
Terracotta REST Developer Guide

Version 4.3.6

October 2018

This document applies to BigMemory Max Version 4.3.6 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: BMM-RESTDG-436-20181015

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Terracotta REST Developer Guide Version 4.3.6 3

Table of Contents

About This Documentation...5
Online Information and Support... 5
Data Protection... 6

Using the Terracotta Managment REST API... 7
Overview of the Management Components...8
Connecting to the Management Service REST API.. 8
REST API Versions.. 9

Constructing URIs for HTTP Operations...11
The URI for the Terracotta Management Service.. 12
Security for REST API usage without TMC... 13
Special Resource Locations... 13

Specifications for HTTP Operations.. 17
Response Headers... 18
Examples of URIs...18

DELETE... 18
GET and HEAD...18
OPTIONS...24
PUT..25

Using Query Parameters in URIs...27
Using Query Parameters in URIs...28

JSON Schema.. 29
JSON Schema.. 30

REST API for the Terracotta Server Array.. 31
REST API for TSA..32
Statistics..32
Topology Views...32
Configuration...33
Diagnostics..33
Backups.. 34
Operator Events..34
Logs.. 35

M
Even Header

Terracotta REST Developer Guide Version 4.3.6 4

M
Odd Header

About This Documentation

Terracotta REST Developer Guide Version 4.3.6 5

About This Documentation

Online Information and Support
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at “hp://
documentation.softwareag.com”. The site requires credentials for Software AG's Product
Support site Empower. If you do not have Empower credentials, you must use the
TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to
“empower@softwareag.com” with your name, company, and company email address
and request an account.

Once you have an account, you can open Support Incidents online via the eService
section of Empower at “hps://empower.softwareag.com/”.

You can find product information on the Software AG Empower Product Support
website at “hps://empower.softwareag.com”.

To submit feature/enhancement requests, get information about product availability,
and download products, go to “Products”.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the “Knowledge Center”.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at “hps://empower.softwareag.com/
public_directory.asp” and give us a call.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at “hp://techcommunity.softwareag.com”. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

M
Even Header

About This Documentation

Terracotta REST Developer Guide Version 4.3.6 6

Data Protection
Software AG products provide functionality with respect to processing of personal data
according to the EU General Data Protection Regulation (GDPR). Where applicable,
appropriate steps are documented in the respective administration documentation.

M
Odd Header

Using the Terracotta Managment REST API

Terracotta REST Developer Guide Version 4.3.6 7

1 Using the Terracotta Managment REST API

■ Overview of the Management Components .. 8

■ Connecting to the Management Service REST API .. 8

■ REST API Versions .. 9

M
Even Header

Using the Terracotta Managment REST API

Terracotta REST Developer Guide Version 4.3.6 8

Overview of the Management Components
Terracoa provides the following management components:

Management agents, embedded in BigMemory and the Terracoa Server Array
(TSA), that provide a REST interface.

The Terracoa Management Server (TMS), a process that provides a REST interface
that bridges the cluster management agents.

The Terracoa Management Console (TMC), served up by the TMS, which
communicates with that TMS using its REST interface.

With the TMS management REST interface, you can also write custom scripts, or create
a custom Rich Internet Application (RIA) in place of the Terracoa Management Console
(TMC).

Note: For simplicity, many of the examples given in this document assume a TMS
that is running locally, and therefore "localhost" is used for the host address.

Connecting to the Management Service REST API
The REST API is available by connecting to the REST management service running
on the Terracoa Management Server or a node running a REST agent. Use the URLs
shown below.

Connecting to a TMS
http://<host>:<port>/tmc/api

where <port> is 9889 if running the TMS with the default container. If using your own
container, substitute the port configured for that container.

Connecting Directly to a Standalone Node
http://<host>:<port>/tc-management-api

where <port> is configured in the <managementRESTService> element's bind aribute,
in the Ehcache configuration file (ehcache.xml by default). If you do not specify a value
for this port, the default is the port of the REST management agent on the host. The
default bind value is "0.0.0.0:9888".

Connecting to a TSA
http://<host>:<port>/tc-management-api

where <port> is the management port. This value is configured in a server's
<management-port> element in the Terracoa configuration file (tc-config.xml by
default). The default value for the management port is 9540.

M
Odd Header

Using the Terracotta Managment REST API

Terracotta REST Developer Guide Version 4.3.6 9

REST API Versions
The REST API includes two versions, the original version and version 2 (v2). The
original version was previously the only version, but with BigMemory 4.2 and higher,
either original or v2 may be used.

/agents/cacheManagers/ — original version

/v2/agents/cacheManagers/ — version 2, available with Terracoa 4.2 and higher

With the v2 REST API, agent resources are accessible via a v2 path, and methods return
responses that vary in content and/or format from the original API.

