
TCStore API Developer Guide

Version 10.5

October 2019

This document applies to TCStore API Version 10.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2019 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: TC-STO-DG-105-20191015

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

TCStore API Developer Guide Version 10.5 3

Table of Contents

About This Documentation...5
Online Information and Support... 5
Data Protection... 6

Reference.. 7
Concepts... 8

Data Model.. 8
Configuration and Lifecycle Operations... 10

Clustered DatasetManager using the API...10
Clustered DatasetManager using XML... 13

Operations...16
Clustered Reconnection.. 16

Server-Side Connection Management... 17
Client-Side Connection Management...17

CRUD Operations..20
Streams..22
Asynchronous API... 27

Functional DSL... 27
Indexes..30

Usage and Best Practices.. 33
Stream Optimizations... 34
Failover Tuning... 40
Connection Pooling...41

Textual Query Language Extension...47
Reference..48

Concepts..48
Operations... 48

Usage and Best Practice..55
Application Scenarios.. 55
Interplay with Native Stream API.. 55
Performance Considerations... 55

Transactions Extension...59
Overview... 60
Transaction Controller...60
Transaction Execution.. 61
Transaction ExecutionBuilder... 62
Transactional Operation Behavior.. 67
Stream Operations..67
Best practices... 67

M
Even Header

TCStore API Developer Guide Version 10.5 4

M
Odd Header

About This Documentation

TCStore API Developer Guide Version 10.5 5

About This Documentation

Online Information and Support
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at “hp://
documentation.softwareag.com”. The site requires credentials for Software AG's Product
Support site Empower. If you do not have Empower credentials, you must use the
TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to
“empower@softwareag.com” with your name, company, and company email address
and request an account.

Once you have an account, you can open Support Incidents online via the eService
section of Empower at “hps://empower.softwareag.com/”.

You can find product information on the Software AG Empower Product Support
website at “hps://empower.softwareag.com”.

To submit feature/enhancement requests, get information about product availability,
and download products, go to “Products”.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the “Knowledge Center”.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at “hps://empower.softwareag.com/
public_directory.asp” and give us a call.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at “hp://techcommunity.softwareag.com”. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

M
Even Header

About This Documentation

TCStore API Developer Guide Version 10.5 6

Data Protection
Software AG products provide functionality with respect to processing of personal data
according to the EU General Data Protection Regulation (GDPR). Where applicable,
appropriate steps are documented in the respective administration documentation.

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 7

1 Reference

■ Concepts .. 8

■ Configuration and Lifecycle Operations ... 10

■ Operations .. 16

■ Functional DSL ... 27

■ Indexes ... 30

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 8

Concepts

Data Model
Data is organized by TCStore into collections called datasets. Each Dataset is comprised
of zero or more records. EachRecord has a key, unique within the dataset, and zero or
more cells. Each Cell has a name, unique within the record; a declared type; and a non-
null value. While records within a dataset must have a uniform key type, records are
not required to have uniform content - each record may be comprised of cells having
different names and/or different types. Each record and each cell is self-describing and is
understood by the storage engine.

TCStore Data Storage Model - typed data.

Using popular/industry definitions, TCStore is an "Aggregate oriented, Key-Value
NoSQL store". As noted above, the individual values stored within TCStore contain
cells with type information enabling the store to make use of the data it holds. However,
like other NoSQL stores, TCStore is schema-less in its core design, allowing individual
entries to contain identical sets of cells, a subset of common cells, or a completely
different sets of cells.

As such, and like other NoSQL stores, TCStore is not intended for usage paerns that
are traditional to tabular data or RDBMSs. Data contained within TCStore are not and
cannot be directly relational, and care should be taken to use modeling techniques (such
as de-normalization of data) other than those commonly used with RDBMSs.

Type system

Fundamental to TCStore is the type system used in the data model.

The supported data types are:

BOOL: A boolean value (either true or false), mapping to java.lang.Boolean; the
BOOL type is associated with cells of type Cell<Boolean> and cell definitions of type
BoolCellDefinition and CellDefinition<Boolean>

BYTES: An array of bytes, signed 8-bit each, mapping to byte[]; the BYTES
type is associated with cells of type Cell<byte[]> and cell definitions of type
BytesCellDefinition and CellDefinition<byte[]>

CHAR: A single UTF-16 character, 16-bit unsigned, mapping to
java.lang.Character; the CHAR type is associated with cells of type
Cell<Character> and cell definitions of type CharCellDefinition and
CellDefinition<Character>

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 9

DOUBLE: A 64-bit floating point value, mapping to java.lang.Double; the DOUBLE
type is associated with cells of type Cell<Double> and cell definitions of type
DoubleCellDefinition and CellDefinition<Double>

INT: A signed 32-bit integer value, mapping to java.lang.Integer ; the INT
type is associated with cells of type Cell<Integer> and cell definitions of type
IntCellDefinition and CellDefinition<Integer>

LONG: A signed 64-bit integer value, mapping to java.lang.Long; the LONG
type is associated with cells of type Cell<Long> and cell definitions of type
LongCellDefinition and CellDefinition<Long>

STRING: A variable length sequence of CHAR, mapping to java.lang.String; the
STRING type is associated with cells of type Cell<String> and cell definitions of
type StringCellDefinition and CellDefinition<String>

The key of a Record may be an instance of any of the above types except BYTES. The
value of a Cell may be an instance of any one of the above types.

Datasets

A Dataset is a (possibly distributed), collection of Record instances. Each Record
instance is uniquely identified by a key within the Dataset. The key type is declared
when the Dataset is created. Aside from the Record key type, a Dataset has no
predefined schema.

Records

A Record is a key plus an unordered set of "name to (typed) value" pairs representing
a natural aggregate of your domain model. Each Record within a Dataset can hold
completely different sets of name/value pairs, as there is no schema to obey. Record
instances held within a given Dataset are immutable. Changing one or multiple values
on a Record creates a new instance of that Record which replaces the old instance.

Record represents the only atomically alterable type in TCStore. You can mutate as
many Cell instances of a given Record instance as you wish as an atomic action, but
atomic actions cannot encompass more than one record.

Cell definitions and values

A Record contains zero or more Cell instances, each derived from a CellDefinition.
A CellDefinition is a "type/name" pair (e.g. String firstName). From a
CellDefinition you can create a Cell (e.g. firstName = "Alex", where "Alex"
is of type String) to store in a Record. The name of the Cell is the name from the
CellDefinition used to create the cell; the value of the Cell is of the type specified in
the CellDefinition used to create the cell.

Cell instances cannot contain null values but, since every Record in the dataset need
not have uniform content, a Cell instance may be omied from a Record for which that
cell has no value. The API will then let you test a Record for the absence of that cell.

The Cell instances within a Record are unordered.

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 10

Configuration and Lifecycle Operations

Clustered DatasetManager using the API
Full example

The following code configures a new clustered Dataset with a system configured
default persistent storage engine:
try (DatasetManager datasetManager = DatasetManager.clustered(clusterUri) // 1
 .build()) { // 2
 DatasetConfiguration ordersConfig =
 datasetManager.datasetConfiguration() // 3
 .offheap(offHeapResourceId) // 4
 .disk(diskResourceId) // 5
 .build(); // 6
 datasetManager.newDataset("orders", Type.LONG, ordersConfig); // 7
 try (Dataset orders =
 datasetManager.getDataset("orders", Type.LONG)) { // 8
 // Use the Dataset
 }
}

1 The static method DatasetManager.clustered starts the
process of configuring a clustered DatasetManager. It returns a
DatasetManagerBuilder which allows configuration of the cluster client.

2 The DatasetManager is created, represents a connection to the cluster.
DatasetManager is AutoCloseable so try-with-resources should be used.

3 A DatasetConfiguration is required to create a new Dataset.
A DatasetConfigurationBuilder that can be used to construct
a DatasetConfiguration is acquired using the method
datasetConfiguration on the DatasetManager. Note that a
DatasetConfiguration should be used with the DatasetManager that
was used to create it.

4 A server side oeap resource is specified for data to be held in. Note
that the name supplied must match the name of an oeap resource
configured on the server.

5 A server side disk resource is specified for data to be held in. Note that the
name supplied must match the name of a disk resource configured on the
server. As illustrated in the two examples above, an optional persistent
storage engine parameter can be specified along with the disk resource,
denoting the underlying persistent storage engine technology that needs
to used for this dataset. See the section “Note on the supported persistent

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 11

storage engine technologies” on page 11 below for a discussion on
currently supported persistent storage engine technologies.

6 The specification of the DatasetConfiguration is now completed and an
instance is created.

7 A new Dataset called orders is created. It has a key of type LONG.

8 The previously created dataset is retrieved. Dataset is AutoCloseable so
try-with-resources should be used.

URI to connect to server

The cluster URI takes the form of:
terracotta://<server1>:<port>,<server2>:<port>

for example:
terracotta://tcstore1:9510,tcstore2:9510

where tcstore1 and tcstore2 are the names of the servers that form the cluster.

Configuring a Dataset

When a Dataset is created, the name of the dataset and the type of the key must be
specified. These are the first two parameters to createDataset and the same values
should be used to later access the same Dataset via getDataset.

The third parameter is a DatasetConfiguration which specifies how storage for the
Dataset should be managed on the server.

When the server is configured, any oeap memory resources or filesystem directories
in which data can be wrien are given names. Any string passed to offheap or disk
should match the name of a resource configured on the server. This resource will then be
used for storage for the Dataset.

A Dataset must have an oeap resource configured for it. If the disk resource is
specified then the records of the Dataset will be recorded on disk. If no disk resource is
specified, then data is held just in the memory of the servers of the cluster.

A Dataset must have an oeap resource configured for it. If the disk resource is
specified then the records of the Dataset will be recorded on disk. If the disk resource
is specified, the persistent storage engine technology used to persist on disk can also be
optionally specified. If no persistent storage engine is specified, the default persistent
storage engine will be used. If no disk resource is specified, then data is held just in the
memory of the servers of the cluster.

Note on the supported persistent storage engine technologies

The currently supported persistent storage engine are as follows:

PersistentStorageEngine.FRS

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 12

PersistentStorageEngine.HYBRID

The persistent storage engines vary in the rules on how the persistent store is used.
However all persistent storage engines provides strong guarantees on data being non-
volatile and durable across server crashes and restarts.

1. FRS

The Heap (or oeap) is pushed to the FRS instance on disk, but processing is
served from memory.

Primary, secondary, and heap and oeap memory structures are rebuilt from
FRS on restart.

Primary and secondary indexes are rebuilt from scratch in memory on restart.

2. HYBRID also uses FRS technology underneath with the following caveats.

Here the Heap is pushed to FRS.

The in-memory heap is merely a mapping to locate a value given a key from the
disk.

Record lookups are served by asking the storage engine.

Primary, secondary structures reside in-memory

In the future, new persistent storage engine technologies could be supported and
allowed to be configured for a dataset.

Current Limitations when configuring persistent storage engines

There are some limitations on how these storage engines can be configured against a
dataset. In the future one or more of these limitations may be lifted.

A given disk resource can only hold a single storage engine. This means two datasets
using the same disk resource must specify the same storage engine technology.

The current default persistent storage engine, if none is specified when dataset is
configured, is FRS. Again if a dataset uses the disk resource with the default storage
engine, another dataset using the same dataset must use the same storage engine.

Note on the fluent API

TCStore uses a fluent API to allow configuration calls to be chained. Following this
paern, each call returns a builder so that further configuration can be made, however,
TCStore returns a different instance each time. This allows a DatasetManagerBuilder
to be used as a prototype for different configurations, but this means that code such as:
ClusteredDatasetManagerBuilder builder = DatasetManager.clustered(clusterUri);
builder.withConnectionTimeout(30, TimeUnit.SECONDS);
DatasetManager datasetManager = builder.build();

will create a clustered DatasetManager that has the default connection timeout because
build is called on the wrong object.

Instead use the following form:

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 13

ClusteredDatasetManagerBuilder builder = DatasetManager.clustered(clusterUri);
ClusteredDatasetManagerBuilder configuredBuilder =
 builder.withConnectionTimeout(30, TimeUnit.SECONDS);
DatasetManager datasetManager = configuredBuilder.build();

or more fluently:
DatasetManager datasetManager = DatasetManager.clustered(clusterUri)
 .withConnectionTimeout(30, TimeUnit.SECONDS)
 .build();

Clustered DatasetManager using XML
Creating a Clustered DatasetManager
URL configUrl = getClass().getResource("clustered.xml"); // 1
DatasetManagerConfiguration datasetManagerConfiguration =
 XmlConfiguration.parseDatasetManagerConfig(configUrl); // 2
try (DatasetManager datasetManager =
 DatasetManager.using(datasetManagerConfiguration,
 ConfigurationMode.CREATE)) { // 3
 try (Dataset<Long> dataset = datasetManager.getDataset("orders",
 Type.LONG)) { // 4
 // use the dataset
 }
}

1 Gets the clustered DatasetManager configuration URL (see “Clustered
DatasetManager XML configuration” on page 14).

2 Creates a DatasetManagerConfiguration using the configuration
URL.

3 Creates a clustered DatasetManager using the given
DatasetManagerConfiguration and ConfigurationMode (see
“Configuration modes” on page 15).

