
Terracotta Server Administration Guide

Version 10.2

April 2018

This document applies to Terracoa DB and Terracoa Ehcache Version 10.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2019 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: TC-SRV-AG-102-20190415

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Terracotta Server Administration Guide Version 10.2 3

Table of Contents

Cluster Architecture.. 5

Active and Passive Servers..7

Clients in a Cluster..11

Electing an Active Server... 13

Failover..15

Failover Tuning...17

Starting and Stopping the Terracotta Server..23

Safe Cluster Shutdown and Restart Procedure... 25

Configuring the Terracotta Server... 27

System Recommendations for Hybrid Caching... 31

System Recommendations for Fast Restart (FRS).. 33

Connection Leasing...35

Cluster Tool.. 37

Licensing...49

Backup, Restore and Data Migration...51
Overview... 52
Data Directory Structure... 52
Online Backup.. 53
Offline Backup.. 55
Restore..55
Data Migration of Ehcache data...56
Technical Details...57

Restarting a Stripe...59

The Terracotta Configuration File.. 61

Securing TSA Access using a Permitted IP List..65

SSL/TLS Security Configuration in Terracotta..69

SSL/TLS Troubleshooting guide.. 75

M
Table of Contents

Terracotta Server Administration Guide Version 10.2 4

Terracotta Server Migration from Terracotta BigMemory Max v4 to Terracotta DB v10..........83

Using Command Central to Manage Terracotta... 85

M
Odd Header

Cluster Architecture

Terracotta Server Administration Guide Version 10.2 5

1 Cluster Architecture

The Terracoa cluster can be viewed topologically as a collection of clients
communicating with a Terracoa Server Array (TSA).

The server array can be broken down into one or more logically independent stripes.
The total storage capacity of the TSA can be increased with the addition of more stripes.

A stripe can be broken down into one or more servers. Each stripe contains a single
active server and zero or more passive servers. These stripe members are all configured by
a single Terracoa configuration file. Refer to the section “The Terracoa Configuration
File” on page 61 for more details.

For more information on clients, active servers and passive servers, see the sections
“Clients in a Cluster” on page 11 and “Active and Passive Servers” on page 7.

TSA Topologies

There are multiple types of TSA topology, each offering different resource and
availability capabilities.

TSA Topology Description

Single-server
cluster

This is a TSA which consists of one stripe containing a
single server. This server is always the active server.

This scheme offers the least amount of both resource and
availability capabilities:

If this server should become unavailable, your client end-
points will fail to operate.

The resource services exposed to your clients are limited
to those of the underlying server JVM and OS.

High-
availability
cluster

This refers to a TSA where each stripe consists of at least
two servers. In addition to the active server there will be at
least one passive server. The stripe will continue operating
in the event of an active server failure, as long as at least
one passive server is available.

Note that stripes do not share passive servers, so each
stripe will need at least one passive to possess high-
availability.

Multi-stripe
cluster

Multi-stripe refers to a TSA that consists of multiple
independent stripes. This scheme offers the ability for

M
Even Header

Cluster Architecture

Terracotta Server Administration Guide Version 10.2 6

TSA Topology Description
increased storage, with each stripe contributing to the
available total amount of storage.

For a multi-stripe TSA to possess high-availability, each
stripe must consist of more than one server. This setup
offers the maximum of both resource and availability
capabilities.

Client perspective

Each client is logically independent of other clients. It sees the TSA as a collection of one
or more stripes. It connects to the active server of each stripe in order to issue messages
to the cluster.

Stripe perspective

Each stripe is logically independent of other stripes in the TSA. Each stripe member only
concerns itself with the clients connected to it and its sibling servers.

Specifically, the active server is the key point in each stripe: each stripe has exactly one
active server and it is this server which interacts directly with each connected client and
each passive server within the same stripe.

