
BigMemory Max Integrations

Innovation Release

Version 4.3.5

April 2018

This document applies to BigMemory Max Version 4.3.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: BMM-INT-435-20180417

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 3

Table of Contents

Using BigMemory Max with Hibernate.. 5
About Using BigMemory Max with Hibernate.. 6
Downloading and Installing BigMemory Max for Hibernate... 6
Building with Maven... 6
Configuring BigMemory Max as the Second-Level Cache Provider.. 7
Enabling Second-Level Cache and Query Cache Settings..8
Configuring Hibernate Entities to use Second-Level Caching..9
Configuring ehcache.xml Settings.. 10

Ehcache Settings for Domain Objects.. 10
Ehcache Settings for Collections.. 10
Ehcache Settings for Queries... 11

The Demo Application and Tutorial..12
Performance Tips..13
Viewing Hibernate Statistics... 13
FAQ... 13

Using BigMemory Max with ColdFusion...15
About ColdFusion and BigMemory Max...16
Example Integration..16

Using BigMemory Max with Spring... 17
Using Spring 3.1...18
Spring 2.5 to 3.1...18
Annotations for Spring Project..19

Using BigMemory Max with JSR107..21
About BigMemory Max Support for JSR107.. 22

M
Even Header

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 4

M
Odd Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 5

1 Using BigMemory Max with Hibernate

■ About Using BigMemory Max with Hibernate .. 6

■ Downloading and Installing BigMemory Max for Hibernate ... 6

■ Building with Maven ... 6

■ Configuring BigMemory Max as the Second-Level Cache Provider .. 7

■ Enabling Second-Level Cache and Query Cache Settings ... 8

■ Configuring Hibernate Entities to use Second-Level Caching ... 9

■ Configuring ehcache.xml Settings .. 10

■ The Demo Application and Tutorial ... 12

■ Performance Tips ... 13

■ Viewing Hibernate Statistics ... 13

■ FAQ .. 13

M
Even Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 6

About Using BigMemory Max with Hibernate

BigMemory Max easily integrates with the Hibernate Object/Relational persistence and
query service. To configure BigMemory Max for Hibernate:

Download and install BigMemory Max in your project as described in
“Downloading and Installing BigMemory Max for Hibernate” on page 6.

Configure BigMemory Max as a cache provider in your project's Hibernate
configuration as described in “Configuring BigMemory Max as the Second-Level
Cache Provider” on page 7.

Enable second-level caching in your project's Hibernate configuration as described in
“Enabling Second-Level Cache and Query Cache Seings” on page 8.

Configure Hibernate caching for each entity, collection, or query that you want to
cache as described in “Configuring Hibernate Entities to use Second-Level Caching”
on page 9.

Configure the ehcache.xml file for each entity, collection, or query configured for
caching as described in “Configuring ehcache.xml Seings” on page 10.

For additional information about cache configuration in Hibernate, see the Hibernate
product documentation at “hp://www.hibernate.org/”.

Downloading and Installing BigMemory Max for Hibernate

The Hibernate provider is in the ehcache-ee module provided in the BigMemory Max
kit.

Building with Maven
Dependency versions vary with the specific kit you intend to use. Each kit is guaranteed
to contain compatible artifacts, so find the artifact versions you need by downloading a
kit. Configure or add the following repository to your build (pom.xml):
<repository>
 <id>terracotta-releases</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>false</enabled></snapshots>
</repository>

Configure or add the Ehcache and BigMemory modules defined by the following
dependency to your build (pom.xml):
<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-ee</artifactId>

http://www.hibernate.org/

M
Odd Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 7

 <version>${ehcacheVersion}</version>
</dependency>
<dependency>
 <groupId>org.terracotta.bigmemory</groupId>
 <artifactId>bigmemory</artifactId>
 <version>${bigmemoryVersion}</version>
</dependency>

For the Hibernate-Ehcache integration, add the following dependency:
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-ehcache</artifactId>
 <version>${hibernateVersion}</version>
</dependency>

For example, the Hibernate-Ehcache integration dependency for Hibernate 4.0.0 is:
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-ehcache</artifactId>
 <version>4.0.0</version>
</dependency>

Note: Some versions of hibernate-ehcache might have a dependency on a specific
version of Ehcache. Check the hibernate-ehcache POM.

