (JAVA class)

classname JAVA class that implements a particular
calculation rule

mode Merge procedure for event merging

keymerge Key-based event merge based on defined
merge keys

sortmerge Event merge based on sort order of functions

criterion Criterion (function attribute) to be used as a
basis for sorting the fragments. Multiple criteria
can be specified.

name Name of function attribute

PPM CUSTOMIZING

26

FILE MERGERCONFIG.DTD (PART 2)
<!ELEMENT connectorhandling (multiindegreehandling?, multioutdegreehandling?,
andhandling?, orhandling?, xorhandling?)>
<!ELEMENT multiindegreehandling (algorithm) >
<!ELEMENT multioutdegreehandling (algorithm) >
<!ELEMENT andhandling (algorithm) >
<!ELEMENT orhandling (algorithm) >
<!ELEMENT xorhandling (algorithm) >

XML tag Description

connectorhandling
(optional)

Handling of connectors in process graphs by
specifying a JAVA class (algorithm)

multiindegreehandling
(optional)

Algorithm, which controls the inserting of
connectors with multiple incoming
connections for the object merge

multioutdegreehandling
(optional)

Algorithm, which controls the inserting of
connectors with multiple outgoing
connections for the object merge

andhandling
(optional)

Algorithm for handling of AND connectors

orhandling
(optional)

Algorithm for handling of OR connectors

xorhandling
(optional)

Algorithm for handling of XOR connectors

Example

For linking process instance fragments, the key-based event merge is used.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mergerconfig SYSTEM "mergerconfig.dtd">
<mergerconfig>
 ...
 <mergehandling>
 <eventmerge>
 <mode>
 <keymerge/>
 </mode>
 </eventmerge>
 </mergehandling>
 ...
</mergerconfig>

During the event merge, the combined set of attributes of both merge events is copied to the
remaining event. Existing object attributes are not overwritten. The first merge event imported is
deleted.

PPM CUSTOMIZING

27

7.2.4.1 Key-based merge
The key-based merge is used to merge events with identical merge keys. The first merge event
imported is deleted and the number of identical merge keys is reduced. The merge process is
repeated until no more identical merge keys are found within the current process instance.

Merge key rules are defined in the XML file KeyRules.xml. This is done by specifying the
attributes of a fragment event involved in the creation of the merge key. The merge key itself is
created by combining the specified attribute values.

EXAMPLE

The file extract below defines a merge key rule, which uses the internal object name of the event
(AT_OBJNAME_INTERN attribute type) to create the merge key for the start and end event in
a process instance fragment. As several fragments with the same fragment definition can occur
in a process instance, the merge key is extended to include the value of the AT_END_TIME
attribute.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <processkeyrule>
 ...
 </processkeyrule>
 ...
 <mergekeyrule>
 <refobjects>
 <refobject objecttype="OT_EVT">
 <objectname name="EVT_START"/>
 <objectname name="EVT_END"/>
 </refobject>
 </refobjects>
 <keyparts>
 <keypart attributetype="AT_OBJNAME_INTERN"/>
 <keypart attributetype="AT_END_TIME"/>
 </keyparts>
 </mergekeyrule>
 ...
</keyrules>

7.2.4.2 Merge based on sort order
The merge based on sort order merges events based on particular sort criteria. Any number of
sorting criteria can be specified in the form of function attribute types. The following event for a
function is merged with the predecessor event of the following function.

By default, alphanumeric and chronological sorting procedures are implemented in PPM. The
method used is specified by the data type of the specified sorting criterion.
An example of a sorting criterion could be the AT_END_TIME function attribute with the TIME
data type.

In a merge based on sort order, the imported process instance fragments may not contain rules.
Process instance fragments with sequential functions are divided into minimal EPCs
(event-function-event).

PPM CUSTOMIZING

28

Warning

Make sure that the sorting criterion you defined is available at each function of the instances to be
merged and includes the corresponding values.

In PPM 4.0 and above, you can use both merge methods in a client configuration.

Example

The AT_END_TIME function attribute is used for the merge based on sort order. The time stamp
must be specified for each function of the instance.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mergerconfig SYSTEM "mergerconfig.dtd">
<mergerconfig>
 ...
 <mergehandling>
 <eventmerge>
 <mode>
 <sortmerge>
 <criterion name = "AT_END_TIME" />
 </sortmerge>
 </mode>
 </eventmerge>
 </mergehandling>
 ...
</mergerconfig>

If the sort attribute for several functions has the same value, AND rules are used to create parallel
paths in the merged process instance.

Example

As the sort criterion used (AT_END_TIME) returns an identical value for the two functions FCT
1 and FCT 2, AND rules are used to create a parallel path in the merged process instance.

PPM CUSTOMIZING

29

7.2.4.3 Combining merge methods
In order to be able to merge fragments using different methods, you need to define multiple
merge methods. To do this, the key and priority attributes are added to the merger
configuration (eventmerge XML element).
The value of the key attribute specifies the name of the merge method and is referenced by the
AT_INTERNAL_EVENT_MERGE_MODE graph attribute for fragments to be imported. If
fragments with different merge methods are merged during an import operation, the method with
the lowest priority (priority XML element) is used.

The default merge method is used for fragments for which the
AT_INTERNAL_EVENT_MERGE_MODE attribute is not specified. The default method is the
one that is defined in the merge configuration without specifying a key.

Warning

Specify different priorities for all merge methods.

To specify the merge method to be used for different system event types, specify the key for the
relevant merge method in the AT_INTERNAL_EVENT_MERGE_MODE process attribute for the
fragment definition EPCs. All system events imported with this fragment definition are then
automatically merged using the specified method.

Warning

If the merge method specified in the fragment to be imported does not exist, the fragment is not
imported and an error message is displayed. The error message is also saved in the
AT_MERGE_ERROR_MESSAGE attribute for the corresponding fragment. In addition, the value
true is entered for the AT_MERGE_ERROR_FLAG attribute.

Example

The following merge configuration is used for the data import and defines 3 methods:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mergerconfig SYSTEM "mergerconfig.dtd">
<mergerconfig>
 <mergehandling>
 <eventmerge priority="10">
 <mode>
 <keymerge/>
 </mode>
 </eventmerge>
 <eventmerge key="SORTMERGE_ID" priority="3">
 <mode>
 <sortmerge>
 <criterion name = "AT_ID" />
 </sortmerge>
 </mode>
 </eventmerge>
 <eventmerge key="SORTMERGE_DATE" priority="4">
 <mode>
 <sortmerge>
 <criterion name = "AT_START_TIME" />
 </sortmerge>
 </mode>
 </eventmerge>

PPM CUSTOMIZING

30

 </mergehandling>
</mergerconfig>

Fragments without the AT_INTERNAL_EVENT_MERGE_MODE attribute are merged using the
key-based merge method. Fragments with the attribute value SORTMERGE_ID are merged
based on sort order according to the AT_ID function attribute. Fragments with the attribute value
SORTMEGRE_DATE are merged based on sort order according to the AT_START_TIME
function attribute.

7.2.5 Object key rules
Object key rules are used when re-importing data to identify and overwrite identical objects. Two
event or function objects are identical if the same object key has been calculated for them. If
objects are identified as being identical, the last object imported overwrites the previously
imported object. The process logic of the process instance is modified accordingly. The calculated
object key is written to the corresponding object as the AT_INTERNAL_OBJECT_KEY attribute
type.

Example

For all functions, the object key is created from the values of the AT_OBJNAME_INTERN and
AT_END_TIME attributes.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <processkeyrule>
 ...
 </processkeyrule>
 ...
 <internalobjectkeyrule>
 <refobjects>
 <refobject objecttype = "OT_FUNC" />
 </refobjects>
 <keyparts>
 <keypart attributetype="AT_OBJNAME_INTERN"/>
 <keypart attributetype="AT_END_TIME"/>
 </keyparts>
 </internalobjectkeyrule>
 ...
</keyrules>

Warning

When creating the object key rules, make sure that different object keys are calculated for
different object types (function or event). Overwriting objects of different types leads to
undefined results.

PPM CUSTOMIZING

31

7.2.6 Output behavior of messages
For the processkeyrule, hierarchykeyrule, mergekeyrule and sharedfragmentkeyrule
rules, you can influence the output behavior of system messages using the onmissingkeypart
XML attribute, if the sub-key specified in the keyparts XML element cannot be calculated. The
attribute can have one of the values info, warning or ignore, the default value is warning.

Attribute value Description

info The message is output as information.

warning The message is output as a warning.

ignore No message is output.

Example

If you are using the predecessor merge method, the information for calculating the key for the
preceding fragment to the first fragment in the process instance is normally missing. To suppress
the expected messages, specify the value ignore for the onmissingkeypart XML attribute.

7.2.7 Configuration file
The XML configuration file contains all key rules. A rule consists of a list of object attribute names,
whose values are used to create the keys. By default, a key is created by combining the values of
the specified attribute types. An alternative type of processing can be set by using a different Java
class (see below).

Process and hierarchy keys are saved in the database.

Shared fragment keys are also attribute types of the process instances and are saved in the
database.

Merge and object keys are written to the corresponding object as an object attribute. Merge keys
are saved in the AT_MERGE_KEY_1 to AT_MERGE_KEY_10 attribute types of the referenced
object, while the object key is saved in the AT_INTERNAL_OBJECTKEY attribute type.

PPM CUSTOMIZING

32

FILE KEYRULES.DTD (PART 1):

FILE KEYRULES.DTD (PART 2):

All of the rules specified in the configuration file reference the AT_OBJNAME_INTERN object
attribute.

The refobjects XML element specifies a list of objects to which the relevant rule relates. In the
refobject XML element, the objecttype XML attribute specifies the object type and the

PPM CUSTOMIZING

33

objectname XML element specifies an object identifier. Several objectname XML elements can
be specified.

As the key parts (keyparts XML element), specify the names of the attributes to be used to
generate the key.

If you want to use a processing type other than combining, in the algorithm XML element specify
the name of the Java class (classname XML attribute), which implements a different algorithm
for processing the key attribute values.

Warning

The fixed attributes (AT_MERGE_KEY_1 to AT_MERGE_KEY_10) are provided to store
calculated merge keys. They may not be changed or assigned values from the XML import.

Keys are calculated when importing the process instance fragments. If you change the key rules
for an existing process type, you need to import all process instance fragments of this process
type again. Otherwise the subsequent merging of the process instances will lead to unwanted
results. Changes to key rules for process instance fragments in a process for which process
instances already exist in the PPM system should therefore only be made with extreme caution.
Extending the rules when adding a new process type to the PPM system is not so critical if the
existing process instances remain unaffected.

7.3 Process fragment merge
For a process merge you can select either the Replace or the Update mode.

PPM Customizing Toolkit provides two merge variants, Replace attributes/objects (default)
and Merge attributes/objects, in the Merge component of the Process merge module. By
default, the Replace attributes/objects (default) merge mode is activated.

The Replace and Update modes only affect process merge. The event merge works the same for
both.

In the merger configuration (page 24) (mergerconfig.dtd), you can specify for each PPM client
whether attributes are to be replaced or merged during a merge.

7.3.1 Merge mode "Replace"
In Replace merge mode, the process attributes of the newer (last imported) process instance
(except for the merge attributes) are transferred to the resulting fragment. For identical functions
and events (identical internal object key), the last imported (newer) object replaces the older
object including all attributes. Only object attributes and organizational units of the newer (last
imported) object are retained. The AT_ORIG_EPK_ID determines which object is newer.

As an option, you can specify a list of process attributes to be transferred from an older process
instance to the resulting fragment when merging fragments. The process attribute of the
previously imported fragment or the existing process instance is overwritten with the process
attribute of the fragment imported later.

PPM CUSTOMIZING

34

In the mergeattributes XML element in the merge configuration, specify a list of process
attributes to be transferred when merging fragments. All other process attributes are ignored.

Example

The merge configuration file extract below causes the AT_SAPSYSTEM and AT_SAPCLIENT
process attributes to the resulting fragment or an existing process instance when merging
fragment instances.

<mergerconfig>
 <mergehandling>
 <processmerge>
 <mergeattributes>
 <attribute key = "AT_SAPSYSTEM"/>
 <attribute key = "AT_SAPCLIENT"/>
 </mergeattributes>
 </processmerge>
...
 </mergehandling>
</mergerconfig>

Tip

Transferring process attributes enables you to directly overwrite dimension values based on
process attributes by importing a fragment that contains only the process attribute with a new
value for which the dimension has been created.

Please remember that existing process attributes will be overwritten when you copy object
attributes (see Attribute copy rules chapter) at a later time.

If the process attribute is specified for multiple fragments with the same process key, and the
import of all fragments is split over several import operations, it is not possible to ensure that the
attribute value of the last fragment imported will be transferred to the resulting fragment.

7.3.2 Merge mode "Update"
In Update merge mode the process attributes of the newer (last imported) process instance are
merged with the process attributes of the older process instance. The same applies to functions
with function attributes and associated organizational units.

TIME OF IMPORT AT THE ATTRIBUTE LEVEL

The time of import is the factor in Update mode which determines which object is newer. The
time of import is recorded for process instances, functions, events, organizational units (each as
AT_ORIG_EPK_ID), and at the attribute level. After import, each attribute's time of import is
known. The time of import is written to the imported EPC during XML import or process import.

If the time of import is unknown for an attribute (for example, for inventory data imported in
Replace merge mode) the time of import of the object (function, process, etc.) that the attribute
is assigned to is used.

PPM CUSTOMIZING

35

ADDITIVE MERGE AT THE FUNCTION LEVEL

If two functions with identical internal object keys are identified during the merge they will be
merged as follows.

1. The newer function (last imported) including its attributes and organizational units will be
transferred to the merged process instance.

2. All attributes of the old function are copied to the new function. If an attribute exists at both
functions the attribute of the old function will be copied if it is newer.

3. All organizational units of the old and the new function will be merged. The following chapter
describes the merging of organizational units.

ORGANIZATIONAL UNITS

When merging two functions all organizational units of the old function are copied to the new
function. If the same organizational unit exists at both functions the newer organizational unit
including its associated connection and attributes will be retained. In this case, attributes of the
connection assigned to the older organizational unit and attributes of the older organizational unit
will not be transferred.

EQUALITY OF ORGANIZATIONAL UNITS

1. During the merge, the AT_OBJNAME attribute determines if two non-anonymized
organizational units are identical.

For an anonymized organizational unit (that is, its original object name was changed) to be
identified as identical during a reimport, an internal object key
AT_INTERNAL_OBJECT_KEY must exist at the organizational unit. The object key is
defined using object key rules.

2. Anonymized and non-anonymized organizational units are identical when the object key
AT_INTERNAL_OBJECT_KEY matches.

3. Two anonymized organizational units are identical when the object keys AT_OBJNAME and
AT_INTERNAL_OBJECT_KEY match.

TIME OF IMPORT OF THE ORGANIZATIONAL UNIT

If no AT_ORIG_EPK_ID key is defined for an organizational unit the AT_ORIG_EPK_ID key of
the associated function is used to determine the time of import of the organizational unit.

ADDITIVE MERGE AT THE PROCESS LEVEL

During the merge, all attributes of the newer and older process instance are copied to the
resulting fragment. If an attribute exists at both process instances the newer attribute is
transferred.

ADDITIVE MERGE AT THE EVENT LEVEL

If two events with identical internal object keys are identified during the merge they will be
handled like in Replace mode. This means that the newer event replaces the older event and that
attributes of the older event are not transferred to the newer event.

PPM CUSTOMIZING

36

CONFIGURATION

The DTD mergerconfig.dtd (page 24) contains the Replace and Update modes for configuration.

<!ELEMENT processmerge (algorithm?, mergeattributes?)>
<!ATTLIST processmerge
 mode (replace|update) 'replace'
>

The mode attribute is optional, and if it is missing the Replace mode is applied by default.

In Update mode, merge attributes (mergeattributes) are not evaluated. If a configuration
containing (non-empty) merge attributes is imported with the Update mode attribute a
corresponding message is output.

CHANGE THE MERGE MODE

You can change the merge mode anytime via the merge configuration. This means that you can
switch existing clients in Replace mode to Update mode.

The list of merge attributes is not used in Update merge mode.

SHARED FRAGMENT

For the merge of two shared fragments in Update mode when using the default algorithm
(ZDefaultSharedFragmentMergeAlgorithm) the same merge mode is automatically used that is
also specified in the merge configuration for the merge of two normal fragments.

SPECIAL ATTRIBUTES

Special attributes (for example, internal PPM attributes or attributes such as
AT_IS_SHARED_FUNCTION) in Update mode are handled like all other attributes.

PROCESS TYPIFICATION

To transfer process type information directly from the source system in Update mode (without
typification rules), the attributes AT_INTERNAL_PROCTYPE and
AT_INTERNAL_PROCTYPEGROUP including typification information (process type and
process type group) must be specified.

CALCULATED ATTRIBUTES

Calculated attributes at the process or at functions are also copied by the Update mode.

If a calculated attribute of the old function is copied to the new function during the merge of two
functions, and if that attribute is not calculated later, the older, calculated value would exist at the
merged function.

If you wish to turn off this behavior you need to set the parameter calcattr delete=yes for the
calculation rule. If this parameter is set attributes that cannot be calculated will be deleted later.

PPM CUSTOMIZING

37

7.4 Merge events

7.4.1 Parallel paths with multi-valued keys
If you want to merge parallel process paths again when using a key-based merge, you must
calculate several merge keys for the end events of the preceding process fragments for the start
event of the merging fragment. You specify a multi-valued attribute and a separator for this
purpose in the multikey XML element. Multi-valued means that the value of the specified
attribute is split into several parts using a separator. A merge key is calculated for each part.

Example

The fragments of a process instance are linked by the THIS_KEY and PREV_KEY merge
attributes. The key for the predecessor is saved in the PREV_KEY attribute. If a system event
has several predecessors, each key for the predecessors is written to the log file multiple times in
the PREV_KEY attribute. The attribute mapping used is configured in such a way that the
PREV_KEY attribute is instantiated with several values for the merge events as AT_KEY.

The data extraction from your source system includes the following system event:

...
 <attribute type="EVENTTYP">Change customer order</attribute>
 <attribute type="PROC_ID">123456</attribute>
 <attribute type="THIS_KEY">3</attribute>
 <attribute type="PREV_KEY">1</attribute>
 <attribute type="PREV_KEY">2</attribute>
 <attribute type="USER">Team A</attribute>
...

The mapping file used contains the following attribute mapping for start and end events:

...
<!-- mapping startevents -->
 <attribute ppmattributetype="AT_KEY">
 <multieventattributetype delimiter=";">PREV_KEY</multieventattributetype>
 </attribute>
<!-- mapping endevents -->
 <attribute ppmattributetype="AT_KEY">
 <eventattributetype>THIS_KEY</eventattributetype>
 </attribute>
...

The active merge configuration contains the following rule:

...
<mergekeyrule>
 <refobjects>
 <refobject objecttype="OT_EVT"></refobject>
 </refobjects>
 <keyparts>
 <multikey attributetype="AT_KEY" delimiter=";" />
 </keyparts>
</mergekeyrule>
...

PPM CUSTOMIZING

38

In the fragment whose start event has a THIS_KEY attribute with the value 3, the preceding
fragments whose end events have a THIS_KEY attribute with the value 1 or 2 are merged.

After merging fragments, the attributes are transferred unchanged, that is, the resulting set of
sub-keys is not written back to the merge attribute for the remaining event in consolidated form.

Example

For example, if you are using rules that calculate a merge key from the multi-valued AT_KEY
attribute, and AT_KEY has the value x;y at the system event A and the value y;z at the system
event B, the AT_KEY attribute has the value of the attribute of the system event B, assuming
that the system event B was imported later. Merging of fragments is unaffected by this, as
fragments are merged using merge keys that are already calculated during the import.

7.4.2 Merge mode
When merging the merge events, you can optionally specify which of the merge events will be
transferred to the resulting fragment using the eventmode attribute for the mergehandling
XML element in the merger configuration. Valid values are STARTEVENT, ENDEVENT and
IMPORTTIME, with a default value of IMPORTTIME.

The following event types exist:

Type Description

Start event A standard event has no predecessor (outgoing
connection only).

Coupling event A coupling event has both predecessors and
successors (incoming and outgoing connection).

End event An end event has no successors (incoming connection
only).

KEY-BASED MERGE

When using a key-based merge, the behavior when merging merge events is as follows:

eventmode Description

IMPORTTIME The event imported later is transferred regardless of
the event type.

Default value

STARTEVENT The event imported later that is not an end event is
transferred. An end event is only transferred if two
end events are being merged.

PPM CUSTOMIZING

39

eventmode Description

ENDEVENT The event imported later that is not an start event is
transferred. A start event is only transferred if two
start events are being merged.

MERGE BASED ON SORT ORDER

When using a merge based on sort order, the selected event types are given priority directly when
merging as the process instance is always broken down into individual fragments of the form
Event-Function-Event before the merge. If two merge events of the same type are being merged,
the one imported later is transferred.

7.5 Attribute copy rules
Process instance attributes are required to calculate instance-related measures and to create
dimensions. When importing data in PPM event format, attributes of the process instance
fragments cannot be imported directly because the instance fragment is created dynamically
from a fragment definition. Object attributes of the instanced process fragment are therefore
copied to the process instance.

The rules for copying object attributes to the process instance are made up of the following
sections:

 List of attributes to be copied. The specified attribute copy rule is used for each attribute type
in the list.

 Source object type of objects whose attribute type is to be copied

 Prioritized list of objects (AT_OBJNAME_INTERN object attribute) whose attribute type is to
be copied. The list of objects is processed from top to bottom. As soon as it was possible to
copy the attribute type, the next copy rule is processed.

If the attribute type is not specified for any of the objects indicated or for the process instance, the
attribute type is created with the default value specified in the #PCDATA section of the
attributspec XML element.

The following example copies the AT_ID attribute for the FCT_Create_order function to the
process instance. If the attribute cannot be accessed as it is not specified or the function does not
exist, the attribute for the next object indicated, FCT_Create_invoice is copied.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE copyattributerules SYSTEM "copyattributerules.dtd">
<copyattributerules>
 ...
 <copyattributerule>
 <attributespec srcattrname="AT_ID"/>
 ...
 <sourceobjectspec nodetype="OT_FUNC">
 <objectname name="FCT_Create_order"/>

PPM CUSTOMIZING

40

 <objectname name="FCT_Create_invoice"/>
 ...
 </sourceobjectspec>
 </copyattributerule>
 ...
</copyattributerules>

The DTD CopyAttributeRules.dtd describes the structure of the XML file for the attribute copy
rules:

All of the source object names specified in the configuration file reference the
AT_OBJNAME_INTERN attribute.

The copying of object attributes also allows you to transfer process type information directly from
the source system when using PPM event format. The attributes corresponding to the process
type and the process type group are written to the process instance objects that occur in each
process instance by mapping as the AT_PROCTYPE and AT_PROCTYPEGROUP attributes and
are copied to the process instance using the attribute copy rules.

7.6 Anonymizing
It can be useful not to display the names of the processors involved in executing a function, for
example, for data protection reasons. After initializing the PPM client database, in the PPM
front-end you can use the Organizational units administration component to specify how the
names of the processors occurring in the instance data are replaced by the names of
organizational units (anonymized).

When aggregating process instances, the information on the processor of functions is lost. To
transfer information about the processors into an aggregated EPC, they must be anonymized.

To do this, you create PPM organizational units and assign all relevant processors to
organizational units. When importing date, the names of the processors are replaced by the
names of the corresponding organizational unit.

PPM CUSTOMIZING

41

An organizational unit is defined by the following properties in the PPM system:

User interface item Description

Name Name of the organizational unit (freely
selectable)

Processor List of processors that are assigned to the
selected organizational unit

Cost rate Cost of a member of staff from an
organizational unit per unit of time. The cost
rate affects the calculation of certain measures
in the process cost calculation (see chapter
Definition of process cost measures (page
139)).

Ignore during measure
calculation

The selected organizational unit is not included
in the measure calculation. This may be
specified, for example, when processors
perform batch processing functions (so-called
batch users).

All non-assigned
processors to this
organizational unit

Processors that are not assigned to an
organizational unit are anonymized using the
name of this organizational unit.
You must define a default organizational unit in
order to be able to save the configuration. The
organizational unit must have at least one
processor.

You can use the runppmconfig command line program to export organizational units to an XML
file that you can also modify manually. For further information about the command line program,
please refer to the PPM Operation Guide.

Example

Mr Brown and Mrs Smith work in the Order acceptance department, Mr Miller in the
Accounting department. When importing data, the processors Mr Brown and Mrs Smith are
replaced by the name of the Order acceptance organizational unit, while Mr Miller is replaced by
the name Accounting, while all other processors are replaced by the name of the default
organizational unit, Not specified. The specified cost rates are used by the Measure calculator
for process cost analysis.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE orgunitlist SYSTEM "orgunits.dtd">
<orgunitlist>
 <orgunit isdefault="NO" isbatchuser="NO">
 <name>ORDER ACCEPTANCE</name>
 <costrate>15.75 EUR_PER_HOUR</costrate>
 <user>Mrs Smith</user>
 <user>Mr Brown</user>
 </orgunit>

PPM CUSTOMIZING

42

 <orgunit isdefault="NO" isbatchuser="NO">
 <name>ACCOUNTING</name>
 <costrate>25.3 EUR_PER_HOUR</costrate>
 <user>Mr Miller</user>
 </orgunit>
 <orgunit isdefault="YES" isbatchuser="NO">
 <name>Not specified</name>
 <costrate>24 EUR_PER_HOUR</costrate>
 <user>DUMMY</user>
 </orgunit>
</orgunitlist>

The document type definition orgunits.dtd for this XML file looks like this:

You can import the XML file created when initializing the database by specifying the file name, so
that anonymizing rules are available immediately.

PPM CUSTOMIZING

43

8 Process typification
Automatic assignment of process instances to a particular process type is done using a
typification rule that is registered in the process tree configuration at the corresponding process
type with its unique internal name.

The typification rule is defined as a calculation function in the measure configuration. You can
define a maximum of one typification rule per process type. See Create typification rules (page
43) for details.

Alternatively, the process typification can be done by importing values in specific attributes, the
so-called "pretypification". See Typification by attribute calculation (page 130) for details.

8.1 Create typification rules
The chapters below describe the two steps for creating a typification rule:

 Definition of a typification rule in the measure configuration

 Use of a typification rule in the process tree configuration

Use PPM Customizing Toolkit to create typification rules. This allows you to create rules easily and
avoid sources of errors, particularly with more complex calculation rules for typification rules (see
chapter Typification rules in CTK (page 130)). The changes are imported into the PPM system
by activating the configuration.

8.1.1 Measure configuration
The typification rules are defined based on attribute calculations in the measure configuration.
The calculation rule is specified in the function XML element.

XML tag Description

function name Name of the typification rule – referenced by the
typifierrule function XML element for the process
tree configuration.

resulttype Result value. Must be of the BOOLEAN type.

datatype Data type. Must be of the BOOLEAN type.

A typification rule for the above example could look like this:

Example

Extract from file Keyindicator.xml

...
<function name="typifierrule_OrderProcessing_StandardOrder"
 resulttype="BOOLEAN" datatype="BOOLEAN">
 <in>
 <constant>

PPM CUSTOMIZING

44

 <dataitem>
 C
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 <attribute name="AT_SAP_VBTYP" nodetype="OT_FUNC">
 <in>
 <constant>
 <dataitem>
 SO
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 <attribute name="AT_SAP_VKBELEGART"
 nodetype="OT_FUNC" objectname="this"/>
 </in>
 </attribute>
 </in>
</function>
...

Calling up the typifierrule_OrderProcessing_StandardOrder function (typification rule)
checks whether the process instance to be typified is typified as Order processing\Standard
order (return value = true) or not (return value = false).
The process instance is assigned to the Standard order process type under the following
condition: The process instance must contain at least one function that includes the attribute type
combination AT_SAP_VBTYP with the value C and AT_SAP_VKBELEGART with the value SO.

8.1.2 Process tree configuration
The typification rules defined previously in the file Keyindicator.xml must now be assigned to
the individual process types in the file Processtree.xml. Only one typification rule can be
specified for each process type. The typifierrule XML element is optional. If no typification rule
is specified for a process type, it is ignored during typification.

You must specify the corresponding information for the function and priority attributes. The
function attribute is used to specify the name of the typification rule you want to use for this
process type, taken from the measure configuration.

Example (extract from process tree configuration)
<processtree name="Processes">
 <processtypegroup name="OrderProcessing">
 ...
 <processtype name="StandardOrder" autovisible="TRUE">
 <typifierrule function=
 "typifierrule_OrderProcessing_StandardOrder"
 priority="0"/>
 <processparamset>
 ...
 </processparamset>
 ...
 <functionparamset>
 ...
 </functionparamset>

PPM CUSTOMIZING

45

 ...
 <useki name="..." assessment="..."/>
 ...
 <usedim name="..."/>
 ...
 </processtype>
 ...
 </processtypegroup>
 ...
</processtree>

8.1.2.1 Prioritization
A process instance is always assigned to a single process type. If several typification rules apply
to a process instance, the priority integer attribute is used to specify which process type the
process instance is ultimately assigned to. A rule with priority 0 has the highest priority and is
prioritized by the typifier.

If, for example, three typification rules with the priorities 2, 3 and 6 apply to the process
instance, it is typified with a priority of 2 in line with the typification rule. The typification rules 3
and 6 are ignored for this process instance. The typifier first of all checks whether a typification
rule with priority 0 applies to the process instance to be typified. If not, a rule checks whether the
next priority level applies and so on.
As soon as a rule applies, processing of the typification rules is ended and the process instance is
assigned to the corresponding process type.

You specify the prioritization of typification rules in the Processes CTK module using the button
Prioritize typification rules on the selected typification rule.

8.1.3 Definition of attribute calculations
To calculate a measure or create a dimension, either the value of an existing attribute is used or
the algorithm for calculation of the attribute is specified in the XML configuration file (calcattr
XML element). The specified attribute name must be contained in the imported attribute
definition for the PPM system (files AttributeTypes.xml and AttributeNames.xml). The data
type and base unit are defined by the attribute definition. The calculation of an attribute is always
made in the base unit of the attribute type. The result is also saved as a value in the base unit.

Attributes are only valid within a process instance. It is not possible to calculate attributes for
other process instances or to include them in the calculation.

The calculation of an attribute can be made dependent on other attributes, which can themselves
be calculated attributes. All attributes specified with the depends XML element are calculated
before the calculation of the current attribute is executed. Cyclic dependencies are detected
during import of the measure configuration and acknowledged by an error message.

A default value can optionally be specified (defaultvalue XML element), which can be assigned
to the attribute value if the calculation could not be successfully carried out. The default value

PPM CUSTOMIZING

46

must always be specified with a unit that is permissible for the attribute data type. This is the only
way for the value in the base unit to be calculated correctly.

If an attribute cannot be calculated and no default value is specified, the attribute is not created
for the process instance or the process instance objects and a corresponding message is output.

The XML structure for definition of an attribute calculation looks like this:

...
<calcattr name="..." type="..." objectname="..."
 scale="..." delete="...">
 <depends attrname="..." type="..."/>
 <defaultvalue>"..."</defaultvalue>

Either

 <calculation> ... </calculation>
</calcattr>
...

or

 <calcclass name="..."/>
</calcattr>
...

XML tag Description

name Internal name of the attribute to be calculated.
The attribute is created for all object types specified by
type in the process instance currently being
processed. Any existing attribute is overwritten.

type Object type to which the attribute is written

PROCESS: Calculated attribute is written to the
process instance.
OT_FUNC: Calculated attribute is written to all
functions in the process instance.
OT_ORG: Calculated attribute is written to all
organizational units in the process instance.
OT_EVT: Calculated attribute is written to all events in
the process instance.
RELATION: Calculated attribute is written to the
relation in the process instance that is specified using
relname.

relname
(optional)

Only for type="RELATION". Specifies the relation to
which the attribute calculation is to relate. To be used
instead of dependsrel.

PPM CUSTOMIZING

47

XML tag Description

objectname
(optional)

Internal name of the function
(AT_OBJNAME_INTERN object attribute) to which
the attribute is written. This option may only be used
for the calculation of function attributes. Multiple
object names are specified separated by commas, the
placeholders * and ? can be used as required in the
object name.

scale
(optional)

The result of a calculation rule is written to the
attribute in the specified scale.
The scale value depends on the data type of the
attribute on which the calculation is based.
If nothing is specified, the result is output in the base
unit for the attribute data type.

delete If the value is yes a previously calculated attribute
value is deleted before the new calculation (for
example, specified for the definition of critical time
attributes used by the Early alert system, see Time
dimensions for the Early alert system (page 176)
chapter). Default value: no

To selectively specify a calculation rule for one or more particular functions, specify the name of
the corresponding function in the objectname XML attribute.

Example

The calculation rule is only executed for functions whose internal names match the specified
pattern.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_END_TIME" type="OT_FUNC"
 objectname="FCT_AUFT??_*,
 FCT_END_*_?,
 *_AUFTRAG,FCT_AUFTR_START">
 <calculation>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

PPM CUSTOMIZING

48

The definition of a calculation rule is completed by specifying the following XML elements:

XML element Description

depends
(optional)

Name and type of an attribute (PROCESS,
OT_FUNC, OT_EVT, OT_ORG, or RELATION),
which must exist for the calculation to be executed. If
the specified attribute is a calculated attribute, this is
calculated first. The relname attribute specifies the
relation on which there is a dependency (only for
type="RELATION").
Several depends elements can be specified
simultaneously.
Not to be used in conjunction with dependsrel.

dependsrel
(optional)

Name of the relation on which there is a dependency
(only for type="RELATION"). To be used instead of
relname.
Not to be used in conjunction with depends.

defaultvalue
(optional)

Default value of the attribute if the attribute cannot be
calculated for whatever reason.

calcclass
calculation

Unique specification of the calculation rule using one
of the two XML elements.
You use calcclass to specify the algorithm by
entering a complete Java class path. Using
calculation specifies a calculation formula directly in
XML notation.

calcparam
(optional)

Only for calcclass. Transfers any number of
parameters (calcparam) when calling up a calculation
class. The unique internal name of the parameter is
defined using key and the corresponding parameter
value using value.

For calculating an attribute using the calculation XML element, a comprehensive set of rules for
the definition of calculation rules is available.

Example

The example below shows the XML definition of the calculation of the processing time for a
process instance. The processing time is defined as the difference between the earliest start time
and the latest end time of all functions in a process instance. To store the measure value, the
AT_KI_PROCESSTIME attribute (type: time span) is selected. The calculation is only to be
carried out if the two attributes AT_START_TIME and AT_END_TIME are specified for at least
one function of the process instance. This does not necessarily have to be the same function. If
the calculation fails for any reason, the result attribute is assigned the default value of 0
SECOND.

PPM CUSTOMIZING

49

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_PROCESSTIME" type="PROCESS">
 <depends attrname="AT_END_TIME" nodetype="OT_FUNC">
 <depends attrname="AT_START_TIME" nodetype="OT_FUNC">
 <defaultvalue>0 SECOND</defaultvalue>
 <calculation>
 <timespan>
 <filteredattribute name="AT_END_TIME"
 nodetype="OT_FUNC" filter="LATEST"/>
 <filteredattribute name="AT_START_TIME"
 nodetype="OT_FUNC" filter="EARLY"/>
 </timespan>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

A calculated attribute always contains the result value and the result unit. The result unit is
always specified in the base unit corresponding to that in the data type of the event attribute.

8.1.3.1 Calculation classes
This chapter describes all of the calculation rules contained in PPM, which can be specified as a
class name for calculation of an attribute using the calcclass XML element. The class name must
be specified with the Java package structure path.

Example
<calcattr name="AT_KI_FDLZWK" type="OT_FUNC">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorFDLZWK"/>
</calcattr>

The fixed part of the class name is omitted below. Instead of
com.idsscheer.ppm.server.keyindicator.attributecalculator.ZAttributeCalculatorFDLZ
WK,
 ZAttributeCalculatorFDLZWK is specified.

8.1.3.1.1 Log output for calculation classes
You have the option of specifying which messages are to be output for each calculation class using
the loglevel XML attribute. Enter one of the values SILENT, DEFAULT, or VERBOSE.

The following table shows the default relationship between the loglevel XML attribute and the
type of messages that are output from the calculation class. The message type is determined by
the assigned logger module in the client-specific configuration file
Server_Log_settings.properties.

PPM CUSTOMIZING

50

Log level Description

SILENT All log output is suppressed.

DEFAULT Warnings and error messages are output.

VERBOSE Information, warnings, and error messages are output.

Server_Log_settings.properties file extract:

...
#MODULE_CALCCLASS_SILENT
log4j.logger.LOG.CCS=FATAL
#MODULE_CALCCLASS_DEFAULT
log4j.logger.LOG.CCD=WARN
#MODULE_CALCCLASS_VERBOSE
log4j.logger.LOG.CCV=INFO
...

Example

The following file extract specifies that information, warning, and error messages are not to be
output for the calculation of the function cycle time.

...
<calcattr name="AT_KI_FDLZ" type="OT_FUNC"
 loglevel="SILENT">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorFDLZ"/>
</calcattr>
...