M
Odd Header

Active and Passive Servers

Terracotta Server Administration Guide Version 10.2 7

2 Active and Passive Servers

Introduction

Terracoa Servers exist in two modes, active and passive. The description of each mode is
given below.

Active servers

Within a given stripe of a cluster, there is always an active server. A server in a single-
server stripe is always the active server. A multi-server stripe will only ever have one
active server at a given point in time.

The active server is the server which clients communicate with directly. The active server
relays messages on to the passive servers independently.

How an active server is chosen

When a stripe starts up, or a failover occurs, the online servers perform an election
to decide which one will become the active server and lead the stripe. For more
information about elections, see the section “Electing an Active Server” on page 13.

How clients find the active server

Clients will aempt to connect to each server in the stripe, and only the active server will
accept the connection.

The client will continue to only interact with this server until the connection is broken.
It then aempts the other servers if there has been a failover. For more information about
failover, see the section “Failover” on page 15.

Responsibilities of the active server

The active server differs from passive servers in that it receives all messages from the
clients. It is then responsible for sending back responses to the calling clients.

Additionally, the active server is responsible for replicating the messages that it receives
on the passive servers.

When a new server joins the stripe, the active server is responsible for synchronizing
its internal state with the new server, before telling it to enter a standby state. This state
means that the new server is now a valid candidate to become a new active server in the
case of a failover.

Passive servers

Any stripe of a cluster which has more than one running server will contain passive
servers. While there is only one active server per stripe, there can be zero, one, or several
passive servers.

Passive servers go through multiple states before being available for failover:

M
Even Header

Active and Passive Servers

Terracotta Server Administration Guide Version 10.2 8

UNINITIALIZED This passive server has just joined the stripe and has no
data.

SYNCHRONIZING This passive server is receiving the current state from the
active server. It has some of the stripe data but not yet
enough to participate in failover.

STANDBY This passive contains the stripe data and can be a
candidate to become the active, in the case of a failover.

Passive servers only communicate with the active server, not with each other, and not
with any clients.

How a server becomes passive

When a stripe starts up and a server fails to win the election, it becomes a passive server.

Additionally, newly-started servers which join an existing stripe which already has an
active server will become passive servers.

Responsibilities of the passive server

The passive server has far fewer responsibilities than an active server. It only receives
messages from the active server, not communicating directly with other passive servers
or any clients interacting with the stripe.

Its key responsibility is to be ready to take over the role of the active server in the case
that the active server crashes, loses power/network, or is taken offline for maintenance/
upgrade activities.

All the passive server does is apply messages which come from the active server,
whether the initial state synchronization messages when the passive server first joined,
or the on-going replication of new messages. This means that the state of the passive
server is considered consistent with that of the active server.

Lifecycle of the passive server

When a passive server first joins a stripe and determines that its role will be passive, it is
in the UNINITIALIZED state.

If it is a restartable server and also discovers existing data from a previous run, it makes a
backup of that data for safety reasons. Refer to the section “Clearing Automatic Backup
Data” on page 9 for more details.

Refer to the section Restarting a Stripe in the Terracoa Server Administration Guide for
information on the proper order in which to restart a restartable stripe.

From here, the active server begins sending it messages to rebuild the active
server's current state on the passive server. This puts the passive server into the
SYNCHRONIZING state.

M
Odd Header

Active and Passive Servers

Terracotta Server Administration Guide Version 10.2 9

Once the entire active state has been synchronized to the passive server, the active server
tells it that synchronization is complete and the passive server now enters the STANDBY
state. In this state, it receives messages replicated from the active server and applies
them locally.

If the active server goes offline, only passive servers in the STANDBY state can be
considered candidates to become the new active server.

Clearing Automatic Backup Data

After a passive server is restarted, for safety reasons, it may retain artifacts from
previous runs. This happens when the server is restartable, even in the absence
of restartable cache managers. The number of copies of backups that are retained
is unlimited. Over time, and with frequent restarts, these copies may consume a
substantial amount of disk space, and it may be desirable to clear up that space.

