
Introduction to Apama

Version 10.15.5

June 2024

This document applies to Apama 10.15.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2024 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: PAM-INTRO-10155-20240624

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..5
Documentation roadmap..6
Online Information and Support...7
Data Protection...8

1 Apama Overview...9
What is Apama?..10
About Apama license files..11
Running Apama without a license file..12

2 Apama Architecture..15
Distinguishing architectural features..16
How Apama integrates with external data sources..17
Descriptions of Apama components...19
How the correlator works...23

3 Apama Concepts..27
Event-driven programming..28
Complex event processing..29
Understanding monitors and listeners..30

4 Getting Ready to Develop Apama Applications..33
Becoming familiar with Apama...34
Introduction to Software AG Designer...34
Steps for developing Apama applications..35
Overview of starting, testing and debugging applications..36

5 Apama Glossary..37
action..39
activation..39
aggregate function..39
batch...39
bundle..39
.cdp...39
CEP...39
channel...39
connectivity plug-in...40
context..40
correlator..40
correlator deployment package..40
correlator-integrated messaging for JMS..40
.csv..40

Introduction to Apama 10.15.5 iii

current events..40
DataView...41
EPL..41
EPL plug-in..41
event...41
event collection...41
event listener...41
event pattern...41
event template...41
.evt..42
exception..42
listener..42
lot..42
MemoryStore...42
method...42
.mon..42
monitor...43
MonitorScript..43
optional..43
partitioning..43
Software AG Designer...43
stack trace element...43
static action..43
stream...43
stream listener...44
stream network...44
stream query..44
stream source template..44
window..44

iv Introduction to Apama 10.15.5

Table of Contents

About this Guide

■ Documentation roadmap .. 6

■ Online Information and Support ... 7

■ Data Protection ... 8

Introduction to Apama 10.15.5 5

This Introduction to Apama is for new Apama users. It provides a high-level overview of Apama,
describes theApama architecture, discussesApama concepts and introduces SoftwareAGDesigner,
which is the main development tool for Apama.

Documentation roadmap

Apama provides documentation in the following formats:

HTML (available from both the documentation website and the doc folder of the Apama
installation)

PDF (available from the documentation website)

Eclipse help (accessible from Software AG Designer)

You can access theHTMLdocumentation on yourmachine after Apama has been installed: Display
the index.html file, which is in the doc/apama-onlinehelp directory of your Apama installation
directory.

The following guides are available:

DescriptionTitle

Describes new features and changes introducedwith the current
Apama release as well as earlier releases.

Release Notes

Summarizes all important installation information.Installing Apama

Provides a high-level overviewofApama, describes theApama
architecture, discussesApama concepts and introduces Software
AG Designer, which is the main development tool for Apama.

Introduction to Apama

Explains how to develop Apama applications in Software AG
Designer, which is an Eclipse-based integrated development
environment.

Using Apama with Software AG
Designer

Describes the the technology for developingApamaapplications:
EPLmonitors. You can use this technology to implement a single

Developing Apama Applications

Apama application. In addition, there are C++ and Java APIs
for developing components that plug in to a correlator. You can
use these components from EPL.

Describes how to connect Apama applications to any event data
source, database, messaging infrastructure, or application.

Connecting Apama Applications to
External Components

Deprecated. Describes how to build and use an Apama
dashboard,which provides the ability to view and interactwith

Building and Using Apama
Dashboards

DataViews. An Apama project typically uses one or more
dashboards, which are created in the Dashboard Builder. The
Dashboard Viewer provides the ability to use dashboards
created in the Dashboard Builder. Dashboards can also be
deployed as simple web pages. Deployed dashboards connect

6 Introduction to Apama 10.15.5

DescriptionTitle

to one or more correlators by means of a dashboard data server
or display server.

Describes how to deployApama applications usingDocker and
Kubernetes. It also provides information for improvingApama

Deploying and Managing Apama
Applications

application performance by using multiple correlators, for
managing and monitoring Apama components over REST
(Representational State Transfer), and for using correlator
utilities and configuration files.

In addition to the above guides, Apama also provides the following API reference information:

API Reference for EPL (ApamaDoc)

API Reference for Java (Javadoc)

API Reference for C++ (Doxygen)

API Reference for .NET

API Reference for Python

API Reference for Component Management REST APIs

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://
documentation.softwareag.com.

In addition, you can also access the cloudproduct documentation via https://www.softwareag.cloud.
Navigate to the desired product and then, depending on your solution, go to “Developer Center”,
“User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://
learn.softwareag.com.

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://
techcommunity.softwareag.com. From here you can, for example:

Browse through our vast knowledge base.

Ask questions and find answers in our discussion forums.

Introduction to Apama 10.15.5 7

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

Get the latest Software AG news and announcements.

Explore our communities.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
containers.softwareag.com/products and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

Download products, updates and fixes.

Search the Knowledge Center for technical information and tips.

Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

8 Introduction to Apama 10.15.5

https://github.com/softwareag/
https://containers.softwareag.com/products
https://containers.softwareag.com/products
https://empower.softwareag.com/
https://empower.softwareag.com/register/

1 Apama Overview

■ What is Apama? ... 10

■ About Apama license files .. 11

■ Running Apama without a license file .. 12

Introduction to Apama 10.15.5 9

In addition to reading this Introduction to Apama, it is recommended that you do the following to
become familiar with Apama. Work through the Apama tutorials in Software AG Designer. From
the Help menu, choose Welcome to display the Welcome page, and then click Tutorials under
theApamaheading. This displays links to interactive tutorials that provide step-by-step instructions
for writing simple Apama applications that you can then run and monitor.

What is Apama?

Apama is an event processing platform. It monitors rapidly moving event streams, detects and
analyzes important events and patterns of events, and immediately acts on events of interest
according to your specifications.

Event-based applications differ from traditional applications in that rather than continuously
executing a sequence of instructions, they listen for and respond to relevant events. Events describe
changes to particular real-world or computer-based objects, for example, a new temperature
reading from a factory sensor.

Events are collections of attribute-value pairs that describe a change in an object. For example, the
figure below shows events from a sensor. Each sensor reading has a number of attributes, such as
temperature and pressure.

The attributes, or fields, of an individual event class may be of a variety of types, including
numerical and textual data. Events with multiple fields can be viewed as multidimensional types,
in that a search to find an event of interest might involve searching across several of the event
fields.

Rather than executing a sequence of activities at some defined point, an event-based systemwaits
and responds appropriately to an asynchronous signal as soon as it happens. In this way, the
response is as immediate (or real-time) as possible.

The main Apama features include:

Graphical development tools accessible to business users.

EPL, which is a concise, richly-featured event processing language.

10 Introduction to Apama 10.15.5

1 Apama Overview

The connectivity plug-inAPI, which allows in-correlator integrationwith external data sources
of varying formats.

Sophisticated analytics with native support for temporal arguments.

Sub-second response to detected events and patterns of interest.

Highly scalable, patented, event-driven architecture, supporting tens of thousands of concurrent
scenarios.