Configuring BigMemory Max as the Second-Level Cache
Provider
To configure BigMemory Max as a Hibernate second-level cache, set the region
factory property to one of the following in the Hibernate configuration. The Hibernate
configuration is specified either by hibernate.cfg.xml, hibernate.properties or Spring. The
format shown below is for hibernate.cfg.xml.

Hibernate 3.3 (and later 3.x versions)

For instance creation, use:
<property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

To force Hibernate to use a singleton of Ehcache CacheManager, use:
<property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.SingletonEhCacheRegionFactory</property>

Hibernate 4.x

For Hibernate 4, use org.hibernate.cache.ehcache.EhCacheRegionFactory
instead of net.sf.ehcache.hibernate.EhCacheRegionFactory, or
org.hibernate.cache.ehcache.SingletonEhCacheRegionFactory instead of
net.sf.ehcache.hibernate.SingletonEhCacheRegionFactory.

M
Even Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 8

Enabling Second-Level Cache and Query Cache Settings
In addition to configuring the second-level cache provider seing, you will need to turn
on the second-level cache (by default it is configured to off - 'false' - by Hibernate). To do
this, set the following property in your Hibernate config:
<property name="hibernate.cache.use_second_level_cache">true</property>

You might also want to turn on the Hibernate query cache. To do this, set the following
property in your Hibernate config:
<property name="hibernate.cache.use_query_cache">true</property>

Setting the ConfigurationResourceName Property

You can optionally set the ConfigurationResourceName property to specify the
location of the Ehcache configuration file to use with the given Hibernate instance and
cache provider/region-factory. The resource is searched for in the root of the classpath.
It is used to support multiple CacheManagers in the same VM. It tells Hibernate which
configuration to use. An example might be "ehcache-2.xml."

When using multiple Hibernate instances, it is recommended to use multiple non-
singleton providers or region factories, each with a dedicated Ehcache configuration
resource.
net.sf.ehcache.configurationResourceName=/name_of_ehcache .xml

Setting the Hibernate Cache Provider Programmatically

You can optionally specify the provider programmatically in Hibernate by adding
necessary Hibernate property seings to the configuration before creating the
SessionFactory:
Configuration.setProperty("hibernate.cache.region.factory_class",
 "net.sf.ehcache.hibernate.EhCacheRegionFactory")

For Hibernate 4, use org.hibernate.cache.ehcache.EhCacheRegionFactory instead
of net.sf.ehcache.hibernate.EhCacheRegionFactory.

Putting it all Together

If you are enabling both second-level caching and query caching, then your Hibernate
config file should contain the following:
<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

An equivalent Spring configuration file would contain:
<prop key="hibernate.cache.use_second_level_cache">true</prop>
<prop key="hibernate.cache.use_query_cache">true</prop>
<prop key="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</prop>

M
Odd Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 9

For Hibernate 4, use org.hibernate.cache.ehcache.EhCacheRegionFactory instead
of net.sf.ehcache.hibernate.EhCacheRegionFactory in both samples given above.

Configuring Hibernate Entities to use Second-Level Caching
In addition to configuring the Hibernate second-level cache provider,
Hibernate must also be configured to enable caching for entities, collections,
and queries. For example, to enable cache entries for the domain object
com.somecompany.someproject.domain.Country, there would be a mapping file similar
to the following:
<hibernate-mapping>
<class
name="com.somecompany.someproject.domain.Country"
table="ut_Countries"
dynamic-update="false"
dynamic-insert="false"
>
...
</class>
</hibernate-mapping>

To enable caching for this domain object, you add the following element to its mapping
entry:
<cache usage="read-write|nonstrict-read-write|read-only" />

For example:
<hibernate-mapping>
<class
name="com.somecompany.someproject.domain.Country"
table="ut_Countries"
dynamic-update="false"
dynamic-insert="false"
>
 <cache usage="read-write" />
...
</class>
</hibernate-mapping>

You can also enable caching using the @Cache annotation as shown below.
@Entity
@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class Country {
...
}

Definition of the Different Cache Strategies

read-only - Caches data that is never updated.

nonstrict-read-write - Caches data that is sometimes updated without ever
locking the cache. If concurrent access to an item is possible, this concurrency
strategy makes no guarantee that the item returned from the cache is the latest
version available in the database. Configure your cache timeout accordingly.