4 Gets the Dataset with name orders and type LONG.

Getting DatasetManager configuration in XML form
try (DatasetManager datasetManager = DatasetManager.clustered(
 URI.create("terracotta://localhost:9510")).build()) { // 1
 DatasetManagerConfiguration datasetManagerConfiguration =
 datasetManager.getDatasetManagerConfiguration(); // 2
 String xmlConfig = XmlConfiguration.toXml(datasetManagerConfiguration)) // 3
}

1 Creates a clustered DatasetManager.

2 Gets the DatasetManagerConfiguration of the DatasetManager.

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 14

3 Converts the DatasetManagerConfiguration to XML form.

Clustered DatasetManager XML configuration
<clustered xmlns=
 "http://www.terracottatech.com/v1/terracotta/store/clustered"> <!-- 1 -->
 <cluster-connection>
 <server host="localhost" port="9510"/> <!-- 2 -->
 <connection-timeout unit="MILLIS">10</connection-timeout> <!-- 3 -->
 <reconnection-timeout unit="MILLIS">20</reconnection-timeout> <!-- 4 -->
 <security-root-directory>/path/to/security-root-directory
 </security-root-directory> <!-- 5 -->
 <client-alias>client-alias</client-alias> <!-- 6 -->
 <client-tags>client-tags</client-tags> <!-- 7 -->
 </cluster-connection>
 <dataset name="orders" key-type="LONG"> <!-- 8 -->
 <!-- dataset configuration -->
 </dataset>
 <!-- other datasets -->
</clustered>

1 Declares a clustered DatasetManager configuration.

2 Configures a Terracoa server in the cluster (port aribute is optional,
default is 9410)

3 Configures the connection timeout for this connection (optional, default
20 milliseconds).

4 Configures the reconnection timeout for this connection (optional,
default 0 milliseconds).

5 Configures the security root directory to make a secure connection to
the Terracoa cluster (optional).

6 Configures an alias to identify this client (optional, default is a
randomly generated string).

7 Configures tags for this client (optional, default is no tags).

8 Declares a Dataset with name orders, key type LONG and its
configuration (see “Dataset XML configuration” on page 14).

Dataset XML configuration
<dataset name="orders" key-type="LONG"
 xmlns:tcs="http://www.terracottatech.com/v1/terracotta/store"> <!--1-->
 <tcs:offheap-resource>offheap</tcs:offheap-resource> <!--2-->
 <tcs:disk-resource storage-type="FRS">disk</tcs:disk-resource> <!--3-->
 <tcs:indexes>

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 15

 <tcs:index> <!--4-->
 <tcs:cell-definition name="cell" type="BOOL"/>
 <tcs:type>BTREE</tcs:type>
 </tcs:index>
 </tcs:indexes>
 <tcs:durability-eventual/> <!--5-->
 <tcs:advanced> <!--6-->
 <tcs:concurrency-hint>16</tcs:concurrency-hint>
 </tcs:advanced>
</dataset>

1 Declares a Dataset configuration.

2 Configures an oeap resource for this dataset.

3 Configures a disk resource for this dataset (optional) with an optional
storage-type aribute that specifies the persistent storage engine to
be used. The available engines are described in the section Storage Types
below.

4 Configures an index for this dataset with a cell definition and its type
(optional).

5 Configures disk durability for this dataset (optional).

6 Advanced Dataset configuration such as concurrency-hint
(optional).

Configuration modes

Defines whether datasets configured in DatasetManagerConfiguration should be
created or validated. The three supported configuration modes are:

1. CREATE

creates all configured datasets.

If any of the datasets already exists then the creation for that dataset fails, and no
aempt is made to create any subsequent datasets in the list.

If the creation of a dataset fails, an exception is thrown containing the list of
datasets that got created before it failed.

For example - Suppose we are trying to create three datasets named dataset1,
dataset2 and datase3, and dataset2 exists already with the same key type or a
different key type. In this scenario dataset1 will get created, but since dataset2
already exists, an exception will be thrown containing the message "A dataset
with the name dataset2 already exists, following datasets were created so far:
dataset1". No aempt will be made to create dataset3, since the creation stops at
the exception for dataset2.

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 16

If the datasets creation using CREATE mode fails for any reason it is
recommended to retry creating the datasets using AUTO mode so that any
exceptions related to an already existing dataset can be avoided.

2. VALIDATE

validates all configured datasets.

If any of the datasets does not exist, or if it exists but has a different key type,
then the validation fails and an exception is thrown. The exception contains a
message stating whether the validation failed because the dataset does not exist,
or because the dataset exists but has a different key type.

If the validation fails for a dataset, no validation is performed for the subsequent
datasets in the list.

3. AUTO

creates datasets if any of the configured datasets don't exist, otherwise it
validates the existing datasets.

For example - Suppose we are trying to create datasets named dataset1, dataset2
and dataset3, and dataset2 already exists with a different key type. In this
scenario dataset1 will get created. Since dataset2 already exists, it will be
validated, and an exception will be thrown since the key type is different. As a
result, dataset3 will not be created because the exception for dataset2 stops the
execution.

Storage Types

One of the following storage types can be specified for a given dataset.

FRS - Specifies FRS storage engine

HYBRID - Specifies HYBRID storage engine

Operations

Clustered Reconnection
When a TCStore Dataset is cluster-resident, operations on that Dataset involve
interactions with the cluster servers holding that Dataset. These interactions occur
over TCP connections to the servers in the cluster. Stability of these connections and
the servers supporting them necessarily affects operations against the Dataset. While
communications with TSA servers is designed to be resilient, there is a limit to what can
(or should) be handled without application involvement.

When creating a ClusteredDatasetManager, a TCP connection to a server in
each TSA stripe is opened by the client. The TCP connection between a TCStore
client and a Terracoa server is a full-duplex, bidirectional channel between
client and server. When establishing a connection, the TCStore client uses the

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 17

ClusteredDatasetManagerBuilder.withConnectionTimeout value to limit the
amount of time permied for the initial connections with the servers to be set up.
Once a connection is established, the health of the connection is periodically assessed
independently by server and client.

Server-Side Connection Management
On the server side, a leasing mechanism is used. This is described in the section
Connection Leasing in the Terracoa Server Administration Guide. When the client initially
connects, a timed "lease" is granted by the server to that client. The lifetime of this
lease is controlled by the /tc-config/plugins/service/connection-leasing
server configuration property. An active client is expected to renew this lease with the
server before the lease expires. For TCStore clients, this happens without application
involvement. If the lease is successfully renewed, normal operations continue for that
client. If the client fails to renew the lease before it expires, the server considers the client
dead and closes the sever side of the connection - undelivered responses for that client
are discarded and client state is removed from the server. The client will eventually
observe that the connection closed.

Client-Side Connection Management
In the TCStore client, three (3) connection health mechanisms are used: receipt of server
responses to operations using the connection, a "connection health checker", and the
client-side of the leasing mechanism used by the server.

I/O Operation Error Handling

If, during a read or write over the TCP connection to the server, the client experiences
an error that does not indicate the TCP connection is intentionally closed, the client
aempts to establish a new connection to the server (or a another configured peer in the
stripe) within the scope of the current TCStore operation. From the application's point
of view, the operation is not interrupted but just takes longer than usual. During this
reconnect phase, connection aempts are repeated at specified intervals and continue until
(1) a connection is established or (2) the client's lease expires. This level of reconnect is
separate from the TCStore connection resiliency described below.

During this reconnect phase, multiple connection aempts may be made. How many
aempts are made and at what frequency is governed by internally established values.
If the client's lease expires during the reconnect phase, aempts to reconnect are halted
and TCStore connection resiliency capabilities (described below) come into play.

If the active server to which the client was connected fails and a former passive becomes
active, the interval designated by the /tc-config/servers/client-reconnect-
window property is in force. A client establishing a connection to the new active server
within (1) the time remaining in the client's lease and (2) the interval designated by
client-reconnect-window, can resume operations without interruption. If either the
client's lease or the client-reconnect-window expires, TCStore connection resiliency
capabilities (described below) come into play.

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 18

Connection Health Checker

The "connection health checker" uses a "ping/response" mechanism during periods when
the client is idle to ensure the client remains connected to the server. If the server does
not respond to the pings, the server is considered (by the client) "unresponsive"; the
client closes its side of the connection and the TCStore connection resiliency capabilities
come into play.

Connection Leasing

A TCStore client also relies on the leasing mechanism. As described above, a lease is
granted by the server and must be renewed by the client before the lease expires - within
the interval specified by the /tc-config/plugins/service/connection-leasing
server configuration property. If lease renewal fails, the client considers the server
unavailable and closes its side of the connection causing operations pending on that
connection to be interrupted. At this point, the TCStore connection resiliency capabilities
come into play.

TCStore Connection Resiliency

TCStore connection resiliency comes into action when an unrequested connection
closure is observed on the client. This includes:

lease expiration (described above) as observed in the client,

connection closure forced by lease expiration on the server,

connection rejection that occurs by a late reconnect aempt following a server fail-
over (client-reconnect-window expiration), and

network conditions that manifest as a closed connection.

The connection resiliency code suspends TCStore operations using the now-
closed connection and aempts to reconnect with the cluster using alternate
servers if necessary. While the time allowed for each connection aempt is
controlled by the ClusteredDatasetManagerBuilder.withConnectionTimeout
value, connection aempts are repeated until a connection is
successfully established or the reconnection time limit (controlled by the
ClusteredDatasetManagerBuilder.withReconnectTimeout value) is exceeded.
Regardless of the withReconnectTimeout setting, at least one (1) reconnection attempt is made.

By default, operations in TCStore wait for a reconnection FOREVER
(withReconnectTimeout = 0) unless:

1. the connection is closed (by closing the associated DatasetManager) OR

2. the reconnection is interrupted (by interrupting the client application thread
aempting the reconnection).

StoreOperationAbandonedException

If the client reconnects, suspended operations resume with the exception of operations for
which a server request was made prior to observing the connection closure. For these "in-flight"
operations, a StoreOperationAbandonedException is thrown to indicate the status of

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 19

the operation is unknown. The application must take its own steps to determine if the
operation completed, needs to be or can be repeated, or must be abandoned.

Table 1. StoreOperaonAbandonedExcepon

Once a reconnection is made, operations awaiting the reconnection will
either observe a StoreOperationAbandonedException or normal operation
completion. Which of these is observed depends on what can be asserted
(internally) about the state of the operation:

1. If a message has been presented to the server but has not been responded
to, there is no way for the TCStore client code to determine if the operation
message reached the server or, if it reached the server, the state of the operation
initiated by that message. In this case, a StoreOperationAbandonedException
is thrown.

2. If the operation was aempted while reconnect is underway, the operation will
be retried (internally).

When a client receives a StoreOperationAbandonedException, it is up to the
client to determine whether or not the operation can be recovered and, if so, what the
recovery action must be. If application resilience is desired, the application must
handle a StoreOperationAbandonedException which may be emied from any
TCStore operation that requires server interactions.

StoreReconnectFailedException

If the withReconnectTimeout time limit expires or the DatasetManager is
closed while reconnecting, all operations suspended for that connection and any
future operations against the affected DatasetManager are terminated with a
StoreReconnectFailedException.

Table 2. StoreReconnectFailedExcepon

If a StoreReconnectFailedException is thrown, the affected server
connection, the DatasetManager for which the connection was obtained, and
any objects obtained from that DatasetManager are now effectively dead -- the
connection cannot be recovered and the DatasetManager is unusable. If the client
wishes to continue operations, the DatasetManager needs to be closed and a
new DatasetManager instance obtained.

StoreReconnectInterruptedException

If the reconnecting thread is interrupted, that thread will observe a
StoreReconnectInterruptedException; reconnection aempts will be picked up by
another thread with a pending operation, if any.

Table 3. StoreReconnectInterruptedExcepon

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 20

A StoreReconnectInterruptedException is thrown if the client application
thread under which the reconnect is being perform is interrupted using
Thread.interrupt(). Unlike the StoreReconnectFailedException,
the DatasetManager is not yet unusable - the reconnect procedure is
picked up by another thread performing a TCStore operation against
the affected Dataset. This interruption may be handled similarly to the
StoreOperationAbandonedException - the interrupted operation is not
canceled, it is simply no longer tracked - it may have completed and the response
from the server just not arrived.

The StoreOperationAbandonedException, StoreReconnectFailedException,
and StoreReconnectInterruptedException are unchecked exceptions (subclasses
of the Java RuntimeException). Applications for which operational resilience
is desired and that access a clustered Dataset need to handle at least the
StoreOperationAbandonedException for any activity for which resilience is desired.

CRUD Operations
DatasetReader and DatasetWriterReader

A DatasetReader is required to read records from the dataset, and
DatasetWriterReader allows add/update/delete operations on a dataset.
DatasetWriterReader<String> writerReader = persons.writerReader(); // <1>

1 Dataset.writerReader returns the required DatasetWriterReader for
mutative access. Similarly, Dataset.reader returns a DatasetReader.

Adding Records
String person1 = "p1";
writerReader.add(person1, // 1
 Person.FIRST_NAME.newCell("Marcus"), // 2
 Person.LAST_NAME.newCell("Aurelius"),
 Person.RATED.newCell(true),
 Person.NICENESS.newCell(0.65D));

1 The DatasetWriterReader API provides the add method which takes the
specified key of the record,

2 And var-args of Cell. Another variant takes an Iterable of cells.

Accessing Records
Record<String> marcus =
 writerReader.get(person1).orElseThrow(AssertionError::new); // <1>

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 21

1 DatasetReader has a get method which takes a key as the argument. It
returns an Optional of record. If the dataset doesn't have a record against
the provided key Optional.isPresent will return false.