If you specify arguments in the command line to control log output, these arguments take
precedence over the specifications in Server_settings.properties. (see chapter on Common
arguments)

8.1.3.1.2 Time measures
The AT_START_TIME and AT_END_TIME function attributes are used to calculate time
measures. These attributes are created by mapping a suitable source system attribute during the
XML import.

PPM CUSTOMIZING

51

8.1.3.1.3 Function measures
The diagram below illustrates the calculation of the function measures Processing time (FBZ),
Processing span (FBZSpan), Cycle time (FDLZ), Cycle time span (FDLZSpan) and Wait time
(FLZ):

The calculation rules also apply to relations between branching rules. For analysis of the Cycle
time and Wait time measures for function 2, it is assumed that the start and end time of function
3 are after the start and end time of function 4.

The calculated measure attribute is written to the function at which the arrow in the diagram
ends. Negative time differences are returned as a measure value of 0.

PPM CUSTOMIZING

52

When calculating the Processing span and Cycle span measures, all functions with the same
name are taken into account (AT_OBJNAME function attribute), even if these occur within a
process instance in independent process chains.

Warning

If only end times can be extracted from the source system, only the Cycle time and Cycle span
measures can be calculated.

FBZ

Name Function processing time

Type Time span

Source
attributes

AT_START_TIME
AT_END_TIME

Result Difference between end time and start time of a
function instance

FBZWK

As for FBZ, but based on the factory calendar.

FBZSPAN

Name Function processing span

Type Time span

Source
attributes

AT_START_TIME
AT_END_TIME

Result Difference between latest end time and earliest start
time of all function instances with the same name

Note The result is saved for each of the function instances
with the same name. If a function only occurs once in a
process instance, FBZSpan is the same as FBZ.

FBZSPANWK

As for FBZSpan, but based on the factory calendar.

PPM CUSTOMIZING

53

FDLZ

Name Function cycle time

Type Time span

Source
attributes

AT_END_TIME

Result Difference between the end time of a function instance
and the latest end time of its preceding function
instances

Note For merging rules, the end times of all preceding
function instances are taken into account.

FDLZWK

As for FDLZ, but based on the factory calendar.

FDLZWKBYPARAM

As for FDLZWK, but using any user-defined factory calendar. The corresponding configuration
settings are transferred in the form of parameters when calling up the class.

Warning

Note that the name (key) of each parameter is written in upper case.

<calcattr name="AT_KI_FDLZWKByParam" type="OT_FUNC">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorFDLZWKByParam">
 <calcparam key="FC_ATTRIBUTENAME" value="AT_FC_NAME"/>
 <calcparam key="FC_DIRECTORY" value="calculations\fc"\>
 </calcclass>
</calcattr>

The AT_FC_NAME attribute type, which contains the name of the factory calendar file to be
used, is specified using the FC_ATTRIBUTENAME parameter. The attribute type must be
specified for the function or process instance for which the calculation is executed and must
appear in the data files to be imported in the form <attribute
type="AT_FC_NAME">ExampleFactoryCalendar.xml</attribute>.
You specify the corresponding directory containing the factory calendar file to be used relative to
the PPM data directory in the FC_DIRECTORY parameter. The PPM data directory data_ppm is
located under <PPM installation directory>\ppm\server\bin\work\.

Example

PPM data directory: C:\SoftwareAG\ppm\server\bin\work\data_ppm

 absolute path to the directory containing the factory calendar file:
C:\SoftwareAG\ppm\server\bin\work\data_ppm\calculations\fc

 relative path to the directory containing the factory calendar file: calculations\fc.

The two parameters FC_ATTRIBUTENAME and FC_DIRECTORY must always be specified
together.

PPM CUSTOMIZING

54

The function cycle time FDLZWKByParam is calculated in the same way as the default
calculation of the FDLZWK time measure, except that the factory calendar defined by the
specified parameters is used for the calculation instead of the factory calendar imported into PPM
by default.

Configure the calculations for the FBZWKByParam, FLZWKByParam, and
PDLZWKByParam time measures in the same way, if you want to use custom factory calendar
files to calculate the standard measures FBZWK, FLZWK, and PDLZWK.

FDLZSPAN

Name Function cycle time span

Type Time span

Source
attributes

AT_END_TIME

Result Difference between the latest end time of all function
instances with the same name and the earliest end time
of all function instances preceding those function
instances

Note The result is saved for each of the function instances
with the same name. If a function only occurs once in a
process instance, FDLZSpan is 0.

FDLZSPANWK

As for FDLZSpan, but based on the factory calendar.

FLZ

Name Function wait time

Type Time span

Source
attributes

AT_START_TIME
AT_END_TIME

Result Difference between the start time of a function instance
and the latest end time of its preceding function
instances

Note For merging rules, the end times of all preceding
function instances are taken into account.

PPM CUSTOMIZING

55

FLZWK

As for FLZ, but based on the factory calendar.

8.1.3.1.4 Process measures

PDLZ

Name Process cycle time

Type Time span

Source
attributes

AT_START_TIME
AT_END_TIME

Result Difference between the latest and earliest time for the
end and start times of all function instances in the
process instance

Note This calculation method enables calculation of process
cycle times even if only AT_END_TIME is specified for
function instances, for example, when extracting from
SAP systems.

PDLZWK

As for PDLZ, but based on the factory calendar.

PDLZWKBYPARAM

As for PDLZWK, but taking into account the user-defined factory calendar Definition as for
FDLZWKByParam.

8.1.3.1.5 Frequency measures

8.1.3.1.5.1 Function measures

FEDFREQ

Name Number of executions

Type Integer

Source
attributes

AT_COUNT_PROCESSINGS

PPM CUSTOMIZING

56

Result Value of the AT_COUNT_PROCESSINGS attribute. If the
attribute is not specified for the function instance, the
sum of all AT_COUNT_PROCESSINGS attribute values
for the connections between the function instance and
the assigned organizational units is returned.

Note Source attribute values less than zero are returned as 0.

FEDFREQSPAN

Name Number of executions (span)

Type Integer

Source
attributes

AT_COUNT_PROCESSINGS

Result Sum of the values of the AT_COUNT_PROCESSINGS
attribute for all function instances with the same name.
If the attribute is not specified at a function instance, the
sum of all AT_COUNT_PROCESSINGS attribute values
for the connections between the function instance and
the assigned organizational units is used instead of the
attribute value.

Note Source attribute values less than zero are returned as 0.

FFREQ

Name Function frequency

Type Integer

Source
attributes

-

Result Is assigned the value 1.

Note When calculating the measure, the values are added
together and divided by the number of days given by the
selected scaling of a time dimension, for example,
(1+1)/365 days when using a time dimension with the
step width Yearly.

PPM CUSTOMIZING

57

FNUM

Name Number of functions

Type Integer

Source
attributes

-

Result Is assigned the value 1.

Note When calculating the measure, the values are added
together and divided by the number of days given by the
selected scaling of a time dimension, for example,
(1+1)/365 days when using a time dimension with the
step width Yearly.

FOEFREQ

Name Number of different users

Type Integer

Source
attributes

-

Result Number of different organizational units that process a
function instance. To differentiate, the AT_OBJNAME
attribute of the organizational units is used.

Note If no organizational units are specified at a function
instance, the value 1 is returned.

FOEFREQB

As for FOEFREQ, except that the value 0 is returned if no organizational units are specified at a
function instance.

8.1.3.1.5.2 Process measures

PEDFREQ

Name Number of executions

Type Integer

Source
attributes

AT_COUNT_PROCESSINGS for all function instances in
the process instance

PPM CUSTOMIZING

58

Result Sum of the values of the AT_COUNT_PROCESSINGS
attribute for all function instances in the process
instance. If the sum cannot be calculated, the result is 1.

PFREQ

Name Process frequency

Type Integer

Source
attributes

-

Result Is assigned the value 1.

Note When calculating the measure, the values are added
together and divided by the number of days given by the
selected scaling of a time dimension, for
example, (1+1)/365 days when using a time dimension
with the step width Yearly.

PINT, PINTB, PINTC

For function instances to which no processors are assigned, you can specify how they are to be
handled when calculating the Number of processors measure. To calculate the AT_KI_PINT
attribute, specify one of the following calculation classes in the measure definition:

<Class name> Description

ZAttributeCalculatorPINT Each function instance without a processor
assigned is handled like a function instance
with a new, different processor (default
setting).

ZAttributeCalculatorPINTb Any function instance without a processor
assigned will be ignored in measure
calculation.

ZAttributeCalculatorPINTc All function instances without a processor
assigned are only taken into account once
for the entire process instance, that is, the
same processor is assumed.

PPM CUSTOMIZING

59

PNUM

Name Number of processes

Type Integer

Source
attributes

-

Result Is assigned the value 1.

Note For an aggregated EPC, the number of processes
specifies the number of aggregated process instances.
EPCs whose Number of processes measure is greater
than 1 are EPCs for aggregated process instances.

8.1.3.1.5.3 Process cost rates
The PKSS and PKSR calculation classes calculate process costs for function instances. The
process costs for process instances are determined by an attribute calculator calculation rule.

PKSS

Name Process costs based on performance standard

Type Costs

Source
attributes

AT_COSTRATE (organizational units)
AT_LS (function)
AT_COUNT_PROCESSINGS (connections between
organizational units and functions)

Result Average process costs for one-off execution of a function
(see chapter Definition of process cost measures
(page 139)).

Note The performance standard (AT_LS function attribute)
must be specified at the function instance.

PKSR

Name Process costs based on processing time

Type Costs

Source
attributes

AT_COSTRATE (organizational units)
AT_KI-FBZ (function)
AT_COUNT_PROCESSINGS (connections between
organizational units and functions)

PPM CUSTOMIZING

60

Result Average process costs for one-off execution of a function
(see chapter Definition of process cost measures
(page 139)).

Note The processing time (AT_KI_FBZ function attribute) is
calculated automatically; start and end times
(AT_START_TIME and AT_END_TIME function
attributes) must be specified at the function instance.

8.1.3.1.5.4 More process measures

ISGRAPHCONNECTED

Name Linked EPC

Type Logical value

Source
attributes

-

Result Returns TRUE if all objects in the EPC are linked to one
another by a connection.

Note -

ORIGINATOR

Name Organizational unit

Type Text

Source
attributes

AT_OBJ_NAME of organizational units

Result Returns the name of the organizational units specified at
the function instance, which have the same names
(AT_OBJNAME attribute of an organizational unit).

Note If no organizational units are specified for a function
instance or if organizational units with different names
are specified, the result is a string of length 0.

PPM CUSTOMIZING

61

8.1.3.1.5.5 Environmentally relevant calculations

ZATTRIBUTECALCULATORTRANSFORMUNIVERSALMAPPINGBYPARAM

This calculation class calculates the value of an attribute using a mapping file based on another
attribute value. The attribute value transformation can be applied to both process and object
attributes.

You can control the behavior of the calculation class by specifying the following parameters:

Parameter Description Example value

attrname Source system attributes
whose values are converted

AT_PLZ

mappingfile File that contains the
mapping information
(key-value pairs)

Specify the directory
containing the mapping file
relative to the data_ppm\bin
directory. The directory is
located under <PPM
installation
directory>\ppm\server\bin\
work\.

..\custom\<ppmclient>\xml\
attrtrans\PLZ_Ort.mappings

defaultcopy Specifies the behavior if no
mapping is found for the
attribute value.
Valid values: TRUE, FALSE
TRUE: The value of the
source attribute is written
unchanged to the target
attribute.
FALSE: The value written to
the target attribute is Not
specified.

FALSE

Note that a default value specified in the calculation rule (defaultvalue XML element) is used
regardless of the defaultcopy parameter. If a default value is specified, it takes priority.

Example

In the example below, the values of the AT_PLZ process attribute are converted into the
AT_ORT process attribute. The conversion is specified in the file PLZ_Ort.mappings. If the
postal code does not relate to any city, the AT_ORT attribute is assigned the value Not
specified.

PPM CUSTOMIZING

62

EXTRACT FROM THE MEASURE CONFIGURATION
...
<calcattr name="AT_ORT" type="PROCESS">
 <defaultvalue>Not specified</defaultvalue>
 <calcclass name="com.idsscheer.ppm.server.
 keyindicator.attributecalculator
 ZAttributeCalculatorTransformUniversalMappingByParam">
 <calcparam key="attrname" value="AT_PLZ"/>
 <calcparam key="mappingfile" value="PLZ_Ort.mappings"/>
 </calcclass>
</calcattr>
...

Content of the mapping file PLZ_Ort.mappings:

66115 = Saarbruecken
10117 = Berlin Center
14612 = Falkensee

Please make sure that the mapping files you are using are regular Java property files. If they
contain umlauts or other special characters, they must be converted with native2ascii. Further
information on converting files with native content to ASCII files is available on the help pages on
the Sun Microsystems, Inc. Web page.

OBJECTCOUNTERBYEPCENV

The ObjectCounterByEpcEnv calculation class calculates the number of functions preceding or
following the current function, ignoring any events and connectors. The current function is the
function for which the calculation rule is being executed.

You can control the behavior of the calculation class by specifying the following parameters:

Parameter Description Example value

DIRECTION
(one value)

Direction of search for
predecessor or successor
functions starting from the
current function

FORWARD (successor functions)
or
BACKWARD (predecessor
functions) in relation to the
function(s) referenced in the
associated calcattr tag

ENVTYPE
(one value)

Search for functions in the
immediate vicinity of the
function or in the entire
process instance

DIRECT (only immediately
adjacent functions)

INDIRECT (all functions in the
specified search direction)

OBJECTNAMEFILTER
(optional, multiple values)

Limits the search to
particular internal function
names, with use of the
placeholders * and ? as
required. Several name
patterns are specified using

AUFT,????AUFT*

FCT_AUFT1, FCT_AUFT_2

*AUFT??

PPM CUSTOMIZING

63

Parameter Description Example value
key as follows:

OBJECTNAMEFILTER.0
OBJECTNAMEFILTER.1
OBJECTNAMEFILTER.2,
etc.

Warning

Note that the name (key) of each parameter is written in upper case.

Example (extract from measure configuration)
...
<calcattr name="AT_KI_COUNTFUNC_ENV" type="OT_FUNC"
 objectname="FCT_CREATE_ORD">
 <calcclass name="com.idsscheer.ppm.server.
 keyindicator.attributecalculator.
 ZAttributeCalculatorObjectCounterByEpcEnv">
 <calcparam key="DIRECTION" value="FORWARD"/>
 <calcparam key="ENVTYPE" value="DIRECT"/>
 <calcparam key="OBJECTNAMEFILTER.0"
 value="FCT_CREATE_*"/>
 <calcparam key="OBJECTNAMEFILTER.1"
 value="FCT_ORDER_*">
 </calcclass>
</calcattr>
...

The configured search retrieves all successor functions directly adjacent to the current function.
The set of functions retrieved is further limited by the specified filter expressions
FCT_CREATE_* and FCT_ORDER_*. The number of objects in the set of functions retrieved is
calculated and is saved in the calculated AT_KI_COUNTFUNC_ENV attribute type.

ATTRIBUTECOPIERBYEPCENV

Use this calculation class to define dependencies between several attribute calculations
(<depends attrname="..." type="..."/>). For example, it can be useful to only execute a
particular attribute calculation when certain attribute type values have already been copied to
selected functions using the AttributeCopierByEpcEnv calculation class.

In the actual calculation, a configurable search starting from the current function is used to
retrieve particular adjacent functions.
Particular attribute type values for a function are then copied to one or more functions in line with
the specified parameters. A distinction is made between the following two main cases:

PPM CUSTOMIZING

64

1. CASE

The current function will be the destination of the copying
operation<calcparam key="COPYROLE" value="DESTINATION"/>).
If several adjacent functions are retrieved, a function needs to be selected from the set of
functions retrieved to be the source of the copying operation. In this case, the COPYTYPE
parameter must have the value 1-TO-1. You should sort the set of functions, otherwise the value
is copied from a random function, or no value is copied if the function does not have the attribute.

2. CASE

The current function will be the source for the copying operation
(<calcparam key="COPYROLE" value="SOURCE"/>).
The specified attribute type values are to be copied from the starting function to another specified
function. The COPYTYPE parameter must have the value 1-TO-1 as the search can retrieve
several adjacent functions. The SORTATTRIBUTE and SORTTYPE parameters are used to
select a destination function from the set retrieved.

If the specified attribute type values are to be copied from the starting function to all adjacent
functions, the COPYTYPE parameter must have the value 1-TO-N. In this case, it is not
necessary to specify the SORTATTRIBUTE and SORTTYPE sorting parameters as there is no
need to make any further distinction between the functions found.

IDENTIFY THE SOURCE FOR COPYING

To establish the source and target for the copying operation the SORTATTRIBUTE and
SORTTYPE parameters are used to determine the function that is in first position based on the
specified sort direction.

ATTRIBUTE TYPE VALUES TO BE COPIED

The list of attribute type values to be copied is specified with consecutive numbering using the
SOURCEATTRIBUTE.<x> or DESTINATIONATTRIBUTE.<x> parameters, with <x> being
an integer. If no destination attribute type is specified, the source attribute type is created as the
destination attribute type with corresponding values for the specified functions.

You can control the behavior of the AttributeCopierByEpcEnv calculation class by specifying
the following parameters:

Parameter Description Example value

DIRECTION
(one value)

Direction of search for
predecessor or successor
functions starting from the
current function

FORWARD (successor functions)
or
BACKWARD (predecessor
functions) in relation to the
function(s) referenced in the
associated calcattr tag

PPM CUSTOMIZING

65

Parameter Description Example value

ENVTYPE
(one value)

Search for functions in the
specified direction in the
immediate vicinity of the
function or in the entire
process instance. All found
functions will be added to an
unsorted set.

DIRECT (only immediately
adjacent functions)

INDIRECT (all functions in the
specified search direction)

OBJECTNAMEFILTER
(optional, multiple values)

Limits the search to
particular internal function
names, with use of the
placeholders * and ? as
required. Several name
patterns are specified using
key as follows:

OBJECTNAMEFILTER.0
OBJECTNAMEFILTER.1
OBJECTNAMEFILTER.2,
etc.

AUFT,????AUFT*

FCT_AUFT1, FCT_AUFT_2

*AUFT??

COPYROLE
(one value)

Role of the current function
in the copying process. The
adjacent functions identified
by the search each take
opposing roles.

SOURCE (copying source)

DESTINATION (copying
destination)

COPYTYPE
(one value)

If multiple functions are
identified as the copying
destination, this parameter
specifies whether the value
is to be copied to all of them
or just to one function.

1-TO-1 (value is copied to
 one function)

1-TO-N (value is copied to
 all functions retrieved)

SORTATTRIBUTE
(optional, one value)

Attribute used as sorting
criterion if multiple functions
are retrieved. This will only
be considered if COPYTYPE
1-TO-1 is specified.

Existing
PPM attribute type

SORTTYPE
(optional, one value)

Sorting direction for the
selected sorting criterion.
This will only be considered
if COPYTYPE 1-TO-1 is
specified.

ASC (default value:
ascending)

DESC (descending)

PPM CUSTOMIZING

66

Parameter Description Example value

SORTNULLVALUES
(optional, one value)

Specifies whether objects
whose sort attribute has not
been entered are to be
sorted by maximum or
minimum value, or if an
error message is to be
output.

MIN, MAX, DEFAULT (default
value)

SOURCEATTRIBUTE.<x>
(multiple values)

The source attribute type
whose value is to be copied.
<x> is an integer and
corresponds to
destinationattribute.<x>

An existing
PPM attribute type

DESTINATION
ATTRIBUTE.<x>
(optional, multiple values)

The destination attribute
type to which the value is to
be copied. <x> is an integer
and corresponds to
sourceattribute.<x>

Existing
PPM attribute type

Example

The configured search retrieves all predecessor functions directly adjacent to the current
function, which is to be used as the source for the copying operation. If multiple predecessor
functions are retrieved, the set of functions identified is sorted in descending order using the
sorting criterion AT_START_TIME. The value of the AT_START_TIME attribute type is copied
from the latest function to the AT_END_TIME attribute type for the destination function.

EXTRACT FROM THE MEASURE CONFIGURATION
...
<calcattr name="AT_END_TIME" type="OT_FUNC" objectname="...">
 <calcclass name="com.idsscheer.ppm.server.
 keyindicator.attributecalculator.
 ZAttributeCalculatorAttributeCopierByEpcEnv">
 <calcparam key="DIRECTION" value="BACKWARD"/>
 <calcparam key="ENVTYPE" value="DIRECT"/>
 <calcparam key="COPYROLE" value="SOURCE"/>
 <calcparam key="COPYTYPE" value="1-TO-1"/>
 <calcparam key="SORTATTRIBUTE" value="AT_START_TIME"/>
 <calcparam key="SORTTYPE" value="DESC"/>
 <calcparam key="SOURCEATTRIBUTE.0"
 value="AT_START_TIME"/>
 <calcparam key="DESTINATIONATTRIBUTE.0"
 value="AT_END_TIME"/>
 </calcclass>
</calcattr>
...

PPM CUSTOMIZING

67

ATTRIBUTEAGGREGATORBYEPCENV

The AttributeAggregatorByEpcEnv calculation class adds up the specified numerical attribute
type for all adjacent functions. The result is saved in the specified attribute type.

You can control the behavior of the AttributeAggregatorByEpcEnv calculation class by
specifying the following parameters:

Parameter Description Example value

DIRECTION
(one value)

Direction of search for
predecessor or successor
functions starting from the
current function

FORWARD (successor functions)
or
BACKWARD (predecessor
functions) in relation to the
function(s) referenced in the
associated calcattr tag

ENVTYPE
(one value)

Search for functions in the
specified direction in the
immediate vicinity of the
function or in the entire
process instance

DIRECT (only immediately
adjacent functions)

INDIRECT (all functions in the
specified search direction)

OBJECTNAMEFILTER
(optional, multiple values)

Limits the search to
particular internal function
names, with use of the
placeholders * and ? as
required. Several name
patterns are specified using
key as follows:

OBJECTNAMEFILTER.0
OBJECTNAMEFILTER.1
OBJECTNAMEFILTER.2,
etc.

AUFT,????AUFT*

FCT_AUFT1, FCT_AUFT_2

*AUFT??

AGGREGATION_
ATTRIBUTE
(one value)

Attribute type to be
aggregated

Existing PPM attribute type

Example

In the example below, all successor functions are retrieved for the current function in the process
instance, whose internal name begins with the string FCT_ORDER_ or FCT_INVOICING_

PPM CUSTOMIZING

68

followed by any four characters. The AT_ORDER_VOL attribute type is aggregated for the set of
functions retrieved and saved in the AT_KI_ORDER_VOL_AGG attribute type.

EXTRACT FROM THE MEASURE CONFIGURATION
...
<calcattr name="AT_KI_ORDER_VOL_AGG" type="OT_FUNC"
 objectname="ORDER*">
 <calcclass name="com.idsscheer.ppm.server.
 keyindicator.attributecalculator.
 ZAttributeCalculatorAttributeAggregatorByEpcEnv">
 <calcparam key="DIRECTION" value="FORWARD"/>
 <calcparam key="ENVTYPE" value="INDIRECT"/>
 <calcparam key="OBJECTNAMEFILTER.0"
 value="FCT_ORDER_*"/>
 <calcparam key="OBJECTNAMEFILTER.1"
 value="FCT_INVOICING_????"/>
 <calcparam key="AGGREGATION_ATTRIBUTE"
 value="AT_ORDER_VOL"/>
 </calcclass>
</calcattr>
...

8.1.3.1.6 Relation measures

ORGCOPYATTRFROMFUNC

The OrgCopyAttrFromFunc calculation class copies the specified function attribute to the
executing organizational unit. The calculation class is only available when using the Interaction
analysis module. The result is saved in the specified attribute type for the relevant organizational
unit.

For calculations using the OrgCopyAttrFromFunc class, you must specify the following
parameters.

Parameter Description Value or example

attrname Identifier of function attribute to
be copied

AT_END_TIME

Warning

Only one function attribute can be copied for each calcattr XML element. Make sure that the data
types of the source and target attributes are compatible. Essentially, all (including user-defined)
numerical data types (see chapter on Data types (page 11): LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE) are compatible with one another. The convert
operator allows you to perform appropriate advance data type conversions (see chapter on
Logical operators (page 100)). Make sure that the conversion is always carried out in the base
scaling of the target data type.

PPM CUSTOMIZING

69

Example

In the following example from the measure configuration, the AT_OBJNAME function attribute is
copied to each executing organizational unit (type="OT_ORG") as the AT_FUNC attribute. The
source and destination attribute of the copying operation are both of the TEXT data type.

<calcattr name="AT_FUNC" type="OT_ORG">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.
 ZAttributeCalculatorOrgCopyAttrFromFunc">
 <calcparam key="attrname" value="AT_OBJNAME"/>
 </calcclass>
</calcattr>

If the AT_FUNC attribute is already specified at the organizational units, you can use
delete="yes" in the calcattr instruction to define that the copying operation should first delete
the attribute value.

The following example graphic from the Interaction analysis module shows the result of the
attribute copy operation in the open object attribute dialogs for the two organizational units
TEAM 1-A and TEAM M-A. The relevant value of the AT_OBJNAME function attribute has been
copied to each organizational unit as the Function attribute (AT_FUNC) of the function executed
by the corresponding organizational unit.

PPM CUSTOMIZING

70

8.1.3.1.7 Process conformance
From version 10.2, PPM provides a process conformance check for processes that have been
modeled in ARIS and that are to be imported into PPM.

PPM provides a special conformance configuration package that contains all customizing elements
required for calculating process conformance. Among other things, the package contains the
conformance measure Conformance rate (KI_CONFORMANCE_RATE (page 70)) calculated on
the process instances and an additional relation Conformance issue
(REL_CONFORMANCE_ISSUE (page 70)) that contains detailed information about why process
instances were considered non-conformant.

For details on the process conformance check, see the chapter ARIS process conformance check
in the documentation PPM Customizing Toolkit.

8.1.3.1.7.1 Conformance rate measure
The conformance customizing package contains the KI_CONFORMANCE_RATE measure with
source attribute AT_KI_CONFORMANCE_RATE. The attribute is calculated by calculation class
ZAttributeCalculatorConformanceRate.

In CTK, the attribute calculation class is named Conformance rate.

The XML structure of AT_KI_CONFORMANCE_RATE looks like this:

<calcattr name="AT_KI_CONFORMANCE_RATE" type="PROCESS" delete="no">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorConformanceRate"
 loglevel="VERBOSE" />
</calcattr>

The output of the calculation is a value of either 0.0 (non-conformant) or 1.0 (conformant). The
measure is aggregated by average and shows the proportion of conformant processes to all
processes.

8.1.3.1.7.2 Conformance issue relation
The Conformance issue relation consists of a source object dimension Preceding function, a
target object dimension Non-conforming function, a single level text dimension
Conformance issue type containing a keyword for the issue type, and a measure Number of
conformance issues that counts issues within a process instance.

The XML structure of the conformance issue relation REL_CONFORMANCE_ISSUE looks like
this:

<relation name="REL_CONFORMANCE_ISSUE">
 <description name="Conformance issue" language="en" />
 <sourcedim name="D_PRECEDING_FUNCTION" />
 <targetdim name="D_NONCONFORMING_FUNCTION" />
 <refki name="RNUM_REL_CONFORMANCE_ISSUE" />
 <refdim name="D_CONFORMANCE_ISSUE_TYPE" />
</relation>

PPM CUSTOMIZING

71

The relation must have a dependency on AT_KI_CONFORMANCE_RATE (page 70) due to the
internal workings of the calculation. The calculation rule is

<calcrel name="REL_CONFORMANCE_ISSUE">
 <depends attrname="AT_KI_CONFORMANCE_RATE" type="PROCESS" />
 <calcclass
name="com.idsscheer.ppm.server.keyindicator.relation.calculator.
 ZRelationCalculatorConformanceIssues" loglevel="VERBOSE" />
</calcrel>

The relation is calculated by calculation class ZRelationCalculatorConformanceIssues.

The issue type information is stored in the key attribute of the relation that was configured for the
assigned dimension. The attribute name can be freely chosen. The dimension must be a single
level text dimension with keyword D_CONFORMANCE_ISSUE_TYPE. Otherwise, the relation is
not calculated and none of the associated measures and dimensions have a value. If you need to
use a different keyword, for example because there already is another dimension
D_CONFORMANCE_ISSUE_TYPE in the customizing, you can supply that keyword to the
calculation class ZRelationCalculatorConformanceIssues as the value of the parameter
issue_type_dimension_keyword.

8.1.3.1.8 Convert time spans in milliseconds
The ZAttributeCalculatorConvertMillisecondDuration class is a parameterized attribute
calculator class to be used for converting time spans in the internal Software AG format
MillisecondDurationType into a PPM time span format. The MillisecondDurationType format
consists of a value in float format (no unit) containing a time span number in milliseconds.

Example of a time span output in PPM event format
<attribute type="DURATION_IN_MS">12618.0</attribute>

Example of the use of an attribute calculator class
<calcattr name="AT_KI_DURATION" type="OT_FUNC\" >
 <calcclass name="com.idsscheer.ppm.server.keyindicator.attributecalculator.
 ZAttributeCalculatorConvertMillisecondDuration">
 <calcparam key="ATTRIBUTE_MILLISECOND_DURATION" value="AT_DURATION_IN_MS"/>.
 </calcclass>
</calcattr>"

In this example, the attribute calculator identifies at all functions of a process instance the value
of the AT_DURATION_IN_MS attribute, interprets the value as a value in milliseconds, and
converts it into seconds. The result is rounded to full seconds and written to the
AT_KI_DURATION attribute.

A precondition for using the calculator class is that the source attribute (in the example:
AT_DURATION_IN_MS) be of the TEXT or DOUBLE type and the target attribute (in the
example: AT_KI_DURATION) be of the TIMESPAN type.

8.1.3.1.9 Mark as large EPC
The ZAttributeCalculatorFunctionCount attribute calculator writes the number of function
nodes in the EPC to a configurable attribute at the process level.

PPM CUSTOMIZING

72

Example
<calcattr name="AT_FCT_COUNT" type="PROCESS" >

<calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorFunctionCount">
</calcclass>

</calcattr>

There is no calculation for aggregated EPCs.

Further information on How to handle large EPCs is available in the documentation PPM Data
Import.

8.1.3.2 Operands
Operands provide the input values (parameters) for calculation rules. The attribute calculator
differentiates between three types of operators: Set of values, Value and Constant.

8.1.3.2.1 Set of values (XML element attribute)
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <attribute name="..." nodetype="..."
 objectname="..." onerror="..."/>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

The attribute XML element returns a set of attribute values as its result. It contains all object
attribute values (nodetype not equal to PROCESS) specified in the process instance for the
specified attribute.
For process instance attributes (nodetype="PROCESS"), the set of values only contains the
value of the attribute specified for the instance.
If the attribute is not specified within the process instance, the set of values is empty.

XML tag Description

name Internal name of the attribute
If the attribute name is specified with a * placeholder
at the end, the values of all attributes whose names
begin with the specified string are included in the set of
results.

PPM CUSTOMIZING

73

XML tag Description

nodetype Attribute type: Function (OT_FUNC) or process
instance attribute (PROCESS)

objectname
(optional)

For function attributes (nodetype="OT_FUNC") the
set of values can be limited to attribute values for the
specified object name.

If this is specified as the object name, the attribute
value is retrieved for only the function for which the
calculation is currently being executed.

If like is specified as the object name, the attribute
value of all functions with the same name is retrieved.

onerror
(optional)

Controls the behavior of the Measure calculator if no
set of attribute values can be retrieved:

EXIT_WARNING: Cancels the current attribute
calculation and outputs a warning to the log.

EXIT_NO_WARNING: Cancels the current attribute
calculation with no output of a warning to the log.

CONTINUE: Default value. The current attribute
calculation is continued with an empty set. The
superordinate operators determine error handling
procedures. There is no output in the log.

Warning

Specifying an object name of this or like in the objectname XML attribute is only permitted for
the calculation of function attributes (nodetype="OT_FUNC").

Example 1

The set of values contains all AT_KI_FDLZ attribute values (function cycle time) for functions
that have the same name (AT_OBJNAME_INTERN function attribute) as the currently
calculated function.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_FDLZSUM" type="OT_FUNC">
 <calculation>
 <sum>
 <attribute name="AT_KI_FDLZ" nodetype="OT_FUNC"
 objectname="like"/>
 </sum>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

PPM CUSTOMIZING

74

Example 2

The values of all attributes whose names begin with AT_SALES_VOLUME_ are taken into
account.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_XXX" type="PROCESS">
 <calculation>
 <sum>
 <attribute name="AT_SALES_VOLUME_*"
 nodetype="OT_FUNC"/>
 </sum>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Pattern matching of the internal attribute names is subject to the following limitations:

 Placeholders are not permitted in filtered attributes (filteredattribute XML element) as this
operand returns a single attribute value and only relates to a single attribute.

 The placeholder * is only supported at the end of an attribute name.

 The attributes affected by pattern matching must be of the same data type.

8.1.3.2.2 Values (XML element filteredattribute)
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <filteredattribute name="..." nodetype="..."
 objectname="..." filter="..." onerror="..."/>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

To calculate a concrete value from a set of values, all of the mathematical functions presented in
chapter Operators producing a value (page 94) can be used, which deliver a specific value as
the result. Alternatively, you can use the filteredattribute XML element to calculate a specific
value from a set of attribute values.
The entries for name, nodetype, objectname, and onerror correspond to those for the
attribute XML element.

PPM CUSTOMIZING

75

XML tag Description

name Internal name of attribute
Use of pattern matching is not supported with the
filteredattribute XML element, as it relates to a single
attribute only.

nodetype Attribute type: Function attribute (OT_FUNC), process
instance attribute (PROCESS), or
relation attribute (RELATION)

objectname
(optional)

For function attributes (nodetype="OT_FUNC") the
set of values can be limited to attribute values for the
specified object name.

For relation attributes (nodetype="RELATION"), the
following values are permitted:
this
The currently calculated attribute (calcattr name="..."
type="RELATION" relname="REL_...") is searched
at the relation.

source
The source object of the relation is searched for the
attribute.

target
The target object of the relation is searched for the
attribute.

filter
(optional)

Filter that is used to select the element from the set of
values (not for objectname="this"):

EARLY
The attribute value is transferred for the object for which
one of the AT_START_TIME and AT_END_TIME
attributes gives the earliest time overall.

LATEST
The attribute value is transferred for the object for which
one of the AT_START_TIME and AT_END_TIME
attributes gives the latest time overall.

PPM CUSTOMIZING

76

XML tag Description

onerror
(optional)

Controls the behavior of the Measure calculator if no
attribute value can be identified:

EXIT_WARNING: Cancels the current attribute
calculation and outputs a warning to the log.

EXIT_NO_WARNING: Cancels the current attribute
calculation with no output of a warning to the log.

CONTINUE: Default value. The current attribute
calculation is continued with NULL. The superordinate
operators determine error handling procedures. There is
no output in the log.

By specifying the object type (nodetype), attributes with the same name in the process instance
and for objects belonging to the process instance can be differentiated.

8.1.3.2.3 Constants (XML element constant)
The value of a constant is specified in the CDATA section of the <dataitem> XML element. The
following example defines a time span constant of ten minutes:

<constant>
 <dataitem>
 10 MINUTE
 <datatype name="TIMESPAN"></datatype>
 </dataitem>
</constant>

If the entries for the data type and value of the constants are correct, possible entries in the
value attribute for the <dataitem> element are ignored. The following definition creates a
constant of two hours:

<constant>
 <dataitem value="9">
 2 HOUR
 <datatype name="TIMESPAN"></datatype>
 </dataitem>
</constant>

If the entry in the CDATA section of the <dataitem> element returns no value or a value with
an invalid data type, it is ignored. Instead, the entries in the value XML attribute are processed.
In the following example, the value of the constant with the DOUBLE data type is specified,
although the LONG data type is expected. The incorrect value entry is ignored and the value of
the value attribute ("2") is written to the constant instead:

<constant>
 <dataitem value="2">
 4.0
 <datatype name="LONG"></datatype>
 </dataitem>
</constant>

PPM CUSTOMIZING

77

If the value specified in the value attribute does not match the expected data type, the
calculation is canceled:

<constant>
 <dataitem value="2.4">
 4.0
 <datatype name="LONG"></datatype>
 </dataitem>
</constant>

In the following example the calculation is canceled, as the data type and the value specified do
not match and there is no entry in the value XML attribute:

<constant>
 <dataitem>
 4.0
 <datatype name="LONG"></datatype>
 </dataitem>
</constant>

A constant must always be specified with the unit that is permissible for the attribute data type.
The data type must be known in the PPM system.

Numerical constants consist of the specification of the value with a unit that is permissible for the
data type and the data type itself.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <constant>
 <dataitem>
 10 MINUTE
 <datatype name="TIMESPAN"></datatype>
 </dataitem>
 </constant>
 ...
 </calculation>
 </calcattr>

 ...

</keyindicatorconfig>

XML element Description

dataitem value Value of constant with unit

datatype name Name of the data type. Both internal and user-defined
data types can be used.

