
BigMemory Max Security Guide

Innovation Release

Version 4.3.5

April 2018

This document applies to BigMemory Max Version 4.3.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: BMM-SG-435-20180417

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 3

Table of Contents

Overview of BigMemory Max Security.. 5

Introduction to Security.. 7
Authentication Mechanisms..8
Configuring Security Using LDAP (via JAAS).. 8
Configuring Security Using JMX Authentication...9
Configuring SSL-based Security.. 10
User Roles.. 10
Using Scripts Against a Server with Authentication... 10
Extending Server Security.. 11

About Security in a Cluster.. 13
Introduction... 14
Security Related Files...14
Process Diagram.. 15

Setting Up Server Security... 17
Basic Steps to Set Up Server Security.. 18
Creating the Server Certificates... 18
Setting up the Server Keychain... 20
Setting up Authentication/Authorization..21
Setting up Authorization for TMC Queries... 22
Configuring Server Security..24

Enabling SSL on Terracotta Clients.. 27
How to Enable SSL Securing on the Client...28
Creating a Keychain Entry... 28
Using a Client Truststore..29

Serialization: Securing Against Untrusted Clients...31

Setting Up a TSA to Use the Terracotta Management Server... 33
Required Configuration...34
Configuring Identity Assertion...34
JMX Authentication Using the Keychain.. 34
Setting up the Security on the TMS...35
Securing TSA Access using a Permitted IP List..35
Restricting Clients to Specified Servers (Optional).. 37

Running a Secured Server... 39
Introduction... 40
Confirming that Security is Enabled...40
Stopping a Secured Server.. 40

M
Table of Contents

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 4

Troubleshooting...40

Using LDAP or Active Directory for Authentication.. 43
Introduction... 44
Configuration Overview...44
Active Directory Configuration.. 45
Standard LDAP Configuration.. 46
Using the CDATA Construct... 48

Using Encrypted Keychains... 49
Introduction... 50
Configuration Example... 52
Configuring the Encrypted Server Keychain.. 53
Adding Entries to Encrypted Keychain Files.. 53
Configuring the Encrypted Client Keychain Files... 54
Securing with the TMS... 55
Reading the Keychain Master Password from a File...55

M
Odd Header

Overview of BigMemory Max Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 5

1 Overview of BigMemory Max Security

Security can be applied to both authentication (such as login credentials) and
authorization (the privileges of specific roles).

We recommend that you plan and implement a security strategy that encompasses all of
the points of potential vulnerability in your environment, including, but not necessarily
limited to, your application servers (Terracoa clients), Terracoa servers in the TSA, the
Terracoa Management Console (TMC), and any BigMemory .NET or C++ clients.

Note: Terracoa does not encrypt the data on its servers, but applying your own
data encryption is another possible security measure.

Scope of the SSL documentation

SSL and Java Security configuration is complex and very environment specific. This
documentation assumes that you already have a working SSL configuration, and that
you wish to add Terracoa to that configuration. Introducing SSL and Java Security into
an environment where there was previously no SSL or Java security is outside the scope
of this documentation.

The documentation assumes that you have a solid understanding of SSL, Java Security,
and related concepts. There are many freely accessible documents on the web to guide
you in learning and understanding SSL and Java Security; typical terms to search for are
public key certificate, transport layer security (TLS) and the keytool utility.

Some of the descriptions in the following sections give examples of how you can use
third party tools to help you set up your environment. These tools are widely used in
the context of Java Security and are extensively documented on the web site of the tool
supplier. In such cases, we do not aempt to document all possible options of the tools
and limit ourselves to mentioning just the options required.

Note: All commands or sequences of commands in the following descriptions for
seing up the security configuration are intended as OUTLINES ONLY that
describe the basics of geing SSL configured. The setups will generally NOT
work out-of-the-box, since each customer has unique requirements. If you
try to copy and paste the examples, your setup will probably not be valid.
Therefore you should take the outlines only as a rough guide to what you
need to do, and tailor the outlines to suite your own particular configuration.

Securing the Terracotta Cluster and Components

Terracoa Server Array (TSA) using SSL, LDAP, JMX. See:

“Introduction to Security ” on page 7

“About Security in a Cluster” on page 13

M
Even Header

Overview of BigMemory Max Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 6

“Seing Up Server Security” on page 17

“Seing Up a TSA to Use the Terracoa Management Server” on page 33

“Using LDAP or Active Directory for Authentication” on page 43

“Using Encrypted Keychains” on page 49

Terracoa Client (your application). See:

“Enabling SSL on Terracoa Clients” on page 27

“Using Encrypted Keychains” on page 49

“Serialization: Securing Against Untrusted Clients” on page 31

Terracoa Management Console (TMC). See:

The Terracoa Management Console User Guide.

BigMemory Max security using JMX Authentication. See:

“Configuring Security Using JMX Authentication” on page 9.

BigMemory .NET and C++ clients. See:

The Cross-Language Clients User Guide.

M
Odd Header

Introduction to Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 7

2 Introduction to Security

■ Authentication Mechanisms ... 8

■ Configuring Security Using LDAP (via JAAS) .. 8

■ Configuring Security Using JMX Authentication .. 9

■ Configuring SSL-based Security .. 10

■ User Roles ... 10

■ Using Scripts Against a Server with Authentication ... 10

■ Extending Server Security ... 11

M
Even Header

Introduction to Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 8

Authentication Mechanisms
The Enterprise Edition of the Terracoa kit provides standard authentication
mechanisms to control access to Terracoa servers. Enabling one of these mechanisms
causes a Terracoa server to require credentials before allowing a JMX connection.

You can choose one of the following to secure servers:

SSL-based security - Authenticates all nodes (including clients) and secures the entire
cluster with encrypted connections. Includes role-based authorization.

LDAP-based authentication - Uses your organization's authentication database to
secure access to Terracoa servers.

JMX-based authentication - provides a simple authentication scheme to protect
access to Terracoa servers.

Note that Terracoa scripts cannot be used with secured servers without “passing
credentials to the script” on page 10.

Configuring Security Using LDAP (via JAAS)
Lightweight Directory Access Protocol (LDAP) security is based on JAAS and requires
Java 1.6. Using an earlier version of Java does not prevent Terracoa servers from
running, but security will not be enabled.

To configure security using LDAP, follow these steps:

1. Save the following configuration to the file .java.login.config :
Terracotta {
com.sun.security.auth.module.LdapLoginModule REQUIRED
java.naming.security.authentication="simple"
userProvider="ldap://orgstage:389"
authIdentity="uid={USERNAME},ou=People,dc=terracotta,dc=org"
authzIdentity=controlRole
useSSL=false
bindDn="cn=Manager"
bindCredential="****"
bindAuthenticationType="simple"
debug=true;
};

Edit the values for userProvider (LDAP server), authIdentity (user identity), and
bindCredential (encrypted password) to match the values for your environment.

2. Save the file .java.login.config to the directory named in the Java property
user.home.

3. Add the following configuration to each <server> block in the Terracoa
configuration file:
<server host="myHost" name="myServer">
...

M
Odd Header

Introduction to Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 9

 <authentication>
 <mode>
 <login-config-name>Terracotta</login-config-name>
 </mode>
 </authentication>
...
</server>

4. Start the Terracoa server and look for a log message containing "INFO - Credentials:
loginConfig[Terracoa]" to confirm that LDAP security is in effect.

Note: If security is set up incorrectly, the Terracoa server can still be started.
However, you might not be able to shut down the server using the
shutdown script (stop-tc-server).

Configuring Security Using JMX Authentication
Terracoa can use the standard Java security mechanisms for JMX authentication, which
relies on the creation of .access and .password files with correct permissions. The default
location for these files for JDK 1.5 or higher is $JAVA_HOME/jre/lib/management.

To configure security using JMX authentication, follow these steps:

1. Ensure that the desired usernames and passwords for securing the target servers are
in the JMX password file jmxremote.password and that the desired roles are in the
JMX access file jmxremote.access.

2. If both jmxremote.access and jmxremote.password are in the default location
($JAVA_HOME/jre/lib/management), add the following configuration to each
<server> block in the Terracoa configuration file:
<server host="myHost" name="myServer" jmx-enabled="true">
...
 <authentication />
...
</server>

3. If jmxremote.password is not in the default location, add the following configuration
to each <server> block in the Terracoa configuration file:
<server host="myHost" name="myServer" jmx-enabled="true">
...
 <authentication>
 <mode>
 <password-file>/path/to/jmx.password</password-file>
 </mode>
 </authentication>
...
</server>

4. If jmxremote.access is not in the default location, add the following configuration to
each <server> block in the Terracoa configuration file:
<server host="myHost" name="myServer" jmx-enabled="true">
...
 <authentication>
 <mode>

M
Even Header

Introduction to Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 10

 <password-file>/path/to/jmxremote.password</password-file>
 </mode>
 <access-file>/path/to/jmxremote.access</access-file>
 </authentication>
...
</server>

If the JMX password file is not found when the server starts up, an error is logged stating
that the password file does not exist.

