
Ehcache API Developer Guide

Version 10.5

October 2019

This document applies to Terracoa and Terracoa Ehcache Version 10.5 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2019 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: TC-EHC-DG-105-20191015

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Ehcache API Developer Guide Version 10.5 3

Table of Contents

About This Documentation...7
Online Information and Support... 7
Data Protection... 8

Caching Basics.. 9
Primary Classes..10
Comparison of CacheManager to UserManagedCache...10

Creating and Configuring a CacheManager Using Java... 13
Going Through the Lifecycle of a Cache... 14
Configuring Storage Tiers using Java.. 15
Creating a Cache Manager with Clustering Support..16
Data Freshness.. 17

Configuring a CacheManager Using XML...19
Configuring Storage Tiers using XML.. 20
The XML Schema Definition.. 21
Property replacement in XML configuration files..23
XML Programmatic Parsing..23

The JCache (JSR-107) Cache Provider... 25
Overview of JCache... 26
Using Ehcache as a JCache Provider... 26
Getting Started with Ehcache and JCache (JSR-107)...27
Integrating JCache and Ehcache Configurations... 28
Differences in Default Behavior between Ehcache and Ehcache through JCache.................. 35

User Managed Caches.. 37
Overview of User Managed Caches.. 38
API Extensions... 38
Code examples for User Managed Caches... 40

Cache Usage Patterns...43

Data Freshness and Expiry.. 45
Data Freshness.. 46
Expiry.. 47

Transactions Support.. 51
What is supported and what are the limitations?...52
Configuring it all in Java...52
Configuring it with XML.. 57

M
Table of Contents

Ehcache API Developer Guide Version 10.5 4

Tiering Options...61

Cache Loaders and Writers..73
Introduction to Cache Loaders and Writers... 74
Implementing Cache-Through.. 75

Cache Event Listeners.. 77
Introduction... 78
Registering Event Listeners during runtime... 80
Event Processing Queues.. 80

Eviction Advisors...81

Serializers and Copiers...83
Overview of Serializers and Copiers..84
Serializers... 84
Copiers..89

Thread Pools.. 93
Introduction to Thread Pools.. 94
Configuring Thread Pools with Code... 95
Configuring Thread Pools with XML...98

Code Examples.. 101

Ehcache XSDs..105
XSD namespaces and locations.. 106

Management and Monitoring with Ehcache..107
Introduction... 108
Making use of the ManagementRegistry..108
Capabilities and contexts..109
Actions.. 111
Managing multiple cache managers...112
Rules for Statistics Calculation...113

Class Loading.. 117
About Class Loading.. 118
Handling User Types.. 118

Clustered Caches...121
Introduction... 122
Clustering Concepts... 122
Starting the Terracotta Server.. 124
Creating a Cache Manager with Clustering Capabilities..125
Cache Manager Configuration and Usage of Server Side Resources................................... 126
Ehcache Cluster Tier Manager Lifecycle..127

M
Table of Contents

Ehcache API Developer Guide Version 10.5 5

Configuring a Clustered Cache.. 128
Creating a Cluster with Multiple Stripes... 131

Fast Restartability..133
Overview of Fast Restartability...134
Creating a Restartable Cache Manager...134
Creating a Restartable Cache..135
Creating Restartable Resource Pools.. 135
Example of a Restartability Scenario... 136
General Notes on Configuring Restartability..137

Hybrid Caching.. 139
Overview of Hybrid Caching...140
Configuring a Hybrid Cache Manager..140
Configuring a Hybrid Cache... 141
Example of a Hybrid Scenario... 142
General Notes on Configuring Hybrid.. 143

Migrating Code from Ehcache v2.. 145

M
Even Header

Ehcache API Developer Guide Version 10.5 6

M
Odd Header

About This Documentation

Ehcache API Developer Guide Version 10.5 7

About This Documentation

Online Information and Support
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at “hp://
documentation.softwareag.com”. The site requires credentials for Software AG's Product
Support site Empower. If you do not have Empower credentials, you must use the
TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to
“empower@softwareag.com” with your name, company, and company email address
and request an account.

Once you have an account, you can open Support Incidents online via the eService
section of Empower at “hps://empower.softwareag.com/”.

You can find product information on the Software AG Empower Product Support
website at “hps://empower.softwareag.com”.

To submit feature/enhancement requests, get information about product availability,
and download products, go to “Products”.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the “Knowledge Center”.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at “hps://empower.softwareag.com/
public_directory.asp” and give us a call.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at “hp://techcommunity.softwareag.com”. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

M
Even Header

About This Documentation

Ehcache API Developer Guide Version 10.5 8

Data Protection
Software AG products provide functionality with respect to processing of personal data
according to the EU General Data Protection Regulation (GDPR). Where applicable,
appropriate steps are documented in the respective administration documentation.

M
Odd Header

Caching Basics

Ehcache API Developer Guide Version 10.5 9

1 Caching Basics

■ Primary Classes ... 10

■ Comparison of CacheManager to UserManagedCache .. 10

M
Even Header

Caching Basics

Ehcache API Developer Guide Version 10.5 10

Primary Classes
At the core of the concept of the Ehcache API are three classes:

CacheManager

Cache

UserManagedCache

A CacheManager provides all necessary functionality to manage Caches and associated
Services.

A Cache contains mappings of key to value, so-called entries. There are methods to
create, access, update and delete these key-value pairs.

A UserManagedCache allows to actively define a specific cache handling in cases where the
full functionality of CacheManager may not be necessary, for instance when the lifecycle of
the cache is shorter than the application lifecycle.

For more information on these three classes refer to the following sections ...

“Comparison of CacheManager to UserManagedCache” on page 10

“Creating and Configuring a CacheManager Using Java” on page 13

“User Managed Caches” on page 37

... and the Java API docs of the Ehcache API on “hp://www.ehcache.org/
documentation/”.

Comparison of CacheManager to UserManagedCache
The first step is to create an instance that manages a cache, and the second step is to
create the cache itself.

There are two variations of managing a cache:

By means of a CacheManager

or ...

By means of a UserManagedCache

The decision when to use either the standard CacheManager or the 'lightweight'
UserManagedCache depends on the particular use case, since each approach has pros and
cons:

CacheManager

Pros:

http://www.ehcache.org/documentation/
http://www.ehcache.org/documentation/

M
Odd Header

Caching Basics

Ehcache API Developer Guide Version 10.5 11

Offers numerous standard services out of the box - a good starng point for
seng up the basic framework.

Cons:

Brings along a certain level of richness and complexity that in some cases might
offer more than needed.

UserManagedCache

Pros:

Offers a lightweight approach for examples such as Method local caches,
thread local caches, and a cache lifecycle shorter than the applicaon lifecycle.

Cons:

Does not offer out-of-the-box services, which must be configured on-instance
basis.

A CacheManager can be created using either Ehcache directly or the JSR 107 JCACHE - Java
Temporary Caching API.

Programmatically configuring the instance of a CacheManager and its cache can be done
either in Java or via XML.

M
Even Header

Ehcache API Developer Guide Version 10.5 12

M
Odd Header

Creating and Configuring a CacheManager Using Java

Ehcache API Developer Guide Version 10.5 13

2 Creating and Configuring a CacheManager Using Java

■ Going Through the Lifecycle of a Cache ... 14

■ Configuring Storage Tiers using Java .. 15

■ Creating a Cache Manager with Clustering Support ... 16

■ Data Freshness .. 17

M
Even Header

Creating and Configuring a CacheManager Using Java

Ehcache API Developer Guide Version 10.5 14

Going Through the Lifecycle of a Cache
Java configuration is most easily achieved through the use of builders that offer a fluent
API.

The canonical way of dealing with a Cache is through a CacheManager. Creating, using
and closing a cache with CacheManager is illustrated in this example:
CacheManager cacheManager
 = CacheManagerBuilder.newCacheManagerBuilder() // <1>
 .withCache("preConfigured",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.heap(10))) // <2>
 .build(); // <3>
cacheManager.init(); // <4>
Cache<Long, String> preConfigured = cacheManager.getCache("preConfigured",
 Long.class, String.class); // <5>
Cache<Long, String> myCache =
 cacheManager.createCache("myCache", // <6>
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.heap(10)));
myCache.put(1L, "da one!"); // <7>
String value = myCache.get(1L); // <8>
cacheManager.removeCache("preConfigured"); // <9>
cacheManager.close(); // <10>

The following list items refer to the commented numbers in the code.

<1> Using the Builders
The static method
org.ehcache.config.builders.CacheManagerBuilder.newCacheManagerBuilder
returns a new org.ehcache.config.builders.CacheManagerBuilder instance.

<2> Declare a cache configuration
Use the builder to define a Cache with alias "preConfigured". This cache will be created
when cacheManager.build() is invoked on the actual CacheManager instance.
The first String argument is the cache alias, which is used to retrieve the cache from the
CacheManager.
The second argument, org.ehcache.config.CacheConfiguration, is used to
configure the Cache.
In this case, the static newCacheConfigurationBuilder() method is used on
org.ehcache.config.builders.CacheConfigurationBuilder to create a default
configuration.

<3> Instantiate a CacheManager
Invoking build() returns a fully instantiated, but uninitialized, CacheManager ready to
use.

<4> Initialize the CacheManager
Before using the CacheManager it needs to be initialized, which can be done in 1 of 2
ways:

M
Odd Header

Creating and Configuring a CacheManager Using Java

Ehcache API Developer Guide Version 10.5 15

Calling CacheManager.init() on the CacheManager instance, or

Calling the CacheManagerBuilder.build(boolean init) method with the
boolean parameter set to true.

<5> Retrieving the preConfigured Cache and Type-Safety
A cache is retrieved by passing its alias, key type and value type to the CacheManager.
For instance, to obtain the cache declared in step 2 you need its alias=preConfigured,
keyType=Long.class and valueType=String.class.
Asking for both key and value types to be passed in ensures type-safety. Should these
differ from the ones expected, the CacheManager throws a ClassCastException early
in the application’s lifecycle. This also guards the Cache from being polluted by random
types.

<6> Create a new Cache
The CacheManager can also be used to create new Cache as needed.
Just as in step 2, it requires passing an alias as well as a CacheConfiguration.
The instantiated and fully initialized Cache added will be returned and/or accessed
through the CacheManager.getCache API.

<7> Store and ...
The newly added Cache can now be used to store entries, which are comprised of key
value pairs. The put method's first parameter is the key and the second parameter is the
value. Remember the key and value types must be the same types as those defined in the
CacheConfiguration. Additionally the key must be unique and is only associated with
one value.

<8> Retrieve data
A value is retrieved from a cache by calling the cache.get(key) method. It only takes
one parameter which is the key, and returns the value associated with that key. If there
is no value associated with that key then null is returned.

<9> Remove and close a given Cache
With CacheManager.removeCache(String) any given Cache can be removed.
The CacheManager will not only remove its reference to the Cache, but will also close it.
The Cache releases all locally held transient resources (such as memory). References to
this Cache become unusable.

<10> Close all Cache instances
In order to release all transient resources (memory, threads, ...) that a CacheManager
provides to its managed Cache instances, CacheManager.close() needs to be invoked.
This closes all Cache instances known at the time.

Configuring Storage Tiers using Java
Ehcache offers a tiering model that allows storing increased amounts of less frequently
used data on slower tiers (which are generally more abundant).

M
Even Header

Creating and Configuring a CacheManager Using Java

Ehcache API Developer Guide Version 10.5 16

More frequently used data (the "hoest data") would preferably be stored on faster
(commonly less abundant) storage, whereas less frequently used data (less "hot" data)
can be moved to slower (commonly more abundant) storage tiers.

Three Tiers

A classical example would be using 3 tiers with a persistent disk storage.
PersistentCacheManager persistentCacheManager =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(CacheManagerBuilder.persistence(
 new File(getStoragePath(), "myData"))) // <1>
 .withCache("threeTieredCache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, EntryUnit.ENTRIES) // <2>
 .offheap(1, MemoryUnit.MB) // <3>
 .disk(20, MemoryUnit.MB, true) // <4>
)
).build(true);
Cache<Long, String> threeTieredCache =
 persistentCacheManager.getCache("threeTieredCache",
 Long.class, String.class);
threeTieredCache.put(1L, "stillAvailableAfterRestart"); // <5>
persistentCacheManager.close();

1. If you wish to use disk storage (in the same way as for persistent Cache instances),
you have to provide a location where data should be stored on disk to the
CacheManagerBuilder.persistence() static method.

2. Define a resource pool for the heap. This will be your faster but smaller pool.

3. Define a resource pool for the off-heap. This is still quite fast and a bit bigger.

4. Define a persistent resource pool for the disk. It is persistent because the last
parameter is true.

5. All values stored in the cache will be available after a JVM restart (assuming the
CacheManager has been closed cleanly by calling close()).

Creating a Cache Manager with Clustering Support
To enable clustering with Terracoa, firstly you will have to start the Terracoa server
configured with clustered storage. In addition, for creating the cache manager with
clustering support, you will need to provide the clustering service configuration:
CacheManagerBuilder<PersistentCacheManager>
 clusteredCacheManagerBuilder =
 CacheManagerBuilder.newCacheManagerBuilder() // <1>
 .with(ClusteringServiceConfigurationBuilder.cluster(URI.create(
 "terracotta://localhost:9410/my-application")) // <2>
 .autoCreate()); // <3>
PersistentCacheManager cacheManager =
 clusteredCacheManagerBuilder.build(true); // <4>
cacheManager.close(); // <5>

M
Odd Header

Creating and Configuring a CacheManager Using Java

Ehcache API Developer Guide Version 10.5 17

<1>
Returns the org.ehcache.config.builders.CacheManagerBuilder instance;

<2>
Use the ClusteringServiceConfigurationBuilder's static method cluster(URI)
for connecting the cache manager to the clustering storage at the URI specified that
returns the clustering service configuration builder instance. The sample URI provided
in the example points to the clustered storage with clustered storage identifier my-
application on the Terracoa server (assuming the server is running on localhost and
port 9410); the query-param auto-create creates the clustered storage in the server if it
doesn't already exist.

<3>
Returns a fully initialized cache manager that can be used to create clustered caches.

<4>
Close the cache manager.

Data Freshness
In Ehcache, data freshness is controlled through Expiry. The following example
illustrates how to configure a time-to-live expiry.
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, ResourcePoolsBuilder.heap(100)) // <1>
 .withExpiry(Expirations.timeToLiveExpiration(// <2>
 Duration.of(20, TimeUnit.SECONDS)))
 .build();

1. Expiry is configured at the cache level, so start by defining a cache configuration,

2. then add to it an Expiry, here using the predefined time-to-live one, configured with
the required Duration.

M
Even Header

Ehcache API Developer Guide Version 10.5 18

M
Odd Header

Configuring a CacheManager Using XML

Ehcache API Developer Guide Version 10.5 19

3 Configuring a CacheManager Using XML

■ Configuring Storage Tiers using XML .. 20

■ The XML Schema Definition .. 21

■ Property replacement in XML configuration files ... 23

■ XML Programmatic Parsing ... 23

M
Even Header

Configuring a CacheManager Using XML

Ehcache API Developer Guide Version 10.5 20

Configuring Storage Tiers using XML
As an alternative to programmatic configuration, a CacheManager can also be
configured using XML, as illustrated in this example:
<config>
 <cache alias="foo"> <!--1-->
 <key-type>java.lang.String</key-type> <!--2-->
 <resources>
 <heap unit="entries">2000</heap> <!--3-->
 <offheap unit="MB">500</offheap> <!--4-->
 </resources>
 </cache>
 <cache-template name="myDefaults"> <!--5-->
 <key-type>java.lang.Long</key-type>
 <value-type>java.lang.String</value-type>
 <heap unit="entries">200</heap>
 </cache-template>
 <cache alias="bar" uses-template="myDefaults"> <!--6-->
 <key-type>java.lang.Number</key-type>
 </cache>
 <cache alias="simpleCache" uses-template="myDefaults" /> <!--7-->
</config>

1. Declares a Cache aliased to foo.

2. The keys of foo are declared as type String.

Since the value type is not specified, the values will be of type java.lang.Object.

3. foo is declared to hold up to 2,000 entries on heap ...

4. ... as well as up to 500 MB of off-heap memory before the Cache starts evicting

5. <cache-template> elements create an abstract configuration that can be extended
by further <cache> configurations

6. bar is an example for such a Cache.

bar uses the <cache-template> named myDefaults and overrides its key-type to a
wider type.

7. simpleCache is another such Cache.

simpleCache uses myDefaults configuration for its sole CacheConfiguration.

The schema and format of the XML is explained in detail in the following section The
XML Schema Definition.

The type XmlConfiguration allows for parsing an XML configuration:
URL myUrl = getClass().getResource("/my-config.xml"); // <1>
Configuration xmlConfig = new XmlConfiguration(myUrl); // <2>
CacheManager myCacheManager =
 CacheManagerBuilder.newCacheManager(xmlConfig); // <3>

As the steps are ...

1. Obtain a URL to the location of the XML file.

M
Odd Header

Configuring a CacheManager Using XML

Ehcache API Developer Guide Version 10.5 21

2. Instantiate an XmlConfiguration passing the URL of the XML file.

3. Use the static
org.ehcache.config.builders.CacheManagerBuilder
 .newCacheManager(org.ehcache.config.Configuration)

creates the CacheManager instance using the Configuration from the
XmlConfiguration.

The XML Schema Definition
The following schema elements are available when using an XML file for configuring a
CacheManager at creation time:

<config> - root element
This is the root element of our XML configuration.
One <config> element in an XML file provides the definition for a CacheManager.

Note: You can create multiple CacheManager instances using the same XML
configuration file.

Advanced:

In contrast to the JSR-107 javax.cache.spi.CachingProvider, Ehcache
does not maintain a registry of CacheManager instances.

<service>
<service> elements are extension points for specifying services managed by the
CacheManager.
Each such Service defined in this way is managed with the same lifecycle as the
CacheManager.
The Service.start is called during CacheManager.init processing.
The Service.stop method is called during CacheManager.close processing.
These Service instances can then be used by Cache instances managed by the
CacheManager.

Note: JSR-107 uses this extension point of the XML configuration (and Ehcache's
modular architecture). For more information see section The JSR-107
Provider.

<default-serializers>
A <default-serializers> element represents Serializers configured at
CacheManager level. It is a collection of <serializer> elements that require a type and
a fully qualified class name of the Serializer.

M
Even Header

Configuring a CacheManager Using XML

Ehcache API Developer Guide Version 10.5 22

<default-copiers>
A <default-copiers> element represents Copiers configured at CacheManager level.
It is a collection of <copier> elements that requires a type and a fully qualified class
name of the Copier.

<persistence>
A <persistence> element that represents Persistence and that needs to be used when
creating a PersistentCacheManager.
It requires the directory location where data will be stored on disk.

<cache>
A <cache> element represent a Cache instance that will be created and managed by the
CacheManager.
Each <cache> requires the alias aribute, used at runtime
to retrieve the corresponding Cache<K, V> instance using the
org.ehcache.CacheManager.getCache(String, Class<K>, Class<V>) method.
The optional uses-template aribute references a <cache-template> element’s name
aribute.
See the section XML Programmatic Parsing for more details.
Following nested elements are optionally available:

<key-type>

the fully qualified class name (FQCN) of the keys (<K>) held in the Cache<K, V>;
defaults to java.lang.Object

<value-type>

FQCN of the values (<V>) held in the Cache; defaults to java.lang.Object

<expiry>

control the expiry type and its parameters

<eviction-advisor>

FQCN of a org.ehcache.config.EvictionAdvisor<K, V> implementation,
defaults to null, i.e. none

<integration>

configure a CacheLoaderWriter for a cache-through paern

<resources>

configure the tiers and their capacity. When using on-heap only, you can replace
this element by the <heap> one.

<cache-template>
<cache-template> elements represent a uniquely named template for <cache>
elements to inherit from.
This unique name is specified by using the mandatory name aribute.

M
Odd Header

Configuring a CacheManager Using XML

Ehcache API Developer Guide Version 10.5 23

A <cache> element that references a <cache-template> by its name using the uses-
template aribute, will inherit all properties of the <cache-template>. A <cache> can
override these properties as it needs.
A <cache-template> element may contain all the same child elements as a <cache>
element.

Property replacement in XML configuration files
Java system properties can be referenced inside XML configuration files. The property
value will replace the property reference during the configuration parsing.

This is done by using the ${prop.name} syntax. It is supported in all aributes and
elements values that accept the ${} characters as legal characters. This currently
rules out all numbers, mostly used in sizing things, and identifiers, such as cache and
template names.

Note: If the system property does not exist, this will make the configuration parsing
fail.

A classical use case for this feature is for providing a disk file location inside the
directory aribute of the persistence tag:
<persistence directory="${user.home}/cache-data"/> <!-- 1 -->

1. Here user.home will be replaced by the value of the system property, for example /
home/user.

XML Programmatic Parsing
The following section goes through the steps and possibilities of automatically
configuring a CacheManager using XML.

Note: If you are obtaining your CacheManager through API calls based
on JSR-107, what follows is done automatically when invoking
javax.cache.spi.CachingProvider.getCacheManager(java.net.URI,
java.lang.ClassLoader).

final URL myUrl =
 getClass().getResource("/configs/docs/getting-started.xml"); // <1>
XmlConfiguration xmlConfig = new XmlConfiguration(myUrl); // <2>
CacheManager myCacheManager =
 CacheManagerBuilder.newCacheManager(xmlConfig); // <3>
myCacheManager.init(); // <4>

1. Obtain a URL to your XML file's location

2. Instantiate an XmlConfiguration passing the URL of the XML file to it.

3. Create your CacheManager instance using the Configuration from the
XmlConfiguration.

M
Even Header

Configuring a CacheManager Using XML

Ehcache API Developer Guide Version 10.5 24

4. Initialize the CacheManager before it is used.

We can also use <cache-template> declared in the XML file to seed instances of
CacheConfigurationBuilder. In order to use a <cache-template> element from an
XML file, the XML file contains the following XML fragment:
 <cache-template name="example">
 <key-type>java.lang.Long</key-type>
 <value-type>java.lang.String</value-type>
 <heap unit="entries">200</heap>
 </cache-template>

Creating a CacheConfigurationBuilder of that example <cache-template> element
would be done as follows:
XmlConfiguration xmlConfiguration = new XmlConfiguration(getClass()
 .getResource("/configs/docs/template-sample.xml"));
CacheConfigurationBuilder<Long, String> configurationBuilder =
xmlConfiguration.newCacheConfigurationBuilderFromTemplate("example",
 Long.class, String.class); // <1>
configurationBuilder = configurationBuilder.
 withResourcePools(ResourcePoolsBuilder.heap(1000)); // <2>

1. Creates a builder, inheriting the capacity constraint of 200 entries.

2. The inherent properties can be overridden by simply providing a different value
prior to building the CacheConfiguration.

M
Odd Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 25

4 The JCache (JSR-107) Cache Provider

■ Overview of JCache ... 26

■ Using Ehcache as a JCache Provider ... 26

■ Getting Started with Ehcache and JCache (JSR-107) .. 27

■ Integrating JCache and Ehcache Configurations .. 28

■ Differences in Default Behavior between Ehcache and Ehcache through JCache 35

M
Even Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 26

Overview of JCache
The Java Temporary Caching API (JSR-107), also referred to as JCache, is a specification
(not a software implementation) that defines the javax.cache API. The specification
was developed under the Java Community Process, and its purpose is to provide
standardized caching concepts and mechanisms for Java applications.

The API is simple to use, it is designed as a caching standard and is vendor-neutral.
It eliminates the stark contrast that has in the past existed between APIs of different
vendors, which caused developers to stick with the proprietary API they were already
using, rather than investigating a new API, as the bar to investigating other products
was too high.

So it is easy for you as an application developer to develop an application using the
JCache API from one vendor, then if you so choose, try out another vendor's JCache
support without having to change a single line of your application code. All you have
to do is use the JCache caching library from your chosen vendor. This means you can
avoid having to rewrite a lot of your caching related code in an application just to try out
a new caching solution.

Using Ehcache as a JCache Provider
To use JCache API calls in an application, you require both of the following jar files:

The JCache jar, which defines the JCache APIs.