Alphanumeric constants are specified as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>

PPM CUSTOMIZING

78

 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <constant>
 <dataitem>
 Constant text
 <datatype name="TEXT"/>
 </dataitem>
 </constant>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

8.1.3.2.4 Determining attribute values
Attribute values both with and without an object reference can be used for attribute calculation.

8.1.3.2.4.1 Attribute values without object reference
The specified attribute is used for all process instance objects of the object type specified by
nodetype for which it is entered. This results in a set of values, which contains a number of
elements corresponding to the occurrence of the attribute.

Example
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <attribute name="AT_ABC" nodetype="OT_FUNC"/>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

The values of the AT_ABC attribute for all functions in the process instance currently being
calculated are included in the set of values.

PPM CUSTOMIZING

79

8.1.3.2.4.2 Attribute values with object reference
The specified attribute is only used for the functions (nodetype="OT_FUNC") with the specified
name (objectname"FCT_..."). (The object name specified with objectname corresponds to
the value of the AT_OBJNAME_INTERN function attribute.) Once again, a set of values
containing more than one element can result as the specified object can occur several times in the
process instance.

Example 1

The values of the AT_AUFNR attribute for all functions in the process instance currently being
calculated with the name FCT_CREATE_ORDER are included in the set of values.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <attribute name="AT_AUFNR" nodetype="OT_FUNC
 objectname="FCT_AUFTRAG_ANLEGEN"/>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

The color of functions or events in the EPC view can be specified using the default
AT_BGND_COLOUR attribute. The following calculation rule assigns a red color to all functions
with the internal name SAP.WAUS:

<calcattr name="AT_BGND_COLOUR" type="OT_FUNC"
 objectname="SAP.WAUS">
 <calculation>
 <constant>
 <dataitem>
 <datatype name="TEXT">255,0,0</datatype>
 </dataitem>
 </constant>
 </calculation>
</calcattr>

This calculation rule can be used within a conditional attribute calculation, for example. The
relevant color value is specified as an RGB value. Particular objects or object types can also be
assigned a color in attribute mapping.

Example 2

The calculation rule totals the cycle time for the function (AT_KI_FDLZ) for functions with the
same name (identical value for the AT_OBJNAME_INTERN attribute).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_FDLZSUM" type="OT_FUNC">
 <calculation>

PPM CUSTOMIZING

80

 <sum>
 <attribute name="AT_KI_FDLZ" nodetype="OT_FUNC"
 objectname="like"/>
 </sum>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Warning

Specifying an object name or the options this or like in the objectname XML attribute is only
permitted for the calculation of function attributes (OT_FUNC).

To use an operator that expects single values as an operand (for example, <plus>) with an
operand that returns sets of values (for example, <attribute>), you need to use suitable
operators to retrieve a single value from a set of values (for example, <min> or <max>).
Alternatively, you can use the <filteredattribute> XML element to retrieve one value from a set
of values to be used for the subsequent attribute calculation.

8.1.3.3 Conditional attribute type access
Within a calculation rule for calculation of a function attribute, you can limit the set of attribute
values to be taken into account by specifying a condition relating to other attribute types for the
same function (objectname="this"). To configure the condition, you need to use a Boolean
operator as the root operator (see chapter Logical operators (page 100)). The condition can be
nested at any depth. If the condition check results in the value TRUE, the value of the attribute
type for which the condition is defined is included in the subsequent calculation.
You can specify conditions for <attribute> and <filteredattribute>.

Example

From the set of values for the AT_HRMODUL function attribute, only those attribute type values
of functions for which the AT_VORG_TYPE attribute type is also specified
(objectname="this") with the value 019 are to be taken into account.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_HRMODUL" type="PROCESS">
 <calculation>
 <max>
 <attribute name="AT_HRMODUL" nodetype="OT_FUNC">
 <in>
 <constant>
 <dataitem>
 019
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 <attribute name="AT_VORG_TYPE"
 nodetype="OT_FUNC" objectname="this"/>
 </in>

PPM CUSTOMIZING

81

 </attribute>
 </max>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Define conditional attribute type access in PPM Customizing Toolkit to prevent syntax errors. You
can create the corresponding calculation rules in the Measures and dimensions module using
the Calculated attribute types menu. In particular, this prevents incorrect use of the attribute
and filteredattribute operands with the corresponding logic operators.

8.1.3.4 Operators
In calculation rules for attribute types or calculation functions, the individual operand types (sets
of values, values, constants) are linked to one another using operators. When linking attribute
types, if all operands have the same data type, the results of attribute calculations are returned
as this data type.

For each operator, you can use the mode XML attribute to specify how exceptions are to be
handled (for example, <addtimespan mode="PPM4">). Valid values are PPM3 for the
behavior up to and including PPM 3.2.1 and PPM4 for the more fault-tolerant behavior from PPM
4.0 onward.
For reasons of backwards compatibility, the default value is PPM3.
In calculation rules that you create using PPM Customizing Toolkit the operators used are
assigned the value PPM4 by default.

The calculation and error behavior of the two different modes is described for each operator
starting from chapter Mathematic operators (page 83).

In your attribute type calculations, define a default return value defaultvalue, which is assigned
to the attribute type to be calculated if the attribute calculation fails.

Warning

Do not combine numerical values with non-numerical values in a calculation rule (for example,
TEXT with DOUBLE), as such calculation rules lead to the calculation being canceled.

Numerical data types can be freely combined with one another (for example, using the set
operator). Values are always given the base unit for the attribute type. For attribute type
calculations with mixed numerical data types (for example, DOUBLE, TIMESPAN,
FACTORYTIMESPAN) all values are used without units and the result is saved as the DOUBLE
data type. You can then save this value in the relevant base unit as a PPM target attribute of
another data type.

An operation is specified in the form of inverted Polish notation, that is, the operator type is
specified first, followed by the operands. In XML notation, it looks like this:

<operator 1>
 <operand m>
 ...
 </operand m>
 <operand m+1>

PPM CUSTOMIZING

82

 ...
 </operand m+1>
 <operator 2>
 <operand n>
 ...
 </operand n>
 <operand n+1>
 ...
 </operand n+1>
 </operator 2>
</operator 1>

The operator XML element returns the calculated numerical value (numerical result of the
operands linked by the operator). The unit for the result is determined by the data type of the
attribute type to which the result value is assigned. Operators themselves can be part of a
higher-level operator.

Example

Calculation of the circumference of a circle with a radius of 6
(Circumference = 2 * p * radius):

 <times>
 <constant>
 <dataitem value="2">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <constant>
 <dataitem value="3.1415">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <constant>
 <dataitem value="6">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 </times>

An alternative option leading to the same result is to create a set from the operands and to
multiply all elements in the set by one another:

<product>
 <set>
 <constant>
 <dataitem value="2">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <constant>
 <dataitem value="3.1415">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <constant>
 <dataitem value="6">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>

PPM CUSTOMIZING

83

 </set>
<product>

The operators described in the following chapters are available for the calculation of attribute type
values.

8.1.3.4.1 Mathematic operators
The following operators are available: plus, minus, timespan, times, divide, abs, div, mod,
squareroot, and round.

ADDITION

XML tag: plus

Operands: at least two values

Synopsis: <plus>
 <value 1>
 <value 2>
 <value n>
</plus>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value

Result type: Operand data type with identical data type.
DOUBLE for mixed numerical data types that, in this
case, are automatically converted to DOUBLE.

Description: Adds the values specified in the XML element

Calculation
(PPM3)

Result Sum of all operands

Error If at least one operand equals NULL or at
least one operand is of a non-numerical data
type

Calculation
(PPM4)

Result NULL if at least one operand equals NULL,
otherwise sum of all operands.

Error Only if the data type is non-numerical

Example: -

PPM CUSTOMIZING

84

SUBTRACTION

XML tag: minus

Operands: exactly two values

Synopsis: <minus>
 <value 1>
 <value 2>
</minus>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value (difference)

Result type: Operand data type with identical data type.
DOUBLE for mixed numerical data types that, in this
case, are automatically converted to DOUBLE.

Description: Subtracts value 2 from value 1

Calculation
(PPM3)

Result Result of subtracting operand 2 from operand
1

Error If at least one operand equals NULL or at
least one operand is of a non-numerical data
type

Calculation
(PPM4)

Result NULL if at least one operand is equal to NULL,
otherwise result of subtracting operand 2
from operand 1

Error Only if the data type is non-numerical

Example: -

TIME SPAN

XML tag: timespan

Operands: Exactly two values (points in time)

Synopsis: <timespan>
 <time 1>
 <time 2>
</timespan>

Operands: TIME (TIMESTAMP, DATE)

Result: Value (time span)

Result type: TIMESPAN or
FACTORYTIMESPAN when using a factory calendar

PPM CUSTOMIZING

85

Description: Calculates the time difference between time 1 and time
2. If the difference is negative, the value 0 is returned.
To use the factory calendar to calculate the time
difference, give the optional type XML element the value
FACTORYCALENDAR.
Default value: NORMAL

Calculation
(PPM3)

Result Time span between operand 1 and operand 2
(operand 1 minus operand 2)

Error If at least one operand equals NULL or at
least one is of an invalid data type

Calculation
(PPM4)

Result NULL if at least one operand is equal to NULL,
otherwise time span between operand 1 and
operand 2 (operand 1 minus operand 2)

Error Only if data type is invalid

Example: <timespan type="FACTORYCALENDAR"

directoryname="custom/client/factorycal"
 attributename="AT_FC_XYZ">
 <max>
 <attribute name="AT_GOODS_RECEIPT_DATE"
 nodetype="OT_FUNC"
 objectname="SAP.MM_WE_ANLEG"/>
 </max>
 <min>
 <attribute name="AT_END_TIME"
 nodetype="OT_FUNC"
 objectname="SAP.MM_BANF_ANLEG"/>
 </min>
</timespan>

If you are using a factory calendar you can also calculate negative time spans by specifying the
optional XML attribute negfactorytimespan="TRUE".
Default value: FALSE

You can also perform time span calculations based on external factory calendars by specifying a
factory calendar XML file. In the optional directoryname XML attribute, specify the directory
containing the factory calendar to be used. The attributename attribute is used to specify the
name of the attribute type containing the name of the factory calendar file to be used. The
attribute type must be specified for the corresponding object or process instance. The two XML
attributes must always be specified together.

MULTIPLICATION

XML tag: times

PPM CUSTOMIZING

86

Operands: at least two values

Synopsis: <times>
 <value 1>
 <value 2>
 <value n>
</times>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value (product)

Result type: Operand data type with identical data type.
DOUBLE for mixed numerical data types that, in this
case, are automatically converted to DOUBLE.

Description: Multiplies the values specified in the XML element.

Calculation
(PPM3)

Result Result of multiplying operands 1 to n

Error If at least one operand equals NULL or at
least one operand is of a non-numerical data
type

Calculation
(PPM4)

Result NULL if at least one operand is equal to NULL,
otherwise result of multiplying all operands

Error Only if the data type is non-numerical

Example: -

DIVISION

XML tag: divide

Operands: exactly two values

Synopsis: <divide>
 <value 1>
 <value 2>
</divide>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value (quotient)

Result type: Always DOUBLE

Description: Divides value 1 by value 2.

Calculation Result Result of dividing operand 1 by operand 2

PPM CUSTOMIZING

87

(PPM3) Error If at least one operand equals NULL or at
least one operand is of an invalid data type,
or operand 2 = 0

Calculation
(PPM4)

Result NULL if at least one operand is equal to NULL,
otherwise result of dividing operand 1 by
operand 2

Error If at least one operand is of an invalid data
type or operand 2 = 0

Example: -

AMOUNT

XML tag: abs

Operands: exactly one value

Synopsis: <abs>
 <value 1>
</abs>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value (absolute value)

Result type: Operand data type

Description: Returns the amount of a value.

Calculation
(PPM3)

Result Absolute operand value

Error If an operand equals NULL or is of a
non-numerical data type

Calculation
(PPM4)

Result NULL if operand equals NULL, otherwise
absolute operand value

Error Only if the data type is non-numerical

Example: -

INTEGER DIVISION

XML tag: div

Operands: exactly two integer values

Synopsis: <div>
 <value 1>
 <value 2>
</div>

PPM CUSTOMIZING

88

Operands: LONG

Result: Integer value of division

Result type: LONG

Description: Returns the integer value for how often value 2 is
contained in value 1. Remainders are ignored. For proper
fractions, 0 is returned.

Calculation
(PPM4 only)

Result NULL if at least one operand is equal to NULL,
otherwise integer result of dividing operand 1
by operand 2

Error If at least one operand is of an invalid data
type (not LONG) or operand 2 = 0

Example: <div>
 <max>
 <attribute name="AT_COST"
 nodetype="FUNCTION"/>
 </max>
 <constant>
 <dataitem>
 5
 <datatype name="LONG">
 Long
 </datatype>
 </dataitem>
 </constant>
</div>

MODULO

XML tag: mod

Operands: exactly two integer values

Synopsis: <mod>
 <value 1>
 <value 2>
</mod>

Operands: LONG

Result: Integer remainder

Result type: LONG

Description: Returns the remainder of an integer division of value 1 by
value 2. For proper fractions, the value of the first
operand is returned. If value 1 = value 2, 0 is returned.

Calculation
(PPM4 only)

Result NULL if at least one operand is equal to NULL,
otherwise remainder of integer division of
operand 1 by operand 2

PPM CUSTOMIZING

89

Error If at least one operand is of an invalid data
type (not LONG) or operand 2 = 0

Example: <mod>
 <filteredattribute name="AT_COST"
 nodetype="FUNCTION"/>
 <constant>
 <dataitem>
 3
 <datatype name="LONG">Long</datatype>
 </dataitem>
 </constant>
</mod>

SQUARE ROOT

XML tag: squareroot

Operands: exactly one value

Synopsis: <squareroot>
 <value 1>
</squareroot >

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE, and
user-defined types, for example, COST)

Result: Square root

Result type: DOUBLE data type

Description: Calculates the square root of the value entered.

Calculation
(PPM4 only)

Result NULL if the operand equals NULL, otherwise
the square root of the numeric operand

Error If the operand has an invalid data type (not
numerical) or if the value of the operand is
less than 0

Example: -

ROUND

XML tag: round

Operands: A single value of the TIMESPAN type

Synopsis: <round>
 <value>
</round>

Operands: TIMESPAN

PPM CUSTOMIZING

90

Result: Rounded time span value

Result type: TIMESPAN

XML attributes scale (MINUTE|HOUR|DAY|WEEK|MONTH|YEAR)

roundingkind (ROUND|FLOOR|CEIL) "ROUND"

Description: Returns the rounded value for time spans. Only values of
the TIMESPAN data type can be rounded. The scale to be
used for rounding must be specified.

The following rounding methods exist:

ROUND (decimal places < 5 rounded down, >= 5
rounded up)
CEIL (rounding up to the next whole number regardless
of the value of the decimal place)
FLOOR (rounding down to the current whole number
regardless of the value of the decimal place)
The default value is ROUND.

Calculation
(PPM4 only)

Result The rounded value in the specified scale.

Error If operand is of an invalid data type or an
invalid number of operands.

Example: <round scale="MINUTE" roundingkind="CEIL">
 <constant>
 <dataitem value="4284.0">
 1,19
 <datatype name="TIMESPAN">
 Time span
 </datatype>
 <scale name="HOUR" factor="3600.0">
 Hours
 </scale>
 </dataitem>
 </constant>
</round>

The time span value 1.19 hours is converted to 71.4
minutes as specified by the scale and is rounded up to 72
minutes (return value) in line with the specified rounding
method.

NULL VALUE

XML tag: nullvalue

Operands: exactly two values

Synopsis: <nullvalue>
 <value 1>
 <value 2>
</nullvalue>

PPM CUSTOMIZING

91

Operands: Any data type, both operands must be of the same data
type.

Result: Value of the first operand if it is not null, otherwise value
of the second operand

Result type: Operand data type

Description: Replaces the possibly missing value of the first operator
(value null) with the value of the second operator. If the
first operand supplies a value, this value will be returned,
otherwise the value of the second operand will be
returned.
If both operators do not supply any value, null is returned
as a value. This means that the second operator should
always supply a value.

Calculation
(PPM4 only)

Result Value of the first operand if it is not null,
otherwise value of the second operand.

Error When operands have different data types

Example: <nullvalue>
 <subtext beginindex="3">
 <filteredattribute name="AT_XYZ"
 nodetype="PROCESS"/>
 </subtext>
 <constant>
 <dataitem>
 ABC
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
</nullvalue>

If the subtext operator does not return any value, the
constant character string ABC is returned.

8.1.3.4.2 Operators resulting in a set of values
The following operators are available: set, union, intersect, removeduplicates.

SET CREATION

XML tag: Set

Operands: at least one value

Synopsis: <set>
 <value 1>
 ...
 <value n>
</set>

PPM CUSTOMIZING

92

Operands: All data types, but for non-numerical data types, a
uniform data type within the list of operands is
necessary. Different numerical data types are
automatically converted into the DOUBLE data type.

Result: Set of values

Result type: DOUBLE for mixed numerical operands, data type of first
operand for non-numerical data types

Description: Creates a set of values from the specified values.

Calculation
(PPM3/PPM4)

Result Empty set if all operands return NULL, that is,
the result set never contains NULL

Error If at least one operand is of an invalid data
type (set of values or data type not identical
with first operand)

Example: <set>
 <constant>
 <dataitem value="2">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <value 1>
 <value 2>
 <value n>
</set>

SET UNION

XML tag: Union

Operands: At least two sets of values (<attribute ... /> or
<set>...</set> or <union>...</union> or
<intersect>...</intersect>)

Synopsis: <union>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</union>

Operands: all data types, but not a mixture of numerical and
non-numerical data types

Result: Set of values

Result type: DOUBLE for mixed numerical operands, data type of first
operand for non-numerical data types

Description: Creates the set union of the specified sets of values.

PPM CUSTOMIZING

93

Calculation
(PPM3)

Result Empty set if all operands are empty sets

Error If at least one operand is of an invalid data
type or at least one operand equals NULL

Calculation
(PPM4)

Result Empty set if all operands are empty sets.
NULL if at least one operand equals NULL.

Error If at least one operand is of an invalid data
type

Example: <union>
 <attribute name="AT_START_TIME"
nodetype="PROCESS"/>
 <attribute name="AT_END_TIME"
nodetype="PROCESS"/>
 <attribute name="AT_START_TIME"
nodetype="OT_FUNC"/>
 <attribute name="AT_END_TIME"
nodetype="OT_FUNC"/>
</union>

INTERSECTION

XML tag: Intersect

Operands: at least two sets of values

Synopsis: <intersect>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</intersect>

Operands: all data types, but not a mixture of numerical and
non-numerical data types

Result: Set of values containing all elements contained in all
initial sets

Result type: DOUBLE for mixed numerical operands,
data type of first operand for unmixed data types

Description: Creates the intersection of the specified sets of values.

Calculation
(PPM3)

Result Empty set if one operand is an empty set.

Error If at least one operand is of an invalid data
type or at least one operand equals NULL

Calculation
(PPM4)

Result Empty set if one operand is an empty set.
NULL if at least one operand equals null.

Error If at least one operand is of an invalid data
type

PPM CUSTOMIZING

94

Example: -

DUPLICATE REMOVER

XML tag: Removeduplicates

Operands: exactly one set of values

Synopsis: <removeduplicates>
 <Set of values>
</removeduplicates>

Operands: Any data types

Result: Set of values

Result type: Operand data type

Description: Removes elements with identical values from a set of
values.

Calculation
(PPM4 only)

Result Set of values containing all elements
contained in the initial set, but each one only
once. Empty set if operand is an empty set.

Error If at least one element in the set of values is
of an invalid data type

Example: Counting the plants involved in the process:

<card>
 <removeduplicates>
 <attribute name="AT_WERK" nodetype"OT_FUNC"
/>
 </removeduplicates>
</card>

8.1.3.4.3 Operators producing a value
The following operators are available: sum, product, card, min, max, mean, convert.

SUM

XML tag: Sum

Operands: exactly one set of values

Synopsis: <sum>
 <Set of values>
</sum>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

PPM CUSTOMIZING

95

Result: Value

Result type: Data type of set of values used, for mixed data
types within set always DOUBLE

Description: Creates the sum of all elements in the set of
values.

Calculation
(PPM3/PPM4)

Result Sum of values contained in the set of
values. NULL if the transferred set is
empty.

Error If at least one element in the set of
values is of an invalid data type.

Example: -

PRODUCT

XML tag: Product

Operands: exactly one set of values

Synopsis: <product>
 <Set of values>
</product>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value

Result type: Data type of set of values used, for mixed data
types within set always DOUBLE

Description: Creates the product of all elements in the set of
values.

Calculation
(PPM3/PPM4)

Result Multiplication of values contained in
the set of values. NULL if the
transferred set is empty.

Error If at least one element in the set of
values is of an invalid data type.

Example: -

PPM CUSTOMIZING

96

CARDINALITY

XML tag: Card

Operands: exactly one set of values

Synopsis: <card>
 <Set of values>
</card>

Operands: All data types of the set of values specified

Result: Value

Result type: always LONG

Calculation
(PPM3/PPM4)

Result Calculates the total number of
elements in the set of values. For an
empty set, the return value is 0.

Error None

Example: -

MINIMUM

XML tag: Min

Operands: exactly one set of values

Synopsis: <min>
 <Set of values>
</min>

Operands: Numerical data types and TIME (TIMESTAMP,
DATE), DAY, TIMEOFDAY

Result: Value

Result type: Data type of set of values

Description: Returns the smallest value in the set of values.

Calculation
(PPM3/PPM4)

Result NULL if the set of values is empty

Error None

Example: -

PPM CUSTOMIZING

97

MAXIMUM

XML tag: Max

Operands: exactly one set of values

Synopsis: <max>
 <Set of values>
</max>

Operands: Numerical data types and TIME (TIMESTAMP, DATE),
DAY, TIMEOFDAY

Result: Value

Result type: Data type of set of values

Description: Returns the greatest value in the set.

Calculation
(PPM3/PPM4)

Result NULL if the set of values is empty

Error None

Example: -

MEAN

XML tag: Mean

Operands: exactly one set of values

Synopsis: <mean>
 <Set of values>
</mean>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,
FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value

Result type: Operand data type

Calculation
(PPM3)

Result Mean of the numerical values contained in
the set. NULL if operand is equal to an empty
set.

Error If the data type is invalid or at least one
operand equals NULL.

Calculation
(PPM4)

Result Mean of the numerical values contained in
the set. NULL if operand is an empty set or
equals NULL.

Error If at least one element in the set of values is
of an invalid data type.

PPM CUSTOMIZING

98

Example: <mean>
 <union>
 <attribute name="AT_ANZAHL_POS1"
nodetype="OT_FUNC"/>
 <attribute name="AT_ANZAHL_POS2"
nodetype="OT_FUNC"/>
 </union>
</mean>

DATA TYPE CONVERSION

XML tag: convert

Operands: exactly one value

Synopsis: <convert datatype="...">
 <value>
</convert>

Operands: TEXT or numerical data type, returns the input value for
the conversion.

Attribute: The datatype attribute specifies the data type into which
the input value is to be converted.

Result: Value converted into the data type specified

Result type: LONG, DOUBLE, FREQUENCY, BOOLEAN, TEXT, TIME,
TIMESPAN, FACTORYTIMESPAN, DAY, PERCENTAGE

PPM CUSTOMIZING

99

Description: Conversion of a numerical data type (for example, LONG,
DOUBLE, TIMESPAN, FACTORYTIMESPAN, PERCENTAGE)
into another numerical data type.

Conversion of the TEXT data type into one of these data
types: LONG, DOUBLE, BOOLEAN, TIMESPAN, or
FREQUENCY.

After the conversion, the result is written in base scaling
to the result attribute.
The internal PPM format is used for conversion. You
cannot specify a custom format.

Conversion of the LONG data type to TEXT, with leading
zeros and separators being removed. The result of the
conversion is the converted number without separators
in one string. In the example below, the LONG value
000300080191 is converted into the TEXT value
300080191.

<convert datatype="TEXT">
 <constant>
 <dataitem>
 000300080191
 <datatype name="LONG"/>
 </dataitem>
 </constant>
</convert>

It is possible to convert any data type to TEXT, for
example:

 CONVERT(DOUBLE(-300080191)) ->
TEXT("3.00080191E8")

 CONVERT(TIME(07.01.1971 00:01)) ->
TEXT("7.1.1971 0:01")

 CONVERT(TIME(07.01.2000)) ->
TEXT("07.1.1971")

 CONVERT(BOOLEAN(1)) -> TEXT("FALSE")
(everything that is not true is false)

The scaling used for the output corresponds to the one at
the object, for example:

 convert(<dataitem>1 YEAR<datatype
name='TIMESPAN'/></dataitem>) -> TEXT("1.0
YEAR")

 convert(<dataitem>1 YEAR<datatype
name='TIMESPAN'/><scale
name='MONTH'/></dataitem>) ->
TEXT("12.166666666666666 MONTH") (== 365
days/30 days)

PPM CUSTOMIZING

100

Calculation
(PPM4 only)

Result Returns the converted value of the operand.
NULL if the operand returns NULL

Error If conversion fails

Example: <convert datatype="LONG">
 <filteredattribute name="AT_ABC"
 nodetype="PROCESS"/>
</convert>

An assumed value of 456 for the AT_ABC attribute of
TEXT type is converted to the LONG data type.

8.1.3.4.4 Logical operators
The following operators are available: eq, eqset, lt, gt, gteq, lteq, ne, exists, filled, in, and, or,
xor, not, containstext.

EQUALITY (VALUE)

XML tag: eq

Operands: at least two values

Synopsis: <eq>
 <Value 1>
 <Value 2>
 ...
 <Value n>
</eq>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Description: All specified values equal returns TRUE.

Calculation
(PPM3)

Result TRUE if operands 1 to n have the same data
type and value, otherwise FALSE.

Error If one operand is NULL.

Calculation
(PPM4)

Result TRUE if operands 1 to n have the same data
type and value, otherwise FALSE. NULL if an
operand is NULL.

Error None

PPM CUSTOMIZING

101

Example: <eq>
 <timespan type="NORMAL">
 <max>
 <attribute name="AT_CUSTDATE_WISH"
nodetype="PROCESS"
 onerror="EXIT_NO_WARNING"/>
 </max>
 <min>
 <attribute name="AT_END_TIME"
nodetype="OT_FUNC"
 objectname="SAP.WAUS"
onerror="EXIT_NO_WARNING"/>
 </min>
 </timespan>
 <constant>
 <dataitem value="0">
 <datatype name="TIMESPAN"/>
 </dataitem>
 </constant>
</eq>

EQUALITY (VALUE)

XML tag: ne

Operands: at least two values

Synopsis: <ne>
 <Value 1>
 <Value 2>
 ...
 <Value n>
</ne>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Description: Inequality of all specified values returns TRUE

Calculation
(PPM4)

Result TRUE if all operands 1 to n are not equal (for
example, Operand 1 != Operand 2),
otherwise FALSE. NULL if an operand is NULL.

Error None

PPM CUSTOMIZING

102

Example: <ne>
 <timespan type="NORMAL">
 <max>
 <attribute name="AT_CUSTDATE_WISH"
 nodetype="PROCESS"
 onerror="EXIT_NO_WARNING"/>
 </max>
 <min>
 <attribute name="AT_END_TIME"
 nodetype="OT_FUNC"
 objectname="SAP.WAUS"
 onerror="EXIT_NO_WARNING"/>
 </min>
 </timespan>
 <constant>
 <dataitem value="0">
 <datatype name="TIMESPAN"/>
 </dataitem>
 </constant>
</ne>

EQUALITY (SET OF VALUES)

XML tag: eqset

Operands: at least two sets of values

Synopsis: <eqset>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</eqset>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Description: Equality of all specified sets of values returns TRUE.
Operands 2 to n are compared one by one with operand
1.

Calculation
(PPM3)

Result TRUE if the sets to be compared are of equal
size and all their values are identical,
otherwise FALSE.

Error If one operand is NULL.

Calculation
(PPM4)

Result TRUE if the sets to be compared are of equal
size and all their objects are identical,
otherwise FALSE. NULL if an operand is NULL.

Error None

Example: -

PPM CUSTOMIZING

103

"LESS THAN" COMPARISON

XML tag: lt

Operands: exactly two values

Synopsis: <lt>
 <Value 1>
 <Value 2>
</lt>

Operands: Uniform numerical data type

Result: Logical value

Result type: BOOLEAN

Calculation
(PPM3)

Result TRUE if operand 1 and operand 2 are of the
same data type and operand 1 is less than
operand 2, otherwise FALSE.

Error If at least one operand equals NULL or at
least one is of an invalid data type

Calculation
(PPM4)

Result TRUE if operand 1 and operand 2 are of the
same data type and operand 1 is less than
operand 2, otherwise FALSE. NULL if at least
one operand equals NULL.

Error Only if data type is invalid

Example: -

"GREATER THAN" COMPARISON

XML tag: gt

Operands: exactly two values

Synopsis: <gt>
 <Value 1>
 <Value 2>
</gt>

Operands: Uniform numerical data type

Result: Logical value

Result type: BOOLEAN

Calculation
(PPM3)

Result Returns TRUE if value 1 is greater than value
2 and the operands are of a uniform data
type, otherwise FALSE.

Error If at least one operand equals NULL or at
least one operator is of an invalid data type.

PPM CUSTOMIZING

104

Calculation
(PPM4)

Result Returns TRUE if value 1 is greater than value
2 and the operands are of a uniform data
type, otherwise FALSE. NULL if at least one
operand equals NULL.

Error Only if data type is invalid

Example: -

"GREATER THAN OR EQUAL" COMPARISON

XML tag: gteq

Operands: exactly two values

Synopsis: <gteq>
 <Value 1>
 <Value 2>
</gteq>

Operands: Uniform numerical data type

Result: Logical value

Result type: BOOLEAN

Calculation
(PPM4)

Result Returns TRUE if value 1 is greater than or
equal to value 2 and the operands are of a
uniform data type, otherwise FALSE. NULL if
at least one operand equals NULL.

Error Only if data type is invalid

Example: -

"LESS THAN OR EQUAL" COMPARISON

XML tag: lteq

Operands: exactly two values

Synopsis: <glteq>
 <Value 1>
 <Value 2>
</lteq>

Operands: Uniform numerical data type

Result: Logical value

Result type: BOOLEAN

PPM CUSTOMIZING

105

Calculation
(PPM4)

Result Returns TRUE if value 1 is less than or equal
to value 2 and the operands are of a uniform
data type, otherwise FALSE. NULL if at least
one operand equals NULL.

Error Only if data type is invalid

Example: -

EXISTENCE CHECK

XML tag: exists

Operands: at least one attribute name (attribute, filteredattribute)

Synopsis: <exists>
 <Attribute 1>
 <Attribute 2>
 ...
 <Attribute n>
</exists>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Description: Returns TRUE if the specified attributes exist, regardless
of whether any values are assigned to the attributes.

Calculation
(PPM3/PPM4)

Result TRUE if all specified attributes exist,
otherwise FALSE

Error None

Example: <exists>
 <attribute name="AT_ORDER_VOL"
nodetype="OT_FUNC"/>
</exists>

PPM CUSTOMIZING

106

CONTENT CHECK

XML tag: filled

Operands: at least one value or a set of values

Synopsis: <filled>
 <Value 1>
 <Value 2>
 ...
 <Value n>
</filled>

or

<filled>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</filled>

or

<filled>
 <Value 1>
 <Value 2>
 ...
 <Value n>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</filled>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Calculation
(PPM3/PPM4)

Result TRUE if all relevant values or sets of values
are specified, otherwise FALSE

Error None

Example: -

CONTENT CHECK OF SETS

XML tag: in

Operands: 1. operand: Value or set of values
Operand 2: Set of values

PPM CUSTOMIZING

107

Synopsis: <in>
 <Value 1>
 <Set of values 2>
</in>

or

<in>
 <Set of values 1>
 <Set of values 2>
</in>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Calculation
(PPM4 only)

Result TRUE if the value or set of values of the first
operand is contained in the set of values
specified by the second operand.
NULL if one operand returns NULL.

Error Only if data types are incompatible

Example: <calcattr name="AT_KI_ABL" type="PROCESS">
 <calculation>
 <in>
 <constant>
 <dataitem>
 HR-ABL
 <datatype
name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 <attribute name="AT_HRMODUL"
nodetype="OT_FUNC" />
 </in>
 </calculation>
</calcattr>

The in operator returns TRUE if there is an
AT_HRMODUL attribute with the value HR-ABL for at
least one function in the EPC.

LOGICAL AND

XML tag: and

Operands: at least two logical values

Synopsis: <and>
 <Logical value 1>
 <Logical value 2>
 ...
 <Logical value n>
</and>

Operands: BOOLEAN

PPM CUSTOMIZING

108

Result: Logical value

Result type: BOOLEAN

Description: Returns TRUE, if all logical values are TRUE. The first time
an operand returns FALSE, evaluation of the operand list
is canceled and FALSE is returned.

Calculation
(PPM3)

Result TRUE if all operands return TRUE, otherwise
FALSE

Error If one operand returns NULL or at least one
operand is of an invalid data type

Calculation
(PPM4)

Result TRUE if all operands return TRUE.
FALSE if one operand returns FALSE and all
preceding operands return TRUE.
NULL if one operand returns NULL and all
preceding operands return TRUE.

Error If at least one operand is of an invalid data
type (not BOOLEAN)

Example: -

LOGICAL OR

XML tag: or

Operands: at least two logical values

Synopsis: <or>
 <Logical value 1>
 <Logical value 2>
 ...
 <Logical value n>
</or>

Operands: BOOLEAN

Result: Logical value

Result type: BOOLEAN

Description: Returns TRUE if at least one logical value is TRUE. The
first time an operand returns TRUE, evaluation of the
operand list is canceled and TRUE is returned.

Calculation
(PPM3)

Result TRUE if one operand returns TRUE and all
preceding operands return NULL, otherwise
FALSE.

PPM CUSTOMIZING

109

Error If one operand returns NULL and all other
operands return FALSE, or if at least one
operand is of an invalid data type

Calculation
(PPM4)

Result TRUE if one operand returns TRUE and all
preceding ones do not return NULL. FALSE if
all operands return FALSE. NULL if one
operand returns NULL and all preceding
operands return FALSE.

Error If at least one operand is of an invalid data
type (not BOOLEAN)

Example: -

LOGICAL EXCLUSIVE OR

XML tag: xor

Operands: at least two logical values

Synopsis: <xor>
 <Logical value 1>
 <Logical value 2>
 ...
 <Logical value n>
</xor>

Operands: BOOLEAN

Result: Logical value

Result type: BOOLEAN

Description: Returns TRUE if exactly one logical value is TRUE.

Calculation
(PPM3)

Result TRUE if exactly one operand returns TRUE,
otherwise FALSE

Error If one operand returns NULL or at least one
operand is of an invalid data type

Calculation
(PPM4)

Result TRUE if exactly one operand returns TRUE.
FALSE if no operand or more than one
operand returns TRUE. NULL if at least one
operand returns NULL

Error If at least one operand is of an invalid data
type (not BOOLEAN)

Example: -

PPM CUSTOMIZING

110

LOGICAL NOT

XML tag: not

Operands: exactly one logical value

Synopsis: <not>
 <Logical value>
</not>

Operands: BOOLEAN

Result: Logical value

Result type: BOOLEAN

Description: Reverses the specified logical value.

Calculation
(PPM3)

Result TRUE if operand returns FALSE, otherwise
FALSE

Error If operand returns NULL or at least one
operand is of an invalid data type

Calculation
(PPM4)

Result TRUE if operand returns FALSE. FALSE if
operand returns TRUE. NULL if the operand
returns NULL

Error If operand is of an invalid data type (not
BOOLEAN)

Example: <not>
 <exists>
 <attribute name="AT_ORDER_VOL"
nodetype="OT_FUNC"/>
 </exists>
</not>

CHECKING FOR TEXT WITHIN TEXT

XML tag: containstext

Operands: Exactly two values of type TEXT

Synopsis: <containstext>
 <value 1>
 <value 2>
</containstext>

Operands: TEXT

Result: Logical value

Result type: BOOLEAN

PPM CUSTOMIZING

111

Calculation
(PPM4 only)

Result TRUE if the text returned by the second
operand is a sub-character string of the value
returned by the first operand, otherwise
FALSE. NULL if at least one operand returns
NULL

Error If at least one operand is of an invalid data
type (not TEXT)

Example: <containstext>
 <filteredattribute name="AT_ABCDEF"
 nodetype="OT_FUNC" objectname="this"
 onerror="EXIT_NO_WARNING"/>
 <constant>
 <dataitem>
 abc
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
</containstext>

Operator returns TRUE if the string abc is contained in
the value of the AT_ABCDEF attribute.

8.1.3.4.5 Conditional operator
The following operator is available: if - then - else

CONDITION CHECK WITH OPTIONAL BRANCH (ELSE)

XML tag: if - then [- else]

Operands: exactly one logical value

Synopsis: <if>
 <Logical value>
</if>
<then>
 <Value>
</then>
<else>
 <Value>
</else>

Operands: BOOLEAN

Result: Logical value - Value [- Value]

Result type: BOOLEAN - Operand data type [- Operand data type]

Calculation
(PPM3/PPM4)

Result Value of second operand if the first operand
returns TRUE. Value of the 3rd operand if the
1st operand returns FALSE.
NULL if 1st operand is FALSE and 3rd operand
is not defined.