Flexible event replay for testing new event scenarios and analyzing existing ones.

Tools for managing and monitoring your application.

The following functional diagram shows the main Apama features:

About Apama license files

A license file is required for the full functionality of Apama. Refer to the licensing terms specified
in your software contract for any additional legal restrictions that may be imposed on your use
of Apama. You can provide the Apama license file in the following ways:

Copy the license file to the Apama work directory (APAMA_WORK/license).

Specify the path to the license file by setting the licenseFile element in the YAML configuration
file for the correlator. See "YAML configuration file for the correlator" inDeploying andManaging
Apama Applications.

Introduction to Apama 10.15.5 11

1 Apama Overview

Specify the path to the license file using the -l or --license command-line optionwhen starting
the correlator executable. See "Starting the correlator" in Deploying and Managing Apama
Applications.

It is possible to run Apama without a license file or with an expired license file. Apama behavior
with regard to the Apama license file is as follows:

When a license file cannot be found, the correlator will run with reduced capabilities. See
“Running Apama without a license file” on page 12.

A correlator startedwith a license file does not shut down immediatelywhen its license expires.
It continues operation for seven days beyond expiration. After that, the correlator shuts down.
The correlator logs periodic warning messages until it reaches the end of the seven days or
until you replace the expired license.

Removing the license file from a running correlator does not cause it to shut down immediately.
It continues operation for seven days after the license file is removed. After that, the correlator
shuts down. The correlator logs periodicwarningmessages until it reaches the end of the seven
days or until you restore the license.

You can start a correlatorwith an expired license if it is less than seven days beyond expiration.

If you want to continue with reduced capabilities after the correlator has shut down after seven
days, you have to remove the license and then restart the correlator.

If you obtain a license file after you have been running Apama, copy it to the license directory in
your APAMA_WORK directory, for example: C:\Users\Public\SoftwareAG\ApamaWork_n.n\license\
ApamaServerLicense.xml (where n.n stands for the current version number).

If the correlator's license has expired, you have to obtain a new license file and copy it into the
same location before the end of the above mentioned grace period. The correlator checks for an
updated license file every five minutes, so the new license file is automatically picked up. The
correlator does not need to be restarted in this case.

If you name the license file “ApamaServerLicense.xml” and put it in the license directory in
APAMA_WORK, then the correlator will automatically pick up the license file. Otherwise, you must
specify the path to the license file on the command line.

Note:

When you are using Apama in Cumulocity IoT, that is, the Streaming Analytics application, a
valid license is automatically provisioned. See the Cumulocity IoT documentation at https://
cumulocity.com/docs/streaming-analytics/overview-analytics/ for more information on the
Streaming Analytics application.

Running Apama without a license file

Apama can be run without a license file in which case it runs with reduced capabilities and can
be used for simple or exploratory use cases. Refer to "License Terms and Technical Restrictions"
in the Release Notes for the current license terms and restrictions.

The following restrictions apply when starting the correlator without a license file:

12 Introduction to Apama 10.15.5

1 Apama Overview

https://cumulocity.com/docs/streaming-analytics/overview-analytics/
https://cumulocity.com/docs/streaming-analytics/overview-analytics/

The correlator does not start more than 4 threads for EPL processing. The number of threads
being used is logged. Up to 20 contexts may be created and all are runnable, but the correlator
does not use more than 4 threads to execute EPL, limiting the correlator's performance.

Reliable messaging with connectivity plug-ins is not permitted.

Correlator-integratedmessaging for JMS is limited to BEST_EFFORT onlymessaging (unreliable).
It refuses to connect using reliable modes (EXACTLY_ONCE, AT_LEAST_ONCE or APP_CONTROLLED).

The correlator logs that it is running without a license file.

The following restrictions are enforced while the correlator is running and a license file cannot be
found:

The correlator is limited to 1024MB of resident memory. If 1024MB of memory is exceeded,
the correlator is stopped and an error is logged indicating that the correlator is runningwithout
a license file. There is a warning if the resident memory exceeds 90% of the 1024MB limit -
though if the correlator's memory increases very quickly, the limit may be hit before the 90%
warning is logged.

Note that this limit also includes Java memory usage. It is recommended that you size your
Java virtual machine to not consume too much memory. If you are using Java features, you
may need to use -J-Xmx256M to limit the memory usage of your Java virtual machine to 256MB
(or some suitable size less than 1024MB). Note that the memory usage may increase if a burst
of events is received.

The correlator does not allowmore than 20 contexts to be created. The spawn statement throws
an exception if it would create a new context and 20 contexts are already created. In addition,
a startup error occurs when recovering a persistent database with more than 20 contexts. Both
the exception and the startup error indicate that the correlator is running without a license
file.

The correlator does not allow more than 5 persistent EPL monitors (this does not include
monitor instances of persistentmonitors). An error is logged if there aremore than 5 persistent
monitors.

The correlator does not allow the injection of user-generated correlator deployment packages
(CDPs). If a user-generated CDP is injected, the correlator rejects the injection and an error is
logged indicating that the correlator is running without a license file.

The correlator does not allow more than 5 Apama query definitions to run and no more than
5 query instances per definition. When more than 5 query definitions are injected into the
correlator, ERROR log messages are written.

Note:
Apama queries are deprecated and will be removed in a future release.

The Apama query runtime drops events if there are already 50 different partition values for
a query. When more than 50 partition values are sent in, ERROR log messages are written.

If reliable JMS connections are requested dynamically, an exception is thrown which should
be caught in EPL, and an error message is logged indicating that this configuration is not
supported as the correlator is running without a license file.

Introduction to Apama 10.15.5 13

1 Apama Overview

The correlator info web page (http://localhost:15903/info) always shows you whether the
correlator is currently running with or without a license file.

To find out if the above-mentioned limits have been exceeded, you can check the following:

The correlator log file for most of the above-mentioned cases. See "Descriptions of correlator
status log fields" in Deploying and Managing Apama Applications.

The status messages of the engine_watch tool. See "Watching correlator runtime status" in
Deploying and Managing Apama Applications.

The -a (--getall) or -Pm (--getpmemory) option of the engine_management tool to get the physical
memory usage. See "Shutting down and managing components" in Deploying and Managing
Apama Applications.

The scenario browser for status information onApamaqueries. See "Using the Scenario Browser
view" in Using Apama with Software AG Designer.

14 Introduction to Apama 10.15.5

1 Apama Overview

2 Apama Architecture

■ Distinguishing architectural features ... 16

■ How Apama integrates with external data sources .. 17

■ Descriptions of Apama components ... 19

■ How the correlator works .. 23

Introduction to Apama 10.15.5 15

Apama architecture has a modular, scalable design with core features that

Monitor inbound events typically delivered by amessaging infrastructure ormarket data feed.

Analyze those events in memory, either singly or in conjunction with other events whose
attributes and temporal ordering represent a pattern.

Trigger outbound events that represent an action to be taken in response to the analysis.

As you can see, Apama's architecture is designed to process events. Event processing requires an
architecture that is fundamentally different from traditional data processing architectures. Because
Apama's architecture is event driven, an understanding of the distinctive qualities of this
architecture is crucial to designing and building robust Apama applications.