The Ehcache jar, which is the caching provider jar that implements the JCache APIs.
It translates the JCache API calls to their Ehcache API equivalent.

You can use the JCache API to develop a complete application, without the need to use
any Ehcache API calls.

Setting up Ehcache as the Caching Provider for JCache

To use Ehcache as the caching provider for your application, add the file
javax.cache:cache-api:1.y.y .jar (where y.y is a version-dependent string) to your
application's classpath. This is of course assuming Ehcache is already on that same
classpath.

No other setup steps are required.

The JCache jar file is available as a download from the JSR-107 section of the web pages
of the Java Community Process.

Note: If you were already using JCache with another caching provider, ensure that
you remove the other provider's jar file before starting your application.

M
Odd Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 27

Getting Started with Ehcache and JCache (JSR-107)
In addition to the Cache interface, the JCache specification defines the interfaces
CachingProvider and CacheManager. Applications need to use a CacheManager
to create/retrieve a Cache. Similarly a CachingProvider is required to get/access a
CacheManager.

Here is a code sample that demonstrates the usage of the basic JCache configuration
APIs:
 CachingProvider provider = Caching.getCachingProvider(); // <1>
 CacheManager cacheManager = provider.getCacheManager(); // <2>
 MutableConfiguration<Long, String> configuration =
 new MutableConfiguration<Long, String>() // <3>
 .setTypes(Long.class, String.class) // <4>
 .setStoreByValue(false) // <5>
 .setExpiryPolicyFactory(
 CreatedExpiryPolicy.factoryOf(Duration.ONE_MINUTE)); // <6>
 Cache<Long, String> cache =
 cacheManager.createCache("jCache", configuration); // <7>
 cache.put(1L, "one"); // <8>
 String value = cache.get(1L); // <9>
 assertThat(value, is("one"));

1 Retrieves the default CachingProvider implementation from
the application's classpath. This method will work if and only if
there is exactly one JCache implementation jar in the classpath. If
there are multiple providers in your classpath then use the fully
qualified name org.ehcache.jsr107.EhcacheCachingProvider to
retrieve the Ehcache caching provider. You can do this by using the
Caching.getCachingProvider(String) static method instead.

2 Retrieve the default CacheManager instance using the provider.

3 Create a cache configuration using MutableConfiguration…

4 with key type and value type as Long and String respectively…

5 configured to store the cache entries by reference (not by value)…

6 and with an expiry time of one minute defined for entries from the
moment they are created.

7 Using the cache manager, create a cache named jCache with the
configuration created in step 3.

8 Put some data into the cache.

M
Even Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 28

9 Retrieve the data from the same cache.

Integrating JCache and Ehcache Configurations
As mentioned already, JCache offers a minimal set of configuration that is ideal for
an in-memory cache. But Ehcache native APIs support topologies that are much more
complex and provide more features. At times, application developers might want to
configure caches that are much complex (in terms of topology or features) than the
ones that the JCache MutableConfiguration permits, and still be able to use JCache's
caching APIs. Ehcache provides several ways to achieve this, as described in the
following sections.

Accessing the underlying Ehcache configuration from a JCache configuration

When you create a Cache on a CacheManager using a MutableConfiguration
- in other words, using only JCache types - you can still get to the underlying
EhcacheCacheRuntimeConfiguration:
MutableConfiguration<Long, String> configuration =
 new MutableConfiguration<Long, String>();
configuration.setTypes(Long.class, String.class);
Cache<Long, String> cache = cacheManager.createCache("someCache",
 configuration); // <1>
CompleteConfiguration<Long, String> completeConfiguration =
 cache.getConfiguration(CompleteConfiguration.class); // <2>
Eh107Configuration<Long, String> eh107Configuration =
 cache.getConfiguration(Eh107Configuration.class); // <3>
CacheRuntimeConfiguration<Long, String> runtimeConfiguration =
 eh107Configuration.unwrap(CacheRuntimeConfiguration.class); // <4>

1 Create a JCache cache using the MutableConfiguration interface from
the JCache specification.

2 Get to the JCache CompleteConfiguration.

3 Get to the configuration bridge connecting Ehcache and JCache.

4 Unwrap to the EhcacheCacheRuntimeConfiguration type.

CacheManager level configuration

If you need to configure features at the CacheManager level, like the persistence
directory, you will have to use provider specific APIs.

The way you do this is as follows:
CachingProvider cachingProvider = Caching.getCachingProvider();
EhcacheCachingProvider ehcacheProvider =
 (EhcacheCachingProvider) cachingProvider; // 1
DefaultConfiguration configuration =

M
Odd Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 29

 new DefaultConfiguration(ehcacheProvider.getDefaultClassLoader(),
 new DefaultPersistenceConfiguration(getPersistenceDirectory())); // 2
CacheManager cacheManager = ehcacheProvider.getCacheManager(
 ehcacheProvider.getDefaultURI(), configuration); // 3

1 Cast the CachingProvider into the Ehcache specific implementation
org.ehcache.jsr107.EhcacheCachingProvider,

2 Create a configuration using the specific
EhcacheDefaultConfiguration and pass it some CacheManager level
configurations,

3 Create the CacheManager using the method that takes an Ehcache
configuration as a parameter.

Cache level configuration

You can also create a JCache Cache using an EhcacheCacheConfiguration. When using
this mechanism, no JCache CompleteConfiguration is used and so you cannot get to
one.
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class,
 ResourcePoolsBuilder.heap(10)).build(); // <1>
Cache<Long, String> cache = cacheManager.createCache("myCache",
 Eh107Configuration.fromEhcacheCacheConfiguration(cacheConfiguration)); // <2>
Eh107Configuration<Long, String> configuration =
 cache.getConfiguration(Eh107Configuration.class);
configuration.unwrap(CacheConfiguration.class); // <3>
configuration.unwrap(CacheRuntimeConfiguration.class); // <4>
try {
 cache.getConfiguration(CompleteConfiguration.class); // <5>
 throw new AssertionError("IllegalArgumentException expected");
} catch (IllegalArgumentException iaex) {
 // Expected
}

1 Create an EhcacheCacheConfiguration. You can use a builder as shown
here, or alternatively use an XML configuration (as described in the
following section).

2 Get a JCache configuration by wrapping the Ehcache configuration.

3 Get back to the EhcacheCacheConfiguration.

4 ... or even to the runtime configuration.

5 No JCache CompleteConfiguration is available in this context.

M
Even Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 30

Building the JCache configuration using an Ehcache XML configuration

Another way to have the full Ehcache configuration options on your JCache caches while
having no code dependency on Ehcache as the cache provider is to use XML-based
configuration. See “Configuring a CacheManager Using XML” on page 19 for more
details on configuring caches in XML.

The following is an example of an XML configuration:
<config
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns='http://www.ehcache.org/v3'
 xsi:schemaLocation="
 http://www.ehcache.org/v3 http://www.ehcache.org/schema/ehcache-core-3.0.xsd">
 <cache alias="ready-cache">
 <key-type>java.lang.Long</key-type>
 <value-type>com.pany.domain.Product</value-type>
 <loader-writer>
 <class>com.pany.ehcache.integration.ProductCacheLoaderWriter</class>
 </loader-writer>
 <heap unit="entries">100</heap>
 </cache>
</config>

Here is an example of how to access the XML configuration using JCache:
CachingProvider cachingProvider = Caching.getCachingProvider();
CacheManager manager = cachingProvider.getCacheManager(// <1>
 getClass().getResource("/org/ehcache/docs/ehcache-jsr107-config.xml")
 .toURI(), // <2>
 getClass().getClassLoader()); // <3>
Cache<Long, Product> readyCache = manager.getCache("ready-cache",
 Long.class, Product.class); // <4>

1 Invoke
javax.cache.spi.CachingProvider.getCacheManager(java.net.URI,
java.lang.ClassLoader)

2 ... and pass in a URI that resolves to an Ehcache XML configuration file.

3 The second argument is the ClassLoader to use to load user types if
needed; i.e. Class instances that are stored in the Cache managed by our
CacheManager.

4 Get the configured Cache out of the CacheManager.

Note: You can alternatively use the CachingProvider.getCacheManager()
method that takes no arguments. The URI and ClassLoader used to
configure the CacheManager will then use the vendor specific values returned
by CachingProvider.getDefaultURI and .getDefaultClassLoader
respectively. Be aware that these are not entirely specified for Ehcache
currently and may change in future releases!

M
Odd Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 31

Enabling/Disabling MBeans for JCache using an Ehcache XML configuration

When using an Ehcache XML configuration, you may want to enable management and /
or statistics MBeans for JCache caches. This gives you control over the following:

javax.cache.configuration.CompleteConfiguration.isStatisticsEnabled

javax.cache.configuration.CompleteConfiguration.isManagementEnabled

You can do this at two different levels:
<config
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns='http://www.ehcache.org/v3'
 xmlns:jsr107='http://www.ehcache.org/v3/jsr107'
 xsi:schemaLocation="
 http://www.ehcache.org/v3
 http://www.ehcache.org/schema/ehcache-core-3.0.xsd
 http://www.ehcache.org/v3/jsr107
 http://www.ehcache.org/schema/ehcache-107-ext-3.0.xsd">
 <service>
 <jsr107:defaults enable-management="true" enable-statistics="true"/> <!--1-->
 </service>
 <cache alias="stringCache"> <!--2-->
 <key-type>java.lang.String</key-type>
 <value-type>java.lang.String</value-type>
 <heap unit="entries">2000</heap>
 </cache>
 <cache alias="overrideCache">
 <key-type>java.lang.String</key-type>
 <value-type>java.lang.String</value-type>
 <heap unit="entries">2000</heap>
 <jsr107:mbeans enable-management="false" enable-statistics="false"/> <!--3-->
 </cache>
 <cache alias="overrideOneCache">
 <key-type>java.lang.String</key-type>
 <value-type>java.lang.String</value-type>
 <heap unit="entries">2000</heap>
 <jsr107:mbeans enable-statistics="false"/> <!--4-->
 </cache>
</config>

1 Using the JCache service extension, you can enable MBeans by default.

2 The cache stringCache will have both MBeans enabled, according to the
service configuration.

3 The cache overrideCache will have both MBeans disabled, overriding the
service configuration.

4 The cache overrideOneCache will have the statistics MBean disabled,
whereas the management MBean will be enabled according to the service
configuration.

M
Even Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 32

Supplementing JCache cache configurations using Ehcache XML extensions

You can also create cache-templates. See the Cache Templates topic of the section “The
XML Schema Definition” on page 21 for more details. Ehcache as a caching provider for
JCache comes with an extension to the regular XML configuration so you can:

1. Configure a default template from which all programmatically created Cache
instances inherit, and

2. Configure a given named Cache to inherit from a specific template.

This feature is particularly useful to configure Cache beyond the scope of the JCache
specification, for example, giving Cache a capacity constraint. To do this, add a jsr107
service in your XML configuration file:
<config
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns='http://www.ehcache.org/v3'
 xmlns:jsr107='http://www.ehcache.org/v3/jsr107'
 xsi:schemaLocation="
 http://www.ehcache.org/v3
 http://www.ehcache.org/schema/ehcache-core-3.0.xsd
 http://www.ehcache.org/v3/jsr107
 http://www.ehcache.org/schema/ehcache-107-ext-3.0.xsd"> <!--1-->
 <service> <!--2-->
 <jsr107:defaults default-template="tinyCache"> <!--3-->
 <jsr107:cache name="foos" template="clientCache"/> <!--4-->
 <jsr107:cache name="byRefCache" template="byRefTemplate"/>
 <jsr107:cache name="byValCache" template="byValueTemplate"/>
 <jsr107:cache name="weirdCache1" template="mixedTemplate1"/>
 <jsr107:cache name="weirdCache2" template="mixedTemplate2"/>
 </jsr107:defaults>
 </service>
 <cache-template name="clientCache">
 <key-type>java.lang.String</key-type>
 <value-type>com.pany.domain.Client</value-type>
 <expiry>
 <ttl unit="minutes">2</ttl>
 </expiry>
 <heap unit="entries">2000</heap>
 </cache-template>
 <cache-template name="tinyCache">
 <heap unit="entries">20</heap>
 </cache-template>
 <cache-template name="byRefTemplate">
 <key-type copier=
 "org.ehcache.impl.copy.IdentityCopier">java.lang.Long</key-type>
 <value-type copier=
 "org.ehcache.impl.copy.IdentityCopier">com.pany.domain.Client</value-type>
 <heap unit="entries">10</heap>
 </cache-template>
 <cache-template name="byValueTemplate">
 <key-type copier=
 "org.ehcache.impl.copy.SerializingCopier">java.lang.Long</key-type>
 <value-type copier=
 "org.ehcache.impl.copy.SerializingCopier">com.pany.domain.Client</value-type>
 <heap unit="entries">10</heap>
 </cache-template>
 <cache-template name="mixedTemplate1">
 <key-type copier=
 "org.ehcache.impl.copy.IdentityCopier">java.lang.Long</key-type>

M
Odd Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 33

 <value-type copier=
 "org.ehcache.impl.copy.SerializingCopier">com.pany.domain.Client</value-type>
 <heap unit="entries">10</heap>
 </cache-template>
 <cache-template name="mixedTemplate2">
 <key-type copier=
 "org.ehcache.impl.copy.SerializingCopier">java.lang.Long</key-type>
 <value-type copier=
 "org.ehcache.impl.copy.IdentityCopier">com.pany.domain.Client</value-type>
 <heap unit="entries">10</heap>
 </cache-template>
</config>

1 First, declare a namespace for the JCache extension, e.g. jsr107.

2 Within a service element at the top of your configuration, add a
jsr107:defaults element.

3 The element takes an optional aribute default-template, which
references the cache-template to use for all javax.cache.Cache
elements created by the application at runtime using
javax.cache.CacheManager.createCache. In this example, the
default cache-template used will be tinyCache, meaning that in
addition to their particular configuration, any programmatically
created Cache instances will have their capacity constrained to 20
entries.

4 Nested within the jsr107:defaults element, add specific cache-
templates to use for the given named Cache. So, for example, when
creating the Cache named foos at runtime, Ehcache will enhance its
configuration, giving it a capacity of 2000 entries, as well as ensuring
that both key and value types are String.

Note: The XSD schema definitions that describe the syntax used for the Ehcache
XML configuration are referenced at “XSD namespaces and locations” on
page 106.

Using the above configuration, you can not only supplement but also override the
configuration of JCache-created caches without modifying the application code.
MutableConfiguration<Long, Client> mutableConfiguration =
 new MutableConfiguration<Long, Client>();
mutableConfiguration.setTypes(Long.class, Client.class); // <1>
Cache<Long, Client> anyCache =
 manager.createCache("anyCache", mutableConfiguration); // <2>
CacheRuntimeConfiguration<Long, Client> ehcacheConfig =
 (CacheRuntimeConfiguration<Long, Client>)anyCache.getConfiguration(
 Eh107Configuration.class).unwrap(CacheRuntimeConfiguration.class); // <3>
ehcacheConfig.getResourcePools().
 getPoolForResource(ResourceType.Core.HEAP).getSize(); // <4>
Cache<Long, Client> anotherCache =
 manager.createCache("byRefCache", mutableConfiguration);
assertFalse(anotherCache.
 getConfiguration(Configuration.class).isStoreByValue()); // <5>

M
Even Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 34

MutableConfiguration<String, Client> otherConfiguration =
 new MutableConfiguration<String, Client>();
otherConfiguration.setTypes(String.class, Client.class);
otherConfiguration.setExpiryPolicyFactory(CreatedExpiryPolicy.
 factoryOf(Duration.ONE_MINUTE)); // <6>
Cache<String, Client> foosCache =
 manager.createCache("foos", otherConfiguration);// <7>
CacheRuntimeConfiguration<Long, Client> foosEhcacheConfig =
 (CacheRuntimeConfiguration<Long, Client>)foosCache.getConfiguration(
 Eh107Configuration.class).unwrap(CacheRuntimeConfiguration.class);
Client client1 = new Client("client1", 1);
foosEhcacheConfig.getExpiry().getExpiryForCreation(42L, client1).
 getLength(); // <8>
CompleteConfiguration<String, String> foosConfig =
 foosCache.getConfiguration(CompleteConfiguration.class);
try {
 final Factory<ExpiryPolicy> expiryPolicyFactory =
 foosConfig.getExpiryPolicyFactory();
 ExpiryPolicy expiryPolicy = expiryPolicyFactory.create(); // <9>
 throw new AssertionError("Expected UnsupportedOperationException");
} catch (UnsupportedOperationException e) {
 // Expected
}

1 Assume existing JCache configuration code, which is store-by-value by
default

2 ... that creates JCache Cache.

3 If you were to get to the EhcacheRuntimeConfiguration

4 ... you could verify that the template configured capacity is applied to the
cache and returns 20 here.

5 The cache template will override the JCache cache's store-by-value
configuration to store-by-reference, since the byRefTemplatetemplate
that is used to create the cache is configured explicitly using
IdentityCopier.

6 Templates will also override the JCache configuration, in this case using a
configuration with Time to Live (TTL) 1 minute.

7 Create a cache where the template sets the TTL to 2 minutes.

8 And we can indeed verify that the configuration provided in the
template has been applied; the duration will be 2 minutes and not 1
minute.

M
Odd Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 35

9 One drawback of this is that when geing at the
CompleteConfiguration, you no longer have access to the factories
from JCache.

Note: As mentioned in step 5, in order to override the store-by-value configuration
of a JCache cache using templates, you can explicitly configure the
template using IdentityCopier. But the usage of IdentityCopier is not
mandatory to get a store-by-reference cache. You can use any custom copier
implementation that does not perform any "copying" but returns the exact
same reference that gets passed into the copy methods. IdentityCopier is
just an example that we have provided for your convenience.

Differences in Default Behavior between Ehcache and
Ehcache through JCache
Ehcache used natively and Ehcache used through JCache do not always agree on default
behavior. While native Ehcache can behave the way JCache specifies, depending on the
used configuration mechanism, you may see differences in defaults.

by-reference or by-value

Ehcache and Ehcache through JCache disagree on the default mode for heap-only
caching.

Ehcache configuration with JCache MutableConfiguration

Unless you invoke MutableConfiguration.setStoreByValue(boolean), the default
value is "true". This means that you will be limited to Serializable keys and values
when using Ehcache.

Under the cover, this will trigger the use of serializing copiers and pick the appropriate
serializer from the default ones. See the section “Serializers and Copiers” on page 83
for related information.

Ehcache configuration with native XML or code

Heap only: When using heap only caches, the default is by-reference unless you
configure a Copier.

Other tiering configuration: When using any other tiers, since serialization comes
into play the default is "by-value".

See the sections “Copiers” on page 89 and “Serializers” on page 84 for related
information.

Cache-through and compare-and-swap operations

Ehcache and Ehcache through JCache disagree on the role of the cache loader for
compare-and-swap operations.

M
Even Header

The JCache (JSR-107) Cache Provider

Ehcache API Developer Guide Version 10.5 36

Ehcache through JCache behaviour

When using compare-and-swap operations, such as putIfAbsent(K, V), the cache
loader will not be used if the cache has no mapping present. If the putIfAbsent(K, V)
succeeds then the cache writer will be used to propagate the update to the system of
record. This could result in the cache behaving like INSERT but effectively causing a
blind update on the underlying system of record.

Native Ehcache behaviour

The CacheLoaderWriter will always be used to load missing mappings with and to
write updates. This enables the putIfAbsent(K, V) in cache-through to behave as an
INSERT on the system of record.

If you need Ehcache through JCache behaviour, the following shows the relevant XML
configuration:
<service>
 <jsr107:defaults jsr-107-compliant-atomics="true"/>
</service>

M
Odd Header

User Managed Caches

Ehcache API Developer Guide Version 10.5 37

5 User Managed Caches

■ Overview of User Managed Caches .. 38

■ API Extensions ... 38

■ Code examples for User Managed Caches ... 40

M
Even Header

User Managed Caches

Ehcache API Developer Guide Version 10.5 38

Overview of User Managed Caches
What are user managed caches and what do they offer?

A user managed cache gives you a simple way to configure a cache directly, without
the complexity of seing up or using a CacheManager. The choice whether to use a
UserManagedCache rather than a CacheManager usually depends on whether you
need all of the built-in functionality of a CacheManager. In cases where your cache
requirements are relatively straightforward, and you do not require the full range of
features of a CacheManager, consider using a UserManagedCache instead.

Typical scenarios for using a UserManagedCache are: method local caches, thread local
caches or any other place where the lifecycle of the cache is shorter than the application
lifecycle.

API Extensions
User Managed Cache

If you use a UserManagedCache, you need to configure all required services by hand.

The UserManagedCache class extends the Cache class by offering additional methods:

init() - initializes the cache

close() - releases the cache resources

getStatus() - returns a status

The init and close methods deal with the lifecycle of the cache and need to be called
explicitly, whereas these methods are hidden when the cache is inside a CacheManager.

The interface definition is shown in this code:
package org.ehcache;
import java.io.Closeable;
/**
 * Represents a {@link Cache} that is not managed by a
 * {@link org.ehcache.CacheManager CacheManager}.
 * <P>
 * These caches must be {@link #close() closed} in order to release
 * all their resources.
 * </P>
 *
 * @param <K> the key type for the cache
 * @param <V> the value type for the cache
 */
public interface UserManagedCache<K, V> extends Cache<K, V>, Closeable {
 /**
 * Transitions this {@code UserManagedCache} to
 * {@link org.ehcache.Status#AVAILABLE AVAILABLE}.
 * <P>
 * If an error occurs before the {@code UserManagedCache} is {@code AVAILABLE},
 * it will revert to {@link org.ehcache.Status#UNINITIALIZED UNINITIALIZED}

M
Odd Header

User Managed Caches

Ehcache API Developer Guide Version 10.5 39

 * and attempt to properly release all resources.
 * </P>
 *
 * @throws IllegalStateException if the {@code UserManagedCache} is not
 * {@code UNINITIALIZED}
 * @throws StateTransitionException if the {@code UserManagedCache} could not
 * be made {@code AVAILABLE}
 */
 void init() throws StateTransitionException;
 /**
 * Transitions this {@code UserManagedCache} to
 * {@link Status#UNINITIALIZED UNINITIALIZED}.
 * <P>
 * This will release all resources held by this cache.
 * </P>
 * <P>
 * Failure to release a resource will not prevent other resources from being
 * released.
 * </P>
 *
 * @throws StateTransitionException if the {@code UserManagedCache} could not
 * reach {@code UNINITIALIZED} cleanly
 * @throws IllegalStateException if the {@code UserManagedCache} is not
 * {@code AVAILABLE}
 */
 @Override
 void close() throws StateTransitionException;
 /**
 * Returns the current {@link org.ehcache.Status Status} of this
 * {@code UserManagedCache}.
 *
 * @return the current {@code Status}
 */
 Status getStatus();
}

User Managed Persistent Cache

A user managed persistent cache holds cached data in a persistent store such as disk, so
that the stored data can outlive the JVM in which your caching application runs.

If you want to create a user managed persistent cache, there is an additional interface
PersistentUserManagedCache that extends UserManagedCache and adds the destroy
method.

The destroy method deletes all data structures, including data stored persistently on
disk, for a PersistentUserManagedCache.

The destroy method deals with the lifecycle of the cache and needs to be called
explicitly.

The interface definition is shown in this code:
package org.ehcache;
/**
 * A {@link UserManagedCache} that holds data that can outlive the JVM.
 *
 * @param <K> the key type for the cache
 * @param <V> the value type for the cache
 */
public interface PersistentUserManagedCache<K, V>
 extends UserManagedCache<K, V> {

M
Even Header

User Managed Caches

Ehcache API Developer Guide Version 10.5 40

 /**
 * Destroys all persistent data structures for this
 * {@code PersistentUserManagedCache}.
 *
 * @throws java.lang.IllegalStateException if state
 * {@link org.ehcache.Status#MAINTENANCE MAINTENANCE} couldn't be reached
 * @throws CachePersistenceException if the persistent data cannot be destroyed
 */
 void destroy() throws CachePersistenceException;
}

Code examples for User Managed Caches
Example of a basic cache lifecycle

Here is a simple example showing a basic lifecycle of a user managed cache:
UserManagedCache<Long, String> userManagedCache =
 UserManagedCacheBuilder.newUserManagedCacheBuilder(Long.class, String.class)
 .build(false); // <1>
userManagedCache.init(); // <2>
userManagedCache.put(1L, "The one!"); // <3>
userManagedCache.close(); // <4>

1 Create a UserManagedCache instance. You can either pass true to have
the builder init() it for you, or you can pass false and it is up to you to
init() it prior to using it.