To access the v2 REST API, include v2 as part of the path, for example:
http://<host>:<port>/tmc/api/v2

or
http://<host>:<port>/tc-management-api/v2

Note: : The original REST API is still available with BigMemory 4.2 and higher, and
it will continues to perform as it did with pre-4.2 BigMemory.

All nodes should use the same REST API version to avoid the risk of issues due to
differing features and capabilities. You can discover the API version of connected REST
agents using a GET operation with an /agents/info URI (see GET and HEAD). Note
that the REST API version is unrelated to the version of Terracoa products or any other
Terracoa API.

Differences in REST API versions can affect the features and functionality offered by the
monitoring tools you create. Over time, version mismatches can arise between the TMS
and TSA (when using an external TMS), and between the TMS and standalone nodes.

The TMS may be able to compensate agents with API versions older than its own
version by exposing only their available capabilities. Newer agent API versions can
cause inconsistent behavior or malfunction if the TMS is unable to handle unfamiliar
schema, functionality, or other differences in APIs.

M
Even Header

Terracotta REST Developer Guide Version 4.3.6 10

M
Odd Header

Constructing URIs for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 11

2 Constructing URIs for HTTP Operations

■ The URI for the Terracotta Management Service .. 12

■ Security for REST API usage without TMC ... 13

■ Special Resource Locations .. 13

M
Even Header

Constructing URIs for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 12

The URI for the Terracotta Management Service
The typical URI used to connect to the Terracoa management service has the following
format:
<scheme>://<host>[:<port>]/<path>?<query>

These URIs use the standard scheme and domain, with "hp" assumed as the scheme.
HTTP operations access the REST API through URIs. The URI allows query strings
under certain circumstances.

The URI Path

The <path> portion of the URI specifies resource locations using the following
hierarchy:

1. Agent IDs – List of the desired clients using unique identifiers. If the connection is to a
TMS and no IDs are given, all known clients are accessed. If the connection is made
directly to a Terracoa client, then no IDs are used because these are identified by
host:port addresses.

Since a TSA REST interface can also provide access to client Rest APIs, you do
need to specify an AgentID when you connect to a TSA REST interface, so that
TSA rest interface can determine whether you are connecting to a client (agentId:
"192.168.99.100_36364" for example) or the TSA (agentId: "embedded").

All standalone (including TSA) REST interfaces return the agent ID "embedded".

2. CacheManager names – List of the CacheManagers using their configured names. If
"cacheManagers" is specified in the URI but no names are given, all CacheManagers
for the specified clients are accessed.

3. Cache names – List of the caches using their configured names. If "caches" is
specified in the URI but no names are given, all caches belonging to the accessed
CacheManagers are accessed. In the case where access is broad, a substantial amount
of data might be returned by a GET operation.

The structure of the path takes the following form:
/agents[;ids={comma_sep_agent_ids}]/cacheManagers[;names={
 comma_sep_cache_manager_names}]/caches[;names={comma_sep_cache_names}

To connect to cache managers and caches in a cluster, use "agents/clusters" in the URI:
/agents/clusters/cacheManagers/caches/

This interface returns entities and aributes concerning the state of the clustered cache
managers and/or caches.

Important: If you use this interface for access via the TMS, the interface returns
information for all defined cache managers, regardless of whether they are
in use (online) or not (offline). If you use the interface for access via a REST
management agent, no information is returned for cache managers that are

M
Odd Header

Constructing URIs for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 13

currently offline; you cannot access offline data anywhere other than from
the TMS.

You can also use this interface to delete any cache managers or caches that are no longer
in use.

Security for REST API usage without TMC
When issuing HTTP requests that are not through the Terracoa Management Console,
every request must include two security headers, OWASP_CSRFTOKEN and X-
Requested-With.

The value of OWASP_CSRFTOKEN is dynamic, and is found in the header of each
response from the TMS.

The value of X-Requested-With is static, and is always equal to OWASP CSRFGuard
Project.

When doing a POST, DELETE, or PUT request on the TMS REST API, these two HTTP
headers are required, for example:
DELETE http://localhost:9889/tc-management-api/v2/agents;
 id=client01/cacheManagers;names=foo/caches;names=bar/elements
 OWASP_CSRFTOKEN: M9DI-BUMD-2PPK-C45I-T6QM-ZTBE-WKKK-YT8M
 X-Requested-With: OWASP CSRFGuard Project

In the example above, OWASP_CSRFTOKEN: M9DI-BUMD-2PPK-C45I-T6QM-ZTBE-
WKKK-YT8M is from the latest response received from the TMS.

For more information about the CSRFGuard Project, refer to the “Open Web Application
Security Project site”.

Special Resource Locations
Certain resource locations provide specific monitoring and administration services.

Discovery

A "discovery" URI format uses the path /agents/info. Used with a Terracoa
Management Server (TMS), this URI returns metadata on all agents known (through
configuration) to that TMS. Used with an embedded web service, metadata on that agent
is returned (or a 404 if that agent is not reachable). For more information about discovery
URIs, refer to the examples provided in “Discover All Known Agents” on page 19.