Distinguishing architectural features

Apama inverts the paradigm of traditional data-centric systems. Rather than the “store > index >
search” model of those architectures, Apama introduces the correlator — a real-time, event
processing engine. An Apama application comprises monitors that specify the events or patterns
of events that interest you. These specifications are the logical equivalent of database queries. After
you load monitors into the correlator, incoming events flow over them and they monitor these
event streams for the events and patterns you specified.When amatching event or pattern is found
the correlator processes it according to the rules you specify.

Apama's architecture is further distinguished by its ability to support huge numbers of monitors
operating simultaneously. Each can have its own logic for monitoring the event streams, seeking
out patterns and, upon detection, triggering specified actions.

EPL, Apama's native event programming language, lets developers define rules for processing
complex events. Such rules let the correlator find temporal and causal relationships among events.

Messages on a variety of transports carry events to and from correlators. Apama connectivity
plug-ins translate application-specific data intoApama application event formats that the correlator
can process.

Apama components can be connected to each other by executing the Apama engine_connect tool
with specification of an explicit point-to-point connection.

The following figure illustrates the Apama architecture. Each component is described later in this
section.

16 Introduction to Apama 10.15.5

2 Apama Architecture

How Apama integrates with external data sources

You can connectApama to any event data source, database,messaging infrastructure, or application.
There are several ways to do this:

Write transport and codec connectivity plug-ins.

Develop custom client applications with Apama APIs for Java, .NET, and C++.

Create applications that use correlator-integrated messaging for JMS.

UseMQTT for communication between constrained devices, for example, deviceswith limited
network bandwidth.

Use Kafka for communication with the Kafka distributed streaming platform.

Use Cumulocity IoT for communication with connected IoT devices.

Using connectivity plug-ins to connect with external data sources

Connectivity plug-ins can be written in Java or C++, and run inside the correlator process to allow
messages to be sent and received to/from external systems. Individual plug-ins are combined
together to form chains that define the path of a message, with the correlator host process at one
end and an external system or library at the other, and with an optional sequence of message
mapping transformations between them.

Introduction to Apama 10.15.5 17

2 Apama Architecture

Connectivity plug-ins allow plug-ins to transform and handle delivery of events.

Connectivity plug-ins perform a similar role to the Apama client library, which allows Java or C++
code in an external process to send/receive messages to/from the correlator. If Apama events need
to be made available within an external system, then consider connectivity plug-ins if the external
system has a protocol (such as JSON over HTTP). If the external system hosts plug-ins via an API,
then the client library may be a better fit.

For detailed information, see "Using Connectivity Plug-ins" in Connecting Apama Applications to
External Components.

Using Apama APIs to connect with external data sources

A range of APIs let you extend Apama at the client and correlator levels for integration with other
environments, such as Java, .NET or C++. In addition, you can extend correlator behavior with
Java and C++ plug-ins that can call external function libraries from within an application.

For detailed information, see "Developing Custom Clients" in Connecting Apama Applications to
External Components.

Using correlator-integrated messaging for JMS to connect with external data sources

Apama's correlator-integrated messaging for JMS provides an efficient way to receive and send
JMSmessages to and fromApama applications. It also provides for reliablemessaging (guaranteed
delivery) and duplicate detection.

For detailed information, see "Using the Java Message Service (JMS)" in Connecting Apama
Applications to External Components.

Using MQTT for communication between constrained devices

Apama provides a connectivity plug-in, the MQTT transport, which can be used to communicate
between the correlator and an MQTT broker, where the MQTT broker uses topics to filter the
messages. MQTT messages can be transformed to and from Apama events by listening for and
sending events to channels such as prefix:topic (where the prefix is configurable).

For detailed information, see "The MQTT Transport Connectivity Plug-in" in Connecting Apama
Applications to External Components.

Using Kafka for communication with a Kafka distributed streaming platform

Apama provides a connectivity plug-in, the Kafka transport, which can be used to communicate
with the Kafka distributed streaming platform. Kafka messages can be transformed to and from
Apama events by listening for and sending events to channels such as prefix:topic (where the
prefix is configurable).

For detailed information, see "The Kafka Transport Connectivity Plug-in" in Connecting Apama
Applications to External Components.

18 Introduction to Apama 10.15.5

2 Apama Architecture

Using Cumulocity IoT for communication with connected IoT devices

Apama provides several connectivity bundles which allow you to communicate with the IoT
devices connected to Cumulocity IoT. For example, you can receive events from the devices, send
operations to the devices, and query the state stored in the platform.

For detailed information, see "The Cumulocity IoT Transport Connectivity Plug-in" in Connecting
Apama Applications to External Components.

Descriptions of Apama components

While traditional architectures can respond to events after they have happened, Apama's
event-driven architecture responds in real time to fast moving events of any kind. Apama
applications leverage a platform that combines analytic sophistication, flexibility, performance
and interoperability. In addition to being an event processing engine, Apamaprovides sophisticated
development tools, a flexible testing environment, and an extensible connectivity framework. This
makes Apama a comprehensive event processing platform for building real-time, event-driven
applications.

Description of the Apama correlator
Apama's correlator is the engine that powers an Apama application. Correlators execute the
sophisticated event pattern-matching logic that you define in your Apama application. Apama
applications track inbound event streams and listen for events whose patterns match defined
conditions. The correlator's patented architecture canmonitor huge volumes of events per second

When an event or an event sequence matches an active event expression, the correlator executes
the appropriate actions, as defined by the application logic.

The correlator can concurrently search for and identify vast numbers of discrete event patterns
with sub-millisecond responsiveness.

The correlator can deliver low latency analytics onmultiple inbounddata streams bymonitoring
the event streams for patterns you specify.

The correlator goes beyond simple event processing to deliver actionable responses.

See also “How the correlator works” on page 23.

Description of Apama EPL
EPL is Apama's native event processing language. You can find complete information inDeveloping
Apama Applications.

Before EPL can look for patterns in event streams, you must define the types of events you are
interested in and inject their definitions in the correlator. An event definition informs the correlator
about the composition of an event type. An example event definition for a stock exchange tick
feed is as follows:
event StockTick {

Introduction to Apama 10.15.5 19

2 Apama Architecture

string symbol;
float price;
float volume;

}

Each field of the event has a type and a name. The type informs the correlator how to handle that
field and what operations to allow on it. As you can see, the correlator can handle multiple types,
such as numeric values and textual values, within the same event type. Apama can handle any
number of different event types at one time.

External event sources such as connectivity plug-ins and clients need to be able to send events
into the correlator. For the correlator to be able to detect an event of interest, the event's type
definitionmust have been loaded into the correlator. An example of a StockTick event is as follows:
StockTick ("APAMA", 55.20, 250010)

Apama monitors

A monitor defines:

One or more listeners. EPL provides event listeners and stream listeners.

An event listener observes the correlator event stream analyzing each event in turn until
it finds a sequence of events that match its event expression. When this happens the event
listener triggers, causing the correlator to execute the listener action.