2 Since false was passed in <1>, you have to init() the UserManagedCache
prior to using it.

3 You can use the cache exactly as a managed cache.

4 In the same vein, a UserManagedCache requires you to close it explicitly
using UserManagedCache.close(). If you are also using managed caches
simultaneously, the CacheManager.close() operation would not impact
the user managed cache(s).

From this basic example, explore the API of UserManagedCacheBuilder in code or through
Javadoc to discover all the directly available features. The following features apply in the
exact same way to user managed caches:

Serializers and copiers. See the section “Serializers and Copiers” on page 83 for
related information.

Eviction advisor. See the section “Eviction Advisors” on page 81 for related
information.

Simply use the methods from UserManagedCacheBuilder which are equivalent to the
ones from CacheConfigurationBuilder.

M
Odd Header

User Managed Caches

Ehcache API Developer Guide Version 10.5 41

Below we will describe a more advanced setup where you need to maintain a service
instance in order to have a working user managed cache.

Example with disk persistence and lifecycle

If you want to use disk persistent cache, you will need to create and lifecycle the
persistence service.
LocalPersistenceService persistenceService = new DefaultLocalPersistenceService(
 new DefaultPersistenceConfiguration(
 new File(getStoragePath(), "myUserData"))); // <1>
PersistentUserManagedCache<Long, String> cache =
 UserManagedCacheBuilder.newUserManagedCacheBuilder(Long.class, String.class)
 .with(new UserManagedPersistenceContext<Long, String>("cache-name",
 persistenceService)) // <2>
 .withResourcePools(ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10L, EntryUnit.ENTRIES)
 .disk(10L, MemoryUnit.MB, true)) // <3>
 .build(true);
// Work with the cache
cache.put(42L, "The Answer!");
assertThat(cache.get(42L), is("The Answer!"));
cache.close(); // <4>
cache.destroy(); // <5>
persistenceService.stop(); // <6>

1 Create the persistence service to be used by the cache for storing data on
disk.

2 Pass the persistence service to the builder as well as a name for the
cache. Note that this will make the builder produce a more specific type:
PersistentUserManagedCache.

3 As usual, indicate here if the data should outlive the cache.

4 Closing the cache will not delete the data it saved on disk, since the cache is
marked as persistent.

5 To delete the data on disk after closing the cache, you need to invoke the
destroy method explicitly.

6 You need to stop the persistence service once you have finished using the
cache.

Example with cache event listeners

Cache event listeners require executor services in order to work. You will have to
provide either a CacheEventDispatcher implementation or make use of the default one
by providing two executor services: one for ordered events and one for unordered ones.

M
Even Header

User Managed Caches

Ehcache API Developer Guide Version 10.5 42

Note: The ordered events executor must be single threaded to guarantee ordering.

For more information on cache event listeners, see the section “Cache Event Listeners”
on page 77.
UserManagedCache<Long, String> cache =
 UserManagedCacheBuilder.newUserManagedCacheBuilder(Long.class, String.class)
 .withEventExecutors(Executors.newSingleThreadExecutor(),
 Executors.newFixedThreadPool(5)) // <1>
 .withEventListeners(CacheEventListenerConfigurationBuilder
 .newEventListenerConfiguration(ListenerObject.class, EventType.CREATED,
 EventType.UPDATED)
 .asynchronous()
 .unordered()) // <2>
 .withResourcePools(ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(3, EntryUnit.ENTRIES))
 .build(true);
cache.put(1L, "Put it");
cache.put(1L, "Update it");
cache.close();

1 Provide the ExecutorService for ordered and unordered event delivery.

2 Provide a listener configuration using
CacheEventListenerConfigurationBuilder.

M
Odd Header

Cache Usage Patterns

Ehcache API Developer Guide Version 10.5 43

6 Cache Usage Patterns

There are several common access paerns when using a cache. Ehcache supports the
following paerns:

“Cache-aside” on page 43

“Cache-as-SoR” on page 43

“Read-through” on page 44

“Write-through” on page 44

“Write-behind” on page 44

Cache-aside

With the cache-aside paern, application code uses the cache directly.

This means that application code which accesses the system-of-record (SoR) should
consult the cache first, and if the cache contains the data, then return the data directly
from the cache, bypassing the SoR. Otherwise, the application code must fetch the data
from the system-of-record, store the data in the cache, and then return it. When data is
wrien, the cache must be updated along with the system-of-record.

Pseudocode for reading values
v = cache.get(k)
if(v == null) {
 v = sor.get(k)
 cache.put(k, v)
}

Pseudocode for writing values
v = newV
sor.put(k, v)
cache.put(k, v)

Cache-as-SoR

The cache-as-SoR paern implies using the cache as though it were the primary system-
of-record (SoR).

The paern delegates SoR reading and writing activities to the cache, so that application
code is (at least directly) absolved of this responsibility. To implement the cache-as-SoR
paern, use a combination of the following read and write paerns:

read-through

write-through or write-behind

Advantages of using the cache-as-SoR paern are:

M
Even Header

Cache Usage Patterns

Ehcache API Developer Guide Version 10.5 44

Less cluered application code (improved maintainability through centralized SoR
read/write operations)

Choice of write-through or write-behind strategies on a per-cache basis

Allows the cache to solve the thundering-herd problem

A disadvantage of using the cache-as-SoR paern is:

Less directly visible code-path

Read-through

Under the read-through paern, the cache is configured with a loader component that
knows how to load data from the system-of-record (SoR).

When the cache is asked for the value associated with a given key and such an entry
does not exist within the cache, the cache invokes the loader to retrieve the value from
the SoR, then caches the value, then returns it to the caller.

The next time the cache is asked for the value for the same key it can be returned from
the cache without using the loader (unless the entry has been evicted or expired).

Write-through

Under the write-through paern, the cache is configured with a writer component that
knows how to write data to the system-of-record (SoR).

When the cache is asked to store a value for a key, the cache invokes the writer to store
the value in the SoR, as well as updating the cache.

Write-behind

The write-behind paern changes the timing of the write to the system-of-record. Rather
than writing to the system-of-record while the thread making the update waits (as with
write-through), write-behind queues the data for writing at a later time. This allows the
user's thread to move along more quickly, at the cost of introducing some lag in time
before the SoR is updated.

M
Odd Header

Data Freshness and Expiry

Ehcache API Developer Guide Version 10.5 45

7 Data Freshness and Expiry

■ Data Freshness .. 46

■ Expiry .. 47

M
Even Header

Data Freshness and Expiry

Ehcache API Developer Guide Version 10.5 46

Data Freshness
Many databases and other systems of record (SORs) are not built to accommodate
caching outside of the database. This means that they do not normally come with any
default mechanism for notifying external processes when data has been updated or
modified. If Ehcache is used to cache data from such a database or SOR, Ehcache will not
be automatically informed if data in the database or SOR has changed.

This leads to the idea of data freshness: if a set of data in the cache still largely matches
(in other words, most of the cached data entries are still in sync with) the data in the
original data in the database or SOR, the data is termed fresh, but if many changes in the
database or SOR have occurred without the cache also being updated, the data in the
cache becomes increasing less fresh - it becomes stale.

When using Ehcache as a caching system, the following strategies can help to keep the
data in the cache fresh, i.e. in sync with the database or SOR:

Data Expiry: Use the eviction algorithms included with Ehcache, along with the time-
to-idle (TTI) and time-to-live (TTL) seings, to enforce a maximum time for elements
to live in the cache (forcing a re-load from the database or SOR). See the section
“Expiry” on page 47 for related information.

Message Bus: Use an application to make all updates to the database. When updates
are made, post a message onto a message queue with a key to the item that was
updated. All application instances can subscribe to the message bus and receive
messages about data that is updated, and can synchronize their local copy of the
data accordingly (for example by invalidating the cache entry for updated data).

Triggers: Using a database trigger can accomplish a similar task as the message bus
approach. Use the database trigger to execute code that can publish a message to
a message bus. The advantage to this approach is that updates to the database do
not have to be made only through a special application. The downside is that not all
database triggers support full execution environments and it is often inadvisable to
execute heavy-weight processing such as publishing messages on a queue during a
database trigger.

The Data Expiry strategy is the simplest and most straightforward. It gives you the most
control over the data synchronization, and doesn't require cooperation from any external
systems. You simply set a data expiry policy and let Ehcache expire data from the cache,
thus allowing fresh reads to re-populate and re-synchronize the cache.

If you choose the Data Expiry strategy, the most important consideration is balancing
data freshness with database load. The shorter you make the expiry seings - meaning
the more "fresh" you try to make the data - the more load you will place on the database.

Try out some numbers for time-to-idle and time-to-live and see what kind of load
your application generates. Even modestly short values such as five or ten minutes can
produce significant load reductions.

M
Odd Header

Data Freshness and Expiry

Ehcache API Developer Guide Version 10.5 47

Expiry
Introduction

Expiry is one of the key aspects of caching. In Ehcache this is addressed with the Expiry
interface and its use in controlling the age of cache mappings.

Data entries expire based on parameters with configurable values. When eviction occurs,
expired elements are the first to be removed. Having an effective expiry configuration is
critical to optimizing the use of resources such as heap storage and maintaining overall
performance.

Both Java and XML offer direct support for three types of expiry:

no expiry If this seing is selected, cache entries do not expire, so they
remain in the cache without a time limit; however they may be
evicted. This seing overrides any finite TTI/TTL values that
have been set. Individual cache elements may also receive this
seing.

time-to-
live (TTL)

The maximum number of seconds an element can exist in the
cache, regardless of whether it is used or not. The element
expires at this limit and will no longer be returned from
Ehcache.

The default value is 0, which means no TTL eviction takes place
(infinite lifetime).

time-to-
idle (TTI)

The maximum number of seconds an element can exist in the
cache without being accessed. The element expires at this limit
and will no longer be returned from Ehcache.

The default value is 0, which means no TTI eviction takes place
(infinite lifetime).

For Java configuration, see org.ehcache.expiry.Expirations. For XML configuration,
see the XSD schema.

Configuration

Expiry is configured at the cache level, in Java or in XML:
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.heap(100)) // 1
 .withExpiry(Expirations.timeToLiveExpiration(Duration.of(20,
 TimeUnit.SECONDS))) // 2
 .build();

M
Even Header

Data Freshness and Expiry

Ehcache API Developer Guide Version 10.5 48

1 Expiry is configured at the cache level, so start by defining a cache
configuration,

2 then add to it an Expiry, here using the predefined time-to-live one,
configured with the required Duration.

<cache alias="withExpiry">
 <expiry>
 <ttl unit="seconds">20</ttl> <!-- 1 -->
 </expiry>
 <heap>100</heap>
</cache>

1 At the cache level, using the predefined time-to-live again.

Read on to implement your own expiration scheme.

Custom expiry

Support your own expiration scheme simply means implementing the Expiry interface:
/**
 * A policy object that governs expiration for mappings
 * in a {@link org.ehcache.Cache Cache}.
 * <P>
 * Previous values are not accessible directly but are rather available
 * through a {@link ValueSupplier value supplier}
 * to indicate that access can require computation (such as deserialization).
 * </P>
 * <P>
 * NOTE: Some cache configurations (eg. caches with eventual consistency) may
 * use local (ie. non-consistent) state
 * to decide whether to call {@link #getExpiryForUpdate(Object, ValueSupplier,
 * Object)} vs. {@link #getExpiryForCreation(Object, Object)}.
 * For these cache configurations it is advised to return the same
 * value for both of these methods
 * </P>
 * <P>
 * See {@link Expirations} for helper methods to create common {@code Expiry}
 * instances.
 * </P>
 *
 * @param <K> the key type for the cache
 * @param <V> the value type for the cache
 *
 * @see Expirations
 */
public interface Expiry<K, V> {
 /**
 * Returns the lifetime of an entry when it is initially added to a
 * {@link org.ehcache.Cache Cache}.
 * <P>
 * This method must not return {@code null}.
 * </P>
 * <P>
 * Exceptions thrown from this method will be swallowed and result in
 * the expiry duration being

M
Odd Header

Data Freshness and Expiry

Ehcache API Developer Guide Version 10.5 49

 * {@link Duration#ZERO ZERO}.
 * </P>
 *
 * @param key the key of the newly added entry
 * @param value the value of the newly added entry
 * @return a non-null {@link Duration}
 */
 Duration getExpiryForCreation(K key, V value);
 /**
 * Returns the expiration {@link Duration} (relative to the current time)
 * when an existing entry is accessed from a
 * {@link org.ehcache.Cache Cache}.
 * <P>
 * Returning {@code null} indicates that the expiration time
 * remains unchanged.
 * </P>
 * <P>
 * Exceptions thrown from this method will be swallowed and result
 * in the expiry duration being
 * {@link Duration#ZERO ZERO}.
 * </P>
 *
 * @param key the key of the accessed entry
 * @param value a value supplier for the accessed entry
 * @return an expiration {@code Duration}, {@code null} means unchanged
 */
 Duration getExpiryForAccess(K key, ValueSupplier<? extends V> value);
 /**
 * Returns the expiration {@link Duration} (relative to the current time)
 * when an existing entry is updated in a
 * {@link org.ehcache.Cache Cache}.
 * <P>
 * Returning {@code null} indicates that the expiration time
 * remains unchanged.
 * </P>
 * <P>
 * Exceptions thrown from this method will be swallowed and
 * result in the expiry duration being
 * {@link Duration#ZERO ZERO}.
 * </P>
 *
 * @param key the key of the updated entry
 * @param oldValue a value supplier for the previous value of the entry
 * @param newValue the new value of the entry
 * @return an expiration {@code Duration}, {@code null} means unchanged
 */
 Duration getExpiryForUpdate(K key, ValueSupplier<? extends V> oldValue,
 V newValue);
}

The main points to remember on the return value from these methods:

some Duration indicates that the mapping will expire after
that duration,

Duration.ZERO indicates that the mapping is immediately
expired,

Duration.INFINITE indicates that the mapping will never expire,

M
Even Header

Data Freshness and Expiry

Ehcache API Developer Guide Version 10.5 50

null Duration indicates that the previous expiration time
is to be left unchanged, illegal at mapping
creation time.

Note that you can access the details of the mapping, thus providing expiration times that
are different per mapping.

Also when used from XML, Ehcache expects your expiry implementation to have a no-
arg constructor.

Once you have implemented your own expiry, simply configure it.

In Java:
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class,
 ResourcePoolsBuilder.heap(100))
 .withExpiry(new CustomExpiry()) // 1
 .build();

1 Simply pass your custom expiry instance into the cache builder.

In XML:
<cache alias="withCustomExpiry">
 <expiry>
 <class>com.pany.ehcache.MyExpiry</class> <!-- 1 -->
 </expiry>
 <heap>100</heap>
</cache>

1 Simply pass the fully qualified class name of your custom expiry.

For an example of how to migrate per-mapping code from Ehcache v2, see the section
“Migrating Code from Ehcache v2” on page 145.

M
Odd Header

Transactions Support

Ehcache API Developer Guide Version 10.5 51

8 Transactions Support

■ What is supported and what are the limitations? .. 52

■ Configuring it all in Java .. 52

■ Configuring it with XML .. 57

M
Even Header

Transactions Support

Ehcache API Developer Guide Version 10.5 52

What is supported and what are the limitations?
Ehcache supports caches that work within the context of an XA transaction controlled by
a Java Transaction API (JTA) transaction manager. Within this context, Ehcache supports
the two-phase commit protocol, including crash recovery.

Bitronix Transaction Manager 2.1.4, which is an open source project hosted on
GitHub, is the only tested transaction manager. Other transaction managers may
work but have not yet been tested.

Read-Commied is the only supported isolation level.

The isolation level is guaranteed by the use of the Copier mechanism. When no
copiers are configured for either the key or the value, default ones are automatically
used instead. You cannot disable the Copier mechanism for a transactional cache.

Accessing a cache outside of a JTA transaction context is forbidden.

There is no protection against the ABA problem.

Everything else works orthogonally.

Configuring it all in Java
The simplest case

The simplest possible configuration is to configure a cache manager as transactionally
aware by using the provided Bitronix transaction manager integration.

This INFO level log entry informs you of the detected transaction manager:
INFO org.ehcache.transactions.xa.txmgr.btm.BitronixTransactionManagerLookup -
Using looked up transaction manager :
 a BitronixTransactionManager with 0 in-flight transaction(s)

Here is an example:
BitronixTransactionManager transactionManager =
 TransactionManagerServices.getTransactionManager(); // 1
CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
 .using(new LookupTransactionManagerProviderConfiguration(
 BitronixTransactionManagerLookup.class)) // 2
 .withCache("xaCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, // 3
 ResourcePoolsBuilder.heap(10)) // 4
 .add(new XAStoreConfiguration("xaCache")) // 5
 .build()
)
 .build(true);
final Cache<Long, String> xaCache = cacheManager.getCache("xaCache", Long.class,
 String.class);
transactionManager.begin(); // 6
{
 xaCache.put(1L, "one"); // 7
}

M
Odd Header

Transactions Support

Ehcache API Developer Guide Version 10.5 53

transactionManager.commit(); // 8
cacheManager.close();
transactionManager.shutdown();

1 First start the Bitronix transaction manager. By default, Ehcache will
auto-detect it but will throw an exception during the cache manager
initialization if BTM isn't started.

2 Configure the cache manager such as it can handle transactions by
having a TransactionManagerProvider loaded and configured to use
Bitronix.

3 Register a cache the normal way.

4 Give it the resources you wish.

5 Add a XAStoreConfiguration object to make the cache XA
transactional. You must also give the cache a unique XAResource
identifier as some transaction managers require this.

6 Begin a JTA transaction the normal way.

7 Work with the cache the normal way, all operations are supported. Note
that concurrent transactions will not see those pending changes.

8 Commit the JTA transaction. Other transactions can now see the changes
you made to the cache.

Configuring your transaction manager

While only the Bitronix JTA implementation has been tested so far, plugging-in another
one is possible.

You will need to implement a
org.ehcache.transactions.xa.txmgr.provider.TransactionManagerLookup
and make sure you understand its expected lifecycle as well as the one of the
org.ehcache.transactions.xa.txmgr.provider.LookupTransactionManagerProvider.

If such a lifecycle does not match your needs, you will
have to go one step further and implement your own
org.ehcache.transactions.xa.txmgr.provider.TransactionManagerProvider.

XA write-through cache

When a XA cache is configured in write-though mode, the targeted SoR will
automatically participate in the JTA transaction context. Nothing special needs to be

M
Even Header

Transactions Support

Ehcache API Developer Guide Version 10.5 54

configured for this to happen, just ensure that the configured CacheLoaderWriter is
configured to work with XA transactions.
BitronixTransactionManager transactionManager =
 TransactionManagerServices.getTransactionManager(); // 1
Class<CacheLoaderWriter<?, ?>> klazz =
 (Class<CacheLoaderWriter<?, ?>>) (Class) (SampleLoaderWriter.class);
CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
 .using(new LookupTransactionManagerProviderConfiguration(
 BitronixTransactionManagerLookup.class)) // 2
 .withCache("xaCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, // 3
 ResourcePoolsBuilder.heap(10)) // 4
 .add(new XAStoreConfiguration("xaCache")) // 5
 .add(new DefaultCacheLoaderWriterConfiguration(klazz,
 singletonMap(1L, "eins"))) // 6
 .build()
)
 .build(true);
final Cache<Long, String> xaCache = cacheManager.getCache("xaCache",
 Long.class, String.class);
transactionManager.begin(); // 7
{
 assertThat(xaCache.get(1L), equalTo("eins")); // 8
 xaCache.put(1L, "one"); // 9
}
transactionManager.commit(); // 10
cacheManager.close();
transactionManager.shutdown();

1 First start the Bitronix transaction manager. By default, Ehcache will
auto-detect it but will throw an exception during the cache manager
initialization if BTM isn't started.

2 Configure the cache manager such as it can handle transactions by having
a TransactionManagerProvider loaded and configured to use Bitronix.

3 Register a cache the normal way.

4 Give it the resources you wish.

5 Add a XAStoreConfiguration object to make the cache XA transactional.
You must also give the cache a unique XAResource identifier as some
transaction managers require this.

6 Add a CacheLoaderWriter configuration. This one is a mocked SoR
backed by a map for illustration purpose that is filled with 1L/"eins" key/
value pair at startup.

7 Begin a JTA transaction the normal way.

M
Odd Header

Transactions Support

Ehcache API Developer Guide Version 10.5 55

8 The cache is empty at startup, so the CacheLoaderWriter will be called to
load the value.

9 Update the value. This will make the CacheLoaderWriter write to the SoR.

10 Commit the JTA transaction. Other transactions can now see the changes
you made to the cache and the SoR.

Transactional scope

A XA cache can only be accessed within a JTA transaction's context. Any aempt to
access one outside of such context will result in XACacheException to be thrown.
BitronixTransactionManager transactionManager =
 TransactionManagerServices.getTransactionManager(); // 1
CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
 .using(new LookupTransactionManagerProviderConfiguration(
 BitronixTransactionManagerLookup.class)) // 2
 .withCache("xaCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, // 3
 ResourcePoolsBuilder.heap(10)) // 4
 .add(new XAStoreConfiguration("xaCache")) // 5
 .build()
)
 .build(true);
final Cache<Long, String> xaCache = cacheManager.getCache("xaCache",
 Long.class, String.class);
try {
 xaCache.get(1L); // 6
 fail("expected XACacheException");
} catch (XACacheException e) {
 // expected
}
cacheManager.close();
transactionManager.shutdown();

1 First start the Bitronix transaction manager. By default, Ehcache will
auto-detect it but will throw an exception during the cache manager
initialization if BTM isn't started.

2 Configure the cache manager such as it can handle transactions by having a
TransactionManagerProvider loaded and configured to use Bitronix.

3 Register a cache the normal way.

4 Give it the resources you wish.

5 Add a XAStoreConfiguration object to make the cache XA transactional.
You must also give the cache a unique XAResource identifier as some
transaction managers require this.

M
Even Header

Transactions Support

Ehcache API Developer Guide Version 10.5 56

6 The cache is being accessed with no prior call to
transactionManager.begin() which makes it throw XACacheException.

Note: there is one exception to that rule: the Cache.clear() method will always wipe
the cache's contents non-transactionally.

XA cache with three tiers and persistence

When a cache is configured as persistent, the in-doubt transactions are preserved and
can be recovered across restarts.

This INFO log informs you about that in-doubt transactions journaling is persistent too:
INFO o.e.t.x.j.DefaultJournalProvider - Using persistent XAStore journal

Here is an example:
BitronixTransactionManager transactionManager =
 TransactionManagerServices.getTransactionManager(); // 1
PersistentCacheManager persistentCacheManager =
 CacheManagerBuilder.newCacheManagerBuilder()
 .using(new LookupTransactionManagerProviderConfiguration(
 BitronixTransactionManagerLookup.class)) // 2
 .with(new CacheManagerPersistenceConfiguration(new File(getStoragePath(),
 "testXACacheWithThreeTiers"))) // 3
 .withCache("xaCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, // 4
 ResourcePoolsBuilder.newResourcePoolsBuilder() // 5
 .heap(10, EntryUnit.ENTRIES)
 .offheap(10, MemoryUnit.MB)
 .disk(20, MemoryUnit.MB, true)
)
 .add(new XAStoreConfiguration("xaCache")) // 6
 .build()
)
 .build(true);
final Cache<Long, String> xaCache = persistentCacheManager.getCache("xaCache",
 Long.class, String.class);
transactionManager.begin(); // 7
{
 xaCache.put(1L, "one"); // 8
}
transactionManager.commit(); // 9
persistentCacheManager.close();
transactionManager.shutdown();

1 First start the Bitronix transaction manager. By default, Ehcache will
auto-detect it but will throw an exception during the cache manager
initialization if BTM isn't started.

2 Configure the cache manager such as it can handle transactions by having
a TransactionManagerProvider loaded and configured to use Bitronix.