Update Existing Records
writerReader.update(marcus.getKey(),
 UpdateOperation.write(Person.NICENESS, 0.85D)); // <1>
writerReader.update(person2, UpdateOperation.allOf(
 UpdateOperation.write(Person.RATED, false),
 UpdateOperation.remove(Person.NICENESS))); // <2>
writerReader.update(person3, UpdateOperation.allOf(
 UpdateOperation.write(Person.RATED, true),
 UpdateOperation.write(Person.NICENESS, 0.92D)));

1 The DatasetWriterReader.update method requires the key of the
record to be updated along with an UpdateOperation of the cell. The
UpdateOperation.write method has overloaded variants which can be
used to add/update cells in an existing record.

2 For updating multiple cells simultaneously, you can use
UpdateOperation.allOf which takes a var-arg. To remove a cell use
UpdateOperation.remove. Note that all these updates only happen to an
existing record. If the record doesn't exist, an update operation will not
result in the addition of a record against the provided key.

Deleting Records
writerReader.delete(marcus.getKey()); // <1>

1 DatasetWriterReader.delete takes key and returns true if the record
deletion was successful.

Accessor APIs for CRUD

Another way to perform CRUD operations on a dataset is through using the
ReadWriteRecordAccessor API. It provides more control over read-write operations on
a record with mapping and conditional reads/writes.
ReadWriteRecordAccessor<String> recordAccessor = writerReader.on(person3); // <1>
recordAccessor.read(record -> record.get(Person.NICENESS).get()); // <2>
recordAccessor.upsert(Person.BIRTH_YEAR.newCell(2000),
 Person.PICTURE.newCell(new byte[1024])); // <3>
Optional<Integer> ageDiff = recordAccessor.update(UpdateOperation.write(
 Person.BIRTH_YEAR.newCell(1985)), (record1, record2) ->
 record1.get(Person.BIRTH_YEAR).get() -
 record2.get(Person.BIRTH_YEAR).get()); // <4>
ConditionalReadWriteRecordAccessor<String> conditionalReadWriteRecordAccessor =
 recordAccessor.iff(record ->
 record.get(Person.BIRTH_YEAR).get().equals(1985)); // <5>
Record<String> record = conditionalReadWriteRecordAccessor.read().get(); // <6>

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 22

conditionalReadWriteRecordAccessor.update(
 UpdateOperation.write(Person.RATED, false)); // <7>
conditionalReadWriteRecordAccessor.delete(); // <8>

1 An accessor for a record can be obtained by calling
DatasetWriterReader#on which takes a key as the argument.
DatasetReader#on returns a ReadRecordAccessor which has read only
access to the record.

2 The read method takes a Function as an argument which maps the
record to the required output.

3 The upsert method is like the same verb in a RDBMS: it will add if the
record is absent or update if the record is present.

4 There is an advanced update that takes an additional BiFunction as
mapper along with an UpdateOperation. The function maps the record
that existed before the update and the record that resulted from the
update.

5 Another variant allows conditional read/writes on the record.
ReadWriteRecordAccessor#iff takes a predicate, the operations done
on ConditionalReadWriteRecordAccessor are supplied with the same
predicate. If the predicate returns true, the operation is executed against
the record.

6 If the predicate returns true, the read will return a record.

7 The record will only be updated if the predicate returns true.

8 Similarly, the deletion succeeds if the predicate was true.

Please refer to the API documentation for more details.

Streams
Record Stream

A RecordStream is a Stream<Record> - a stream of Record instances. All operations
defined in the Java 8 Stream interface are supported for RecordStream. Obtained using
the DatasetReader.records() method, a RecordStream is the primary means of
performing a query against a TCStore Dataset.

As with a java.util.stream.Stream, a RecordStream may be used only once. Unlike
a Java Stream, a RecordStream closes itself when the stream is fully consumed through
a terminal operation other than iterator or spliterator. (Even so, it is good practice

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 23

to close a RecordStream using a try-with-resources block or RecordStream.close.)
There are no provisions for concatenating two RecordStream instances while retaining
RecordStream capabilities.

Most RecordStream intermediate operations return a RecordStream. However,
operations which perform a transformation on a stream element may return a
Stream<Record> which is not a RecordStream. For example, map(identity()) returns
a Stream<Record> which is not a RecordStream.

Note: In a clustered configuration, a stream pipeline formed against a
RecordStream, in addition to being composed of intermediate and terminal
operations (as described in the Java 8 package java.util.stream), is
comprised of a server-side and a client-side pipeline segment. Every
RecordStream originates in the server. As each operation is added during
pipeline construction, an evaluation is made if the operation and its
arguments can be run in the server (extending the server-side pipeline) - many
pipeline operations can be run in the server. The first operation which cannot
be run in the server begins the client-side pipeline. A stream pipeline may
have both server-side and client-side pipeline segments, only a server-side
segment, or only a client-side segment (other than the stream source). Each
Record or element passing through the stream pipeline is processed first
by the server-side pipeline segment (if any) and is then passed to the client-
side pipeline segment (if the client-side pipeline segment exists) to complete
processing.

The following code creates a RecordStream and performs few operations on the records
of the stream:
long numMaleEmployees = employeeReader.records() // <1>
 .filter(GENDER.value().is('M')) // <2>
 .count(); // <3>

1 The DatasetReader.record() method returns a RecordStream delivering
Record instances from the Dataset referred to by the DatasetReader.

2 Stream intermediate operations on a RecordStream return a stream whose
type is determined by the operation and its parameters. In this example,
filter provides a RecordStream.

3 A Stream terminal operation on RecordStream produces a value or a side-
effect. In this case, count returns the number of Record instances passing
the filter above.

Additional operations supported On RecordStream
Optional<Record<Integer>> record = employeeReader.records()
 .explain(System.out::println) // <1>
 .batch(2) // <2>
 .peek(RecordStream.log("{} from {}", NAME.valueOr(""),
 COUNTRY.valueOr(""))) // <3>
 .filter(COUNTRY.value().is("USA"))

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 24

 .findAny();
long count = employeeReader.records()
 .inline() // <4>
 .count();

1 The RecordStream.explain operation observes the stream pipeline and
provides the pre-execution analysis information for this stream pipeline.
It takes, as a parameter, a Consumer which is passed an explanation of the
stream execution plan. RecordStream.explain returns a RecordStream
for further pipeline construction. For explain to be effective, the pipeline
must be terminated - the plan is not determined until the pipeline begins
execution. The explainConsumer is called once the pipeline is closed.
For a RecordStream against a clustered TCStore configuration, the
explanation identifies the operations in each of the server-side and client-
side pipeline segments.

2 In a clustered configuration, a RecordStreambatches elements transferred
from the server to the client, when possible, to reduce latencies involved
in network transfer. The number of records or elements returned to the
client at one time can be influenced using the RecordStream.batch
operation. The batch operation takes a batch size as parameter and
uses it as a hint for the batch size to use when transferring elements.
RecordStream.batch returns a RecordStream for further pipeline
construction.

3 The RecordStream.log method produces a Consumer for use in
Stream.peek to log a message according to the specified format and
arguments. The first argument provides a message format like that
used in the SLF4J MessageFormatter.arrayFormat method. Each
subsequent argument supplies a value to be substituted into the message
text and is a mapping function that maps the stream element to the value
to be substituted. The formaed message is logged using the logging
implementation discovered by SLF4J (the logging abstraction used in
TCStore). If the peek(log(…)) operation is in the server-side pipeline
segment, the formaed message is logged on the TCStore server. If the
peek(log(…)) operation is in the client-side segment, the formaed
message is logged in the client.

4 The RecordStream.inline operation disables the element batching
discussed above. When inline is used, each stream element is processed
by both the server-side and client-side pipeline segments before the next
element is processed. RecordStream.inline returns a RecordStream for
further pipeline construction.

Mutable Record Stream

Obtained from the DatasetWriterReader.records() method, a
MutableRecordStream extends RecordStream to provide operations through which

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 25

Record instances in the RecordStream may be changed. No more than one of the
mutating operations may be used in a pipeline. The changes in a Record from a
MutableRecordStream mutation operation affect only the Dataset from which
MutableRecordStream was obtained (and to which the Record belongs).

The following are the operations added in MutableRecordStream:

mutateThen

The MutableRecordStream.mutateThen operation is an intermediate operation that
accepts an UpdateOperation instance describing a mutation to perform on every
Record passing through the mutateThen operation. The output of mutateThen is a
Stream<Tuple<Record, Record>> where the Tuple holds the before (Tuple.first())
and after (Tuple.second()) versions of the Record.
double sum = employeeWriterReader.records() // 1
 .mutateThen(UpdateOperation.write(SALARY).doubleResultOf(
 SALARY.doubleValueOrFail().increment())) // 2
 .map(Tuple::getSecond) // 3
 .mapToDouble(SALARY.doubleValueOrFail())
 .sum();

1 The DatasetWriterReader.record() method, not
DatasetReader.record(), returns a MutableRecordStream which is a
Stream of Records of the Dataset referred by the DatasetWriterReader.

2 MutableRecordStream.mutateThen() is an intermediate operation
and takes in UpdateOperation as parameter and performs the update
transformation against the Record instances in the stream.

3 MutableRecordStream.mutateThen() returns a Stream of new Tuple
instances holding before and after Record instances. Note that it does not
return a RecordStream or a MutableRecordStream.

deleteThen

The MutableRecordStream.deleteThen operation is an intermediate operation that
deletes all Record instances passing through the deleteThen operation. The output of
deleteThen is a Stream<Record> where each element is a deleted Record. (Note the
output is neither a RecordStream nor a MutableRecordStream.)
employeeWriterReader.records()
 .filter(BIRTH_YEAR.value().isGreaterThan(1985))
 .deleteThen() // <1>
 .map(NAME.valueOrFail()) // <2>
 .forEach(name -> System.out.println("Deleted record of " + name));

1 MutableRecordStream.deleteThen() is an intermediate operation and
deletes every Record in the stream.

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 26

2 MutableRecordStream.deleteThen() returns a Stream of the deleted
Record instances. Note that it does not return a RecordStream or a
MutableRecordStream.

mutate

The MutableRecordStream.mutate operation is a terminal operation that accepts an
UpdateOperation instance describing a mutation to perform on every Record reaching
the mutate operation. The return type of the mutate operation is void.
employeeWriterReader.records()
 .filter(GENDER.value().is('M'))
 .mutate(UpdateOperation.write(SALARY)
 .doubleResultOf(SALARY.doubleValueOrFail().decrement())); <1>

1 MutableRecordStream.mutate() takes in UpdateOperation as parameter
and performs the update transformation against theRecord instances in the
stream. This is a terminal operation and returns nothing.

delete

The MutableRecordStream.delete operation is a terminal operation deletes every
Record reaching the delete operation. The return type of the delete operation is void.
employeeWriterReader.records()
 .filter(BIRTH_YEAR.value().isLessThan(1945))
 .delete(); // <1>

1 MutableRecordStream.delete() deletes every Record in the stream. This
is a terminal operation and returns nothing.

Stream pipeline execution and concurrent record mutations

During stream pipeline execution on a Dataset, concurrent mutation of records on it are
allowed. Pipeline execution does not iterate over a point in time snapshot of a Dataset -
changes by concurrent mutations on a Dataset may or may not be visible to a pipeline
execution depending on the position of its underlying Record iterator.

Stream pipeline portability

In a clustered configuration, the Record instances accessed through a RecordStream
are sourced from one or more Terracoa servers. For large datasets, this can involve
an enormous amount of data transfer. To reduce the amount of data to transfer, there
are RecordStream capabilities and optimization strategies that can be applied to
significantly reduce the amount of data transferred. One of these capabilities is enabled
through the use of portable pipeline operations. This capability and others are described in
the section “Streams” on page 22.

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 27

Asynchronous API
TCStore provides an asynchronous API based around the Java 9 CompletionStage API.
AsyncDatasetWriterReader<String> asyncAccess = counterAccess.async(); // <1>
Operation<Boolean> addOp = asyncAccess.add("counter10", counterCell.newCell(10L)); // <2>
Operation<Optional<Record<String>>> getOp =
 addOp.thenCompose((b) -> asyncAccess.get("counter10")); // <3>
Operation<Void> acceptOp = getOp.thenAccept(or -> or.ifPresent(// <4>
 r -> out.println("The record with key " + r.getKey() + " was added")));
try {
 acceptOp.get(); // <5>
} catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
}

1 The asynchronous API is accessed through the async() method on an
existing reader or writer-reader.

2 Methods then create asynchronous executions represented by Operation
instances.

3 Operations can be composed with other operations using the usual
CompletionStage methods.

4 Operations can also be composed with synchronous operations still
yielding Operation instances.

5 Operation also extends Future for easy interoperability with synchronous
code.

Note: The current asynchronous implementation is a simple thread-pool based skin
over the synchronous API. It is not currently interacting optimally with the
asynchronous nature of the underlying Terracoa platform.

Functional DSL
The functional DSL exists to allow users to express arguments passed to TCStore
operations in a form that is both portable between clients and servers (over the network),
and whose underlying behavior can be introspected and understood by the TCStore
software. DSL expressions are the preferred form for all functional arguments passed to
TCStore.

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 28

Cell Operations

Functional operations on cells and their associated values can be created via references
to the associated cell definition objects.
BoolCellDefinition definition = defineBool("cell");
Predicate<Record<?>> exists = definition.exists(); // <1>
Predicate<Record<?>> isTrue = definition.isTrue(); // <2>

1 A cell existence predicate. The predicate returns true if the passed record
contains a cell of this definition. This is available for all definition types.