A stream listener passes stream query output to procedural code. A stream query operates
on one or two streams to transform their contents into a single output stream. The type of
the stream query output items need not be the same as the type of the stream query input
items. The output for one stream query can be the input for another stream query. At the
end of the chain of stream queries, a stream listener coassigns each stream query output
item to a variable and executes specified code.

One or more actions. An action is one or more operations that the correlator performs. An
actionmight be to register a listener or it might be an operation to performwhen the correlator
finds a match between an incoming event or sequence and a listener.

The following EPL example illustrates these concepts in the form of a simple monitor called
PriceRise. Themonitor is composed of three actions. The first two actions declare listeners, which
are indicated by the on keyword.
monitor PriceRise
{

action onload() {
on all StockTick("IBM",>=75.5,*) as firstTick {

furtherRise (firstTick);
}
from tick in all StockTick(symbol="IBM")

within 60.0 every 60.0
select mean(tick.price) as f { average(tick.price); }

}
action average(float av) {

log "60-second average for IBM: "+av.toString();
}
action furtherRise(StockTick tick) {

20 Introduction to Apama 10.15.5

2 Apama Architecture

on all StockTick("IBM",>=(tick.price*1.05),*) as finalTick {
log "IBM has hit "+finalTick.price.toString();
send Placeholder("IBM",finalTick.price,1000.0) to "PlaceholderChannel";

}
}

}

When a monitor starts running, the correlator executes the monitor's onload() action. In the
PriceRisemonitor, the onload() action creates an event listener for all IBM stock ticks that have
a price above 75.5 at any volume and a stream listener for all IBM stock ticks. Since the last field
of the event (volume) is irrelevant to the event listener it is represented by an asterisk (*), which
indicates a wildcard. This monitor effectively goes to sleep until the correlator detects an IBM
stock tick.

If the correlator detects an IBM stock tick, the stream listener takes it as input and uses it to log
60-second averages for IBM stock prices. If the IBM stock tick also has a price that is greater than
or equal to 75.5, the correlator copies the field values in that event to the firstTick variable and
calls the furtherRise() action.

The furtherRise() action creates another event listener. This event listener is looking for the next
part of the event pattern, which involves detecting if the IBM stock price goes up by more than
5% from its new value. The second listener uses the firstTick variable to obtain the price value
in the event that caused the first listener to detect a match. If the price rise occurs, the correlator
copies the values in the matching, incoming event to the finalTick variable, and executes the
associated block of code.

The associated block of code logs the new price and sends a PlaceSellOrder event to a receiver
that is external to the correlator. For example, an adapter can pick up this event, and translate it
into a message that an order book can operate on. The PlaceSellOrder event causes placement of
an order for 1000 units of IBM stock.

Description of Software AG Designer
Software AG Designer is the main entry point for Apama development. When you are ready to
start developing your Apama application, open Software AG Designer and create an Apama
project to contain your application files.

Complete information is in Using Apama with Software AG Designer.

Description of Dashboard Builder and Dashboard Viewer

Note:
Apama dashboards are deprecated and will be removed in a future release.

Apama's Dashboard Builder enables you to create end-user dashboards and prepare them for
deployment. For applications written in EPL, you create DataViews and use Dashboard Builder
to create a dashboard from the DataViews.

Dashboard Builder is a visual design environment. A primary goal of Dashboard Builder is to
enable non-technical users to create sophisticated dashboards. Consequently, Dashboard Builder
provides a complete design and deployment environment. With a wide range of visual objects

Introduction to Apama 10.15.5 21

2 Apama Architecture

and drag-and-drop development, Dashboard Builder provides the tools needed to create highly
customized dashboards from which users can start/stop, parameterize and monitor Apama
DataViews.

Dashboard Builder offers an extensive array of graphical widgetswithwhich to build customuser
dashboards.Meters, gauges, tables, graphs, and scales are available for creating highly customized
dashboards. You can further personalize the interface through addition/deletion of panels or
modification of graphics and color schemes.

Dashboard Viewer is the tool that end-users run to access dashboards.

See also "Building Dashboard Clients" and "Using the Dashboard Viewer" in Building and Using
Apama Dashboards.

Description of client development kits
Apama is highly extensible with a range of APIs provided at the client and correlator levels. You
can use these APIs to integrate with other environments, such as Java, JavaBeans, C++, or .NET.
You can extend correlator behavior with plug-ins that can call external function libraries from
within an application scenario.

See "Developing Custom Clients" in Developing Apama Applications.

Description of Apama's Data Player

Note:
Apama's Data Player and the Apama Database Connector (ADBC) are deprecated and will be
removed in a future release.

Data Player, which runs in Software AGDesigner, accelerates the development/deployment cycle
of EPL applications by letting you pre-test (via simulation) your applications on event streams
captured in Apama. It also supports flexible event processing replay features.

Data Player provides analysis tools for the Apama environment. It enables Apama users to
investigate the likely behavior of Apama applications prior to deployment, as well as analyze the
actual performance of those applications already in production.

Data Player operates on data captured by theApamaDatabaseConnector (ADBC). ADBCprovides
Apama standard adapters that allows access to JDBC/ODBC compliant databases as well as to
Apama Simfiles. Analysis can include all events received byApama or only selected event streams.
Likewise, you can choose specific segments of time from the past (for example, an entire day, a
specific 30 minute period, or any user chosen time slice). Additionally, you can accelerate replay
speedsmany times the actual live speeds, or slow themdown or pause formore careful exploration
of event processing operations.

See Using Apama with Software AG Designer for information about the Data Player. See Connecting
Apama Applications to External Components for information about the ADBC adapter.

22 Introduction to Apama 10.15.5

2 Apama Architecture

How the correlator works

The following figure shows the inner details of a running correlator. After the figure, there is a
detailed discussion of how the correlator works.

Monitors identify event patterns of interest and the responses to take if those patterns are detected.
You use EPL to write monitors directly. Apama uses the Software AG Designer development
environment for writing source code for monitors.

The correlator does not just execute loaded monitors in a sequential manner, as if they were
traditional imperative programs. Instead, the correlator loads its internal components (the hypertree
and the temporal sequencer)with themonitoring specifications of themonitors. The in-built virtual
machines execute only the sequential analytic or action parts of the monitors.

The correlator contains the following components:

HyperTree multi-dimensional event matcher

The event matcher contains data structures and algorithms designed for high performance,
multi-dimensional, event filtering. The correlator loads the eventmatcherwith event templates.
An event template identifies the event you are interested in. Logically, an event template is a
multi-dimensional search. For example, a template for an IoT sensor might have values such
as the following:

deviceId: *

deviceType: TemperatureSensor

Introduction to Apama 10.15.5 23

2 Apama Architecture

uptime: > 5

temperature: 20.0 <- -> 22.5

This event template expresses a multi-dimensional search over sensor measurement events.
The template will match events from devices of type TemperatureSensorwhich have been
online for at least 5 seconds and have a temperature between 20.0 and 22.5 degrees. The
individual deviceId is irrelevant to this search and so a *wildcard is used.