Configuring SSL-based Security
To learn how to use Secure Sockets Layer (SSL) encryption and certificate-based
authentication to secure enterprise versions of Terracoa clusters, see the following
sections:

“About Security in a Cluster” on page 13

“Seing Up Server Security” on page 17

“Enabling SSL on Terracoa Clients” on page 27

Note that using SSL to a Terracoa cluster reduces performance due to the overhead
introduced by encrypting inter-node communication.

User Roles
There are two roles available for Terracoa servers and clients:

admin - The user with the "admin" role is the initial user who sets up security.
Thereafter, the "admin" user can perform system functions such as shuing
down servers, clearing or deleting caches and cache managers, and reloading
configurations.

terracoa - This is the operator role. The default username for the operator role is
"terracoa". The "terracoa" user can connect to the TMC and access the read-only
areas. In addition, the "terracoa" user can start a secure server. But a user must have
the "admin" role in order to run the stop-tc-server script.

Using Scripts Against a Server with Authentication
A script that targets a secured Terracoa server must use the correct login credentials
to access the server. If you run a Terracoa script such as backup-data or server-stat
against a secured server, pass the credentials using the -u (followed by username) and -
w (followed by password) flags.

For example, if Server1 is secured with username "user1" and password "password", run
the server-stat script by entering the following:

UNIX/LINUX

M
Odd Header

Introduction to Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 11

[PROMPT]${TERRACOTTA_HOME}/server/bin/server-stat.sh -s Server1 -u user1
-w password

MICROSOFT WINDOWS
[PROMPT]%TERRACOTTA_HOME%\server\bin\server-stat.bat -s Server1 -u user1
-w password

Extending Server Security
JMX messages are not encrypted. Therefore, server authentication does not provide
secure message transmission after valid credentials are provided by a listening client. To
extend security beyond the login threshold, consider the following options:

Place Terracoa servers in a secure location on a private network.

Restrict remote queries to an encrypted tunnel, such as one provided by SSH or
stunnel.

If using public or outside networks, use a VPN for all communication in the cluster.

If using Ehcache, add a cache decorator to the cache that implements your own
encryption and decryption.

M
Even Header

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 12

M
Odd Header

About Security in a Cluster

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 13

3 About Security in a Cluster

■ Introduction ... 14

■ Security Related Files .. 14

■ Process Diagram .. 15

M
Even Header

About Security in a Cluster

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 14

Introduction
Terracoa clusters can be secured using authentication, authorization, and encryption.
You can use:

the built-in authentication and authorization

external directory services

certificate-based Secure Sockets Layer (SSL) encryption for communications between
nodes

Security in a Terracoa cluster includes both server-server connections and client-server
connections. Security must be enabled globally in the cluster. This ensures that each and
every connection is secure, including connections in the Terracoa Management Server.

Security is set up using the Terracoa configuration, tools provided in the Terracoa
kit, standard Java tools, and public key infrastructure (via standard digital X.509 digital
certificates).

Security Related Files
Each Terracoa server uses the following types of files to implement security:

Java keystore - Contains the server's private key and public-key certificate. The keystore
is protected by a keystore/certificate-entry password.

Truststore - A keystore file containing only the public keys of the certificates. This
file is needed only if you are using self-signed certificates rather than a Certificate
Authority (CA).

Keychain - Stores passwords, including the passwords to the server's keystore and to
entries in other files. The tools for creating and managing the Terracoa keychain file
are provided with the Terracoa kit.

Authorization - A .ini file with password-protected user accounts and their roles for
servers and clients that connect to the server.

Note that Microsoft Active Directory and standard LDAP authentication/authorization
are available options; see “Using LDAP or Active Directory for Authentication” on
page 43 for related information.

Tip: The standard Java cacerts file, located in ${JAVA_HOME}java.home/lib/
security by default, is a system-wide repository for CA root certificates
included with the JDK. These certificates can play a part in certificate chains.

“Java documentation” recommends that the cacerts file be protected by
changing its default password and file permissions.

http://www.oracle.com/technetwork/documentation/index.html#java

M
Odd Header

About Security in a Cluster

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 15

Each Terracoa client also has a keychain file that stores the password it uses to
authenticate with the server.

All files are read on startup. Changes made to the files after startup cannot be read
unless the cluster is restarted.

Process Diagram
The following diagram illustrates the flow of security information during initial cluster
connections. It also shows which security-related file originates the security information:

From a Terracoa server point of view, security checks take place at the time a connection
is made with another node on the cluster:

1. After startup, servers can make connection requests to servers named in the
configuration.

2. A connection request from server2 initiates the process of establishing a secure
connection using SSL.

M
Even Header

About Security in a Cluster

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 16

3. Server1 authenticates server2 using stored credentials. Credentials are also
associated with a role that authorizes server2. The process is symmetrical: server2
authenticates and authorizes server1.

4. A connection request from a Terracoa client initiates the process of establishing a
secure connection using SSL.

5. Server1 authenticates and authorizes the client using stored credentials and
associated roles.

Because a client might communicate with any active server in the cluster during its
lifetime, the client must be able to authenticate with any active server. Clients should
be able to authenticate against all servers in the cluster because active servers might fail
over to mirror servers.

From a Terracoa client point of view, security checks occur at the time the client
aempts to connect to an active server in the cluster:

1. The client uses a server URI that includes the client username.

A typical (non-secure) URI is <server-address>:<port>. A URI that initiates a secure
connection takes the form <client-username>@<server-address>:<port> .

2. A secure connection using SSL is established with the server.

3. The client sends a password fetched from a local keychain file. The password is
associated with the client username.

M
Odd Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 17

4 Setting Up Server Security

■ Basic Steps to Set Up Server Security .. 18

■ Creating the Server Certificates ... 18

■ Setting up the Server Keychain ... 20

■ Setting up Authentication/Authorization ... 21

■ Setting up Authorization for TMC Queries ... 22

■ Configuring Server Security ... 24

M
Even Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 18

Basic Steps to Set Up Server Security
To set up security on a Terracoa server, follow the steps in the following procedures.

Note: Script names in the examples given below are for UNIX or Linux systems.
Equivalent scripts are available for Microsoft Windows in the same locations.
For Windows, replace the .sh extension with .bat and convert path delimiters
as appropriate.

Creating the Server Certificates
Each Terracoa server must have a keystore file containing a digital certificate and the
associated private key. This document assumes that you will use self-signed certificates.

IMPORTANT SECURITY CONSIDERATION! : Self-signed certificates might be less safe than
CA-signed certificates because they lack third-party identity verification and do not
carry a digital signature from an official CA. Your organization might already have
policies and procedures in place regarding the generation and use of digital certificates
and certificate chains, including the use of certificates signed by a Certificate Authority
(CA). To follow your organization's policies and procedures regarding using digital
certificates, you might need to adjust the procedures outlined in this document.

When used for a Terracoa server, the following conditions must be met for certificates
and their keystores:

The keystore must be a Java keystore (JKS) compatible with JDK 1.6 or higher.

The certificate must be keyed with the alias named in the value of the
<certificate> element of the server's configuration. See “Configure Server
Security” on page 24 for details.

The Common Name (CN) field in the Distinguished Name must contain the
hostname of the server, as configured in “Configure Server Security” on page 24.

The password securing the certificate must match the keystore's main password. In
other words, the store password and key passwords must be identical.

When using a self-signed certificate (not one signed by a trusted CA), create a
custom truststore for storing public keys. See the section “Exporting and Importing
Certificates” on page 19 for details.

Note: When using a self-signed certificate (not one signed by a trusted CA), use
the -k option for stopping the server or running server scripts.

If you have a keystore in place, but the server certificate is not already stored in the
keystore, you must import it into the keystore. If the keystore does not already exist, you
must create it.

M
Odd Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 19

Creating Self-Signed Certificates Using Java Keytool

For testing purposes, or if you intend to use self-signed certificates, use the Java keytool
command to create the public-private key pair. You also use this command to create
keystores and truststores, but note that keytool refers to truststores as "keystores" since
there is only a logical difference.

Note: Specifying a Custom Truststore - Note that if you are not using cacerts,
the default Java truststore, the custom truststore must be specified
with the javax.net.ssl.trustStore system property. In this case,
you can choose to reset the custom truststore's default password with
javax.net.ssl.trustStorePassword.