Viewing Configuration

A URI format for viewing the configuration of CacheManagers and caches uses the path
agents/cacheManagers or agents/cacheManagers/caches. Agents, cacheManagers, and
caches can be specified using IDs and names. The data is returned in its native XML
format.

http://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
http://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project

M
Even Header

Constructing URIs for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 14

To get the configuration of one or more CacheManagers, use the following format:
/agents[;ids={comma_sep_agent_ids}]/cacheManagers[;names={
comma_sep_cache_manager_names}]/configs

Note: If no client IDs are specified in the request, all of the clients' cacheManagers
are returned. However, if no client IDs are specified in the request
and the number of clients is more than the default maximum of
64, an error is returned in the JSON response. The JVM argument
com.terracotta.agent.defaultMaxClientsToDisplay can be used to
change the maximum number of clients to display.

To get the configuration of one or more caches, use the following format:
/agents[;ids={comma_sep_agent_ids}]/cacheManagers[;names={
comma_sep_cache_manager_names}]/caches[;names={comma_sep_cache_names}/configs

Setting Configuration

Cache resource locations can also be specified for seing specific cache-configuration
aributes using resource representations. The following is a comprehensive list of the
aributes that can be set:

enabled – A boolean for enabling (true, DEFAULT) or disabling (false) cache
operations. For example, to disable a cache's operation: PUT {"enabled":true}.

statsEnabled – A boolean for enabling (true) or disabling (false, DEFAULT) the
gathering of cache statistics.

sampledStatsEnabled – A boolean for enabling (true) or disabling (false, DEFAULT)
the sampling of cache statistics.

Probing a New Connection URI

To probe the existence of an agent at a given location, use an URL with the following
format:
 http://127.0.0.1:9889/tmc/api/agents/probeUrl/$urlToProbe

For example, the following should return information about the REST agent running at
the given address (localhost:4343):
http://127.0.0.1:9889/tmc/api/agents/probeUrl
 /http%253A%252F%252Flocalhost%253A4343

If the agent is available, a (status code 200 AgentMetadataEntity) response similar to the
following is returned:
 {"agentId":"embedded","agencyOf":"Ehcache","available":true,"secured":false,
"sslEnabled":false,"needClientAuth":false,"licensed":false,"sampleHistorySize"
:8640,"sampleIntervalSeconds":10,"enabled":false,"restAPIVersion":"2.7.0"}

If not available, the status code should be "204 No Content".

Getting the authentication status

The authentication status is saved in the properties file ${user.home}/.tc/mgmt/
settings.ini. There is a REST resource to view the status (authentication on or off).

M
Odd Header

Constructing URIs for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 15

To GET the authentication status, use the following URI:
http://localhost:9889/tmc/api/config/settings/authentication

Either "true" or "false" is returned.

Note that to change the authentication status or seings, you must do it through the
Terracoa Management Console.

M
Even Header

Terracotta REST Developer Guide Version 4.3.6 16

M
Odd Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 17

3 Specifications for HTTP Operations

■ Response Headers ... 18

■ Examples of URIs .. 18

M
Even Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 18

Response Headers
For a typical HTTP request, the response header is similar to the following:
 -- response --
200 OK
Content-Type: application/vnd.sun.wadl+xml
Allow: OPTIONS,GET,HEAD
Content-Length: 602
Server: Jetty(7.5.4.v20111024)

Examples of URIs
The flexibility of the management-service REST API in turn makes available a flexible
URI syntax. The examples in this section illustrate HTTP responses to specific URIs.
These examples of the data returned by the listed HTTP operations are shown below
without response headers.

Note: If no agent IDs are specified in a URI, all known agents are included.

DELETE
Clears a cache, or clears cache statistics.

The following DELETE examples are organized by task and URI.

Clear a Cache
/agents;id=client01/cacheManagers;names=foo/caches;names=bar/elements

Removes the elements from the cache "bar" of CacheManager "foo" on the Ehcache node
"client01".

Clear Cache Statistics
/agents;id=client01/cacheManagers;names=foo/caches;names=bar/configs

Clears all cache statistics for cache "foo" and resets counters to zero.

Possible HTTP Status Codes for DELETE

400 – URI does not specify a single resource.

404 – Resource specified in the URI cannot be found.

GET and HEAD
Returns a JSON array representing the details of all specified resources, or an XML
representation of data whose native format is XML.

M
Odd Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 19

Note: HEAD operations return the same metadata as GET operations, but no body.

The following GET examples are organized by task and URI.

Discover All Known Agents
/agents/info

Used with a TMS, this URI returns metadata on all agents known (through
configuration) to that TMS. Used with an embedded web service, metadata on that agent
is returned.