M
Even Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 10

read-write - Caches data that is sometimes updated while maintaining the
semantics of "read commied" isolation level. If the database is set to "repeatable
read," this concurrency strategy almost maintains the semantics. Repeatable-read
isolation is compromised in the case of concurrent writes.

Configuring ehcache.xml Settings
Because the ehcache.xml file has a defaultCache, caches will always be created when
required by Hibernate. However you can gain more control over Hibernate caches
by configuring each cache based on its name. Doing this is particularly important,
because Hibernate caches are populated from databases, and there is potential for
them to become very large. You can control the size of a Hibernate cache by capping its
maxEntriesLocalHeap property and specifying whether to swap to disk beyond that.

Ehcache Settings for Domain Objects
Hibernate bases the names of Domain Object caches on the fully
qualified name of Domain Objects. So, for example, a cache for
com.somecompany.someproject.domain.Country would be represented by a cache
configuration entry in ehcache.xml similar to the following:
<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxEntriesLocalHeap="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 <persistence strategy="localTempSwap"/>
 />
</ehcache>

Hibernate CacheConcurrencyStrategy for Domain Objects

The read-write, nonstrict-read-write and read-only policies apply to Domain Objects.

Ehcache Settings for Collections
Hibernate creates collection cache names based on the fully qualified name of the
Domain Object followed by "." and the collection field name. For example, a Country
domain object has a set of advancedSearchFacilities. The Hibernate doclet for the
accessor looks like this:
/**
* Returns the advanced search facilities that should appear for this country.
* @hibernate.set cascade="all" inverse="true"
* @hibernate.collection-key column="COUNTRY_ID"
* @hibernate.collection-one-to-many class="com.wotif.jaguar.domain.AdvancedSearchFacility"
* @hibernate.cache usage="read-write"
*/
public Set getAdvancedSearchFacilities() {

M
Odd Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 11

return advancedSearchFacilities;
}

You need an additional cache configured for the set. The ehcache.xml configuration
looks like this:
<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <cache name="com.somecompany.someproject.domain.Country"
 maxEntriesLocalHeap="50"
 eternal="false"
 timeToLiveSeconds="600"
 <persistence strategy="localTempSwap"/>
/>
 <cache
name="com.somecompany.someproject.domain.Country.advancedSearchFacilities"
 maxEntriesLocalHeap="450"
 eternal="false"
 timeToLiveSeconds="600"
 <persistence strategy="localTempSwap"/>
/>
</ehcache>

Hibernate CacheConcurrencyStrategy for Collections

The read-write, nonstrict-read-write and read-only policies apply to Domain Object
collections.

Ehcache Settings for Queries
Hibernate allows the caching of query results.

StandardQueryCache

This cache is used if you use a query cache without seing a name. A typical
ehcache.xml configuration is:
<cache
name="org.hibernate.cache.StandardQueryCache"
maxEntriesLocalHeap="5"
eternal="false"
timeToLiveSeconds="120"
<persistence strategy="localTempSwap"/>
/>

UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It is important that
the cache timeout of the underlying cache implementation is set to a higher value than
the timeouts of any of the query caches. Therefore, it is recommend that the underlying
cache not be configured for expiry at all. A typical ehcache.xml configuration is:
<cache
name="org.hibernate.cache.UpdateTimestampsCache"
maxEntriesLocalHeap="5000"
eternal="true"
<persistence strategy="localTempSwap"/>
/>

M
Even Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 12

Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using
Query.setCacheRegion(String name). The name of the cache in ehcache.xml is then the
name given in that method. The name can be whatever you want, but by convention you
should use "query." followed by a descriptive name. For example:
<cache name="query.AdministrativeAreasPerCountry"
maxEntriesLocalHeap="5"
eternal="false"
timeToLiveSeconds="86400"
<persistence strategy="localTempSwap"/>
/>

Using Query Caches

Suppose you have a common query running against the Country Domain. Here is the
code to use a query cache with it:
public List getStreetTypes(final Country country) throws HibernateException {
final Session session = createSession();
try {
 final Query query = session.createQuery(
 "select st.id, st.name"
 + " from StreetType st "
 + " where st.country.id = :countryId "
 + " order by st.sortOrder desc, st.name");
 query.setLong("countryId", country.getId().longValue());
 query.setCacheable(true);
 query.setCacheRegion("query.StreetTypes");
 return query.list();
} finally {
 session.close();
}
}

The query.setCacheable(true) line caches the query. The
query.setCacheRegion("query.StreetTypes") line sets the name of the
Query Cache. Alex Miller has a good article on the query cache at “hp://
tech.puredanger.com/2009/07/10/hibernate-query-cache/”.