This kind of multi-dimensional, multi-type, ranged searching is what the event matcher was
specifically designed for. In checkingwhether an incoming eventmatches any of the registered
event templates, the event matcher exhibits logarithmic performance. This means that vast
numbers of event templates can be queried against, with the minimum possible performance
tail-off.

An event template is the basic unit of monitoring. A simple monitor might have one or a few
event templates. A more complex monitor might have many. A monitor needs to load event
templates only when events that match the specification are relevant to the monitor: in a
multi-stagemonitor, amonitor can insert and remove several event templates as themonitoring
requirements change.

Temporal and stream sequencer

The temporal and stream sequencer builds upon the single event matching capabilities of the
event matcher to providemultiple temporal event and stream correlations. With EPL, you can
declare a temporal sequence such as “tell me when any news article event is followed within
5 minutes by a 5% fall in the price of the stock the news article was about”. This is a temporal
sequence, with a temporal constraint. The sequence is a news article event, followed by the
next stock price event, and then another stock price eventwith a price 5% less than the previous
price event. The temporal constraint is that the last event occurs within 5 minutes of the first
event.

The sequencermanages this temporal monitoring process, using the event matcher tomonitor
for appropriate event templates. This capability saves the programmer from having to encode
such complex temporal logic through less intuitive imperative logic.

Monitors

The correlator provides the capability for monitors to be injected as EPL. The number of
monitors that can be loaded into a single correlator are only limited by memory size. When
loaded, a monitor configures the hypertree and temporal sequencer with event templates for
monitoring. The correlator stores themonitor internally and executes actions in the appropriate
virtual machine in response to event detection.

Each monitor instance has its own address space within the correlator for storage of variables
and other state. Monitor temporary storage size is limited only by the memory size of the host
machine.

Event input queue

External interfaces, such as connectivity plug-in chains, send events into the correlator. To
start the monitoring process, the correlator injects each event, in the order in which it arrives,
into the hypertree. Any matches filter through the temporal sequencer and invoke required

24 Introduction to Apama 10.15.5

2 Apama Architecture

actions in the virtual machines. Some actions might cause events to be queued for output.
During peak event input flow, events might wait on an input queue for an extremely brief
moment.

EPL virtual machine

In response to detected event patterns of interest, the EPL virtual machine executes EPL. The
fact that the correlator behaves this way, rather than continuously executing imperative code,
is another reason for its high performance. Also, you can implement parallel processing in
your applications so that the correlator can concurrently execute code in multiple monitors.

Event output queue

Monitor actions can output events to be communicated to othermonitors or to external systems.
When a monitor routes an event, the event goes to the front of the input queue. This ensures
that any monitors that are listening for that event immediately detect it. When a monitor
generates an event for an external receiver the event goes to an output queue for transmission
to the appropriate registered party.

When you use the correlator in conjunction with connectivity plug-ins, then an output event
might represent an action on an external service. The connectivity plug-in transforms the
output event into an invocation of the external service. An example is an event that places an
order into the order book of a Stock Exchange.

EPL plug-ins

It is possible to extend the capabilities of the correlator through an EPL plug-in. An EPL plug-in
is an externally-linked softwaremodule that registerswith the correlator through the correlator's
extensionAPI. EPLplug-ins are usefulwhenprogramming libraries of useful real-time functions
have been built up. These functions can be made available as objects that can be invoked by
EPL actions.

Apama provides a number of standard EPL plug-ins:

The MemoryStore plug-in lets monitors share in-memory data.

The TimeFormat plug-in helps you format dates and times.

State persistence

When the correlator shuts down the default behavior is that all state is lost. When you restart
the correlator no state from the previous time the correlator was running is available. You can
change this default behavior by using correlator persistence. Correlator persistencemeans that
the correlator automatically periodically takes a snapshot of its current state and saves it on
disk. When you shut down and restart that correlator, the correlator restores the most recent
saved state.

To enable persistence, you indicate in your EPL codewhichmonitors youwant to be persistent.
Optionally, you can write actions that the correlator executes as part of the recovery process.
When code is injected for a persistence application, the correlator that the code is injected into
must have been startedwith a persistence option. Persistent monitors are written in EPL. State
in chunks, with a few exceptions, cannot be persistent.

Introduction to Apama 10.15.5 25

2 Apama Architecture

You program the correlator by injecting monitors that you write in EPL.

When events are sent to the correlator, the correlator processes events by comparing the events
to what listeners are active in the correlator. Each external event matches zero or more listeners.
The correlator executes a matching event's associated listeners in a rigid order. The correlator
completes the processing related to a particular event before it examines the next event. If the
processing of an event generates another event that is routed to the correlator, the correlator
processes all routed events before moving on to the next event in its queue. If a listener action
block does not route events, the next external event is considered.

26 Introduction to Apama 10.15.5

2 Apama Architecture

3 Apama Concepts

■ Event-driven programming ... 28

■ Complex event processing ... 29

■ Understanding monitors and listeners .. 30

Introduction to Apama 10.15.5 27

This section discusses the concepts that are central to all Apama applications. A thorough
understanding of these concepts can help youdesign anddevelopmore robustApama applications.

Event-driven programming

Events are data elements. Each event is a collection of attribute-value pairs that capture the state
(or changes to state) of real-world or computer-based objects. Events consist of data and temporal
attributes that represent the what, when, and where of an object. This can be the state of an object
or the interaction of objects at a particular time. Real world examples of events include:

Sensor measurements from devices in a smart factory

Stock market trades and quotes

RFID signals

Satellite telemetry data

Card swipes at a turnstile

ATM transactions

Network activities/faults

Troop movement on a battlefield

Activity on a website

Electronic funds transfers

SCADA alerts (Supervisory Control and Data Acquisition)

Processing events requires event-drivenprogramming. The hallmarks of event-drivenprogramming
include the following:

Program execution does not flow sequentially from beginning to end. There is no standard
starting point.

Program execution happens in response to the arrival of events. Some external source pushes
the events into your program.

Events arrive in asynchronous messages.

There are two main bodies of code: code that analyzes incoming events to determine if the
events are of interest and code that performs actions when events of interest are found.

There are a lot of similarities between GUI programming and event driven programming. For
example, in a GUI program you typically write code that responds to mouse clicks.

See also Developing Apama Applications, "How EPL applications compare to applications in other
languages".

28 Introduction to Apama 10.15.5

3 Apama Concepts

Complex event processing

Complex Event Processing (CEP) is software technology that enables the detection and processing
of

Events derived from other events. A derived event is an event that your application generates
as a result of applying a method or action to one or more other events.

Event sequences, often with temporal constraints.

CEP programs findpatterns in event data that enable detection of opportunities and threats. Timely
responses are then pushed to the appropriate recipients. The responses can be in the form of
automated events, such as placing orders in algorithmic trading systems, or alerts to someone
using Business Activity Monitoring (BAM) dashboards. The result is faster and better operational
decisions

EPL provides the features needed to write applications that can perform CEP. The following
example shows how EPL can concisely define event patterns and rules.