3 Configure persistence support to enable the use of the disk tier.

M
Odd Header

Transactions Support

Ehcache API Developer Guide Version 10.5 57

4 Register a cache the normal way.

5 Give it the resources you want.

6 Add a XAStoreConfiguration object to make the cache XA transactional.
You must also give the cache a unique XAResource identifier as some
transaction managers require this.

7 Begin a JTA transaction the normal way.

8 Update the value.

9 Commit the JTA transaction. Other transactions can now see the changes
you made to the cache and the SoR.

Configuring it with XML
You can create a XML file to configure a CacheManager, lookup a specific transaction
manager and configure XA caches:
<service>
 <tx:jta-tm transaction-manager-lookup-class=
 "org.ehcache.transactions.xa.txmgr.btm.BitronixTransactionManagerLookup"/>
 <!-- 1 -->
</service>
<cache alias="xaCache"> <!-- 2 -->
 <key-type>java.lang.String</key-type>
 <value-type>java.lang.String</value-type>
 <heap unit="entries">20</heap>
 <tx:xa-store unique-XAResource-id="xaCache" /> <!-- 3 -->
</cache>

1 Declare a TransactionManagerLookup that will lookup your transaction
manager.

2 Configure a xaCache cache the normal way.

3 Configure xaCache as an XA cache, giving it xaCache as its unique
XAResource ID.

In order to parse an XML configuration, you can use the XmlConfiguration type:
BitronixTransactionManager transactionManager =
 TransactionManagerServices.getTransactionManager(); // 1
URL myUrl = this.getClass().getResource("/docs/configs/xa-getting-started.xml");
 // 2
Configuration xmlConfig = new XmlConfiguration(myUrl); // 3
CacheManager myCacheManager = CacheManagerBuilder.newCacheManager(xmlConfig);

M
Even Header

Transactions Support

Ehcache API Developer Guide Version 10.5 58

 // 4
myCacheManager.init();
myCacheManager.close();
transactionManager.shutdown();

1 The Bitronix transaction manager must be started before the cache manager
is initialized.

2 Create a URL to your XML file's location.

3 Instantiate a XmlConfiguration passing it the XML file's URL.

4 Using the
staticorg.ehcache.config.builders.CacheManagerBuilder.newCacheManager
(org.ehcache.config.Configuration) lets you create your CacheManager
instance using the Configuration from the XmlConfiguration.

And here is what the BitronixTransactionManagerLookup implementation looks like:
public class BitronixTransactionManagerLookup
 implements TransactionManagerLookup { // 1
 private static final Logger LOGGER = LoggerFactory.getLogger(
 BitronixTransactionManagerLookup.class);
 @Override
 public TransactionManagerWrapper lookupTransactionManagerWrapper() { // 2
 if (!TransactionManagerServices.isTransactionManagerRunning()) { // 3
 throw new IllegalStateException("BTM must be started beforehand");
 }
 TransactionManagerWrapper tmWrapper = new TransactionManagerWrapper(
 TransactionManagerServices.getTransactionManager(),
 new BitronixXAResourceRegistry()); // 4
 LOGGER.info("Using looked up transaction manager : {}", tmWrapper);
 return tmWrapper;
 }
}

1 The TransactionManagerLookup interface must be implemented and the
offer a no-arg constructor.

2 The lookupTransactionManagerWrapper() method must return a
TransactionManagerWrapper instance.

3 Here is the check that makes sure BTM is started.

4 The TransactionManagerWrapper class is constructed with both
the javax.transaction.TransactionManager instance as well
as a XAResourceRegistryinstance. The laer is used to register
the javax.transaction.xa.XAResource instances of the cache with the
transaction manager using an implementation-specific mechanism.

M
Odd Header

Transactions Support

Ehcache API Developer Guide Version 10.5 59

If your JTA implementation doesn't require that, you can use the
NullXAResourceRegistryinstead.

M
Even Header

Ehcache API Developer Guide Version 10.5 60

M
Odd Header

Tiering Options

Ehcache API Developer Guide Version 10.5 61

9 Tiering Options

Ehcache supports the concept of tiered caching. This section covers the different
available configuration options. It also explains rules and best practices to benefit the
most from tiered caching.

For a general overview of storage tiers, see the section Storage Tiers in the About
Terracoa Ehcache guide.

Moving out of heap

The moment you have a tier other than the heap tier in a cache, a few things happen:

Adding a mapping to the cache means that the key and value have to be serialized.

Reading a mapping from the cache means that the key and value may have to be
deserialized.

With these two points above, you need to realize that the binary representation of the
data and how it is transformed to and from serialized data will play a significant role in
caching performance. Make sure you know about the options available for serializers
(see the section “Serializers” on page 84). Also this means that some configurations,
while making sense on paper, may not offer the best performance depending on the real
use case of the application.

Single tier setups

All tiering options can be used in isolation. For example, you can have caches with data
only in oeap or only clustered.

The following possibilities are valid configurations:

heap

oeap

disk

clustered

For this, simply define the single resource in the cache configuration:
CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, // 1
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .offheap(2, MemoryUnit.GB)).build(); // 2

1 Start with defining the key and value type in the configuration builder.

2 Then specify the resource (the tier) you want to use. Here we use off-heap
only.

M
Even Header

Tiering Options

Ehcache API Developer Guide Version 10.5 62

Heap Tier

The starting point of every cache and also the faster since no serialization is necessary.
You can optionally use copiers (see the section “Serializers and Copiers” on page 83)
to pass keys and values by-value, the default being by-reference.

A heap tier can be sized by entries or by size.
ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, EntryUnit.ENTRIES); // 1
// or
ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10); // 2
// or
ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, MemoryUnit.MB); // 3

1 Only 10 entries are allowed on heap. Eviction will occur when full.

2 A shortcut to specify 10 entries.

3 Only 10 MB are allowed. Eviction will occur when full.

Byte-sized heap

For every tier except the heap tier, calculating the size of the cache is fairly easy. You
more or less sum the size of all byte buffers containing the serialized entries.

When heap is limited by size instead of entries, it is a bit more complicated.

Note: Byte sizing has a runtime performance impact that depends on the size and
graph complexity of the data cached.

CacheConfiguration<Long, String> usesConfiguredInCacheConfig =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, MemoryUnit.KB) // 1
 .offheap(10, MemoryUnit.MB)) // 2
 .withSizeOfMaxObjectGraph(1000)
 .withSizeOfMaxObjectSize(1000, MemoryUnit.B) // 3
 .build();
CacheConfiguration<Long, String> usesDefaultSizeOfEngineConfig =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, MemoryUnit.KB))
 .build();
CacheManager cacheManager =
 CacheManagerBuilder.newCacheManagerBuilder()
 .withDefaultSizeOfMaxObjectSize(500, MemoryUnit.B)
 .withDefaultSizeOfMaxObjectGraph(2000) // 4
 .withCache("usesConfiguredInCache", usesConfiguredInCacheConfig)
 .withCache("usesDefaultSizeOfEngine",
 usesDefaultSizeOfEngineConfig)
 .build(true);

M
Odd Header

Tiering Options

Ehcache API Developer Guide Version 10.5 63

1 This will limit the amount of memory used by the heap tier for storing key-
value pairs. There is a cost associated with sizing objects.

2 The seings are only used by the heap tier. So off-heap won't use it at all.

3 The sizing can also be further restrained by 2 additional configuration
seings:

The first one specifies the maximum number of objects to traverse while
walking the object graph (default: 1000), the second defines the maximum
size of a single object (default: Long.MAX_VALUE, so almost infinite). If
the sizing goes above any of these two limits, the entry won't be stored in
cache.

4 A default configuration can be provided at CacheManager level to be used
by the caches unless defined explicitly.

Off-heap Tier

If you wish to use off-heap, you'll have to define a resource pool, giving the memory size
you want to allocate.
ResourcePoolsBuilder.newResourcePoolsBuilder()
 .offheap(10, MemoryUnit.MB); // 1

1 Only 10 MB are allowed off-heap. Eviction will occur when full.

The example above allocates a very small amount of off-heap. You will normally use a
much bigger space.

Remember that data stored off-heap will have to be serialized and deserialized - and is
thus slower than heap.

You should thus favor off-heap for large amounts of data where on-heap would have too
severe an impact on garbage collection.

Do not forget to define in the Java options the -XX:MaxDirectMemorySize option,
according to the off-heap size you intend to use.

Disk Tier

For the Disk tier, the data is stored on disk. The faster and more dedicated the disk is,
the faster accessing the data will be.
PersistentCacheManager persistentCacheManager =
 CacheManagerBuilder.newCacheManagerBuilder() // <1>
 .with(CacheManagerBuilder.persistence(new File(
 getStoragePath(), "myData"))) // <2>
 .withCache("persistent-cache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,

M
Even Header

Tiering Options

Ehcache API Developer Guide Version 10.5 64

 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .disk(10, MemoryUnit.MB, true)) // <3>
)
 .build(true);
 persistentCacheManager.close();

1 Obtain a PersistentCacheManager, which is a normal CacheManager but
with the ability to destroy caches. See the section “Destroying Persistent
Tiers” on page 68 for further information.

2 Provide a location where data should be stored.

3 Define a resource pool for the disk that will be used by the cache. The third
parameter is a boolean value which is used to set whether the disk pool is
persistent. When set to true, the pool is persistent. When the version with 2
parameters disk(long, MemoryUnit) is used, the pool is not persistent.

The example above allocates a very small amount of disk storage. You will normally use
a much bigger storage.

Persistence means the cache will survive a JVM restart. Everything that was in the cache
will still be there after restarting the JVM and creating a CacheManager disk persistence
at the same location.

Note: A disk tier can't be shared between cache managers. A persistence directory is
dedicated to one cache manager at the time.

Remember that data stored on disk will have to be serialized / deserialized and wrien
to / read from disk - and is thus slower than heap and oeap. So disk storage is
interesting if:

You have a large amount of data that can't fit off-heap

Your disk is much faster than the storage it is caching

You are interested in persistence

Note: The open source disk tier offers no data integrity guarantee in the case of a
crash. There is an enterprise version that provides this and more, see below.

Segments

Disk storage is separated into segments which provide concurrency access but also
hold open file pointers. The default is 16. In some cases, you might want to reduce the
concurrency and save resources by reducing the number of segments.
String storagePath = getStoragePath();
PersistentCacheManager persistentCacheManager =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(CacheManagerBuilder.persistence(new File(storagePath, "myData")))
 .withCache("less-segments",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,

M
Odd Header

Tiering Options

Ehcache API Developer Guide Version 10.5 65

 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .disk(10, MemoryUnit.MB))
 .add(new OffHeapDiskStoreConfiguration(2)) // 1
)
 .build(true);
persistentCacheManager.close();

1 Define an OffHeapDiskStoreConfiguration instance specifying the required
number of segments.

Clustered

A clustered tier means the client connects to the Terracoa Server Array where the
cached data is stored. It is also as way to have a shared cache between JVMs.

See the section “Clustered Caches” on page 121 for details of using the cluster tier.

Multiple tier setup

If you want to use more than one tier, you have to observe some constraints:

1. There must always be a heap tier in a multi-tier setup.

2. You cannot combine disk tiers and clustered tiers.

3. Tiers should be sized in a pyramidal fashion, i.e. tiers higher up the pyramid are
configured to use less memory than tiers lower down.

For 1, this is a limitation of the current implementation.

For 2, this restriction is necessary, because having two tiers with content that can outlive
the life of a single JVM can lead to consistency questions on restart.

For 3, the idea is that tiers are related to each other. The fastest tier (the heap tier) is
on top, while the slower tiers are below. In general, heap is more constrained than the
total memory of the machine, and oeap memory is more constrained than disk or the
memory available on the cluster. This leads to the typical pyramid shape for a multi-
tiered setup.

M
Even Header

Tiering Options

Ehcache API Developer Guide Version 10.5 66

Illustration that displays the tiers stacked as pyramid. On top, the mandatory, fastest but smallest
heap tier. Beneath, the off-heap tier. As base, the large but slow disk tier, which could alternatively
but not simultaneously be on a cluster.

Ehcache requires the size of the heap tier to be smaller than the size of the oeap tier,
and the size of the oeap tier to be smaller than the size of the disk tier. While Ehcache
cannot verify at configuration time that a count-based sizing for the heap tier will be
smaller than a byte-based sizing for another tier, you should make sure that is the case
during testing.

Taking the above into account, the following possibilities are valid configurations:

heap + oeap

heap + oeap + disk

heap + oeap + clustered

heap + disk

heap + clustered

Here is an example using heap, oeap and clustered.
PersistentCacheManager persistentCacheManager =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(cluster(CLUSTER_URI).autoCreate()) // 1
 .withCache("threeTierCache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, EntryUnit.ENTRIES) // 2
 .offheap(1, MemoryUnit.MB) // 3
 .with(ClusteredResourcePoolBuilder.clusteredDedicated(
 "primary-server-resource", 2, MemoryUnit.MB)) // 4
)
).build(true);

1 Cluster-specific information telling how to connect to the Terracoa cluster

M
Odd Header

Tiering Options

Ehcache API Developer Guide Version 10.5 67

2 Define the Heap tier, which is the smallest but fastest caching tier.

3 Define the Oeap tier. Next in line as caching tier.

4 Define the Clustered tier. The authoritative tier for this cache

Resource Pools

Tiers are configured using resource pools. Most of the time using a
ResourcePoolsBuilder. Let's revisit an example used earlier:
PersistentCacheManager persistentCacheManager =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(CacheManagerBuilder.persistence(
 new File(getStoragePath(), "myData")))
 .withCache("threeTieredCache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, EntryUnit.ENTRIES)
 .offheap(1, MemoryUnit.MB)
 .disk(20, MemoryUnit.MB, true)
)
).build(true);

This is a cache using 3 tiers (heap, oeap, disk). They are created and chained using
the ResourcePoolsBuilder. The declaration order doesn't maer (e.g. oeap can be
declared before heap) because each tier has a height. The higher the height of a tier is, the
closer the tier will be to the client.

It is really important to understand that a resource pool is only specifying a
configuration. It is not an actual pool that can be shared between caches. Consider for
instance this code:
ResourcePools pool = ResourcePoolsBuilder
 .newResourcePoolsBuilder().heap(10).build();
CacheManager cacheManager =
 CacheManagerBuilder.newCacheManagerBuilder()
 .withCache("test-cache1", CacheConfigurationBuilder
 .newCacheConfigurationBuilder(Integer.class, String.class, pool))
 .withCache("test-cache2", CacheConfigurationBuilder
 .newCacheConfigurationBuilder(Integer.class, String.class, pool))
 .build(true);

You will end up with two caches that can contain 10 entries each. Not a shared pool of
10 entries. Pools are never shared between caches. The exception being clustered caches,
that can be shared or dedicated.

Updating Resource Pools

Limited size adjustment can be performed on a live cache.

Note: updateResourcePools() only allows you to change the heap tier sizing, not
the pool type. Thus you can't change the sizing of off-heap or disk tiers.

ResourcePools pools = ResourcePoolsBuilder

M
Even Header

Tiering Options

Ehcache API Developer Guide Version 10.5 68

 .newResourcePoolsBuilder().heap(20L, EntryUnit.ENTRIES).build(); // 1
cache.getRuntimeConfiguration().updateResourcePools(pools); // 2
assertThat(cache.getRuntimeConfiguration().getResourcePools()
 .getPoolForResource(ResourceType.Core.HEAP).getSize(), is(20L));

1 You will need to create a new ResourcePools object with resources of
the required size, using ResourcePoolsBuilder. This object can then be
passed to the said method so as to trigger the update.

2 To update the capacity of ResourcePools, the
updateResourcePools(ResourcePools) method in
RuntimeConfiguration can be of help. The ResourcePools object
created earlier can then be passed to this method so as to trigger the
update.

Destroying Persistent Tiers

The disk tier and cluster tier are the two persistent tiers. This means that when the JVM
is stopped, all the created caches and their data still exist on disk or on the cluster.

Once in a while, you might want to fully remove them. Their definition as
PersistentCacheManager gives access to the following methods:

destroy()
This method destroys everything related to the cache manager (including caches, of
course). The cache manager must be closed or uninitialized to call this method. Also, for
a cluster tier, no other cache manager should currently be connected to the same cache
manager server entity.

destroyCache(String cacheName)
Ths method destroys a given cache. The cache shouldn't be in use by another cache
manager.

Sequence Flow for Cache Operations with Multiple Tiers

In order to understand what happens for different cache operations when using
multiple tiers, here are examples of Put and Get operations. The sequence diagrams are
oversimplified but still show the main points.

Multiple tiers using Put: Diagram showing the Get operation and its variations. As in the previous
graphic, there is from left to right the sequence of the Cache, the Caching Tier and the Authorative

M
Odd Header

Tiering Options

Ehcache API Developer Guide Version 10.5 69

Tier. Following the direction of the tiers, the get reaches the Cache and is handed to the Caching
Tier.

Multiple tiers using Get: Diagram showing the alternative, interdependent partial operational. The
implemented behaviour depends on whether the get delivers a hit or a miss on the tier following
their hierarchical sequence. Procedure A: The get delivers a hit in the Caching tier and returns the
value. Or .. The get results in a miss in the Caching Tier and is handed straight on to the Authorative
Tier. Depending on whether the Autorative Tier delivers a hit or a miss, Procedure B kicks in: If the
Authorative Tier delivers a hit, the value is handed on to the preceding Caching Tier. Here the value
is stored and from there returned as result of the Get request. Or ... If the Authorative Tier delivers a

M
Even Header

Tiering Options

Ehcache API Developer Guide Version 10.5 70

miss, a null value is handed to the preceding Caching Tier and from there returned as null to the Get
request.

You should then notice the following:

When puing a value into the cache, it goes straight to the authoritative tier, which is
the lowest tier.

A following get will push the value upwards in the caching tiers.

Of course, as soon as a value is put in the authoritative tier, all higher-level caching
tiers are invalidated.

A full cache miss (the value isn't on any tier) will always go all the way down to the
authoritative tier.

Note: The slower your authoritative tier, the slower your put operations will be. For
a normal cache usage, it usually doesn't maer since get operations are much

M
Odd Header

Tiering Options

Ehcache API Developer Guide Version 10.5 71

more frequent than put operations. The opposite would mean you probably
shouldn't be using a cache in the first place.

M
Even Header

Ehcache API Developer Guide Version 10.5 72

M
Odd Header

Cache Loaders and Writers

Ehcache API Developer Guide Version 10.5 73

10 Cache Loaders and Writers

■ Introduction to Cache Loaders and Writers ... 74

■ Implementing Cache-Through .. 75

M
Even Header

Cache Loaders and Writers

Ehcache API Developer Guide Version 10.5 74

Introduction to Cache Loaders and Writers

Note: Ehcache clustering is not yet compatible with cache-through.

This section documents the specifics behind the cache-through implementation in
Ehcache. Refer to the section “Cache Usage Paerns” on page 43 if you are not familiar
with terms like cache-through, read-through, write-through or system of record.

Ehcache merges the concepts of read-through and write-through behind a single
interface, the CacheLoaderWriter.

As indicated by its API, this interface provides methods with logical grouping:

read-through
The load(K) and loadAll(Iterable<? super K>) methods cover the read-through part
of cache-through.

write-through
The write(K, V), writeAll(Iterable<? extends Map.Entry<? extends K, ?
extends V>>), delete(K) and deleteAll(Iterable<? super K>) methods cover the
write-through part of cache-through.

The reasoning behind having a unified interface is that if you want a read-through only
cache, you need to decide what to do about mutative method calls. What happens
if someone calls put(K, V) on the cache? This risks making it inconsistent with the
underlying system of record.

In this context, the unified interface forces you to make a choice: either no-op write* /
delete* methods or throwing when mutation happens.

For a write-through only cache, it remains possible by simply having no-op load*
methods.

Write-behind

An additional feature provided by Ehcache is write-behind, where writes are made
asynchronously to the backing system of record. The way this works in Ehcache
is by simply telling the system to register a wrapper around your provided
CacheLoaderWriter implementation.

From there, you will have extra configuration options around batching and coalescing of
writes.

Ehcache does not support retry of failed writes at the write-behind wrapper level.
You, as the application developer and system of record owner, know beer when a
retry should happen and how. So if you need that functionality, make it part of your
CacheLoaderWriter implementation.

Write-behind introduces the following concepts:

M
Odd Header

Cache Loaders and Writers

Ehcache API Developer Guide Version 10.5 75

queue size
Indicates how many pending write operations there can be before applying back
pressure on cache operations.

concurrency level
Indicates how many parallel processing threads and queues there will be for write
behind. Effectively the maximum number of in-flight writes is "concurrency level *
queue size".

batching and batch size
Mutative operations will be grouped in batch size sets before reaching the
CacheLoaderWriter. When batching, the queue size is effectively the number of
pending batches there can be. This means that the maximum number of in-flight writes
becomes "concurrency level * queue size * batch size".

coalescing
When batching, coalescing means that you only send the latest mutation on a per key
basis to the CacheLoaderWriter.

maximum write delay
When batching, you can indicate the maximum write delay for an incomplete batch.
After this time has elapsed, the batch is processed even if incomplete.

Implementing Cache-Through
CacheManager cacheManager =
 CacheManagerBuilder.newCacheManagerBuilder().build(true);
Cache<Long, String> writeThroughCache =
 cacheManager.createCache("writeThroughCache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.heap(10))
 .withLoaderWriter(new SampleLoaderWriter<Long,
 String>(singletonMap(41L, "zero"))) // <1>
 .build());
assertThat(writeThroughCache.get(41L), is("zero")); // <2>
writeThroughCache.put(42L, "one"); // <3>
assertThat(writeThroughCache.get(42L), equalTo("one"));
cacheManager.close();

1 We register a sample CacheLoaderWriter that knows about the mapping
("41L" maps to "zero") .

2 Since the cache has no content yet, this will delegate to the
CacheLoaderWriter. The returned mapping will populate the cache and be
returned to the caller.

3 While creating this cache mapping, the CacheLoaderWriter will be
invoked to write the mapping into the system of record.

M
Even Header

Cache Loaders and Writers

Ehcache API Developer Guide Version 10.5 76

Adding Write-Behind
CacheManager cacheManager =
 CacheManagerBuilder.newCacheManagerBuilder().build(true);
Cache<Long, String> writeBehindCache =
 cacheManager.createCache("writeBehindCache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.heap(10))
 .withLoaderWriter(new SampleLoaderWriter<Long,
 String>(singletonMap(41L, "zero"))) // <1>
 .add(WriteBehindConfigurationBuilder // <2>
 .newBatchedWriteBehindConfiguration(1, TimeUnit.SECONDS, 3) // <3>
 .queueSize(3) // <4>
 .concurrencyLevel(1) // <5>
 .enableCoalescing()) // <6>
 .build());
assertThat(writeBehindCache.get(41L), is("zero"));
writeBehindCache.put(42L, "one");
writeBehindCache.put(43L, "two");
writeBehindCache.put(42L, "This goes for the record");
assertThat(writeBehindCache.get(42L), equalTo("This goes for the record"));
cacheManager.close();

1 For write-behind you need a configured CacheLoaderWriter.

2 Additionally, register a WriteBehindConfiguration on the cache by using
the WriteBehindConfigurationBuilder.

3 Here we configure write behind or batching with a batch size of 3 and a
maximum write delay of 1 second.

4 We also set the maximum size of the write-behind queue.

5 Define the concurrency level of write-behind queue(s). This indicates how
many writer threads work in parallel to update the underlying system of
record asynchronously.

6 Enable the write coalescing behavior, which ensures that only one update
per key per batch reaches the underlying system of record.

M
Odd Header

Cache Event Listeners

Ehcache API Developer Guide Version 10.5 77

11 Cache Event Listeners

■ Introduction ... 78

■ Registering Event Listeners during runtime ... 80

■ Event Processing Queues ... 80

M
Even Header

Cache Event Listeners

Ehcache API Developer Guide Version 10.5 78

Introduction
Cache listeners allow implementers to register callback methods that will be executed
when a cache event occurs.