Hibernate CacheConcurrencyStrategy for Queries

None of the read-write, nonstrict-read-write and read-only policies apply to Domain
Objects. Cache policies are not configurable for query cache. They act like a non-locking
read only cache.

The Demo Application and Tutorial
A demo application is available that shows you how to use the Hibernate
CacheRegionFactory. You can download the application from here: “hp://
svn.terracoa.org/svn/forge/projects/hibernate-tutorial-web/trunk”.

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
http://svn.terracotta.org/svn/forge/projects/hibernate-tutorial-web/trunk
http://svn.terracotta.org/svn/forge/projects/hibernate-tutorial-web/trunk

M
Odd Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 13

Performance Tips
Session.load

Session.load will always try to use the cache.

Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use
the cache for any associated objects. Session.find does, however, cause the cache to be
populated. Query.find works in exactly the same way. Use these where the chance of
geing a cache hit is low.

Session.iterate and Query.iterate

Session.iterate always uses the cache for the primary object and any associated
objects. Query.iterate works in exactly the same way. Use these where the chance of
geing a cache hit is high.

Viewing Hibernate Statistics
It is possible to access the Hibernate statistics and BigMemory Max statistics using the
Java Management Extensions (JMX).

The EhcacheHibernateMBean is the main interface that exposes all the APIs via JMX. It
basically extends two interfaces: EhcacheStats and HibernateStats. As the names imply,
EhcacheStats contains methods related with Ehcache (and thereby, BigMemory Max)
and HibernateStats contains methods related with Hibernate.

Using these APIs, you can see cache hit/miss/put rates, change config element values
(e.g., maxElementInMemory, TTL TTI), enable/disable statistics collection, and various
other things. For details, see the specific interface.

FAQ
If I use BigMemory Max with my application and with Hibernate for second-level caching, should I try
to use the CacheManager created by Hibernate for my app's caches?

While you could share the resource file between the two CacheManagers, a clear
separation between the two is recommended. Your application may have a different
lifecycle than Hibernate, and in each case your CacheManager "Automatic Resource
Control" seings might need to be different.

M
Even Header

Using BigMemory Max with Hibernate

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 14

Should I use the provider in the Hibernate distribution or in BigMemory Max's Ehcache?

Since Hibernate 2.1, Hibernate has included an Ehcache CacheProvider. That provider is
periodically synced up with the provider in the Ehcache Core distribution. New features
are generally added in to the Ehcache Core provider and then the Hibernate one.

Does BigMemory Max support the transactional strategy?

Yes. It was introduced in Ehcache 2.1.

Why do certain caches sometimes get automatically cleared by Hibernate?

Whenever a Query.executeUpdate() is run, Hibernate invalidates affected cache regions
(those corresponding to affected database tables) to ensure that no stale data is cached.
This should also happen whenever stored procedures are executed.

For more information, see the Hibernate issue HHH-2224 at : “hps://
hibernate.atlassian.net/browse/HHH-2224”.

How are Hibernate entities keyed?

Hibernate identifies cached entities using an object id. This is normally the primary key
of a database row.

Are compound keys supported?

Yes.

I am getting this error message: "An item was expired by the cache while it was locked." What is it?

Soft locks are implemented by replacing a value with a special type that marks the
element as locked, thus indicating to other threads to treat it differently than a normal
element. This is used in the Hibernate Read/Write strategy to force fall-through to
the database during the two-phase commit. We cannot know exactly what should be
returned by the cache while the commit is in process (but the database does). If a soft-
locked element is evicted by the cache during the two-phase commit, then once the two-
phase commit completes, the cache will fail to update (since the soft-locked element was
evicted) and the cache entry will be reloaded from the database on the next read of that
object. This is non-fatal, but could increase the database load slightly.