The NewsCorrelationmonitor's onload() action defines a listener that specifies a complex event
expression. The literal translation of the expression is “look for all news articles about any stock,
followed by a 5% rise in the value of that stock within 5minutes”. This is the kind of implied news
impact that might be of interest to a trader or a market risk analyst.
monitor NewsCorrelation {

action onload() {
on all NewsItem() as news {

on StockTick(symbol=news.subject) as tick {
on StockTick(symbol=news.subject,

price >= (tick.price*1.05))
within(300.0) alertUser;

}
}

}
action alertUser() {

log "News to price movement Correlation for stock "
+news.subject+" has occurred";

}
}

The on keyword specifies a listener. The initial listener nests two additional listeners that define
the event sequence of interest. The listeners do the following:

1. The initial listener watches for all NewsItem events.

2. Each time the correlator detects a NewsItem event, this listener captures it in a news variable.

3. The first nested listener then watches for a StockTick event for the stock that the news item
was about. This listener uses the news variable to access the information from the previously
detected event.

4. When the correlator detects a matching StockTick event, the first nested listener captures it in
the tick variable.

Introduction to Apama 10.15.5 29

3 Apama Concepts

5. The innermost listener then watches for another StockTick event for the same stock but with
a price that is at least 5% higher than the price in the event captured by the tick variable. The
within keyword indicates that the correlator must detect the second StockTick event within
300 seconds (5 minutes) of finding the initial NewsItem event.

6. If the correlator finds a second StockTick event that matches within 5 minutes, the monitor
sends a message to the log file. The nested listeners terminate.

If the correlator does not find a second StockTick event that matches within the 5 minutes, the
nested listeners terminate without sending a message to the log.

Understanding monitors and listeners

An introduction to monitors and listeners is in “Description of Apama EPL” on page 19. As
mentioned there, monitors are the basic program component that you inject into the correlator.
You write monitors in EPL.

A monitor defines:

One or more listeners. A listener is the EPL mechanism that specifies the event or sequence of
events that you are interested in. Conceptually, listeners sift through the streams of events
that come in to the correlator and detect matching events.

One or more actions. An action is one or more operations that the correlator performs. An
action might be the registration of a listener or it might be the execution of an operation when
the correlator finds a match between an incoming event or sequence and a listener.

When the correlator executes an on statement, it creates a listener. A listener watches for an event,
or a sequence of events, that matches the event expression specified in the on statement. An event
expression defines one ormore event templates. Each event template defines an event type to look
for, and specifies whether the event's fields should have any specific values. In addition, listeners
can specify

Temporal constraints. For example, a listener can specify that two events of interest must be
received within 10 minutes.

Logic. For example, a listener can specify that it is interested in event A or event B or event C.

It is often desirable to listen, separately but concurrently, for different instances of the same event
type. For example, you might want to listen for and process, separately but concurrently, stock
tick events for different stocks. EPL accomplishes this by letting a monitor instance spawn other
monitor instances.

In the monitor code, you spawn a monitor instance by specifying the spawn keyword followed by
an action. Each act of spawning creates a new instance of the monitor.

When the correlator spawns a monitor instance, it does the following:

1. The correlator creates a new monitor instance from the original monitor instance. The new
monitor instance is almost identical to the original. The new monitor instance has a copy of
the variables from the original but the active listeners from the original monitor instance are
not copied.

30 Introduction to Apama 10.15.5

3 Apama Concepts

2. The correlator invokes the named action on the new monitor instance.

Monitors that contain spawn statements typically act as factories, creating new monitor instances
that all listen for the same event type but where each listens for events that have different values
in one or more fields. Also, monitors can spawn to particular threads, referred to as contexts in
EPL. This enables the correlator to concurrently process multiple monitor instances. (You must
create contexts in EPL to implement parallel processing. You can refer to contexts from EPL.)

The lifecycle of a monitor is as follows:

1. You use Software AGDesigner or a correlator utility to inject the EPL that defines the monitor
into the correlator.

2. The correlator creates the original monitor instance, including space for variables as needed.

3. The correlator executes the monitor instance's onload() action.

4. The original monitor instance might spawn several times creating newmonitor instances. For
each spawnedmonitor instance, the correlator creates a copy of the original monitor instance's
variable space and then executes the specified action.

5. Amonitor instance terminateswhen it has no active listeners. Upon termination, the correlator
invokes the monitor instance's ondie()method, if one is defined. Note that it is possible for a
monitor instance to remain active after the monitor instance that spawned it has terminated.

6. When the last instance of a particular monitor terminates, the correlator calls the monitor's
onunload()method, if it defines one. The last monitor instance to terminate might be the
original monitor instance or a spawned monitor instance. Regardless, when the last instance
terminates the correlator invokes the monitor's ondie()method and then the monitor's
onunload()method, if these methods are defined.

For example, suppose that amonitor definition specifies an ondie()method and an onunload()
method. You inject this monitor and the correlator creates the original monitor instance. The
original monitor instance spawns 9 times. Consequently, there are 10 instances of that monitor
in the correlator. After all of these monitor instances have terminated, the correlator will have
called ondie() 10 times and it will have called onunload() once.

See "Getting Started with Apama EPL" in Developing Apama Applications.

Introduction to Apama 10.15.5 31

3 Apama Concepts

32 Introduction to Apama 10.15.5

3 Apama Concepts

4 Getting Ready to Develop Apama Applications

■ Becoming familiar with Apama ... 34

■ Introduction to Software AG Designer .. 34

■ Steps for developing Apama applications .. 35

■ Overview of starting, testing and debugging applications .. 36

Introduction to Apama 10.15.5 33

The discussions in the following topics provide a foundation for developing your Apama
application.

Becoming familiar with Apama

To become familiar with Apama, you should

Work through the tutorials in Software AG Designer. On the Welcome page, click Tutorials
under theApama heading. The tutorials provide step-by-step instructions for developing EPL
applications.

Examine sample code. Your Apama installation directory contains a samples directory that
contains many examples of monitors, EPL plug-ins, Apama client programs, and more.

Read all of this material, Introduction to Apama, so that you have a broad understanding of
what Apama is all about.

Understand what is covered in the Apama user documentation. Peruse the documentation so
that you knowwhere to look for particular information. You can then refer to the documentation
for the component you need to use.

Introduction to Software AG Designer

Software AG Designer is the main tool for implementing Apama applications. It contains a set of
Eclipse plug-ins that provides a number of Eclipse perspectives:

Use theApamaWorkbench perspectivewhen you are new toApama. This perspective provides
a simplified view of Apama features that makes it easy to get started developing Apama
applications.

Use theApamaDeveloper perspectivewhen you are comfortable using theApamaWorkbench
perspective. The Developer perspective gives you far more control over your Apama project
than the Apama Workbench perspective. For example, you can view more than one Apama
project at one time, and you can specify launch configuration parameters.

Use the Apama Runtime perspective for monitoring and debugging the execution of Apama
applications.