2 A boolean cell value predicate. The predicate returns true if the passed
record contains a cell of this definition with a true value (this means an
absence of the cell results in a false value).

The types returned from the DSL are fluent builders so you can derive functions from
existing functions.
StringCellDefinition definition = defineString("cell");
BuildableComparableOptionalFunction<Record<?>, String>
 value = definition.value(); // <1>
Predicate<Record<?>> isFoo = value.is("foo"); // <2>
Predicate<Record<?>> isAfterBar = value.isGreaterThan("bar"); // <3>

1 A cell value extraction function. This is a subtype of Function<Record<?
>, Optional<String>> but can also be built upon.

2 A value equality predicate. The predicate returns true if the passed record
contains a cell of this definition whose value is "foo".

3 An open range predicate. The predicate returns true if the passed records
contains a cell of this definition whose value is strictly greater than "bar".

The available build methods are specialized to the type of the cell in question.
Numerically typed cells can be used to do numeric manipulations.
IntCellDefinition definition = defineInt("cell");
BuildableToIntFunction<Record<?>> intValue = definition.intValueOr(0); // <1>
BuildablePredicate<Record<?>> isGreaterThanOrEqualTo4 =
 intValue.isGreaterThanOrEqualTo(4); // <2>
ToIntFunction<Record<?>> incremented = intValue.increment(); // <3>
Comparator<Record<?>> comparator = intValue.asComparator(); // <4>

1 An integer extracting function that returns a specialized builder type, that
is also a primitive int bearing function.

2 A numeric open range predicate. Ranges are available for all comparable
cell types.

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 29

3 An integer extracting function that outputs the value incremented (+1).

4 A comparator over extracted values.

Cell derived expressions will be frequently used as:

Predicates for streams and CRUD operations.

Mappers for streams and read operations.

Input for functional update operations.

Update Operations

Update operation instances are used to express mutation used in either single-key
update operations, or against stream contents via a MutableRecordStream operation.
Update operations are created via static accessor methods on the UpdateOperation
class
IntCellDefinition defnA = defineInt("cell-a");
IntCellDefinition defnB = defineInt("cell-b");
UpdateOperation<Long> install =
 UpdateOperation.install(defnA.newCell(42), defnB.newCell(42)); // 1
UpdateOperation.CellUpdateOperation<Long, Integer> write =
 UpdateOperation.write(defnA).value(42); // 2
UpdateOperation.CellUpdateOperation<Long, Integer> increment = // 3
 UpdateOperation.write(defnA)
 .intResultOf(defnA.intValueOr(0).increment());
UpdateOperation.CellUpdateOperation<Long, Integer> copy =
 UpdateOperation.write(defnB).intResultOf(defnA.intValueOr(42));
UpdateOperation<Long> aggregate =
 UpdateOperation.allOf(increment, copy); // 4

1 Install a specific list of cells. An install operation replaces all existing cells.

2 Write an individual cell. This will overwrite an existing cell or create a new
one as necessary.

3 Write an individual cell with a value given by executing the given function
against the current record.

4 Perform a list of individual cell updates as a single unit.

Update Output

Update operations output a pair of values representing the state before and after the
mutation application. This is either in the form of a pair of values passed to a bi-function
or as a tuple of records.
BiFunction<Record<?>, Record<?>, Integer> inputBiFunction =
 UpdateOperation.input(defnA.valueOr(42)); // <1>
BiFunction<Record<?>, Record<?>, Integer> outputBiFunction =
 UpdateOperation.output(defnA.valueOr(42)); // <2>

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 30

Function<Tuple<Record<?>, ?>, Integer> inputTupleFunction =
 Tuple.<Record<?>>first().andThen(defnA.valueOr(42)); // <3>
Function<Tuple<?, Record<?>>, Integer> outputTupleFunction =
 Tuple.<Record<?>>second().andThen(defnA.valueOr(42)); // <4>

1 Extract the input value of cell-a from the resultant bi-function's two
arguments.

2 Extract the output value of cell-a from the resultant bi-function's two
arguments.

3 Extract the value of cell-a from the first value of the resultant function's
tuple argument.

4 Extract the value of cell-a from the second value of the resultant
function's tuple argument.

Both tuple and bi-function forms follow the convention that input records are the first
argument or tuple member, and output records are the second argument or tuple
member.

Collectors

To support stream collection operations a mirror of the JDK
java.util.stream.Collectors class that creates collectors transparent to TCStore at
com.terracottatech.store.function.Collectors.

Indexes
The records stored in a dataset are accessed for CRUD operations using the key
against which the record is held. However, for stream queries there is an option to use
secondary indexes for beer query performance. Secondary indexes can be created on
a specific Cell, thus all the records having that cell will be indexed. The queries on the
indexed cell will try to use the index for optimized results.

Creating Secondary Indexes

The code snippet provided below depicts how to create/destroy indexes.
DatasetManager datasetManager =
 DatasetManager.clustered(clusterUri).build();
DatasetConfiguration configuration = datasetManager.datasetConfiguration()
 .offheap(offHeapResourceId)
 .index(CellDefinition.define("orderId", Type.STRING),
 IndexSettings.BTREE) // 1
 .build();
datasetManager.newDataset("indexedOrders", Type.LONG, configuration);
Dataset<Long> dataset =
 datasetManager.getDataset("indexedOrders", Type.LONG);
Indexing indexing = dataset.getIndexing(); // 2
Operation<Index<Integer>> indexOperation = indexing.createIndex(

M
Odd Header

Reference

TCStore API Developer Guide Version 10.5 31

 CellDefinition.define("invoiceId", Type.INT),
 IndexSettings.BTREE); // 3
Index<Integer> invoiceIdIndex = indexOperation.get(); // 4

1 An Index can be created while the dataset is being created. The
DatasetConfigurationBuilder.index method takes a CellDefinition
and an IndexSettings. Currently only IndexSettings.BTREE is
supported for secondary indexes.

2 In case there is a need to index a cell after dataset is created, that can be
done as well. For that, Indexing is provided by Dataset.getIndexing to
create/delete indexes on a dataset.

3 The Indexing.createIndex method again takes a CellDefinition
and an IndexSettings, to return an Operation of Index. Operation
represents the asynchronous execution of the long running indexing
operation.

4 You get an Index when the operation completes.

Getting Index Status

The code snippet depicts how to determine the status of indexes.
Collection<Index<?>> allIndexes = indexing.getAllIndexes(); // 1
Collection<Index<?>> liveIndexes = indexing.getLiveIndexes(); // 2

1 Indexing.getAllIndexes returns all the indexes created on the dataset,
regardless of their status.

2 Indexing.getLiveIndexes returns only those indexes whose Status is
LIVE.

Destroying Indexes

The code snippet depicts how to determine the status of indexes.
indexing.destroyIndex(invoiceIdIndex); // 1

1 An existing Index can be destroyed using Indexing.destroyIndex.

Indexes in HA setup

Creating an index is a long running operation. With an HA setup, indexes are created
asynchronously on the mirrors. This implies that if an index creation has completed and
the status is LIVE, the index creation might still be in progress on mirrors which might
complete eventually. Also when a new mirror comes up, the records on the active are

M
Even Header

Reference

TCStore API Developer Guide Version 10.5 32

synced to mirror, but they are indexed only when syncing of data is complete. Thus
indexing on a new mirror is done asynchronously.

Please refer to API documentation for more details.

M
Odd Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 33

2 Usage and Best Practices

■ Stream Optimizations ... 34

■ Failover Tuning ... 40

■ Connection Pooling .. 41

M
Even Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 34

Stream Optimizations
When performing queries or mutations using a stream pipeline on a RecordStream or
MutableRecordStream (referred to collectively in this documentation as RecordStream)
there are several ways a user can influence the performance of the pipeline. The primary
methods, using pipeline portability and cell indexes, are described in the sections
“Pipeline Portability” on page 34 and “Index Use” on page 39. There is also
a tool, the stream plan, that provides visibility on the effectiveness of the performance
methods; this is described in the followng section “Stream Plan” on page 34.

Stream Plan

There is a tool available to help a user understand how a pipeline based on a
RecordStream will be executed - the stream plan. It is observed using the object
presented to the RecordStream.explain(Consumer<Object>) pipeline operation. This
object represents the system's understanding of the pipeline and includes information
about how the pipeline will be executed by TCStore.

Note: The plan object is not a programmatic API. The object is intended to be
converted to String using the toString() method and reviewed by a
human. The content and format of the String are subject to change without
notice.

Looking at the plan, a user can determine:

1. what portions of the pipeline are portable and may be executed on the server;

2. what portions of the pipeline are non-portable and must be executed on the client;

3. what index, if any, is used for data retrieval.

Sample plans are included in the discussions below.

In a striped TCStore configuration, multiple plans are included in the output - one (1) for
each stripe in the configuration. Each server in a stripe will calculate a stream plan based
on state extant in that server so plans may differ from stripe to stripe.

The stream plan for a pipeline is provided to the explainConsumer only after the
pipeline completes execution and the stream is closed. (This is, in part, due to the fact
that the stream plan is not computed until the pipeline begins execution - that is, once
the terminal operation is appended to the pipeline.)

Pipeline Portability

As discussed in the section “Record Stream” on page 22, RecordStream pipelines in
a TCStore clustered configuration are split into server-side and client-side segments.
The best performing TCStore stream pipelines are those which limit the amount of data
transferred between the server and the client. In general, the more processing that can be
performed in the server - close to the data - the beer.

M
Odd Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 35

For an operation to be run in the server, the operation and its arguments must be
portable. A portable operation is one for which the operation, its context and its
arguments are understood through introspection. This introspection is enabled by the
use of the TCStore Functional DSL (see the section “Functional DSL” on page 27). Most,
but not all, function instances produced from the DSL are portable.

Note: Operations using lambda expressions ("arrow" operator) or method reference
expressions (double colon separator) are not portable and must be executed in
the client.

Every RecordStream pipeline begins as a portable pipeline - the stream's data source is
the server. As each operation is added to the pipeline, that operation and its arguments
are evaluated for portability - in general, if the arguments (if any) provided to the
operation are produced using the TCStore DSL, the operation will be portable.
(Exceptions are noted in “DSL Support for Portable Operations” on page 37 below.)
The portable, server-side pipeline segment is extended with each portable operation
appended to the pipeline. The non-portable, client-side pipeline segment begins with the
first non-portable operation and continues through to the pipeline's terminal operation.

Note: Even if an otherwise portable operation is appended to the pipeline after a
non-portable operation, that otherwise portable operation is executed on the
client - the stream elements are already being transferred from the server to
the client.

To determine how much of a pipeline is portable, use the
RecordStream.explain(Consumer<Object>) operation. This makes a stream plan
available which may be used to determine what portions of a pipeline are portable.
Stream plans are introduced in Stream Plan section above.

Note: The explain operation does not affect pipeline portability - explain is a meta-
operation and sets an observer for the stream plan but does not actually add an
operation to the pipeline.

The peek operation can affect pipeline portability. If the Consumer provided
to the peek operation is non-portable, the pipeline segment beginning with
that peek operation will be rendered non-portable and forced to run on the
client. A warning is logged if a non-portable peek is appended to a pipeline
that, to that point, is portable. The RecordStream.log method can be used to
produce a portable Consumer for peek.

Examples

In the examples that follow, the following definitions are presumed:
import static java.util.stream.Collectors.toList;
public static final StringCellDefinition TAXONOMIC_CLASS =
 defineString("class");
RecordStream recordStream = dataset.records();

Non-Portable Operations

M
Even Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 36

This example shows a pipeline using an operation with a non-portable argument - a
lambda expression - making the operation non-portable. In this example, all records in
the dataset are shipped to the client for processing by the filter operation.

Non-Portable Pipeline:
List<String> result = recordStream
 .explain(System.out::println)
 .filter(r -> r.get(TAXONOMIC_CLASS).orElse("").equals("mammal")) // 1
 .map(TAXONOMIC_CLASS.valueOrFail()) // 2
 .collect(toList());

1 Using Java lambda expressions (expressions using the "arrow" operator)
always produce non-portable operations.

2 The map operation in this example could be portable but is not because
it follows a non-portable operation - once a non-portable operation is
used and pipeline execution shifts to the client, subsequent operations are
made non-portable.

Stream Plan - No Portable Operations:
Stream Plan
 Structure:
 Portable:
 None // 1
 Non-Portable:
 PipelineOperation{FILTER(com.terracottatech.store.server.
 RemoteStreamTest$$Lambda$504/1753714541@51bf5add)} // 2
 PipelineOperation{MAP(class.valueOrFail())}
 PipelineOperation{COLLECT_1(
 java.util.stream.Collectors$CollectorImpl@7905a0b8)}
 Server Plan: 0970e486-484c-4e04-bb8e-5fe477d47c0d
 Stream Planning Time (Nanoseconds): 2611339
 Sorted Index Used In Filter: false
 Filter Expression: true
 Unknown Filter Count: 0
 Unused Filter Count And Filters (If Any): 0
 Selected Plan: Full Dataset Scan //3

1 No portable operations are identified.

2 Several non-portable operations are identified. These operations are all
executed in the client.

3 Pipelines having no portable operations require a full dataset scan for data
retrieval.

Portable Operations

This example shows a pipeline expressing the same sequence of operations as the
previous example but using portable operation arguments making the majority of
the pipeline portable. Unlike the previous example, both filtering and mapping are

M
Odd Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 37

performed on the server limiting what is transferred to the client to that data that actually
needs to be collected.