The following could be used to create both public-private keys (including a certificate)
and a keystore file for the server called "server1" in the configuration example above:
keytool -genkey -keystore keystore-file.jks
-dname "CN=172.16.254.1, OU=Terracotta, O=SAG, L=San Francisco, S=California,
C=US" -alias server1alias -storepass server1pass -keypass server1pass

Note that the values passed to -storepass and -keypass match. Also, the field
designating the Common Name (CN) must match the server's hostname, which matches
the value entered in the server's configuration. This hostname can be an IP address or
a resolvable domain name. If the -dname option is left out, a series of identity prompts
(distinguished-name fields based on the X.500 standard) will appear before the server's
entry is created in the keystore. The CN prompt appears as shown:
What is your first and last name?
 [Unknown]:

There are a number of other keytool options to consider, including -keyalg
(cryptographic algorithm; default is DSA) and -validity (number of days until the
certificate expires; default is 90). These and other options are dependent on your
environment and security requirements. For more information on using the keytool, see
the JDK documentation.

Create a keystore and entry on each Terracoa server.

Exporting and Importing Certificates

Each server should have a copy of each other server's public-key certificate in its
truststore.

The following could be used to export the certificate of the server called "server1" in the
configuration example above.
keytool -export -alias server1alias -keystore keystore-file.jks \
 -file server1SelfSignedCert.cert

This "cert" file can now be used to import server1's certificate into the truststore of
every other server. For example, to create a truststore and import server1's certificate
on server2, copy the cert file to the working directory on server2 and use the following
command:
keytool -import -alias server1alias -file server1SelfSignedCert.cert \
 -keystore truststore.jks

M
Even Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 20

After the password prompt, information about the certificate appears, and you are
prompted to trust it. You must repeat this process until every server has a truststore
containing the public-key certificate of every other server in the cluster.

Tip: Use a Single Truststore - Instead of recreating the truststore on every server,
create a single truststore containing every server's public key, then copy that
to every server. This same truststore can also be used for clients. See “Using a
Client Truststore” on page 29.

When you use the keytool utility, you can maintain additional certificates for the chain
of trust in a file cacerts. If you wish to use these additional certificates for the import,
refer to the use of the option -trustcacerts in the documentation of the keytool utility.

Tip: As an alternative to using the command line tool keytool, you might want
to try the open source graphical tool KeyStore Explorer, available at “hp://
www.keystore-explorer.org/index.html”.

Setting up the Server Keychain
The keystore and each certificate entry are protected by passwords stored in the server
keychain file. The location of the keychain file is specified in the value of the <url>
element under the <keychain> element of the server's configuration file.

For example, with this “server configuration” on page 24, when the server starts up,
the keychain file would be searched for in the user's (process owner's) home directory.
In the configuration example, a keychain file called server1keychain.tkc is searched for
when server1 is started.

The keychain file should have the following entries:

An entry for the local server's keystore entry.

An entry for every server that the local server will connect to.

Entries are created using the keychain script found in the Terracoa kit's tools/security/
bin directory.

Creating an Entry for the Local Server

Create an entry for the local server's keystore password:
tools/security/bin/keychain.sh -O <keychain-file> <certificate-URI>

where <keychain-file> is the file named in the server configuration's <keychain>/<url>
element (including correct path), and <certificate-URI> is the URI value in the server
configuration's <ssl>/<certificate> element.

Note: The <certificate-URI> must match the server configuration's <ssl>/
<certificate> element exactly, including the path to the keystore.

http://www.keystore-explorer.org/index.html
http://www.keystore-explorer.org/index.html

M
Odd Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 21

By default, the keychain file stores passwords using an obfuscation scheme, requiring
the use of -O (hyphen capital leer O) with the keychain script for any operation on
the file. To switch a more secure encryption-based scheme, see “Using Encrypted
Keychains” on page 49.

If the keychain file does not exist, add the -c option to create it:
tools/security/bin/keychain.sh -O -c <keychain-file> <certificate-URI>

You will be prompted to enter a password to associate with the URI. You must enter the
same password used to secure the server's certificate in the keystore.

For example, to create an entry for server1 from the configuration example above, enter:
tools/security/bin/keychain.sh -O server1keychain.tkc
 jks:server1alias@/the/path/keystore-file.jks
Terracotta Management Console - Keychain Client
Enter the password you want to associate with this URL: server1pass
Confirm the password to associate with this URL: server1pass
Password for jks:server1alias@/the/path/keystore-file.jks successfully stored

Creating Entries for Remote Servers

Entries for remote servers have the format tc://<user>@<host>:<group-port> .
Note that the value of <user> is specified in each server configuration's <security>/
<auth>/<user> and is not related to the user running as the process owner. If a value
for <security>/<auth>/<user> is not specified, the username "terracoa" is used by
default.

For example, to create an entry for server2 in server1's keychain, use:
tools/security/bin/keychain.sh -O server1keychain.tkc
 tc://server2username@172.16.254.2:9530

If the keychain file does not exist, add the -c option:
tools/security/bin/keychain.sh -O -c server1keychain.tkc
 tc://server2username@172.16.254.2:9530

You will be prompted to enter a password to associate with the entry
server2username@172.16.254.2:9530.

An entry for server1 must also be added to server2's keychain:
tools/security/bin/keychain.sh -O server2keychain.tkc
 tc://server1@172.16.254.1:9530

Setting up Authentication/Authorization
Servers and clients that connect to a secured server must have credentials (usernames/
passwords) and roles (authorization) defined. This section discusses the authentication/
authorization mechanism based on using a .ini file. To use LDAP or Microsoft Active
Directory instead, see “LDAP and Active Directory setup page” on page 43.

Authentication and authorization are set up using the usermanagement script, located
in the Terracoa kit's tools/security/bin directory. This script also creates the .ini file that

M
Even Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 22

contains the required usernames and roles. The associated passwords are stored in the
keychain file.

All nodes in a secured Terracoa cluster must have an entry in the server's .ini file:

The local server itself

All other servers

All clients

Use the usermanagement script with the following format:
tools/security/bin/usermanagement.sh -c <file> <username> terracotta

where -c is required only if the file does not already exist. For servers, the <username>
will be used as the value configured in <security>/<auth>/<user>. For clients, the
username must match the one used to start the client.

Note: While the "terracoa" role is appropriate for Terracoa servers and clients, the
"admin" role is necessary for performing system functions such as stopping
servers. For more information about roles, refer to “User Roles” on page 10.

For example:
Create the .ini file and add a server username and role.
tools/security/bin/usermanagement.sh -c my_auth.ini server1username terracotta
Add another server.
tools/security/bin/usermanagement.sh my_auth.ini server2username terracotta
Add a client.
tools/security/bin/usermanagement.sh my_auth.ini client1username terracotta
Add a user with an "admin" (read/write) role.
tools/security/bin/usermanagement.sh my_auth.ini admin1username admin
Add a user with a "terracotta" (read) role.
tools/security/bin/usermanagement.sh my_auth.ini console1username operator

The correct Apache Shiro Realm must be specified in the “server configuration” on
page 24, along with the path to the .ini file:
...
<auth>
 <realm>com.tc.net.core.security.ShiroIniRealm</realm>
 <url>file:///%(user.dir)/my_auth.ini</url>
 <user>server1username</user>
</auth>
...

Setting up Authorization for TMC Queries
The Terracoa Management Console allows you to execute SQL-like queries in the query
field of the Application Data > Contents panel. Initially, all users who can access the TMC
can also use this query feature.

You may want to restrict the usage of the query feature by disabling it for certain user
roles/identities. You can do this as follows:

M
Odd Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 23

Using Simple Account-Based Authentication (Ini-File) security

If you are using simple account-based authentication security, the authorization setup
for disabling the query feature is defined in the security.ini file, which is located in the
mgmt folder under your user account path at the operating system level. The file is
created when you use the TMC to specify that you want to use Ini-File authentication. If
you have not yet done so, you can use the Settings menu of TMC to specify the required
authentication method. On Windows systems, the location of the mgmt folder could be,
for example, C:\Users\MyUserName\.tc (where MyUserName is your Windows user
name), and on Linux it could be ~/.tc.

Use the following steps to disable the query feature:

1. Open the file security.ini in a text editor and go to the line where the user that you
want to modify is defined.

2. Append the nobmsql role at the end of the line in order to disable the query panel for
that user.

3. Restart TMS, then log in using the user's credentials, and ensure that the query field
is no longer visible in the Application Data > Contents panel.

Here is an example of security.ini, with nobmsql applied to the "operator" user:
[users]
admin=$shiro1$SHA-1$1000000$pibMTfX7zzyKTy57DLcSvw==$ENBPZPwB//L5fbVZ+/jeKJ4Fm/4=,operator,admin
operator=$shiro1$SHA-1$1000000$3mYdIqq2gjldlii7qaadsg==$tIMdM92xA6UXwXZn/MeH2AH7N8A=,operator,nobmsql

There are 2 users in this configuration: "admin" and "operator". The long string behind '='
is the encrypted password, which is automatically generated the first time you configure
the password through TMC. Currently there are 3 roles available: "admin", "operator"
and "nobmsql". An administrator user needs to be assigned both "admin" and "operator"
roles. An operator user needs to be assigned the "operator" role. If you want to hide the
query panel from the administrator user or operator user or both, you can simply add
the "nobmsql" role to that user.