PPM CUSTOMIZING

112

Error If first operand is not of the BOOLEAN data
type

Example: <if>
 <exists>
 <filteredattribute name="AT_OS"
nodetype="OT_FUNC"
 objectname="SAP.WAUS
filter="LATEST"/>
 </exists>
 <then>
 <filteredattribute name="AT_CT"
nodetype="OT_FUNC"
 filter="EARLY"/>
 </then>
 <else>
 <filteredattribute name="AT_KT"
nodetype="OT_FUNC"
 filter="LATEST"/>
 </else>
</if>

If the condition is met (i. e. the AT_OS attribute is
specified for at least one function with the internal name
SAP.WAUS) the value of the AT_CT attribute is passed
on. If the condition is not met, the value of the AT_KT
attribute is used in the subsequent calculation.

8.1.3.4.6 String operators
The following operators are available: concat, subtext, indexof.

CONCATENATION OF STRINGS

XML tag: Concat

Operands: exactly one set of values (strings)

Synopsis: <concat>

<Value set 1>

</concat>

Operands: TEXT

Result: Value (string)

Result type: TEXT

Calculation
(PPM3/PPM4)

Result Result of the concatenation of all strings
contained in the set of values. NULL if
operand is an empty set

Error If at least one value is of an invalid data type

Example: -

PPM CUSTOMIZING

113

EXTRACTION OF SUBSTRINGS

XML tag: Subtext

Operands: exactly one value (string)

Synopsis: <subtext beginindex="..." [endindex=" "]>

<Value>

</subtext>

Example

<subtext>

<Value>
<beginindex>...</beginindex>
<endindex>...</endindex>

</subtext>

You should only use one of the two variations outlined
(index specified either as an XML attribute or an XML
element).

Operands: TEXT

Result: Value (extracted string)

Result type: TEXT

Description: Extracts a substring from a string by specifying positive
indices (from the start of the string) or negative indices
(from the end of the string).

Calculation
(PPM3)

Result Returns a substring of the string transferred
by the operand.
NULL if the specified indices are invalid

Error If operand is NULL or of an invalid data type

Calculation
(PPM4)

Result Returns a substring of the string transferred
by the operand.
NULL if the specified indices are invalid or the
operand is NULL

Error If data type is invalid (not TEXT)

PPM CUSTOMIZING

114

Example: <subtext beginindex="-3" endindex="-1">
 <filteredattribute name="AT_XYZ"
 nodetype="OT_FUNC"/>
</subtext>

Example

<subtext>
 <beginindex>-3</beginindex>
 <endindex>-1</endindex>
 <filteredattribute name="AT_XYZ"
 nodetype="OT_FUNC"/>
</subtext>

Assuming the value ABCDE for the AT_XYZ attribute,
the substring CD is extracted.

IDENTIFY POSITION OF SUB-TEXT IN ANOTHER TEXT

XML tag <indexof>

Description Returns the index in a text (operand 1), where the first
occurrence of a sub-text (operand 2) is located, starting
at a specified index (operand 3).

Operands

(Position/

Data type)

1 / TEXT

2 / TEXT

[3 / LONG], optional, default value is 0

Calculation from PPM 9.0

Calculation

(PPM4)

Result -1, if at least 1 operand equals NULL, or
if the substring is not found

Index of the first occurrence of the text
determined by operand 2 in the text
determined by operand 1 starting from
the index specified in operand 3 (like
Java String.indexOf(String, int)).

Data type LONG

Exception If at least 1 operand has an invalid data
type or operand 3 < 0

PPM CUSTOMIZING

115

Example <subtext mode="PPM4">

<filteredattribute name="AT_TEXT" … />
<beginindex>
 <indexof>
 <filteredattribute name="AT_TEXT" … />
 <constant>
 <dataitem>
 XYZ
 <datatypename="TEXT">Text</datatype>
 </dataitem>
 </constant>
</beginindex>

</subtext>

 In the example, the operators indexof and subtext are used
together. indexof determines the position of the text XYZ in the
attribute value of the attribute AT_TEXT. Then, the subtext
operator identifies the substring from this position.

If the AT_TEXT attribute has the value ABCDEXYZAC, the
above calculation rule would return the value XYZAC.

8.1.3.4.7 Time operators
The following operators are available: createday, createtimeofday, createtimestamp,
addtimespan, addfactorytimespan, and weekday

FORMAT CONVERSION (DATE)

XML tag: createday

Operands: exactly one value

Synopsis: <createday>
 <Value>
</createday>

Operands: TIME (TIMESTAMP, DATE)

Result: Value (date in dd.MM.yyyy format)

Result type: DAY

Description: Extracts a date from a PPM time stamp.

Calculation
(PPM3)

Result Date returned by the operand

Error If operand is of an invalid data type or equal
to NULL

Calculation
(PPM4)

Result Date returned by the operand NULL if
operand is equal to NULL

Error If operand is of an invalid data type

PPM CUSTOMIZING

116

Example: <calcattr name="AT_DAY" type="PROCESS">
 <calculation>
 <createday>
 <filteredattribute name="AT_TIME"
 nodetype="OT_FUNC"
 objectname="this" filter="EARLY"/>
 </createday>
 </calculation>
</calcattr>

FORMAT CONVERSION (TIME)

XML tag: createtimeofday

Operands: exactly one value

Synopsis: <createtimeofday>
 <Value>
</createtimeofday>

Operands: TIME (TIMESTAMP, DATE)

Result: Value (time of the day in hh:mm:ss format)

Result type: TIMEOFDAY

Description: Extracts the time of day from a PPM time stamp.

Calculation
(PPM3)

Result Time of the day defined by the operand

Error If operand is of an invalid data type or equal
to NULL

Calculation
(PPM4)

Result Time of the day defined by the operand NULL
if the operand returns NULL

Error If operand is of an invalid data type

Example: <calcattr name="AT_DAY" type="PROCESS">
 <calculation>
 <createtimeofday>
 <filteredattribute name="AT_TIME"
 nodetype="OT_FUNC"
 objectname="this" filter="EARLY"/>
 </createtimeofday>
 </calculation>
</calcattr>

FORMAT CONVERSION (TIME STAMP)

XML tag: createtimestamp

Operands: one or two values (Date or Date and time)

PPM CUSTOMIZING

117

Synopsis: <createtimestamp>
 <Date>
 <Time> [optional]
</createtimestamp>

Operands: DAY, TIMEOFDAY

Result: Value (time stamp in dd.MM.yyyy hh:mm:ss format)

Result type: TIME (TIMESTAMP, DATE)

Description: Creates a PPM time stamp from a date or from a date and
a time.

Calculation
(PPM3)

Result Time stamp defined by the operands

Error If at least one operand is of an invalid data
type or equal to NULL

Calculation
(PPM4)

Result Time stamp defined by the operands. NULL if
operand of DAY type returns NULL, or if first
operand of TIMEOFDAY data type and second
operand return NULL.

Error If at least one operand is of an invalid data
type

Example: <createtimestamp>
 <constant>
 <dataitem>
 <datatype name="DAY">
 25.01.2004
 </datatype>
 </dataitem>
 </constant>
</createtimestamp>

Creates the time stamp 25.01.2004 00:00:00.

ADDITION OF A TIME SPAN

XML tag: addtimespan

Operands: exactly two values (time stamp and time span, date and
time span or time and time span)

Synopsis: <addtimespan>
 <Time stamp or date or time>
 <Time span>
<addtimespan>

Operands: Operand 1: TIME (TIMESTAMP, DATE) or DAY or
TIMEOFDAY
Operand 2: TIMESPAN

Result: Value (time stamp in dd.MM.yyyy hh:mm:ss format)

PPM CUSTOMIZING

118

Result type: Point in time: TIME (TIMESTAMP, DATE) or DAY or
TIMEOFDAY

Description: Adds a time span in the base scaling (SECOND) to a PPM
time stamp. The result is a time stamp.

Calculation
(PPM3)

Result Point in time resulting from adding the
specified time span (operand 2) to the
specified point in time (operand 1)

Error If at least one operand equals NULL or at
least one operand is of an invalid data type

Calculation
(PPM4)

Result NULL if at least one operand is NULL Point in
time resulting from adding the specified time
span (operand 2) to the specified point in
time (operand 1)

Error If data type is invalid

Example: <calcattr name="AT_NTOFD" type="PROCESS">
 <calculation>
 <addtimespan>
 <constant>
 <dataitem>
 <datatype name="TIMEOFDAY">
 08:35:41
 </datatype>
 </dataitem>
 </constant>
 <constant>
 <dataitem>
 <datatype name="TIMESPAN">
 -30 MINUTE
 </datatype>
 </dataitem>
 </constant>
 </addtimespan>
 </calculation>
</calcattr>

At the specified time, a negative time span of thirty
minutes is added. The result value 08:05:41 is saved in
the AT_NTOFD target attribute.

ADDITION OF A TIME SPAN INCLUDING FACTORY CALENDAR

Adds a factory calendar time span to a PPM time stamp. The result is a time stamp. Configuration
and usage of the addfactorytimespan operator are similar as for addtimespan. For this
calculation, the specified factory calendar time span is added beginning from a start time. By
default, the operator supports only addition of positive factory calendar time spans. If you also
want to calculate points in time in the past, you can add negative time spans by specifying the
optional XML attribute negfactorytimespan="TRUE" (default value: FALSE). If the point in

PPM CUSTOMIZING

119

time calculated is exactly on a work time limit the operator returns the earliest point in time
possible.

Examples

Taking the simplified condition of a daily work time from 9am-5pm:

 addFactoryTimeSpan("01.12.2011 12:00:00", "8 FACTORY_HOUR") = "02.12.2011
12:00:00"

 addFactoryTimeSpan("01.12.2011 12:00:00", "5 FACTORY_HOUR") = "01.12.2011
17:00:00"

 addFactoryTimeSpan{negfactorytimespan="TRUE"}("02.12.2011 12:00:00", "-8
FACTORY_HOUR") = "01.12.2011 12:00:00"

 addFactoryTimeSpan{negfactorytimespan="TRUE"}("02.12.2011 12:00:00", "-3
FACTORY_HOUR") = "01.12.2011 05:00:00 PM"

If you want to use a factory calendar other than the default factory calendar
(factorycalendar.xml) you can specify an XML file containing the factory calendar to be used. In
the attributename XML attribute, you specify the function or process instance attribute that
determines the name of the XML factory calendar file to be used. The attribute must be specified
at the function or process instance for which the calculation is run. In the XML attribute
directory, you specify the directory in which to look for the specified factory calendar file. The
two XML attributes attributename and directory must always be specified together.

You specify the corresponding directory containing the factory calendar file to be used relative to
the PPM data directory. The PPM data directory data_ppm is located under <PPM installation
directory>\ppm\server\bin\work\.

Example
...
<addfactorytimespan directory="calc\fc" attributename="AT_FC_NAME">
...

If the AT_FC_NAME attribute contains the value myFactoryCalendar.xml, the factory
calendar defined in the file myFactoryCalendar.xml is used for calculation. The file is located
under <PPM installation directory>\ppm\server\bin\work\data_ppm\calc\fc\.

The addition of factory calendar time spans is always in the base unit Person-second. The
conversion factors used for this are independent of the factory calendar and defined in the
client-specific configuration file transformationfactors.xml. If you do not want to use these,
you may use only factory calendar time spans with the units person-second, minute, or hour to
add a time span based on a factory calendar.

PPM CUSTOMIZING

120

DETERMINING THE DAY OF THE WEEK (FROM A DATE)

XML tag: weekday

Operands: exactly one value

Synopsis: <weekday>
 <Value>
</weekday>

Operands: Exactly one operand: TIME or DAY

Result: Character string in the format MO, TU, WE, TH, FR, SA,
or SU

Result type: TEXT

Description: Determines the day of the week from a PPM date type
and returns it as a character string.

Calculation
(PPM4)

Result One of the constants MO, TU, WE, TH, FR, SA
or SU, depending on the day of the week of
the date transferred.

Error If operand is of an invalid data type or an
invalid number of operands.

Example: <calcattr name="AT_WEEKDAY" type="PROCESS">
 <calculation>
 <weekday>
 <constant>
 <dataitem>
 <datatype name="DAY">
 25.08.2007
 </datatype>
 </dataitem>
 </constant>
 </weekday>
 </calculation>
</calcattr>

Determines the day of the week for the specified date
('Saturday') and returns it as the TEXT character string
SA.

Values of text dimensions that use results of the
weekday operator cannot be sorted.

8.1.3.4.8 Conditional attribute type calculation
The conditional calculation of attribute types allows attribute type calculation to be controlled.
This control is based on the existence check for attribute types or the result of comparisons. The
existence check distinguishes between the two cases of Attribute type exists (exists XML
element) and Attribute type specified (filled XML element).

PPM CUSTOMIZING

121

In the example below, the calculation element <if> returns the value Null, if there is no AT_B
function attribute in the process instance. In this case, the set of results generated by the
attribute XML element is empty.
If at least one AT_B attribute exists at any function in the process instance, the value of the
filteredattribute XML element is transferred.

<if>
 <exists>
 <attribute name="AT_B" nodetype="OT_FUNC"/>
 </exists>
 <then>
 <filteredattribute name="AT_C" nodetype="OT_FUNC"
 filter="EARLY"/>
 </then>
</if>

By linking conditions using logical operators, more complex conditions can also be formulated.
The example shown is to be expanded to include a test for an existing attribute value.

<if>
 <and>
 <exists>
 <attribute name="AT_B" nodetype="OT_FUNC"/>
 </exists>
 <filled>
 <attribute name="AT_B" nodetype="OT_FUNC"/>
 </filled>
 </and>
 <then>
 <filteredattribute name="AT_C" nodetype="OT_FUNC"
 filter="EARLY"/>
 </then>
</if>

As the existence of the corresponding attribute type is a prerequisite for an existing attribute
value, the check for existence can be skipped to optimize the condition.

In the following example, the <if> calculation element returns the value NULL if an attribute
type with the name AT_G is not specified for any of the occurring functions.

<if>
 <exists>
 <filteredattribute name="AT_G" nodetype="OT_FUNC"
 filter="LATEST"/>
 </exists>
</if>

PPM CUSTOMIZING

122

8.1.3.5 Nesting of operators
Operators can be nested at any depth. If you are combining operators, you need to adhere to the
rules specified in the DTD.

Warning

Calculation rules based on nesting of operators that is not permitted result in the import being
canceled when the measure configuration is imported. Due to the complex dependencies,
incorrect calculation rules may result in the database content being entirely unusable.

In the file KeyindicatorConfiguration.dtd in the dtd directory of your PPM installation, you can
check what nesting of operators is permitted.

Example (extract from DTD):

<!ELEMENT abs (%numericoperator; | %setoperator; |
 %caseoperator; | filteredattribute | constant)>

The <abs> operator can be nested with one of the <filteredattribute> or <constant> XML
elements or with an operator for the specified entities (declared units in XML notation to which
particular XML elements are assigned):

 % numericoperator (unit of all mathematical operators)

 % setoperator (unit of all operators producing a value)

 % caseoperator (unit of all condition operators)

Which operators are assigned to which entity can be seen in the declaration of the entity.

Example (extract from DTD):

<!ENTITY % setoperator "sum|product|card|min|max|mean">

The % setoperator entity stands for one of the operators <sum>, <product>, <card>,
<min>, <max>, or <mean>.

The following example shows a calculation rule compliant to the DTD:

<calcattr name="..." type="...">
 <calculation>
 <abs>
 <minus>
 <filteredattribute name="AT_KI_BSP1"
 nodetype="OT_FUNC" objectname="this"
 filter="LATEST" onerror="EXIT_NO_WARNING"/>
 <filteredattribute name="AT_KI_BSP2"
 nodetype="OT_FUNC" objectname="this"
 filter="EARLY" onerror="EXIT_NO_WARNING"/>
 </minus>
 </abs>
 </calculation>
</calcattr>

PPM CUSTOMIZING

123

8.1.3.6 Calculation functions
Define complex partial calculations for calculation rules that you want to use in several attribute
calculations to be used as calculation functions. A calculation function is used by calling up
usefunction in the calculation rule for an attribute calculation or calculation function.

Warning

When calling up calculation functions from other calculation functions, avoid cyclic dependencies.
The import of this kind of measure configuration is canceled and an error message is output.

XML tag Description

function name Internal name of the calculation function. Referenced
in the function call.

Resulttype Result type (for use with other operators). Valid
values:
Value (VALUE)
Set of values (VALUELIST)
Logical value (BOOLEAN)

Datatype Data type of calculation result

Usefunction Function call

When defining and calling up a calculation function, the result type (resulttype) and data type
(datatype) must also be specified.

Example

The following example shows the definition of the getPrincipal calculation function, which returns
a value with the TEXT data type as the result.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <function name="getPrincipal" resulttype="VALUE"
 datatype="TEXT">
 <if>
 <exists>
 <attribute name="AT_PRINCIPAL_NAME"
 nodetype="PROCESS"/>
 </exists>
 <then>
 <max>
 <attribute name="AT_PRINCIPAL_NAME"
 nodetype="PROCESS"/>
 </max>
 </then>
 <else>

PPM CUSTOMIZING

124

 <max>
 <attribute name="AT_PRINCIPAL_ID"
 nodetype="PROCESS"/>
 </max>
 </else>
 </if>
 </function>
 ...
</keyindicatorconfig>

Call up the calculation function

The getPrincipal calculation function previously defined is called up in the calculation rule for the
AT_EXP attribute with usefunction. The result type for the calculation function must match the
processing operator. In the example the syntactically correct result type VALUE is combined with
the eq operator that processes values.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <calcattr name="AT_EXP" type="PROCESS">
 <calculation>
 <if>
 <eq>
 <usefunction name="getPrincipal"
 resulttype="VALUE" datatype="TEXT"/>
 <constant>
 <dataitem>
 KTD
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 </eq>
 <then>
 ...
 </then>
 ...
 </if>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Create calculation functions using PPM Customizing Toolkit. In the Calculated attributes menu
for the Measures and dimensions module, call up the dialog box for creating, editing and
deleting calculation functions using the Configure calculation functions button. If calculation
functions are specified in the system, they are available in the Define calculation rule dialog
box both for the definition of additional calculation functions and for the definition of attribute
calculations.

PPM CUSTOMIZING

125

8.1.3.7 Change the attribute type
Mathematical calculations are executed internally using the DOUBLE data type. The arithmetic
link between any numerical data types is correctly calculated and then converted into the data
type for the resulting attribute type.
The link between a time span attribute type and a cost attribute type is also executed correctly
from a numerical point of view. The base unit of the result attribute type determines the result
unit.

8.1.3.8 Summary
A new attribute type calculated using calcattr contains the result value in the base unit.

A specified calculation rule is only executed if the specified attribute type is given as an attribute
to be calculated (calculated=TRUE) in the definition of a measure or dimension (attrname XML
attribute).

If PROCESS is specified as the node type (nodetype), the specified attribute type is calculated
only once and copied to the process instance.

If a calculation rule OT_FUNC is specified as the node type, the specified attribute type is
calculated for every function in the process instance. It is also copied to every function.

Within a calculation rule (calculation), reference can be made to any existing attribute types. If
this calculation is intended to access an attribute type for the function for which this calculation is
currently being executed, this is used as the object name.

8.1.3.9 Example attribute calculations
Example 1: Delivery performance

The delivery performance measure compares the actual delivery date (end time of the
SAP.WAUS function in a process instance) with a default value imported from the source system.
If the actual delivery date is before the default value, the measure value is 0. The value 0 is
interpreted as on-time delivery. Otherwise, the measure shows the deviation from the standard
value. The default value is stored in the AT_CUSTDATE_WISH process instance attribute.
Where the SAP.WAUS function occurs several times in the process instance, the earliest value is
determined.

...
<!-Delivery performance -->
<calcattr name="AT_KI_WLFTREU" type="PROCESS">
 <calculation>
 <max>
 <set>
 <constant>
 <dataitem value="0 SECOND">
 <datatype name="TIMESPAN"/>
 </dataitem>
 </constant>

PPM CUSTOMIZING

126

 <timespan>
 <max>
 <attribute name="AT_CUSTDATE_WISH"
 nodetype="PROCESS"/>
 </max>
 <min>
 <attribute name="AT_END_TIME"
 nodetype="OT_FUNC" objectname="SAP.WAUS"/>
 </min>
 </timespan>
 </set>
 </max>
 </calculation>
</calcattr>
...

The measure is given the maximum (max) of a set of values (set) as its value. The set of values
contains the element 0 (constant) and the time difference between the actual delivery date and
the target delivery date (timespan). As the attribute XML element creates a set of values,
appropriate operators must first of all be used to determine an attribute value for further
calculation. When determining the attribute value for the SAP.WAUS function, using the min
operator also determines the earliest actual delivery date. The set of values created using set is
given 2 elements: {0, (Desired date - Delivery date)}. When determining the maximum of the
set of values, a negative time span results in 0 being returned while a positive time span returns
the difference between the end time of the SAP.AUS function and the AT_CUSTDATE_WISH
process attribute in seconds (base unit for the timespan data type).

As this new attribute is a process instance attribute, it is calculated only once for each process
instance. The following results of the calculation can occur:

The new process instance attribute is given the calculated positive time span in the unit Seconds.
If the calculated time span is negative, the new process instance attribute is given the time span
0 seconds.
The new process instance attribute is not written at the process instance if the calculation fails for
one or more of the following reasons and no default value is specified:

 The AT_CUSTDATE_WISH attribute does not exist at the process instance.

 There is no SAP.WAUS function at the process instance.

 The AT_END_TIME attribute does not exist at the SAP.WAUS function.

Example 2

At each function of a process instance, the AT_KI_COMPETENCE attribute should specify
whether the values of the AT_COMPETENCE and AT_CREDIT_AMOUNT attributes for a
function match. If they match, the attribute should have the value 1, otherwise the value should
be 0.

<calcattr name="AT_KI_COMPETENCE" type="OT_FUNC">
 <calculation>
 <if>
 <eq>
 <min>
 <attribute name="AT_COMPETENCE"
 nodetype="OT_FUNC" objectname="this"/>

PPM CUSTOMIZING

127

 </min>
 <max>
 <attribute name="AT_CREDIT_AMOUNT"
 nodetype="OT_FUNC" objectname="this"/>
 </max>
 </eq>
 <then>
 <constant>
 <dataitem value="1">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 </then>
 <else>
 <constant>
 <dataitem value="0">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 </else>
 </if>
 </calculation>
</calcattr>

Specifying the OT_FUNC node type and the lack of an object name leads to the calculated
AT_KI_COMPETENCE attribute being written to all functions in the process instance. In the
attribute calculation, specifying this as the object name results in every function accessing its
own attributes. In this case, the embracing operators min and max return the value of the
referenced attribute, as the object name this results in an attribute set containing only one
element.

Example 3

By default, the earliest start time of a function in the process instance is used as the start time for
a process instance:

<calcattr name="AT_START_TIME" type="PROCESS">
 <calculation>
 <min>
 <attribute name="AT_START_TIME" nodetype="OT_FUNC"/>
 </min>
 </calculation>
</calcattr>

If only the start times of particular functions are to be used, these functions must be checked for
a particular criterion. In the following example, the auxiliary AT_TEMP_TIME attribute is used to
filter the "Rush order type" criterion (AT_AUFTRAGSART function attribute value). The actual
start time for the process instance is then determined from the filtered start times of the
functions.

<calcattr name="AT_TEMP_TIME" type="OT_FUNC">
 <calculation>
 <if>
 <eq>
 <filteredattribute name="AT_AUFTRAGSART" nodetype=
 "OT_FUNC" objectname="this" filter="EARLY"/>

PPM CUSTOMIZING

128

 <constant>
 <dataitem>
 Rush order
 <datatype name="TEXT"/>
 </dataitem>
 </constant>
 </eq>
 <then>
 <filteredattribute name="AT_START_TIME" nodetype=
 "OT_FUNC" objectname="this" filter="EARLY"/>
 </then>
 </if>
 </calculation>
</calcattr>

<calcattr name="AT_START_TIME" type="PROCESS">
 <depends attrname="AT_TEMP_TIME" nodetype="OT_FUNC">
 <calculation>
 <min>
 <attribute name="AT_TEMP_TIME" nodetype="OT_FUNC"/>
 </min>
 </calculation>
</calcattr>

Example 4

The order group is to be saved as a function attribute in the AT_KI_AUFTR_GRUPPE attribute.
The order group is given by the first two characters in the order number (AT_AUFTNR). For
example, the order group 40 belongs to the order number 40268755.

The subtext operator extracts the string 40 from the string 40268755 for the AT_AUFTNR
function attribute:

<calcattr name="AT_KI_AUFTR_GRUPPE" type="OT_FUNC">
 <calculation>
 <subtext beginindex="0" endindex="2">
 <filteredattribute name="AT_AUFTNR" nodetype=
 "OT_FUNC" objectname="this" filter="EARLY"/>
 </subtext>
 </calculation>
</calcattr>

XML attribute Description

beginindex Start index (inclusive, starting at 0)

endindex
(optional)

end index (exclusive)

If no end index is specified, the result string begins at the specified start index and ends at the
end of the source string.

Warning

The subtext operator can only be used on attributes and constants of the TEXT data type. If you
use it on a string that contains fewer characters than the number specified in beginindex or
endindex, the operator returns the value NULL.

PPM CUSTOMIZING

129

Example 5

The date 07.04.2003 is extracted from the time stamp 07.04.2003 17:30:58 and is written to
all functions in the process instance as the value of the AT_CALEN_DAY attribute.

<calcattr name="AT_CALEN_DAY" type="OT_FUNC">
 <calculation>
 <createday>
 <constant>
 <dataitem value="07.04.2003 17:30:58">
 <datatype name="TIME"/>
 </dataitem>
 </constant>
 </createday>
 </calculation>
</calcattr>

Example 6

A time span of one hour (3600 seconds in the base unit) is added to the time stamp 22.01.2002
14:55:21 and copied to all functions in the process instance as the time stamp value
22.01.2002 15:55:21 for the AT_ADD_TSP attribute.

<calcattr name="AT_ADD_TSP" type="OT_FUNC">
 <calculation>
 <addtimespan>
 <!-- Time stamp -->
 <constant>
 <dataitem value="22.01.2002 14:55:21">
 <datatype name="TIME"/>
 </dataitem>
 </constant>
 <!— Time span 3600 seconds -->
 <constant>
 <dataitem value="3600">
 <datatype name="TIMESPAN"/>
 </dataitem>
 </constant>
 </addtimespan>
 </calculation>
</calcattr>

8.1.3.10 Special features of attribute calculation

8.1.3.10.1 AT_INTERNAL_NO_CUBE_ENTRY function
attribute

For certain functions, you can specify that they are not to be saved in the function cube. If the
attribute AT_INTERNAL_NO_CUBE_ENTRY exists at a function and has the value true this
function instance will not be written to the cube table. The existence of this attribute does not
impact the measure calculation of this function, that is, you can create the attribute at the
function instance using a calculation rule, as well.

PPM CUSTOMIZING

130

The attribute is evaluated by instance, that is, if the attribute is missing at individual function
instances (or if the attribute value is not equal to true), these function instances will be saved in
the function cube. However, if you overwrite these function instances having the attribute
AT_INTERNAL_NO_CUBE_ENTRY and the value true when reimporting, the entries in the
function cube will be deleted, as well.

ATTRIBUTE DEFINITION

The attribute AT_INTERNAL_NO_CUBE_ENTRY is not included in the default configuration of
PPM attributes. If you want to use this feature, you first need to define the attribute
AT_INTERNAL_NO_CUBE_ENTRY with the boolean data type.

The functions displayed in the analysis process tree are based on entries in the function cube.
Functions whose instances were not written to the function cube due to the attribute value true
for the attribute AT_INTERNAL_NO_CUBE_ENTRY are not displayed in the process tree.

The feature described does not affect the use of process hierarchies because you can assign
process instances to functions that were not calculated. The functions not saved in the function
cube are not displayed in the process tree of the assigned process type, either.

8.1.4 Typification rules in CTK
You can define typification rules in the Processes CTK module. To create, edit or delete a rule for
a particular process type, simply select the corresponding process type from the process tree and
select the relevant item from the pop-up menu. It is also possible to create a typification rule
based on a template. All rules previously defined can be used as a template. The definition of the
calculation rule for a typification rule is specified using the familiar operands and operators from
the attribute calculation (see Definition of attribute calculations (page 45)).

Warning

When defining the corresponding calculation rule for a typification rule, you need to ensure that
it delivers a return value of the BOOLEAN type.
Each calculation rule is automatically checked for correct syntax in the Configure typification
rule "typifierrule_<processtypegroup>_<processtype>" dialog.

As soon as you save your changes, they are permanently stored in the process tree and measure
configurations. When you activate the changed configuration, it is transferred to the PPM system.

8.2 Typification by attribute calculation
The typification can be done by using typification rules, or alternatively, by importing values in
specific attributes, the so-called "pretypification".

The attributes can always be calculated separately from typification and process assignment. You
can do that by assigning the attributes to the process tree root. This attribute calculation done by
runppmimport is processed between merge and typification/measure calculation.

PPM CUSTOMIZING

131

In this way, an EPC typification can be applied by importing or calculating the attributes
AT_PROCTYPEGROUP and AT_PROCTYPE. If these are set typification will use their values
instead of using the typification rules as described above.

Attributes AT_PROCTYPE and AT_PROCTYPEGROUP:

Attribute Description Usuage

AT_PROCTYPE process type Imported or set by typification
rules

AT_PROCTYPEGROUP process type group Imported or set by typification
rules

PPM CUSTOMIZING

132

9 Definition of measures, dimensions, attribute
calculations, and relations

Measures in the PPM system supply measurable values of process or function instance properties
that can be calculated, such as function cycle time in hours or order volume in euros.

Dimensions further specify the calculated measure values of process and function instances using
particular criteria, such as order number, sold-to party, etc.

The following chapters describe how you define measures and dimensions or attribute
calculations and relations and make them available to the PPM system through special
configurations of the process tree (see chapter Register measures and dimensions at the
PPM system (page 195)).

9.1 Terminology
Key terms of the chapter on Definition of measures, dimensions, attribute calculations,
and relations are explained in detail below.

9.1.1 Measures
The PPM system differentiates between various measure categories:

DIFFERENTIATION BY MEASURE TYPE

The following measure types are differentiated by the object type that the measure refers to:

 Process measures are measures whose values are available for analysis at the entire
process instance.

 Function measures are evaluated based on function instances.

 Relation measures are measures that are available for the evaluation of relations.

 Cardinality measures are available for specific text dimension evaluations.

DIFFERENTIATION BY PROCESS REFERENCE

 Process instance-dependent measures are measures whose values are calculated with a
reference to process instances.

 Process instance-independent measures are measures whose values are calculated
without a reference to process instances.

DIFFERENTIATION BY DEFINITION

 Standard measures are defined in the client-specific measure configuration file. A major
part of these measures is preconfigured in PPM.

 User-defined measures are defined by users in a particular module of the PPM user
interface based on standard measures and then saved in a special XML configuration file.

PPM CUSTOMIZING

133

Preconfigured user-defined measures are also part of the ARIS Process Performance Manager
scope of supply.

The listed measure categories can be combined, for example, you can define process
instance-independent process measures.

All measure categories have in common that the concrete value of a measure describes a
particular, measurable property of a process instance, for example, like time of execution or
number of processors.

Furthermore, measures can be grouped logically. The assignment of a measure to a group must
be unique. This means that each measure can only be assigned to one group. The group structure
is hierarchical and can be of any depth.

9.1.1.1 Process instance-dependent measures

STANDARD MEASURES

The values of standard measures are calculated based on attributes at the process, function, or
relation instance level using the attribute calculator component of the Measure calculator.
The calculation uses either a fixed algorithm programmed in the PPM software or an algorithm
specified by the user in the XML Measure configuration file.

USER-DEFINED MEASURES

The algorithm for calculating user-defined measures can be conveniently created using the PPM
front-end.

The fundamental difference from standard measures is the fact that the calculation is not
instance-specific and based on attributes, but on the sets of values for already calculated
measures. The results are not saved in the PPM database and are recalculated each time the
measure is called up. Changes to the algorithm are displayed immediately by calling up the
measure again in the PPM user interface.

9.1.1.2 Process instance-independent measures (PIKIs)
The values of process instance-independent measures are calculated based on data that is not
process-oriented. Process instance-independent measures can be analyzed in the PPM system
just like process instance-dependent process measures and be used in calculation rules of
user-defined measures, for example.

Process instance-independent measures are not calculated from process instance data. The
concrete measure value does not have any process instance reference.

To find out how process instance -independent measures are defined, please refer to
chapter Definition of process instance-independent measures (page 143).

The configuration of the file import formats (XML, CSV, XLS) of process instance-independent
measures is described in the technical reference PPM Data Import.

PPM CUSTOMIZING

134

9.1.2 Dimensions
Dimensions are criteria for differentiating process instances and function instances. Dimension
values are based on attribute values, which are either transferred directly from the source system
(for example, location, product area) or calculated (for example, process type).

The following dimension types exist:

 Text dimensions (page 161) (one-level, two-level, n-level)

 Floating point dimensions (page 172) (floating point number format)

 Time dimension (page 174) (with dimension table or as incube time dimension)

 Time of day dimension (page 181)

 Time range dimension (page 179)

 Search dimensions (page 183)

 Shared function dimension (page 187)

The standard step size for displaying a dimension is either explicitly specified in the configuration
file or is calculated automatically by the system for optimum representation.

9.2 Definition of measures
The starting point for the calculation of measures and dimensions is the process tree. When
calculating, for all the measures specified in the process tree configuration file (useki XML
element), the definition in the measure configuration (kidef XML element) is retrieved and the
associated calculation rule (calcattr XML element) is executed. This procedure only calculates
measures that are used in the process tree, and optimizes the performance of the Measure
calculator independently of the number of defined measures. Dimensions are calculated in the
same way (usedim XML tag).

PPM CUSTOMIZING

135

The graphic below illustrates the dependencies between the measure definition and the process
tree definition:

The measure configurations supplied with the PPM system (*_keyindicator.xml files in the
directories <PPM installation
directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-c
lient-run-prod-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\<client
template>\xml contain definitions of the most common, generally applicable measures and
dimensions. This default configuration can easily be expanded in the PPM Customizing Toolkit
module Measures and dimensions to include project-specific measures.

Warning

Avoid using the suffixes _NUM and _SUM when assigning internal measure names. These
suffixes are used internally by the Measure calculator.

9.2.1 Definition of standard measures
A measure is defined in the client-specific XML configuration file with the
KeyindicatorConfiguration.dtd document type definition by the following element:

...
<kidef name="..." attrname="..." type="..."
 calculated="..." distribution="..."
 standarddeviation="..." retrievertype="..."
 kigroup="..." sharedfunctionki="..."
 functionspanki="..." colname="..."
 importmode="OPTIONAL">
 <description language="..." name="...">
 Description text...
 </description>
</kidef>
...

PPM CUSTOMIZING

136

XML attribute Description

name Internal name of the measure. Referenced in the
useki XML tag in the process tree definition.

type Measure type
PROCESS: Process measure
FUNCTION (obsolete): Function measure
OT_FUNC: Function measure
OT_ORG: Organizational measure
RELATION: Relation measure

location
(optional)

Only for type="RELATION"

Valid values: SOURCE (attribute placement on
source reference object of relation)
TARGET (attribute placement on target reference
object of relation)
THIS (default value: attribute is placed at the
relation itself)

description Language-specific description of a group,
optionally with tooltip (#PCDATA section in the
description element). The description must be
specified in at least the default language.

attrname Name of the attribute on which the measure is
based. This can be an existing attribute value
(calculated=FALSE) or an attribute value to be
calculated (calculated=TRUE).

calculated TRUE: The value of the referenced attribute is
calculated using the calculation rule specified by
calcattr.
FALSE: The value of the referenced attribute is
not calculated.

distribution TRUE: The measure can be used as a dimension.
FALSE: The measure cannot be used as a
dimension.

standarddeviation
(optional)

TRUE: The standard deviation can be calculated
for the measure. The standard deviation can be
calculated for all measures except Number of
processes and Number of functions.
The default value is TRUE.

PPM CUSTOMIZING

137

XML attribute Description

sharedfunctionki
(optional)

TRUE: The measure is treated as a shared
function measure for calculating measures. The
measure for a shared function is only calculated
once and applies to all instances of the shared
function.
Default value is FALSE.

functionspanki
(optional)

TRUE: The measure is a function span measure
(for example, cycle span).
If the function occurs multiple times within a
process instance, the measure value calculated
applies only once per instance.
Default value is FALSE.

retrievertype
(optional)

Type of measure retriever used. Defines how the
set of measure values for the process instances
involved in a particular analysis is aggregated.
Default value: KEYINDICATOR.

KEYINDICATOR:
Calculates the average value (for example, cycle
time). Numerical types except LONG are all
permitted as data types.