Use the Apama Debug perspective to debug your Apama application. The Debug perspective
allows you to set break points, examine variable values, and control execution.

Use theApamaProfiler perspective to profile yourApama application. The Profiler perspective
allows you to see which components of your application are consuming the most CPU time
or to see if there are other bottlenecks in the application.

When developing an Apama application, the first step is to create an Apama project to contain
your application files. An Apama project is a convenient way to manage the various files that
make up your application. For example, an Apama application can include the following types
of files:

EPL files (.mon extension).

34 Introduction to Apama 10.15.5

4 Getting Ready to Develop Apama Applications

Files that contain sample events (.evt extensions).

C++, Java and .NET files that contain Apama client applications or EPL plug-ins.

Text, HTML or XML files.

You can add and manage all of these files from your Apama project in Software AG Designer. In
addition, SoftwareAGDesigner provides an EPL editorwhose features include content assistance,
auto-bracketing, templates for frequently entered constructs, and problem detection. After you
build an Apama project, Software AG Designer flags any line that contains an error.

You can use SoftwareAGDesigner to test your application. SoftwareAGDesigner providesApama
features that inject your application into the correlator, send test event streams to the correlator,
launch adapters, and configure andmonitor the operation of your application in a test environment.

Finally, Software AG Designer provides tools for packaging your application so that you can
deploy it. See "Overview of Developing Apama Applications" in Using Apama with Software AG
Designer.

Steps for developing Apama applications

Typically, Apama development is an iterative cycle:

Multiple contributors with varying expertise can work concurrently to develop an Apama
application.

The main steps for developing an Apama application include:

1. Model: Design your application. Important tasks aremodeling the events that your application
needs to handle and identifying the services that your application must provide.

2. Implement: Use Software AGDesigner to create anApama project to contain your application
files (EPL files, event files, and so on). Since Apama applications typically consist of many
components, it is often possible to concurrently implement them, particularly if several people
are working on the application:

Write EPL programs in Software AG Designer.

Introduction to Apama 10.15.5 35

4 Getting Ready to Develop Apama Applications

Develop Apama client applications.

Implement or develop connectivity plug-ins.

Develop EPL plug-ins that extend the correlator's standard features.

3. Test: In Software AG Designer, Apama provides a runtime perspective and Scenario Browser
view that help test applications as they are built. You can automate testing through the use of
command-line clients.

4. Deploy: Docker containers (on Linux) are a great way to deploy Apama applications. Or use
the macro definitions in the Ant script that is provided with Apama. You can also use the Ant
export wizard in Software AG Designer to generate a simple Ant script for deploying your
Apama project. Tune Apama applications for optimum performance.

See "OverviewofDeployingApamaApplications" inDeploying andManagingApamaApplications.

Overview of starting, testing and debugging applications

Software AG Designer provides tools for running your Apama application in a test environment.

In the Apama Workbench perspective, click the Start button to start a correlator and inject the
current project. TheScenario Browser panel is then shown. Use the Scenario Browser to examine
parameter values during execution. You can monitor execution in the Console and Problems
panes.

In the ApamaDeveloper perspective, select the project youwant to test. SelectRun from themenu
bar and then select whether you want to run, debug or profile your Apama application. You can
specify one or more launch configurations for your project.

In the Apama Runtime perspective, you can monitor your running application.

In Using Apama with Software AG Designer, see "Launching Projects" and "Debugging EPL
Applications".

36 Introduction to Apama 10.15.5

4 Getting Ready to Develop Apama Applications

5 Apama Glossary

■ action .. 39

■ activation .. 39

■ aggregate function .. 39

■ batch ... 39

■ bundle ... 39

■ .cdp ... 39

■ CEP .. 39

■ channel ... 39

■ connectivity plug-in ... 40

■ context .. 40

■ correlator .. 40

■ correlator deployment package .. 40

■ correlator-integrated messaging for JMS ... 40

■ .csv ... 40

■ current events ... 40

■ DataView .. 41

■ EPL ... 41

■ EPL plug-in ... 41

■ event ... 41

Introduction to Apama 10.15.5 37

■ event collection ... 41

■ event listener .. 41

■ event pattern .. 41

■ event template .. 41

■ .evt .. 42

■ exception .. 42

■ listener .. 42

■ lot .. 42

■ MemoryStore .. 42

■ method ... 42

■ .mon ... 42

■ monitor ... 43

■ MonitorScript .. 43

■ optional ... 43

■ partitioning .. 43

■ Software AG Designer .. 43

■ stack trace element .. 43

■ static action .. 43

■ stream .. 43

■ stream listener .. 44

■ stream network ... 44

■ stream query .. 44

■ stream source template .. 44

■ window ... 44

38 Introduction to Apama 10.15.5

5 Apama Glossary

action

An action is a block of code. Optionally, an action can have parameters and/or a return type. An
action can be called, typically as part of responding to an event listener. Actions can be members
of monitors or events. The following action names have special meanings and may be called by
the correlator:

On monitors only: onload(), ondie(), onunload()

On monitors and events: onBeginRecovery(), onConcludeRecovery()

activation

When the passage of time or the arrival of an item causes a stream network or an element in a
stream network to process items.

aggregate function

A function that operates on all items in a stream query window, for example, sum().

batch

When you define awindow in a streamquery, you can specify that youwant to update thewindow
in batches. A batch can be a certain number of items, or it can be the items that arrived in a certain
length of time.

bundle

When using Apama in Software AGDesigner, a bundle is a named collection of Apama-provided
objects that are required to execute a particular type of Apama application. Typically, a bundle
includes EPL files, event definition files and event files, but it can include awide range of file types
such as configuration files.

.cdp

File extension for Apama correlator deployment packages.

CEP

Complex event processing. CEP technologies let you detect and process events derived from other
events, and sequences of events with or without temporal constraints.

channel

Adapter and client configurations can specify the channel to deliver events to. A channel is a string
name that contexts and receivers can subscribe to in order to receive particular events. In EPL,

Introduction to Apama 10.15.5 39

5 Apama Glossary

you can send an event to a specified channel. Sending an event to a channel delivers it to any
contexts that are subscribed to that channel, and to any clients or adapters that are listening on
that channel.

connectivity plug-in

AC++ or Java class running inside the correlator that can transform and transmitmessages between
the correlator and external data sources.

context

Contexts allows EPL applications to organizework into threads that the correlator can concurrently
execute. In EPL, context is a reference type. When you create a variable of type context, or an
event field of type context, you are actually creating an object that refers to a context. The context
might or might not already exist. You can then use the context reference to spawn to the context
or enqueue an event to the context.When you spawn to a context, the correlator creates the context
if it does not already exist.

correlator

Event correlation engine. The part of Apama that looks for events of interest, analyses matching
events, and executes appropriate actions.

correlator deployment package

Acorrelator deployment package (CDP) is a file that contains application EPL code in a proprietary,
non-plain-text format. These files treat EPL files similarly to the way Java files are treated in JAR
files. CDP files can be created by exporting from Apama projects in Software AG Designer or by
using the engine_package utility. CDP files can be injected to the correlator.

correlator-integrated messaging for JMS

Apama's correlator-integratedmessaging for JMSprovides an efficientway forApama applications
to send messages and to receive JMS messages for processing. Correlator-integrated messaging
for JMS also provides for reliable messaging (guaranteed delivery) and duplicate detection.