Using LDAP-based security

If you are using LDAP based security, use the following steps to disable the query
feature for a particular user:

1. Using a text editor, open the file shiro.ini in the mgmt folder (location as described
above for Ini-File security).

2. Find the entry ldapRealm.groupRolesMapAsString =.

This is the mapping string between TMC roles and LDAP groups. It is formaed as:
"LDAP group":"TMC role[s]..."

for example:
"tmcopstgroup2":"admin,operator";

3. If you want to disable the query ability for an LDAP group, add ",nobmsql" behind
the mapping.

M
Even Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 24

4. Restart TMS, then log in using the credentials of a user who belongs to the LDAP
group. Ensure that the query field is no longer visible in the Application Data > Contents
panel.

Configuring Server Security
Set up the security for the Terracoa Server Array in the Terracoa configuration file,
which is named tc-config.xml by default. For example:
<tc:tc-config xmlns:tc="http://www.terracotta.org/config">
...
 <servers secure="true">
 <server host="172.16.254.1" name="server1">
 ...
 <security>
 <ssl>
 <certificate>jks:server1alias@/the/path/keystore-file.jks</certificate>
 </ssl>
 <keychain>
 <url>file:///%(user.dir)/server1keychain.tkc</url>
 </keychain>
 <auth>
 <realm>com.tc.net.core.security.ShiroIniRealm</realm>
 <url>file:///%(user.dir)/my_auth.ini</url>
 <user>server1username</user>
 </auth>
 </security>
 ...
 </server>
 ...
 </servers>
...
</tc:tc-config>

Every server participating in an SSL-based secured cluster must have a <security> block
in which the security-related information is encapsulated and defined. The keystore,
keychain, and .ini files named in the configuration must be available to every server in
the cluster. “LDAP or Microsoft Active Directory” on page 43 can be configured in
place of file-based authentication and authorization.

The following table defines some of the security-related elements and aributes shown
in the configuration example.

Name Definition Notes

secure Aribute in <servers> element.
Enables SSL security for the
cluster. DEFAULT: false.

Enables/disables SSL-based
security globally.

certificate Element specifying the location
of the server's authentication
certificate and its containing
keystore file. The format for

Only the JKS type of keystore is
supported.

M
Odd Header

Setting Up Server Security

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 25

Name Definition Notes
the certificate-keystore location
is jks:alias@/path/to/
keystore. "alias" must match the
value used to key the certificate
in the keystore file.

url The URI for the keychain file
(when under <keychain>) or for
the authentication/authorization
mechanism (when under
<auth>). These URIs are passed
to the keychain or realm class
to specify the keychain file or
authentication/authorization
source, respectively.

These files are created and
managed with the

“keychain” on page 20

and

“usermanagement” on
page 21

scripts. If using Microsoft
Active Directory or LDAP, an
LDAP or LDAPS connection
is specified. The configured
URL for locating the keychain
file can be overridden with the
property com.tc.security.
keychain.url.

realm The Shiro security realm
that determines the type of
authentication/authorization
scheme being used: file-based
(.ini), Microsoft Active Directory,
or standard LDAP.

This element's value is specified
in the section covering the setup
for the chosen authentication/
authorization scheme.

user The username that represents
this server and is authenticated
by other servers. This name is
part of the server's credentials.
Default username is "terracoa"

M
Even Header

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 26

M
Odd Header

Enabling SSL on Terracotta Clients

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 27

5 Enabling SSL on Terracotta Clients

■ How to Enable SSL Securing on the Client .. 28

■ Creating a Keychain Entry ... 28

■ Using a Client Truststore ... 29

M
Even Header

Enabling SSL on Terracotta Clients

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 28

How to Enable SSL Securing on the Client
Terracoa clients do not require any specific configuration to enable SSL connections to a
Terracoa Server Array.

Note: Script names in the examples given below are for UNIX and Linux systems.
Equivalent scripts are available for Microsoft Windows in the same locations.
Replace the .sh extension with .bat and convert the path delimiters as
appropriate.

To enable SSL security on the client:

Prepend the client username to the address used by the client to connect to the
cluster.

This should be the username that will be authenticated followed by an "at" sign ("@")
and the address of an active server running in secure mode. The format is <client-
username>@<host>:<tsa-port>. Prepending the username automatically causes
the client to initiate an SSL connection.

If the client has username client1, for example, and aempts to connect to the
server in the configuration example, the address would be:

client1@172.16.254.1:9510

This URI replaces the address <host>:<tsa-port> used to start clients in non-SSL
clusters.

Verify that the client username and its corresponding password match those in
the “server's .ini file” on page 21 or credentials in “LDAP or Active Directory” on
page 43. The username is included in the URI, but the password must come from
a “local keychain entry” on page 28 that you create.

The client credentials must be associated with the role "terracoa" or "admin".

If Terracoa servers are using self-signed certificates (not certificates signed by a
well-known CA), then you must “specify a truststore for the client” on page 29
that contains the public key of every server in the cluster.

Creating a Keychain Entry
The Terracoa client should have a keychain file with an entry for every Terracoa
server in the cluster. The format for the entry uses the "tc" scheme:
tc://<client-username>@<host>:<tsa-port>

An entry for the server in the example configuration should look like:
tc://client1@172.16.254.1:9510

Use the keychain script in the Terracoa kit to add the entry:

M
Odd Header

Enabling SSL on Terracotta Clients

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 29

tools/security/bin/keychain.sh -O clientKeychainFile
tc://client1@172.16.254.1:9510

By default, the keychain file stores passwords using an obfuscation scheme, requiring
the use of -O (hyphen capital leer O) with the keychain script for any operation on
the file. To switch a more secure encryption-based scheme, see “Using Encrypted
Keychains” on page 49.

If the keychain file does not already exist, use the -c flag to create it:
tools/security/bin/keychain.sh -O -c clientKeychainFile
tc://client1@172.16.254.1:9510

You will be prompted to enter a client password to associate with the URI.

This entry in the client's keychain file serves as the key for the client's password and
is provided to the server along with the client username ("client1" in the example).
These credentials must match those in the “server's .ini file” on page 21 or “LDAP or Active
Directory credentials” on page 43.

The Terracoa client searches for the keychain file in the following locations:

%(user.home)/.tc/mgmt/keychain

%(user.dir)/keychain.tkc

The path specified by the system property com.tc.security.keychain.url

Example Using the Keychain Script

When you run the keychain script, the following prompt should appear:
Terracotta Management Console - Keychain Client
KeyChain file successfully created in clientKeychainFile
Enter the password you wish to associate with this URL:
Password for tc://client1@172.16.254.1:9510 successfully stored

Note that the script does not verify the credentials or the server address.

Using a Client Truststore
If Terracoa servers are using self-signed certificates (not certificates signed by a
well-known CA), create a truststore on the client and import each server's public-key
certificate into that truststore.

If you have already “created a truststore” on page 19 for a server in the TSA, you can
copy that file to each client after first importing that server's public-key certificate into
the copy.

For the client to find the truststore, you must set the Java system property
javax.net.ssl.trustStore to the location of the truststore file. In this case, note the
existing secrets for opening the truststore and accessing each certificate.

Tip: Changing the Truststore Password - To change the existing
truststore master password, use the Java system property
javax.net.ssl.trustStorePassword.

M
Even Header

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 30

M
Odd Header

Serialization: Securing Against Untrusted Clients

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 31

6 Serialization: Securing Against Untrusted Clients

Typically, Java objects are serialized when writing to cache and then deserialized by
clients reading from cache.

Where all cache clients are trusted (a common deployment paern), Java deserialization
poses no security issue.

However, in cases where a client could be an aacker, deserialization could be used to
inject malicious code into another client. Specially crafted objects can be included in the
serialized stream of bytes that, when deserialized by the Java deserialization process,
lead to arbitrary code execution.

For the cache this, by nature, is not a security issue per se as no deserialization happens.
But on the client side, such aacks should be mitigated.

The security issue with deserialization is a known issue in the technical community. As a
result there are various solutions (such as blacklists/whitelists for classes) to address this
issue.