In summary the Hibernate messages are not problematic. The underlying cause
is that the probabilistic evictor can theoretically evict recently loaded items.
You can also use the deterministic evictor to avoid this problem. Specify the -
Dnet.sf.ehcache.use.classic.lru=true system property to turn on classic LRU,
which contains a deterministic evictor.

https://hibernate.atlassian.net/browse/HHH-2224
https://hibernate.atlassian.net/browse/HHH-2224

M
Odd Header

Using BigMemory Max with ColdFusion

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 15

2 Using BigMemory Max with ColdFusion

■ About ColdFusion and BigMemory Max .. 16

■ Example Integration ... 16

M
Even Header

Using BigMemory Max with ColdFusion

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 16

About ColdFusion and BigMemory Max
ColdFusion ships with BigMemory Max's Ehcache. The ColdFusion community has
actively engaged with Ehcache and put out several blogs. Here are two to get you
started. For a short introduction, see “Raymond Camden's blog”. For more in-depth
analysis, see “14 days of ColdFusion caching”, by Aaron West.

Example Integration
To integrate BigMemory Max with ColdFusion, first add the BigMemory Max jars to
your web application lib directory.

The following code demonstrates how to call Ehcache from ColdFusion. It will cache
a ColdFusion object and set the expiration time to 30 seconds. If you refresh the page
many times within 30 seconds, you will see the data from cache. After 30 seconds, you
will see a cache miss, then the code will generate a new object and put it in cache again.
<CFOBJECT type="JAVA" class="net.sf.ehcache.CacheManager" name="cacheManager">
<cfset cache=cacheManager.getInstance().getCache("MyBookCache")>
<cfset myBookElement=#cache.get("myBook")#>
<cfif IsDefined("myBookElement")>
 <cfoutput>
 myBookElement: #myBookElement#

 </cfoutput>
 <cfif IsStruct(myBookElement.getObjectValue())>
 Cache Hit<p/>
 <!-- Found the object from cache -->
 <cfset myBook = #myBookElement.getObjectValue()#>
 </cfif>
</cfif>
<cfif IsDefined("myBook")>
<cfelse>
Cache Miss
 <!-- object not found in cache, go ahead create it -->
 <cfset myBook = StructNew()>
 <cfset a = StructInsert(myBook, "cacheTime", LSTimeFormat(Now(), 'hh:mm:sstt'), 1)>
 <cfset a = StructInsert(myBook, "title", "EhCache Book", 1)>
 <cfset a = StructInsert(myBook, "author", "Greg Luck", 1)>
 <cfset a = StructInsert(myBook, "ISBN", "ABCD123456", 1)>
 <CFOBJECT type="JAVA" class="net.sf.ehcache.Element" name="myBookElement">
 <cfset myBookElement.init("myBook", myBook)>
 <cfset cache.put(myBookElement)>
</cfif>
<cfoutput>
Cache time: #myBook["cacheTime"]#

Title: #myBook["title"]#

Author: #myBook["author"]#

ISBN: #myBook["ISBN"]#
</cfoutput>

http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page

M
Odd Header

Using BigMemory Max with Spring

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 17

3 Using BigMemory Max with Spring

■ Using Spring 3.1 .. 18

■ Spring 2.5 to 3.1 .. 18

■ Annotations for Spring Project ... 19

M
Even Header

Using BigMemory Max with Spring

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 18

Using Spring 3.1
BigMemory Max's Ehcache supports Spring integration. Spring 3.1 includes an Ehcache
implementation. See the “Spring 3.1 JavaDoc”.

Spring Framework 3.1 has a generic cache abstraction for transparently applying
caching to Spring applications. It has caching support for classes and methods using two
annotations:

@Cacheable

Cache a method call. In the following example, the value is the return type, a Manual.
The key is extracted from the ISBN argument using the id.
@Cacheable(value="manual", key="#isbn.id")
public Manual findManual(ISBN isbn, boolean checkWarehouse)

@CacheEvict

Clears the cache when called.
@CacheEvict(value = "manuals", allEntries=true)
public void loadManuals(InputStream batch)

Spring 2.5 to 3.1
This open source, led by Eric Dalquist, predates the Spring 3.1 project. You can use it
with earlier versions of Spring, or you can use it with 3.1.