The following is a response from a TMS that has agents "foo" and "goo" configured, and
both are responding:
[{"restAPIVersion":"1.0.0","available":true,"agentId":"foo","agencyOf":"Ehcache"},
{"restAPIVersion":"1.0.0","available":true,"agentId":"goo","agencyOf":"Ehcache"}]

The following is a response from a TMS that has agents "foo" and "goo" configured, but
with only "foo" responding:
[{"restAPIVersion":"1.0.0","available":true,"agentId":"foo","agencyOf":"Ehcache"},
{"restAPIVersion":null,"available":false,"agentId":"goo","agencyOf":null}]

Note that the metadata returned includes the API version running on the agent, as well
as the type of client ("agencyOf") the API is serving.

With the v2 REST API, /v2/agents/info returns a response with additional
information, for example:
{"agentId":"TMS","apiVersion":"v2","entities":[{"agentId":"MyCluster",
"productVersion":"4.3.0","agencyOf":"TSA",
"available":true,"secured":true,"sslEnabled":true,"needClientAuth":false,
"licensed":true,"sampleHistorySize":670,
"sampleIntervalSeconds":4,"enabled":true},
{"agentId":"MyCluster$localhost_50808","productVersion":"2.10.0",
"agencyOf":"Ehcache","available":true,"secured":true,"sslEnabled":true,
"needClientAuth":false,"licensed":true,"sampleHistorySize":30,
"sampleIntervalSeconds":1,"enabled":true}],
"exceptionEntities":[{"agentId":"MyCluster-1",
"message":"javax.ws.rs.ProcessingException:
 java.net.SocketTimeoutException: connect timed out","stackTrace":
"java.util.concurrent.ExecutionException: javax.ws.rs.ProcessingException:
 java.net.SocketTimeoutException: connect timed out\n\tat...

Get Details on Specific Agents
/agents;ids=client01,client02

JSON representing an array all available agent detail. If no agent IDs are included, all
agents available are returned.

Get Details on Specific Caches
/agents;ids=client01/cacheManagers;names=foo/caches;names=bar

Get Configuration of Specific CacheManager
/agents;ids=client01/cacheManagers;names=foo/configs

M
Even Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 20

Returns an XML representation of the CacheManager "foo". For example, the following
is an XML representation returned from a standalone Ehcache node:
<configurations agentId="embedded" version="1.0.0-SNAPSHOT">
 <configuration cacheManagerName="foo">
 <ehcache maxBytesLocalDisk="300M" maxBytesLocalHeap="100M"
maxBytesLocalOffHeap="200M"
 monitoring="on" name="CM1">
 <diskStore path="/var/folders/nn/lxsg77756534qfn7z14y5gtm0000gp/T/"/>
 <managementRESTService bind="0.0.0.0:9889" enabled="false"/>
 <cache name="Cache11">
 <persistence strategy="localTempSwap"/>
 <elementValueComparatorclass=
"net.sf.ehcache.store.DefaultElementValueComparator"/>
 <terracotta clustered="false">
 <nonstop/>
 </terracotta>
 </cache>
 </ehcache>
 </configuration>
</configurations>

Certain operations can only be executed against specific targets. Specifying multiple
agents, CacheManagers, or caches generate an error response (code 400).

Get Configuration of Specific Caches
/agents;ids=client01/cacheManagers;names=foo/caches;names=baz/configs

Get All CacheManager Details
/agents/cacheManagers

The following example shows a JSON object returned by this URI when the GET is
executed against a standalone Ehcache node with two CacheManagers, each with one
cache:
 [{"name":"CM2","attributes":{"ClusterUUID":"03e505092b6a4b1a9af5d1b035a7d5ed","
Enabled":true,"HasWriteBehindWriter":false,"MaxBytesLocalDiskAsString":"300M","
CacheAverageSearchTime":0,"CachePutRate":84,"CacheOnDiskHitRate":0,
"CacheMetrics":{"Cache12":[2,84,84]},
"CacheRemoveRate":0,"CacheOffHeapHitRate":0,"Searchable"
:false,"CacheOnDiskMissRate":84,"CacheNames":["Cache12"],"
TransactionRolledBackCount":0,"CacheInMemoryHitRate":2,"WriterQueueLength":0,"
CacheOffHeapMissRate":0,"Transactional":false,"CacheHitRate":2,"
TransactionCommitRate":0,"CacheExpirationRate":0,"CacheUpdateRate":0,"
MaxBytesLocalHeap":104857600,"CacheAverageGetTime":0.027891714,"
TransactionRollbackRate":0,"CacheEvictionRate":0,"CacheInMemoryMissRate":84,"
MaxBytesLocalDisk":314572800,"MaxBytesLocalOffHeapAsString":"200M","
CacheSearchRate":0,"TransactionCommittedCount":0,"TransactionTimedOutCount":0,"
Status":"STATUS_ALIVE","MaxBytesLocalOffHeap":209715200,"WriterMaxQueueSize":0,"
StatisticsEnabled":true,"MaxBytesLocalHeapAsString":"100M","CacheMissRate":84},"
agentId":"embedded","version":"1.0.0-SNAPSHOT"},{"name":"CM1","attributes":
{"ClusterUUID":"03e505092b6a4b1a9af5d1b035a7d5ed","Enabled":true,"
HasWriteBehindWriter":false,"MaxBytesLocalDiskAsString":"300M","
CacheAverageSearchTime":0,"CachePutRate":166,"CacheOnDiskHitRate":8,"
CacheMetrics":{"Cache11":[7,83,83],"Cache12":[6,83,83]},"CacheRemoveRate":0,"
CacheOffHeapHitRate":0,"Searchable":false,"CacheOnDiskMissRate":166,"CacheNames"
:["Cache11","Cache12"],"TransactionRolledBackCount":0,"CacheInMemoryHitRate":5,"
WriterQueueLength":0,"CacheOffHeapMissRate":0,"Transactional":false,"
CacheHitRate":13,"TransactionCommitRate":0,"CacheExpirationRate":0,"
CacheUpdateRate":0,"MaxBytesLocalHeap":104857600,"CacheAverageGetTime":0.061820637,

