
About BigMemory Go

Innovation Release

Version 4.3.4

April 2017

This document applies to BigMemory Go Version 4.3.4 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: BMG-ABMG-434-20170419

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

About BigMemory Go Version 4.3.4 (Innovation Release) 3

Table of Contents

BigMemory Go Overview.. 5
What is BigMemory Go?.. 6
Basic Terms.. 6

Topologies...9
Topology Types...10

Storage Options... 11
Storage Tiers.. 12

Automatic Resource Control.. 15
Automatic Resource Control...16

M
Even Header

About BigMemory Go Version 4.3.4 (Innovation Release) 4

M
Odd Header

BigMemory Go Overview

About BigMemory Go Version 4.3.4 (Innovation Release) 5

1 BigMemory Go Overview

■ What is BigMemory Go? .. 6

■ Basic Terms .. 6

M
Even Header

BigMemory Go Overview

About BigMemory Go Version 4.3.4 (Innovation Release) 6

What is BigMemory Go?
BigMemory Go is a commercial extension of Ehcache, the open-source, standards-based,
and most widely used Java-based caching program for boosting performance, offloading
your database, and simplifying scalability.

BigMemory Go provides all of the features of Ehcache, while also enabling access to off-
heap memory for caching and in-memory data storage. The use of off-heap memory
enables Java applications to leverage virtually all the RAM for in-memory data storage
without lengthy pauses for garbage collection.

BigMemory Go also enables you to perform SQL queries on the data in your cache or in-
memory data store.

As with Ehcache, you can use BigMemory as a general-purpose cache/in-memory data
store or a second-level cache for Hibernate. You can additionally integrate it with third-
party products such as ColdFusion, Google App Engine, and Spring.

Basic Terms
Cache

Wiktionary defines a cache as "a store of things that will be required in the future, and
can be retrieved rapidly." A cache is a collection of temporary data that either duplicates
data located elsewhere or is the result of a computation. Data that is already in the cache
can be repeatedly accessed with minimal costs in terms of time and resources.

M
Odd Header

BigMemory Go Overview

About BigMemory Go Version 4.3.4 (Innovation Release) 7

Cache hit

When a data element is requested from cache and the element exists for the given key, it
is referred to as a cache hit (or simply, "a hit").

Cache miss

When a data element is requested from cache and the element does not exist for the
given key, it is referred to as a cache miss (or simply, "a miss").

System-of-Record

The authoritative source of truth for the data. The cache acts as a local copy of data
retrieved from or stored to the system-of-record (SOR). The SOR is often a traditional
database, although it might be a specialized file system or some other reliable long-term
storage. For the purposes of using Ehcache, the SOR is assumed to be a database.

M
Even Header

About BigMemory Go Version 4.3.4 (Innovation Release) 8

M
Odd Header

Topologies

About BigMemory Go Version 4.3.4 (Innovation Release) 9

2 Topologies

■ Topology Types .. 10

M
Even Header

Topologies

About BigMemory Go Version 4.3.4 (Innovation Release) 10

Topology Types
Standalone – The data set is held in the application node. Any other application nodes
are independent with no communication between them. If a standalone topology
is used where there are multiple application nodes running the same application,
then there is Weak Consistency between them. They contain consistent values
for immutable data or after the time-to-live on an element has completed and the
element needs to be reloaded.

Distributed – The data is held in a remote server (or array of servers) with a subset of
recently used data held in each application node. This topology offers a rich set of
consistency options.

A distributed topology is the recommended approach in a clustered or scaled-out
application environment. It provides the highest level of performance, availability,
and scalability. The distributed topology is available only with BigMemory Max.

Many production applications are deployed in clusters of multiple instances for
availability and scalability. Without a distributed topology, application clusters will
experience data drift, meaning that updates made to the data by one application does not
appear in the other instances. This also happens to web session data. Using a distributed
topology ensures that the data for all the application instances is kept in sync.

M
Odd Header

Storage Options

About BigMemory Go Version 4.3.4 (Innovation Release) 11

3 Storage Options

■ Storage Tiers .. 12

M
Even Header

Storage Options

About BigMemory Go Version 4.3.4 (Innovation Release) 12

Storage Tiers
You can divide a cache or in-memory data set across the following storage areas,
referred to as tiers:

MemoryStore – On-heap memory used to hold cache elements. This tier is subject to
Java garbage collection.

OffHeapStore – Provides overflow capacity to the MemoryStore. Limited in size only
by available RAM. Not subject to Java garbage collection (GC). Available only with
Terracoa BigMemory products.

DiskStore – Backs up in-memory cache elements and provides overflow capacity to
the other tiers.

MemoryStore

The memory store is always enabled and exists in heap memory. It has the following
characteristics:

It accepts all data, whether serializable or not.