NUM_KEYINDICATOR:
Aggregates numerical measures (for
example, number of processes, number of
functions) by adding the values. All numerical
data types are valid.

FREQ_KEYINDICATOR:
Aggregates frequencies (for example, process
frequency, function frequency). The values are
added and then divided by the time span resulting
from the selected step width of the dimension and
the set time filter.

FACTORY_KEYINDICATOR:
Aggregates measures by calculating the average
using the factory calendar.
FACTORY_TIMESPAN is the only permissible
data type.

dimreferring Type of dimension reference
LOOSE: Loose
STRICT: Strict
Default value: LOOSE

PPM CUSTOMIZING

138

XML attribute Description

kigroup
(optional)

Measure group

importmode
(optional)

Output of error messages when calculating
measure values.
OPTIONAL: Calculation errors are not output.
MANDATORY: Calculation errors are output
Default value: OPTIONAL

Only one of the sharedfunctionki and functionspanki attributes may have the value TRUE. If
one of the two attributes has the value TRUE, the type measure type must have the value
FUNCTION (function measure).

The FACTORY_KEYINDICATOR measure retriever type is no longer used from PPM 3.x, but is
still supported for compatibility reasons. When the configuration is imported, it is replaced by the
KEYINDICATOR retriever type.

9.2.1.1 Formatting measure values
Measure values are rounded to three decimal places by default and are displayed with a
thousands separator or in accordance with the specifications pertaining to the
MINIMUM_FRACTION_DIGITS and MAXIMUM_FRACTION_DIGITS keys in the file
Keyindicator_settings.properties. Alternatively, you can use the format XML element to
specify different formats for each individual measure, provided that it is not a goal
accomplishment indicator.

Goal accomplishment indicator values are always rounded to one decimal place and one
significant place.

Example
...
<kidef name="PDLZ" attrname="..." type="..."
 calculated="..." distribution="..."
 standarddeviation="..." retrievertype="...">
 <description name="Process cycle time" language="de"/>
 <format fractiondigits="1" significantdigits="1" />
</kidef>
...

In the analysis in PPM, the values of the Process cycle time measure are rounded to one
decimal place (fractiondigits="1") when displayed. One significant figure
(significantdigits="1") is to be displayed for the relevant measure value in tooltips and model
attributes for the EPC view.

PPM CUSTOMIZING

139

The definition of the format specifications is located in the file _formatinfo.dtd.

XML tag Description

format Format specifications for measure values

fractiondigits
(optional)

Number of decimal places to be displayed for
measure values in tables, on EPC object
connections, and in filter dialogs.
Default value: 3

significantdigits
(optional)

Only applies to measure values in tooltips and
model attributes for the EPC view:
Number of significant figures to be displayed
(before and after the decimal point and not equal
to 0) up to a maximum of ten decimal places in
total. For example, if you specify
significantdigits="6" the value
1453.03500125 will be displayed as 1453.035
regardless of the specification for fractiondigits.

usegrouping
(optional)

TRUE: Thousands separators are displayed.
FALSE: Thousands separators are not displayed.
Default value: TRUE

9.2.1.2 Definition of process cost measures
The process costs of a process instance are given by the total process costs of all function
instances within the process instance. The process costs of function instances are calculated
using the cost rates for the organizational units assigned to the functions (see Anonymizing
(page 40) chapter) and the execution times of the functions. The number of executions of a
function by an organizational unit is given by the AT_COUNT_PROCESSINGS attribute for the
connection between the organizational unit and the function. If several organizational units are
assigned to a function, this is assessed as repeated execution of the function.

To calculate cost measures, the Costs and Cost rate data types must be known. The definition
of these data types is included in the XML configuration file *_datatypes.xml of the
corresponding CTK client template (under <PPM installation
directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run-pr
od-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\), which you can adjust to meet your
project requirements.

The execution times of functions required to calculate cost measures can be calculated in two
different ways. Depending on the selected calculation method, the calculated costs will be saved
as different measures. The calculation method used for the execution times depends on which
information is extracted from the source system.

PPM CUSTOMIZING

140

MEASURES FPKS_R AND PK_R

To calculate the cost rate based on the processing time, you use the processing time
(AT_KI_FBZ function attribute) calculated from the AT_START_TIME and AT_END_TIME
attributes for a function. The calculated cost rate is saved in the AT_PKS_R function attribute.

MEASURES FPKS_S AND PK_S

To calculate the cost rate based on the performance standard, an estimated standard processing
time is extracted from the source system and written to the functions as the AT_LS attribute. The
calculated cost rate is saved in the AT_PKS_S function attribute.

The process cost rate for a function specifies the average costs for processing the function once
and is calculated using the following calculation rule for the two calculation methods described:
The product of the execution time of a function and the sum of the weighted cost rates of all
organizational units assigned to the function is divided by the total number of executions.

The following formula illustrates the calculation rule:

FPKS Process cost rate (function)
FT Function execution time
KS Process cost rate
FREQ Processing frequency

The method of calculating cost measures is selected by registering the corresponding measures
in the process tree. The default configuration of PPM calculates process cost rates based on the
performance standard.

Extract from the file *_processtree.xml:

...
<useki name="FPKS_S" scale="EUR" assessment="NEG"/>
<useki name="PK_S" scale="EUR" assessment="NEG"/>
...

9.2.2 Measure definition in multi-byte character sets
The following extract from the measure configuration file shows an example of the definition
options for user-defined measures when using a multi-byte character set:

Example with tooltip and attribute calculation:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
...
<calcattr name="ΙΔ_ΟΓΚ_ΕΝΤ" type="PROCESS">
 <calculation>
 ...

PPM CUSTOMIZING

141

 </calculation>
</calcattr>
...
 <!-- Ορισμός του δείκτη όκγου των εντολών -->
 <kidef name="ORDERVOL" attrname="ΙΔ_ΟΓΚ_ΕΝΤ"
 type="PROCESS" calculated="FALSE"
 distribution="FALSE" standarddeviation="FALSE"
 retrievertype="NUM_KEYINDICATOR"
 kigroup="KI_GROUP_COST" dimreferring="LOOSE"
 importmode="OPTIONAL" sharedfunctionki="FALSE"
 functionspanki="FALSE">
 <description name="Auftragsvolumen" language="de"/>
 Order volume
 <description name="Order volume" language="en">
 Order volume
 <description name="Όγκος εντολών" language="el">
 Όγκος εντολών κατα αύξοντα αριθμό
 </description>
 </kidef>
 ...
</keyindicatorconfig>

9.2.3 Definition of cardinality measures
The value of a cardinality measure is based on the number of different values (= max. possible
steps) of the referenced text dimension for the specified step width (level). A cardinality measure
can be defined for one-level, two-level, and n-level dimensions, and is defined by the following
XML element in the measure configuration file:

...
<crdkidef name="..." dimreferring="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 <refdim name="..." refinement="..."/>
</crdkidef>
...

XML tag Description

name Internal name of the measure. Referenced in the useki
XML tag in the process tree definition.

dimreferring Type of dimension reference
LOOSE: Loose
STRICT: Strict
Default value: LOOSE

PPM CUSTOMIZING

142

XML tag Description

refdim The name XML attribute specifies the name of the
dimension to which the calculated cardinality relates.
You also have the option of specifying the step width of
the dimension for which the cardinality is calculated in
the refinement XML attribute. If nothing is specified
here, the default step width of the dimension is used. It
is mandatory to specify the step width for n-level
dimensions. Valid values:

One-level dimension:
BY_LEVEL_1
Two-level dimension:
BY_LEVEL_1 (rough) or BY_LEVEL_2 (detailed)
N-level dimension:
Only
BY_LEVEL<1_N> (roughest level, for
example, BY_LEVEL1_12) or
BY_LEVEL<N_N> (most detailed level, for
example, BY_LEVEL12_12)

The default value is the default step width for the
referenced dimension.

kigroup
(optional)

Measure group
Default value: All measures group

As well as the measure itself, only the ranking, previous periods, and planned values can be
determined for cardinality measures. Statistical evaluations (minimum, maximum, total and
standard deviation) cannot be displayed. Cardinality measures cannot be used as a dimension.
No filters can be specified for cardinality measures.

Any additional dimension values resulting from import of process instance-independent measures
will not be included in the calculation of cardinality measures. The cardinality of dimensions that
are used exclusively by process instance-independent measures always return the value 0.

Avoid analyzing a cardinality measure across several process type groups. The measure value is
only correct if exclusively different dimension values occur in the process type groups analyzed.

Example

You define a cardinality measure to determine the cardinality of the Material dimension. Process
type group 1 contains the dimension values A, B and C, Process type group 2 contains the
dimension values A, B and D. If the cardinality measure is queried for both process type groups,
instead of the value 4, the value 6 will be determined (sum of cardinality of info cubes in the two
process type groups with no consideration of identical dimension values).

PPM CUSTOMIZING

143

9.2.4 Definition of process instance-independent measures
Process instance-independent measures are defined in the client-specific measure configuration
(XML file with the document type definition keyindicatorconfiguration.dtd) in the general
context of data series.

DEFINITION OF DATA SERIES

A data series (pikicube XML element) consists of process instance-independent measures and
referenced dimensions. It must contain at least one process instance-independent measure
(pikidef) and at least one referenced dimension (refdim). Referenced dimensions must be
dimensions configured in the PPM system.

Process instance-independent measures in data series are always of the Process type in order to
ensure maximum usability in the PPM system. Therefore, the type of the data series itself is not
important, see chapter Usage (type) of a data series (page 148).

For each data series, at least one referenced dimension must be marked as a key dimension
(refdim ... iskeydimension="TRUE"). By default, all referenced dimensions are key
dimensions. A particular value combination of the specified key dimension(s) supplies a unique
data row within a data series, that is, a particular value combination exists only once within a data
series.

Example

The following data series contains three data rows that differ by the value combinations of the
specified key dimensions (*):

D_COUNTRY
*

D_PLANT* D_DEPARTMENT
*

D_RECORDED
BY

SALES COSTS

Germany Hamburg 42 Smith 400000

Germany Frankfurt 17 Hartmann 510000 360000

USA Pittsburgh 53 Fox 410000

Each of the three data rows can occur only once within the data series. The specific value
combination of the key dimensions D_COUNTRY, D_PLANT, and D_DEPARTMENT (for
example, Germany; Hamburg; 42) represents the identifier of a data row.

CONFIGURATION

The following general file structure illustrates the configuration of a data series (pikicube XML
element):

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <pikicube name="...">
 <description language="de" name="..."/>
 ...

PPM CUSTOMIZING

144

 <pikidef name="..." retrievertype="..."
 dimreferring="...">
 <description language="de" name="...">
 Descriptive text (tooltip)
 </description>
 ...
 <datatype name="..."/>
 </pikidef>
 <refdim name="..." refinement="..."
 iskeydimension="TRUE"/>
 ...
 </pikicube>
 ...
</keyindicatorconfig>

The following tables explain the configuration of a process instance-independent data series:

ELEMENT and
ATTLIST
pikicube

Description

pikicube Process instance-independent data series

name Data series name unique in the system. It is also
used as the name of the cube in the database.

comment
(optional)

Comment on the data series; used in PPM
Customizing Toolkit.

editable editable="TRUE" (default value) enables data
input for the data series in the Configuration/Data
input module of the PPM interface.

type Usage (type of data series) that determines which
dimensions may be used in the data series as
referenced dimensions. The default value is
PROCESS, that is, only process dimensions
(dimtype="PROCESS" in the dimension definition)
may be specified in the data series.

Other valid values:

OT_FUNC (only function dimensions allowed in the
data series)

RELATION (only dimension of the RELATION type
allowed in the data series)

For more information, please refer to chapter Usage
(type) of a data series (page 148).

relname Only for type="RELATION". A single relation
existing in the PPM system is to be specified with its
name, for
example, relname="REL_WORKS_TOGETHER".
The data series is assigned to the specified relation.

PPM CUSTOMIZING

145

ELEMENT and
ATTLIST
pikicube

Description

deletedata
onredefinition

Obsolete,
no longer used.

description Language-specific description of the data series. The
description must be specified in at least the default
language.

pikidef Definition of a process instance-independent
measure, at least one for each data series, see
below.

refki Obsolete, no longer used.

refdim Referenced dimension, see below

ELEMENT and
ATTLIST refdim

Description

refdim A dimension existing in the PPM system, to which the
process instance-independent measures of the data
series refer. You must specify at least one referenced
dimension for each data series.

For process instance-independent measures internal
dimensions (page 167) are not supported as
referenced dimensions (refdim).

name Internal name of the dimension existing in the PPM
system.

refinement Dimension step width that data import is to be
performed with.

The dimension values to be imported must be
specified in this step width exactly.

iskeydimension iskeydimension="TRUE" (default value) specifies
that the referenced dimension is a key dimension of
the data series. The value combinations of all
specified key dimensions render each data row of a
data series unique.

PPM CUSTOMIZING

146

ELEMENT and
ATTLIST pikidef

Description

pikidef Definition of a process instance-independent
measure. You must specify at least one definition for
each data series.
A process instance-independent measure can be
used in a single data series.

name Name of the process instance-independent measure
that is unique in the system.

type Obsolete, no longer used.

retrievertype Measure retriever type. Default value:
KEYINDICATOR (averaging)

Further values:
NUM_KEYINDICATOR (summation)
FREQ_KEYINDICATOR (obsolete, is no longer
used)
FACTORY_KEYINDICATOR (is no longer used)

dimreferring Type of dimension reference
LOOSE: Loose
STRICT: Strict
Default value: LOOSE

kigroup
(optional)

Assignment of the process instance-independent
measure to an existing measure group

description Language-specific description of a process
instance-independent measure. The description
must be specified in at least the default language.

datatype Data type of the values of a process
instance-independent measure

You can define any number of data series (pikicube XML elements) within a measure
configuration. In a data series, you can specify any number of process instance-independent
measure definitions (pikidef XML elements). The same dimension reference applies to all process
instance-independent measure definitions of a data series (refdim XML elements).

You can conveniently configure process instance-independent data series in the sub-module
Process instance-independent measures in the CTK module Measures and dimensions.

You can export all process instance-independent data series configured in a PPM system via the
XML interface using the runppmconfig command line program with the parameter
-keyindicator to an XML file.

PPM CUSTOMIZING

147

Example 1
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <pikicube name="PIKICUBE_TURNOVER_PROD_GROUP">
 <pikidef name="TURNOVER_PROD_GROUP"
 retrievertype="KEYINDICATOR"
 dimreferring="STRICT"
 kigroup="KI_GROUP_COST">
 <description language="de"
 name="Umsatz pro Produktgruppe"/>
 <description language="en"
 name="Turnover by product group"/>
 <datatype name="DOUBLE"/>
 </pikidef>
 <refdim name="TIME" refinement="BY_MONTH"/>
 <refdim name="D_PRODUCT_GROUP"/>
 <refdim name="PROCESSTYPE" refinement="BY_LEVEL2"/>
 </pikicube>
 ...
</keyindicatorconfig>

A data series with the internal name PIKICUBE_TURNOVER_PROD_GROUP is created.

The definition (pikidef) of the process instance-independent measure
TURNOVER_PROD_GROUP specifies a strict dimension reference (dimreferring="STRICT")
and an assignment of the process instance-independent measure to the KI_GROUP_COST
measure group.

The process instance-independent measure (refdim="...") strictly refers to the TIME,
D_PRODUCT_GROUP, and PROCESSTYPE dimensions. The reference to the PROCESSTYPE
dimension is defined with the detailed (refinement="BY_LEVEL2") step width.
Since the iskeydimension attribute is not specified in the refdim elements, the default attribute
value TRUE is used, that is, all referenced dimensions are used as key dimensions of the data
series.

Example 2
...
 <pikicube name="PIKICUBE_COSTS">
 <description language="en" name="Costs"/>
 <pikidef name="OVERHEAD_COSTS"
 retrievertype="KEYINDICATOR"
 dimreferring="LOOSE">
 <description language="en" name="Overhead costs"/>
 <datatype name="COST"/>
 </pikidef>
 <refdim name="PROCESSTYPE" refinement="BY_LEVEL2"
 iskeydimension="FALSE"/>
 <refdim name="TIME" refinement="BY_MONTH"
 iskeydimension="TRUE"/>
 <refdim name="MATERIAL" refinement="BY_LEVEL2"
 iskeydimension="TRUE"/>
 </pikicube>
...

PPM CUSTOMIZING

148

This file extract defines the data series Costs with the process instance-independent measure
Overhead costs of the data type COST with the internal name OVERHEAD_COSTS which is
unique in the PPM system.

The measure value retriever type is averaging (KEYINDICATOR) and the dimension reference is
loose (LOOSE).
In the refdim XML elements, the PPM dimensions TIME and MATERIAL are specified as key
dimensions (iskeydimension="TRUE") of the dimension reference for the process
instance-independent data series.
Additionally, step widths that differ from the default step widths are specified for the dimension
values to be imported.

REGISTRATION OF PROCESS INSTANCE-INDEPENDENT MEASURES AT THE PPM
SYSTEM

Process instance-independent measures are registered in the process tree (useki element in the
XML file with the document type definition keyindicatorprocesstree.dtd) at process type
groups and process types.

Further information on registering process instance-independent measures at the process tree is
available in chapter Register measures and dimensions of process instance-independent
data series (page 197).

9.2.4.1 Usage (type) of a data series
You need to select one of the following usages (pikicube type="...") for a data series, which
specifies the dimensions that are allowed to be used in the PIKI cube:

 Process (PROCESS default value)

 Function (OT_FUNC)

 Relation (RELATION)

Regardless of the selected type of data series, process instance-independent measures are
always of the PROCESS type, that is, they are handled like process measures.

The effects of the PIKI cube types are as follows.

PROCESS

Only process dimensions (dimtype="PROCESS" in the definition of the dimension) are allowed
as referenced dimensions (refdim="...") in the data series.

OT_FUNC

Only process and function dimensions (dimtype="PROCESS" or "OT_FUNC" or
"FUNCTION") are allowed as referenced dimensions in the data series.

PPM CUSTOMIZING

149

RELATION (WITH RELATION NAME <X>)

Only process dimensions, relation dimensions of the relation <x>, and source and target
dimensions of the relation <x> (that is, FPROCESSTYPE, FROMORG, TOORG, FUNCTION,
ORGUNIT) are allowed as referenced dimensions of the data series.

9.2.4.2 Dimension reference
Process instance-independent measures can have a loose or strict dimension reference
(dimreferring XML attribute). The default value is loose dimension reference
(dimreferring="LOOSE").

LOOSE DIMENSION REFERENCE

A process instance-independent measure with a loose dimension reference can be analyzed for all
available dimensions. The process instance-independent measure also delivers values for queries
with step widths other than that specified for the process instance-independent measure
(refinement XML attribute) and for dimensions for which no reference is defined.

If you are analyzing a process instance-independent measure with a dimension for which no
dimension reference (refdim XML element) has been defined, this dimension is ignored in the
value calculation for the process instance-independent measure. The process
instance-independent measure values shown only apply to the dimensions referred to in the
definition of the process instance-independent measure data series.

Likewise, queries with a more detailed step width return the process instance-independent
measure values that refer to the defined step widths. This means that other step widths are
ignored in the analysis.

Example

Overhead
costs

Total costs Customer
(rough, detailed)

Time
(by month)

1000 € 25000 € Germany, Becker Jan 2001

3000 € 68000 € Germany, Schmidt Jan 2001

1500 € 13000 € France, Leclerc Jan 2001

1200 € 12000 € Germany, Becker Feb 2001

3400 € 78000 € Germany, Schmidt Feb 2001

...

The table lists the process instance-independent measures Overhead costs and Total costs
with reference to the Customer and Time dimensions. If your analysis queries the overhead
costs for the customer Germany, Becker for 15th Jan 2001, you obtain the return value
1000 € for the process instance-independent measure. However, this value actually relates to
the whole month of January 2001 (refinement="BY_MONTH").

PPM CUSTOMIZING

150

Make sure to observe the defined dimension references of a process instance-independent
measure as well as the specified step widths of the referenced dimensions in order to ensure
plausible analysis results.

STRICT DIMENSION REFERENCE

A process instance-independent measure with a strict dimension reference can only be evaluated
with the dimensions to which it refers to in the definition of the data series (refdim XML
elements). Queries for dimensions to which the process instance-independent measure does not
refer are not possible. Queries with a step width other than that defined are not possible, either.

If a different step width or dimension is selected in the analysis, a corresponding error dialog is
displayed.

THE SPECIAL CASE OF THE "PROCESS TYPE" DIMENSION REFERENCE

If you specify the dimension Process type (PROCESSTYPE) as dimension reference in a process
instance-independent data series, only process types that already exist in the PPM system can be
used for data import. If you try to import process instance-independent data into a process type
that does not exist the import outputs an error message including the involved data rows. The
process tree is not automatically extended. Data import is not aborted but the data rows with the
non-existing process type are not imported.

9.2.4.3 Definition of process instance-independent
measures in multi-byte character sets

The following extract from the measure configuration file shows an example of the definition
options for process instance-independent data series when using a multi-byte character set:

...
<!-- Όρισμος σειράς δεικτών -->
 <pikicube name="PIKICUBE_1">
 <description name="Umsatz" language="de"/>
 <description name="Turnover" language="en"/>
 <description name="Τζίρος" language="el"/>
 <pikidef name="PIKI_1"
 retrievertype="NUM_KEYINDICATOR"
 dimreferring="LOOSE"
 kigroup="KI_GROUP_COST">
 <description name="Umsatz" language="de"/>
 <description name="Turnover" language="en"/>
 <description name="Τζίρος" language="el"/>
 <datatype name="COST"/>
 </pikidef>
 <pikidef name="PIKI_2"
 retrievertype="KEYINDICATOR"
 dimreferring="LOOSE">
 <description name="Kundenzufriedenheit"
 language="de"/>
 <description name="Customer satisfaction"
 language="en"/>
 <description name="Ευχαρίστηση των πελατών"
 language="el"/>

PPM CUSTOMIZING

151

 <datatype name="DOUBLE"/>
 </pikidef>
 <refdim name="MATERIAL"/>
 </pikicube>
...

9.2.4.4 Configuration import
Process instance-independent data series are imported together with the measure configuration
by means of the command line program runppmconfig (see PPM Operation Guide):

runppmconfig –user <user name> –password <password>
 [–client <client name>]
 –mode import
 [–overwrite]
 –keyindicator <XML measure configuration>

The executing user must have the Configuration import function privilege.

ADDITIVE CONFIGURATION IMPORT

By default, that is, without the option -overwrite, the import of the measure configuration is
additive, that is, data series that already exist in the PPM system are retained and remain
unchanged.

For each imported data series, a database table with the internal name of the data series
(pikicube name="...") is created and the corresponding data structure is established on the
analysis server.

OVERWRITING CONFIGURATION IMPORT

When importing a changed configuration of a process instance-independent data series at a later
time using the command line option runppmconfig -mode import -overwrite, you must
observe whether your changes affect the data structure of the existing data series (see below).

If they do, you must first delete the data imported into the data series before you import the
changed configuration, if they do not, this is unnecessary.

CHANGES THAT DO NOT AFFECT THE DATA STRUCTURE

By specifying the option -overwrite you can make the following changes to the configuration of
data series existing in the PPM system without first having to delete already imported data:

 Add further key dimensions or non-key dimensions and other process instance-independent
measures

 Change a referenced dimension to a key dimension (iskeydimension="TRUE")

 Change the description of a data series (PIKI cube)

 Change the usage of a data series (for example, type="PROCESS" to type="FUNCTION")

 Assign a data series to a different relation (relname="...")

 Change the dimension reference (loose/strict) for non-key dimensions

 Change the measure value retriever type

PPM CUSTOMIZING

152

 Change the option editable

CHANGES THAT AFFECT THE DATA STRUCTURE

If you want to import configuration changes that affect the data structure of a data series, you
may need to delete previously imported data of the data series first (via the PPM user interface or
the command line program runpikidata with the option -mode delete). Only then you can
import the changed configuration using the import parameter -overwrite.

If the data series still contains data during the import of data structure relevant configuration
changes, an error message is output and the new definition of the data series is not transferred.
Import of allowed configuration changes is not canceled.

Configuration changes that affect the data structure include:

 Deleting a referenced dimension (key dimension, non-key dimension)

 Deleting a process instance-independent measure

 Changing a key dimension to a non-key dimension (iskeydimension="FALSE")

 Changing the step width of a referenced dimension or the data type of a process
instance-independent measure

9.2.4.5 Data series migration
Please observe the following before you migrate existing process instance-independent data
series from a PPM system version 4 to a PPM system version 9 using the command line program
runppmconverter.bat in <installation
directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-<versi
on>-runnable.zip\ppm\bin:

 Before conversion, you need to back up import data of process instance-independent data
series from a PPM database version 4 to an XML file (see PPM Migration Guide).
If configuration changes affecting the structure of data series are required before the
conversion of existing data series you need to delete any existing import files before the
conversion (see chapter Configuration import (page 151)), otherwise, the conversion
program aborts with an error message.

If you use the command line converter with the option -ignorepikidata all existing import data
of existing data series are completely deleted before conversion.

After conversion of the configuration for PPM version 9 you can import the exported data
again, see technical reference PPM Data Import.

 Data series containing referenced measures that are no longer supported (refki XML
elements) are not converted automatically. The conversion program outputs a message that,
if required, you can export existing data of the data series, adapt the configuration
accordingly, and reimport the data including the adapted configuration.

 If you use the XML attribute deletedataonredefinition, which is no longer supported, in
existing process instance-independent data series, it must be removed manually from the
configuration before conversion.

PPM CUSTOMIZING

153

 Data series in the PPM system version 9 are preconfigured with the PROCESS type. If the
data series to be converted contain different measure types (RELATION, OT_FUNC,
OT_ORG) they cannot be converted automatically. The configuration must be adapted
manually before conversion.

9.2.4.6 Additional information: User-defined measures
based on process instance-independent
measures

If a user-defined measure created based on process instance-independent measures is used in
the analysis with dimensions, which are defined for all measures involved, the user-defined
measure only returns values if values of the relevant dimension step can be determined for all
measures (intersection of dimension values involved).

When using process instance-independent measures with a strict dimension reference in the
calculation of user-defined measures, take account of the following additional points:

 If two or more process instance-independent measures are used in a user-defined measure,
the range of values of the individual dimensions to which the process instance-independent
measures refer should be identical.

 In order for a process instance-independent measure to be included in the calculation rule for
a user-defined measure, at least one dimension to which the process instance-independent
measure refers must be registered at the process tree at the same point as the user-defined
measure.

If these two requirements are not met, an information dialog like the following is shown when the
user-defined measure is called up:

Example

The user-defined measure Total costs consists of process costs and overhead costs.
The process measure Process costs returns values based on process instances from the months
of January to March 2001 and June to December 2001.
The process instance-independent measure Overhead costs has values for Jan to Jun 2001.

With a monthly analysis in 2001, the user-defined measure Total costs only returns values for
the months of January, February, March and June 2001.

PPM CUSTOMIZING

154

9.2.5 Definition of measure groups
Measure groups are defined in the configuration file KiGroup.xml. A distinction is made between
the visible measure groups (kigrouproot or kigroup) and a single invisible measure group
(kigroupinvisible). A measure can only be assigned to one group.

The grouping of measures does not represent a hierarchy or refinement of the measures; it is
merely to improve the clarity.

The kigroup elements can be nested at any depth. This allows you to establish an individual
folder structure for your measure groups.

Use PPM Customizing Toolkit to create measure groups. Your preferred group structure can be
defined easily in the Measures and dimensions module.

Example
<kigrouproot>
 <description language="de" name="Alle Kennzahlen">
 Diese Gruppe umfasst alle angezeigten Kennzahlen.
 </description>
 <description language="en" name="All measures">
 This group includes all displayed
 measures.
 </description>
 <kigroupinvisible>
 <description language="de"
 name="Unsichtbare Kennzahlen">
 Diese Gruppe umfasst alle Kennzahlen, die
 nur zur Berechnung weiterer Kennzahlen verwendet
 werden. Diese Kennzahlen werden nicht in der
 Kennzahlenliste angezeigt.
 </description>
 <description language="en" name="Invisible measures">
 This group includes all measures
 that are merely used for calculation
 of additional measures. These
 measures are not displayed in
 the measure list.
 </description>
 </kigroupinvisible>
 <kigroup name="KI_GROUP_COST">
 <description language="de" name="Kostenkennzahlen"/>
 <description language="en" name="Cost KPIs"/>
 <kigroup name="KI_GROUP_COST">
 <description language="de"
 name="Kostenkennzahlen"/>
 <description language="en" name="Cost KPIs"/>
 <kigroup name="KI_GROUP_COST_ALL">
 <description language="de"
 name="Gesamtkostenkennzahlen"/>
 <description language="en"
 name="Total cost KPIs"/>
 </kigroup>
 <kigroup name="KI_GROUP_COST_AVERAGE">
 <description language="de
 name="Durchschnittskostenkennzahlen"/>
 <description language="en"
 name="Average cost KPIs"/>
 </kigroup>

PPM CUSTOMIZING

155

 </kigroup>
 </kigroup>
 <kigroup name="KI_GROUP_TIME">
 <description language="de" name="Zeitenkennzahlen"/>
 <description language="en" name="Time KPIs"/>
 </kigroup>
 <kigroup name="KI_GROUP_QUALITY">
 <description language="de"
 name="Qualitätskennzahlen"/>
 <description language="en" name="Quality KPIs"/>
 </kigroup>
</kigrouproot>

The All measures group includes the measures from all groups and subgroups except those from
the Invisible measures group. Measures that you have not explicitly assigned to a specific
group are automatically assigned to the All measures group. Even measures that you have
assigned to a group that does not exist are also assigned to this group.

In the PPM front-end, the Measures tab displays all measures from the selected measure group
and all subgroups, with the exception of measures from the Invisible measures group, which
are only displayed if that group is selected.

The group of invisible measures KI_GROUP_INVISIBLE is located directly below the root and
its structure cannot be extended.

Warning

The group identifiers KI_GROUP_ROOT and KI_GROUP_INVISIBLE are fixed by the PPM
system and may not be used in a different context or changed.

The structure of the configuration file KIGroup.xml is specified by the DTD KIGroup.dtd:

GENERAL STRUCTURE
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE kigrouproot SYSTEM 'KIGroup.dtd'>
<kigrouproot>
 <description language="de" name="...">...</description>
 <description language="en" name="...">...</description>
 <kigroupinvisible>
 <description language="de" name="...">...</description>
 <description language="en" name="...">...</description>
 </kigroupinvisible>
 <kigroup name="...">
 <description language="de" name="...">...</description>
 <description language="en" name="...">...</description>
 <kigroup name="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>

PPM CUSTOMIZING

156

 <kigroup name="...">
 <description language="de" name="...">...</description>
 <description language="en" name="...">...</description>
 ...
 </kigroup>
 ...
 </kigroup>
 ...
 </kigroup>
 <kigroup name="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 ...
 </kigroup>
 <kigroup name="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 ...
 </kigroup>
 ...
</kigrouproot>

Example

The example below illustrates the display of the XML file in the PPM front-end interface:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE kigrouproot SYSTEM 'KIGroup.dtd'>

<kigrouproot>
 <description language="de" name="Alle Kennzahlen">
 Diese Gruppe umfasst alle angezeigten Kennzahlen mit
 Ausnahme der unsichtbaren Kennzahlen.
 </description>
 <description language="en" name="All measures">
 This group includes all displayed measures
 except for the invisible
 ones.
 </description>
 <kigroupinvisible>
 <description language="de" name="Unsichtbare Kennzahlen">
 Diese Gruppe umfasst alle Kennzahlen, die nur
 zur Berechnung weiterer Kennzahlen verwendet werden.
 Diese Kennzahlen werden nicht in der
 Kennzahlenliste angezeigt.
 </description>
 <description language="en" name="Invisible KPIs">
 This group includes all measures
 that are merely used for calculation of additional
 measures. These measures
 are not displayed in the measure
 list, unless the group of
 invisible measures is selected.
 </description>
 </kigroupinvisible>
 <kigroup name="KI_GROUP_COST">
 <description language="de" name="Kostenkennzahlen"/>
 <description language="en" name="Cost KPIs"/>
 </kigroup>
 <kigroup name="KI_GROUP_TIME">
 <description language="de" name="Zeitenkennzahlen"/>

PPM CUSTOMIZING

157

 <description language="en" name="Time KPIs"/>
 </kigroup>
 <kigroup name="KI_GROUP_QUALITY">
 <description language="de" name="Qualitätskennzahlen"/>
 <description language="en" name="Quality KPIs"/>
 </kigroup>
</kigrouproot>

9.2.5.1 Visible measure groups
A measure group is defined in the configuration file by the following XML element:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE kigrouproot SYSTEM 'KIGroup.dtd'>
<kigrouproot>
 <description language="de" name="...">
 Description text...
 </description>
 ...
 <kigroup name="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 </kigroup>
 ...
</kigrouproot>

XML tag Description

kigrouproot Root of measure groups. Displayed as the top level
group folder in the PPM front-end.

description Language-specific description of the measure group
root. Must be specified in at least the default language.

kigroup Measure group to be defined. Each group can contain
sub-groups. You can create any number of groups and
sub-groups.
The group structure corresponds to a tree structure with
any number of branches.

name Internal name of the group. Referenced by the kigroup
XML attribute from the measure definition (kidef XML
element) in the measure configuration.

description Language-specific description of a group, optionally
with tooltip (#PCDATA section in the description
element). The description must be specified in at least
the default language.

PPM CUSTOMIZING

158

9.2.5.2 Group of invisible measures
The Invisible measures group contains all measures that are only displayed in the measure list
when the group is actually selected. Only then are they available in the analysis. The invisible
measures are not displayed in the measure lists for all other measure groups. The group of
invisible measures is unique and cannot be structured.

Assign measures that are exclusively used as an interim result for the calculation of other
measures to the group of invisible measures
(<kidef name="..." kigroup="KI_GROUP_INVISIBLE" ... />).

The group is configured in the XML configuration file *_kigroup.xml of the corresponding CTK
client template (under PPM installation
directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run-pr
od-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\) by the following element:

...
 <kigroupinvisible name="...">
 <description language="de" name="..."/>
 <description language="en" name=".."/>
 </kigroupinvisible>
...

9.3 Definition of dimensions
Dimensions are defined together with measures in the client-specific measure configuration. The
PPM system makes a distinction between the following dimension types:

Dimension XML element Description

One-level oneleveldim One-level dimensions are used if the
number of dimension values is low and no
meaningful grouping of the values is
possible.

Example: Name of the source system,
input channel for a call center (for
example, call, fax, e-mail)

Attribute data type: All. Numerical
attribute values are converted to text.

PPM CUSTOMIZING

159

Dimension XML element Description

Two-level twoleveldim Two-level dimensions are used if
meaningful grouping of the dimension
values is possible.

Example: Process type group/Process
type, Material type/Material

Attribute data type: All. Numerical
attribute values are converted to text.
Dimension values are saved as the
TEXTPAIR data type.

N-level nleveldim For text dimensions with more than two
levels.

Floating
point
number

floatingdim Dimension is based on floating point
values. The dimension values represent
particular intervals. Example: Order
volume

Attribute data type: DOUBLE,
TIMESPAN, PERCENTAGE and all
user-defined types derived from them

Time timedim Indicates the change of a measure over
time.

Attribute data types:
DAY, TIME

Time of day hourdim Indicates the change of a measure over
time.

Attribute data type: TIMEOFDAY

Period timerange Indicates the change of a measure within
a specific period.

Search
dimension

searchdim Search for process instances using
attribute values

Attribute data type: TEXT

Search dimensions cannot be displayed
as dimensions in the analysis.

The attributes required for creating text and floating point number dimensions are specified in a
corresponding dimitem XML element. If the referenced attribute is an attribute to be calculated,
this must be specified (calculated="TRUE"), so that the attribute can be calculated before
creation of the dimension. In addition, you need to specify whether it is a process or function
dimension.

PPM CUSTOMIZING

160

When defining dimensions, ensure that the data type of the referenced attributes is compatible
with the selected dimension type.

9.3.1 Definition of dimension groups
Dimension groups are defined in the configuration file DimGroup.xml. A distinction is made
between visible dimension groups (dimgroup or dimgrouproot) and a single invisible
dimension group (dimgroupinvisible). A dimension can only be assigned to one group.

The grouping of dimensions does not represent a hierarchy or refinement of the dimensions; it is
merely to improve the clarity.

The dimgroup elements can be nested at any depth. This allows you to establish an individual
folder structure for your dimension groups.

Use PPM Customizing Toolkit to create dimension groups. Your preferred group structure can be
defined easily in the Measures and dimensions module.

In the PPM front-end, the Dimensions tab shows all dimensions in the selected dimension group
and all sub-groups with the exception of dimensions from the Invisible dimensions group.

The invisible dimensions group DIM_GROUP_INVISIBLE is located directly below the root and
its structure cannot be extended. It contains all internal dimensions and is not displayed in the
user interface.

Dimensions that you do not assign to a dimension group are automatically assigned to the root
DIM_GROUP_ROOT (All dimensions group).