M
Odd Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 21

"TransactionRollbackRate":0,"CacheEvictionRate":0,"CacheInMemoryMissRate":174,"
MaxBytesLocalDisk":314572800,"MaxBytesLocalOffHeapAsString":"200M","
CacheSearchRate":0,"TransactionCommittedCount":0,"TransactionTimedOutCount":0,"
Status":"STATUS_ALIVE","MaxBytesLocalOffHeap":209715200,"WriterMaxQueueSize":0,"
StatisticsEnabled":true,"MaxBytesLocalHeapAsString":"100M","CacheMissRate":166},
"agentId":"embedded","version":"1.0.0-SNAPSHOT"}]

Note: When no client IDs are specified in the request, all of the clients'
cacheManagers are returned. However, if the number of clients is more than
the default maximum of 64, an error is returned in the JSON response. The
JVM argument com.terracotta.agent.defaultMaxClientsToDisplay can
be used to change the maximum number of clients to display.

With the v2 REST API, /v2/agents/cacheManagers returns a response such as:
{"agentId":"TMS","apiVersion":"v2","entities":[
{"agentId":"MyCluster$localhost_50808","name":"MyCluster-1","attributes":
{"ClusterUUID":"b769bf9f44c54242a5d6eff8b1ad9dc3","Enabled":true,
"HasWriteBehindWriter":false,"MaxBytesLocalDiskAsString":"0","Searchable":true,"
MaxBytesLocalDisk":0,"CacheNames":["bigMemorySample"],
"MaxBytesLocalOffHeapAsString":"4G","Status":"STATUS_ALIVE",
"MaxBytesLocalOffHeap":4000000000,"WriterMaxQueueSize":0,
"MaxBytesLocalHeapAsString":"1G","Transactional":false,"MaxBytesLocalHeap"
:1000000000}}],"exceptionEntities":[{"agentId":"MyCluster-1","message"
:"javax.ws.rs.ProcessingException: java.net.SocketTimeoutException:
connect timed out","stackTrace":...

Get Offline Data

The TMS Rest API allows you to request offline cache managers and offline cache
information (and even the possibility to destroy offline cache managers and caches).

The various REST endpoints available for offline data are described here:

REST endpoint:
GET /agents/clusters/cacheManagers

Use this to list all offline and online CacheManagers from all known agents (use ;ids on
agents to filter agents, and ;names to filter cacheManagers).

Sample output:
[
 {
 version: "4.3.0.0.26",
 name: "__DEFAULT__",
 agentId: "MyCluster",
 attributes: {
 inUse: "true"
 }
 }
]

In this example, the cacheManager named __DEFAULT__ is still in use, meaning at least
one client is using it, and therefore you can't delete it.

REST endpoint:
GET /agents/clusters/cacheManagers/configs

Use this to list cache manager configurations.

M
Even Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 22

Sample output:
[
 {
 version: "4.3.0.0.26",
 cacheManagerName: "__DEFAULT__",
 agentId: "MyCluster",
 xml: "<ehcache name="__DEFAULT__" updateCheck="false">
 <diskStore path="java.io.tmpdir"/>
 <defaultCache maxEntriesLocalHeap="0"/>
 <terracottaConfig url="tsa:9510"/>
 </ehcache> "
 }
]

REST endpoint:
GET /agents/clusters/cacheManagers/caches

Use this to list caches (you can also use ;names on /caches to filter caches).

Sample output:
[
 {
 version: "4.3.0.0.26",
 agentId: "MyCluster",
 name: "vets",
 cacheManagerName: "__DEFAULT__",
 attributes: {
 inUse: "true"
 }
 }
]

In this example, we can see that the cache named "vets" from the Cache Manager
__DEFAULT__ is in use, and thus cannot be destroyed.