.csv

File extension ("comma separated values") for some exported data; suitable for third party
applications such as spread sheets.

current events

The set of current events contains the events in the window(s) of a partition.

40 Introduction to Apama 10.15.5

5 Apama Glossary

DataView

Table structure that contains event fields that you specify.

EPL

The Apama Event Processing Language (EPL) is an event-based scripting language that is an
interface to the correlator.

EPL plug-in

EPL plug-ins are C++ code modules or Java classes that you write to extend the capability of an
Apama component. Apama provides APIs that let you write EPL plug-ins for correlators and
adapters.

event

An occurrence of a particular circumstance of interest at a specific time that usually corresponds
to a message of some form. The message is a collection of attribute-value pairs that describe a
change in an object.

event collection

The process of storing events that stream through the correlator. The collected events can be
exported to spreadsheet applications.

event listener

An event listener observes the correlator event stream, analyzing each event in turn until it finds
a sequence of events thatmatch its event expression.When this happens, the event listener triggers,
causing the correlator to execute the listener action. See also “stream listener” on page 44.

event pattern

Specification of the event or sequence of events or aggregation that you are interested in. An event
pattern can include conditions and operators.

event template

Basic unit of monitoring in the correlator. An event template specifies the pattern that you want
to act on. A simple application contains one or a few event templates. Amore complex application
can contain many event templates. Here is an example of the data that a particular event template
might define:

Instrument = IBM

Introduction to Apama 10.15.5 41

5 Apama Glossary

Bid Price > 93 and < 95

Offer Price = *

Bid Volume > 100000

Offer Volume = *

.evt

File extension for files that contain events.

exception

An exception is an object that represents a runtime error that can be caught with a try ... catch
statement. In EPL, Exception is a reference type in the com.apama.exceptions namespace. See
"Exception handling" in Developing Apama Applications.

listener

See “event listener” on page 41 and “stream listener” on page 44.

lot

The items produced by a single activation of a stream query. Like an auction lot, a stream query
lot can contain one or more items.

MemoryStore

TheMemoryStore provides an in-memory, table-based, data storage abstractionwithin a correlator.
All EPL code running in a correlator in any context can access the data stored by theMemoryStore.
In other words, all EPLmonitors running in a correlator have access to the same data. The Apama
MemoryStore can also be used in a distributed fashion to provide access to data stored in a
MemoryStore to applications running in a cluster of multiple correlators.

method

There are two kinds of built-in methods: type methods and instance methods. Type methods are
associated with types. Instance methods are associated with values. Built-in methods are treated
exactly the same as user-defined actions. See “action” on page 39.

.mon

File extension for EPL files.

42 Introduction to Apama 10.15.5

5 Apama Glossary

monitor

A monitor contains event monitoring patterns and the responses to take when the monitor's
listeners detect those patterns. You use EPL to define a monitor.

MonitorScript

EPL is the new name forMonitorScript. Within the product, both EPL andMonitorScript are used
and should be treated as synonymous. EPL or MonitorScript is the Apama event-based scripting
language that is an interface to the correlator.

optional

An optional is a value that contains either a value (of some EPL type), or is empty and thus has
no value. This is useful for mapping to null values in other languages such as Java, or for data
which may not be present in some circumstances.

partitioning

A strategy to scale Apama by deploying multiple correlator processes to spread the workload
across several processors and/or machines. A correlator can be used to partition incoming events,
sending them to different correlators based on rules specific to your partitioning strategy.

Software AG Designer

Eclipse-based GUI. When Apama is installed with Software AG Designer, you can use it for
managing Apama projects, developing EPL files, and running Apama applications in test
environments.

stack trace element

A stack trace element is an object that describes an entry in the stack trace. A
com.apama.exceptions.Exception object contains a sequence of stack trace elements that show
where an exception was first thrown and the calls that lead to that exception. In EPL,
com.apama.exceptions.StackTraceElement is a reference type. See "Exceptionhandling" inDeveloping
Apama Applications.

static action

A static action can only be declared inside an event type. It does not apply to a specific instance
of an event.

stream

A conduit or channel through which items flow. An item can be an event, a location type or a
simple type (boolean, decimal, float, integer, or string). The set of items flowing through the

Introduction to Apama 10.15.5 43

5 Apama Glossary

stream is often referred to as “a stream of items” and so, here, a stream represents an ordered
sequence of items over time. A stream transports items of only one type. Streams are internal to
a monitor.

stream listener

A construct that continuously watches for items from a stream and invokes the listener code block
each time new items are available.

stream network

Anetwork of stream source templates, streams, streamqueries, and stream listeners. The upstream
elements in the stream network feed the downstream elements to generate derived, added-value
items.

stream query

A query that the correlator applies continuously to one or two streams. The output of a stream
query is one continuous stream of derived items.

stream source template

An event template preceded by the all keyword. It uses no other event operators. A stream source
template creates a stream that contains events that match the event template.

window

Whenworkingwith streams, awindow is a dynamic portion of the items flowing through a stream.
A window identifies which items a stream query is currently processing.

44 Introduction to Apama 10.15.5

5 Apama Glossary

	Table of Contents
	About this Guide
	Documentation ​roadmap
	Online ​Information ​and ​Support
	Data ​Protection

	1 Apama ​Overview
	What ​is ​Apama?
	About ​Apama ​license ​files
	Running ​Apama ​without ​a ​license ​file

	2 Apama ​Architecture
	Distinguishing ​architectural ​features
	How ​Apama ​integrates ​with ​external ​data ​sources
	Descriptions ​of ​Apama ​components
	How ​the ​correlator ​works

	3 Apama ​Concepts
	Event-​driven ​programming
	Complex ​event ​processing
	Understanding ​monitors ​and ​listeners

	4 Getting ​Ready ​to ​Develop ​Apama ​Applications
	Becoming ​familiar ​with ​Apama
	Introduction ​to Software ​AG ​Designer
	Steps ​for ​developing ​Apama ​applications
	Overview ​of ​starting, ​testing ​and ​debugging ​applications

	5 Apama ​Glossary
	action
	activation
	aggregate ​function
	batch
	bundle
	.cdp
	CEP
	channel
	connectivity ​plug-​in
	context
	correlator
	correlator ​deployment ​package
	correlator-​integrated ​messaging ​for ​JMS
	.csv
	current ​events
	DataView
	EPL
	EPL ​plug-​in
	event
	event ​collection
	event ​listener
	event ​pattern
	event ​template
	.evt
	exception
	listener
	lot
	MemoryStore
	method
	.mon
	monitor
	MonitorScript
	optional
	partitioning
	Software ​AG ​Designer
	stack ​trace ​element
	static ​action
	stream
	stream ​listener
	stream ​network
	stream ​query
	stream ​source ​template
	window