Warning

The group identifiers DIM_GROUP_ROOT and DIM_GROUP_INVISIBLE are fixed by the PPM
system and may not be used in a different context or changed.

Example
<dimgrouproot>
 <description name="Alle Dimensionen" language="de">
 Diese Gruppe beinhaltet alle angezeigten Dimensionen.
 </description>
 <description name="All dimensions" language="en">
 This group includes all displayed dimensions.
 </description>
 <dimgroupinvisible>
 <description name="Nicht sichtbare Dimensionen"
 language="de">
 Diese Gruppe beinhaltet alle internen Dimensionen.
 </description>
 <description name="Invisible dimensions"
 language="en">
 This group includes all internal dimensions.
 </description>
 </dimgroupinvisible>
 <dimgroup name="DIM_GROUP_CRITERIA">
 <description name="Criteria" language="de">
 Diese Gruppe beinhaltet Dimensionen, die
 als Unterscheidungskriterien dienen.
 </description>

PPM CUSTOMIZING

161

 <description name="" language="en" />
 <dimgroup name="DIM_GROUP_CUST">
 <description name="Kundendimensionen" language="de">
 Diese Gruppe beinhaltet alle kundenrelevanten
 Dimensionen.
 </description>
 <description name="Customer dimensions"
 language="en"/>
 </dimgroup>
 <dimgroup name="DIM_GROUP_PRINC">
 <description name="Auftraggeberdimensionen"
 language="de">
 Diese Gruppe beinhaltet alle
 auftraggeberrelevanten Dimensionen.
 </description>
 <description name="Principal dimensions"
 language="en"/>
 <dimgroup name="DIM_GROUP_USA">
 <description name="Auftraggeber in USA"
 language="de">
 Diese Gruppe beinhaltet alle Dimensionen
 für Auftraggeber in den USA.
 </description>
 <description name="Customers USA" language="en" />
 </dimgroup>
 <dimgroup name="DIM_GROUP_EUROPE">
 <description name="Auftraggeber in Europa"
 language="de">
 Diese Gruppe beinhaltet alle Dimensionen für
 Auftraggeber in Europa.
 </description>
 <description name="Principals Europe"
 language="en"/>
 </dimgroup>
 </dimgroup>
 </dimgroup>
 <dimgroup name="DIM_GROUP_TIME">
 <description name="Zeitdimensionen"
 language="de">
 Diese Gruppe beinhaltet alle Zeitdimensionen.
 </description>
 <description name="Time dimensions" language="en" />
 </dimgroup>
</dimgrouproot>

9.3.2 Text dimensions
This dimension type comprises three types of dimension that use similar configurations for the
definition of the relevant dimension levels: One-level, two-level, and n-level text dimensions.
N-level dimensions can have any number of hierarchy levels.
Each definition of a dimension level (leveldesc XML element) is made up of an obligatory key
(first dimitem XML element) and an optional description (second dimitem XML element). The
language-specific interface names of the dimensions, keys, and descriptions for the individual
levels (description XML elements) must be specified in the default language. The individual keys
and descriptions refer to attributes of the TEXT type, which have values that PPM can display in
the analysis and in the filter dialogs.

PPM CUSTOMIZING

162

9.3.2.1 General XML structure

9.3.2.1.1 One-level dimension
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <oneleveldim name="..." dimtype="..."
 internal="..." importmode="..." dimgroup="...">
 <description language="..." name="..."/>
 <leveldesc>
 <dimitem attrname="..." colname="..."
 calculated="..." location="..." substvalue="...">
 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 <dimitem attrname="..."
 colname="..." calculated="...">
 <description language="..." name="..."/>
 </dimitem>
 </leveldesc>
 </oneleveldim>
 ...
</keyindicatorconfig>

9.3.2.1.2 Two-level dimension
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <twoleveldim name="..." dimtype="..." internal="..."
 importmode="..." dimgroup="...">
 <description language="..." name="..."/>
 <leveldesc>
 <dimitem attrname="..." colname="..."
 calculated="..." location="..." substvalue="...">

 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 <dimitem attrname="..." colname="..."
 calculated="...">
 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="..." colname="..."
 calculated="...">
 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 <dimitem attrname="..." colname="..."
 calculated="...">

PPM CUSTOMIZING

163

 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 </leveldesc>
 </twoleveldim>
 ...
</keyindicatorconfig>

9.3.2.1.3 N-level dimension
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <nleveldim name="..." dimtype="..." internal="..."
 importmode="..." dimgroup="...">
 <description name="..." language="..."/>
 <leveldesc>
 <dimitem attrname="..." colname="..."
 calculated="..." location="..." substvalue="...">
 <description language="..." name="..." />
 <defaultvalue="..."/>
 </dimitem>
 <dimitem attrname="..." colname="..."
 calculated="...">
 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 ...
 </leveldesc>
 <leveldesc>
 ...
 </leveldesc>
 ...
 </nleveldim>
 ...
</keyindicatorconfig>

By default, the values of the individual dimension levels are displayed in the form <Description
(Key)> in PPM, provided that descriptions have been defined. Otherwise, only the key is
displayed as the value.

Example

If the attribute referenced by the first dimitem contains the definition of a key ID and the
attribute referenced by the second dimitem contains the corresponding description Text, the
dimension values for this level are displayed by default in the form <Text> (<ID>) in the user
interface.

PPM CUSTOMIZING

164

The extract from the configuration file for a similar example looks like this.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <oneleveldim name="VTWEG" dimtype="PROCESS"
 internal="no" importmode="OPTIONAL">
 <description language="de" name="Vertriebsweg"/>
 <description language="en"
 name="Distribution channel"/>
 <leveldesc>
 <dimitem attrname="AT_VTWEG"
 colname="FIRST_ID" calculated="FALSE">
 <description language="de"
 name="ID des Vertriebsweg"/>
 <description language="en"
 name="ID of distribution channel"/>
 </dimitem>
 <dimitem attrname="AT_VTWEG_NAME"
 colname="FIRST_DESC" calculated="FALSE">
 <description language="de"
 name="Vertriebsweg"/>
 <description language="en"
 name="Distribution channel"/>
 </dimitem>
 </leveldesc>
 </oneleveldim>
 ...
</keyindicatorconfig>

The dimitem XML element configures the following settings for the key or description of a
dimension level:

XML tag Description

attrname Name of the referenced attribute. Only the TEXT data
type is permitted.

calculated TRUE: The attribute value is calculated.
The default value is FALSE.

location Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on source
reference object of relation)
TARGET (attribute placement on target reference
object of relation)
THIS (default value: attribute is placed at the relation
itself)

PPM CUSTOMIZING

165

XML tag Description

defaultvalue
(optional)

Specifies a default value that is displayed if no attribute
value can be retrieved and if no value is or can be
retrieved using substvalue. If neither defaultvalue
nor substvalue has been specified, the value of the
PPM_NULL key from the file
Database_settings.properties is displayed if an
attribute value cannot be retrieved.

substvalue
(optional)

Specifies a substitute value that is displayed if no
attribute value can be retrieved. The attribute value
from the previous, rougher level (PRED) or the next,
more detailed level (SUCC) can be used as a substitute
value. Substitute values may cover several consecutive
levels. If no value can be retrieved using the
specifications for substvalue (for
example, substvalue="SUCC" for a one-level
dimension), no substitute value is displayed. Default
value: NONE (no substitute value)

XML element Description

compression
value
(optional
sub-element for
dimitem)

The internal aggregation attribute
AT_INTERNAL_COMPRESSCRITERION must be
specified (Configure the internal aggregation
attribute (page 215)).

Only for dimtype="PROCESS"

Identical and differing dimension values are deleted
when permanently aggregating using the command
prompt (runppmcompress) (see PPM Operation
Guide) and they are replaced by the specified
aggregation value (Change aggregation behavior
(page 214)).

SUBSTITUTE AND DEFAULT VALUES FOR ONE-, TWO-, AND N-LEVEL
DIMENSIONS

You can specify default values and substitute values for the keys and descriptions of each
individual dimension level. These values are displayed if no attribute value can be retrieved.
When you select the dimension value to be displayed, the sequence is as follows:

1. Attribute value

2. Substitute value (substvalue)

PPM CUSTOMIZING

166

3. Default value (defaultvalue)

4. DB default value (value of the PPM_NULL key in the file Database_settings.properties)

Warning

The two-level Process type dimension does not support default or substitute values. If you
specify these in the configuration, they are deleted during the import.

Example (file extract from measure configuration)
...
<nleveldim name="SALE" dimtype="PROCESS"
 dimgroup="DIM_GROUP_CRITERIA">
 <description name="Sales" language="en"/>
 <leveldesc>
 <dimitem attrname="AT_VKORG" colname="NAME_1"
 calculated="FALSE">
 <description language="en"
 name="Sales organization"/>
 </dimitem>
 <dimitem attrname="AT_VKORG_NAME"
 colname="DESC_NAME_1" calculated="FALSE">
 <description language="en"
 name="Name of sales organization"/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_DIVISION" colname="NAME_2"
 calculated="FALSE" substvalue="SUCC">
 <description language="en" name="Division"/>
 <defaultvalue>defaultvalue 2nd level ID
 </defaultvalue>
 </dimitem>
 <dimitem attrname="AT_DIVISION_NAME"
 colname="DESC_NAME_2" calculated="FALSE"
 substvalue="SUCC">
 <description language="en" name="Division name"/>
 <defaultvalue>defaultvalue 2nd level description
 </defaultvalue>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_VTWEG" colname="NAME_3"
 calculated="FALSE">
 <description language="en"
 name="Distribution channel"/>
 </dimitem>
 <dimitem attrname="AT_VTWEG_NAME"
 colname="DESC_NAME_3" calculated="FALSE">
 <description language="en"
 name="Name of distribution channel"/>
 </dimitem>
 </leveldesc>
</nleveldim>
...

Substitute values (substvalue) are defined for the key and description of the second level of the
SALE n-level dimension. These substitute values are transferred to the subsequent third level. If
no substitute value can be retrieved, the specified default value (defaultvalue) is displayed
instead.

PPM CUSTOMIZING

167

Text dimensions are normally based on alphanumeric attribute types. The dimension values are
displayed in the interface in alphanumeric order.
When using attributes based on numerical data types, the dimension values are written to the
database as strings and are sorted in numerical order when displayed in the interface.

9.3.2.2 Configuration

9.3.2.2.1 One-level dimensions
A one-level dimension (oneleveldim XML element) is described in full by only one level definition
(leveldesc XML element). The language-specific names of the dimension, key, and description
are specified in the description XML elements.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <oneleveldim name="VTWEG" dimtype="PROCESS"
 internal="no" importmode="OPTIONAL">
 <description language="de" name="Vertriebsweg"/>
 <description language="en"
 name="Distribution channel"/>
 <leveldesc>
 <dimitem attrname="AT_VTWEG" colname="FIRST_ID"
 calculated="FALSE">
 <description language="de"
 name="ID des Vertriebsweg"/>
 <description language="en"
 name="ID of distribution channel"/>
 </dimitem>
 <dimitem attrname="AT_VTWEG_NAME"
 colname="FIRST_DESC" calculated="FALSE">
 <description language="de" name="Vertriebsweg"/>
 <description language="en"
 name="Distribution channel"/>
 </dimitem>
 </leveldesc>
 </oneleveldim>
 ...
</keyindicatorconfig>

XML attribute Description

name Name of the dimension. A table is created in the
database under this name. For the specified name, the
guidelines described in the Table name chapter are
applicable.

dimtype Dimension type: Valid values:
PROCESS (process dimension)

PPM CUSTOMIZING

168

XML attribute Description
FUNCTION (function dimension, obsolete, only to be
used for compatibility reasons)
OT_FUNC (function dimension)
RELATION (relation dimension)
OT_ORG (organizational dimension)

internal Internal use of the dimension
yes: The dimension is used internally and is not
displayed in the interface.
The default value is no.

importmode Output of error messages when calculating dimension
values
OPTIONAL: Calculation errors are not output.
MANDATORY: Calculation errors are output
Default value: OPTIONAL

dimgroup
(optional)

Dimension group to which the dimension is assigned

XML element Description

compression
value
(optional
sub-element for
dimitem)

The internal aggregation attribute
AT_INTERNAL_COMPRESSCRITERION must be
specified (Configure the internal aggregation
attribute (page 215)).

Only for dimtype="PROCESS"

Identical and differing dimension values are deleted
when permanently aggregating using the command
prompt (runppmcompress) (see PPM Operation
Guide) and they are replaced by the specified
aggregation value (Change aggregation behavior
(page 214)).

To avoid the not specified dimension step for a dimension, specify
importmode="MANDATORY" so that process instances that cannot be assigned to any
dimension step are identified when importing the data by the output of a corresponding message.

INTERNAL DIMENSIONS

Internal dimensions (internal="yes") are not displayed in the PPM front-end interface. They are
used to distinguish administrative process instance characteristics.

PPM CUSTOMIZING

169

USING MULTI-BYTE CHARACTER SETS

The following file extract from the measure configuration shows an example of the definition
options for one-level dimensions when using a multi-byte character set:

...
<oneleveldim name="D_PRODUCT_GR" dimtype="FUNCTION"
 internal="no" importmode="OPTIONAL">
 <description name="Produktgruppe" language="de"/>
 <description name="Product group" language="en"/>
 <description name="Ομάδα προϊόντων" language="el"/>
 <leveldesc>
 <dimitem attrname="ΙΔ_ΣΥΝ_ΠΡΟΪΟΝΤ_ΤΑΥΤ"
 colname="Column name_3" calculated="FALSE">
 <description language="de"
 name="ID Produktgruppe"/>
 <description language="en"
 name="Product group ID"/>
 <description language="el"
 name="Ταυτότητα ομάδας προϊόντων"/>
 </dimitem>
 <dimitem attrname="ΙΔ_ΣΥΝ_ΠΡΟΪΟΝΤ_ΠΕΡΙΓΡ"
 colname="Column name_4" calculated="FALSE">
 <description language="de"
 name="Beschreibung Produktgruppe"/>
 <description language="en"
 name="Product group description"/>
 <description language="el"
 name="Περιγραφή της ομάδας προϊόντων"/>
 </dimitem>
 </leveldesc>
</oneleveldim>
...

9.3.2.2.2 Two-level dimensions
Two-level dimensions (twoleveldim XML element) are configured in the same way as one-level
dimensions, except that they consist of two level descriptions (leveldesc XML elements).
Multi-byte character sets are used in the same way as for one-level dimensions (see chapter
One-level dimension (page 162).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <twoleveldim name="PROCESSTYPE" dimtype="PROCESS"
 importmode="OPTIONAL">
 <description language="de" name="Prozesstyp"/>
 <description language="en" name="Process type"/>
 <leveldesc>
 <dimitem attrname="AT_PROCTYPEGROUP"
 colname="PROCTYPEGROUP" calculated="FALSE">
 <description language="de"
 name="Prozesstypgruppe"/>
 <description language="en"
 name="Process type group"/>
 </dimitem>
 </leveldesc>

PPM CUSTOMIZING

170

 <leveldesc>
 <dimitem attrname="AT_PROCTYPE"
 colname="PROCTYPE" calculated="FALSE">
 <description language="de"
 name="Prozesstyp"/>
 <description language="en"
 name="Process type"/>
 </dimitem>
 </leveldesc>
 </twoleveldim>
 ...
</keyindicatorconfig>

XML attribute Description

name Internal name of the dimension. A table is created in
the database under this name. For the specified
name, the guidelines described in the Table name
chapter are applicable.

dimtype Dimension type: Valid values:
PROCESS (process dimension)
FUNCTION (function dimension, obsolete, only to be
used for compatibility reasons)
OT_FUNC (function dimension)
RELATION (relation dimension)
OT_ORG (organizational dimension)

internal Internal use of the dimension
yes: The dimension is used internally and is not
displayed in the interface.
The default value is no.

importmode Output of error messages when calculating dimension
values
OPTIONAL: Calculation errors are not output.
MANDATORY: Calculation errors are output
Default value: OPTIONAL

dimgroup
(optional)

Dimension group to which the dimension is assigned

XML element Description

compression
value
(optional
sub-element for
dimitem)

The internal aggregation attribute
AT_INTERNAL_COMPRESSCRITERION must be
specified (Configure the internal aggregation
attribute (page 215)).

Only for dimtype="PROCESS"

Identical and differing dimension values are deleted

PPM CUSTOMIZING

171

XML element Description
when permanently aggregating using the command
prompt (runppmcompress) (see PPM Operation
Guide) and they are replaced by the specified
aggregation value (Change aggregation behavior
(page 214)).

9.3.2.2.3 N-level dimensions
N-level dimensions are configured in the same way as one-level and two-level dimensions. An
n-level dimension consists of at least one and no more than <n> levels (leveldesc XML
elements). Each level contains a key (first dimitem XML element) and an optional description
(second dimitem XML element). All language-specific designations (name of dimension, key, or
description) are specified with the description XML element. The XML attributes are identical to
those used for one-level and two-level dimensions.

Example

(n-level dimension with three levels, with a key and description defined for each level)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <nleveldim name="SALE" dimtype="PROCESS"
 dimgroup="DIM_GROUP_CRITERIA">
 <description name="Sales" language="de"/>
 <leveldesc>
 <dimitem attrname="AT_VKORG"
 colname="NAME_1"calculated="FALSE">
 <description language="de"
 name="Verkaufsorganisation"/>
 </dimitem>
 <dimitem attrname="AT_VKORG_NAME"
 colname="DESC_NAME_1" calculated="FALSE">
 <description language="de" name="Name der
 sales organization"/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_DIVISION"
 colname="NAME_2" calculated="FALSE">
 <description language="de" name="Division"/>
 </dimitem>
 <dimitem attrname="AT_DIVISION_NAME"
 colname="DESC_NAME_2" calculated="FALSE">
 <description language="de" name="Division name"/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_VTWEG"
 colname="NAME_3" calculated="FALSE">

PPM CUSTOMIZING

172

 <description language="de" name="Vertriebsweg"/>
 </dimitem>
 <dimitem attrname="AT_VTWEG_NAME"
 colname="DESC_NAME_3" calculated="FALSE">
 <description language="de"
 name="Name des Vertriebswegs"/>
 </dimitem>
 </leveldesc>
 </nleveldim>
 ...
</keyindicatorconfig>

The Sales dimension is displayed as follows in the PPM user interface:

Multi-byte character sets are used in the same way as for one-level dimensions (see chapter
One-level dimensions (page 167).

9.3.2.3 Import dimension values
For one, two, and n-level dimensions, you can use the rundimdata command line program to
import data before the actual PPM import takes place. In this case, the values are imported as
pairs in the form <key-description> for each dimension level. Note that a key must be
specified, while the description is optional.

You will find detailed information about importing dimension values for text dimensions in
advance of the actual PPM import in the PPM Data Import manual.

9.3.3 Floating point dimensions
Floating point dimensions (floatingdim XML element) are configured in the same way as
one-level dimensions except that the attributed referenced using the dimitem XML element must

PPM CUSTOMIZING

173

be a numerical data type (for example, DOUBLE, LONG, TIMESPAN, FACTORYTIMESPAN,
FREQUENCY, PERCENTAGE, and all user-defined data types such as COST).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <floatingdim name="ORDERVOL" dimtype="PROCESS"
 importmode="OPTIONAL">
 <description language="de" name="Auftragsvolumen"/>
 <description language="en" name="Order size"/>
 <dimitem attrname="AT_ORDERVOL" colname="ORDERVOL"
 calculated="FALSE">
 <description language="de" name="Umsatz"/>
 <description language="en" name="Sales revenues"/>
 </dimitem>
 </floatingdim>
 ...
</keyindicatorconfig>

XML tag Description

name Internal name of the dimension. A table is created in
the database under this name. For the specified
name, the guidelines described in the Table name
chapter are applicable.

dimtype Dimension type: Valid values:
PROCESS (process dimension)
FUNCTION (function dimension, obsolete, only to
be used for compatibility reasons)
OT_FUNC (function dimension)
RELATION (relation dimension)
OT_ORG (organizational dimension)

dimitem location
(optional)

Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on
source reference object of relation)
TARGET (attribute placement on target reference
object of relation)
THIS (default value: attribute is placed at the
relation itself)

importmode
(optional)

Output of error messages when calculating
dimension values
OPTIONAL: Calculation errors are not output.
MANDATORY: Calculation errors are output
Default value: OPTIONAL

PPM CUSTOMIZING

174

9.3.4 Time dimensions
A distinction is made between two different types of time dimensions: Time dimensions with a
dimension table and incube time dimensions. Both types of time dimensions are defined by the
timedim XML element.

XML tag Description

name Internal name of the dimension, displayed in
paramset. A table is created in the database under this
name. For the specified name, the guidelines described
in the Table name chapter are applicable.

dimtype Dimension type: Valid values:
PROCESS (process dimension)
FUNCTION (function dimension, obsolete, only to be
used for compatibility reasons)
OT_FUNC (function dimension)
RELATION (relation dimension)
OT_ORG (organizational dimension)

location
(optional)

Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on source
reference object of relation)
TARGET (attribute placement on target reference
object of relation)
THIS (default value: attribute is placed at the relation
itself)

attrname Internal name of the referenced attribute

precision
(optional)

Most detailed step width of the dimension (DAY,
HOUR, MINUTE)

calculated TRUE: Attribute value must be calculated.
Default value: FALSE.

internal Mark as internal dimension with yes. Default value: no

earlyalert Mark as critical dimension in Early alert system with
yes. Default value: no

importmode
(optional)

Output of error messages when calculating dimension
values
OPTIONAL: Calculation errors are not output.
MANDATORY: Calculation errors are output
Default value: OPTIONAL

dimgroup
(optional)

Name of the dimension group to which the time
dimension is to be assigned.

PPM CUSTOMIZING

175

XML tag Description

deleteon
compression

The internal aggregation attribute
AT_INTERNAL_COMPRESSCRITERION must be
specified (Configure the internal aggregation
attribute (page 215)).

Only for dimtype="PROCESS"

TRUE: Identical and differing dimension values are
deleted when permanently aggregating using the
command prompt (runppmcompress) (see PPM
Operation Guide) (Change aggregation behavior
(page 214)).

FALSE: When permanently aggregating via command
prompt, identical dimension values are transferred to
the aggregated EPC, while differing values are deleted.

Default setting: FALSE

9.3.4.1 Time dimensions with dimension table
For every step width of a time dimension with dimension table (yearly, quarterly, monthly,
weekly, daily, hourly, every minute), a separate column is created in the database table for that
dimension.

The configuration characteristics of a time dimension with dimension table are summarized in the
timedim XML element.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <timedim name="DAY" dimtype="PROCESS" precision="DAY"
 tablename="DAYTABLE" storage="DIMTABLE"
 attrname="AT_DAY" calculated="TRUE"
 importmode="OPTIONAL">
 <description language="de" name="Tag"/>
 <description language="en" name="Day"/>
 </timedim>
 ...
</keyindicatorconfig>

9.3.4.2 Incube time dimensions
Any number of incube time dimensions can be created in a configuration. Incube time dimensions
can be combined with time dimensions with dimension table in the analysis and behave in the

PPM CUSTOMIZING

176

same way. The difference from time dimensions with a dimension table lies exclusively in the
different memory performance. The dimension values for incube time dimensions are stored
directly in the process cubes or function cubes. This increases the efficiency of the Measure
calculator. However, the memory performance of incube time dimensions is linked to a
significantly higher memory requirement.

In terms of their definition, incube time dimensions differ from time dimensions with dimension
table in the following ways:

 The timedim XML element has the storage attribute, which is assigned the INCUBE value.

 The tablename attribute is missing or empty (tablename="").

For better differentiation, the name of the dimension (name) should begin with the prefix IC_.

You should define the following time dimensions as incube time dimensions:

 Time dimensions that are often queried (for example, Time default dimension)

 Time dimensions with a large number of dimension values

Warning

Importing fixed dimension values (using rundimdata) is not possible for incube time
dimensions.

9.3.4.3 Time dimensions for the Early alert system
To monitor critical times in individual process instances as part of the Early alert system, you can
define special time dimensions in the measure configuration. These time dimensions are
identified by the earlyalert attribute having the value yes (CTK: Enable the Early alert check
box). For all other time dimensions, this attribute has the value no by default.

 To optimize performance, save critical time dimensions that you defined for the Early alert
system as incube time dimensions. For better differentiation, the name of the dimension
(name) should begin with the prefix CRIT_.

 As critical time dimensions are only calculated internally at the process instance level, the
internal attribute must have the value yes (CTK: enable the corresponding check box in the
Internal column) and the dimtype attribute must have the value PROCESS (CTK: Select
the value PROCESS in the Usage column). Otherwise, an error message is output when
importing the configuration.

Time dimensions from the Early alert system are internal dimensions and therefore are not
displayed in the dimension list in the navigation structure. For this reason, the assignment to a
dimension group is illogical and therefore ignored.

9.3.4.3.1 Special feature for calculation of critical time
attributes

In the calculation rule (calcattr), for the critical time attribute, you need to assign the delete
XML attribute the value yes (CTK: Enable the Delete attribute value check box). If no result

PPM CUSTOMIZING

177

value can be calculated, the previous dimension value must be deleted from the database before
a new calculation can take place.

Example

Extract from the calculation rule for the Critical goods issue date attribute

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
...
 <calcattr name="AT_CRITICAL_WAUS_DATE"
 type="PROCESS" delete="yes">
...
</keyindicatorconfig>

Use PPM Customizing Toolkit to define, calculate, and register critical time dimensions.
In the Measures and dimensions module, you can use the Dimensions component to
conveniently enter the required definition information. You can create the definitions of the
calculation rules for the critical times in the Calculated attribute types component.
Register critical time dimensions to the preferred process type groups or process types using the
Process tree component on the Process analysis dimensions tab in the Processes module.

Example

The following example calculates the Critical goods issue date. Instances in which no goods
issue has been posted within four days of the Create delivery function (SAP.LIEF) being
executed are classed as critical, that is, the Post goods issue function (SAP.WAUS) does not
occur in the process instance. The calculation rule for the AT_CRITICAL_WAUS_DATE attribute
calculates the critical time by adding a time span of four days (354600 seconds) to the time of
the earliest occurrence of the Create delivery function.
The calculation is made to the nearest hour (precision="hour" XML attribute for the
CRT_TIME_WAUS dimension). For example, if the earliest reference time (AT_TIME) for the
Create delivery function in a process instance is 13.07.03 20:26:55, based on the above
calculation rule the critical goods issue date, correct to the nearest hour, is thus calculated as
17.07.03 20:00.

The result of a calculated critical time attribute must always be available in a time stamp format
(TIME data type).

This extract from the measure configuration shows the definition of the critical time dimension
CRIT_TIME_WAUS. The attribute and value combination earlyalert="yes" identifies it as an
Early alert system time dimension.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <calcattr name="AT_CRITICAL_WAUS_DATE"
 type="PROCESS" delete="yes">
 <calculation>
 <if>
 <not>
 <exists>

PPM CUSTOMIZING

178

 <attribute name="AT_OBJNAME_INTERN" nodetype=
 "OT_FUNC" objectname="SAP.WAUS"
 onerror="CONTINUE"/>
 </exists>
 </not>
 <then>
 <addtimespan>
 <min>
 <attribute name="AT_TIME" nodetype="OT_FUNC"
 objectname="SAP.LIEF"
 onerror="EXIT_NO_WARNING"/>
 </min>
 <constant>
 <dataitem value="345600.0">
 4,000
 <datatype name="TIMESPAN">Time span
 </datatype>
 <scale name="DAY" factor="86400.0">Day(s)
 </scale>
 </dataitem>
 </constant>
 </addtimespan>
 </then>
 </if>
 </calculation>
 </calcattr>
 ...
 <timedim name="CRIT_TIME_WAUS" dimtype="PROCESS"
 precision="HOUR" attrname="AT_CRITICAL_WAUS_DATE"
 calculated="TRUE" internal="yes" earlyalert="yes"
 storage="INCUBE" importmode="OPTIONAL">
 <description name="kritischer Warenausgangstermin"
 language="de"/>
 </timedim>
 ...
</keyindicatorconfig>

The Early alert system component of the Instance controlling module in the PPM front-end
checks whether critical goods issue dates have been exceeded. In the example, it is assumed that
the critical dimension CRIT_TIME_WAUS is registered at the Order processing\Standard
order process type.

PPM CUSTOMIZING

179

The current deviation from the critical goods issue date at the time of execution is specified in the
analysis area in the Absolute deviation [Days] column. The execution time for the early alert
check is the current system time. In the example, after executing the early alert check for the
Critical goods issue date dimension, all process instances of the Standard order process type
in which the critical goods issue date has been exceeded are displayed in a process instance table.
For the process instance selected in the illustration the critical goods issue date has currently
been exceeded by 983.843 days. This is the absolute deviation in days from the critical goods
issue date at the current execution time (in the example 10.08.05 15:31).

Alternatively, you can identify critical process instances using the runppmanalytics command
line program using the -earlyalert option (see PPM Operation Guide).

9.3.5 Time range dimensions
Time range dimensions are special time dimensions. They enable users to observe process states
based on a past period (start time to end time).

Three variants exist.

 Due date-related time range dimension, based on the start time

 Due date-related time range dimension, based on the end time

 Interval-based time range dimension

Time range dimensions are defined by the XML element timerangedim.

PPM CUSTOMIZING

180

Example

A time range dimension is configured using the following syntax, for example.

<timerangedim name="RANGEDIM_KEYWORD" reference="END" dimtype="PROCESS">

<startattribute name="AT_START_TIME" calculated="TRUE"/>
<endattribute name="AT_END_TIME" calculated="TRUE"/>
<description name="Display name" language="en"></description>

</timerangedim>

XML tag Description

timerangedim

 name Internal name of the dimension, displayed in
paramset. A table is created in the database under
this name. For the specified name, the guidelines
described in the Table name chapter are applicable.

 dimtype Dimension type: Valid values:
PROCESS (process dimension)
FUNCTION (function dimension, obsolete, only to be
used for compatibility reasons)
OT_FUNC (function dimension)
RELATION (relation dimension)
OT_ORG (organizational dimension)

 reference Defines whether it is a due date-related time range
dimension with a start time (value = "START") or
end time (value="END"), or an interval-based time
range dimension (value="RANGE").

Specification = Optional

Default value = "END"

Changing the type START, END, or RANGE at a later
time is not allowed and prevented by the configuration
import.

 internal Mark as internal dimension with yes. Default value:
no

 importmode

Output of error messages when calculating dimension
values
OPTIONAL: Calculation errors are not output.
MANDATORY: Calculation errors are output
Default value: OPTIONAL

 dimgroup

Name of the dimension group to which the time
dimension is to be assigned.

Specification: Optional

PPM CUSTOMIZING

181

XML tag Description

startattribute/

endattribute

 name Specify the EPC attribute based on which the
dimension value of the start or end time is to be
calculated.

Attribute type = TIME

Specification = Mandatory

 calculated TRUE: Attribute value must be calculated.
Default value: FALSE.

 location Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on source
reference object of relation)
TARGET (attribute placement on target reference
object of relation)
THIS (default value: attribute is placed at the relation
itself)

Specification: Optional

description

 name Language-specific interface name of the dimension in
the PPM front-end.

 language Language in which the interface name is displayed

9.3.6 Time of day dimensions
The configuration characteristics of a time of day dimension are summarized in the hourdim XML
element.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <hourdim name="TIMEOFDAY" dimtype="PROCESS"

PPM CUSTOMIZING

182

 attrname="AT_TIME_OF_DAY" tablename="DAYTIME"
 precision="SECOND" calculated="TRUE"
 importmode="OPTIONAL">
 <description language="de" name="Uhrzeit"/>
 <description language="en" name="Time of day"/>
 </hourdim>
 ...
</keyindicatorconfig>

For each step width of a time of day dimension (hour, minute, second), a separate column is
created in the database table for the dimension.

XML tag Description

name Name of the dimension. A table is created in the
database under this name. For the specified name, the
guidelines described in the Table name chapter are
applicable.

dimtype Dimension type: Valid values:
PROCESS (process dimension)
FUNCTION (function dimension, obsolete, only to be
used for compatibility reasons)
OT_FUNC (function dimension)
RELATION (relation dimension)
OT_ORG (organizational dimension)

location
(optional)

Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on source
reference object of relation)
TARGET (attribute placement on target reference
object of relation)
THIS (default value: attribute is placed at the relation
itself)

attrname Name of the referenced attribute

precision Most detailed step width of the dimension (HOUR,
MINUTE, SECOND). Default value: HOUR

calculated TRUE: Attribute value must be calculated.
Default value: FALSE

importmode Output of error messages when calculating dimension
values
OPTIONAL: Calculation errors are not output.
MANDATORY: Calculation errors are output
Default value: OPTIONAL

deleteon
compression

The internal aggregation attribute
AT_INTERNAL_COMPRESSCRITERION must be

PPM CUSTOMIZING

183

XML tag Description
specified (Configure the internal aggregation
attribute (page 215)).

Only for dimtype="PROCESS"

TRUE: Identical and differing dimension values are
deleted when permanently aggregating using the
command prompt (runppmcompress) (see PPM
Operation Guide) (Change aggregation behavior
(page 214)).

FALSE: When permanently aggregating via command
prompt, identical dimension values are transferred to
the aggregated EPC, while differing values are deleted.

Default setting: FALSE

9.3.7 Search dimensions
You can use this special dimension type to search for process instances using particular values for
a search attribute. The search dimension acts like a filter on the set of currently available process
instances. As for the other dimension types, the set filter expression can be edited or removed.
Several search dimension filters can be used simultaneously in an analysis.

A search criterion is specified in the front-end using the Edit filter pop-up menu for the search
dimension. Alternatively, search criteria can be specified in the Process Instance Search Wizard.

A search criterion consists of a string. Optionally, a placeholder ? or * can be used at the end of
the string. The * symbol stands for any sequence of characters, while the ? symbol stands for any
single character.

The configuration of search dimensions includes the following simplifications compared to the
other dimension types:

 Search dimensions are based exclusively on process attributes.

 Search attributes must be of the TEXT type.

The configuration characteristics of a search dimension are summarized in the searchdim XML
element:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <searchdim name="BELEGNR">
 <description language="de" name="Suche Belegnummer"/>
 <description language="en"
 name="Searching for document number"/>
 <dimitem attrname="AT_SAP_BELEGNR"
 colname="BELEGNR" calculated="TRUE">
 <description language="de" name="Belegnummer"/>

PPM CUSTOMIZING

184

 <description language="en" name="Document number"/>
 </dimitem>
 </searchdim>
 ...
</keyindicatorconfig>

A separate column is created in the database table for each search dimension.

XML tag Description

name Internal name of the dimension. A table is created in
the database under this name. For the specified
name, the guidelines described in the Table name
chapter are applicable.

description
name

Language-specific interface name of the dimension in
the PPM front-end.

dimitem Definition of a column in the database table. Each
search dimension has a single dimitem element, in
which the dimension is described.

attrname Name of the attribute used as a basis for the search
dimension

colname Name of the data column in the info cube. If this is
not specified, the dimension name is used.
For the specified name, the guidelines described in
the Table name chapter apply.

calculated TRUE: Attribute value must be calculated.
Default value: FALSE

compression
value
(optional
sub-element for
dimitem)

The internal aggregation attribute
AT_INTERNAL_COMPRESSCRITERION must be
specified (Configure the internal aggregation
attribute (page 215)).

Only for dimtype="PROCESS"

Identical and differing dimension values are deleted
when permanently aggregating using the command
prompt (runppmcompress) (see PPM Operation
Guide) and they are replaced by the specified
aggregation value (Change aggregation behavior
(page 214)).

Search dimensions are written to the info cube for the process type group. If you are using
several search dimensions in a process type group, you need to give the data columns different
names.

PPM CUSTOMIZING

185

9.3.8 Variant dimension
With PPM 10.1 the new VARIANTDIM dimension type has been introduced.

Variants classify process instances according to their structure. The relevant structure is the
sequence of functions in a process instance. Variant has two dimension levels, Combined
variant (rough step width) and Precise variant (refined step width), and the Name as
dimension value.

More basic information about variants, a list with affected functionalities, and how to add the
variant feature to PPM can be found in the documentation PPM Customizing Toolkit.

9.3.8.1 Attribute configuration
The following attribute types are defined as attributes for the VARIANT dimension type. They are
of type Text and are part of the attribute configuration.

ATTRIBUTE TYPES

<attributedefinition key="AT_INTERNAL_FUNCTION_FLOW_VARIANT" type="TEXT"
group="AG_INTERNAL" />

<attributedefinition key="AT_INTERNAL_PRECISE_VARIANT" type="TEXT"
group="AG_INTERNAL" />

ATTRIBUTE NAMES

<attribute key="AT_INTERNAL_FUNCTION_FLOW_VARIANT" name="Internal combined
variant" />

<attribute key="AT_INTERNAL_PRECISE_VARIANT" name="Internal precise variant" />

Because of a specific semantic it is not recommended to import values or to define an attribute
calculator. See chapter Usage of variant attributes during import (page 186).

9.3.8.2 Measure configuration - dimension type
The variantdim element is used to define the variant dimension. It has just three attributes and
nested leveldesc elements for configuring the attributes used to feed the two levels.