REST endpoint:
GET /agents/clusters/cacheManagers/caches/configs

Use this to list cache configurations.

Sample output:
[
 {
 version: "4.3.0.0.26",
 cacheName: "vets",
 cacheManagerName: "__DEFAULT__",
 agentId: "MyCluster",
 xml: "<cache name="vets" maxEntriesLocalHeap="100"
 diskExpiryThreadIntervalSeconds="1" timeToLiveSeconds="60"
 maxEntriesInCache="10000000">
 <terracotta> <nonstop enabled="false"/> </terracotta>
 </cache> "
 }
]

REST endpoint:
DELETE /agents;ids=MyCluster/clusters/cacheManagers;names=__DEFAULT__/caches;names=vets

M
Odd Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 23

Use this to delete a cache. Note the mandatory use of all the filters ids, and names;
this is because you need to be very precise when deleting a cache. As for all non GET
operations on the TMS, you need to include CSRF tokens in the HTTP headers :
OWASP_CSRFTOKEN:XXXX (you need to get this from your last GET request)
X-Requested-With:OWASP CSRFGuard Project
{
error: "Failed to destroy the cache vets"
details: "Unable to lock cache vets for destruction"
stackTrace: null
}

In this example, you can see that we tried to delete a cache that was still in use.

If you try again after the cache is no longer in use (inUse:false) then you will receive
an empty HTTP response, with the 204 status, indicating that your cache was deleted
successfully.

REST endpoint:
DELETE /agents;ids=MyCluster/clusters/cacheManagers;names=__DEFAULT__

Use this to delete a cache. Note the mandatory use of all the filters ids, and names; this is
because you need to be very precise when deleting a cache manager. As for all non GET
operations on the TMS, you need to include CSRF tokens in the HTTP headers :
OWASP_CSRFTOKEN:XXXX (you need to get it from your last GET request)
X-Requested-With:OWASP CSRFGuard Project
{
error: "Failed to destroy the cacheManager __DEFAULT__"
details: "Unable to lock entity __DEFAULT__ of type interface com.terracotta.entity.ehcache.ClusteredCacheManager for destruction"
stackTrace: null
}

In this example, you can see that we tried to delete a cache manager that was still in use.

If you try again after the cache manager is no longer in use (inUse:false) then you will
receive an empty HTTP response, with the 204 status. Your cache manager was deleted
successfully.

Get Specific CacheManager Details
/agents/cacheManagers?show=CacheInMemoryHitRate&show=CacheHitRate&
show=CacheAverageGetTime

This URI returns a JSON array with only the specified statistics:
[{"name":"CM1","attributes":{"CacheAverageGetTime":0.26357448,
"CacheHitRate":47,"CacheInMemoryHitRate":3},"agentId":"embedded","version":
"1.0.0-SNAPSHOT"}]

Configuration aributes (for example, MaxBytesLocalHeap) can also be specified with
the show query parameter.

Possible HTTP Status Codes for GET or HEAD

404 – Specified resource is not found.

M
Even Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 24

OPTIONS
Retrieves the WADL describing all of the operations available on the specified resources.

The following OPTIONS examples are organized by task and URI. Examples executed
against standalone nodes show a base URI ending in "/tc-management-api/", while those
executed against a TMS have a base URI ending in "/tmc/api/".

Return WADL With Available Agent Operations
/agents;ids=client01,client02

The following is an example of a WADL returned by an embedded agent:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
<doc xmlns:jersey="http://jersey.java.net/"
 jersey:generatedBy="Jersey: 1.9.1
 09/14/2011 02:05 PM"/>
<grammars/>
<resources base="http://localhost:9888/tc-management-api/">
 <resource path="agents">
 <method name="GET" id="getAgents">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <resource path="/info">
 <method name="GET" id="getAgentsMetadata">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 </resource>
 </resource>
</resources>
</application>

Return WADL With Available CacheManager "Config" Operations
/agents/cacheManagers/configs

OPTIONS using /configs:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
<doc xmlns:jersey="http://jersey.java.net/"
 jersey:generatedBy="Jersey: 1.9.1 09/14/2011 02:05 PM"/>
<grammars/>
<resources base="http://localhost:9888/tc-management-api/">
 <resource path="agents/cacheManagers/configs">
 <method name="GET" id="getCacheManagerConfig">
 <response>
 <representation mediaType="application/xml"/>
 </response>
 </method>
 </resource>
 </resources>
</application>

M
Odd Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 25

Return a WADL With Available Operations on a Specific Cache
/agents/cacheManagers;names=foo,goo/caches;names=bar

Returns information on the cache "bar" from all CacheManagers "foo" and "goo" on any
agent reachable by the TMS:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
 <doc xmlns:jersey="http://jersey.java.net/"
 jersey:generatedBy="Jersey: 1.9.1 09/14/2011 02:05 PM"/>
 <grammars/>
 <resources base="http://localhost:9889/api/">
 <resource path="agents/cacheManagers;names=foo,goo/caches;names=bar">
 <method name="GET" id="getCaches">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 <method name="DELETE" id="deleteCache"/>
 <resource path="/statistics">
 <method name="DELETE" id="wipeStatistics"/>
 </resource>
 </resource>
 </resources>
</application>

For information from specific agents, specify the agent ID:
/agents;ids=client01,client02/CacheManagers=foo,bar/caches=baz,goo

Returns a WADL, as shown above, but with more detailed resource locations (and more
caches).