Listeners are registered at the cache level - and therefore only receive events for caches
that they have been registered with.
CacheEventListenerConfigurationBuilder cacheEventListenerConfiguration =
 CacheEventListenerConfigurationBuilder
 .newEventListenerConfiguration(new ListenerObject(), EventType.CREATED,
 EventType.UPDATED) // 1
 .unordered().asynchronous(); // 2
final CacheManager manager = CacheManagerBuilder.newCacheManagerBuilder()
 .withCache("foo",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(String.class,
 String.class, ResourcePoolsBuilder.heap(10))
 .add(cacheEventListenerConfiguration) // 3
).build(true);
final Cache<String, String> cache = manager.getCache("foo", String.class, String.class);
cache.put("Hello", "World"); // 4
cache.put("Hello", "Everyone"); // 5
cache.remove("Hello"); // 6

1 Create a CacheEventListenerConfiguration using the builder
indicating the listener and the events to receive (in this case create and
update events)

2 Optionally indicate the delivery mode - defaults are asynchronous and un-
ordered (for performance reasons)

3 Pass the configuration of the listener into the cache configuration

4 You will be notified on creation

5 And on update

6 But not on removal, because it wasn't included at step 1

Created, updated, and removed events are triggered by user execution of mutative
methods as outlined in the table below. Eviction and expiration events can be triggered
by both internal processes and by user execution of methods targeting both related and
unrelated keys within the cache.

Table 1. Cache entry event firing behaviors for mutave methods

M
Odd Header

Cache Event Listeners

Ehcache API Developer Guide Version 10.5 79

input operation output event {key, old-
value, new-value}

{} put(K, V) {K, V} created {K, null,
V}

{K, V1} put(K, V2) {K, V2} updated {K, V1,
V2}

{} put(K, V)
[immediately
expired]

{} none

{K, V1} put(K, V2)
[immediately
expired]

{} none

{} putIfAbsent(K,
V)

{K, V} created {K, null,
V}

{} putIfAbsent(K,
V) [immediately
expired]

{} none

{K, V1} replace(K, V2) {K, V2} updated {K, V1,
V2}

{K, V1} replace(K, V2)
[immediately
expired]

{} none

{K, V1} replace(K, V1,
V2)

{K, V2} updated {K, V1,
V2}

{K, V1} replace(K,
V1, V2)
[immediately
expired]

{} no events

{K, V} remove(K) {} removed {K, V,
null}

M
Even Header

Cache Event Listeners

Ehcache API Developer Guide Version 10.5 80

Note: Ehcache provides an abstract class CacheEventAdapter for convenient
implementation of event listeners when you are interested only on specific
events.

Registering Event Listeners during runtime
Cache event listeners may also be added and removed while the cache is being used.
ListenerObject listener = new ListenerObject(); // 1
cache.getRuntimeConfiguration().registerCacheEventListener(listener,
 EventOrdering.ORDERED,
 EventFiring.ASYNCHRONOUS, EnumSet.of(EventType.CREATED,
 EventType.REMOVED)); // 2
cache.put(1L, "one");
cache.put(2L, "two");
cache.remove(1L);
cache.remove(2L);
cache.getRuntimeConfiguration().deregisterCacheEventListener(listener); // 3
cache.put(1L, "one again");
cache.remove(1L);

1 Create a CacheEventListener implementation instance.

2 Register it on the RuntimeConfiguration, indicating the delivery mode
and events of interest. The following put() and remove() cache calls will
make the listener receive events.

3 Unregister the previously registered CacheEventListener instance.
The following put() and remove() cache calls will have no effect on the
listener anymore.

Event Processing Queues
Advanced users may want to tune the level of concurrency which may be used for
delivery of events.
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.heap(5L))
 .withDispatcherConcurrency(10) // 1
 .withEventListenersThreadPool("listeners-pool")
 .build();

1 Indicate the level of concurrency desired

This will enable parallel processing of events at the cost of more threads being required
by the system.

M
Odd Header

Eviction Advisors

Ehcache API Developer Guide Version 10.5 81

12 Eviction Advisors

Note: This is an advanced topic/feature that will not be of interest to most users.

You can affect which elements are selected for eviction from the cache by providing a
class that implements the org.ehcache.config.EvictionAdvisor interface.

Note: Eviction advisors are not used for clustered storage tiers. For example, in
a cache with a heap tier and clustered storage tier, the heap tier will use
the eviction advisor but the clustered storage tier will evict independently,
irrespective of the eviction advisor. The description below applies to using an
eviction advisor for the cache tiers other than a clustered storage tier.

EvictionAdvisor implementations are invoked when Ehcache is aempting to evict
entries from the cache (in order to make room for new entries) in order to determine
whether the given entry should not be considered a good candidate for eviction. If the
eviction is advised against, Ehcache will try to honor the preference of preserving that
entry in the cache, though there is no full guarantee of such.
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class,
 ResourcePoolsBuilder.heap(2L)) // 1
 .withEvictionAdvisor(new OddKeysEvictionAdvisor<Long, String>()) // 2
 .build();
CacheManager cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
 .withCache("cache", cacheConfiguration)
 .build(true);
Cache<Long, String> cache = cacheManager.getCache("cache", Long.class,
 String.class);
// Work with the cache
cache.put(42L, "The Answer!");
cache.put(41L, "The wrong Answer!");
cache.put(39L, "The other wrong Answer!");
cacheManager.close();

1 Configure a constrained heap, as the eviction advisor is only relevant
when mappings get evicted from the cache.

2 If you want to give the eviction algorithm a hint to advise against
the eviction of some mappings, you have to configure an instance of
EvictionAdvisor.

In this particular example, the OddKeysEvictionAdvisor class will advise against
eviction of any key that is an odd number. The cache is constrained to only be allowed
to contain two entries, however the code has put three entries into the cache - which will
trigger capacity eviction. By the time the cache manager gets closed, only mappings with

M
Even Header

Eviction Advisors

Ehcache API Developer Guide Version 10.5 82

odd keys should be left in the cache as their prime candidacy for eviction would have
been advised against.

Note: 1. The eviction advisor may only be invoked when a mapping is wrien to
the cache. This means that proper eviction advisor implementations are
expected to be constant for a key-value pair.

2. Please keep in mind that configuring an eviction advisor can slow down
eviction: the more often you advise against eviction, the harder the cache
has to work to evict an element when room is required. After a certain
time, if a cache determines that the configured eviction advisor rejected
too many eviction candidates, the cache can decide to completely bypass
the eviction advisor and evict anything it sees fit.

M
Odd Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 83

13 Serializers and Copiers

■ Overview of Serializers and Copiers ... 84

■ Serializers ... 84

■ Copiers ... 89

M
Even Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 84

Overview of Serializers and Copiers
While Ehcache is a Java cache, it cannot always store its mappings as Java objects.

The on-heap store is capable of storing cached objects either by reference (where the
given key and value references are stored) or by value (where a copy of the given key
and value are made and those copies are then stored). All other stores are only capable
of storing a byte representation of the key/value pair. See the section “Heap Tier” on
page 62 for more details.

Serializer and Copier are the abstractions to enable these different storage options.

Serializers
All stores but the on-heap one need some form of serialization/deserialization of objects
to be able to store and retrieve mappings. This is because they cannot internally store
plain java objects but only binary representations of them.

Serializer is the Ehcache abstraction solving this: every cache that has at least one
store that cannot store by reference is going to use a pair of Serializer instances, one
for the key and another one for the value.

A Serializer is scoped at the cache level and all stores of a cache will be using and
sharing the same pair of serializers.

How is a serializer configured?

There are two places where serializers can be configured:

at the cache level where one can use

CacheConfigurationBuilder.withKeySerializer(Class<? extends
Serializer<K>> keySerializerClass),

CacheConfigurationBuilder.withKeySerializer(Serializer<K>
keySerializer),

CacheConfigurationBuilder.withValueSerializer(Class<? extends
Serializer<V>> valueSerializerClass),

and CacheConfigurationBuilder.withValueSerializer(Serializer<V>
valueSerializer),

which allow by instance or by class configuration.

at the cache manager level where one can use

CacheManagerBuilder.withSerializer(Class<C> clazz, Class<? extends
Serializer<C>> serializer)

M
Odd Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 85

If a serializer is configured directly at the cache level, it will be used, ignoring any cache
manager level configuration.

If a serializer is configured at the cache manager level, upon initialization, a cache with
no specifically configured serializer will search through its cache manager's registered
list of serializers and try to find one that directly matches the cache's key or value type. If
such search fails, all the registered serializers will be tried in the added order to find one
that handles compatible types.

For instance, let's say you have a Person interface and two subclasses: Employee and
Customer. If you configure your cache manager as follows:
CacheManagerBuilder.newCacheManagerBuilder().withSerializer(Employee.class,
EmployeeSerializer.class).withSerializer(Person.class, PersonSerializer.class)

then configuring a Cache<Long, Employee> would make it use the
EmployeeSerializer while a Cache<Long, Customer> would make it use the
PersonSerializer.

A Serializer configured at the cache level by class will not be shared to other caches
when instantiated.

Note: Given the above, it is recommended to limit Serializer registration to
concrete classes and not aim for generality.

Bundled implementations

By default, cache managers are pre-configured with specially optimized Serializer
that can handle the following types, in the following order:

java.io.Serializable

java.lang.Long

java.lang.Integer

java.lang.Float

java.lang.Double

java.lang.Character

java.lang.String

byte[]

All bundled Serializer implementations support both persistent and transient caches.

Note: A consequence of providing serializers registered by default is that you will
not be able to register a generic Serializer for Number or any other super
type and expect it to be picked instead of the default ones for the types listed
above.

However, registering a different Serializer for one of the given type means
it will be used instead of the default.

M
Even Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 86

Lifecycle: instances vs. class

When a Serializer is configured by providing an instance, it is up to the provider of
that instance to manage its lifecycle. It will need to dispose of any resource the serializer
might hold, persisting or reloading the serializer's state.

When a Serializer is configured by providing a class either at the cache or cache
manager level, since Ehcache is responsible for creating the instance, it also is
responsible for disposing of it. If the Serializer implements java.io.Closeable then
close() will be called when the cache is closed and the Serializer no longer needed.

Writing your own serializer

Serializer defines a very strict contract. So if you're planning to write your own
implementation you have to keep in mind that the class of the serialized object MUST be
retained after deserialization, that is:
object.getClass().equals(
 mySerializer.read(mySerializer.serialize(object)).getClass())

This is especially important when you are planning to write a serializer for an abstract
type, e.g. a serializer of type com.pany.MyInterface should

deserialize a com.pany.MyClassImplementingMyInterface when the serialized
object is of class com.pany.MyClassImplementingMyInterface

return a com.pany.AnotherClassImplementingMyInterface object when the
serialized object is of class com.pany.AnotherClassImplementingMyInterface

Implement the following interface, from package org.ehcache.spi.serialization:
/**
 * Defines the contract used to transform type instances to and
 * from a serial form.
 * <P>
 * Implementations must be thread-safe.
 * </P>
 * <P>
 * When used within the default serialization provider, there are additional
 * requirements.
 * The implementations must define either or both of the two constructors:
 * <dl>
 * <dt><code><i>Serializer</i>(ClassLoader loader)</code>
 * <dd>This constructor is used to initialize the serializer for transient caches.
 * <dt><code><i>Serializer</i>(ClassLoader loader,
 * org.ehcache.core.spi.service.FileBasedPersistenceContext context)</code>
 * <dd>This constructor is used to initialize the serializer for persistent caches.
 * </dl>
 * The {@code ClassLoader} value may be {@code null}. If not {@code null}, the
 * class loader
 * instance provided should be used during deserialization to load classes needed
 * by the deserialized objects.
 * </P>
 * <p>
 * The serialized object's class must be preserved; deserialization of the serial
 * form of an object must
 * return an object of the same class. The following contract must always be true:
 * <p>
 * <code>object.getClass().equals(mySerializer.read(mySerializer.serialize(object))

M
Odd Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 87

 * .getClass())</code>
 * </p>
 * </p>
 *
 * @param <T> the type of the instances to serialize
 *
 * @see SerializationProvider
 */
public interface Serializer<T> {
 /**
 * Transforms the given instance into its serial form.
 *
 * @param object the instance to serialize
 *
 * @return the binary representation of the serial form
 *
 * @throws SerializerException if serialization fails
 */
 ByteBuffer serialize(T object) throws SerializerException;
 /**
 * Reconstructs an instance from the given serial form.
 *
 * @param binary the binary representation of the serial form
 *
 * @return the de-serialized instance
 *
 * @throws SerializerException if reading the byte buffer fails
 * @throws ClassNotFoundException if the type to de-serialize to cannot be found
 */
 T read(ByteBuffer binary) throws ClassNotFoundException, SerializerException;
 /**
 * Checks if the given instance and serial form {@link Object#equals(Object)
 * represent} the same instance.
 *
 * @param object the instance to check
 * @param binary the serial form to check
 *
 * @return {@code true} if both parameters represent equal instances,
 * {@code false} otherwise
 *
 * @throws SerializerException if reading the byte buffer fails
 * @throws ClassNotFoundException if the type to de-serialize to cannot be found
 */
 boolean equals(T object, ByteBuffer binary) throws ClassNotFoundException,
 SerializerException;
}

As the Javadoc states, there are some constructor rules, see the section “Persistent vs.
transient caches” on page 88 for that.

You can optionally implement java.io.Closeable. If you do, Ehcache will call
close() when a cache using such a serializer gets disposed of, but only ifEhcache
instantiated the serializer itself.

ClassLoaders

When Ehcache instantiates a serializer itself, it will pass it a ClassLoader via the
constructor. Such class loader must be used to access the classes of the serialized types as
they might not be available in the current class loader

M
Even Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 88

Persistent vs. transient caches

All custom serializers must have a constructor with the following signature:
public MySerializer(ClassLoader classLoader) {
}

Aempting to configure a serializer that lacks such a constructor on a cache
using either of CacheConfigurationBuilder.withKeySerializer(Class<?
extends Serializer<K>> keySerializerClass) or
CacheConfigurationBuilder.withValueSerializer(Class<? extends
Serializer<V>> valueSerializerClass) will cause an exception upon cache
initialization.

But if an instance of the serializer is configured using either of
CacheConfigurationBuilder.withKeySerializer(Serializer keySerializer)
or CacheConfigurationBuilder.withValueSerializer(Serializer
valueSerializer) it will work since the instantiation is done by the user code itself.

Registering a serializer that lacks such a constructor at the cache manager level will
prevent it from being chosen for caches.

Custom serializer implementations could have some state that is used in the
serialization/deserialization process. When configured on a persistent cache, the state of
such serializers needs to be persisted across restarts.

To address these requirements you can have a StatefulSerializer implementation.
StatefulSerializer is a specialized Serializer with an additional init method with
the following signature:
public void init(StateRepository repository) {
}

The StateRepository.getPersistentStateHolder(String name, Class<K>
keyClass, Class<V> valueClass, Predicate<Class<?>> isClassPermitted,
ClassLoader classLoader) provides a StateHolder (a map like structure) that you
can use to store any relevant state. Here name is the name of the StateHolder which
maps objects of keyClass to objects of valueClass. The Predicate isClassPermitted
authorizes the classes for deserialization as part of key or value deserialization.
If a Class fails the isClassPermitted test, a RuntimeException is thrown. The
deserialization uses the ClassLoader to resolve classes.

Note: StateRepository.getPersistentStateHolder(String name, Class<K>
keyClass, Class<V> valueClass) has been deprecated in favour of the
above method which takes in isClassPermitted and classLoader also as
parameters.

The StateRepository is provided by the authoritative tier of the cache and hence
will have the same persistence properties of that tier. For persistent caches it is highly
recommended that all state is stored in these holders as the users won't have to worry
about the persistence aspects of this state holder as it is taken care of by Ehcache.

M
Odd Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 89

In the case of a disk persistent cache, the contents of the state holder will be persisted
locally on to the disk.

For clustered caches, the contents are persisted in the cluster itself so that other
clients using the same cache can also access the contents of the state holder.

Copiers
As the on-heap store is capable of storing plain Java objects as such, it is not necessary to
rely on a serialization mechanism to copy keys and values in order to provide by value
semantics. Other forms of copy mechanism can be a lot more performant, such as using a
copy constructor but it requires custom code to be able to copy user classes.

Copier is the Ehcache abstraction solving this: it is specific to the on-heap store.

By default, the on-heap mappings are stored by reference. The way to store them by value
is to configure copier(s) on the cache for the key, value or both.

Of course, the exact semantic of by value in this context depends heavily on the Copier
implementation.

How is a copier configured?

There are two places where copiers can be configured:

at the cache level where one can use

CacheConfigurationBuilder.withKeyCopier(Class<? extends Copier<K>>
keyCopierClass),

CacheConfigurationBuilder.withKeyCopier(Copier<K> keyCopier),

CacheConfigurationBuilder.withValueCopier(Class<? extends
Copier<V>> valueCopierClass),

and CacheConfigurationBuilder.withValueCopier(Copier<V>
valueCopier).

which allow by instance or by class configuration.

at the cache manager level where one can use

CacheManagerBuilder.withCopier(Class<C> clazz, Class<? extends
Copier<C>> copier)

If a copier is configured directly at the cache level, it will be used, ignoring any cache
manager level configuration.

If a copier is configured at the cache manager level, upon initialization, a cache with no
specifically configured copier will search through its cache manager's registered list of
copiers and try to find one that directly matches the cache's key or value type. If such
search fails, all the registered copiers will be tried in the added order to find one that
handles compatible types.

M
Even Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 90

For instance, let's say you have a Person interface and two subclasses: Employee and
Customer. If you configure your cache manager as follows:
CacheManagerBuilder.newCacheManagerBuilder().withCopier(Employee.class,
EmployeeCopier.class).withCopier(Person.class,
PersonCopier.class)

then configuring a Cache<Long, Employee> would make it use the EmployeeCopier
while a Cache<Long, Customer> would make it use the PersonCopier.

A Copier configured at the cache level by class will not be shared to other caches when
instantiated.

Note: Given the above, it is recommended to limit Copier registration to concrete
classes and not aim for generality.

Bundled implementations

A SerializingCopier class exists in case you want to configure store by value on-heap
using the configured (or default) serializer. Note that this implementation performs a
serialization / deserialization on each read or write operation.

Add builder methods to section about serializing copier

The CacheConfigurationBuilder provides the following methods to make use of this
specialized copier:

CacheConfigurationBuilder.withKeySerializingCopier() for the key.

CacheConfigurationBuilder.withValueSerializingCopier() for the value.

Lifecycle: instances vs class

When a Copier is configured by providing an instance, it is up to the provider of that
instance to manage its lifecycle. It will need to dispose of any resource it used after it is
no longer required.

When a Copier is configured by providing a class either at the cache or cache manager
level, since Ehcache is responsible for creating the instance, it also is responsible for
disposing of it. If the Copier implements java.io.Closeable then close() will be
called when the cache is closed and the Copier no longer needed.

Writing your own Copier

Implement the following interface:
/**
 * Defines the contract used to copy type instances.
 * <p>
 * The copied object's class must be preserved. The following must always be true:
 * <p>
 * <code>object.getClass().equals(myCopier.copyForRead(object).getClass())</code>
 * <code>object.getClass().equals(myCopier.copyForWrite(object).getClass())</code>
 * </p>
 * </p>
 * @param <T> the type of the instance to copy
 */

M
Odd Header

Serializers and Copiers

Ehcache API Developer Guide Version 10.5 91

public interface Copier<T> {
 /**
 * Creates a copy of the instance passed in.
 * <p>
 * This method is invoked as a value is read from the cache.
 * </p>
 *
 * @param obj the instance to copy
 * @return the copy of the {@code obj} instance
 */
 T copyForRead(T obj);
 /**
 * Creates a copy of the instance passed in.
 * <p>
 * This method is invoked as a value is written to the cache.
 * </p>
 *
 * @param obj the instance to copy
 * @return the copy of the {@code obj} instance
 */
 T copyForWrite(T obj);
}

T copyForRead(T obj) is invoked when a copy must be made upon a read
operation (like a cache get()),

T copyForWrite(T obj) is invoked when a copy must be made upon a write
operation (like a cache put()).

The separation between copying for read and for write can be useful when you want to
store a lighter version of your objects into the cache.

Alternatively, you can extend from org.ehcache.impl.copy.ReadWriteCopier if copying for read
and copying for write implementations are identical, in which case you only have to
implement:

public abstract T copy(T obj)

M
Even Header

Ehcache API Developer Guide Version 10.5 92

M
Odd Header

Thread Pools

Ehcache API Developer Guide Version 10.5 93

14 Thread Pools

■ Introduction to Thread Pools .. 94

■ Configuring Thread Pools with Code ... 95

■ Configuring Thread Pools with XML .. 98

M
Even Header
Thread Pools

Ehcache API Developer Guide Version 10.5 94

Introduction to Thread Pools
Some services work asynchronously, hence they require thread pools to perform
their tasks. All thread pooling facilities are centralized behind the ExecutionService
interface.

Let's start with a bit of theory.

What ExecutionService provides

ExecutionService is an interface providing:

ScheduledExecutorService to schedule tasks, i.e.: tasks that happen repeatedly
after a configurable delay.

Unordered ExecutorService to execute tasks as soon as a thread is available.

Ordered ExecutorService to execute tasks as soon as a thread is available, with the
guarantee that tasks are going to be executed in the order they were submied.

Available ExecutionService implementations

There currently are two bundled implementations:

OnDemandExecutionService creates a new pool each time an executor service
(scheduled or not) is requested. This implementation is the default one and requires
no configuration at all.

PooledExecutionService keeps a configurable set of thread pools and divides
them to handle all executor service requests. This implementation must be
configured with a PooledExecutionServiceConfiguration when used.

Configuring PooledExecutionService

When you want total control of the threads used by a cache manager and its caches, you
have to use a PooledExecutionService that itself must be configured as it does not
have any defaults.

The PooledExecutionServiceConfigurationBuilder can be used for this
purpose, and the resulting configuration it builds can simply be added to a
CacheManagerBuilder to switch the ExecutionService implementation to a
PooledExecutionService.

The builder has two interesting methods:

defaultPool that is used to set the default pool. There can be only one default pool,
its name does not maer, and if thread-using services do not specify a thread pool,
this is the one that will be used.

pool that is used to add a thread pool. There can be as many pools as you wish but
services must explicitly be configured to make use of them.

M
Odd Header

Thread Pools

Ehcache API Developer Guide Version 10.5 95

Using the configured thread pools

Following is the list of services making use of ExecutionService:

Disk store: disk writes are performed asynchronously.

OffHeapDiskStoreConfiguration is used to configure what thread pool to use
at the cache level, while OffHeapDiskStoreProviderConfiguration is used to
configure what thread pool to use at the cache manager level.

Write Behind: CacheLoaderWriter write tasks happen asynchronously.

DefaultWriteBehindConfiguration is used to configure what thread pool to use
at the cache level, while WriteBehindProviderConfiguration is used to configure
what thread pool to use at the cache manager level.

Eventing: produced events are queued and sent to the listeners by a thread pool.

DefaultCacheEventDispatcherConfiguration is used to
configure what thread pool to use at the cache level, while
CacheEventDispatcherFactoryConfiguration is used to configure what thread
pool to use at the cache manager level.

The different builders will make use of the right configuration class,
you do not have to use those classes directly. For instance, calling
CacheManagerBuilder.withDefaultDiskStoreThreadPool(String
threadPoolAlias) actually is identical to calling CacheManagerBuilder.using(new
OffHeapDiskStoreProviderConfiguration(threadPoolAlias)).

The thread pool to use can be configured on a service through the builders by using the
methods carrying a ThreadPool related name. When a service is not told anything about
which thread pool to use, the default thread pool is used.

Configuring Thread Pools with Code
Following are examples of describing how to configure the thread pools the different
services will use.

Disk store
CacheManager cacheManager
 = CacheManagerBuilder.newCacheManagerBuilder()
 .using(PooledExecutionServiceConfigurationBuilder
 .newPooledExecutionServiceConfigurationBuilder() // 1
 .defaultPool("dflt", 0, 10)
 .pool("defaultDiskPool", 1, 3)
 .pool("cache2Pool", 2, 2)
 .build())
 .with(new CacheManagerPersistenceConfiguration(new File(getStoragePath(),
 "myData")))
 .withDefaultDiskStoreThreadPool("defaultDiskPool") // 2
 .withCache("cache1",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class,

M
Even Header
Thread Pools

Ehcache API Developer Guide Version 10.5 96

 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, EntryUnit.ENTRIES)
 .disk(10L, MemoryUnit.MB)))
 .withCache("cache2",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(10, EntryUnit.ENTRIES)
 .disk(10L, MemoryUnit.MB))
 .withDiskStoreThreadPool("cache2Pool", 2)) // 3
 .build(true);
Cache<Long, String> cache1 =
 cacheManager.getCache("cache1", Long.class, String.class);
Cache<Long, String> cache2 =
 cacheManager.getCache("cache2", Long.class, String.class);
cacheManager.close();

1 Configure the thread pools. Note that the default one (dflt) is required
for the events even when no event listener is configured.