Attributes of the variantdim element are:

XML tag Description

name keyword as used in paramset (required)

comment comment for dimension (optional)

dimgroup name of the group this dimension is assigned to
(optional)

PPM CUSTOMIZING

186

Each dimension level (leveldesc) has exactly one dimitem as value and a description is not
allowed for both dimension level. Only the attrname element is required for the dimitem
element.

XML tag Description

attrname Name of the referenced attribute, containing the
dimension data. Only the TEXT data type is permitted.

Typically variant dimension is defined as follows.

<variantdim name="D_EPC_VARIANT">

<description language="en" name="Variant" />

 <description language="de" name="Variante" />

 <leveldesc>

 <dimitem attrname="AT_INTERNAL_FUNCTION_FLOW_VARIANT">

 <description language="en" name="Combined variant" />

 <description language="de" name="Kombinierte Variante" />

 </dimitem>

 </leveldesc>

 <leveldesc>

 <dimitem attrname="AT_INTERNAL_PRECISE_VARIANT">

 <description language="en" name="Precise variant" />

 <description language="de" name="Präzise Variante" />

 </dimitem>

 </leveldesc>

</variantdim>

9.3.8.3 Process tree configuration
Variant dimensions can be assigned to process tree nodes similar to all other dimension types by
using the <usedim> element.

<usedim name="D_EPC_VARIANT" />

Optionally, the <usedim> assignment can contain a default refinement. If it is not the case, the
coarsest level is used as refinement similar to all other Text dimension types.

9.3.8.4 Usage of variant attributes during import
The use of the variant attributes during merge and attribute mapping is not forbidden but strongly
discouraged. The values of variant process attributes are overwritten by the variant calculation,

PPM CUSTOMIZING

187

which is only happening after all other calculations have already been processed. So neither one
can use the results of the variant calculation nor the fully processed EPCs contain the values set
outside the variant calculation.

There is a special danger in filling the dimension attributes by calculation rules or through
mapping: When you do that while the variant dimension is not registered at the process type of
the EPC, these values will not be overwritten. When you then register the dimension, re-initialize
the analysis server, and do not recalculate the EPC, it will contain invalid dimension IDs, for
example, a variant corresponding to the values would be shown on the GUI, but it would not
correspond to any real variant in the database. In order to rectify the situation, you can
runppmimport with –keyindicator new. (Using the command line parameter –ps to specify a
suitable query, you can restrict the recalculation to the EPCs of the process type.)

Detailed information on how to use runppmimport can be found in the PPM Operation Guide.

9.3.9 Shared function dimension
By default, shared functions are transferred to the system through a one-time import of a shared
fragment. Applying the shared fragment rules merges the shared functions that are contained in
the imported shared fragments with the normal process instance fragments. All objects of the
shared fragment are copied to the fragment instance. This automatically ensures the uniqueness
of a shared function and you can use the function ID of a shared function to differentiate between
shared functions.

If you directly import shared functions as normal fragment instances using event format, a unique
ID is created for each imported function. The function ID cannot be used as characteristic of a
shared function. You can, however, define a shared function dimension where identical dimension
values combine functions into shared functions. Dimension values not specified are not included.

A shared function dimension has the following properties:

 Only one shared function can be defined per client.

 The shared function dimension must be registered at the process tree root.

 The shared function dimension is invisible on the interface.

 The shared function dimension cannot be customized using CTK.

Example

The following example supplies excerpts from measure and process tree configuration files. For
functions with an AT_IS_SHARED_FUNCTION attribute having the value true, the calculation
rule of the AT_SHARED_FUNCTION_ID function attribute used for the shared function
dimension concatenates the internal function name with the time stamp of the function
execution.

keyindicator.xml file extract

...
<calcattr name="AT_SHARED_FUNCTION_ID" type="OT_FUNC" delete="yes">
 <calculation>
 <if>
 <and mode="PPM4">

PPM CUSTOMIZING

188

 <exists mode="PPM4">
 <filteredattribute name="AT_IS_SHARED_FUNCTION"
 nodetype="OT_FUNC" objectname="this"
 onerror="CONTINUE" filter="EARLY" />
 </exists>
 <eq mode="PPM4">
 <filteredattribute name="AT_IS_SHARED_FUNCTION"
 nodetype="OT_FUNC" objectname="this"
 onerror="CONTINUE" filter="EARLY" />
 <constant>
 <dataitem value="TRUE">
 TRUE
 <datatype
 name="BOOLEAN">Logical value</datatype>
 </dataitem>
 </constant>
 </eq>
 </and>
 <then>
 <concat mode="PPM4">
 <set mode="PPM4">
 <filteredattribute name="AT_OBJNAME_INTERN"
 nodetype="OT_FUNC" objectname="this"
 onerror="EXIT_WARNING" filter="EARLY" />
 <convert datatype="TEXT">
 <filteredattribute name="AT_END_TIME"
 nodetype="OT_FUNC" objectname="this"
 onerror="EXIT_WARNING" filter="EARLY" />
 </convert>
 </set>
 </concat>
 </then>
 </if>
 </calculation>
</calcattr>
...
<sharedfunctiondim name="SHARED_FUNCTION">
 <description name="Shared Function" language="de" />
 <description name="Shared Function" language="en" />
 <dimitem attrname="AT_SHARED_FUNCTION_ID"
 colname="SHARED_FUNCTION" calculated="TRUE">
 <description language="de" name="SHARED_FUNCTION" />
 <description language="en" name="SHARED_FUNCTION" />
 </dimitem>
</sharedfunctiondim>
...

processtree.xml file extract

...
<usesfdim name="SHARED_FUNCTTION" />
<processtypegroup name="Standard order"
 dbtablename="CUBE1">
 <processtype name="Order processing" autovisible="FALSE" />
</processtypegroup>
...

PPM CUSTOMIZING

189

9.3.10 Using organizational units as dimensions
Using an organizational unit as a dimension does not represent a separate dimension type.
Specifying a special calculation rule copies the name of the organizational unit to the relevant
functions of the process instance as an attribute.

Example

The following file extracts from the measure configuration illustrate the creation of a dimension
from organizational units:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_ORGUNIT" type="OT_FUNC">
 <calcclass name= "com.idsscheer.ppm.server.
 keyindicator.attributecalculator
 .ZAttributeCalculatorOriginator"/>
 </calcattr>
 ...
 <oneleveldim name="ORGUNIT" dimtype="FUNCTION"
 internal="no">
 <description language="de" name="Processor"/>
 <leveldesc>
 <dimitem attrname="AT_ORGUNIT" colname="FIRST_ID"
 calculated="TRUE">
 <description language="de" name="Processor"/>
 </dimitem>
 </leveldesc>
 </oneleveldim>
 ...
</keyindicatorconfig>

The AT_ORGUNIT attribute is created for each function instance and is assigned the name of the
organizational unit as its value. This attribute is used to create the one-level function dimension
ORGUNIT.

The AT_ORGUNIT attribute is one of the default attributes in the PPM system and does not need
to be defined.

9.4 Definition of data access dimensions
By configuring data access dimensions, you can assign data access privileges that, in addition to
process access privileges, enable you to control access to PPM data.

Data access privileges are assigned to user groups and are inherited by the users assigned to that
group. The administrator (PPM user with User management function privilege) defines the data
access privileges by specifying particular filters on dimensions that cannot be edited by the user.
These dimensions are called data access dimensions and specified in the configuration of the
process tree through the roledim XML element. The roledim element must reference an already
configured text dimension (chapter Text dimensions (page 161)) that must be registered at the
root of the process tree. This ensures that data access dimensions can be used throughout the

PPM CUSTOMIZING

190

entire process tree. Only one- and two-level text dimensions are allowed for the roledim
element.

If you do not want a data access dimension to be displayed in the PPM user interface, specify the
internal="yes" XML attribute in the definition of the dimension.

Example

In the process tree configuration file, the Sold-to party and Sales organizationdata access
dimensions are specified as follows:

 ...
 <roledim name="VKORG"/>
 <roledim name="PRINCIPAL" refinement="BY_LEVEL1"/>
 ...
 <usedim name="VKORG"/>
 <usedim name="PRINCIPAL" refinement="BY_LEVEL1"
 scale="LEVEL1SCALE"/>
 ...

The two dimensions are available as data access dimensions in privilege management.

PPM users inherit the data access privileges for all user groups they are assigned to. The data
access privileges are linked as follows:

 Different data access privileges for the same dimensions are linked by an OR rule.

 Data access privileges for different dimensions are linked by an AND rule. If the user is
assigned to a user group that has the data access privilege None, None is ignored.

 If a user belongs to at least one user group that has the data access privilege All, this data
access privilege is not restricted by the data access privileges of other groups to which the
user belongs.

A user who is not assigned to any user groups has no data access privileges.

SPECIAL CASE

To link data access privileges for different dimensions with an OR rule, combine the values of
these dimensions into a new, invisible dimension using the attribute calculator and specify the
calculated dimension as the data access dimension.

Example

You want to assign data access privileges for the two dimensions Location 1 and Location 2in
such a way that a user can view data if the Munich plant appears in one of the Location 1 or
Location 2 dimensions.
All dimension values for the two dimensions are combined in the calculated dimension Location
3. This is specified as a data access dimension in the process tree configuration.

Location 1 Location 2 Location 3

Munich Berlin Munich_Berlin

Stuttgart Leipzig Stuttgart_Leipzig

Hamburg Munich Hamburg_Munich

PPM CUSTOMIZING

191

Location 1 Location 2 Location 3

Saarbrücken Hamburg Saarbrücken_Hamburg

Using the filter expression *Munich* creates the relevant data access privilege.

9.4.1 Using data access dimensions
A PPM user who logs in using restricting data access privileges can only view data that is released
for him. From an overall system perspective, the use of data access dimensions has the following
effect:

PROCESS ACCESS PRIVILEGES

Process access privileges specified for a user are evaluated independent on data access
privileges. Within the process types released for him, a user can only analyze the data
corresponding to his data access privileges.

DATA ANALYSIS

Every analysis inquiry is automatically supplemented by the filter for the access dimensions
applicable for the user logged in. The filters for multiple data access dimensions are linked by an
AND rule.

FILTER DIALOGS

If the data access privileges for a user are restricted, in the filter dialog for the corresponding data
access dimension, only the dimension values released for that user are displayed for selection.

PLANNED VALUES

A user can only create planned values for data for which he has data access privileges. As with the
data analysis, the filter for the access dimensions applicable to the user logged in is automatically
added to the planned value definition.
If planned values are defined for which the data access dimension filter, valid for the user logged
in, is only part of the filter valid for the planned value, the planned value is displayed but cannot
be edited by the user.

AGGREGATION AND DELETING

A user can only aggregate and delete the data for which he has data access privileges. As with the
data analysis, the filter for the access dimensions applicable to the user logged in is automatically
used.

For persistent aggregation, iteration automatically uses the data access dimension so that the
assignment of the aggregated process instances to the data access dimensions is retained.

PPM CUSTOMIZING

192

DATA IMPORT

Data can be imported with no restrictions. If a user has the data import privilege, he can also
import data for which he will not actually have access privileges after completing the import
operation.

PROCESS INSTANCE-INDEPENDENT DATA

The behavior of data access privileges applies to process instance-independent measures and
dimensions with no restrictions. In this case, you can use any dimensions of the imported process
instance-independent data as data access dimensions.

9.5 Process tree definition
The definition of the process tree is specified in an XML file. This file has the following structure:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="...">
<!-- ROOT - Definition -->
 <processparamset>
 <paramset>
 ...
 </paramset>
 </processparamset>
 <functionparamset>
 <paramset>
 ...
 </paramset>
 </functionparamset>
<!-- Standard measures -->
 <useki ... >
 <usepidim ... />
 </useki>
<!-- Default dimensions -->
 <usedim ... "/>
<!-- Start of process tree definition -->
 <processtypegroup name="Auftragsabwicklung">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>
 <useki ... >
 <usepidim ... />
 </useki>
 <usedim ... "/>
 <processtype name="Other orders">
 </processtype>
 ...
 </processtypegroup>
 <processtypegroup name="...">
 <processparamset>
 ...
 </processparamset>

PPM CUSTOMIZING

193

 <useki ... />
 <usedim ... "/>
 <processtype name="..." autovisible="...">
 </processtype>
 ...
 </processtypegroup>
 ...
</processtree>

XML element Description

processtree Name of process tree. Displayed as the root.
The definition of the process tree contains the
following details:
- Default query for processes and functions
- Measures and dimensions available in the entire
tree
- At least one process type group

processparamset Specifies one default query each (default
paramset) for the root of the process tree, each
process type group and each process type. The
default query is shown when starting the analysis
component of the PPM front-end. The default
query can be called up at any time using the
Display default query pop-up menu in the
process tree.

functionparamset Specifies a default query (default paramset) for
each function type.

paramset Describes the presentation of the default queries
as an analysis in XML notation.

useki Assigns the specified measure to the relevant
elements of the process tree (processtree,
processtypegroup, processtype XML
elements).

usedim Assigns the specified dimension to the relevant
elements of the process tree (processtree,
processtypegroup, processtype XML
elements).

userelki Assigns the specified relation measure to the
relevant elements of the process tree
(processtree, processtypegroup,
processtype XML elements).

PPM CUSTOMIZING

194

XML element Description

usereldim Assigns the specified relation dimension to the
relevant elements of the process tree
(processtree, processtypegroup,
processtype XML elements).

usepidim
(optional)

Registers the specified dimension to the same
process tree element to which the process
instance-independent measure specified by useki
is assigned. This is only necessary if the dimension
for the process tree element is not already
available due to being assigned or passed on.

processtypegroup Defines a process type group. The definition of a
process type group contains the following
information:
- Name of process type group
- Default query for processes and functions in the
process type group
- Measures and dimensions assigned to the
process type group in addition to the global
measures and dimensions
- At least one process type

processtype Defines a process type. The definition of a process
type contains the following details:
- Name of the process type
- Default query for processes and functions in the
process type
- Measures and dimensions that are assigned to
the process type in addition to those from the
process type group

The optional autovisible="TRUE" gives newly
created PPM users automatic access privileges for
this process type. The default setting is FALSE,
that is, newly created PPM users initially have no
access privileges for this process type.

The names of process types and process type groups in the process tree must be unique and
correspond to the names used in the process type definition. They are therefore specified in only
one language, that is, the language of the source system.

PPM CUSTOMIZING

195

9.5.1 Registration of measures and dimensions at the PPM
system

The measures and dimensions defined in the client-specific measure configuration
(KeyindicatorConfiguration.xml) must be registered in the process tree configuration
(ProcessTree.xml) to be known to the PPM system. Then they are available after a successful
configuration import for analyses and calculations in the PPM interface.

Measures are assigned to individual function types, individual process types, individual process
type groups, or all process type groups (global measures and dimensions).

Measures and dimensions for a process type group are automatically passed on to subordinate
process types. If the process tree root is selected, only the measures and dimensions that are
assigned to all process type groups are displayed.

9.5.1.1 Register measure
A measure is registered at the PPM system in the process tree configuration file using the
following XML element:

<useki name="..." assessment="..." scale="..." refinement="..."/>

XML tag Description

name Internal name of the measure. The measure itself is
defined in the kidef XML element in the measure
configuration.

assessment Assessment of a measure. POS specifies that high
measure values are assessed positively. NEG specifies
that low measure values are assessed positively.

scale
(optional)

Default scaling of the measure. A unit of the attribute data
type on which the measure is based (for example,
unit HOUR when using the TIMESPAN data type). The
scaling can be changed in the analysis.

If no scaling is set, PPM automatically determines a value
for optimum representation.

refinement
(optional)

Default step size for the measure when used as an
iteration. The value must be specified with a unit (for
example, 2.5 PER_DAY). The step size can be changed
using the measure pop-up menu in the analysis.

PPM CUSTOMIZING

196

9.5.1.1.1 Register relation measure
A relation measure is registered at the PPM system in the process tree configuration file using the
following XML element:

<userelki name="..." relname="..." assessment="..." scale="..." refinement="..."/>

If necessary, the same relation measure is registered individually for each relation.

XML tag Description

name Internal name of the relation measure. The measure itself
is defined in the kidef XML element in the measure
configuration.

relname Internal name of the relation for which the relation
measure is to be available

assessment Chapter Register measure (page 195)

scale
(optional)

Chapter Register measure (page 195)

refinement
(optional)

Chapter Register measure (page 195)

Example (extract from process tree configuration):
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>
 ...
 <processtypegroup name="Customer Services"
 dbtablename="CUBE6">
 <processparamset>
 ...
 </processparamset>
 <userelki name="RNUMA" relname="REL_CARRY_OUT"
 assessment="POS"/>
 <userelki name="RNUMA" relname="REL_PING_PONG"
 assessment="POS"/>
 ...
 <processtype name="..." autovisible="TRUE">
 <typifierrule function="..." priority="..."/>
 ...
 <userelki name="..." relname="..."/>
 ...
 </processtype>
 ...
 </processtypegroup>
 ...
</processtree>

PPM CUSTOMIZING

197

9.5.1.1.2 Register measures and dimensions of process
instance-independent data series

Process instance-independent measures and referenced dimensions of process
instance-independent data series must be registered at the process tree before they can be used
in analyses.

Like process instance-dependent measures, process instance-independent measures are
registered at the process tree by the useki XML element.
A process instance-independent measure can be registered at multiple process type groups or
process types.

Example

The process instance-independent measure OVERHEAD_COSTS is registered to the Shipping
process type group in the process tree. The measure base unit is EUR.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 ...
 <processtypegroup name="Shipping">
 ...
 <useki name="OVERHEAD_COSTS" scale="EUR" assessment="NEG"/>
 ...
 </processtypegroup>
 ...
</processtree>

9.5.1.1.2.1 Special case: Register referenced dimensions
If a process instance-independent measure relates to dimensions that are not available at the
same process tree element as the process instance-independent measure, the dimensions must
be registered using the usepidim XML element within the useki element at the process tree
element of the process instance-independent measure.

Example (previous example continued):
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 ...
 <processtypegroup name="Shipping">
 ...
 <useki name="OVERHEAD_COSTS" scale="EUR" assessment="NEG">
 <usepidim name="PRINCIPAL"/>
 </useki>
 <usedim name="D_COLOR" />
 <usedim name="D_EQUIPMENT" />
 <usedim name="D_PRODUCT" />
 <processtype name="...">
 ...
 </processtype>
 </processtypegroup>

PPM CUSTOMIZING

198

 ...
</processtree>

The dimension principal (PRINCIPAL) is registered together with the process
instance-independent measure OVERHEAD_COSTS at the Shipping process type group, at
which the dimension itself is not registered via the usedim element.
The dimension referenced by the process instance-independent data series and thus registered
serves only analysis purposes pertaining to the process instance-independent measure
OVERHEAD_COSTS.

Dimensions registered using the usepidim XML element cannot be used for measure calculation
at process instance level.

9.5.1.2 Register dimension
A dimension is registered at the PPM system in the process tree configuration file using the
following XML element:

<usedim name="..." scale="..." refinement="..." variance="..."/>

XML tag Description

name Internal name of the dimension. The dimension itself is
defined in one of the oneleveldim, twoleveldim,
floatingdim, timedim, hourdim or searchdim XML
elements in the measure configuration.

scale
(optional)

Default scaling of the dimension. The scaling can be
changed using the dimension pop-up menu in the
analysis.

If no scaling is set, PPM automatically determines a value
for optimum representation.

refinement
(optional)

Default step size of the dimension. The possible options
depend on the attribute data type on which the dimension
is based:

- Numerical attribute: Value with unit

- Alphanumeric attribute (also data type specific):
 - Text: No entries possible. The iteration steps are
 stipulated by the different attribute values.
 - Text pair BY_LEVEL1, BY_LEVEL2 (rough,
detailed): For each dimension level, the iteration steps are
stipulated by the attribute values.
 - Time: BY_YEAR, BY_QUARTER, BY_MONTH,
 BY_WEEK, BY_DAY, BY_HOUR, BY_MINUTE

If no scaling is set, PPM automatically determines a value
for optimum representation.

PPM CUSTOMIZING

199

XML tag Description

Variance
(optional)

Has been defined for future expansions and is not
currently in use.

9.5.1.2.1 Register reference dimension
The reference dimensions used to define relations are registered at the process tree root so that
they are available in all process type groups and process types. They are registered separately for
each relation using the usereldim XML element.

XML tag Description

name Internal name of the reference dimension. The dimension
itself is defined in one of the oneleveldim or
twoleveldim XML elements in the measure configuration.

relname Internal name of the relation (see chapter on Definition
of relations (page 203)) for which the reference
dimension is to be available

scale
(optional)

Chapter Register dimension (page 198)

refinement
(optional)

Chapter Register dimension (page 198)

Variance
(optional)

Chapter Register dimension (page 198)

Example (extract from process tree configuration):
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>
 <roledim name="..."/>
 ...
 <useki name="..." assessment="..."/>
 ...
 <usedim name="..." refinement="..." scale="..."/>
 ...
 <usereldim name="FROMORG" relname="REL_CARRY_OUT"/>
 <usereldim name="FUNCTION" relname="REL_CARRY_OUT"/>
 <usereldim name="FROMORG"
 relname="REL_WORKS_TOGETHER"/>
 <usereldim name="TOORG" relname="REL_WORKS_TOGETHER"/>
 <usereldim name="FROMORG" relname="REL_PING_PONG"/>
 <usereldim name="TOORG" relname="REL_PING_PONG"/>

PPM CUSTOMIZING

200

 ...
</processtree>

9.5.1.2.2 Register relation dimension
Relation dimensions are registered in the same way as reference dimensions (see chapter
Register reference dimension (page 199)) except that relation dimensions can be registered
at different process tree elements (process tree root, process type groups, or process types). For
the registration at superordinate process tree elements, the same inheritance mechanisms apply
as described in the introduction to the process tree configuration (see chapter Registration of
measures and dimensions at the PPM system (page 195)).

If necessary, the same relation dimension is registered individually at the corresponding process
tree element for each relation for which it is to be available.

Example (extract from process tree configuration):
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>
 ...
 <processtypegroup name="Customer Services"
 dbtablename="CUBE6">
 <processparamset>
 ...
 </processparamset>
 <usereldim name="SOURCEFUNC"
 relname ="REL_WORKS_TOGETHER"/>
 <usereldim name="TARGETFUNC"
 relname ="REL_WORKS_TOGETHER"/>
 ...
 <processtype name="..." autovisible="TRUE">
 <typifierrule function="..." priority="..."/>
 ...
 <usereldim name="..." relname="..."/>
 ...
 </processtype>
 ...
 </processtypegroup>
 ...
</processtree>

9.5.2 Automatic process tree expansion
If process instances whose process type and process type group do not exist in the process tree
are edited during data import, the process tree is automatically expanded to include the missing
elements. A distinction is made between the following cases:

PPM CUSTOMIZING

201

 New process type and new process type group
The new process type group and the new process type are created under the root of the
process tree. They inherit all measures and dimensions from the tree root.

 New process type in existing process type group
The new process type is created under the existing process type group. The process type
inherits all measures and dimensions from the process type group.

Warning

An individual process type cannot be assigned to multiple process type groups. In such a case, the
measures and dimensions assigned to this process type in the new group would not be defined.
This can occur if you transfer process typification information directly from the source system to
the AT_PROCTYPEGROUP and AT_PROCTYPE process instance attributes.

Automatically created process type groups and process types inherit the measures and
dimensions assigned to the higher-level elements. They cannot be assigned any further measures
and dimensions.

9.5.3 Manual process tree expansion
During operation of your PPM system, the continuous importing of data can result in automatic
expansion of the existing process tree (see chapter Automatic process tree expansion (page
200)).

If you want to expand the process tree configuration manually, you should first back up the
current process tree with the automatically created expansions in a configuration file.

To do this, export the current process tree to a local XML file using runppmconfig (see PPM
Operation Guide).

Specify the relevant expansions in the XML file exported.

Then import the file with the expansions back into the PPM system using runppmconfig.

9.5.4 Definition of process tree in multi-byte character sets
The following extract from the process tree configuration file shows an example of the definition
options for process type groups or process types when using a multi-byte character set:

DEFINITION OF PROCESS TYPE GROUP AND PROCESS TYPE WITH DEFAULT
QUERY:
...
 <processtypegroup name="διεκπεραίωση εντολής"
 dbtablename="CUBE10">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>

PPM CUSTOMIZING

202

 <processtype name="πώληση τοις μετρητοίς"
 autovisible="FALSE">
 <processparamset>
 <paramset>
 ...
 <kiquery showzero="auto">
 <keyindicator>
 <criterion name="PNUM"> Number of processes
 </criterion>
 </keyindicator>
 <iteration nullvalue="no">
 <criterion name="PROCESSTYPE">Process type
 </criterion>
 <refinement name="BY_LEVEL1">Rough
 </refinement>
 </iteration>
 <filter>
 <criterion name="PROCESSTYPE">Process type
 </criterion>
 <filteritem operator="or">
 <dataitem>
 διεκπεραίωση εντολής\πώληση
 τοις μετρητοίς
 <datatype name="TEXTPAIR">
 Text pair
 </datatype>
 <scale name="LEVEL2SCALE"
 factor="2.0">
 Detailed
 </scale>
 </dataitem>
 </filteritem>
 </filter>
 </kiquery>
 ...
 </paramset>
 </processparamset>
 <functionparamset>
 <paramset>
 ...
 <kiquery showzero="auto">
 ...
 <filter>
 <criterion name="PROCESSTYPE">Process type
 </criterion>
 <filteritem operator="or">
 <dataitem>
 διεκπεραίωση εντολής\πώληση
 τοις μετρητοίς
 <datatype name="TEXTPAIR">Text pair
 </datatype>
 <scale name="LEVEL2SCALE"
 factor="2.0">
 Detailed
 </scale>
 </dataitem>
 </filteritem>
 </filter>
 ...
 </kiquery>
 </paramset>

PPM CUSTOMIZING

203

 </functionparamset>
 </processtype>
 </processtypegroup>
...

In the example, the process type group διεκπεραίωση εντολής is defined and assigned the
process type πώληση τοις μετρητοίς.

9.6 Relations
In the Interaction analysis module, relations between different objects can be analyzed at
process instance level.

A relation is a link between two object instances in a process instance.

Organizational units and functions can be used as the reference objects. The calculator (see
chapter on Definition of relation calculations (page 205)) of a relation determines the object
instances between which the relation exists.

These relations (relation occurrences) can be thought of as an invisible connection between the
object instances in the process instance. Specific measures and dimensions can be defined for
each relation (see Definition of relation measures (page 210) and Definition of relation and
organizational dimensions (page 212) chapters) and will then be calculated for each relation
occurrence at process instance level.

Example configurations relating to Interaction analysis are located in your PPM Customizing
Toolkit installation in the directory <PPM installation
directory\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-cli
ent-run-prod-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\organalysis.

9.6.1 Definition of relations
Relations are the basis for the definition of relation measures and relation dimensions. They are
defined in the measure configuration.

A relation exists between a source reference dimension and a target reference dimension (see
Reference dimensions (page 204) chapter) and has a name and a relation calculator assigned
using the calcrel XML element.

XML tag Description

relation Relation definition

name Unique key word for the relation for internal referencing

id Unique integer between 0 and 999 under which the
corresponding database table is created

description Language-specific user interface name. This must be
specified in the default language.

PPM CUSTOMIZING

204

XML tag Description

sourcedim Source reference dimension. Only one or two-level
dimensions of OT_FUNC or OT_ORG type (see chapter
on Reference dimensions (page 204))

targetdim Target reference dimension. Only one or two-level
dimensions of OT_FUNC or OT_ORG type (see chapter
on Reference dimensions (page 204))

refki At least one measure of the RELATION type

refdim
(optional)

Dimension of RELATION or PROCESS type.
Each referenced dimension can only be evaluated in the
context of the specified relation.

Example

(extract from Keyindicator.xml)

...
<relation name="REL_CARRY_OUT" id="0">
 <description name="executes" language="de" />
 <sourcedim name="FROMORG" />
 <targetdim name="FUNCTION" />
 <refki name="REL_CO_CORATE" />
 <refki name="RNUMA" />
 <refki name="REL_CO_DLZ" />
 <refki name="ORGCAPA" />
 <refki name="REL_CO_COST" />
 <refdim name="REL_CO_TIME" />
</relation>
...

Warning

Do not use the same dimension as the source and target reference dimension of a relation. This
leads to the measure configuration import being aborted with a corresponding error message.

You cannot reference any cardinality measures in the refki XML element.

9.6.1.1 Reference dimensions
In PPM a relation always exists between a source object and a target object, known as reference
objects. To specify the reference objects of a relation, you must define reference dimensions
(sourcedim, targetdim) for these objects in the measure configuration. For each relation, you
define a source reference dimension and a target reference dimension of the TEXT type (one,
two, or n-level dimensions). The individual dimension values are used to reference particular
organizational units or functions. The required attribute mapping is carried out in the
configuration file for the organizational units and/or in the mapping information file.

The dimtype XML attribute is used to specify the object type for which the reference dimension
is defined. Valid values are OT_FUNC for function dimensions and OT_ORG for organizational
dimensions.

PPM CUSTOMIZING

205

Example

(extract from Keyindicator.xml)

...
<twoleveldim name="FROMORG" dimtype="OT_ORG"
 dimgroup="DIM_GROUP_CRITERIA"
 internal="no" importmode="OPTIONAL">
 <description language="de"
 name="Organisationseinheit (Start)"/>
 <leveldesc>
 <dimitem attrname="AT_ORGGRP" colname="GRP"
 calculated="FALSE">
 <description language="de" name="Group" />
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_OBJNAME"
 colname="NAME" calculated="FALSE">
 <description language="de" name="Name" />
 </dimitem>
 </leveldesc>
</twoleveldim>
...

Warning

You need to register the source and target reference dimensions used at the process tree root in
the process tree configuration (see chapter Register reference dimension (page 199)).
Otherwise, an error message is output when importing the process tree configuration.

9.6.2 Definition of relation calculations
The defined relations are created using relation calculators in the process instance. For each
relation, the corresponding calculation class is specified in the calcrel XML element in the
measure configuration. By default, these are the following four classes (the fixed part of the class
name is omitted in each case):

 ZRelationCalculatorCarriesOut for the executes relation

In the corresponding process instances, that is, those for whose process type or process type
group the relevant relation measures or relation dimensions are registered, this creates a relation
from each instance of an organizational unit to the associated function instance, which is assigned
to the organizational unit by the executes connection (CXN_UNDIRECTED).

PPM CUSTOMIZING

206

Example

In the process instance, the relation calculator creates the executes relation (gray arrows)
between each organizational unit and function. The organizational unit is the source object and
the function the target object.

 ZRelationCalculatorWorksTogether for the co-operates with with (without gaps)
relation

In the corresponding process instances, this creates a relation from the instance of an
organizational unit to each instance of the organizational unit that executes the directly
succeeding function instance. These can be identical organizational units, that is, organizational
units with the same name (AT_OBJNAME). By selecting appropriate filters, this relation can be
used to evaluate organizational structures within an organizational unit.

PPM CUSTOMIZING

207

Example

In both process instances, the relation calculator creates the cooperates with relation (gray
arrows) between each organizational unit and the organizational unit that executes the directly
succeeding function. For example, the graphic shows that organizational unit D cooperates with
organizational units D, E, and F.

 ZRelationCalculatorWorksTogetherLongDistance for the relation cooperates with (with
gaps); the function instances including the organizational units do not have to be sequential,
unlike the previously described relation cooperates with (without gaps).

 ZRelationCalculatorOrgBreak for the Organizational break relation

Behaves in exactly the same way as the co-operates with relation except that the relation is only
created between different organizational units, that is, organizational units with different names
(AT_OBJNAME). This relation is used to evaluate organizational structures between different
organizational units.

PPM CUSTOMIZING

208

Example

In the process instance, the relation calculator creates the Organizational break relation (gray
arrows) between two organizational units, whenever execution of the directly succeeding function
results in an organizational change.

 ZRelationCalculatorPingPong for the Ping pong relation

In the corresponding process instances, this creates a relation between two organizational units
with different names, which switch directly at least once in the subsequent process flow without
any additional organizational units being involved. This can involve the execution of different
functions or the same function (AT_OBJNAME).

PPM CUSTOMIZING

209

Example

In the two process instances, the relation calculator creates the Ping pong relation (gray arrows)
between organizational unit A and organizational unit B.

Example (definition of a relation calculator)

(extract from Keyindicator.xml)

...
<calcrel name="REL_CARRY_OUT">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 relation.calculator.ZRelationCalculatorCarriesOut"/>
 <calcparam key="..." value="..."/>
</calcrel>
...

XML tag Description

calcrel Relation calculator

name Internal name of the relation to be calculated

PPM CUSTOMIZING

210

XML tag Description

calcclass Name of the calculation class. Any optional
calcparam XML elements transfer calculation
parameters when the class is called up (see chapter
on Definition of attribute calculations (page 45)).

depends
(optional)

Name and type of an attribute (PROCESS,
OT_FUNC, OT_EVT, OT_ORG, or RELATION),
which must exist for the calculation to be executed. If
the specified attribute is a calculated attribute, this is
calculated first. The relname attribute specifies the
relation on which there is a dependency (only for
type="RELATION").
Several depends elements can be specified
simultaneously.
Not to be used in conjunction with dependsrel.

dependsrel
(optional)

Name of the relation of which there is a dependency.
Several dependsrel elements can be specified
simultaneously. Not to be used in conjunction with
depends.

9.6.3 Definition of relation measures
Relation measures are assigned to a particular relation in the measure configuration using the
refki XML element. Relation measures can only be evaluated in the Interaction analysis
module with the corresponding relation. Relation measures are indicated by yellow symbols in the
user interface.

Relation measures are configured using the following XML elements and XML attributes in the
measure configuration (see chapter on Definition of standard measures (page 135)):

XML tag Description

name Unique key word for measure. Referenced in the refki
XML element in the relation definition (see chapter on
Definition of relations (page 203)). Recommended
prefix: REL_

type RELATION (relation measure)

PPM CUSTOMIZING

211

XML tag Description

location
(optional)

Only for type="RELATION"

Valid values: SOURCE (the attribute from which the
measure value is taken, search performed on the source
reference object of the relation.)
TARGET (the attribute from which the measure value is
taken, search performed on the target reference object
of the relation.)
THIS (default value: The search for the attribute from
which the measure value is taken is performed on the
relation connection itself)

Example (extracts from measure configuration)

Measure definition:

...
<kidef name="REL_CO_DLZ" type="RELATION"
 attrname="AT_APX_PROCESSINGTIME" calculated="TRUE"
 location="TARGET" distribution="TRUE"
 standarddeviation="TRUE" sharedfunctionki="FALSE"
 functionspanki="FALSE" retrievertype="KEYINDICATOR"
 dimreferring="LOOSE" importmode="OPTIONAL">
 <description language="de" name="Average working time" />
</kidef>
...

Associated calculation rule:

...
<calcattr name="AT_APX_PROCESSINGTIME"
 type="OT_FUNC" delete="no">
 <calculation>
 <max>
 <set>
 <constant>
 <dataitem value="0.0">
 0.000
 <datatype name="DOUBLE">Floating point number
 </datatype>
 </dataitem>
 </constant>
 <max>
 <attribute name="AT_APX_PROCESSINGTIME"
 nodetype="OT_FUNC" onerror="CONTINUE" />
 </max>
 </set>
 </max>
 </calculation>
</calcattr>
...

PPM CUSTOMIZING

212

9.6.4 Definition of relation and organizational dimensions
All dimension types (except search dimensions) can be defined as relation or organizational
dimensions using the dimtype XML attribute (see chapter on Definition of dimensions (page
158)). These dimension types are only available for evaluations in the Interaction analysis
module. These dimensions are indicated by yellow symbols in the user interface. For relation
dimensions, the location attribute also specifies which object of the relation is searched for the
corresponding dimension values (attributes). By default, this is the relation itself.

Relation and organizational dimensions are configured using the following XML elements and XML
attributes in the measure configuration:

XML tag Description

name Unique key word for dimension. Referenced in the
refdim XML element in the relation definition (see
Definition of relations (page 203) chapter).
Recommended prefix: REL_

dimtype RELATION (Relation dimension)
OT_ORG (Organizational dimension)

location
(optional)

Only for type="RELATION"

Valid values: SOURCE (the attribute from which the
dimension value is taken, search performed on the
source reference object of the relation.)
TARGET (the attribute from which the dimension value
is taken, search performed on the target reference
object of the relation.)

THIS (default value: The search for the attribute from
which the dimension value is taken is performed on the
relation itself)

Examples (extracts from measure configuration)

Time dimension as relation dimension:

...
<timedim name="REL_CO_TIME" dimtype="RELATION"
 attrname="AT_END_TIME" location="TARGET"
 tablename="FUNC_ENDTIME" precision="HOUR"
 dimgroup="DIM_GROUP_TIME" storage="DIMTABLE"
 calculated="FALSE" internal="no"
 earlyalert="no" importmode="OPTIONAL">
 <description language="de" name="Time" />
</timedim>
...