Used with an embedded web service, this URI returns information for the specified
caches found on that agent only.

PUT
Creates the specified resource or updates a resource representation.

Allowed Resource Updates

Updating a resource representation means editing the value of one of the following
boolean cache aributes:

Enabled – Enable (true, DEFAULT) or disable (false) the cache.

StatisticsEnabled – Enable (true, DEFAULT) or disable (false) statistics gathering
for the cache. Disabling statistics can improve a cache's performance, but limits
monitoring capabilities. Note that if statistics are disabled, then sampled statistics are
automatically disabled.

SampledStatiscsEnabled – Enable (true, DEFAULT) or disable (false) sampled
statistics. Sampled statistics are used for providing averages and other aggregate
values. If sampled statistics are enabled, statistics gathering is automatically enabled.

M
Even Header

Specifications for HTTP Operations

Terracotta REST Developer Guide Version 4.3.6 26

Updating a Cache Attribute

The following URI can update the cache aributes as specified in the content.
/agents;ids=MyConnectionGroup_MyEhcache/cacheManagers;names=foo/caches;names=baz

For example, to turn off statistics gathering for the cache "baz", you would use the
following content:
{"attributes":{"StatisticsEnabled":false}}

The aributes you can modify in this way are described in “Allowed Resource Updates”
on page 25.

Possible HTTP Status Codes for PUT

201 – The operation was successful.

204 – The cache was successfully updated.

400 – The URI does not specify a single resource.

409 – The resource with the given name already exists.

M
Odd Header

Using Query Parameters in URIs

Terracotta REST Developer Guide Version 4.3.6 27

4 Using Query Parameters in URIs

■ Using Query Parameters in URIs .. 28

M
Even Header

Using Query Parameters in URIs

Terracotta REST Developer Guide Version 4.3.6 28

Using Query Parameters in URIs
GET and HEAD HTTP operations can execute queries on specific resources. Query
parameters are executed using the show parameter:
/agents[;ids={comma_sep_agent_ids}]/cacheManagers[;names=
 {comma_sep_cache_manager_names}]/caches[;names={comma_sep_cache_names}
 ?show=[parameter]&show=[parameter]

For example, to retrieve the values for the parameters HasWriteBehindWriter and
MaxBytesLocalDiskAsString for the CacheManager CM1 on an Ehcache with the ID
"foo", use the following:
/agents;ids=foo/cachemanagers;names=CM1?show=HasWriteBehindWriter?
 show=MaxBytesLocalDiskAsString

This query returns a JSON object similar to the following:
[{"name": "CM1","attributes": {"HasWriteBehindWriter":true,
"MaxBytesLocalDiskAsString":"300M"},"guid":"95d40b093c9f44389f3cc122fbe1c30b",
"agentId":"embedded","version":"1.0.0"}]

M
Odd Header

JSON Schema

Terracotta REST Developer Guide Version 4.3.6 29

5 JSON Schema

■ JSON Schema ... 30

M
Even Header

JSON Schema

Terracotta REST Developer Guide Version 4.3.6 30

JSON Schema
Use the schema as a guide to parsing the JSON objects returned by the REST API, and to
validate the structure of data your scripts or RIA sends to agents.

Note that the schema is subject to change between API versions. You can use the REST
API URIs to get examples of the JSON schema for the following:

cacheManager

cache

cacheConfig

cacheStatisticsSample

M
Odd Header

REST API for the Terracotta Server Array

Terracotta REST Developer Guide Version 4.3.6 31

6 REST API for the Terracotta Server Array

■ REST API for TSA ... 32

■ Statistics ... 32

■ Topology Views .. 32

■ Configuration .. 33

■ Diagnostics ... 33

■ Backups .. 34

■ Operator Events ... 34

■ Logs .. 35

M
Even Header

REST API for the Terracotta Server Array

Terracotta REST Developer Guide Version 4.3.6 32

REST API for TSA
You can use the REST API to query the Terracoa Management Server regarding any
connected Terracoa Server Array.

Statistics
Use the following URI extensions with the base extension /agents/statistics or /v2/
agents/statistics to return statistical information.