Backup rationale: If, after a full shutdown, an operator inadvertently starts the stripe
members in the wrong order, this could result in data loss wherein the new active server
initializes itself from the, possibly, incomplete data of a previous passive server. This
situation can be mitigated by (1) ensuring all servers are running, and (2) the cluster is
quiesced, prior to taking the backup. This ensures that all members of the stripe contain
exactly the same data.

Clearing backup data manually: The old fast restart and platform files are backed up
under the server's data directories in the format terracotta.backup.{date&time}/
ehcache/ and backup-platform-data-{date&time}/platform-data respectively.
Simply change to the data root directory, and remove the backups.

It may be desirable to keep the latest backup copy. In that case, remove all the backup
directories except the one with the latest timestamp.

M
Even Header

Terracotta Server Administration Guide Version 10.2 10

M
Odd Header

Clients in a Cluster

Terracotta Server Administration Guide Version 10.2 11

3 Clients in a Cluster

Within the overall structure of the cluster, the clients represent the application end-
points. They work independently but can communicate through the active servers of the
stripes to which they are connected.

Note that a client only ever interacts with an active server, never directly communicating
with a passive server.

In a single-stripe cluster, each client is connected to the active server of that stripe. In a
multi-stripe cluster, each client is connected to the active server of each stripe, interacting
with them quasi-independently.

Within the logical structure of the cluster, the client isn't the process making the
connection, but the connection itself. This means that a single JVM opening multiple
connections to the same stripe will be seen by the stripe as multiple, independent clients.

How a client finds an active server

When establishing a connection to a stripe, the client must find the active server. It does
this by aempting to connect to each server in the stripe, knowing that only the active
server will not reject the connection aempt.

How a client handles failover or restart

If an active server to which a client is aached goes offline, the client will aempt to
reconnect to one of the other servers in the stripe, if there are any. This is similar to what
happens during its initial connection.

Note that there is no default time-out on this reconnection aempt. In the case that each
stripe member is unavailable, this means that it is possible for all clients to wait, blocking
their progress, until a server is restarted, potentially days later.

M
Even Header

Terracotta Server Administration Guide Version 10.2 12

M
Odd Header

Electing an Active Server

Terracotta Server Administration Guide Version 10.2 13

4 Electing an Active Server

When a new stripe comes online, the first thing the servers within it need to do is elect
an active server which will coordinate the client interactions and passive servers within
the stripe.

Additionally, if the active server of an existing stripe goes offline, the remaining passive
servers need to elect a replacement active server. Note that only passive servers in the
STANDBY state are candidates for this role. For related information, see the section
“Failover” on page 15.

In either of these situations, the servers involved address this problem by holding an
election.

High-level process

In an election, each server will construct a "vote" which it sends to the other involved
servers. The vote with the highest score can be determined statically, so each server
knows it has agreement on which server won the election.

In the case of a tie, the election is re-run until consensus is achieved.

Vote construction

The vote is a list of "weights" which represent the factors which should be considered
when electing the most effective active server. The list is ordered such that the next
element is only considered if the current element is a tie. This allows the earlier elements
of the vote to be based around important concepts (such as how many transactions
the server has processed), then concrete concepts (such as server up-time), ending in
more arbitrary concepts designed to break edge-case ties (such as a randomly generated
number).

M
Even Header

Terracotta Server Administration Guide Version 10.2 14

M
Odd Header

Failover

Terracotta Server Administration Guide Version 10.2 15

5 Failover

In a high-availability stripe, the failure of a single server represents only a small
disruption, but not outright failure, of the cluster and the client operations (for related
information on high availability, see the section “Cluster Architecture” on page 5).

In the case of a failing passive server, there is no disruption at all experienced by the
clients.

In the case of a failing active server, however, there is a small disruption of client
progress until a new active server is elected and the client can reconnect to it. Failover is
the name given to this scenario.