2 Tell the CacheManagerBuilder to use a default thread pool for all disk
stores that don't explicitly specify one.

3 Tell the cache to use a specific thread pool for its disk store.

Write Behind
CacheManager cacheManager
 = CacheManagerBuilder.newCacheManagerBuilder()
 .using(PooledExecutionServiceConfigurationBuilder.
 newPooledExecutionServiceConfigurationBuilder() // 1
 .defaultPool("dflt", 0, 10)
 .pool("defaultWriteBehindPool", 1, 3)
 .pool("cache2Pool", 2, 2)
 .build())
 .withDefaultWriteBehindThreadPool("defaultWriteBehindPool") // 2
 .withCache("cache1",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.newResourcePoolsBuilder().heap(10,
 EntryUnit.ENTRIES))
 .withLoaderWriter(new SampleLoaderWriter<Long, String>(
 singletonMap(41L, "zero")))
 .add(WriteBehindConfigurationBuilder
 .newBatchedWriteBehindConfiguration(1, TimeUnit.SECONDS, 3)
 .queueSize(3)
 .concurrencyLevel(1)))
 .withCache("cache2",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.newResourcePoolsBuilder().heap(10,
 EntryUnit.ENTRIES))
 .withLoaderWriter(new SampleLoaderWriter<Long, String>(
 singletonMap(41L, "zero")))
 .add(WriteBehindConfigurationBuilder
 .newBatchedWriteBehindConfiguration(1, TimeUnit.SECONDS, 3)
 .useThreadPool("cache2Pool") // 3
 .queueSize(3)
 .concurrencyLevel(2)))
 .build(true);

M
Odd Header

Thread Pools

Ehcache API Developer Guide Version 10.5 97

Cache<Long, String> cache1 =
 cacheManager.getCache("cache1", Long.class, String.class);
Cache<Long, String> cache2 =
 cacheManager.getCache("cache2", Long.class, String.class);
cacheManager.close();

1 Configure the thread pools. Note that the default one (dflt) is required
for the events even when no event listener is configured.

2 Tell the CacheManagerBuilder to use a default thread pool for all write-
behind caches that don't explicitly specify one.

3 Tell the WriteBehindConfigurationBuilder to use a specific thread pool
for its write-behind work.

Events
CacheManager cacheManager
 = CacheManagerBuilder.newCacheManagerBuilder()
 .using(PooledExecutionServiceConfigurationBuilder
 .newPooledExecutionServiceConfigurationBuilder() // 1
 .pool("defaultEventPool", 1, 3)
 .pool("cache2Pool", 2, 2)
 .build())
 .withDefaultEventListenersThreadPool("defaultEventPool") // 2
 .withCache("cache1",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.newResourcePoolsBuilder().heap(10,
 EntryUnit.ENTRIES))
 .add(CacheEventListenerConfigurationBuilder
 .newEventListenerConfiguration(new ListenerObject(),
 EventType.CREATED, EventType.UPDATED)))
 .withCache("cache2",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder.newResourcePoolsBuilder().heap(10,
 EntryUnit.ENTRIES))
 .add(CacheEventListenerConfigurationBuilder
 .newEventListenerConfiguration(new ListenerObject(),
 EventType.CREATED, EventType.UPDATED))
 .withEventListenersThreadPool("cache2Pool")) // 3
 .build(true);
Cache<Long, String> cache1 =
 cacheManager.getCache("cache1", Long.class, String.class);
Cache<Long, String> cache2 =
 cacheManager.getCache("cache2", Long.class, String.class);
cacheManager.close();

1 Configure the thread pools. Note that there is no default one so all
thread-using services must be configured with explicit defaults.

2 Tell the CacheManagerBuilder to use a default thread pool to manage
events of all caches that don't explicitly specify one.

M
Even Header
Thread Pools

Ehcache API Developer Guide Version 10.5 98

3 Tell the CacheEventListenerConfigurationBuilder to use a specific
thread pool for sending its events.

Configuring Thread Pools with XML
Following is an example describing how to configure the thread pools the different
services will use.
 <thread-pools> <!-- 1 -->
 <thread-pool alias="defaultDiskPool" min-size="1" max-size="3"/>
 <thread-pool alias="defaultWriteBehindPool" min-size="1" max-size="3"/>
 <thread-pool alias="cache2Pool" min-size="2" max-size="2"/>
 </thread-pools>
 <event-dispatch thread-pool="defaultEventPool"/> <!-- 2 -->
 <write-behind thread-pool="defaultWriteBehindPool"/> <!-- 3 -->
 <disk-store thread-pool="defaultDiskPool"/> <!-- 4 -->
 <cache alias="cache1">
 <key-type>java.lang.Long</key-type>
 <value-type>java.lang.String</value-type>
 <resources>
 <heap unit="entries">10</heap>
 <disk unit="MB">10</disk>
 </resources>
 </cache>
 <cache alias="cache2">
 <key-type>java.lang.Long</key-type>
 <value-type>java.lang.String</value-type>
 <loader-writer>
 <class>org.ehcache.docs.plugs.ListenerObject</class>
 <write-behind thread-pool="cache2Pool"> <!-- 5 -->
 <batching batch-size="5">
 <max-write-delay unit="seconds">10</max-write-delay>
 </batching>
 </write-behind>
 </loader-writer>
 <listeners dispatcher-thread-pool="cache2Pool"/> <!-- 6 -->
 <resources>
 <heap unit="entries">10</heap>
 <disk unit="MB">10</disk>
 </resources>
 <disk-store-settings thread-pool="cache2Pool"
 writer-concurrency="2"/> <!-- 7 -->
 </cache>

1 Configure the thread pools. Note that there is no default one.

2 Configure the default thread pool this cache manager will use to send
events.

3 Configure the default thread pool this cache manager will use for write-
behind work.

M
Odd Header

Thread Pools

Ehcache API Developer Guide Version 10.5 99

4 Configure the default thread pool this cache manager will use for disk
stores.

5 Configure a specific write-behind thread pool for this cache.

6 Configure a specific thread pool for this cache to send its events.

7 Configure a specific thread pool for this cache's disk store.

M
Even Header

Ehcache API Developer Guide Version 10.5 100

M
Odd Header

Code Examples

Ehcache API Developer Guide Version 10.5 101

15 Code Examples

Peeper - a simple message board

The demo directory in the Ehcache sources includes a sample applications with two (2)
implementations demonstrating Ehcache use. Implemented as a simple browser-based
web service, the sample application, Peeper, displays any messages (peeps) previously
entered and accepts new peeps recording the peeps in a database. The peeps database,
shared among implementations of the Peeper application, is located at $HOME/ehcache-
demo-peeper.mv.db. This file may be safely erased while the application is not running.
While running, information about the operation of Peeper application (database access,
cache access, etc.) is wrien to the console.

While the sample application may be run, the application is very simplistic - the code
implementing the sample is the interesting bit. Running the sample application requires
the use of “Gradle”. This sample may be accessed from GitHub by cloning the Ehcache
git repository:
Create and/or change to a directory to hold the Ehcache git repository clone
git clone https://github.com/ehcache/ehcache3.git

Peeper without Caching - 00-NoCache

The first sample, located in demos/00-NoCache, is a base Peeper application that does
not use caching. Each peep is stored in the database and all peeps are read from the
database to display the Peeper web page. To run this implementation:
cd ehcache3/demos/00-NoCache
../../gradlew appStart

This builds the necessary components, starts a “Jey” web service, and displays the
URL of the web server on the console. The URL will be something like http://
localhost:8080/ehcache-demos/00-NoCache/.

While running, lines like the following are displayed to the console:
11:23:53.536 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from DB
11:24:03.226 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Adding peep into DB
11:24:03.234 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from DB
11:24:13.312 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Adding peep into DB
11:24:13.317 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from DB
11:24:41.238 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from DB
11:24:50.896 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Adding peep into DB
11:24:50.901 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from DB
11:24:56.295 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Adding peep into DB
11:24:56.298 [800523121@qtp-1157162760-2] INFO o.e.d.p.DataStore - Loading peeps from DB

Note the absence of indications of interactions with a cache.

Peeper with Cache-aside Caching - 01-CacheAside

The second sample, located in demos/01-CacheAside, is a version of the Peeper
application that makes use of Ehcache. As each peep is being read from the database

https://gradle.org/
http://eclipse.org/jetty/

M
Even Header

Code Examples

Ehcache API Developer Guide Version 10.5 102

(for display in the web page), it is wrien to an Ehcache instance. If the Peeper web page
is refreshed (without adding a new peep) or a new Peeper client connects, the peeps
are read from the cache (instead of the database) to form the web page. If a new peep is
posted, the cache is cleared. To run this implementation:
cd ehcache3/demos/01-CacheAside
../../gradlew appStart

This builds the necessary components, starts a “Jey” web service, and displays
the URL of the web server on the console. The URL will be something like http://
localhost:8080/ehcache-demos/01-CacheAside/.

While running, lines like the following are displayed to the console:
11:26:20.557 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Loading peeps from DB
11:26:20.572 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Filling cache with peeps
11:26:33.422 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Adding peep into DB
11:26:33.428 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Clearing peeps cache
11:26:33.431 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Loading peeps from DB
11:26:33.432 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Filling cache with peeps
11:26:50.025 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Adding peep into DB
11:26:50.027 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Clearing peeps cache
11:26:50.030 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Loading peeps from DB
11:26:50.031 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Filling cache with peeps
11:27:10.742 [139688380@qtp-965028604-0] INFO o.e.d.p.DataStore - Getting peeps from cache

Note the presence of the Filling cache with peeps, Clearing peeps cache, and Geing
peeps from cache lines indicating cache interactions.

XML with 107 extension
<ehcache:config
 xmlns:ehcache="http://www.ehcache.org/v3"
 xmlns:jcache="http://www.ehcache.org/v3/jsr107">
 <!--
 OPTIONAL
 services to be managed and lifecycled by the CacheManager
 -->
 <ehcache:service>
 <!--
 One element in another namespace, using our JSR-107 extension as an example here
 -->
 <jcache:defaults>
 <jcache:cache name="invoices" template="myDefaultTemplate"/>
 </jcache:defaults>
 </ehcache:service>
 <!--
 OPTIONAL
 A <cache> element defines a cache, identified by the mandatory 'alias' attribute,
 to be managed by the CacheManager
 -->
 <ehcache:cache alias="productCache">
 <!--
 OPTIONAL, defaults to java.lang.Object
 The FQCN of the type of keys K we'll use with the Cache<K, V>
 -->
 <ehcache:key-type copier=
 "org.ehcache.impl.copy.SerializingCopier">java.lang.Long</ehcache:key-type>
 <!--
 OPTIONAL, defaults to java.lang.Object
 The FQCN of the type of values V we'll use with the Cache<K, V>
 -->

http://eclipse.org/jetty/

M
Odd Header

Code Examples

Ehcache API Developer Guide Version 10.5 103

 <ehcache:value-type copier=
 "org.ehcache.impl.copy.SerializingCopier">com.pany.domain.Product</ehcache:value-type>
 <!--
 OPTIONAL, defaults to no expiry
 Entries to the Cache can be made to expire after a given time
 -->
 <ehcache:expiry>
 <!--
 time to idle, the maximum time for an entry to remain untouched
 Entries to the Cache can be made to expire after a given time
 other options are:
 * <ttl>, time to live;
 * <class>, for a custom Expiry implementation; or
 * <none>, for no expiry
 -->
 <ehcache:tti unit="minutes">2</ehcache:tti>
 </ehcache:expiry>
 <!--
 OPTIONAL, defaults to no advice
 An eviction advisor, which lets you control what entries should only get
 evicted as last resort
 FQCN of a org.ehcache.config.EvictionAdvisor implementation
 -->
 <ehcache:eviction-advisor>com.pany.ehcache.MyEvictionAdvisor</ehcache:eviction-advisor>
 <!--
 OPTIONAL,
 Let's you configure your cache as a "cache-through",
 i.e. a Cache that uses a CacheLoaderWriter to load on misses,
 and write on mutative operations.
 -->
 <ehcache:loader-writer>
 <!--
 The FQCN implementing org.ehcache.spi.loaderwriter.CacheLoaderWriter
 -->
 <ehcache:class>com.pany.ehcache.integration.ProductCacheLoaderWriter</ehcache:class>
 <!-- Any further elements in another namespace -->
 </ehcache:loader-writer>
 <!--
 The maximal number of entries to be held in the Cache, prior to eviction starting
 -->
 <ehcache:heap unit="entries">200</ehcache:heap>
 <!--
 OPTIONAL
 Any further elements in another namespace
 -->
 </ehcache:cache>
 <!--
 OPTIONAL
 A <cache-template> defines a named template that can be used be <cache>
 definitions in this same file
 They have all the same property as the <cache> elements above
 -->
 <ehcache:cache-template name="myDefaultTemplate">
 <ehcache:expiry>
 <ehcache:none/>
 </ehcache:expiry>
 <!--
 OPTIONAL
 Any further elements in another namespace
 -->
 </ehcache:cache-template>
 <!--
 A <cache> that uses the template above by referencing the cache-template's

M
Even Header

Code Examples

Ehcache API Developer Guide Version 10.5 104

 name in the uses-template attribute:
 -->
 <ehcache:cache alias="customerCache" uses-template="myDefaultTemplate">
 <!--
 Adds the key and value type configuration
 -->
 <ehcache:key-type>java.lang.Long</ehcache:key-type>
 <ehcache:value-type>com.pany.domain.Customer</ehcache:value-type>
 <!--
 Overwrites the capacity limit set by the template to a new value
 -->
 <ehcache:heap unit="entries">200</ehcache:heap>
 </ehcache:cache>
</ehcache:config>

M
Odd Header

Ehcache XSDs

Ehcache API Developer Guide Version 10.5 105

16 Ehcache XSDs

■ XSD namespaces and locations .. 106

M
Even Header

Ehcache XSDs

Ehcache API Developer Guide Version 10.5 106

XSD namespaces and locations
Core namespace: “hp://www.ehcache.org/v3”

Location of the schema used in Terracoa Ehcache: “hp://www.ehcache.org/
schema/ehcache-core-3.2.xsd”

JSR-107 namespace: “hp://www.ehcache.org/v3/jsr107”

Location of the schema used in Terracoa Ehcache: “hp://www.ehcache.org/
schema/ehcache-107-ext-3.2.xsd”

Transactions namespace: “hp://www.ehcache.org/v3/tx”

Location of the schema used in Terracoa Ehcache: “hp://www.ehcache.org/
schema/ehcache-tx-ext-3.2.xsd”

Cluster namespace: “hp://www.ehcache.org/v3/clustered”

Location of the schema used in Terracoa Ehcache: “hp://www.ehcache.org/
schema/ehcache-clustered-ext-3.2.xsd”

Usage example
<eh:config
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:eh='http://www.ehcache.org/v3'
 xmlns:jsr107='http://www.ehcache.org/v3/jsr107'
 xsi:schemaLocation="
 http://www.ehcache.org/v3
 http://www.ehcache.org/schema/ehcache-core-3.2.xsd
 http://www.ehcache.org/v3/jsr107
 http://www.ehcache.org/schema/ehcache-107-ext-3.2.xsd">
</eh:config>

http://www.ehcache.org/v3/
http://www.ehcache.org/schema/ehcache-core-3.2.xsd
http://www.ehcache.org/schema/ehcache-core-3.2.xsd
http://www.ehcache.org/v3/jsr107/
http://www.ehcache.org/schema/ehcache-107-ext-3.2.xsd
http://www.ehcache.org/schema/ehcache-107-ext-3.2.xsd
http://www.ehcache.org/v3/tx/
http://www.ehcache.org/schema/ehcache-tx-ext-3.2.xsd
http://www.ehcache.org/schema/ehcache-tx-ext-3.2.xsd
http://www.ehcache.org/v3/clustered/
http://www.ehcache.org/schema/ehcache-clustered-ext-3.2.xsd
http://www.ehcache.org/schema/ehcache-clustered-ext-3.2.xsd

M
Odd Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 107

17 Management and Monitoring with Ehcache

■ Introduction ... 108

■ Making use of the ManagementRegistry ... 108

■ Capabilities and contexts ... 109

■ Actions .. 111

■ Managing multiple cache managers .. 112

■ Rules for Statistics Calculation .. 113

M
Even Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 108

Introduction
Managed objects like caches, cache managers and stores are registered into an
org.ehcache.management.ManagementRegistryService instance.

A ManagementRegistry implementation has to understand the registered object and
provide management and monitoring capabilities for them, including the capabilities'
context.

Given a capability and a context, statistics can be collected or calls can be made.

The current ManagementRegistry implementation provides minimal support for
Ehcache instances, providing a minimal set of statistics and actions via a couple of
capabilities.

Making use of the ManagementRegistry
By default, a ManagementRegistry is automatically discovered and enabled, but can
only be accessed by Ehcache internal services. If you wish to make use of it, you should
create your own instance and pass it to the cache manager builder as a service:
CacheManager cacheManager = null;
try {
 DefaultManagementRegistryConfiguration registryConfiguration =
 new DefaultManagementRegistryConfiguration()
 .setCacheManagerAlias("myCacheManager1"); // 1
 ManagementRegistryService managementRegistry =
 new DefaultManagementRegistryService(registryConfiguration); // 2
 CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(1, MemoryUnit.MB).offheap(2, MemoryUnit.MB))
 .build();
 cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
 .withCache("myCache", cacheConfiguration)
 .using(managementRegistry) // 3
 .build(true);
 Object o =
 managementRegistry.withCapability("StatisticCollectorCapability")
 .call("updateCollectedStatistics",
 new Parameter("StatisticsCapability"),
 new Parameter(Arrays.asList("Cache:HitCount", "Cache:MissCount"),
 Collection.class.getName()))
 .on(Context.create("cacheManagerName", "myCacheManager1"))
 .build()
 .execute()
 .getSingleResult();
 System.out.println(o);
 Cache<Long, String> aCache = cacheManager.getCache(
 "myCache", Long.class, String.class);
 aCache.put(1L, "one");
 aCache.put(0L, "zero");
 aCache.get(1L); // 4
 aCache.get(0L); // 4

M
Odd Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 109

 aCache.get(0L);
 aCache.get(0L);
 Context context = StatsUtil.createContext(managementRegistry); // 5
 StatisticQuery query =
 managementRegistry.withCapability("StatisticsCapability") // 6
 .queryStatistic("Cache:HitCount")
 .on(context)
 .build();
 ResultSet<ContextualStatistics> counters = query.execute();
 ContextualStatistics statisticsContext = counters.getResult(context);
 Assert.assertThat(counters.size(), Matchers.is(1));
}
finally {
 if(cacheManager != null) cacheManager.close();
}

1 Optional: give a name to your cache manager by using a custom
configuration

2 Create an instance of
org.ehcache.management.registry.DefaultManagementRegistryService.
This is only required because the service is used below.

3 Pass it as a service to the cache manager (if you only want to configure the
ManagementRegistry, you can just pass the configuration instead)

4 Perform a few gets to increment the statistic's counter

5 Create the target statistic's context

6 Collect the get count statistic

Obviously, you may use the above technique to pass your own implementation of
ManagementRegistry.

Capabilities and contexts
Capabilities are metadata of what the managed objects are capable of: a collection of
statistic that can be queried and/or remote actions that can be called. Each capability
requires a context to run in. For instance, cache-specific statistics require a cache
manager name and a cache name to uniquely identify the cache on which you want to
query stats or call an action.
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, ResourcePoolsBuilder.heap(10))
 .build();
CacheManager cacheManager = null;
try {
 ManagementRegistryService managementRegistry =
 new DefaultManagementRegistryService();

M
Even Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 110

 cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
 .withCache("aCache", cacheConfiguration)
 .using(managementRegistry)
 .build(true);
 Collection<? extends Capability> capabilities =
 managementRegistry.getCapabilities(); // 1
 Assert.assertThat(capabilities.isEmpty(), Matchers.is(false));
 Capability capability = capabilities.iterator().next();
 String capabilityName = capability.getName(); // 2
 Collection<? extends Descriptor> capabilityDescriptions =
 capability.getDescriptors(); // 3
 Assert.assertThat(capabilityDescriptions.isEmpty(),
 Matchers.is(false));
 CapabilityContext capabilityContext =
 capability.getCapabilityContext();
 Collection<CapabilityContext.Attribute> attributes =
 capabilityContext.getAttributes(); // 4
 Assert.assertThat(attributes.size(), Matchers.is(2));
 Iterator<CapabilityContext.Attribute> iterator =
 attributes.iterator();
 CapabilityContext.Attribute attribute1 = iterator.next();
 Assert.assertThat(attribute1.getName(),
 Matchers.equalTo("cacheManagerName")); // 5
 Assert.assertThat(attribute1.isRequired(), Matchers.is(true));
 CapabilityContext.Attribute attribute2 = iterator.next();
 Assert.assertThat(attribute2.getName(),
 Matchers.equalTo("cacheName")); // 6
 Assert.assertThat(attribute2.isRequired(), Matchers.is(true));
 ContextContainer contextContainer =
 managementRegistry.getContextContainer(); // 7
 Assert.assertThat(contextContainer.getName(),
 Matchers.equalTo("cacheManagerName")); // 8
 Assert.assertThat(contextContainer.getValue(),
 Matchers.startsWith("cache-manager-"));
 Collection<ContextContainer> subContexts =
 contextContainer.getSubContexts();
 Assert.assertThat(subContexts.size(), Matchers.is(1));
 ContextContainer subContextContainer =
 subContexts.iterator().next();
 Assert.assertThat(subContextContainer.getName(),
 Matchers.equalTo("cacheName")); // 9
 Assert.assertThat(subContextContainer.getValue(),
 Matchers.equalTo("aCache"));
}
finally {
 if(cacheManager != null) cacheManager.close();
}

1 Query the ManagementRegistry for the registered managed objects'
capabilities.

2 Each capability has a unique name you will need to refer to it.

3 Each capability has a collection of Descriptors that contains the metadata
of each statistic or action.

4 Each capability requires a context to which it needs to refer to.

M
Odd Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 111

5 The first aribute of this context is the cache manager name.

6 The second aribute of this context is the cache name. With both aributes,
the capability can uniquely refer to a unique managed object.

7 Query the ManagementRegistry for the all the registered managed
objects' contexts.

8 There is only one context here, and its name is the cache manager's name.

9 The above context has a subcontext: the cache's name.

The context containers give you all the aributes of all existing contexts. You can match
the values returned by a context container to a capability's context by matching their
respective names.

Actions
There are two forms of capabilities: statistics and action ones. The statistic ones offer a
set of predefined statistics that can be queried at will, while the action ones offer a set
of actions that can be taken upon a managed object. Examples of actions could be: clear
caches, get their config or modify a config seing.
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, ResourcePoolsBuilder.heap(10))
 .build();
CacheManager cacheManager = null;
try {
 ManagementRegistryService managementRegistry =
 new DefaultManagementRegistryService();
 cacheManager = CacheManagerBuilder.newCacheManagerBuilder()
 .withCache("aCache", cacheConfiguration)
 .using(managementRegistry)
 .build(true);
 Cache<Long, String> aCache =
 cacheManager.getCache("aCache", Long.class, String.class);
 aCache.put(0L, "zero"); // 1
 Context context =
 StatsUtil.createContext(managementRegistry); // 2
 managementRegistry.withCapability("ActionsCapability") // 3
 .call("clear")
 .on(context)
 .build()
 .execute();
 Assert.assertThat(aCache.get(0L),
 Matchers.is(Matchers.nullValue())); // 4
}
finally {
 if(cacheManager != null) cacheManager.close();
}

M
Even Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 112

1 Put something in a cache.

2 Call the 'clear' action on the managed cache. Refer to the descriptors
of the provider to get the exact list of action names and their required
parameters.