DGC Runs

Get statistics on the last 1000 DGC runs:
/dgc

Server Statistics

Get statistics k, l, and m for servers a, b, c:
/servers;names=a,b,c?show=k,l,m

or
/servers;names=a,b,c?show=k&show=l&show=m

If no "names" are specified, statistics for all servers are requested. If "show" is omied, all
statistics are requested.

Client Statistics

Get statistics k, l, and m for clients x, y, and z:
/clients;ids=x,y,z?show=k,l,m

or
/clients;ids=x,y,z?show=k&show=l&show=m

If no "ids" are specified, statistics for all clients are requested. If "show" is omied, all
statistics are requested.

Topology Views
Use the following URI extensions with the base extension /agents/topologies or /v2/
agents/topologies to return topological information.

To get a complete cluster topology (all servers and clients), end the base extension with a
forward slash ("/"):
/agents/topologies/

M
Odd Header

REST API for the Terracotta Server Array

Terracotta REST Developer Guide Version 4.3.6 33

To get only servers a, b, and c:
/servers;names=a,b,c

If no "names" are specified, all servers are included.

To get only clients x, y, and z:
/clients;ids=x,y,z

If no "ids" are specified, all clients are included.

Configuration
Use the following URI extensions with the base extension /agents/configurations or
/v2/agents/configurations to return configuration information.

To get the configuration seings for all servers and clients, end the base extension with a
forward slash ("/"):
/agents/configurations/

To get only servers a, b, and c:
/servers;names=a,b,c

If no "names" are specified, all servers are included.

To get only clients x, y, and z:
/clients;ids=x,y,z

If no "ids" are specified, all servers are included.

Diagnostics
Use the following URI extensions with the base extension /agents/diagnostics or /
v2/agents/diagnostics to return information useful in diagnosing trouble or initiate a
DGC cycle.

Thread Dumps

Get a full thread dump from all servers and clients:
/threadDump

Get a thread dump from servers a, b, and c:
/threadDump/servers;names=a,b,c

If no "names" are specified, all servers are included.

Get a thread dump from clients x, y, and z:
/threadDump/clients;ids=x,y,z

If no "ids" are specified, all clients are included.

M
Even Header

REST API for the Terracotta Server Array

Terracotta REST Developer Guide Version 4.3.6 34

Thread dumps are wrien to the logs of their respective nodes. To have all generated
thread dumps saved to a zip file, use threadDumpArchive instead of threadDump.

To write cluster state information (including, for example, on locks) in addition to
thread dumps for each node, use dumpClusterState instead of threadDump. This action
generates substantially more information than geing only thread dumps.

DGC Cycles

To initiate a DGC cycle, post:
/dgc

Backups
You can initiate backups of the cluster data by posting with the following URI extension:
/agents/backups/

To get the status of a backup ("true" for a backup in progress), use a GET operation with
the same URI extension:
/agents/backups/

Note that backup operations involve the entire TSA and cannot be delegated to specific
servers.

Operator Events
You can return operator events using the URI extension /agents/operatorEvents or
/v2/agents/operatorEvents. To limit the size of the returned data, use a sinceWhen
query.

To get operator events for the last ten minutes:
/agents/operatorEvents?sinceWhen=10m

To filter by event levels, add eventLevels:
/v2/agents/operatorEvents?eventLevels=ERROR,WARN

The available event levels are: DEBUG, INFO, WARN, ERROR, and CRITICAL.

To limit events to certain types, add eventTypes:
/v2/agents/operatorEvents?eventTypes=topology.node.joined,topology.node.left,
resource.capacity.near

For event types, see "Monitoring Cluster Events" in the BigMemory Max Administrator
Guide.

These parameters can be combined, for example:
/agents/operatorEvents?sinceWhen=10m&eventLevels=ERROR,WARN

M
Odd Header

REST API for the Terracotta Server Array

Terracotta REST Developer Guide Version 4.3.6 35

Logs
You can return logs using the URI extension /agents/logs or /v2/agents/logs. To
limit the size of the returned data, use a sinceWhen query.

To get logs for the last ten minutes:
/agents/logs?sinceWhen=10m

	Table of Contents
	About This Documentation
	Online Information and Support
	Data Protection

	Using the Terracotta Managment REST API
	Overview of the Management Components
	Connecting to the Management Service REST API
	REST API Versions

	Constructing URIs for HTTP Operations
	The URI for the Terracotta Management Service
	Security for REST API usage without TMC
	Special Resource Locations

	Specifications for HTTP Operations
	Response Headers
	Examples of URIs
	DELETE
	GET and HEAD
	OPTIONS
	PUT

	Using Query Parameters in URIs
	Using Query Parameters in URIs

	JSON Schema
	JSON Schema

	REST API for the Terracotta Server Array
	REST API for TSA
	Statistics
	Topology Views
	Configuration
	Diagnostics
	Backups
	Operator Events
	Logs