Client Reconnect Window

When a failover happens, the clients connected to the previous active server
automatically switch to the new active server. However, these clients have a limited
window of time called the client reconnect window to complete the failover (120 seconds,
by default). The new active server will stop processing any client requests until all the
previously known clients connect back or until this window expires. This could cause
all the clients to stall even if a single client fails or takes too long to fail over to the new
active server.

If clients fail to connect back to the new active server within the reconnect window,
the server will consider them unreachable and will continue processing requests from
the connected clients. Clients reconnecting after the reconnect window will be rejected
by the server and they will rejoin the cluster as a new client by establishing a new
connection.

This reconnect window can be configured in the Terracoa configuration file using the
<client-reconnect-window> element. The following XML snippet shows how the
client reconnect window can be changed to 60 seconds:
<tc-config>
 ...
 <servers>
 ...
 <client-reconnect-window>60</client-reconnect-window>
 </servers>
</tc-config>

Server-side implications

Once all clients have reconnected (or the reconnect window closes), the server will
process all re-sent messages it had seen before for which the client had not been notified
of completion.

After this, message processing resumes as normal.

M
Even Header

Failover

Terracotta Server Administration Guide Version 10.2 16

Client-side implications

Clients will experience a slight stall while they reconnect to the new active server. This
reconnection process involves re-sending any messages the client considers to be in-
flight.

After this, client operations resume as normal.

M
Odd Header

Failover Tuning

Terracotta Server Administration Guide Version 10.2 17

6 Failover Tuning

Overview

In a clustered environment, any network, hardware or other failures can cause an active
server to get partitioned from the rest of the servers in its stripe. When your cluster
needs to remain tolerant to such failures, you have a choice to make: choose either
consistency or availability but not both (CAP theorem). If consistency is chosen over
availability, then the cluster will halt processing client requests as consistent reads/
writes can't be guaranteed when the cluster is partitioned. But when availability is
chosen over consistency, the cluster will respond to client requests even when the cluster
is partitioned but the response is not guaranteed to be consistent. In the absence of such
failures, the cluster can provide both consistency and availability.

The cluster, by default, is tuned to favour availability over consistency. This means that
when such failures happen, the behavior of a stripe is that the remaining passive servers
will then run an election and, if not able to find the old active server, the passive server
that wins the election becomes the new active server. While this configuration ensures
high availability of the data, risks of experiencing a so-called split-brain situation during
such elections are increased. In the case of a TSA, split-brain would be a situation in
which multiple servers in a stripe are acting as active servers. For example, if an active
server gets partitioned from its peers in that stripe, the active server will remain active
and the passive servers on the other side of the partition would elect a new active
server as well. Any further operations performed on the data are likely to result in
inconsistencies.

When tuned for consistency, a stripe would need at least a majority of servers connected
with each other to elect an active server. Thus, even if the stripe gets partitioned into
two sets of servers due to some network failure, the set with the majority of servers will
elect an active server among them and proceed. In the absence of a majority, an active
server will not be elected and hence the clients will be prevented from performing any
operations, thereby preserving data consistency by sacrificing availability.

Server configuration

When configuring the stripe, the user needs to choose between availability and
consistency as the failover priority of the stripe. To prevent split-brain scenarios and
thereby preserve data consistency, failover priority must be set to consistency. However,
if availability is preferred, failover-priority can be set to availability at the risk of running
into split-brain scenarios.

The following xml snippet shows how to configure a stripe for consistency:
<tc-config>
 ...
 <servers>
 ...
 </servers>
 <failover-priority> <!-- 1 -->
 <consistency/> <!-- 2 -->

M
Even Header

Failover Tuning

Terracotta Server Administration Guide Version 10.2 18

 </failover-priority>
</tc-config>

1 Failover priority is tuned to favor…

2 Consistency over availability for this stripe

Similarly, the stripe can be tuned for availability as follows:
<failover-priority>
 <availability/>
</failover-priority>

Note: Even though the availability vs. consistency configuration is done at the stripe
level, it must to be consistent across all the stripes in the cluster.