@Cacheable

As with Spring 3.1, it uses the @Cacheable annotation to cache a method. In this
example, calls to findMessage are stored in a cache named "messageCache". The values
are of type Message. The id for each entry is the id argument given.
@Cacheable(cacheName = "messageCache")
public Message findMessage(long id)

@TriggersRemove

For cache invalidation, there is the @TriggersRemove annotation. In this example,
cache.removeAll() is called after the method is invoked.
@TriggersRemove(cacheName = "messagesCache",
when = When.AFTER_METHOD_INVOCATION, removeAll = true)
public void addMessage(Message message)

See “hp://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-
spring/” for a blog post explaining its use and providing further links.

http://static.springsource.org/spring/docs/3.1.0.M1/javadoc-api/org/springframework/cache/ehcache/package-summary.html
http://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-spring/
http://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-spring/

M
Odd Header

Using BigMemory Max with Spring

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 19

Annotations for Spring Project
To dynamically configure caching of method return values, use the Ehcache Annotations
for Spring project at “Ehcache Annotations for Spring project at code.google.com”. This
project will allow you to configure caching of method calls dynamically. The parameter
values of the method are used as a composite key into the cache, caching the return
value of the method.

For example, suppose you have a method Dog getDog(String name).

Once caching is added to this method, all calls to the method are cached using the name
parameter as a key.

So, assume at time t0 the application calls this method with the name equal to "fido".
Because "fido" doesn't exist, the method is allowed to run, generating the "fido" Dog
object, and returning it. This object is then put into the cache using the key "fido".

Then assume at time t1 the application calls this method with the name equal to "spot".
The same process is repeated, and the cache is now populated with the Dog object
named "spot."

Finally, at time t2 the application again calls the method with the name "fido". Since
"fido" exists in the cache, the "fido" Dog object is returned from the cache instead of
calling the method.

To implement this in your application, follow these steps:

Step 1:

Add the jars to your application as listed on the Ehcache Annotations for Spring project
at “Ehcache Annotations for Spring project at code.google.com”.

Step 2:

Add the Annotation to the methods you want to cache. Let's assume you are using the
Dog getDog(String name) method from above:
@Cacheable(name="getDog")
Dog getDog(String name)
{

}

Step 3:

Configure Spring. You must add the following to your Spring configuration file in the
beans declaration section:
<ehcache:annotation-driven cache-manager="ehCacheManager" />

More details can be found at:

http://code.google.com/p/ehcache-spring-annotations
http://code.google.com/p/ehcache-spring-annotations

M
Even Header

Using BigMemory Max with Spring

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 20

Ehcache Annotations for Spring project at code.google.com at “hp://
code.google.com/p/ehcache-spring-annotations”.

The project geing started page at “hp://code.google.com/p/ehcache-spring-
annotations/wiki/UsingCacheable”.

The article "Caching Java methods with Spring 3" at “hp://
www.jeviathon.com/2010/04/caching-java-methods-with-spring-3.html”

http://code.google.com/p/ehcache-spring-annotations
http://code.google.com/p/ehcache-spring-annotations
http://code.google.com/p/ehcache-spring-annotations/wiki/UsingCacheable
http://code.google.com/p/ehcache-spring-annotations/wiki/UsingCacheable
http://www.jeviathon.com/2010/04/caching-java-methods-with-spring-3.html
http://www.jeviathon.com/2010/04/caching-java-methods-with-spring-3.html

M
Odd Header

Using BigMemory Max with JSR107

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 21

4 Using BigMemory Max with JSR107

■ About BigMemory Max Support for JSR107 .. 22

M
Even Header

Using BigMemory Max with JSR107

BigMemory Max Integrations Version 4.3.5 (Innovation Release) 22

About BigMemory Max Support for JSR107
Information about BigMemory Max's Ehcache support for JSR107 is available on github
at “hps://github.com/jsr107/ehcache-jcache”.

https://github.com/jsr107/ehcache-jcache

	Table of Contents
	Using BigMemory Max with Hibernate
	About Using BigMemory Max with Hibernate
	Downloading and Installing BigMemory Max for Hibernate
	Building with Maven
	Configuring BigMemory Max as the Second-Level Cache Provider
	Enabling Second-Level Cache and Query Cache Settings
	Configuring Hibernate Entities to use Second-Level Caching
	Configuring ehcache.xml Settings
	Ehcache Settings for Domain Objects
	Ehcache Settings for Collections
	Ehcache Settings for Queries

	The Demo Application and Tutorial
	Performance Tips
	Viewing Hibernate Statistics
	FAQ

	Using BigMemory Max with ColdFusion
	About ColdFusion and BigMemory Max
	Example Integration

	Using BigMemory Max with Spring
	Using Spring 3.1
	Spring 2.5 to 3.1
	Annotations for Spring Project

	Using BigMemory Max with JSR107
	About BigMemory Max Support for JSR107