Examples are NotSoSerial (“hps://github.com/kantega/notsoserial/”),
ikkisoft SerialKiller (“hps://github.com/ikkisoft/SerialKiller/”), or
“ValidatingObjectInputStream in Apache Commons IO”.

https://github.com/kantega/notsoserial/
https://github.com/ikkisoft/SerialKiller/
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/org/apache/commons/io/serialization/ValidatingObjectInputStream.html

M
Even Header

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 32

M
Odd Header

Setting Up a TSA to Use the Terracotta Management Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 33

7 Setting Up a TSA to Use the Terracotta Management
Server

■ Required Configuration .. 34

■ Configuring Identity Assertion .. 34

■ JMX Authentication Using the Keychain .. 34

■ Setting up the Security on the TMS .. 35

■ Securing TSA Access using a Permitted IP List ... 35

■ Restricting Clients to Specified Servers (Optional) .. 37

M
Even Header

Setting Up a TSA to Use the Terracotta Management Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 34

Required Configuration
Before you can connect the Terracoa Management Server (TMS) to your secured
Terracoa Server Array (TSA), you must configure your TSA as described in the
following sections.

Configuring Identity Assertion
Add the following to each server's <security> block:
<security>
...
 <management>
 <ia> https://my-tms.mydomain.com:9443/tmc/api/assertIdentity</ia>
 <timeout>10000</timeout>
 <hostname>my-l2.mydomain.com</ hostname >
 </management>
</security>

where:

<timeout> is the timeout value in milliseconds for connections from the server to the
TMS.

<ia> is the HTTPS (or HTTP) URL with the domain of the TMS, followed by the port
9443 and the path /tmc/api/assertIdentity.

If you are using HTTPS, which is recommended, export a public key from the TMS
and import it into the server's truststore. You must also export a public key from
the server and import it into the TMS's truststore, or copy the server's truststore
(including the local server's public key) to the TMS.

<management><hostname> is used only if the DNS hostname of the server does not
match server hostname used in its certificate. If there is a mismatch, enter the DNS
address of the server here.

You must export a public key from the TMS.

JMX Authentication Using the Keychain
The following is required for server-to-client REST-agent authorization. Every node in the
cluster must have the following entry in its keychain, all locked with the identical secret:
jmx:net.sf.ehcache:type=RemoteAgentEndpoint

In addition, server-server REST-agent communication must also be authorized using a
keychain entry with the following format:
jmx://<user>@<host>:<group-port>

M
Odd Header

Setting Up a TSA to Use the Terracotta Management Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 35

Note that the value of <user> is specified in each server configuration's <security>/
<auth>/<user> and is not related to the user running as process owner.

For example, to create an entry for server2 in server1's keychain, use:
tools/security/bin/keychain.sh -O server1keychain.tkc
jmx://server2username@172.16.254.2:9530

Each server must have an entry for itself and an entry for each other server in the TSA.

Setting up the Security on the TMS
An unsecured TMS cannot connect to a secured TSA. To learn how to set up security on
the TMS, see the Terracoa Management Console User Guide.

Securing TSA Access using a Permitted IP List
The IP white-listing feature enables you as the cluster administrator to ensure that only
clients from certain explicitly named IP addresses can access the TSA. You can use this
feature, for example, to secure the TSA from malicious clients aempting to connect to
the TSA. The term "clients" here refers to caching clients, JMX clients and HTTP clients.
The so-called white-list is a list of IPs, and clients running on these IPs are allowed
to access the TSA; any client whose IP is not in the white-list will not be allowed to
access the TSA. You maintain the white-list of known client IPs in a plain text file. CIDR
notations can also be used to cover a range of IPs.

Note: It should be understood that usage of this feature (on its own) does not
provide a strong level of security for the TSA. Features such as SSL encryption
and authentication should be enabled for true security. Additionally, the ideal
way to enforce connection restrictions based on IP addresses would be to use
host-level firewalls rather than this feature.

If you want to use white-listing, you need to enable it at server startup. Once the server
has started with white-listing enabled, white-listing cannot be turned back off while the
server is running. However, you can change the existing IP/CIDR entries in the white-list
file while the server is running. Also you can add and delete entries in the white-list file
while the server is running, in order to modify the set of clients that need access to the
cluster.

If you do not switch on white-listing at server startup, you cannot switch on white-
listing while the server is running.

In a multi-stripe cluster, you need to start up all servers (both actives and passives) with
the same copy of the white-list file, and when there are updates to the white-list file, you
need to ensure that the same changes are mirrored across all stripes. Note that the TSA
does not do any cross-stripe validation on the contents of the white-list file, so it is your
responsibility as the cluster administrator to make sure that this happens.

M
Even Header

Setting Up a TSA to Use the Terracotta Management Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 36

Usage

To enable white-listing, you need to start the server with the following tc-config
property set:
ip.white.list="<location>/<file>"

where <location> is the path containing the white-list file, and <file> is the name of the
white-list file.

White-listing is enabled/disabled based on the presence of this tc-config property entry.
The value of this property is the complete path to the white-list file. If the file is not
found at the specified location, the server startup will fail with an appropriate error
message. If the file is present but there is an error reading the file, the server startup will
continue with white-listing disabled, and the failure will be logged in the server log. If
the property is not specified, white-listing is disabled.

The server IPs specified in the tc-config file of the server are always white-listed. If
hostnames are used in the tc-config entries instead of IPs, the server will aempt to
resolve these hostnames to IPs. If the resolution fails, server startup will continue with
white-listing disabled. So when this IP white-listing feature is used, it is recommended
to have only IPs configured for servers in the tc-config file. Similarly, localhost IPs are
always white-listed too.

White-list file

The white-list file is a simple text file. You can choose any name for this file, for example
white-list.txt. The entries can be raw IP addresses in IPv4 format or in CIDR notation to
represent ranges. IPv6 entries are not supported. Each line in the file can contain either a
single IP address or a comma-separated set of IP addresses. Any entry that is not a valid
IPv4 address or a valid CIDR will be ignored. Lines starting with a # are skipped. Blank
lines are also skipped . Here is a sample white-list file:
The white-list for my cluster
Caching clients
192.168.5.28, 192.168.5.29, 192.168.5.30
10.60.98.0/28
Other clients
192.168.10.0/24

The white-list file must be kept in a directory where you have write permissions. Some
files will be created by the server in the same directory for book-keeping purposes. If the
server fails to create these files, the server startup will also fail.

Dynamic updates

Once a server is started with white-listing enabled, entries can be dynamically added/
removed from the white-list file. The updates to the white-list file are processed by
the server only when you signal the server to do so. When you have finished making
the changes to the white-list file, you must execute the "update-white-list.sh" script
packaged with the kit. The script takes the white-list file path as the argument. After you
run the script the updates will take effect in a few moments and the corresponding log
statements can be found in the server log.

M
Odd Header

Setting Up a TSA to Use the Terracotta Management Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 37

As already mentioned, every server node (active and passive) has its own copy of the
white-list file. So you need to update the white-list file and execute the script on each
node separately. When you run the script, the server receives the update signal and
reloads the white-list file, and the updated white-list entries are logged in the server
log. Thus, after every update operation, you should check the server logs to verify if
the updates took effect. Make sure that the updates took effect in all the servers in the
cluster.

On every dynamic update, the server reads the contents of the white-list file and the
tc-config to update its in-memory white-list. Reading the white-list file involves a disk
IO, and reading a tc-config file with hostnames in it involves DNS lookup for hostname
resolution. In both cases, failures are very well possible. So if such a failure happens after
a dynamic update, the updates will be ignored and the server will continue with the
current white-list. No partial updates will be applied. The update won't be retried either
until the user signals so by running the update-white-list script again.

Client behaviors

This section details different client behaviors with white-listing enabled.

Caching clients

When a client connects to a server on the tsa-port, the server first accepts the socket
connection, then verifies if the IP of the incoming client is white-listed and closes the
socket connection if the client is not white-listed. In this case, the client will get an EOF
on trying to read from the socket connection established with the server. If a client was
white-listed initially and was removed from the white-list on a dynamic update, it will
not be removed immediately from the cluster. Instead, the client will remain connected
to the cluster as long as there is no network disconnection between the client and server.
The client will be rejected only on the next reconnect aempt.

HTTP clients

Non-white-listed clients that send HTTP requests to the management port will get a 403
Forbidden response.

Restricting Clients to Specified Servers (Optional)
By default, clients are not restricted to authenticate a specific set of servers when
responding to REST requests. However, it is possible to explicitly list the servers
that a client can respond to by using the <managementRESTService> element's
securityServiceLocation aribute in the Ehcache configuration.

When this aribute is empty (or missing), no such restriction exists and the client
will authenticate against any server in the cluster that meets the established security
requirements. This is the recommended seing because SSL connections and the
mechanism for authentication and authorization provide sufficient security.