In the absence of any explicit failover-priority configuration value, the default
value is availability. This is likely to change in future releases, and therefore, it is
recommended to explicitly configure the server with your choice.

External voter for two-server stripes

Mandating a majority for active server election in certain topologies introduces
additional availability issues. For example, in a two-server stripe the majority quorum is
two as well. This means that if these servers get disconnected from each other due to a
network partition or because of a server failure, the surviving server would not promote
itself as the active server as it requires 2 votes to win the election. But since the other
voting server is not reachable, it will not be able to get that second vote and hence will
not promote itself. In the absence of an active server, the stripe is not available.

Adding a third server is the best option, so that even if one fails, there is a majority (2
out of 3) surviving to elect an active. A three-server stripe can provide data redundancy
and high availability at the same time even when one server fails. If adding a third
server is not feasible, the alternate option is to get high availability without risking data
consistency (via split-brain scenarios) using an external voter. But this configuration
cannot offer data redundancy (like a three-server stripe) if a server fails.

An external voter is a client that is allowed to cast a vote in the election of a new active
server, in cases where a majority of servers in a stripe are unable to reach a consensus on
electing a new active server.

External voter configuration

The number of external voters needs to be described in the server configuration. It is
recommended that the total number of servers and external voters be kept as an odd
number.

External voters need to get registered with the servers to get added as voting members
in their elections. If there are n voters configured in the server, then the first n voting
clients requesting to get registered will be added as voters. Registration requests of
other clients will be declined and put on hold until one of the registered voters gets de-
registered.

M
Odd Header

Failover Tuning

Terracotta Server Administration Guide Version 10.2 19

Voters can de-register themselves from the cluster so that the voting rights can be
transferred to other clients waiting to get registered, if there are any. A voting client can
de-register itself by using APIs or by geing disconnected from the cluster.

When a voting client gets disconnected from the server, it will automatically get de-
registered by the server. When the client reconnects, it will only get registered again as a
voter if another voter has not taken its place while this client was disconnected.

Server configuration

A maximum count for the number of external voters allowed can optionally be added to
the failover-priority configuration if the stripe is tuned for consistency, as follows:
<failover-priority>
 <consistency>
 <voter count="3"/> <!-- 1 -->
 </consitency>
</failover-priority>

1 Here you are restricting the total number of voting clients to three.

The failover priority seing and the specified maximum number of external voters
across the stripes must be consistent and will be validated during the cluster
configuration step. For more information on how to configure a cluster, see the section
“Cluster Tool” on page 37.

Client configuration

External voters can be of two variants:

1. Standalone voter

2. Clients using the voter library (client voter)

Standalone voter

An external voter can be run as a standalone process using a script provided with
the kit. The script takes the tc-config files of the stripes in the cluster as arguments. A
variant that takes the <host>:<port> combinations instead of the server configuration
files is also supported. Each -s option argument must be a comma separated list of
<host>:<port> combinations of servers in a single stripe. To register a multi-stripe
cluster, multiple -f or -s options can be provided for each stripe.

Usage:
start-tc-voter.(sh|bat) -f TC-CONFIG [-f TC-CONFIG]...

or
start-tc-voter.(sh|bat) -s HOST:PORT[,HOST:PORT]... [-s HOST:PORT[,HOST:PORT]...]...

Client voter

Any TCStore or Ehcache client can act as an external voter as well by using a voter
library distributed with the kit. A client can join the cluster as a voter by creating a
TCVoter instance and registering itself with the cluster.

M
Even Header

Failover Tuning

Terracotta Server Administration Guide Version 10.2 20

Note: Cluster must be configured using the cluster tool before a client voter can be
registered with it.