Portable Pipeline:
List<String> result = recordStream
 .explain(System.out::println)
 .filter(TAXONOMIC_CLASS.value().is("mammal")) // 1
 .map(TAXONOMIC_CLASS.valueOrFail()) // 2
 .collect(toList());

1 This filter operation expresses the same selection criterion as the first
example but does so using a portable DSL expression.

2 Unlike the first example, the map operation in this pipeline is portable - all
preceding operations in the pipeline are portable so the map operation can
be portable.

Stream Plan - Portable Operations:
Stream Plan
 Structure:
 Portable:
 PipelineOperation{FILTER((class==mammal))} // 1
 PipelineOperation{MAP(class.valueOrFail())}
 Non-Portable:
 PipelineOperation{COLLECT_1(
 java.util.stream.Collectors$CollectorImpl@1e13529a)} // 2
 Server Plan: ecc2db4d-1da7-4822-ad8a-b2f469fce4d5
 Stream Planning Time (Nanoseconds): 99065863
 Sorted Index Used In Filter: false
 Filter Expression: (class==mammal)
 Unknown Filter Count: 0
 Unused Filter Count And Filters (If Any): 0
 Selected Plan: Full Dataset Scan // 3

1 Two (2) portable operations are identified.

2 One (1) non-portable operation is identified. This operation, the toList
collector, must be run in the client.

3 Pipelines using portable operations may use an index-based data
retrieval if an index is available. In this example, no index for the class
(TAXONOMIC_CLASS) cell was defined. See the section “Index Use” on
page 39 below.

DSL Support for Portable Operations

As discussed in the section “Functional DSL” on page 27, the DSL methods permit
expression of pipeline operation arguments in a manner which can be portable between
client and server. However, as a growth point in TCStore, the DSL methods may
produce non-portable expressions as well.

M
Even Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 38

A method in the DSL produces an instance of one of the interfaces found
in java.util.function - Predicate, Function, Consumer, BiFunction,
ToDoubleFunction, ToIntFunction, ToLongFunction, etc. - or found in
java.util.stream like Collector. For the instance to be portable, the instance must be
from a TCStore implementation that is designed and implemented to be portable. There
are currently no provisions for a user to extend the collection of portable operations by
implementing their own portable DSL extensions.

The following is a list of the DSL methods that produce non-portable expressions:

UpdateOperation.custom The UpdateOperation.custom method is intended to
provide a means of performing updates too complex to be expressed using the
other UpdateOperation methods - custom is not intended to be used for portable
operations so it will not produce a portable function instance.

Collectors Methods The following
com.terracottatech.store.function.Collectors methods return non-portable
Collector implementations:

averagingDoublegroupingBy partitioningBy

averagingIntgroupingByConcurrentsummingDouble

averagingLongmapping summingInt

composite maxBy summingLong

counting minBy varianceOf

filtering

A collect operation, even when using a portable Collector, will partially
execute in the client to perform result aggregation over the stripes in a multi-stripe
configuration. A collect operation involving a Collector that does not perform
a data reduction or aggregation operation will always involve data transfer to and
execution in the client.

Comparator Methods The asComparator method from the value accessors (value(),
doubleValueOrFail(), etc.) on each of the CellDefinition subtypes and from
Record.keyFunction() produce Comparator implementations that do not
provide a portable implementation of the thenComparing, thenComparingDouble,
thenComparingInt, or thenComparingLong methods.

Function.andThen / Consumer.andThen Several of the DSL functions produce
a specialized type of the Function or Consumer interfaces. Most of
these specialized types do not implement the andThen method - the
andThen method does not produce a portable instance. For example,
definition.value().andThen(Function) where definition is a

M
Odd Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 39

CellDefinition (or one of its subtypes) produces a non-portable instance even if
the argument to andThen is portable.

Function.compose Several of the DSL functions produce a specialized type of the
Function interface. Most of these specialized types do not implement the compose
method - the compose method does not produce a portable function instance. For
example, definition.value().compose(Function) where definition is a
CellDefinition (or one of its subtypes) produces a non-portable instance even if
the argument to compose is portable.

multiply / divide The type-specific value accessors on the numeric CellDefinition
subtypes, for example DoubleCellDefinition.doubleValueOrFail(), each provide
multiply and divide methods that produce a non-portable function instance.

length / startsWith The value accessors of StringCellDefinition - value() and
valueOrFail() - provide length and startsWith methods that produce a non-
portable function instance.

The number of DSL methods and the number of methods producing portable
expressions will be extended over time.

Index Use

In combination with pipeline portability, Predicates used in RecordStream.filter
operations used in the portable, server-side segment of the pipeline are analyzed for
expressions referring to CellDefinitions on which an index is defined. Analysis
by the server chooses one index through which the dataset is accessed to provide the
Record instances for the stream. Because a TCStore index tracks only Record instances
having the indexed Cell, Record instances without a value for the indexed Cell are not
presented to the stream when an index is used.

Note: Because an index provides only Record instances having the indexed cell,
the Predicate analysis looks for uses of the CellDefinition.value()
method. The other forms of value reference (valueOr, valueOrFail,
longValueOr, longValueOrFail, etc.) are not supported in determining
index use. So, while TAXONOMIC_CLASS.value() is considered for index use,
TAXONOMIC_CLASS.valueOrFail() is not.

The analysis also includes a determination of whether or not a range query can
be performed. The use of range comparisons (value().isGreaterThan(),
value().isLessThanOrEqualTo()) permits selection of a subset of the indexed Record
instances using the index.

Example

For example, using the portable example from the section Portable Operations above, if
an index is defined over the TAXONOMIC_CLASSCellDefinition, an index will be used
when supplying Record instances to the pipeline.

Portable Pipeline:
List<String> result = recordStream
 .explain(System.out::println)
 .filter(TAXONOMIC_CLASS.value().is("mammal")) // 1

M
Even Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 40

 .map(TAXONOMIC_CLASS.valueOrFail())
 .collect(toList());

1 TAXONOMIC_CLASS is a reference to a StringCellDefinition over which
an index is defined.

Stream Plan - Portable Operations & Using an Index
Stream Plan
 Structure:
 Portable:
 PipelineOperation{FILTER((class==mammal))} // 1
 PipelineOperation{MAP(class.valueOrFail())}
 Non-Portable:
 PipelineOperation{COLLECT_1(
 java.util.stream.Collectors$CollectorImpl@1b410b60)}
 Server Plan: a9c4a05c-7303-440c-90b5-d56bf518b66f
 Stream Planning Time (Nanoseconds): 138369229
 Sorted Index Used In Filter: true
 Filter Expression: (class==mammal)
 Unknown Filter Count: 0
 Unused Filter Count And Filters (If Any): 0
 Selected Plan: Sorted Index Scan // 2
 Cell Definition Name: class
 Cell Definition Type: String
 Index Ranges: (Number of Ranges = 1)
 Index Range 1: Range = mammal ::: Operation = EQ

1 As with the previous example, the same two (2) operations are portable.
The filterPredicate refers to a CellDefinition over which an index is
defined.

2 A "Sorted Index Plan" was chosen. The aributes of the access
(CellDefinition information and the type of index query) are described.

Failover Tuning
When seing up a high availability (HA) Terracoa Server Array (TSA) supporting
TCStore datasets, the choice made for the <failover-priority> element in the
tc.config file must be considered with TCStore in mind. For the typical TCStore use
case, <failover-priority> should be set to <consistency>.

For related details, see the section Choosing Consistency versus Availability of the Terracoa
Server Administration Guide.

M
Odd Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 41

Connection Pooling
Overview

The use of connection pooling is common among applications accessing relational
databases through the Java Database Connectivity (JDBC) API.

Through a connection pool, application threads borrow a connection to the database for
the duration of some unit of work and then return the connection to the pool for use
by another application thread. This is done to avoid the overhead of establishing the
connection to the database for each unit of work the application performs. A connection
pool is frequently used by an application deployed as a servlet in a servlet engine with
each servlet request performing a single unit of work.

So why not use a single JDBC connection for all requests? Technically, each
java.sql.Connection implementation is thread-safe but many, if not most,
implementations achieve this thread-safety through method synchronization - effectively
single-threading operations using a single connection. Perhaps more importantly,
JDBC transactions are scoped with the Connection - a commit by any thread using a
Connection commits all activity using that Connection. So, sharing a Connection
among application threads requires the application to coordinate its work and tolerate
the single-threaded processing of its requests.

While TCStore doesn't expose a connection object through its API, there are benefits to
sharing some of the API objects among application threads. Among the TCStore API
objects which should be considered for sharing are the DatasetManager and Dataset
objects. Most TCStore API objects and methods are thread-safe without resorting to
high-level synchronization. Under TCStore, each mutation performed on a Dataset is
atomic and commied individually so the need for separate TCStore "connections" to
address operation atomicity is not applicable.

DatasetManager

Note: Obtaining a new ClusteredDatasetManger instance for each application unit
of work will result in poor application performance.

A DatasetManager instance is as close as TCStore comes to having a connection object.
A DatasetManager is the object through which an application gains access to and
manages TCStore datasets. To interact with datasets residing in a TSA, an application
needs a ClusteredDatasetManager instance. Creating a ClusteredDatasetManager
instance (using DatasetManager.clustered(uri).build()) is a fairly
expensive operation involving the creation of TCP connections (at least two per
stripe) along with several exchanges between client and servers. Fortunately, a
ClusteredDatasetManager holds no state related to operations against the dataset
manager or datasets it manages - it is safe to share among application threads.

From the perspective of the Terracoa Management Console (TMC) each
ClusteredDatasetManager instance is a client. If you require more granular

M
Even Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 42

visibility into your application thread operations, you should consider using separate
ClusteredDatasetManager instances that correspond to the required granularity.

In addition to the expense of creating a ClusteredDatasetManager instance, most
of the methods on a ClusteredDatasetManager instance are also fairly expensive to
perform and should not be performed frequently. These operations are expensive not
only in the amount of time required to complete the operations but on the impact on
overall server performance.

Given the client and server resources consumed by a ClusteredDatasetManager
instance, the instance should be closed when it's no longer needed. But,
if a DatasetManager instance is shared among application threads, the
DatasetManager.close() method should not be invoked unless and until all
operations on Dataset instances obtained from the DatasetManager instance are
complete - calling close may abruptly terminate in-progress operations.

Dataset

Note: Using DatasetManager.getDataset to obtain reference to a Dataset for
each application unit of work will result in poor application performance.

The TCStore Dataset object is the application's entry point to reading from, writing
to, and managing indexes on a dataset. An application creates a dataset using a call
to DatasetManager.newDataset(…) and obtains a reference to a previously created
dataset using DatasetManager.getDataset(…). As mentioned above, each of these
operations is somewhat time consuming and should not be done frequently. And, once
created, a persistent dataset cannot be created again until it is destroyed so the new
Dataset operation need not be repeated routinely.

To gain access to an already-created dataset, use the DatasetManager.getDataset(…
) method. Again, this method is expensive and should not be repeated for every
application unit of work. As with a ClusteredDatasetManager instance, a Dataset
instance holds no state related to operations so it's safe to share Dataset instances
among application threads.

Compared with DatasetManager.getDataset(…), the methods on a Dataset instance
are relatively inexpensive and can be performed in each application unit of work.
However, the Indexing instance returned by the Dataset.indexing() method
should not be used for routine operations. Creating an index and deleting an index are
potentially expensive operations - applications should notadd an index to a dataset,
perform processing using that index, and then remove that index.

Maintaining a client-side reference to a Dataset is not without server-side cost. As with
a ClusteredDatasetManager, a Dataset instance should be closed when no longer
needed. Again like a ClusteredDatasetManager, if a Dataset instance is shared among
application threads, the Dataset.close() method should not be invoked unless and
until all operations on that Dataset instance are complete - calling close may abruptly
terminate in-progress operations.

M
Odd Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 43

Other TCStore Objects

In addition to the objects mentioned above, there are many other objects in the TCStore
API. While these objects generally need not be part of pooling strategies, their existence
must be taken into account when considering a pooling strategy. For example, each of
these objects is derived directly or indirectly from a Dataset instance - when using a
pooled Dataset instance, operations on these objects must be complete before returning
the Dataset instance to the pool. No references to any object obtained directly or
indirectly from a pooled Dataset instance should be retained after returning the
Dataset instance to the pool.

DatasetReader and DatasetWriterReader

The DatasetReader object, obtained using the Dataset.reader() method, and
the DatasetWriterReader object, obtained using the Dataset.writerReader()
method, are thread-safe objects providing read-only and read/write access to
the Dataset instance from which each was obtained. While one might consider
pooling these objects, obtaining an instance is an inexpensive operation - the added
complication of pooling instances of these objects would not be worth the trouble. In
addition, operations against a DatasetReader or DatasetWriterReader should be
completed before returning a Dataset instance to the pool.

RecordStream and MutableRecordStream

The RecordStream and MutableRecordStream objects, obtained from the
DatasetReader.records() and DatasetWriterReader.records() methods,
respectively, are the roots of the dataset bulk processing API based on Java streams.
As with the DatasetReader or DatasetWriterReader instance from which it
was obtained, a RecordStream or MutableRecordStream instance should not be
retained or operated upon beyond the return of the pooled Dataset through which
the stream instance was obtained. To ensure proper operation, stream instances
must be closed before the pooled Dataset is returned. Additionally, Iterator and
Spliterator instances obtained from a RecordStream or MutableRecordStream
must not be retained or operated upon after returning the pooled Dataset. If you
want to use stream results as input to other work units, you must either drain the
stream into a local data structure (which is then used to feed other work units) or
use a non-pooled DatasetManager instance and Dataset instance having a lifecycle
compatible with the lifetime of the stream.