PPM CUSTOMIZING

213

Two-level dimension as organizational dimension:

...
<twoleveldim name="FROMORG" dimtype="OT_ORG"
 dimgroup="DIM_GROUP_CRITERIA" internal="no"
 importmode="OPTIONAL">
 <description language="de"
 name="Organisationseinheit (Start)"/>
 <leveldesc>
 <dimitem attrname="AT_ORGGRP"
 colname="GRP" calculated="FALSE">
 <description language="de" name="Group" />
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_OBJNAME"
 colname="NAME" calculated="FALSE">
 <description language="de" name="Name" />
 </dimitem>
 </leveldesc>
</twoleveldim>
...

Warning

Search dimensions (searchdim XML element) cannot be defined as either relation dimensions or
organizational dimensions.

PPM CUSTOMIZING

214

10 Change aggregation behavior
By default, when permanently aggregating process instances using the PPM command line
aggregation (see runppmcompress) (see PPM Operation Guide), identical values of a process
dimension are transferred as a dimension value to the aggregated EPC, while different values are
deleted so that the dimension does not have a value in the aggregated EPC. You can then no
longer trace whether dimension values had been specified or not. This only applies to dimensions
that do not function as aggregation criteria, that is, dimensions that are not included as iterations
in the aggregation paramset.

You can change the behavior of the command line aggregation through specific configuration
settings in your PPM system so that both identical and different dimension values are deleted
during aggregation if this dimension is not used for iteration in the aggregation paramset. In the
aggregated process instance, the deleted values are then rendered visible by a uniform
aggregation value. You specify aggregation values in the measure configuration for the relevant
process dimension (text dimensions and search dimensions).

For time dimensions (timedim and hourdim), you can only specify that both identical and
different dimension values are to be deleted during aggregation. In the analysis, the dimension
can no longer be represented in the aggregated process instance due to the deleted values.

Text dimension example (aggregation value for the Material process dimension)

All values of the Material process dimension in the selected 46 process instances were deleted
via command line during permanent aggregation and replaced by the aggregation value specified
in the measure configuration (Compressed (1st level ID)). It does not matter whether the
dimension values were identical or different.

PPM CUSTOMIZING

215

10.1 Configure the internal aggregation attribute
Ensure that the internal aggregation attribute AT_INTERNAL_COMPRESSCRITERION is
specified in the attribute configuration of your PPM system (see Definition of attribute types
and attribute type groups (page 15)).

ATTRIBUTENAMES.XML
...
 <attribute key="AT_INTERNAL_COMPRESSCRITERION"
 name="Compression criteria"/>
...

ATTRIBUTETYPES.XML
...
 <attributedefinition key="AT_INTERNAL_COMPRESSCRITERION"
 type="TEXT" group="AG_KPI_COMPRESS"/>
...

In the aggregated process instance in the AT_INTERNAL_COMPRESSCRITERION process
attribute, all aggregation criteria are listed, that is, all process dimensions included as iterations
in the aggregation paramset used as well as all data access dimensions (see Definition of data
access dimensions (page 189)). If set, the refinement level is specified after the internal name
of the dimension in parentheses.

The PROCESSTYPE process dimension is always included in the internal aggregation attribute
because it is part of each aggregation paramset. The TIME process dimension, however, is only
included if it is contained as an iteration in the paramset. If only a time filter is contained in the
aggregation paramset, the Time dimension (as other time dimensions of the timedim
or hourdim type) is not listed as an aggregation criterion.

10.2 Assign aggregation values
Aggregation values displayed in an aggregated EPC to make deleted dimension values visible are
specified in the measure configuration (see Definition of dimensions (page 158)).

YOU CAN ASSIGN AGGREGATION VALUES TO THE FOLLOWING PROCESS
DIMENSION TYPES:

 One-level, two-level, n-level dimensions
(oneleveldim (page 167), twoleveldim (page 169), nleveldim (page 163))

 Search dimensions
(searchdim (page 183))

 Time dimensions
(timedim (page 174), hourdim (page 181))

PPM CUSTOMIZING

216

Example 1 (aggregation values for a two-level dimension)

You want to specify aggregation values only for the first level of the two-level Material process
dimension:

...
<twoleveldim name="MATERIAL" dimtype="PROCESS"
 dimgroup="DIM_GROUP_CRITERIA">
 <description name="Material" language="en"/>
 <leveldesc>
 <dimitem attrname="AT_MATERIAL_KIND" colname="FIRST_ID"
 calculated="FALSE">
 <description language="en" name="Material type"/>
 <compressionvalue>
 Compressed (1st level ID)
</compressionvalue>
 </dimitem>
 <dimitem attrname="AT_MATERIALKIND_NAME"
 colname="FIRST_DESC" calculated="FALSE">
 <description language="en" name="Material type name"/>
 <compressionvalue>
 Compressed (1st level description)
</compressionvalue>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_MATERIAL"
 colname="SECOND_ID" calculated="FALSE">
<description language="en" name="Material"/>
 </dimitem>
 <dimitem attrname="AT_MATERIAL_NAME"
 colname="SECOND_DESC" calculated="FALSE">
 <description language="en" name="Material type name"/>
 </dimitem>
 </leveldesc>
</twoleveldim>
...

For each key and description of the first level of the dimension, an aggregation value is specified
with the compressionvalue XML element. For the permanent aggregation using command line
aggregation, all identical and different values of the specified process dimensions are deleted. In
the aggregated process instance, the specified aggregation values are displayed as the value of
the dimension if the dimension is not included in the aggregation paramset. The default value for
the aggregated second level is Not specified because no aggregation values are specified for the
level items (dimitem) of the second level.

Always specify the aggregation values of the relevant level in pairs (for key and description),
otherwise the import of the measure configuration will abort with an error message.

PPM CUSTOMIZING

217

Example 2 (Time dimension: Delete dimension values when aggregating)

You want to ensure that no values are displayed for the Process end time time dimension in
permanently aggregated process instances, regardless of whether the dimension values of the
process instances to be aggregated are identical or different.

...
<timedim name="PROZESSENDZEIT" dimtype="PROCESS" ...
 attrname="AT_END_TIME" ...
 calculated="TRUE" ...
 deleteoncompression="TRUE" ... >
 <description name="Process end time" language="en" />
</timedim>
...

If you specify deleteoncompression="TRUE" for the Process end time process dimension,
identical and different dimension values of the process instances to be aggregated are deleted
during permanent aggregation via command line if the Process end time dimension is not
included as an iteration in the aggregation paramset. Dimension values no longer exist in the
aggregated EPC.

Warning

If you add the Process end time dimension in the PPM analysis of the displayed aggregated
process instance, data can no longer be displayed due to the deleted dimension values.

You cannot specify aggregation values for the Process type (PROCESSTYPE) dimension
because this dimension is automatically included as an iteration in each aggregation paramset.
Similarly, you cannot specify for the Time (TIME) process dimension that dimension values are
to be deleted during aggregation.

You can conveniently specify aggregation values for the relevant process dimension in PPM
Customizing Toolkit in the Dimensions component of the Measures and dimensions module.
This is also where you can specify for time dimensions of the PROCESS type whether dimension
values are to be deleted during aggregation. A prerequisite is that the
AT_INTERNAL_COMPRESSCRITERION attribute has been specified, that is, created.

PPM CUSTOMIZING

218

11 System connections

11.1 SAP executables
If configured accordingly, you can use the pop-up menu to start an executable from a process
instance selected in the process instance table via a login dialog in the SAP interface that displays
data pertaining to the selected process instance.

11.1.1 Software requirements
The SAP logon must be installed on the same computer as the PPM front-end.

 The SAP Java Connector (JCo) must be installed on the client computer and the SAP server
with the same version number.

 Notes on installation of the SAP Java Connector are available in the PPM Installation Guide.

11.1.2 Privileges in the SAP system
The PPM user calling the executable requires an SAP user ID with at least the following privileges:

 Login privilege via SAP GUI

 RFC privilege

 Privilege to execute the ABAP4_CALL_TRANSACTION remote function call

 Privileges to call the SAP executables specified in the configuration

11.1.3 Transaction call
If parameters transferred during the transaction call are incorrect, the corresponding error
handling takes place in the SAP system itself (see SAP batch programming).

A transaction is called within an independent process. Therefore, several transactions can be
open simultaneously.

11.1.4 Configuration
The SAP transactions are configured in a separate XML file that can be imported or exported using
the runppmconfig command line program (see PPM Operation Guide). The
language-specific descriptions (description XML elements) must be specified at least in the
default language.

The XML configuration contains information on the pop-up menu, connection data for the
available SAP systems and the transaction configurations (optional entries in italics):

PPM CUSTOMIZING

219

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE r3transactionconf SYSTEM
 "mysaptransaction.dtd">
<r3transactionconf>
 <submenu>
 <description language="..." name="..."/>
 </submenu>
 <logoutMenuEntry>
 <description language="..." name="..."/>
 </logoutMenuEntry>
 <r3system systemid="..." client="...">
 <description language="..." name="...">
 Description of the SAP system
 </description>
 <locales>
 <defaultlocale value="..."/>
 <locale value="..."/>
 </locales>
 <applicationserver appserver="..."
 systemnumber="..."/>
 </r3system>
 <transaction systemid="..." transactionid="..."
 transactioncode="..." skipfirstscreen="..."
 proctypegroup="..." mode="..." update="...">
 <description language="..." name="..."/>
 <batchinputline ... />
 ...
 <batchinputlist ... />
 ...
 </transaction>
 <transaction ...>
 ...
 </transaction>
 ...
</r3transactionconf>

For more detailed information on configuring system access, refer to the PPM Process Extractors
Technical Reference.

For a transaction call to work, you need to configure not only connection data, but also at least
one transaction (transaction XML element).

Use the SAP transaction recorder to create transaction configurations and record a corresponding
transaction in the ABAP batch input. Please refer to the SAP documentation for more information
on how the recorder works and on the ABAP batch input script syntax.

Warning

The following instructions on how to create configurations do not replace the SAP documentation,
especially not in terms of resolving script errors. Basic knowledge about batch input scripts is a
necessary requirement for creating transaction configurations.

In principle, two types of transaction calls can be configured:

 The call is only possible on one selected process instance (single select)

 The call is possible on one or multiple selected process instances (multi select)

PPM CUSTOMIZING

220

11.1.4.1 Configuration examples

RECORDING A VA03 SINGLE SELECT TRANSACTION IN THE SAP FRONT-END

Requirements

For single selection of a process instance of the Order processing process type group in PPM, the
VA03 transaction (Display order) should be called in the SAP system using the sapppm ID.
The transaction is to be assigned the AT_SALES_ORDER_NUMBER (order number of the
selected process instance) PPM process attribute.

Below you will see how to use the SAP transaction recorder to record the VA03 transaction
(Display order) taking into account the given requirements.

Launch the transaction recorder in the SAP front-end (SHDB transaction). The following screen is
displayed:

PPM CUSTOMIZING

221

Create a new record and enter any name in the Record box to be used for saving the record. In
the Transaction code box, enter the name of the transaction to be recorded:

PPM CUSTOMIZING

222

Now start recording and enter the required data in the following screen, that is, in the boxes to be
filled with PPM process attributes, you enter the corresponding values and complete the boxes
that are to be filled with fixed values when the transaction is called. In this example, there are no
fixed values to be preset, only the order number to be transferred from the PPM process instance.
Enter an order number that exists in your system in the Order box.

PPM CUSTOMIZING

223

Confirm your entries with the F5 key and display the data for order 7499:

PPM CUSTOMIZING

224

Exit the transaction using Back (F3). You have returned to the transaction recorder and see your
entries in the ABAP batch input format:

The first row of the batch input script refers to the transaction call. The last two rows represent
the order display and the use of the Back button. These rows can be ignored during the
subsequent creation of the XML transaction configuration.

The content of all other rows needs to be transferred into the XML format of the batchinputline
elements.

Column name in
ABAP batch input
format

XML attribute

Program program

Dynpro dynpro

Start indicator dynprobegin

Field name fieldname

Field value fieldvalue

Fields with no value do not need to be specified as this corresponds to the default value of
fieldvalue. The XML format in this example looks like this:

PPM CUSTOMIZING

225

...
<batchinputline program="SAPMV45A" dynpro="0102"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_CURSOR"
 fieldvalue="VBAK-VBELN"/>
<batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=UER1"/>
<batchinputline fieldname="VBAK-VBELN"
 fieldvalue="7499"/>
...

To ensure that the order 7499 is not always displayed, regardless of the process instance in the
Order processing process type group from which you call the VA03 transaction, replace the static
value for the order number field in the final batchinputline element (in this case: VBAK-VBELN)
with the corresponding PPM process attribute that contains the order number in your process
instance, for example, AT_SALES_ORDER_NUMBER.

Combined with (sample) connection data, the transaction configuration now looks as follows
(ABAP batch input data in bold):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE r3transactionconf SYSTEM
 "mysaptransaction.dtd">
<r3transactionconf>
 <submenu>
 <description language="de"
 name="SAP-Transaktionen"/>
 <description language="en"
 name="SAP transactions"/>
 </submenu>
 <logoutMenuEntry>
 <description language="de"
 name="SAP-Verbindung ändern"/>
 <description language="en"
 name="Change SAP connection"/>
 </logoutMenuEntry>
 <r3system systemid="sapppm" client="800">
 <description language="de"
 name="SAP-System 'sapppm' "/>
 <description language="en"
 name="SAP system 'sapppm' "/>
 <locales>
 <defaultlocale value="de"/>
 <locale value="en"/>
 </locales>
 <applicationserver appserver="sapppm"
 systemnumber="00"/>
 </r3system>
 <transaction systemid="sapppm"
 transactioncode="VA03" transactionid="VA03"
 proctypegroup="Order processing">
 <description language="de"
 name="Auftrag anzeigen (VA03)"/>
 <description language="en"
 name="Display sales order (VA03)"/>
 <batchinputline program="SAPMV45A"
 dynpro="0102" dynprobegin="X"/>
 <batchinputline fieldname="BDC_CURSOR"
 fieldvalue="VBAK-VBELN"/>
 <batchinputline fieldname="BDC_OKCODE"

PPM CUSTOMIZING

226

 fieldvalue="=UER1"/>
 <batchinputline fieldname="VBAK-VBELN"
 attributname="AT_SALES_ORDER_NUMBER"/>
 </transaction>
</r3transactionconf>

DISPLAY IN PPM

The pop-up menu for calling a transaction on a selected process instance in the Order
processing\Other orders process type group in line with the above configuration looks like
this:

The SAP login dialog in line with the configuration looks like this:

PPM CUSTOMIZING

227

After the user has successfully been authenticated in the SAP system, the VA03 transaction is
called in the SAP front-end, and the data pertaining to the order number of the selected process
instance (here: 5000053) is displayed:

RECORD ME5F MULTI-SELECT TRANSACTION

Requirements

If several process instances from the Purchase requisitions process type group are selected in the
process instance table, it should be possible to call the ME5F transaction (release reminder:
Purchase requisitions) in the SAP system using the sapppm ID. Use KY as the release code and
01 as the release group for each call of the ME5F transaction.

The values of the PPM AT_BANF_NUMBER (purchase requisition number) process attribute for
the selected process instances should be transferred to the transaction.

Below you will see how to use the SAP transaction recorder to record the ME5F transaction
(purchase requisition release reminder) taking into account the given requirements.

PPM CUSTOMIZING

228

Launch the transaction recorder in the SAP front-end (SHDB transaction). The following screen is
displayed:

Create a new record and enter any name in the Record box to be used for saving the record. In
the Transaction code box, enter the name of the transaction to be recorded:

PPM CUSTOMIZING

229

Now start recording and enter the required information in the following screen. For purchase
requisition numbers, enter the numbers 1001 - 1010 as individual values. In the dialog box, use
the Down key to navigate in order to avoid a non-functional OK code in the ABAP batch script
using vertical scrolling.

PPM CUSTOMIZING

230

In the Release code box, enter the value KY and in the Release group box, enter the value 01.
Apply your entries by pressing the F8 key. Your transaction now looks as follows:

PPM CUSTOMIZING

231

Press F8 again to execute the transaction with the specified values and display the corresponding
purchase requirements in ABAP batch script format:

PPM CUSTOMIZING

232

Instead of applying the values directly from the SAP front-end, you can also export the script as
a DAT file using Shift+F8 and display the contents including line numbers in the editor.

The first row of the batch input script refers to the transaction call. Ignore this row and rows
41-48; they contain repeat entries from rows 5-11 or (as in row 46) automatically transferred
data from the bottom of the multiple selection dialog. Rows named BDC_SUBSCR (for example,
row 14) are to be ignored in the subsequent creation of the XML transaction configuration.

The content of all other rows needs to be transferred into the XML format of the batchinputline
elements.

Column name in
ABAP batch input
format

DAT file
row number

XML attribute

Program 2, 12, 25, 38 program

Dynpro 2, 12, 25, 38 dynpro

Start indicator 2, 12, 25, 38 dynprobegin

PPM CUSTOMIZING

233

Column name in
ABAP batch input
format

DAT file
row number

XML attribute

Field name for example, 3-11

(1. screen)

fieldname

Field value for example, 3-11

(1. screen)

fieldvalue

You do not indicate fields without value because this corresponds to the fieldvalue default value.

...
<!-- 1st screen -->
<batchinputline program="RM06BF00" dynpro="1000"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_CURSOR"
 fieldvalue="S_FRGGR-LOW"/>
<batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=%005"/>
<batchinputline fieldname="P_FRGAB" fieldvalue="KY" />
<batchinputline fieldname="S_FRGGR-LOW" fieldvalue="01" />
<batchinputline fieldname="P_FRGVO" fieldvalue="X" />
<batchinputline fieldname="P_SELGS" fieldvalue="X" />
<batchinputline fieldname="P_SELPO" fieldvalue="X" />
<batchinputline fieldname="P_LSTUB" fieldvalue="A" />
<batchinputline fieldname="P_SRTKZ" fieldvalue="1" />

<!-- 2nd screen -->
<batchinputline program="SAPLALDB" dynpro="3000"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_OKCODE" fieldvalue="=P+" />
<batchinputline fieldname="BDC_CURSOR"
 fieldvalue="RSCSEL-SLOW_I(08)"/>
<batchinputline fieldname="RSCSEL-SLOW_I(01)"
 fieldvalue="1001"/>
<batchinputline fieldname="RSCSEL-SLOW_I(02)"
 fieldvalue="1002"/>
<batchinputline fieldname="RSCSEL-SLOW_I(03)"
 fieldvalue="1003"/>
<batchinputline fieldname="RSCSEL-SLOW_I(04)"
 fieldvalue="1004"/>
<batchinputline fieldname="RSCSEL-SLOW_I(05)"
 fieldvalue="1005"/>
<batchinputline fieldname="RSCSEL-SLOW_I(06)"
 fieldvalue="1006"/>
<batchinputline fieldname="RSCSEL-SLOW_I(07)"
 fieldvalue="1007"/>
<batchinputline fieldname="RSCSEL-SLOW_I(08)"
 fieldvalue="1008"/>
<batchinputline fieldname="RSCSEL-SLOW_I(09)"
 fieldvalue="__________"/>

<!-- 3rd screen -->
<batchinputline program="SAPLALDB" dynpro="3000"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=ACPT"/>
<batchinputline fieldname="BDC_CURSOR"
 fieldvalue="RSCSEL-SLOW_I(03)"/>

PPM CUSTOMIZING

234

<batchinputline fieldname="RSCSEL-SLOW_I(01)"
 fieldvalue="1008"/>
<batchinputline fieldname="RSCSEL-SLOW_I(02)"
 fieldvalue="1009"/>
<batchinputline fieldname="RSCSEL-SLOW_I(03)"
 fieldvalue="1010"/>
<batchinputline fieldname="RSCSEL-SLOW_I(04)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(05)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(06)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(07)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(08)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(09)"
 fieldvalue=""/>

<!-- 4th screen -->
<batchinputline program="RM06BF00" dynpro="1000"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=ONLI"/>
...

This transaction configuration would actually work with the connection data from the previous
example. However, no matter which process instances in the Purchase requisitions process
type group you would select, one transaction pertaining to a purchase requisition with the
number 1001-1010 would always be displayed.

In order to display the proper purchase requisition for each process instance, you need to replace
both multiple selection screens (all batchinputline XML elements from the second and third
screen) in the current configuration with one batchinputlist XML element only. You need the
following data:

XML attribute Value (description)

program SAPLALDB (program name)

dynpro 3000 (dynpro name)

okcodefieldname BDC_OKCODE (name of the dynpro field that
contains the OK code)

okcodepagedown =P+ (OK code value for paging down)

okcodeaccept =ACPT (OK code value to accept the entry in
multiple selection)

fieldname RSCSEL-SLOW_I (Name of the field that you
want to assign the PPM attribute values to. The
field must not contain row indices [(01), (02),
etc.].)

PPM CUSTOMIZING

235

XML attribute Value (description)

attributname AT_BANF_NUMBER (internal name of the PPM
process attribute whose values are going to be
transferred to the called transaction)

linesperpage 9 (number of entry rows on each multiple
selection screen)

Based on these entries, the batchinputlist element now looks like this:

<batchinputlist program="SAPLALDB" dynpro="3000"
 okcodefieldname="BDC_OKCODE" okcodepagedown="=P+"
 okcodeaccept="=ACPT" fieldname="RSCSEL-SLOW_I"
 attributname="AT_BANF_NUMBER" linesperpage="9" />

In combination with the connection data from the single select example, the transaction
configuration now looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE r3transactionconf SYSTEM
 "mysaptransaction.dtd">
<r3transactionconf>
 <submenu>
 <description language="de"
 name="SAP-Transaktionen"/>
 <description language="en"
 name="SAP transactions"/>
 </submenu>
 <logoutMenuEntry>
 <description language="de"
 name="SAP-Verbindung ändern"/>
 <description language="en"
 name="Change SAP connection"/>
 </logoutMenuEntry>
 <r3system systemid="sapppm" client="800">
 <description language="de"
 name="SAP-System 'sapppm' "/>
 <description language="en"
 name="SAP system 'sapppm' "/>
 <locales>
 <defaultlocale value="de"/>
 <locale value="en"/>
 </locales>
 <applicationserver appserver="sapppm"
 systemnumber="00"/>
 </r3system>
 <transaction
 systemid="sapppm" transactioncode="ME5F"
 transactionid="ME5F">
 <description language="de"
 name="Freigabeerinnerung BANF (ME5F)"/>
 <description language="en"
 name="Release (approval) reminder:
 Purchase Requisitions (ME5F)"/>
 <!-- 1st screen -->

PPM CUSTOMIZING

236

 <batchinputline program="RM06BF00" dynpro="1000"
 dynprobegin="X"/>
 <batchinputline fieldname="BDC_CURSOR"
 fieldvalue="S_FRGGR-LOW"/>
 <batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=%005"/>
 <batchinputline fieldname="P_FRGAB" fieldvalue="KY" />
 <batchinputline fieldname="S_FRGGR-LOW"
 fieldvalue="01"/>
 <batchinputline fieldname="P_FRGVO" fieldvalue="X" />
 <batchinputline fieldname="P_SELGS" fieldvalue="X" />
 <batchinputline fieldname="P_SELPO" fieldvalue="X" />
 <batchinputline fieldname="P_LSTUB" fieldvalue="A" />
 <batchinputline fieldname="P_SRTKZ" fieldvalue="1" />
 <!-- Multiple selection screens -->
 <batchinputlist program="SAPLALDB" dynpro="3000"
 okcodefieldname="BDC_OKCODE" okcodepagedown="=P+"
 okcodeaccept="=ACPT" fieldname="RSCSEL-SLOW_I"
 attributname="AT_BANF_NUMBER" linesperpage="9" />
 <!-- 1st screen -->
 <batchinputline program="RM06BF00" dynpro="1000"
 dynprobegin="X"/>
 <batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=ONLI"/>
 </transaction>
</r3transactionconf>

11.1.4.2 Explanations regarding the DTD
The file mysaptransaction.dtd determines the configuration options:

POP-UP MENU CONFIGURATION

XML tag Description

submenu
(optional)

Name of the submenu. Default value: SAP
transactions. If only one submenu entry exists,
it is displayed directly in the pop-up menu without
submenu entry (e. g., initial login with only one
configured transaction)

logoutMenuEntry
(optional)

Menu entry for resetting all connection
parameters after at least one successful SAP login.
Default value: Reset connection parameters
of all SAP systems

PPM CUSTOMIZING

237

SYSTEM ACCESS CONFIGURATION

XML tag Description

r3system Description and connection data of the available SAP
system. Data of any number of SAP systems can be
specified. The configuration of system access is
described in detail in the PPM Process Extractors
technical reference.

description At least the description in the default language must
be specified.

name Name of the SAP system in the SAP logon dialog in
the PPM front-end

systemid Unique name of an SAP system. Is referenced by the
corresponding transaction.

client Name of the SAP client.

locales Languages available in the SAP system

defaultlocale Default language. Is preselected in the SAP login
dialog

locale
(optional)

Additional language(s) available in the SAP system

appserver

Computer name or IP address of the
SAP source system computer

systemnumber SAP system number

mshost Name of the SAP message host

r3name R/3 system name

group Name of application server group

appserver Name of application server

systemnumber SAP system number

gwhost Computer name of R/3 gateway

gwserv Service number of the R/3 gateway

PPM CUSTOMIZING

238

TRANSACTION CONFIGURATION

XML tag Description

transaction Transaction configuration

systemid ID of the SAP system in which the transaction is to
be called. Must correspond to the value of a
systemid of the specified SAP systems (r3system
XML elements).

transactionid Transaction ID

transactioncode Transaction code of the transaction to be called
 (see SAP documentation)

skipfirstscreen
(optional)

Skips the transaction start page if all mandatory
fields are completed (see SAP documentation on
the CALL_TRANSACTION function module).
Valid values: yes | no
Default value: yes

mode
(optional)

Execution mode of the ABAP batch input (see SAP
documentation on the CALL_TRANSACTION
function module). Valid values:
SHOW_DYNPROS
(Dynpros are displayed during execution)
SHOW_DYNPROS_ONLY_ON_ERRORS
(Dynpros are displayed only if an error occurs or
when the end of the batch script is reached)
DONT_SHOW_DYNPROS
(Dynpros are not displayed)
Default value:
SHOW_DYNPROS_ONLY_ON_ERRORS

update
(optional)

Update type in the SAP system (see SAP
documentation on the CALL_TRANSACTION
function module). Valid values:
SYNCHRONOUS (synchronous update)
ASYNCHRONOUS (asynchronous update)
LOCAL (local update)
Default value: ASYNCHRONOUS

proctypegroup
(optional)

Process type group in which the transaction is
available. The transaction is automatically available
in all process types of the specified process type
group. If this entry is missing, the transaction is
available in the entire process tree.

PPM CUSTOMIZING

239

XML tag Description

description Language-specific interface name of the
transaction

name Pop-up menu entry of the transaction

batchinputline Line in ABAP batch input format. If a transaction
configuration contains only batchinputline
XML elements, the transaction can normally be
called for single selection only. Multiple selection is
possible only if the PPM process attribute specified
with attributname has the same value in all
selected process instances.

program Name of the program

dynpro Dynpro name

dynprobegin Start of a dynpro

fieldname Name of the dynpro field

attributname
(optional)

Internal name of a PPM process attribute whose
value is to be determined by the selected process
instance. The value is assigned to the dynpro field,
fieldvalue is ignored.

fieldvalue
(optional)

A constant value to be assigned to the dynpro field.
If attributname is specified fieldvalue is ignored.

batchinputlist Multiple lines in ABAP batch input format. If a
transaction configuration contains at least one
batchinputlist XML element, the transaction can
be called with both single and multiple selection.

program Name of the program

dynpro Dynpro name

okcodefieldname
(optional)

Name of the dynpro field that contains the OK code.
Default value: BDC_OKCODE

okcodepagedown
(optional)

OK code value for paging down. Default value:
=P+

okcodeaccept
(optional)

OK code value to accept the entry. Default value:
=ACPT

fieldname Name of the dynpro field

PPM CUSTOMIZING

240

XML tag Description

attributname Internal name of a PPM process attribute whose
value is to be determined by the selected process
instance. The value is assigned to the dynpro field,
fieldvalue is ignored.

linesperpage
(optional)

Number of visible value lines on the dynpro. When
this number of lines is reached, the system pages
down. Default value: 9

PPM CUSTOMIZING

241

12 Legal information

12.1 Documentation scope
The information provided describes the settings and features as they were at the time of
publishing. Since documentation and software are subject to different production cycles, the
description of settings and features may differ from actual settings and features. Information
about discrepancies is provided in the Release Notes that accompany the product. Please read the
Release Notes and take the information into account when installing, setting up, and using the
product.

If you want to install technical and/or business system functions without Software AG's consulting
services, you require extensive knowledge of the system to be installed, its intended purpose, the
target systems, and their various dependencies. Due to the number of platforms and
interdependent hardware and software configurations, we can only describe specific installations.
It is not possible to document all settings and dependencies.

When you combine various technologies, please observe the manufacturers' instructions,
particularly announcements concerning releases on their Internet pages. We cannot guarantee
proper functioning and installation of approved third-party systems and do not support them.
Always follow the instructions provided in the installation manuals of the relevant manufacturers.
If you experience difficulties, please contact the relevant manufacturer.

If you need help installing third-party systems, contact your local Software AG sales organization.
Please note that this type of manufacturer-specific or customer-specific customization is not
covered by the standard Software AG software maintenance agreement and can be performed
only on special request and agreement.

If a description refers to a specific ARIS product, the product is named. If this is not the case,
names for ARIS products are used as follows:

Name Includes

ARIS products Refers to all products to which the license regulations of
Software AG standard software apply.

ARIS Clients Refers to all programs that access shared databases via ARIS
Server.

ARIS Download clients Refers to ARIS clients that can be accessed using a browser.

PPM CUSTOMIZING

242

12.2 Data protection
Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR).

Where applicable, appropriate steps are documented in the respective administration
documentation.

	Contents
	1 Text conventions
	2 General
	3 Overview
	3.1 Configuration components
	3.2 Command line programs
	3.3 Methodological procedure
	3.4 Configuration component hierarchy

	4 Interface languages
	4.1 User interface languages
	4.2 Interface language for display of configuration elements
	4.2.1 Using multi-byte character sets for configuration elements

	5 Internal names
	6 Attribute types and attribute type groups
	6.1 Data types
	6.1.1 Internal data types
	6.1.2 User-defined data types
	6.1.2.1 User-defined data types in multi-byte character sets

	6.2 Definition of attribute types and attribute type groups
	6.2.1 Definition of attribute types
	6.2.2 Definition of attribute type groups
	6.2.3 Configuration of attribute types and attribute type groups
	6.2.3.1 Attribute type and attribute type group definition in multi-byte character sets

	7 Process merge
	7.1 Process hierarchies
	7.2 Key rules
	7.2.1 Process key rules
	7.2.2 Hierarchy key rules
	7.2.3 Shared fragment key rules
	7.2.4 Merge key rules
	7.2.4.1 Key-based merge
	7.2.4.2 Merge based on sort order
	7.2.4.3 Combining merge methods

	7.2.5 Object key rules
	7.2.6 Output behavior of messages
	7.2.7 Configuration file

	7.3 Process fragment merge
	7.3.1 Merge mode "Replace"
	7.3.2 Merge mode "Update"

	7.4 Merge events
	7.4.1 Parallel paths with multi-valued keys
	7.4.2 Merge mode

	7.5 Attribute copy rules
	7.6 Anonymizing

	8 Process typification
	8.1 Create typification rules
	8.1.1 Measure configuration
	8.1.2 Process tree configuration
	8.1.2.1 Prioritization

	8.1.3 Definition of attribute calculations
	8.1.3.1 Calculation classes
	8.1.3.1.1 Log output for calculation classes
	8.1.3.1.2 Time measures
	8.1.3.1.3 Function measures
	8.1.3.1.4 Process measures
	8.1.3.1.5 Frequency measures
	8.1.3.1.5.1 Function measures
	8.1.3.1.5.2 Process measures
	8.1.3.1.5.3 Process cost rates
	8.1.3.1.5.4 More process measures
	8.1.3.1.5.5 Environmentally relevant calculations

	8.1.3.1.6 Relation measures
	8.1.3.1.7 Process conformance
	8.1.3.1.7.1 Conformance rate measure
	8.1.3.1.7.2 Conformance issue relation

	8.1.3.1.8 Convert time spans in milliseconds
	8.1.3.1.9 Mark as large EPC

	8.1.3.2 Operands
	8.1.3.2.1 Set of values (XML element attribute)
	8.1.3.2.2 Values (XML element filteredattribute)
	8.1.3.2.3 Constants (XML element constant)
	8.1.3.2.4 Determining attribute values
	8.1.3.2.4.1 Attribute values without object reference
	8.1.3.2.4.2 Attribute values with object reference

	8.1.3.3 Conditional attribute type access
	8.1.3.4 Operators
	8.1.3.4.1 Mathematic operators
	8.1.3.4.2 Operators resulting in a set of values
	8.1.3.4.3 Operators producing a value
	8.1.3.4.4 Logical operators
	8.1.3.4.5 Conditional operator
	8.1.3.4.6 String operators
	8.1.3.4.7 Time operators
	8.1.3.4.8 Conditional attribute type calculation

	8.1.3.5 Nesting of operators
	8.1.3.6 Calculation functions
	8.1.3.7 Change the attribute type
	8.1.3.8 Summary
	8.1.3.9 Example attribute calculations
	8.1.3.10 Special features of attribute calculation
	8.1.3.10.1 AT_INTERNAL_NO_CUBE_ENTRY function attribute

	8.1.4 Typification rules in CTK

	8.2 Typification by attribute calculation

	9 Definition of measures, dimensions, attribute calculations, and relations
	9.1 Terminology
	9.1.1 Measures
	9.1.1.1 Process instance-dependent measures
	9.1.1.2 Process instance-independent measures (PIKIs)

	9.1.2 Dimensions

	9.2 Definition of measures
	9.2.1 Definition of standard measures
	9.2.1.1 Formatting measure values
	9.2.1.2 Definition of process cost measures

	9.2.2 Measure definition in multi-byte character sets
	9.2.3 Definition of cardinality measures
	9.2.4 Definition of process instance-independent measures
	9.2.4.1 Usage (type) of a data series
	9.2.4.2 Dimension reference
	9.2.4.3 Definition of process instance-independent measures in multi-byte character sets
	9.2.4.4 Configuration import
	9.2.4.5 Data series migration
	9.2.4.6 Additional information: User-defined measures based on process instance-independent measures

	9.2.5 Definition of measure groups
	9.2.5.1 Visible measure groups
	9.2.5.2 Group of invisible measures

	9.3 Definition of dimensions
	9.3.1 Definition of dimension groups
	9.3.2 Text dimensions
	9.3.2.1 General XML structure
	9.3.2.1.1 One-level dimension
	9.3.2.1.2 Two-level dimension
	9.3.2.1.3 N-level dimension

	9.3.2.2 Configuration
	9.3.2.2.1 One-level dimensions
	9.3.2.2.2 Two-level dimensions
	9.3.2.2.3 N-level dimensions

	9.3.2.3 Import dimension values

	9.3.3 Floating point dimensions
	9.3.4 Time dimensions
	9.3.4.1 Time dimensions with dimension table
	9.3.4.2 Incube time dimensions
	9.3.4.3 Time dimensions for the Early alert system
	9.3.4.3.1 Special feature for calculation of critical time attributes

	9.3.5 Time range dimensions
	9.3.6 Time of day dimensions
	9.3.7 Search dimensions
	9.3.8 Variant dimension
	9.3.8.1 Attribute configuration
	9.3.8.2 Measure configuration - dimension type
	9.3.8.3 Process tree configuration
	9.3.8.4 Usage of variant attributes during import

	9.3.9 Shared function dimension
	9.3.10 Using organizational units as dimensions

	9.4 Definition of data access dimensions
	9.4.1 Using data access dimensions

	9.5 Process tree definition
	9.5.1 Registration of measures and dimensions at the PPM system
	9.5.1.1 Register measure
	9.5.1.1.1 Register relation measure
	9.5.1.1.2 Register measures and dimensions of process instance-independent data series
	9.5.1.1.2.1 Special case: Register referenced dimensions

	9.5.1.2 Register dimension
	9.5.1.2.1 Register reference dimension
	9.5.1.2.2 Register relation dimension

	9.5.2 Automatic process tree expansion
	9.5.3 Manual process tree expansion
	9.5.4 Definition of process tree in multi-byte character sets

	9.6 Relations
	9.6.1 Definition of relations
	9.6.1.1 Reference dimensions

	9.6.2 Definition of relation calculations
	9.6.3 Definition of relation measures
	9.6.4 Definition of relation and organizational dimensions

	10 Change aggregation behavior
	10.1 Configure the internal aggregation attribute
	10.2 Assign aggregation values

	11 System connections
	11.1 SAP executables
	11.1.1 Software requirements
	11.1.2 Privileges in the SAP system
	11.1.3 Transaction call
	11.1.4 Configuration
	11.1.4.1 Configuration examples
	11.1.4.2 Explanations regarding the DTD

	12 Legal information
	12.1 Documentation scope
	12.2 Data protection