In the case where an extra layer of security is required for the client's REST service, you
can configure a list of allowed servers as follows:

M
Even Header

Setting Up a TSA to Use the Terracotta Management Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 38

<managementRESTService ...
 securityServiceLocation=" https://my-l2-node1/tmc/api/assertIdentity ,
 https://my-l2-node2/tmc/api/assertIdentity ">

where my-l2-node1 and my-l2-node2 are the servers' hostnames. However, any of
the servers in a client's cluster can forward a REST request to that client at any time.
Therefore, if this feature is used, all the servers should be listed.

M
Odd Header

Running a Secured Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 39

8 Running a Secured Server

■ Introduction ... 40

■ Confirming that Security is Enabled .. 40

■ Stopping a Secured Server .. 40

■ Troubleshooting .. 40

M
Even Header

Running a Secured Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 40

Introduction
Start a server in a secure Terracoa cluster using the start-tc-server script. If you are
using encrypted keychains, a master password must be entered at the command line
during server startup (or “set the server to automatically fetch the password” on
page 55).

Confirming that Security is Enabled
You can confirm that a server's security is enabled in the following ways:

Look for the startup message: "Security enabled, turning on SSL".

Search for log messages containing "SSL keystore", "HTTPS Authentication enabled",
and "Security enabled, turning on SSL".

Aempt to make JMX connections to the server-these should fail.

Stopping a Secured Server
Stop a server in a secure Terracoa cluster using the stop-tc-server script with the
following arguments:

-f <tc-config-file> - A valid path to the self-signed certificate must have been
specified in the server's configuration file.

-u <username> - The user specified must have the "admin" role.

-w <password>

-k - This flag causes invalid TMS SSL certificates to be ignored. Use this option to
accept self-signed certificates (ones not signed by a trusted CA).

Troubleshooting
You might encounter any of the following exceptions at startup:

TCRuntimeException: ... Wrong secret provided ?

The following exception indicates that the keychain file uses the default obfuscation
scheme, but that the -O flag was not used with the keychain script:
com.tc.exception.TCRuntimeException:
com.terracotta.management.keychain.crypto.SecretMismatchException:
Wrong secret provided ?

Be sure to use the -O flag whenever using the keychain script.

M
Odd Header

Running a Secured Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 41

No Configured SSL certificate

The following exception indicates that no SSL certificate was found for the server named
"myServer":
Fatal Terracotta startup exception:

Security is enabled but server myServer has no configured SSL certificate.

Check that the expected SSL certificate was created for myServer and stored at the
configured location.

IllegalStateException: Invalid cluster security configuration

This exception can occur when the security section in the Terracoa configuration file
is not set up properly. However, this type of exception can also indicate problems
elsewhere in the security setup. For example, an exception similar to the following can
occur:
java.lang.IllegalStateException: Invalid cluster security configuration.
Unable to find connection credentials to server myOtherServer

This exception indicates that credentials cannot be found for the server named
"myOtherServer". These credentials might be missing from or do not exist in the
configured authentication source.

RuntimeException: Couldn't access a Console instance to fetch the password from!

This results from using "nohup" during startup. The startup process requires a console
for reading password entry. You cannot run the startup process in the background if it
requires manual password entry. For information on how to avoid having to manually
enter the master keychain password, see “Reading the Keychain Master Password from
a File” on page 55.

TCRuntimeException: Couldn't create KeyChain instance ...

The keychain file specified in the Terracoa configuration cannot be found. Check for
the existence of the file at the location specified in <keychain>/<url> or the property
com.tc.security.keychain.url.

RuntimeException: Couldn't read from file ...

This exception appears just after an incorrect password is entered for an “encrypted
keychain file” on page 49.

RuntimeException: No password available in keyChain for ...

This exception appears if no keychain password entry is found for the server's certificate.
You must explicitly “store the certificate password” on page 20 in the keychain file.

This exception can also appear if the resolved hostname or IP address is different from
the one in the keychain entry:

M
Even Header

Running a Secured Server

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 42

tc://terracotta@localhost:9530 is the entry, but when the server configuration
is read then localhost is resolved to an IP address. The entry searched for becomes
tc://terracotta@<a.certain.ip.address>:9530.

tc://terracotta@<a.certain.ip.address>:9530 is the entry, but when the
server configuration is read then <a.certain.ip.address> is resolved to a host name.
The entry searched for becomes tc://terracoa@my.host.com:9530.

Two Active Servers (Split Brain)

Instead of an active-mirror 2-server stripe, both servers assert active status after being
started. This exception can be caused by the failure of the SSL handshake. An entry
similar to the following might appear in the server log:
2013-05-17 12:10:24,805 [L2_L2:TCWorkerComm # 1_W]
ERROR com.tc.net.core.TCConnection - SSL handshake error:
unable to find valid certification path to requested target, closing connection.

For each server, ensure that all keychain entries are accurate, and that the required
certificates are available from the appropriate truststores.

No Messages Indicating Security Enabled

If servers start with no errors, but there are no messages indicating that security is
enabled, ensure that the <servers> element contains secure="true" .

M
Odd Header

Using LDAP or Active Directory for Authentication

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 43

9 Using LDAP or Active Directory for Authentication

■ Introduction ... 44

■ Configuration Overview .. 44

■ Active Directory Configuration ... 45

■ Standard LDAP Configuration .. 46

■ Using the CDATA Construct .. 48

M
Even Header

Using LDAP or Active Directory for Authentication

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 44

Introduction

Note: For a brief overview of Terracoa security with links to individual topics, see
the “Overview of BigMemory Max Security” on page 5.

Instead of using the “built-in user management system” on page 13, you can set up
authentication and authorization for the Terracoa Server Array (TSA) based on the
Lightweight Directory Access Protocol (LDAP). This allows you to use your existing
security infrastructure for controlling access to Terracoa clusters.

The two types of LDAP-based authentication supported are Microsoft Active Directory
and standard LDAP. In addition, LDAPS (LDAP over SSL) is supported.

Note: Terracoa servers must be “configured to use SSL” on page 27 before any
Active Directory or standard LDAP can be used.

Note: This topic assumes that the reader has knowledge of standard LDAP concepts
and usage.

Configuration Overview
Active Directory and standard LDAP are configured in the <auth> section of each
server's configuration block:
<servers secure="true">
 <server host="172.16.254.1" name="server1">
 ...
 <security>
 ...
 <auth>
 <realm>...</realm>
 <url>...</url>
 <user>...</user>
 </auth>
 </security>
...
</server>

Active Directory and standard LDAP are configured using the <realm> and <url>
elements; the <user> element is used for “connections between Terracoa servers” on
page 20 and is not required for LDAP-related configuration.

For presentation, the URLs used in this document use line breaks. Do not use line breaks
when creating URLs in your configuration.

Realms and Roles

The setup for LDAP-based authentication and authorization uses Shiro realms to map
user groups to one of the following two roles:

M
Odd Header

Using LDAP or Active Directory for Authentication

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 45

admin - The user with the admin role is the initial user who sets up security.
Thereafter, the user with the admin role performs system functions such as shuing
down servers, clearing or deleting caches and cache managers, and reloading
configuration.

terracoa - The operator role is required to log in to the TMC, so even a user with the
admin role must have the operator role. Thereafter, the person with the operator role
can connect to the TMC and add connections.

URL Encoding

Certain characters used in the LDAP URL must be encoded, unless “wrapped in a
CDATA construct” on page 48. Characters that may be required in an LDAP URL
are described below:

& (ampersand) - Encode as %26.

{ (left brace) - Encode as %7B.

} (right brace) - Encode as %7D.

Space - Encode as %20. Spaces must always be encoded, even if wrapped in CDATA.

= (equals sign) - Does not require encoding.

Active Directory Configuration
Specify the realm and URL in the <security> section of the Terracoa configuration as
follows:
<auth>
 <realm>com.tc.net.core.security.ShiroActiveDirectoryRealm</realm>
 <url>ldap://admin_user@server_address:server_port/searchBase=search_domain%26
 groupBindings=groups_to_roles</url>
 <user></user>
</auth>

Note the value of the <realm> element, which must specify the correct class (or Shiro
security realm) for Active Directory. The components of the URL are defined in the
following table.

Component Description

ldap:// For the scheme, use either ldap:// or ldaps://

admin_user The name of a user with sufficient rights in Active
Directory to perform a search in the domain specified by
searchBase. The password for this user password must be
stored in the Terracoa keychain used by the Terracoa
server, using as key the root of the LDAP URI, ldap://

M
Even Header

Using LDAP or Active Directory for Authentication

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 46

Component Description
admin_user@server_name:server_port , with no trailing
slash ("/").

server_address:
server_port

The IP address or resolvable fully qualified domain name of
the server, and the port for Active Directory.

searchBase Specifies the Active Directory domain to be
searched. For example, if the Active Directory
domain is reggae.jamaica.org, then the format is
searchBase=dc=reggae,dc=jamaica,dc=org

groupBindings Specifies the mappings between Active Directory groups
and Terracoa roles. For example, groupBindings=Domain
%20Admins=admin,Users=terracotta maps the Active
Directory groups "Domain Admins" and "Users" to the
"admin" and "terracoa" Terracoa roles, respectively. To
be mapped, the named Active Directory groups must be
part of the domain specified in searchBase; all other groups
(including those with the specified names) in other domains
are ignored.