ReadRecordAccessor and ReadWriteRecordAccessor

The ReadRecordAccessor and ReadWriteRecordAccessor extend key-based
operations with conditional execution and CAS capabilities. These are obtained
using the on(…) methods of the DatasetReader and DatsetWriterReader
objects. Like the other objects in this group, operations performed using a
ReadRecordAccessor or a ReadWriteRecordAccess must be complete before
returning the Dataset instance from which they were obtained to the pool.

AsyncDatasetReader and AsyncDatasetWriterReader

Obtained using the async() methods of a DatasetReader or
DatasetWriterReader instance, the AsyncDatasetReader and

M
Even Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 44

AsyncDatasetWriterReader objects provide non-blocking access to the
TCStore API. In general, the methods on each return an Operation instance,
implementing both the java.util.concurrent.CompletionStage and
java.util.concurrent.Future interfaces, providing a full range of asynchronous
task completion options. As with the objects discussed above, these operations
should be completed before returning a Dataset instance to the pool.

Pooling Strategies

When seeking to improve application performance through resource pooling, the
general recommendations are to:

1. Obtain one or more ClusteredDatasetManager instances.

a. Pre-obtain during application initialization or defer until needed as appropriate
for the application.

b. Use no more than the number of ClusteredDatasetManager instances required
to handle the application load.

c. Do not "pool" the ClusteredDatasetManager instances in the traditional
way - most applications do not need access to a DatasetManager instance so
there's no need to "share out" a ClusteredDatasetManager instance. Instead,
the ClusteredDatasetManager instances are used internally by the pooling
implementation to support obtaining Dataset instances.

d. Track Dataset instances obtained from each ClusteredDatasetManager
instance; when no Dataset instance obtained from a
ClusteredDatasetManger remains open, the ClusteredDatasetManager
instance is idle and may be closed. Keeping around idle
ClusteredDatasetManger instances for a certain amount of time may be
appropriate for the application.

2. Pool Dataset instances for sharing - Dataset references can and should be shared.

a. Use a strategy appropriate for your application to either pre-obtain a core set
of Dataset instances during application initialization or defer allocation until
demanded.

b. Obtain no more than one (1) Dataset instance for a given dataset (name/type)
per ClusteredDatasetManager.

c. Share Dataset instances by reference count. If appropriate for the application, a
Dataset instance having no uses and left idle for some period of time should be
closed.

d. Pair each Dataset instance with the ClusteredDatasetManager through which
it was allocated.

Note: If a StoreReconnectFailedException is raised for a TCStore operation,
the ClusteredDatasetManager instance from which the object on which
that operation was performed is disabled and must be discarded along with
any Dataset instances obtained from that ClusteredDatasetManager.
Once an object obtained from a ClusteredDatasetManager instance

M
Odd Header

Usage and Best Practices

TCStore API Developer Guide Version 10.5 45

throws a StoreReconnectFailedException, all subsequent operations
for that ClusteredDatasetManager instance will also throw a
StoreReconnectFailedException. For pool management, the failing
ClusteredDatasetManager instance must be replaced with a new instance.
See “Clustered Reconnection” on page 16 for details.

M
Even Header

TCStore API Developer Guide Version 10.5 46

M
Odd Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 47

3 Textual Query Language Extension

■ Reference ... 48

■ Usage and Best Practice ... 55

M
Even Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 48

Reference

Concepts
Textual Querying of TCStore

TCStore API provides a native streaming API for analyzing Dataset contents. As an
extension to that API, the Textual Query Language API (abbreviated TQL API) provides
an interface for an ad-hoc querying of a dataset using textual queries. During runtime
of the application, the dataset contents can be analyzed with queries whose logic is
dynamic and not yet known during design time of the application.

The corresponding textual queries are based on SQL-like semantics. Using a query
string, the user can describe in a declarative way how the data in the dataset is to be
analyzed without specifying the actual processing steps. TQL API is designed for
reading and analyzing the contents of a dataset. Thus, it solely supports read-only
SQL queries; other common SQL commands for data creation or manipulation are not
supported. Corresponding logic has to be defined using the native API.

Structured Data Access

The data model of TCStore is schema-less by design, i.e., the records in a dataset do not
have to follow a common schema. Records in a dataset can share the same set of cells,
but can also be based on completely different sets of cells. As a consequence a dataset
can have heterogeneous contents.

By contrast, the TQL query approach requires a structured view on the data. Therefore,
prerequisite for running a TQL query is to define a fixed schema, i.e., a subset of the data
with a fixed structure. During query processing, each record of the dataset is projected to
the set of cells constituting that schema.

TQL API offers the required operations to specify such a fixed schema, define a query,
and consume the results.

Operations
Full Example

With TQL API users can query a dataset, more precisely the records of a dataset and
their corresponding cells as well as their keys.

The following code sets up a TQL environment and executes a simple query:
final DatasetReader<String> reader = dataset.reader(); // 1
TqlEnvironment env = new TqlEnvironment(reader, // 2
 "Comedians", // 3
 CellDefinition.defineString("FirstName"), // 4
 CellDefinition.defineString("LastName"));
try (ResultStream resultStream =
 env.query("SELECT * FROM Comedians").stream()) { // 5

M
Odd Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 49

 resultStream.forEach(System.out::println); // 6
}

1 A DatasetReader is required to read the contents from a Dataset.

2 A TqlEnvironment is created, which takes as parameter the
DatasetReader,

3 A String alias for referencing the Dataset in a query,

4 and var-args of CellDefinition, which defines the input schema used
for processing the Record instances of the Dataset. Another variant uses
a Set of cell definitions.

5 The query method is used to submit a TQL query string. Within that
query string the alias of the TqlEnvironment instance is used to refer
to the Dataset. The query takes all cell definitions into account that are
defined in the input schema. If the query is valid, the query method
returns a Result instance. The Result instance provides a stream
method which delivers a ResultStream instance.

6 As ResultStream extends the java.util.stream.Stream interface,
the results can be consumed in a streaming fashion, in this example by
printing all results as terminal operation. The results themselves are
instances of CellCollection, which is a collection of Cell instances.

Setup of Environment

As illustrated in the previous example, a TqlEnvironment instance is based on
a DatasetReader, an alias, and a set of CellDefinition instances. Note that
TqlEnvironment does not have an explicit lifecycle; it depends on the lifecycle of the
Dataset and its associated DatasetManager.

Read Access

In order to run queries, the DatasetReader must be pointing to a Dataset that has not
been closed. If the Dataset or the associated DatasetManager have been closed, query
execution will fail with an exception.

Alias for Dataset

The mandatory alias for the Dataset defines the name under which the Dataset is
referenced in a query. The alias is a non-empty string. If the alias consists of invalid
characters, e.g. "name with space" or "?Id", an exception will be thrown.

Input Schema

A TqlEnvironment either uses an array or a set of CellDefinition instances to define
the schema, i.e. the structured view on the data, which is used for querying a Dataset.

M
Even Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 50

Consumption of Records

A query can only refer to the cell definitions of that schema, i.e., cells whose definitions
have not been included in the schema, cannot be queried. Each Record of a Dataset
is processed with respect to the defined input schema. For each cell definition of the
input schema, it is checked whether the record contains a corresponding cell. If so, the
cell value is used in upstream query processing. If not, NULL is used. For example, let
the input schema be "Name" of type String, "Age" of type Integer, "Weight" of type
Double. Then the dataset entry [(Name,String,"Moe"), (Age,Integer,42)] will be internally
processed as ["Moe",42,NULL]. NULL is also used if the cell definition name in the input
schema equals the cell definition name of an existing cell, but only case-insensitively.
This is due to names of cell definitions being handled case-sensitively.

Constraints on Cell Definitions

The cell definitions of the input schema must be unique with respect to the names. A
reserved name is "key", which is used for accessing the key of a record. If two or more
definitions share the same name, the input schema is rejected as TQL requires unique
columns. It is also rejected if the names are equal case-insensitively, .e.g. "Age" and
"age".

To deal with such ambiguous names, the API offers a manual and an automatic
resolution approach.

Automatic Resolution of Ambiguities

The automatic resolution approach resolves ambiguities by introducing aliases for
conflicting definitions. The method resolveAmbiguousNames can be applied to an array
or a set of cell definitions, returning a set of cell definitions with new alias names. The
alias name itself is built by appending "_" and the type in uppercase to the name. If the
automatic resolution step introduces new ambiguities, an exception is thrown and the
ambiguities have to be resolved manually.

The following example illustrates this approach:
CellDefinition<Integer> ageInt = CellDefinition.defineInt("Age"); // 1
CellDefinition<String> ageString = CellDefinition.defineString("Age");
TqlEnvironment env = new TqlEnvironment(reader,
 "Comedians",
 TqlEnvironment.resolveAmbiguousNames(ageInt, ageString)); // 2

1 The cell definitions are ambiguous as they have the same name.

2 The method resolveAmbiguousNames automatically resolves
ambiguities by appending the type to the name of ambiguous cell
definitions. In this example the generated aliases would be "Age_INT"
and "Age_STRING".

Manual Resolution of Ambiguities

M
Odd Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 51

The manual approach is to introduce an alias for a cell definition with the alias name
being unique. The method as maps an existing cell definition into a new cell definition
with an alias.

The following example illustrates this approach:
CellDefinition<Integer> ageInt = CellDefinition.defineInt("Age"); // 1
CellDefinition<String> ageString = CellDefinition.defineString("Age");
TqlEnvironment env = new TqlEnvironment(reader,
 "Comedians",
 TqlEnvironment.as("Age_Resolved", ageString), ageInt); // 2

1 The cell definitions are ambiguous as they have the same name.

2 The method as introduces an alias for a CellDefinition. The
alias name must be unique. In this example, the alias is named
"Age_Resolved", which is no more in conflict with the other cell
definition named "Age".

The aliases, either introduced by the manual or the automatic approach, are then used
for further query processing.

Sampling of Cell Definitions

When seing up a TqlEnvironment, the contents of the dataset and its structure may
be unknown. In order to get an impression of the data, sampling can be used. More
precisely, drawing a sample of records from the dataset and investigating their cell
definitions provides a reasonable starting point for understanding the structure of the
data. TqlEnvironment provides for that purpose the method sampleCellDefinitions.
This method takes as parameters a DatasetReader and the sample size, the laer being
greater than or equal to zero. If zero, the complete Dataset will be used as sample.
Given such a sample, the superset of all cell definitions of records in the sample is
determined and returned as a set.

Note: It is important to note that sampling should only be used to get a first
understanding of the dataset structure. As the contents of the dataset may
change dynamically, so the sample of cell definitions may change. Also the
set of cell definitions returned from sampling may contain ambiguities, i.e.,
definitions with the same name but a different type, or definitions whose
names are case-insensitively equal. As a consequence the sample should not
be used directly as the input schema, but should be investigated beforehand.

Inclusion of Record Key

Each record of a dataset consists of a key and a set of cells. By default, querying the key
is not supported. To query the key, the method TqlEnvironment.includeKeys has to
be called on a TqlEnvironment instance. Then the key can be used like every other cell
definition of the input schema; the name of the corresponding column is "key".

The following example shows how to include the record key in query processing:
TqlEnvironment env = new TqlEnvironment(reader,

M
Even Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 52

 "Comedians",
 CellDefinition.defineString("FirstName"),
 CellDefinition.defineString("LastName"))
 .includeKeys(); // 1
Result result = env.query("SELECT key FROM Comedians"); // 2

1 Given a TqlEnvironment instance, the key can be included by calling
includeKeys in a fluent style.

2 Now a query can access the key of a record, using the "key" column.

Note: If efficient key access is required for an application, the key should be
additionally included in the value part of the record with an appropriate
indexing setup.

Once the TqlEnvironment has been set up completely, it can be used to run an arbitrary
number of queries. As the TqlEnviromment does not maintain any mutable state, it can
therefore be used concurrently.

Querying of a Dataset

The method query of a TqlEnvironment instance takes as input the query string, which
is based on the SQL-like semantics of TQL API. Within that query, all cell definitions of
the input schema can be accessed, analogously to columns in a table being accessed in
a SQL query. Note that within the TQL query, all identifiers for columns, functions, etc.
are handled case-insensitively.

TQL API is targeted for reading from a Dataset and analyzing its contents. Therefore
read-only SQL operations are allowed while data creation and manipulation operations
like CREATE TABLE or UPDATE are not allowed. The query interface offers common
SQL operations like filtering, projection, aggregation, or grouping. A query can only
operate on one dataset; it cannot operate on multiple datasets using joins or other n-ary
operations.

Each query has an output schema, describing what the query results look like. The
output schema has to be compliant with TCStore type system. Otherwise the query
method will fail with an exception. For example, a query like SELECT CAST(Age AS
BIGDECIMAL) AS FailType FROM Comedians will fail. In such a case the query has to
be adapted so that the output schema only contains types being available in TCStore
type system. When calling the method query with a valid query string, it returns an
instance of type Result. This instance is used for consuming the results and accessing
the output schema.

Consumption of results

A Result instance provides access to the results of the query as well as to the schema of
these results.