It is the fastest storage option.

Is thread safe for use by multiple concurrent threads.

If you use OffHeapStore (available with the BigMemory products only), MemoryStore
holds a copy of the hoest subset of data from the OffHeapStore.

All caches specify their maximum in-memory size, in terms of the number of elements,
at configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an
existing element is either deleted, if overflow is not enabled, or evaluated for spooling to
another tier, if overflow is enabled.

If overflow is enabled, a check for expiry is carried out. If it is expired it is deleted; if not
it is spooled.

For information about sizing and configuring the MemoryStore, see "Configuring
Memory Store" in the BigMemory Go Configuration Guide.

OffHeapStore

The OffHeapStore extends a cache to memory outside the of the Java heap. This store,
which is not subject to Java garbage collection (GC), is limited only by the amount
of RAM available. Using OffHeapStore, you can create extremely large local caches.
OffHeapStore is only available with the Terracoa BigMemory products.

Because off-heap data is stored in bytes, only data that is Serializable is suitable for the
OffHeapStore. Any non serializable data overflowing to the OffHeapMemoryStore is
simply removed, and a WARNING level log message is emied.

M
Odd Header

Storage Options

About BigMemory Go Version 4.3.4 (Innovation Release) 13

Since serialization and deserialization take place on puing and geing from the off-
heap store, it is theoretically slower than the MemoryStore. This difference, however, is
mitigated when garbage collection associated with larger heaps is taken into account.

For the best performance, you should allocate to a cache as much heap memory as
possible without triggering GC pauses. Then, use the OffHeapStore to hold the data that
cannot fit in heap (without causing GC pauses).

For information about sizing and configuring OffHeapStore, see "Configuring
OffHeapStore" in the Configuration Guide for your BigMemory product.

DiskStore

The DiskStore provides a thread-safe disk-spooling facility that can be used for either
additional storage or persisting data through system restarts.

Note: The DiskStore tier is available only for local (standalone) instances of cache.
When you use a distributed cache (available only in BigMemory Max), a
Terracoa Server Array is used instead of a disk tier.

Only data that is Serializable can be placed in the DiskStore. Writes to and from the disk
use ObjectInputStream and the Java serialization mechanism. Any non-serializable data
overflowing to the disk store is removed and a NotSerializableException is thrown. Be
aware that serialization speed is affected by the size of the objects being serialized and
their type. For example, it has been shown that:

The serialization time for a Java object consisting of a large Map of String arrays was
126ms, where the serialized size was 349,225 bytes.

The serialization time for a byte[] was 7ms, where the serialized size was 310,232
bytes.

Byte arrays are 20 times faster to serialize, making them a beer choice for increasing
disk-store performance.

Configuring a disk store is optional. If all caches use only memory and off-heap stores,
then there is no need to configure a disk store. This simplifies configuration, and uses
fewer threads.

For more information about configuring and sizing the DiskStore, see "Configuring Fast
Restart" in the Configuration Guide for your BigMemory Product.

M
Even Header

About BigMemory Go Version 4.3.4 (Innovation Release) 14

M
Odd Header

Automatic Resource Control

About BigMemory Go Version 4.3.4 (Innovation Release) 15

4 Automatic Resource Control

■ Automatic Resource Control .. 16

M
Even Header

Automatic Resource Control

About BigMemory Go Version 4.3.4 (Innovation Release) 16

Automatic Resource Control
Automatic Resource Control (ARC) gives you fine-grained controls for tuning
performance and enabling trade-offs between throughput, latency and data access.
Independently adjustable configuration parameters include differentiated tier-based
sizing and pinning hot or eternal data in the most effective tier.

ARC offers a wealth of benefits, including:

Sizing limitations on in-memory caches to avoid OutOfMemory errors

Pooled sizing – no requirement to size caches individually

Differentiated tier-based sizing for flexibility

Sizing by bytes, entries, or percentages for more flexibility

Dynamically Sizing Stores

Tuning often involves sizing stores appropriately. There are a number of ways to size
the different BigMemory Go storage tiers using simple configuration sizing aributes.
For information about how to tune tier sizing by configuring dynamic allocation of
memory and automatic balancing, see "Sizing Storage Tiers" in the Configuration Guide
for BigMemory Go.

Pinning Data

One of the most important aspects of running an in-memory data store involves
managing the life of the data in each tier. For more information about managing life of
data in a tier using pinning, expiration, and eviction, see "Managing Data Life" in the
Configuration Guide for BigMemory Go.

	Table of Contents
	BigMemory Go Overview
	What is BigMemory Go?
	Basic Terms

	Topologies
	Topology Types

	Storage Options
	Storage Tiers

	Automatic Resource Control
	Automatic Resource Control