3 Call the clear action on the cache.

4 Make sure that the cache is now empty.

Managing multiple cache managers
The default ManagementRegistry instance that is created when none are manually
registered only manages a single cache manager by default, but sometimes you may
want one ManagementRegistry to manage multiple cache managers.

ManagementRegistry instances are thread-safe, so one instance can be shared amongst
multiple cache managers:
CacheConfiguration<Long, String> cacheConfiguration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, ResourcePoolsBuilder.heap(10))
 .build();
CacheManager cacheManager1 = null;
CacheManager cacheManager2 = null;
try {
 SharedManagementService sharedManagementService =
 new DefaultSharedManagementService(); // 1
 cacheManager1 = CacheManagerBuilder.newCacheManagerBuilder()
 .withCache("aCache", cacheConfiguration)
 .using(new DefaultManagementRegistryConfiguration()
 .setCacheManagerAlias("myCacheManager-1"))
 .using(sharedManagementService) // 2
 .build(true);
 cacheManager2 = CacheManagerBuilder.newCacheManagerBuilder()
 .withCache("aCache", cacheConfiguration)
 .using(new DefaultManagementRegistryConfiguration()
 .setCacheManagerAlias("myCacheManager-2"))
 .using(sharedManagementService) // 3
 .build(true);
 Context context1 = Context.empty()
 .with("cacheManagerName", "myCacheManager-1")
 .with("cacheName", "aCache");
 Context context2 = Context.empty()
 .with("cacheManagerName", "myCacheManager-2")
 .with("cacheName", "aCache");
 Cache<Long, String> cache =
 cacheManager1.getCache("aCache", Long.class, String.class);
 cache.get(1L);//cache miss
 cache.get(2L);//cache miss
 StatisticQuery query = sharedManagementService
 .withCapability("StatisticsCapability")
 .queryStatistic("Cache:MissCount")

M
Odd Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 113

 .on(context1)
 .on(context2)
 .build();
 long val = 0;
 // it could be several seconds before the sampled stats
 // could become available
 // let's try until we find the correct value : 2
 do {
 ResultSet<ContextualStatistics> counters = query.execute();
 ContextualStatistics statisticsContext1 =
 counters.getResult(context1);
 Number counterContext1 = statisticsContext1.
 getStatistic("Cache:MissCount");
 // miss count is a sampled stat,
 //for example its values could be [0,1,2].
 // In the present case, only the last value is important to us,
 // the cache was eventually missed 2 times
 val = counterContext1.longValue();
 } while(val != 2);
}
finally {
 if(cacheManager2 != null) cacheManager2.close();
 if(cacheManager1 != null) cacheManager1.close();
}

1 Create an instance of
org.ehcache.management.SharedManagementService

2 Pass it as a service to the first cache manager

3 Pass it as a service to the second cache manager

This way, all managed objects get registered into a common ManagementRegistry
instance.

Rules for Statistics Calculation
This table describes the impact of each cache method on the statistics.

The statistics are:

Hit
An entry was asked for and found in the cache.

Miss
An entry was asked for and not found in the cache.

Put
An entry was added or updated.

Update
An existing entry was updated (this is a subset of put).

M
Even Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 114

Removal
An entry was removed from the cache.

Expiration
An entry has expired and was therefore removed from the cache.

Eviction
An entry was evicted from the cache due to lack of space

Method Hit Miss Put Update RemovalExpirationEvictionNotes

clear No No No No No No No A bulk remove
with no impact on
statistics.

containsKey No No No No No No No Generates no
hit or miss since
the value isn't
accessed.

forEach Yes No No No No Yes No Java 8. Will hit
each entry once.

get Yes Yes No No No Yes No Hit when the
entry is found,
miss otherwise.

getAll Yes Yes No No No Yes No Like get but
calculated per
entry.

getAndPut Yes Yes Yes Yes No Yes Yes JSR107 specific.
Hit and update
when the entry
is found, miss
otherwise.
Always put.

getAndRemoveYes Yes No No Yes Yes No JSR107 specific.
Hit and remove
when the entry
is found, miss
otherwise.

getAndReplace Yes Yes Yes Yes No Yes Yes JSR107 specific.
Hit, put and

M
Odd Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 115

Method Hit Miss Put Update RemovalExpirationEvictionNotes
update when the
entry is found,
miss otherwise.

invoke Yes Yes Yes Yes Yes Yes Yes JSR107 specific.
Depends on how
the EntryProcessor
modifies the
MutableEntry.

invokeAll Yes Yes Yes Yes Yes Yes Yes JSR107 specific.
Like invoke but
calculated per
entry.

iterator Yes No No No Yes Yes No Will hit each
iterated entry and
count a removal
on Iterator.remove.

loadAll No No No No No No No JSR107 specific.
Background
loading that has
no impact on
statistics.

put No No Yes Yes No No Yes Put an entry
whether it already
existed or not.

putAll No No Yes Yes No No Yes Like put but
calculated per
entry.

putIfAbsent Yes Yes Yes No No Yes Yes Will hit if the
entry exists. Will
put and miss if it
doesn't.

remove(K) No No No No Yes Yes No Count a removal
if the entry exists.

M
Even Header

Management and Monitoring with Ehcache

Ehcache API Developer Guide Version 10.5 116

Method Hit Miss Put Update RemovalExpirationEvictionNotes

remove(K,V) Yes Yes No No Yes Yes No Hit if the key
is found. Miss
otherwise.

removeAll No No No No Yes No No One removal per
entry in the cache.

removeAll(keys)No No No No Yes No No Like remove but
calculated per
entry.

replace(K,V) Yes Yes Yes Yes No Yes Yes Hit, put and
update if the
entry exists. Miss
otherwise.

replace(K,O,N) Yes Yes Yes Yes No Yes Yes Hit if the entry
exists.

spliterator Yes No No No No Yes No Java 8. Will hit
for each iterated
entry.

The statistics are provided by cache and tiers. Cache evictions and expirations are taken
from the lowest (authoritative) tier.

M
Odd Header

Class Loading

Ehcache API Developer Guide Version 10.5 117

18 Class Loading

■ About Class Loading .. 118

■ Handling User Types .. 118

M
Even Header

Class Loading

Ehcache API Developer Guide Version 10.5 118

About Class Loading
Since Ehcache is a library and supports user types both in configuration and in mapping
keys or values, it must offer flexibility around class loading.

Default ClassLoader in Ehcache

The default ClassLoader from Ehcache will first try to use the thread context class loader,
through Thread.currentThread().getContextClassLoader(). In case this fails to load the requested
resource, it will then use the ClassLoader that loaded the Ehcache internal classes.

Handling User Types
The way to configure a ClassLoader and the scope of its use differ between Java and
XML based configurations. However, regardless of the configuration method, each
CacheManager and Cache is always linked individually to a specific ClassLoader instance.

Java configuration

During the configuration of the CacheManager or Cache, there are multiple extension
points where a user type can be involved. This includes Serializer, CacheLoaderWriter and
other similar companion objects. You can usually give an instance of these types to the
configuration or an instance of the class to use. This effectively negates the need to think
in terms of a class loader here.

However you can still pass a specific ClassLoader to the CacheManager configuration. You
can also give a specific ClassLoader per cache if you need to, taking precedence over the
one configured at the CacheManager level. These will be used at runtime (see the section
“At runtime” on page 119 below).

If no class loader is specified, the default class loader from Ehcache (see the section
“Default ClassLoader in Ehcache” on page 118) will be used.

XML configuration

When using XML to configure Ehcache, references to custom types are given through
a fully qualified class name. This means that transforming these String names into the
proper class representation may require a specific ClassLoader.

In order to support this, the XmlConfiguration constructors can take ClassLoader parameters:

public XmlConfiguration(URL url)
to use only default ClassLoader

public XmlConfiguration(URL url, final ClassLoader classLoader)
to use a specific ClassLoader at the CacheManager level

M
Odd Header

Class Loading

Ehcache API Developer Guide Version 10.5 119

public XmlConfiguration(URL url, final ClassLoader classLoader, final Map<String, ClassLoader>
cacheClassLoaders)
to use a specific ClassLoader at the CacheManager level and a map of <String, ClassLoader>
which will be used to link a specific ClassLoader to a Cache by its alias

In the same way as for the Java configuration, the Cache level configuration takes
precedence over the CacheManager level one. If no class loaders are specified, the default
class loader from Ehcache will be used.

At runtime

As soon as serialization is involved with Cache keys or values, the class loader plays
a role at runtime. The specific ClassLoader per Cache will be used by the serialization
sub-system. It will allow deserialization to types that may not be visible by the
EhcacheClassLoader.

M
Even Header

Ehcache API Developer Guide Version 10.5 120

M
Odd Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 121

19 Clustered Caches

■ Introduction ... 122

■ Clustering Concepts ... 122

■ Starting the Terracotta Server .. 124

■ Creating a Cache Manager with Clustering Capabilities ... 125

■ Cache Manager Configuration and Usage of Server Side Resources 126

■ Ehcache Cluster Tier Manager Lifecycle ... 127

■ Configuring a Clustered Cache .. 128

■ Creating a Cluster with Multiple Stripes .. 131

M
Even Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 122

Introduction
Distributed caching allows you to harness additional benefits of horizontal scale-out,
without losing on low latency offered by local on-heap tiers.

Diagram illustrating two applications accessing a Terracotta Server. In the application, hot data is
cached locally, hotter data in faster tiers. The data cached by one application instance is available
to all cluster members. The full dataset is available to the cluster. One or more mirror servers may
be deployed to provide High Availability. The ability to span data across multiple active servers for
larger scale deployments is available commercially.

To enable clustering with Terracoa, you will have to deploy a Terracoa Server
configured with clustered cache storage.

You will then need to configure a cache manager to have clustering capabilities such that
the caches it manages can utilize the clustered storage. Finally, any caches which should
be distributed should be configured with a clustered storage tier.

Clustering Concepts
In this section we discuss some Terracoa clustering terms and concepts that you need
to understand before creating cache managers and caches with clustering support.

M
Odd Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 123

Server off-heap resource
Server off-heap resources are storage resources defined at the server. Caches can reserve
a storage area for their cluster tiers within these server off-heap resources.

Cluster Tier Manager
The EhcacheCluster Tier Manager is the server-side component that gives clustering
capabilities to a cache manager. Cache managers connect to it to get access to the server's
storage resources so that the clustered tiers of caches defined in them can consume those
resources. An Ehcache cluster tier manager at the server side is identified by a unique
identifier. Using the unique identifier of any given cluster tier manager, multiple cache
managers can connect to the same cluster tier manager in order to share cache data. The
cluster tier manager is also responsible for managing the storage of the cluster tier of
caches, with the following different options.

Dedicated pool
Dedicated pools are a fixed-amount of storage pools allocated to the cluster tiers
of caches. A dedicated amount of storage is allocated directly from server off-heap
resources to these pools. And this storage space is used exclusively by a given cluster
tier.

Shared pool
Shared pools are also fixed-amount storage pools, but can be shared by the cluster tiers
of multiple caches. As in the case of dedicated pools, shared pools are also carved out
from server off-heap resources. The storage available in these shared pools is strictly
shared. In other words, no cluster tier can ask for a fixed-amount of storage from a
shared pool.
Sharing of storage via shared pools does not mean that the data is shared. That is, if
two caches are using a shared pool as their clustered tier, the data of each cache is still
isolated but the underlying storage is shared. Consequently, when resource capacity is
reached and triggers eviction, the evicted mapping can come from any of the cluster tiers
sharing the pool.

Here is a pictorial representation of the concepts explained above:

M
Even Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 124

Illustration showing resources of two caches that are separated while being from the same shared
pool.

Starting the Terracotta Server
Information on how to start the Terracoa Server is contained in the Terracoa Server
Administration Guide.

You can start the Terracoa Server with the following configuration. It contains the bare
minimum configuration required for the samples in the rest of the document to work.
<?xml version="1.0" encoding="UTF-8"?>
<tc-config xmlns="http://www.terracotta.org/config"
 xmlns:ohr="http://www.terracotta.org/config/offheap-resource">
 <services>

M
Odd Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 125

 <service id="resources">
 <ohr:offheap-resources>
 <ohr:resource name="primary-server-resource"
 unit="MB">128</ohr:resource> <!-- 1 -->
 <ohr:resource name="secondary-server-resource"
 unit="MB">96</ohr:resource> <!-- 2 -->
 </ohr:offheap-resources>
 </service>
 </services>
</tc-config>

The above configuration defines two named server off-heap resources:

1 An off-heap resource of 128 MB size named "primary-server-resource".

2 Another off-heap resource named "secondary-server-resource" with 96 MB
capacity.

The rest of the document explains in detail how you can configure cache managers and
caches to consume the server's off-heap resources.

Creating a Cache Manager with Clustering Capabilities
After starting the Terracoa Server, as described in the previous section, you can now
proceed to create the cache manager. For creating the cache manager with clustering
support you will need to provide the clustering service configuration. Here is a code
sample that shows how to configure a cache manager with clustering service.
CacheManagerBuilder<PersistentCacheManager> clusteredCacheManagerBuilder =
 CacheManagerBuilder.newCacheManagerBuilder() // <1>
 .with(ClusteringServiceConfigurationBuilder.cluster(
 URI.create("terracotta://localhost:9410/my-application")) // <2>
 .autoCreate()); // <3>
PersistentCacheManager cacheManager =
 clusteredCacheManagerBuilder.build(true); // <4>
cacheManager.close(); // <5>

1 Returns the org.ehcache.config.builders.CacheManagerBuilder
instance;

2 Use the ClusteringServiceConfigurationBuilder's static method
.cluster(URI) for connecting the cache manager to the clustered storage
at the URI specified that returns the clustering service configuration
builder instance. Sample URI provided in the example is pointing to the
clustered storage instance named "my-application" on the Terracoa
Server (assuming the server is running on localhost and port 9410.

3 Auto-create the clustered storage if it doesn't already exist.

M
Even Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 126

4 Returns a fully initialized cache manager that can be used to create
clustered caches.

5 Close the cache manager.

Cache Manager Configuration and Usage of Server Side
Resources
This code sample demonstrates the usage of the concepts explained in the previous
section in configuring a cache manager and clustered caches by using a broader
clustering service configuration:
final CacheManagerBuilder<PersistentCacheManager> clusteredCacheManagerBuilder =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(ClusteringServiceConfigurationBuilder.cluster(
 URI.create("terracotta://localhost:9410/my-application")).autoCreate()
 .defaultServerResource("primary-server-resource") // <1>
 .resourcePool("resource-pool-a", 28, MemoryUnit.MB,
 "secondary-server-resource") // <2>
 .resourcePool("resource-pool-b", 32, MemoryUnit.MB)) // <3>
 .withCache("clustered-cache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, // <4>
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clusteredDedicated(
 "primary-server-resource", 32, MemoryUnit.MB)))) // <5>
 .withCache("shared-cache-1",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clusteredShared(
 "resource-pool-a")))) // <6>
 .withCache("shared-cache-2",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clusteredShared(
 "resource-pool-a")))); // <7>
final PersistentCacheManager cacheManager =
 clusteredCacheManagerBuilder.build(true); // <8>
cacheManager.close();

1 defaultServerResource(String) on
ClusteringServiceConfigurationBuilder instance sets the default
server off-heap resource for the cache manager. From the example, cache
manager sets its default server off-heap resource to "primary-server-
resource" in the server.

2 Adds a resource pool for the cache manager with the specified name
("resource-pool-a") and size (28MB) consumed out of the named server

M
Odd Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 127

off-heap resource "secondary-server-resource". A resource pool at the
cache manager level maps directly to a shared pool at the server side.

3 Adds another resource pool for the cache manager with the specified
name ("resource-pool-b") and size (32MB). Since the server resource
identifier is not explicitly passed, this resource pool will be consumed out
of default server resource provided in Step 3. This demonstrates that a
cache manager with clustering support can have multiple resource pools
created out of several server off-heap resources.

4 Provide the cache configuration to be created.

5 ClusteredResourcePoolBuilder.clusteredDedicated(String ,
long , MemoryUnit) allocates a dedicated pool of storage to the cache
from the specified server off-heap resource. In this example, a dedicated
pool of 32MB is allocated for clustered-cache from "primary-server-
resource".

6 ClusteredResourcePoolBuilder.clusteredShared(String), passing
the name of the resource pool specifies that "shared-cache-1" shares
the storage resources with other caches using the same resource pool
("resource-pool-a").

7 Configures another cache ("shared-cache-2") that shares the resource pool
("resource-pool-a") with "shared-cache-1".

8 Creates fully initialized cache manager with the clustered caches.

Ehcache Cluster Tier Manager Lifecycle
When configuring a cache manager to connect to a cluster tier manager there are three
possible connection modes:
CacheManagerBuilder<PersistentCacheManager> autoCreate =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(ClusteringServiceConfigurationBuilder.cluster(
 URI.create("terracotta://localhost:9410/my-application"))
 .autoCreate() // <1>
 .resourcePool("resource-pool", 32, MemoryUnit.MB,
 "primary-server-resource"))
 .withCache("clustered-cache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clusteredShared("resource-pool"))));
CacheManagerBuilder<PersistentCacheManager> expecting =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(ClusteringServiceConfigurationBuilder.cluster(
 URI.create("terracotta://localhost:9410/my-application"))
 .expecting() // <2>

M
Even Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 128

 .resourcePool("resource-pool", 32, MemoryUnit.MB, "primary-server-resource"))
 .withCache("clustered-cache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clusteredShared("resource-pool"))));
CacheManagerBuilder<PersistentCacheManager> configless =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(ClusteringServiceConfigurationBuilder.cluster(
 URI.create("terracotta://localhost:9410/my-application"))) // <3>
 .withCache("clustered-cache",
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clusteredShared("resource-pool"))));

1 In auto-create mode if no cluster tier manager exists then one is created
with the supplied configuration. If it exists and its configuration matches
the supplied configuration then a connection is established. If the
supplied configuration does not match then the cache manager will fail to
initialize.

2 In expected mode if a cluster tier manager exists and its configuration
matches the supplied configuration then a connection is established. If the
supplied configuration does not match or the cluster tier manager does
not exist then the cache manager will fail to initialize.

3 In config-less mode if a cluster tier manager exists then a connection is
established without regard to its configuration. If it does not exist then the
cache manager will fail to initialize.

Configuring a Clustered Cache
Clustered Storage Tier
CacheConfiguration<Long, String> config =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .heap(2, MemoryUnit.MB) // <1>
 .with(ClusteredResourcePoolBuilder.clusteredDedicated(
 "primary-server-resource", 8, MemoryUnit.MB))) // <2>
 .add(ClusteredStoreConfigurationBuilder.withConsistency(Consistency.STRONG))
 .build();
Cache<Long, String> cache = cacheManager.createCache("clustered-cache", config);
cache.put(42L, "All you need to know!");

1 Configuring the heap tier for cache.

2 Configuring the cluster tier of dedicated size from server off-heap resource
using ClusteredResourcePoolBuilder.

The equivalent XML configuration is as follows:

M
Odd Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 129

<cache alias="clustered-cache">
 <resources>
 <heap unit="MB">10</heap> <!-- 1 -->
 <tc:clustered-dedicated unit="MB">50</tc:clustered-dedicated> <!-- 2 -->
 </resources>
 <tc:clustered-store consistency="strong"/>
</cache>

1 Specify the heap tier for cache.

2 Specify the cluster tier for cache through a custom service configuration
from the clustered namespace.

Specifying consistency level

Ehcache offers two levels of consistency:

Eventual
This consistency level indicates that the visibility of a write operation is not guaranteed
when the operation returns. Other clients may still see a stale value for the given key.
However this consistency level guarantees that for a mapping (K, V1) updated to (K,
V2), once a client sees (K, V2) it will never see (K, V1) again.

Strong
This consistency level provides strong visibility guarantees ensuring that when a write
operation returns other clients will be able to observe it immediately. This comes with a
latency penalty on the write operation required to give this guarantee.
CacheConfiguration<Long, String> config =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clusteredDedicated(
 "primary-server-resource", 2, MemoryUnit.MB)))
 .add(ClusteredStoreConfigurationBuilder.withConsistency(Consistency.STRONG)) // <1>
 .build();
Cache<Long, String> cache = cacheManager.createCache("clustered-cache", config);
cache.put(42L, "All you need to know!"); // <2>

1 Specify the consistency level through the use of additional service
configuration, using "strong" consistency here.

2 With the consistency used above, this put operation will return only
when all other clients have had the corresponding mapping invalidated.

The equivalent XML configuration is as follows:
<cache alias="clustered-cache">
 <resources>
 <tc:clustered-dedicated unit="MB">50</tc:clustered-dedicated>
 </resources>
 <tc:clustered-store consistency="strong"/> <!-- 1 -->
</cache>

M
Even Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 130

1 Specify the consistency level through a custom service configuration from
the clustered namespace.

Clustered Cache Expiry

Expiry in clustered caches work with an exception that Expiry#getExpiryForAccess is
handled on a best effort basis for cluster tiers. It may not be as accurate as in the case of
local tiers.

Clustered Unspecified Inheritance

We have included an option which allows a cache to be created inside the cache manager
without having to explicitly define its cluster tier resource pool allocation. In order to
use this feature the cluster tier must already have been created with either a shared or
dedicated resource pool.

In this case the definition of the cluster resource is done simply with a clustered()
resource pool. This effectively means unspecified and indicates you expect it to exist
already. It will then inherit the clustered resource pool as it was configured when
creating the cluster tier.

This option provides many benefits. The main benefit is it simplifies clustered
configuration by allowing clustered resource pool configuration to be handled by
one client, then all subsequent clients can inherit this configuration. In addition, it
also reduces clustered pool allocation configuration errors. More importantly, sizing
calculations only need to be done by one person and updated in one location. Thus any
programmer can use the cache without having to worry about using matching resource
pool allocations.

The example code below shows how this can be implemented.
CacheManagerBuilder<PersistentCacheManager> cacheManagerBuilderAutoCreate =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(ClusteringServiceConfigurationBuilder.cluster(
 URI.create("terracotta://localhost:9410/my-application"))
 .autoCreate() // <1>
 .resourcePool("resource-pool", 32, MemoryUnit.MB, "primary-server-resource"));
final PersistentCacheManager cacheManager1 = cacheManagerBuilderAutoCreate.build(false);
cacheManager1.init();
CacheConfiguration<Long, String> cacheConfigDedicated =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clusteredDedicated(
 "primary-server-resource", 8, MemoryUnit.MB))) // <2>
.add(ClusteredStoreConfigurationBuilder.withConsistency(Consistency.STRONG))
.build();
Cache<Long, String> cacheDedicated = cacheManager1.createCache(
 "my-dedicated-cache", cacheConfigDedicated); // <3>
CacheManagerBuilder<PersistentCacheManager> cacheManagerBuilderExpecting =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(ClusteringServiceConfigurationBuilder.cluster(
 URI.create("terracotta://localhost:9410/my-application"))
 .expecting() // <4>
 .resourcePool("resource-pool", 32, MemoryUnit.MB, "primary-server-resource"));
final PersistentCacheManager cacheManager2 = cacheManagerBuilderExpecting.build(false);

M
Odd Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 131

cacheManager2.init();
CacheConfiguration<Long, String> cacheConfigUnspecified =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class, String.class,
ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(ClusteredResourcePoolBuilder.clustered())) // <5>
.add(ClusteredStoreConfigurationBuilder.withConsistency(Consistency.STRONG))
.build();
Cache<Long, String> cacheUnspecified = cacheManager2.createCache(
 "my-dedicated-cache", cacheConfigUnspecified); // <6>

1 Configure the first cache manager with auto create

2 Build a cache configuration for a clustered dedicated resource pool

3 Create cache "my-dedicated-cache" using the cache configuration

4 Configure the second cache manager as expecting (auto create off)

5 Build a cache configuration for a clustered unspecified resource pool, which
will use the previously configured clustered dedicated resource pool.

6 Create cache with the same name "my-dedicated-cache" and use the
clustered unspecified cache configuration

Creating a Cluster with Multiple Stripes
Server-side tasks for setting up a Multi-Stripe Cluster

Before you create a cluster, start at least one server on each of the stripes which are
going to be part of the cluster.