Streaming of Query Results

M
Odd Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 53

The actual consumption of the results is provided by the method stream. This
method returns an instance of type ResultStream. Calling method stream multiple
times will return ResultStream instances being executed independent of each
other. As ResultStream extends java.util.stream.Stream, the results can
be consumed in a streaming fashion using arbitrary follow-up intermediate or
terminal operations. The results themselves are each a collection of cells. It is worth
mentioning that the underlying query processing is done lazily, i.e., the results are
not pre-computed in advance, but computed on demand when the next result is
to be consumed. Each ResultStream instance can only be consumed once, as with
java.util.stream.Stream. Note that the stream has to be closed in order to free
resources. When using a terminal operation other than iterator or spliterator, it is
automatically closed. However, it is good practice to close the stream explicitly.

The following example uses a try-with-resources statement to automatically close the
stream after consuming all results.
try (ResultStream stream =
 env.query("SELECT * FROM Comedians").stream()) {
 stream.forEach(System.out::println);
}

Output Schema of Query Results

The result schema can be obtained by calling on a Result instance the method
cellDefinitions, which returns Collection<CellDefinition<?>>. The cell
definitions of the output schema can be used to retrieve the corresponding cell values
from a query result entry. When composing the query results, NULL values are
translated to absent cells in the resulting cell collection. For example, the output schema
includes cell definition "LastName", but due to its result value being NULL, the resulting
cell collection does not include that cell.

Note: The alias-based resolution of ambiguities in the input schema may also
affect the output schema. For example, resolving ambiguities automatically
for input schema with CellDefinition<Integer> named "Age" and
CellDefinition<Long> named "Age" will result for query "SELECT * FROM
Source" in output schema CellDefinition<Integer> named "Age_INT" and
CellDefinition<Long> named "Age_LONG".

Inclusion of Record Key

Example

The following example illustrates the interplay of query schema and query results by
ploing a table, using the result schema as header and the results as subsequent rows.
try(ResultStream resultStream =
 env.query("SELECT * FROM Comedians").stream()) {
 String header = resultSchema.stream() // 1
 .map(cd -> String.format(" %10s ", cd.name()))
 .collect(Collectors.joining("|"));
 String rows = resultStream // 2
 .map(row ->
 resultSchema.stream()
 .map(row::get)
 .map(o -> String.format(" %10s ", o.orElse(null)))

M
Even Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 54

 .collect(Collectors.joining("|"))
)
 .collect(Collectors.joining("\n")
);
 System.out.println(String.format("%s%n%s", header, rows)); // 3

1 Using stream operations, the header is built using the CellDefinition
instances of the result schema.

2 Using stream operations, the query results are consumed and converted
into a rows string. Note that the cell collections are indexed by the cell
definitions of the output schema. As mentioned earlier, if the value of
a result column is NULL, the cell collection delivered as the result does
not include such a cell. When using the corresponding cell definition
to get that cell from the cell collection, an Optional.empty() object is
returned.

3 Finally, header and rows are printed.

Insights into Query Execution

Each TQL query is parsed and translated into a physical query execution plan. That plan
describes how logical operators are represented as physical operators, which indexes are
used, and whether all the data needs to be scanned. In case of performance bolenecks
of a query, its query execution plan can be examined to determine which physical
operators are used or where indexes might speed up the execution.

For that reason, ResultStream also provides access to a representation of that
query plan. The method explainQuery is an intermediate stream operation having
a java.util.stream.Consumer as only parameter. That consumer consumes an
Object instance, whose toString method returns a textual representation of the query
execution plan. The object as well as content and form of the string representation are
subject to change without notice. The plan is only available once the ResultStream has
been closed, either by calling method close explicitly or using a terminal operation
(other than iterator or spliterator).

Note: The method explainQuery can only be called on a ResultStream instance.
Adding subsequent stream operations to a ResultStream and calling then
explainQuery is not supported.

For more details on the query execution plan and its string-based representation, see
section “Performance Considerations” on page 55.

M
Odd Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 55

Usage and Best Practice

Application Scenarios
The TQL API can be used by developers or administrators to explore the contents of a
dataset interactively. Such an interactive exploration can be useful for rapid prototyping,
where the application logic often evolves dynamically. It is also useful for tools and
applications which offer ad-hoc query functionality.

Using TQL as an abstraction layer, dynamic business logic can be developed, tested and
deployed without the need to restart the server.

Interplay with Native Stream API
TQL API and native stream API complement each other, offering the user different
options to develop business logic for an application. While the native API offers the
complete range of CRUD functionality being specified in an imperative manner, TQL
API offers ad-hoc query functionality being specified in a declarative manner. TQL API
requires you to specify a schema before reading the data; the follow-up application
then knows which data to expect. Native API does not require you to specify a schema
upfront; it is up to the application to process the data in a structured manner.

The primary query interface for TCStore is the native API. Once business logic is
designed and ready to be deployed into production, it should be specified using the
native stream API as it offers the best performance.

Performance Considerations
Push-down of Query Logic

In order to understand potential performance implications when using TQL API,
it is worth understanding the mechanisms running in the background. TQL API
incorporates an internal query processing engine. When a TQL query is submied,
an optimization process decomposes the query into fragments. For each fragment it is
checked whether it can be expressed in terms of the native stream API. Those fragments
are then delegated to the TCStore client, which in turn tries to delegate them to TCStore
server. In order to maximize server-side execution, the process of rewriting TQL query
fragments in terms of native API tries to leverage portable functions of TCStore DSL
whenever possible. The fragments which cannot be expressed in the native API are
executed by the internal engine.

As the query processing engine is a logical part of the TCStore client, executing query
fragments by the internal engine might require transferring a lot of data from TCStore
server to client. Therefore, as a rule of thumb the queries should be wrien so that as
much functionality as possible can be delegated to TCStore client.

M
Even Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 56

The query execution plan can be utilized as tool for that purpose. By investigating the
plan, the user can determine:

1. which fragments of the query cannot be expressed in TCStore's query DSL and
therefore are executed by the internal engine on the client side;

2. which fragments of the query can be expressed in TCStore's query DSL; the resulting
pipeline of stream operations is analyzed and decomposed into a sequence of
portable operations and a sequence of non-portable operations;

3. which portable operations are evaluated remotely on the server and how the
execution plan of the server is defined.

For details on portable and non-portable operations see also section “Stream
Optimizations” on page 34.

Example

Let us examine a concrete query example and its execution plan.
Result result = env.query("SELECT * FROM Comedians WHERE Age**2 > 4"); // 1
try(ResultStream resultStream = result.stream()) {
 resultStream.explainQuery(System.out::println) // 2
 .forEach(System.out::println);
}

1 The query filters all records where the squared age is greater than 4.

2 The corresponding query plan is printed.

Query Plan - No Push-Down
======= Query Plan Start =======
==== SQL Query: // 1
SELECT * FROM Comedians WHERE Age**2 > 4
WARN: Pushdown failed due to the following reasons:
WEPRME1953 - The expression of type EXPONENTIATION cannot be pushed down:
Age^CONSTANT_INTEGER.
==== Query operations evaluated by SQL engine: // 2
SELECTION(filter[Age^CONSTANT_INTEGER>CONSTANT_INTEGER])
==== Query operations evaluated by TCStore Stream Query API: // 3
SOURCE(Comedians)
==== Code generated for TCStore Stream Query API: // 4
IntCellDefinition Age_INT = CellDefinition.defineInt("Age");
StringCellDefinition FirstName_STRING = CellDefinition.defineString("FirstName");
IntCellDefinition Weight_INT = CellDefinition.defineInt("Weight");
StringCellDefinition LastName_STRING = CellDefinition.defineString("LastName");;
reader.records()
==== TCStore query plan: // 5
Stream Plan
 Structure:
 Portable:
 None
 Non-Portable:
 PipelineOperation{MAP(de.rtm.adapters.tcstore.source.translation.operators.
 OperatorTranslationResult$RecordStreamResult$$Lambda$470/28956604@1b5975f)}
 PipelineOperation{ITERATOR()}
 Server Plan: [stream id: a6e5eb73-47d7-4748-b260-53759d22471b]

M
Odd Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 57

 Stream Planning Time (Nanoseconds): 4290237
 Sorted Index Used In Filter: false
 Filter Expression: true
 Unknown Filter Count: 0
 Unused Filter Count And Filters (If Any): 0
 Selected Plan: Full Dataset Scan
======= Query Plan End =======

The query plan provides the following information:

1 The query is available under section "SQL Query". The warning
indicates which fragments cannot be pushed down, in this example the
exponentiation operation.

2 The query operations being executed by the internal query engine are
listed. In this example this list comprises a selection using a filter on
column age.

3 The query operations being executed by the native API only comprises
the source itself, i.e. the access to the Dataset.

4 The optimization process rewrites query fragments in the native API.
The corresponding code being generated is listed. In this example, only
the method 'records' is called, delivering a stream of all instances in the
dataset.

5 Finally the query plan of TCStore is listed.

For details on that plan see also section “Stream Optimizations” on
page 34 .

The example query can be rewrien, delivering the same results (under the assumption
that age is positive).
result = env.query("SELECT * FROM Comedians WHERE Age > 2"); // 1
try(ResultStream resultStream = result.stream()) {
 resultStream.explainQuery(System.out::println)
 .forEach(System.out::println);
}

1 The filter predicate of the query has been rewrien.

The according query plan now illustrates the effects of rewriting the query on the push-
down capabilities.

Query Plan - Push-Down
======= Query Plan Start =======
==== SQL Query: // 1
SELECT * FROM Comedians WHERE Age > 2
==== Query operations evaluated by TCStore Stream Query API: // 2
SELECTION(filter[Age>CONSTANT_INTEGER])
 SOURCE(Comedians)

M
Even Header

Textual Query Language Extension

TCStore API Developer Guide Version 10.5 58

==== Code generated for TCStore Stream Query API: // 3
IntCellDefinition Age_INT = CellDefinition.defineInt("Age");
StringCellDefinition FirstName_STRING = CellDefinition.defineString("FirstName");
IntCellDefinition Weight_INT = CellDefinition.defineInt("Weight");
StringCellDefinition LastName_STRING = CellDefinition.defineString("LastName");;
reader.records()
.filter(Age_INT.exists()
 .and(Age_INT.intValueOr(0)
 .boxed()
 .isGreaterThan(2)))
==== TCStore query plan: // 4
Stream Plan
 Structure:
 Portable:
 PipelineOperation{FILTER((CellDefinition[name='Age' type='Type<Integer>']
 .exists()&&(Age.intValueOr(0)>2)))}
 Non-Portable:
 PipelineOperation{MAP(de.rtm.adapters.tcstore.source.translation.operators
 .OperatorTranslationResult$RecordStreamResult$$Lambda$470/28956604@fe32c2)}
 PipelineOperation{ITERATOR()}
 Server Plan: [stream id: a6e5eb74-47d7-4748-b260-53759d22471b]
 Stream Planning Time (Nanoseconds): 10704854
 Sorted Index Used In Filter: false
 Filter Expression: (CellDefinition[name='Age' type='Type<Integer>']
 .exists()&&(Age.valueOr(0)>2))
 Unknown Filter Count: 0
 Unused Filter Count And Filters (If Any): 0
 Selected Plan: Full Dataset Scan
======= Query Plan End =======

1 The query has been rewrien, no longer using the square operation.

2 Now the native API not only includes the source connection, but also the
filter operation.

3 The generated code shows how the filter predicate is implemented.

4 The TCStore query plan also includes now the filter operation.

M
Odd Header

Transactions Extension

TCStore API Developer Guide Version 10.5 59

4 Transactions Extension

■ Overview ... 60

■ Transaction Controller .. 60

■ Transaction Execution .. 61

■ Transaction ExecutionBuilder ... 62

■ Transactional Operation Behavior .. 67

■ Stream Operations ... 67

■ Best practices ... 67

M
Even Header

Transactions Extension

TCStore API Developer Guide Version 10.5 60

Overview
The Terracoa Store (TC Store) API provides operations with atomicity guarantees
at a single Record level only. The Transactions Extension adds the ability to create
transactions that involve multiple records belonging to one or more datasets. This
feature is available in both the standalone and the clustered environments.

Note: Only read commied transaction isolation is supported.

Transaction Controller
Transactions are managed through a TransactionController instance. There are two
createTransactionController factory methods to create instances:
TransactionController transactionController =
 TransactionController.createTransactionController // 1
 (datasetManager, // 2
 datasetConfigurationBuilder); // 3

1 A TransactionController instance is required to create and execute
transactions.

2 A DatasetManager is needed to host the internal transaction dataset.

3 A DatasetConfigurationBuilder is used to configure this internal
transaction dataset if it does not already exist.

If the transaction controller has already been created (and the internal transaction
dataset already exists):
TransactionController controller1 =
TransactionController.createTransactionController(datasetManager); // 1

1 A DatasetManager instance is required to load the internal transaction
dataset that stores the existing metadata.

If the internal transaction dataset does not exist and the second form is used then a
DatasetMissingException will be thrown.

Once retrieved, a TransactionController instance can be used to execute
actions transactionally using one of the TransactionController.execute(…
) methods or a transactional execution context can be built using the
TransactionController.transact() method.

M
Odd Header

Transactions Extension

TCStore API Developer Guide Version 10.5 61

Note: If a transaction is executed against a persistent dataset, then the internal
transaction dataset should also be configured as persistent since transaction
metadata is stored in both the datasets involved in the transaction and the
internal transaction dataset. Failure to persist either set of metadata may leave
transactions in an unexpected state after a restart.

 The contents of the internal transacon dataset must not be accessed or
modified by the user.