For example:
<auth>
 <realm>com.tc.net.core.security.ShiroActiveDirectoryRealm</realm>
 <url>ldap://bmarley@172.16.254.1:389?searchBase=dc=reggae,dc=jamaica,dc=org%26
 groupBindings=Domain%20Admins=admin,Users=terracotta</url>
 <user></user>
</auth>

Standard LDAP Configuration
Specify the realm and URL in the <security> section of the Terracoa configuration as
follows:
<auth>
 <realm>com.tc.net.core.security.ShiroLdapRealm</realm>
 <url>ldap://directory_manager@myLdapServer:636?
 userDnTemplate=cn=%7B0%7D,ou=users,dc=mycompany,dc=com%26
 groupDnTemplate=cn=%7B0%7D,ou=groups,dc=mycompany,dc=com%26
 groupAttribute=uniqueMember%26
 groupBindings=bandleaders=admin,bandmembers=terracotta</url>
 <user></user>
</auth>

Note the value of the <realm> element, which must specify the correct class (or Shiro
security realm) for Active Directory. The components of the URL are defined in the
following table.

M
Odd Header

Using LDAP or Active Directory for Authentication

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 47

Component Description

ldap:// For the scheme, use either ldap:// or ldaps://

directory_manager The name of a user with sufficient rights on the LDAP
server to perform searches. No user is required if
anonymous lookups are allowed. If a user is required,
the user's password must be stored in the Terracoa
keychain, using as key the root of the LDAP URL,
ldap://admin_user@server_name:server_port ,
with no trailing slash ("/").

server_address:server_port The IP address or resolvable fully qualified domain
name of the server, and the LDAP server port.

userDnTemplate Specifies user-template values. See the example
below.

groupDnTemplate Specifies group-template values. See the example
below.

groupAribute Specifies the LDAP group aribute whose value
uniquely identifies a user. By default, this is
"uniqueMember". See the example below.

groupBindings Specifies the mappings between LDAP
groups and Terracoa roles. For example,
groupBindings=bandleaders=admin,
bandmembers=terracotta maps the LDAP groups
"bandleaders" and "bandmembers" to the "admin"
and "terracoa" Terracoa roles, respectively.

For example:
<auth>
 <realm>com.tc.net.core.security.ShiroLdapRealm</realm>
 <url>ldap://dizzy@172.16.254.1:636?
 userDnTemplate=cn=%7B0%7D,ou=users,dc=mycompany,dc=com%26
 groupDnTemplate=cn=%7B0%7D,ou=groups,dc=mycompany,dc=com%26
 groupAttribute=uniqueMember%26
 groupBindings=bandleaders=admin,bandmembers=terracotta</url>
 <user></user>
</auth>

This implies the LDAP directory structure is set up similar to the following:
+ dc=com
 + dc=mycompany
 + ou=groups
 + cn=bandleaders

M
Even Header

Using LDAP or Active Directory for Authentication

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 48

 | uniqueMember=dizzy
 | uniqueMember=duke
 + cn=bandleaders
 | uniqueMember=art
 | uniqueMember=bird

If, however, the the LDAP directory structure is set up similar to the following:
+ dc=com
 + dc=mycompany
 + ou=groups
 + cn=bandleaders
 | musician=dizzy
 | musician=duke
 + cn=bandleaders
 | musician=art
 | musician=bird

then the value of groupAribute should be "musician".

Using the CDATA Construct
To avoid encoding the URL, wrap it in a CDATA construct as shown:
<url><![CDATA[ldap://dizzy@172.16.254.1:636?
 userDnTemplate=cn={0},ou=users,dc=mycompany,dc=com&
 groupDnTemplate=cn={0},ou=groups,dc=mycompany,dc=com&
 groupAttribute=uniqueMember&
 groupBindings=bandleaders=admin,bandmembers=terracotta]]></url>

M
Odd Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 49

10 Using Encrypted Keychains

■ Introduction ... 50

■ Configuration Example ... 52

■ Configuring the Encrypted Server Keychain .. 53

■ Adding Entries to Encrypted Keychain Files .. 53

■ Configuring the Encrypted Client Keychain Files .. 54

■ Securing with the TMS .. 55

■ Reading the Keychain Master Password from a File .. 55

M
Even Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 50

Introduction

Note: For a brief overview of Terracoa security with links to individual topics, see
“Overview of BigMemory Max Security” on page 5.

Security for the Terracoa Server Array (TSA) is set up using Terracoa configuration,
tools provided in the Terracoa kit, standard Java tools, and public key infrastructure
(via standard digital X.509 digital certificates). This setup process is described in “Seing
Up Server Security” on page 17.

By default, the keychain script that creates Terracoa keychain files uses an obfuscation
scheme to protect passwords. This scheme is adequate for development environments or
environments where keychain-file security is already assured.

If your environment requires stronger protection for keychain files, use the encryption
scheme described in this page. The encryption scheme requires a master password each
time the keychain file is accessed.

Note: Except for the keychain setup, you must follow the setup instructions,
including for authentication and SSL, as described in “Seing Up Server
Security” on page 17.

The following diagram shows where the master password is required in the startup
process of a Terracoa cluster.

M
Odd Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 51

From the point of view of the Terracoa server, security checks take place at startup and
at the time a connection is made with another node on the cluster:

1. At startup, server1 requires a password to be entered directly from the console
to complete its startup process. The password can also be “read from a file” on
page 55 to avoid manual entry.

2. A connection request from server2 initiates the process of establishing a secure
connection using SSL.

3. Server1 authenticates server2 using stored credentials. Credentials are also
associated with a role that authorizes server2. The process is symmetrical: server2
authenticates and authorizes server1.

4. A connection request from a Terracoa client initiates the process of establishing a
secure connection using SSL.

5. Server1 authenticates and authorizes the client using stored credentials and
associated roles. Because a client might communicate with any active server in the
cluster during its lifetime, the client must be able to authenticate with any active

M
Even Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 52

server. Because active servers can fail over to mirror servers, each client should be
able to authenticate against all servers in the cluster.

From the point of view of a Terracoa client, security checks occur at the time the client
aempts to connect to an active server in the cluster:

1. The client uses a server URI that includes the client username.

A typical (non-secure) URI is <server-address>:<port>. A URI that initiates a
secure connection takes the form <client-username>@<server-address>:<port>.

2. A secure connection using SSL is established with the server.

3. The client sends a password fetched from a local keychain file. The password is
associated with the client username.

Note that the diagram and process shown above are similar to those found in “Seing
Up Server Security” on page 17. The main differences, described in this document,
concern the use of the keychain file.

Configuration Example
The following configuration snippet is an example of how security could be set up for
the servers in the illustration above:
<tc:tc-config xmlns:tc="http://www.terracotta.org/config">
...
 <servers secure="true">
 <server host="172.16.254.1" name="server1">
 ...
 <security>
 <ssl>
 <certificate>jks:server1alias@/the/path/keystore-file.jks</certificate>
 </ssl>
 <keychain>
 <secret-provider>
 com.terracotta.management.security.ConsoleFetchingBackend
 </secret-provider>
 <url>file:///%(user.dir)/server1keychain.tkc</url>
 </keychain>
 <auth>
 <realm>com.tc.net.core.security.ShiroIniRealm</realm>
 <url>file:///%(user.dir)/myShiroFile.ini</url>
 <user>server1username</user>
 </auth>
 </security>
 ...
 </server>
 <server host="172.16.254.2" name="server2">
 ...
 <security>
 <ssl>
 <certificate>jks:server2alias@/the/path/keystore-file.jks</certificate>
 </ssl>
 <keychain>
 <url>file:///%(user.dir)/server2keychain.tkc</url>
 </keychain>
 <auth>

M
Odd Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 53

 <realm>com.tc.net.core.security.ShiroIniRealm</realm>
 <url>file:///%(user.dir)/myShiroFile.ini</url>
 <user>server2username</user>
 </auth>
 </security>
 ...
 </server>
 ...
 </servers>
...
</tc:tc-config>

See the “configuration section” on page 24 for more information on the configuration
elements in the example.

Note: Script names in the examples given below are for UNIX and Linux systems.
Equivalent scripts are available for Microsoft Windows in the same locations.
Replace the .sh extension with .bat and convert path delimiters as appropriate.

Configuring the Encrypted Server Keychain
By default, keychain files protect stored passwords using an obfuscation scheme. You
can override this scheme by explicitly naming the secret provider for encryption:
<secret-provider>
com.terracotta.management.security.ConsoleFetchingBackend
</secret-provider>

This secret provider is also shown in the configuration example above.