Use the configure command of the cluster tool to configure a cluster, specifying the
Terracoa configuration file for all required stripes.

For details about usage of the cluster tool, refer to the cluster tool documentation in
the Terracoa Server Administration Guide.

Client Side Code

The client-side code for connecting to a cluster will be similar to the following:
PersistentCacheManager cacheManager =
 CacheManagerBuilder.newCacheManagerBuilder()
 .with(ClusteringServiceConfigurationBuilder.cluster(URI.create(
 "terracotta://localhost:9410/multi-stripe-cm")).autoCreate()) // 1
 .withCache("myCache", CacheConfigurationBuilder.newCacheConfigurationBuilder(
 Long.class, String.class, ResourcePoolsBuilder.heap(10)
 .with(ClusteredResourcePoolBuilder.clusteredDedicated(
 "primary-server-resource", 10, MemoryUnit.MB)))) // 2
 .build(true);
Cache<Long, String> myCache = cacheManager.getCache("myCache",

M
Even Header

Clustered Caches

Ehcache API Developer Guide Version 10.5 132

 Long.class, String.class);
myCache.put(42L, "Success!");
System.out.println(myCache.get(42L));

1 Connection to a multi-stripe cluster requires a URI with the host:port of
all servers that belong to one of the stripes.

2 The size of the resource pool on each stripe is the total pool size divided
by the numbers of stripes in the cluster.

Note: It's recommended to check the availability of resources across all stripes in
the cluster before configuring a cache, otherwise cache creation will fail on
the stripes with insufficient resources.

Creating cluster with cluster tool is a mandatory first step, otherwise
cache creation will succeed on only one of the stripes represented by the
provided URI. Creating a cluster after creating clustered resources is not
supported and will result in errors.

M
Odd Header

Fast Restartability

Ehcache API Developer Guide Version 10.5 133

20 Fast Restartability

■ Overview of Fast Restartability .. 134

■ Creating a Restartable Cache Manager .. 134

■ Creating a Restartable Cache ... 135

■ Creating Restartable Resource Pools .. 135

■ Example of a Restartability Scenario ... 136

■ General Notes on Configuring Restartability ... 137

M
Even Header

Fast Restartability

Ehcache API Developer Guide Version 10.5 134

Overview of Fast Restartability
The Fast Restart feature provides enterprise-ready crash resilience by keeping a
consistent, real-time record of in-memory data on a disk. After a shutdown - planned or
unplanned - the next time the application starts up, all of the data that was in memory
prior to the shutdown is made available again. This reduces the load on a remote data
source, such as a database serving as a System of Record (SoR), and enables applications
to resume from the state prior to the shutdown. The time taken for the data to be
restored from the disk depends on the quantity of data restored, and the capabilities of
the disk itself.

Creating a Restartable Cache Manager
Configuring a restartable server lays the foundation for application data to be
restartable.

Refer to the topic Platform Persistence in the section Configuring the Terracoa Server in the
Terracoa Server Administration Guide for information on configuring a restartable server.

Caches must be configured as restartable in a restartable CacheManager. A non-restartable
CacheManager cannot contain restartable Caches. However, a restartable CacheManager can
contain restartable as well as non-restartable Caches. In the laer case, only the Cache
configuration is restored upon a server restart, and not the Cache data.

The following example illustrates a restartable CacheManager creation. Only the parts
which are different in a restartable CacheManager are explained.
EnterpriseServerSideConfigurationBuilder serverSideConfigBuilder =
 EnterpriseClusteringServiceConfigurationBuilder
 .enterpriseCluster(URI.create(
 "terracotta://localhost:9410/my-application")) // 1
 .autoCreate()
 .defaultServerResource("primary-server-resource")
 .restartable("data-directory-name") // 2
PersistentCacheManager cacheManager = CacheManagerBuilder
 .newCacheManagerBuilder()
 .with(serverSideConfigBuilder) // 3
 .build(true);
cacheManager.close();
cacheManager.destroy(); // 4

1 EnterpriseClusteringServiceConfigurationBuilder's static method enterpriseCluster(URI)
connects the cache manager to the clustered storage at the URI specified.
The sample URI provided in the example points to the clustered storage
instance named 'my-application' on the Terracoa Server (assuming the
server is running on localhost and port 9410).

2 The restartable(String) method accepts a logical data directory name to specify
where the fast restart logs should be stored.

M
Odd Header

Fast Restartability

Ehcache API Developer Guide Version 10.5 135

The string specified here is a logical name, which should be present in the
Terracoa Server configuration. The server configuration has a mapping
of this logical name to a directory path. Using this API is an absolute
MUST to create a restartable CacheManager, in the absence of which
theCacheManager will be created as a non-restartable CacheManager.

3 CacheManagerBuilder uses serverSideConfigBuilder created in Step 1 above.

4 Calling destroy() on the CacheManager will destroy all caches contained
inside the CacheManager, all associated metadata and the CacheManager
itself. This can be done to free up resources and to ensure that cache
contents don't re-appear on a server restart.

Creating a Restartable Cache
This is the part which makes the application data restartable. As mentioned in the
section “Creating a Restartable Cache” on page 135, a restartable Cache can be
configured only in a restartable CacheManager.

A restartable CacheConfiguration API is a lot like the regular (non-restartable)
CacheConfiguration API, except that it takes the restartable variant of ClusteredResourcePool,
which makes the cache contents restartable.

Creating Restartable Resource Pools
Let us do a quick recap of restartability:

A restartable server enables you to have restartable objects on the server.

A restartable CacheManager makes the cache configuration restartable.

A restartable resource pool configuration makes your cache data restartable.

As with non-restartable resource pools, restartable resource pools can be dedicated or
shared. See “Clustering Concepts” on page 122 for a refresher on resource pools.
ClusteredResourcePool restartableDedicatedPool =
 ClusteredRestartableResourcePoolBuilder
 .clusteredRestartableDedicated(
 "primary-server-resource", 4, MemoryUnit.MB); // 1
ClusteredResourcePool restartableSharedPool =
 ClusteredRestartableResourcePoolBuilder
 .clusteredRestartableShared("shared-pool"); // 2

1 ClusteredRestartableResourcePoolBuilder's static method
clusteredRestartableDedicated(String, long, MemoryUnit) configures a restartable

M
Even Header

Fast Restartability

Ehcache API Developer Guide Version 10.5 136

dedicated pool of size 4 MB from the server's primary-server-resource. As the
name suggests, this pool will be dedicated to the Cache using it.

2 ClusteredRestartableResourcePoolBuilder's static method
clusteredRestartableShared(String) specifies a restartable shared pool with the
name shared-pool. This pool can be shared by multiple caches, and no cache
can exclusively reserve this pool for its sole use.

Example of a Restartability Scenario
The following example illustrates a typical scenario of a CacheManager containing a mix
of restartable and non-restartable caches.
EnterpriseServerSideConfigurationBuilder serverSideConfigBuilder =
 EnterpriseClusteringServiceConfigurationBuilder
 .enterpriseCluster(connectionURI)
 .autoCreate()
 .defaultServerResource("primary-server-resource")
 .resourcePool("shared-pool", 20, MemoryUnit.MB,
 "secondary-server-resource") // 1
 .restartable("data-directory-name");
PersistentCacheManager cacheManager = CacheManagerBuilder
 .newCacheManagerBuilder()
 .with(serverSideConfigBuilder)
 .build(true);
ClusteredResourcePool restartableDedicatedPool =
 ClusteredRestartableResourcePoolBuilder
 .clusteredRestartableDedicated(
 "primary-server-resource", 4, MemoryUnit.MB);
ClusteredResourcePool restartableSharedPool =
 ClusteredRestartableResourcePoolBuilder
 .clusteredRestartableShared("shared-pool");
ClusteredResourcePool nonRestartableDedicatedPool =
 ClusteredResourcePoolBuilder
 .clusteredDedicated(
 "primary-server-resource", 8, MemoryUnit.MB); // 2
ClusteredResourcePool nonRestartableSharedPool =
 ClusteredResourcePoolBuilder
 .clusteredShared("shared-pool"); // 3
Cache<Long, String> restartableDedicatedPoolCache = cacheManager
 .createCache("restartableDedicatedPoolCache",
 CacheConfigurationBuilder
 .newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(restartableDedicatedPool))); // 4
Cache<Long, String> restartableSharedPoolCache = cacheManager
 .createCache("restartableSharedPoolCache",
 CacheConfigurationBuilder
 .newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(restartableSharedPool))); // 5
Cache<String, Boolean> nonRestartableDedicatedPoolCache = cacheManager
 .createCache("nonRestartableDedicatedPoolCache",
 CacheConfigurationBuilder
 .newCacheConfigurationBuilder(String.class, Boolean.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(nonRestartableDedicatedPool))); // 6

M
Odd Header

Fast Restartability

Ehcache API Developer Guide Version 10.5 137

Cache<String, Boolean> nonRestartableSharedPoolCache = cacheManager
 .createCache("nonRestartableSharedPoolCache",
 CacheConfigurationBuilder
 .newCacheConfigurationBuilder(String.class, Boolean.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder()
 .with(nonRestartableSharedPool))); // 7
cacheManager.close();
cacheManager.destroy();

1 Registers with the CacheManager a resource pool named shared-pool of
size 20 MB, reserved from server's secondary-server-resource.

2 Creates a non-restartable dedicated resource pool of size 8 MB from server's
primary-server-resource.

3 Specifies a non-restartable shared resource pool which could be used by
multiple caches.

4 Creates a Cache using a restartable dedicated pool.

5 Creates a Cache using a restartable shared pool.

6 Creates a Cache using the non-restartable dedicated pool created in Step 2
above.

7 Creates a Cache using the non-restartable shared pool created in Step
3 above. Note here that the same pool is shared by restartable and non-
restartable caches.

General Notes on Configuring Restartability
A restartable CacheManagermust be supplied with a data directory name using the
restartable(<data-root-identifier>) API. If not, the CacheManager would be created as a non-
restartable CacheManager.

Refer to the topic Data Directories in the section Configuring the Terracoa Server in the
Terracoa Server Administration Guide for more details.

The data directory name specified at CacheManager should be any one of the
data directories specified in the server configuration. For example, if a server is
configured with data directories root1, root2 and root3, a CacheManager could be
supplied any one of these three data directories. If the data directory specified in
the CacheManager configuration does not match the data directory specified in server
configuration, the following Exception is thrown.
org.terracotta.entity.ConfigurationException:
Given identifier (specified_directory) is not present in the server's configuration;
Cannot configure Fast Restart Store for clustered tier manager

M
Even Header

Fast Restartability

Ehcache API Developer Guide Version 10.5 138

(specified_cache_manager) due to invalid configuration specified by client.

As with a non-restartable CacheManager, the server resource supplied in the
defaultServerResource API should exist in the Terracoa Server configuration.

As should be obvious, the specified pool size shouldn't exceed the server resource
size.

Different clients who want to connect to the same CacheManager should use the exact
same configuration. Once CacheManager is created, any subsequent aempts to create
the same CacheManager with a different configuration will fail.

M
Odd Header

Hybrid Caching

Ehcache API Developer Guide Version 10.5 139

21 Hybrid Caching

■ Overview of Hybrid Caching .. 140

■ Configuring a Hybrid Cache Manager ... 140

■ Configuring a Hybrid Cache ... 141

■ Example of a Hybrid Scenario ... 142

■ General Notes on Configuring Hybrid .. 143

M
Even Header

Hybrid Caching

Ehcache API Developer Guide Version 10.5 140

Overview of Hybrid Caching
A full restartable CacheManager stores all of its cache data in server off-heap. A hybrid
restartable CacheManager stores only some (explained in “Configuring a Hybrid Cache”
on page 141 section below) of its cache data in server off-heap. The off-heap tier in
this scenario is backed by a disk, meaning that the entries in the off-heap tier are a subset
of the entries in the disk, and the disk provides crash-resilience to the cache data. This
has the following advantages:

Cache size can exceed the available off-heap memory.

Predictable low latencies are guaranteed at very large scale.

Crash-resilience (see “Fast Restartability” on page 133) is provided to the cache data.

Ehcache provides the flexibility of configuring hybrid at the CacheManager level. Thus, we
could have full as well as hybrid cache managers on the same Terracoa Server.

Note: Because of the random-access read/write paern of hybrid, it is recommended
to use hybrid with Solid State Drives (SSDs) only.

In the subsequent sections, we'll refer to a hybrid restartable CacheManager simply as a
hybrid CacheManager, because a non-restartable hybrid CacheManager does not exist.

Configuring a Hybrid Cache Manager
A hybrid CacheManager configuration is very much like a full CacheManager (refer to
“Cache Manager Configuration and Usage of Server Side Resources” on page 126
for details), except that instead of taking a FULL RestartableOffHeapMode type, it takes
a PARTIAL RestartableOffHeapMode type. Everything else remains the same at this
configuration level.
EnterpriseServerSideConfigurationBuilder serverSideConfigBuilder =
 EnterpriseClusteringServiceConfigurationBuilder
 .enterpriseCluster(URI.create(
 "terracotta://localhost:9410/my-application"))
 .autoCreate()
 .defaultServerResource("primary-server-resource")
 .restartable("data-directory-name")
 .withRestartableOffHeapMode(RestartableOffHeapMode.PARTIAL); // 1
PersistentCacheManager cacheManager = CacheManagerBuilder
 .newCacheManagerBuilder()
 .with(serverSideConfigBuilder)
 .build(true);
cacheManager.close();
cacheManager.destroy();

1 EnterpriseClusteringServiceConfigurationBuilder's
withRestartableOffHeapMode(RestartableOffHeapMode) API lets you
configure a hybrid CacheManager using the value PARTIAL in enum

M
Odd Header

Hybrid Caching

Ehcache API Developer Guide Version 10.5 141

RestartableOffHeapMode. The value of FULL signifies a full (non-hybrid)
CacheManager. If this API is not used, the CacheManager is created as a full
CacheManager by default.

Configuring a Hybrid Cache
Hybrid caches can be configured by specifying a dataPercent value at the ResourcePool
configuration level. dataPercent signifies the percentage of cache data to be kept in the
off-heap tier. If the cache data exceeds this limit, it goes to the disk, provided that the
metadata is large enough to store this information; else cache eviction will be triggered.

Note: Hybrid caches only support dedicated resource pools. Thus, it would be
illegal to create a hybrid cache using shared restartable resource pools.

Conceptually, a hybrid Cache with a dataPercent of 100 is not equal to a full
Cache.

Let us consider an example configuration where a Cache uses a ResourcePool of size 1 GB.
Consider the following:

Data Percent
value

Description

0 (default
value)

This is a 'Pure Hybrid' configuration where all cache data will
reside on disk and all metadata will reside in off-heap. The
ResourcePool will be used only to store metadata, and can contain
metadata for approximately 26 million entries, irrespective of
the Cache key type.

Evictions will happen when the entries exceed this number.

50 512 MB of the ResourcePool will be used to store cache entries,
and the remaining 512 MB to store metadata. The number
of entries in the cached data portion is not predictable and
depends on Cache key size, data size, operations performed
on the Cache etc. The number of entries in the metadata can be
computed as approximately 8 million.

Evictions will happen when the entries exceed this number.

95 972.8 MB of the ResourcePool will be used to store cache entries,
and the remaining 51.2 MB to store metadata. As mentioned
above - the number of entries in the cached data portion is
not predictable and depends on Cache key size, data size,
operations performed on the Cache etc. The number of entries in
the metadata can be computed as approximately 0.8 million.

M
Even Header

Hybrid Caching

Ehcache API Developer Guide Version 10.5 142

Data Percent
value

Description

Evictions will happen when the entries exceed this number.

Example of a Hybrid Scenario
EnterpriseServerSideConfigurationBuilder serverSideConfigBuilder =
 EnterpriseClusteringServiceConfigurationBuilder
 .enterpriseCluster(connectionURI.resolve("/cacheManager"))
 .autoCreate()
 .defaultServerResource("primary-server-resource")
 .restartable("data-directory-name")
 .withRestartableOffHeapMode(RestartableOffHeapMode.PARTIAL); // 1
PersistentCacheManager cacheManager = CacheManagerBuilder
 .newCacheManagerBuilder()
 .with(serverSideConfigBuilder)
 .build(true);
ClusteredResourcePool pool1 = ClusteredRestartableResourcePoolBuilder
 .clusteredRestartableDedicated(
 "primary-server-resource", 4, MemoryUnit.MB, 25); // 2
ClusteredResourcePool pool2 = ClusteredRestartableResourcePoolBuilder
 .clusteredRestartableDedicated(
 "primary-server-resource", 12, MemoryUnit.MB, 50); // 3
Cache<Long, String> restartableDedicatedPoolCache = cacheManager
 .createCache("restartableDedicatedPoolCache", CacheConfigurationBuilder
 .newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder().with(pool1))); // 4
Cache<Long, String> restartableSharedPoolCache = cacheManager
 .createCache("restartableSharedPoolCache", CacheConfigurationBuilder
 .newCacheConfigurationBuilder(Long.class, String.class,
 ResourcePoolsBuilder.newResourcePoolsBuilder().with(pool2))); // 5
cacheManager.close();
cacheManager.destroy();

1 Creates a hybrid CacheManager.

2 Creates a pool of size 4 MB from primary-server-resource, with a dataPercent
value of 25.

3 Creates a pool of size 12 MB from primary-server-resource, with a dataPercent
value of 50.

4 Creates a Cache using pool1 created from Step 2 above.

5 Creates a Cache using pool2 created from Step 3 above.

M
Odd Header

Hybrid Caching

Ehcache API Developer Guide Version 10.5 143

General Notes on Configuring Hybrid
Permissible values of dataPercent are 0 through 99, both values included.

dataPercent values are not allowed for full caches. If an aempt to configure a full
Cache with any dataPercent value is made, the following Exception is thrown:
org.terracotta.entity.ConfigurationException:
dataPercent attribute has no meaning for a clustered tier manager
with FULL restartable offheap mode

M
Even Header

Ehcache API Developer Guide Version 10.5 144

M
Odd Header

Migrating Code from Ehcache v2

Ehcache API Developer Guide Version 10.5 145

22 Migrating Code from Ehcache v2

This guide provides sample code snippets to help migrate Ehcache v2 code to Ehcache
v10 code.

Per Mapping Expiry

Per mapping expiry covers use cases where a subset of mappings have different
expiration seings than the ones configured at the cache level.

Ehcache 2.x Code

Here we are creating a cache manager that has a default time-to-live (TTL) expiry.

Before adding, we verify the expiry and set it on the Element only when different than
the Cache expiry.
int defaultCacheTTLInSeconds = 20;
CacheManager cacheManager = initCacheManager();
CacheConfiguration cacheConfiguration = new CacheConfiguration().name("cache")
 .maxEntriesLocalHeap(100)
 .timeToLiveSeconds(defaultCacheTTLInSeconds); // 1
cacheManager.addCache(new Cache(cacheConfiguration));
Element element = new Element(10L, "Hello");
int ttlInSeconds = getTimeToLiveInSeconds((Long)element.getObjectKey(),
 (String)element.getObjectValue()); // 2
if (ttlInSeconds != defaultCacheTTLInSeconds) { // 3
 element.setTimeToLive(ttlInSeconds);
}
cacheManager.getCache("cache").put(element);
System.out.println(cacheManager.getCache("cache").get(10L).getObjectValue());
sleep(2100); // 4
// Now the returned element should be null, as the mapping is expired.
System.out.println(cacheManager.getCache("cache").get(10L));

1 Expiry duration defined at the cache level.

2 Compute the mapping expiry using the helper method
getTimeToLiveInSeconds.

3 Only seing the computed expiry on element if other than default expiry.

4 Waiting for 2.1 seconds - assuming 2 seconds is the custom expiry duration
- to get the mapping to be expired.

Corresponding Ehcache 10.x Code

Here we are creating a cache manager with a cache configuration specifying a custom
expiry, having dedicated logic in the methods called during the lifecycle of added and
updated mappings.

M
Even Header

Migrating Code from Ehcache v2

Ehcache API Developer Guide Version 10.5 146

CacheManager cacheManager = initCacheManager();
CacheConfigurationBuilder<Long, String> configuration =
 CacheConfigurationBuilder.newCacheConfigurationBuilder(Long.class,
 String.class, ResourcePoolsBuilder
 .heap(100))
 .withExpiry(new Expiry<Long, String>() { // 1
 @Override
 public Duration getExpiryForCreation(Long key, String value) {
 return getTimeToLiveDuration(key, value); // 2
 }
 @Override
 public Duration getExpiryForAccess(Long key, ValueSupplier<?
 extends String> value) {
 return null; // Keeping the existing expiry
 }
 @Override
 public Duration getExpiryForUpdate(Long key, ValueSupplier<?
 extends String> oldValue, String newValue) {
 return null; // Keeping the existing expiry
 }
 });
cacheManager.createCache("cache", configuration);
Cache<Long, String> cache = cacheManager.getCache("cache", Long.class,
String.class);
cache.put(10L, "Hello");
System.out.println(cache.get(10L));
sleep(2100); // 3
// Now the returned value should be null, as mapping is expired.
System.out.println(cache.get(10L));

1 Defining custom expiry to be called during the lifecycle of added
mappings.

2 During mapping creation, defining expiry duration using the helper
method getTimeToLiveDuration.

3 Waiting for 2.1 seconds - assuming 2 seconds is the custom expiry
duration - to get the mapping to be expired.

So to migrate the former Ehcache per mapping expiry code to the current version of
Ehcache, move the expiry computation logic to the getExpiryForCreation method of the
created custom expiry.

	Table of Contents
	About This Documentation
	Online Information and Support
	Data Protection

	Caching Basics
	Primary Classes
	Comparison of CacheManager to UserManagedCache

	Creating and Configuring a CacheManager Using Java
	Going Through the Lifecycle of a Cache
	Configuring Storage Tiers using Java
	Creating a Cache Manager with Clustering Support
	Data Freshness

	Configuring a CacheManager Using XML
	Configuring Storage Tiers using XML
	The XML Schema Definition
	Property replacement in XML configuration files
	XML Programmatic Parsing

	The JCache (JSR-107) Cache Provider
	Overview of JCache
	Using Ehcache as a JCache Provider
	Getting Started with Ehcache and JCache (JSR-107)
	Integrating JCache and Ehcache Configurations
	Differences in Default Behavior between Ehcache and Ehcache through JCache

	User Managed Caches
	Overview of User Managed Caches
	API Extensions
	Code examples for User Managed Caches

	Cache Usage Patterns
	Data Freshness and Expiry
	Data Freshness
	Expiry

	Transactions Support
	What is supported and what are the limitations?
	Configuring it all in Java
	Configuring it with XML

	Tiering Options
	Cache Loaders and Writers
	Introduction to Cache Loaders and Writers
	Implementing Cache-Through

	Cache Event Listeners
	Introduction
	Registering Event Listeners during runtime
	Event Processing Queues

	Eviction Advisors
	Serializers and Copiers
	Overview of Serializers and Copiers
	Serializers
	Copiers

	Thread Pools
	Introduction to Thread Pools
	Configuring Thread Pools with Code
	Configuring Thread Pools with XML

	Code Examples
	Ehcache XSDs
	XSD namespaces and locations

	Management and Monitoring with Ehcache
	Introduction
	Making use of the ManagementRegistry
	Capabilities and contexts
	Actions
	Managing multiple cache managers
	Rules for Statistics Calculation

	Class Loading
	About Class Loading
	Handling User Types

	Clustered Caches
	Introduction
	Clustering Concepts
	Starting the Terracotta Server
	Creating a Cache Manager with Clustering Capabilities
	Cache Manager Configuration and Usage of Server Side Resources
	Ehcache Cluster Tier Manager Lifecycle
	Configuring a Clustered Cache
	Creating a Cluster with Multiple Stripes

	Fast Restartability
	Overview of Fast Restartability
	Creating a Restartable Cache Manager
	Creating a Restartable Cache
	Creating Restartable Resource Pools
	Example of a Restartability Scenario
	General Notes on Configuring Restartability

	Hybrid Caching
	Overview of Hybrid Caching
	Configuring a Hybrid Cache Manager
	Configuring a Hybrid Cache
	Example of a Hybrid Scenario
	General Notes on Configuring Hybrid

	Migrating Code from Ehcache v2