Transaction timeouts

Every transaction has a timeout defined. If a transaction does not finish before it times
out, it will get rolled back by the system. Any interaction with a transaction can throw
an unchecked StoreTransactionTimeOutException if the transaction has timed out.

A TransactionController has a default transaction timeout defined as 15 seconds.
This can be overridden at runtime by creating a derived instance with a new timeout:
TransactionController controller2 = transactionController.withDefaultTimeOut(50,
 TimeUnit.SECONDS); // 1

1 A TransactionController created using a custom transaction timeout.

Timeouts can also be modified on a per transaction basis using a Transaction
ExecutionBuilder. See the section “Transaction ExecutionBuilder” on page 62 for
details.

Note: The classes in the TCStore transactions framework predominantly follow the
immutable builder design paern. Simply calling the withDefaultTimeout
method as shown above is ineffective if the TransactionController instance
it returns is not captured/used.

Transaction Execution
The simplest way to execute a transaction is using one of the
TransactionController.execute methods. The parameters to these methods define
the transaction workload and the resources that take part in the transaction.
Long numberOfEmployees =
 transactionController.execute(employeeReader, // 1
 reader -> reader.records().count()); // 2
Long numberOfEmployeesAndCustomers =
 transactionController.execute(employeeReader, customerReader, // 3
 (empReader, custReader) ->
 empReader.records().count() + custReader.records().count()); // 4
transactionController.execute(employeeWriterReader, // 5
 (TransactionalTask<DatasetWriterReader<Integer>>) writerReader ->
 writerReader.on(1).delete()); // 6

M
Even Header

Transactions Extension

TCStore API Developer Guide Version 10.5 62

1 TransactionController.execute here takes a DatasetReader as the
resource that takes part in the transaction.

2 The TransactionalAction instance is conveniently expressed here
as a lambda expression. The action is executed atomically with respect
to the enrolled resources and its return value is then returned from
TransactionController.execute(…).

3 Here two DatasetReader instances are passed in as resources.

4 The TransactionalBiAction defines a transaction over the
two passed in resources. And the result is returned by the
TransactionController.execute(…).

5 Additional overloads of TransactionController.execute(…) take
DatasetWriterReader instances as resources.

6 A TransactionalTask has no return value and is therefore only available
for execution against writer-reader resources.

There are overloads of TransactionController.execute(…) defined to handle all
one and two dataset transactions. More complicated transactions require a transaction
context to be built.

Transaction ExecutionBuilder
When assembling a transaction that cannot be handled using one of the
TransactionController.execute methods, a transaction ExecutionBuilder instance
can be used. An ExecutionBuilder supports seing a transaction-specific timeout and
identifying more DatasetReader/DatasetWriterReader resources to include in the
transaction than is possible using the execute methods.

Dataset instances involved in a transaction must be identified to the transaction context
by providing DatasetReader and/or DatasetWriterReader instances to the context
through the ExecutionBuilder.using methods. Accesses to undeclaredDataset
instances which are not under the scope of the transaction can result in unexpected
behavior.

ReadOnlyExecutionBuilder
ReadOnlyExecutionBuilder
 readOnlyExecutionBuilder = controller1.transact() // 1
 .timeout(100, TimeUnit.SECONDS) // 2
 .using("empReader", employeeReader) // 3
 .using("custReader", customerReader); // 4

M
Odd Header

Transactions Extension

TCStore API Developer Guide Version 10.5 63

1 transact() in TransactionController returns a
ReadOnlyExecutionBuilder, the starting point for all transaction
builders, which is then used to construct a read-only transaction.

2 A transaction can have its own timeout defined through the
ExecutionBuilder.

3 A DatasetReader is added as a resource to the execution builder. This
resource will be used by the executing transaction.

4 Multiple resources can be added to an execution builder.

Note: For a transaction in which no mutations will take place, using
DatasetReader instead of DatasetWriterReader instances will result in a
ReadOnlyTransaction which can provide improved performance.

ReadWriteExecutionBuilder
ReadWriteExecutionBuilder readWriteExecutionBuilder = controller2.transact()
 .using("custWriterReader", customerWriterReader) // 1
 .using("empReader", employeeReader); // 2

1 If a DatasetWriterReader is added as a resource
to a ReadOnlyExecutionBuilder, then it returns a
ReadWriteExecutionBuilder which can be used to execute a read/
write transaction.

2 A DatasetReader can also be added to a ReadWriteExecutionBuilder
as resource that could eventually get used by the read/write transaction
executed using the ReadWriteExecutionBuilder.

Executing Using an ExecutionBuilder

The transactions API provides two ways of executing a transaction using an execution
builder as described below.

Executing a TransactionalAction

One way to execute a transaction is to write a function that contains all the logic of the
transaction and then execute that function using the execution builder.
Double totalSalary = transactionController.transact()
 .using("empReader", employeeReader)
 .execute(readers -> { // 1
 DatasetReader<Integer> empTransactionalReader =
 (DatasetReader<Integer>) readers.get("empReader"); // 2
 double first100EmployeesSalaryCount = 0;
 for (int i = 1; i < 100; i++) {
 first100EmployeesSalaryCount +=

M
Even Header

Transactions Extension

TCStore API Developer Guide Version 10.5 64

 empTransactionalReader.get(i).map(rec ->
 rec.get(SALARY).orElse(0D)).orElse(0D); // 3
 }
 return first100EmployeesSalaryCount; // 4
 });

1 ReadOnlyExecutionBuilder.execute() takes a
TransactionalAction instance as parameter. TransactionalAction
is a functional interface with a method perform() taking in a single
argument (Map<String, DatasetReader>) and returning an object.
In this example, the TransactionalAction instance is formed from a
lambda expression. This TransactionalAction is executed as a single
transaction satisfying all the ACID properties.

2 The Map (readers) provides access to the DatasetReader instances that
were added as resources.

3 Transactional read operations can be performed using these extracted
dataset readers.

4 The value returned by perform() of TransactionalAction is returned
by the execute() method here.

Note: For proper transactional operations, use onlyDatasetReader instances
obtained from the Map and not from variables defined outside of the scope of
the lambda and captured within the lambda.

int numberOfRecordsUpdated = transactionController.transact()
 .using("empReader", employeeReader)
 .using("empWriterReader", employeeWriterReader)
 .execute((writerReaders, readers) -> { // 1
 DatasetWriterReader<Integer> empTransactionalWriterReader =
 (DatasetWriterReader<Integer>)
 writerReaders.get("empWriterReader"); // 2
 DatasetReader<Integer> empTransactionalReader =
 (DatasetReader<Integer>) readers.get("empReader"); // 2
 int numRecordsUpdated = 0;
 for (int i = 1; i < 100; i++) {
 numRecordsUpdated += empTransactionalWriterReader.on(i) // 3
 .update(UpdateOperation.write(SALARY).doubleResultOf(
 SALARY.doubleValueOr(0D).add(100D)))
 .isPresent() ? 1 : 0;
 }
 System.out.println("Total Employee = " +
 empTransactionalReader.records().count()); // 3
 return numRecordsUpdated; // 4
 });

1 ReadWriteExecutionBuilder.execute() takes a
TransactionalBiActioninstance as parameter.
TransactionalBiAction is a functional interface with a
method perform() taking two arguments (Map<String,
DatasetWriterReader> and Map<String, DatasetReader>) and

M
Odd Header

Transactions Extension

TCStore API Developer Guide Version 10.5 65

returning an object. In this example, the TransactionalBiAction
instance is formed from a lambda expression. This
TransactionalBiAction is executed as a single transaction satisfying
all the ACID properties.

2 The maps (writerReaders, readers) provide access to the
DatasetWriterReader and DatasetReader instances that were added
as resources.

3 Transactional CRUD operations can be performed using these
extracted dataset readers and writerReaders.

4 The value returned by perform() of TransactionalBiAction is
returned by the execute() method here.

Note: For proper transactional operations, use onlyDatasetWriterReader and
DatasetReader instances obtained from the maps and not from variables
defined outside of the scope of the lambda and captured within the lambda.

External Transaction Control

Another way of executing a transaction is by creating a Transaction instance using an
execution builder. This Transaction instance is then used to extract the transactional
versions of the dataset readers and writerReaders that were added as resources.
These instances are then used to perform all the transactional activity and finally the
transaction is commied through the Transaction instance.

Note: External transaction control is deprecated in favor of the execution using
lambda forms described above.

ReadOnlyTransaction readOnlyTransaction =
 transactionController.transact()
 .using("empReader", employeeReader)
 .begin(); // 1
boolean exceptionThrown1 = false;
try {
 DatasetReader<Integer> empTransactionalReader =
 readOnlyTransaction.reader("empReader"); // 2
 double first100EmployeesSalarySum = 0;
 for (int i = 1; i <= 100; i++) {
 first100EmployeesSalarySum +=
 empTransactionalReader.get(i).map(rec ->
 rec.get(SALARY).orElse(0D)).orElse(0D); // 3
 }
 System.out.println("First 100 employee's salary sum = " +
 first100EmployeesSalarySum);
} catch (Exception e) {
 exceptionThrown1 = true;
 e.printStackTrace();
 readOnlyTransaction.rollback();
}
if (exceptionThrown1 == false) {
 readOnlyTransaction.commit(); // 4
}

M
Even Header

Transactions Extension

TCStore API Developer Guide Version 10.5 66

1 ReadOnlyExecutionBuilder.begin() returns a ReadOnlyTransaction
instance.

2 The ReadOnlyTransaction instance is then used to retrieve transactional
dataset readers.

3 The readers can then be used for performing transactional read
operations.

4 Finally, to finish the transaction commit() or rollback() is called on the
ReadOnlyTransaction instance.

TransactionController.ReadWriteTransaction
 readWriteTransaction = transactionController.transact()
 .using("empReader", employeeReader)
 .using("empWriterReader", employeeWriterReader)
 .begin(); // 1
boolean exceptionThrown = false;
int numRecordsUpdated = 0;
try {
 DatasetWriterReader<Integer> empTransactionalWriterReader =
 readWriteTransaction.writerReader("empWriterReader"); // 2
 DatasetReader<Integer> empTransactionalReader1 =
 readWriteTransaction.reader("empReader"); // 2
 for (int i = 1; i < 100; i++) {
 numRecordsUpdated += empTransactionalWriterReader.on(i) // 3
 .update(UpdateOperation.write(SALARY).doubleResultOf(
 SALARY.doubleValueOr(0D).add(100D)))
 .isPresent() ? 1 : 0;
 }
 System.out.println("Total Employee = " +
 empTransactionalReader1.records().count()); // 3
} catch (Exception e) {
 exceptionThrown = true;
 e.printStackTrace();
 readWriteTransaction.rollback();
}
if (exceptionThrown == false) {
 if (numRecordsUpdated == 100) {
 readWriteTransaction.commit(); // 4
 } else {
 readWriteTransaction.rollback(); // 4
 }
}

1 ReadWriteExecutionBuilder.begin() returns a
ReadWriteTransaction instance.

2 The ReadWriteTransaction instance is then used to retrieve
transactional dataset readers and writer-readers.

M
Odd Header

Transactions Extension

TCStore API Developer Guide Version 10.5 67

3 The readers and writer-readers can then be used for performing
transactional operations.

4 Finally, to finish the transaction, commit() or rollback() is called on
the ReadWriteTransaction instance. For read/write transactions the
commit() or rollback() will resolve the dataset states to their correct
forms.

Transactional Operation Behavior
Read

Transactional reads are non-blocking and are executed at read commied isolation level.
A read operation will return the latest commied image of the record and will not be
blocked by any active transaction.

Add, Delete and Update

Write operations on a record wrien by another active transaction will wait for that
transaction to finish. This means that a record dirtied by a transaction cannot be updated
by another transaction until the first transaction is commied, rolled-back or times out.

Stream Operations
Only non-mutative transactional record stream operations are supported. Reads
performed by stream operations have the same semantics as the simple reads described
above.

Best practices
1. A non-persistent internal transaction dataset should only be used if you

are sure transactions will never involve records from a persistent Dataset.
Using a non-persistent internal transaction dataset when appropriate can
provide beer performance however. For the most reliable behavior, datasets
enrolled in transactions should use the same persistence mechanism as the
TransactionController itself.

2. Read-only transactions should be used for transactions with no write operations to
get beer performance.

3. A TransactionAction or TransactionBiAction should only use the provided
transaction resources. Transactional guarantees are provided only for the operations
performed through the added resources.

M
Even Header

Transactions Extension

TCStore API Developer Guide Version 10.5 68

4. Avoid executing transactions using External Transaction Control (see the description
in the section “Executing Using an ExecutionBuilder” on page 63). This form of
executing is significantly more error prone than the recommended functional forms.

	Table of Contents
	About This Documentation
	Online Information and Support
	Data Protection

	Reference
	Concepts
	Data Model

	Configuration and Lifecycle Operations
	Clustered DatasetManager using the API
	Clustered DatasetManager using XML

	Operations
	Clustered Reconnection
	Server-Side Connection Management
	Client-Side Connection Management

	CRUD Operations
	Streams
	Asynchronous API

	Functional DSL
	Indexes

	Usage and Best Practices
	Stream Optimizations
	Failover Tuning
	Connection Pooling

	Textual Query Language Extension
	Reference
	Concepts
	Operations

	Usage and Best Practice
	Application Scenarios
	Interplay with Native Stream API
	Performance Considerations

	Transactions Extension
	Overview
	Transaction Controller
	Transaction Execution
	Transaction ExecutionBuilder
	Transactional Operation Behavior
	Stream Operations
	Best practices