Tip: Overriding the Configured Secret Provider - You can override the configured
secret provider using the property com.terracotta.SecretProvider . For
example, to use obfuscation without changing configuration, use
com.terracotta.SecretProvider=
 com.terracotta.management.security.ObfuscatingSecretProviderBackend

Adding Entries to Encrypted Keychain Files
You must also add entries to the keychain file as described in “Seing up the Server
Keychain” on page 20, but avoid using the -O flag when using the keychain script.

For example, to create an entry for the local server's keystore password, use:
tools/security/bin/keychain.sh <keychain-file> <certificate-URI>

If the keychain file does not exist, add the -c option to create it:
tools/security/bin/keychain.sh -c <keychain-file> <certificate-URI>

You will be prompted for the keychain file's master password, then for a password to
associate with the URI. For the URI, you must enter the same password used to secure the
server's certificate in the keystore.

For example, to create an entry for server1 from the configuration example above, enter:

M
Even Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 54

tools/security/bin/keychain.sh server1keychain.tkc jks:server1alias@keystore-file.jks
Terracotta Management Console - Keychain Client
Open the keychain by entering its master key: xxxxxxx
Enter the password you wish to associate with this URL: server1pass
Confirm the password to associate with this URL: server1pass
Password for jks:server1alias@keystore-file.jks successfully stored

To create an entry for server2 in server1's keychain, use:
tools/security/bin/keychain.sh server1keychain.tkc
tc://server2username@172.16.254.2:9530

Configuring the Encrypted Client Keychain Files
For clients, set the secret provider with the following property:
com.terracotta.express.SecretProvider=
net.sf.ehcache.terracotta.security.ConsoleFetchingSecretProvider

Add entries to the keychain file as described in “Seing up the Server Keychain” on
page 20, but avoid using the -O flag when using the keychain script.

For example:
tools/security/bin/keychain.sh clientKeychainFile tc://client1@172.16.254.1:9510

When you run the keychain script, the following prompt should appear:
Terracotta Management Console - Keychain Client
KeyChain file successfully created in clientKeychainFile
Open the keychain by entering its master key:

Enter the master key, then answer the prompts for the secret to be associated with the
server URI:
Enter the password you wish to associate with this URL:
Password for tc://client1@172.16.254.1:9510 successfully stored

Note that the script does not verify the credentials or the server address.

If the keychain file does not already exist, use the -c flag to create it:
tools/security/bin/keychain.sh -c clientKeychainFile tc://client1@172.16.254.1:9510

If creating the keychain file, you will be prompted for a master password. To automate
the entry of the master password, see “Clients Automatically Reading the Keychain
Password” on page 57.

The Terracoa client searches for the keychain file in the following locations:

%(user.home)/.tc/mgmt/keychain

%(user.dir)/keychain.tkc

The path specified by the system property com.tc.security.keychain.url

M
Odd Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 55

Securing with the TMS
If you are using the Terracoa Management Server (TMS), you must set up “JMX
authentication” on page 34. Every node in the cluster must have the following entry in
its keychain, all locked with the identical secret:
jmx:net.sf.ehcache:type=RepositoryService

In addition, server-server REST-agent communication must also be authorized using a
keychain entry using the format jmx://<user>@<host>:<group-port> .

Add entries to the keychain file as described in “Seing up the Server Keychain” on
page 20, but avoid using the -O flag when using the keychain script.

For example, to create an entry for server2 in server1's keychain, use:
tools/security/bin/keychain.sh server1keychain.tkc
jmx://server2username@172.16.254.2:9530

Each server must have an entry for itself and one for each other server in the TSA.

Reading the Keychain Master Password from a File
Instead of manually entering the master keychain password at startup, you can set
servers and clients to automatically read the password.

Note: Cygwin (on Windows) is not supported for this feature.

Servers Automatically Reading the Keychain Password

1. Implement the interface com.terracotta.management.security.SecretProviderBackEnd (located
in the JAR com.terracotta:security-keychain) to fetch a password from a given file. For
example:
package com.foo;
import com.terracotta.management.security.SecretProviderBackEnd;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.IOException;
public class MySecretProvider implements SecretProviderBackEnd {
 private byte[] bytes;
 // This method reads the password into a byte array.
 @Override
 public void fetchSecret() {
 try {
 bytes = readPasswordFile("password.pw");
 } catch (IOException ioe) {
 throw new RuntimeException("Cannot read password from file", ioe);
 }
 }
 private byte[] readPasswordFile(String filename) throws IOException {
 FileInputStream fis = new FileInputStream(filename);
 try {
 byte[] buffer = new byte[64];

M
Even Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 56

 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 while (true) {
 int read = fis.read(buffer);
 if (read == -1) {
 break;
 }
 baos.write(buffer, 0, read);
 }
 return baos.toByteArray();
 } finally {
 fis.close();
 }
 }
 // This method returns the byte array containing the password.
 @Override
 public byte[] getSecret() {
 return bytes;
 }
}

2. Create a JAR containing your implementation (MySecretProvider), then copy it to
the BigMemory Max server/lib directory.

3. Assuming the new JAR file is called my-secret-provider.jar, edit the start-tc-server
script in the BigMemory Max server/bin as follows:

UNIX/LINUX

Change the line
-cp "${TC_INSTALL_DIR}/lib/tc.jar" \

to
-cp "${TC_INSTALL_DIR}/lib/tc.jarr:${TC_INSTALL_DIR}/lib/my-secret-provider.jar" \

MICROSOFT WINDOWS

Change the line
set CLASSPATH=%TC_INSTALL_DIR%\lib\tc.jar

to
set CLASSPATH=%TC_INSTALL_DIR%\lib\tc.jar;%TC_INSTALL_DIR%\lib\my-secret-provider.jar

4. Ensure that the server's configuration includes the <secret-provider> element
specifying your implementation:
<security>
 ...
 <keychain>
 <url>/path/to/my/keychain</url>
 <secret-provider>com.foo.MySecretProvider</secret-provider>
 </keychain>
 ...
</security>

At startup, the server will read the keychain password from the file specified in your
implementation.

For a simpler solution, you could instead hardcode the password:
 package com.foo;
 import com.terracotta.management.security.SecretProviderBackEnd;

M
Odd Header

Using Encrypted Keychains

BigMemory Max Security Guide Version 4.3.5 (Innovation Release) 57

 public class MySecretProvider implements SecretProviderBackEnd {
 // This method returns the byte array containing the password.
 @Override
 public byte[] getSecret() {
 return new byte[] {'p', 'a', 's', 's', 'w', 'o', 'r', 'd'};
 }
 @Override
 public void fetchSecret() {
 }
 }

Clients Automatically Reading the Keychain Password

You can set up Terracoa clients to read their keychain's master password in a similar
way as for servers. Import org.terracotta.toolkit.SecretProvider and override fetchSecret() and
getSecret() as shown above.

Instead of packaging the implementation in a JAR, specify your implementing class by
using the system property com.terracotta.express.SecretProvider.

	Table of Contents
	Overview of BigMemory Max Security
	Introduction to Security
	Authentication Mechanisms
	Configuring Security Using LDAP (via JAAS)
	Configuring Security Using JMX Authentication
	Configuring SSL-based Security
	User Roles
	Using Scripts Against a Server with Authentication
	Extending Server Security

	About Security in a Cluster
	Introduction
	Security Related Files
	Process Diagram

	Setting Up Server Security
	Basic Steps to Set Up Server Security
	Creating the Server Certificates
	Setting up the Server Keychain
	Setting up Authentication/Authorization
	Setting up Authorization for TMC Queries
	Configuring Server Security

	Enabling SSL on Terracotta Clients
	How to Enable SSL Securing on the Client
	Creating a Keychain Entry
	Using a Client Truststore

	Serialization: Securing Against Untrusted Clients
	Setting Up a TSA to Use the Terracotta Management Server
	Required Configuration
	Configuring Identity Assertion
	JMX Authentication Using the Keychain
	Setting up the Security on the TMS
	Securing TSA Access using a Permitted IP List
	Restricting Clients to Specified Servers (Optional)

	Running a Secured Server
	Introduction
	Confirming that Security is Enabled
	Stopping a Secured Server
	Troubleshooting

	Using LDAP or Active Directory for Authentication
	Introduction
	Configuration Overview
	Active Directory Configuration
	Standard LDAP Configuration
	Using the CDATA Construct

	Using Encrypted Keychains
	Introduction
	Configuration Example
	Configuring the Encrypted Server Keychain
	Adding Entries to Encrypted Keychain Files
	Configuring the Encrypted Client Keychain Files
	Securing with the TMS
	Reading the Keychain Master Password from a File