When the voter is no longer required, it can be de-registered from the cluster either by
disconnecting that client, or by using the deregister API.
TCVoter voter = new EnterpriseTCVoterImpl(); // 1
voter.register("my-cluster-0" // 2
 "<host>:<port>","<host>:<port>"); // 3
...
voter.deregister("my-cluster-0") // 4

1 Instantiate a TCVoter instance

2 Register the voter with a cluster by providing a cluster name …

3 and host port combinations of all servers in the cluster.

4 De-register from the cluster using the same cluster name that was used to
register it.

Manual promotion with override voter

Since an external voter is just another process, there is no guarantee that it will always
be up and available. Especially in the form of client voters, the moment the client leaves,
the external voter leaves too. In the rare event of a failure happening (partition spliing
the active and passive servers or the active server crashing) and the external voter not
being around either, none of the surviving servers will be acting as an active server.
The servers will be stuck in an intermediate state where operations from the regular
clients are all stalled. A manual intervention will be required to get the cluster out of this
state by fixing the cause of the partition or by restarting the crashed server. If neither is
feasible, then the third option is to get a server manually promoted using an override
vote from an external voter.

The voter process can be started in an override mode to promote a single server stuck in
that intermediate state to be an active server. When the voter process is started in this
special mode, it will connect to the server that you want to promote, give it an override
vote and exit. The voter process can be started in override mode as follows:
start-tc-voter.(sh|bat) -o HOST:PORT

Running this command will forcibly promote the server at HOST:PORT to be an active
server, if it is stuck in that intermediate state.

Note: This override voting will work even if external voters are not configured in
the server configuration.

 Be cauous not to start two different override voters on both sides of the
paron separately so that both sides win and cause a split-brain.

M
Odd Header

Failover Tuning

Terracotta Server Administration Guide Version 10.2 21

Server startup

When the failover priority of the stripes is tuned for consistency, it has an impact on
server startup as well. In a multi-server stripe, the very first server that is started up
fresh will not become an active server until it gets a majority quorum of votes from its
peers. In order to get it promoted as an active server, its peer servers will have to be
brought up so that they all vote and the majority quorum is formed. Bringing up regular
voters is not going to help as they need to communicate with all the active servers in
the cluster to get registered. But if bringing up the other servers is not feasible for some
reason, then an override voter can be used to forcibly promote that server.

M
Even Header

Terracotta Server Administration Guide Version 10.2 22

M
Odd Header

Starting and Stopping the Terracotta Server

Terracotta Server Administration Guide Version 10.2 23

7 Starting and Stopping the Terracotta Server

Starting the Terracotta Server

The command line script to start the Terracoa Server is located in the server/bin/
directory of the server kit. UNIX users use start-tc-server.sh while Windows users
use start-tc-server.bat. All arguments are the same for both.

The usage of script is as follows:
start-tc-server.sh [-f /path/to/tc-config.xml] [-n server_name]

Options to the script

While it is possible to run the script without any arguments, this will result in using
empty defaults for the configuration, which is generally not useful for anything other
than verifying that the Terracoa Server is able to run.

Specific arguments which should be used are:

[-f /path/to/tc-config.xml] - This is the path to the tc-config.xml file for
the stripe this server is expected to join. Note that all servers in the same stripe are
expected to use the same configuration file.

The file tc-config.xml describes per-server details such as listening TCP port and
log directory.

[-n server_name] - This is the name the server should use for itself, which
determines which server stanza described within the tc-config.xml should be
used.

Environment variables read by the script

JAVA_HOME - Points to the JRE installation which the server should use (the Java
launcher in this JRE will be used to start the server).

JAVA_OPTS - Any additional options which should be passed to the underlying
JVM can be passed via this environment variable and they will be added to the Java
command line.

Stopping the Terracotta Server

If your server is not running in a Terracoa cluster, you can use the standard procedure
offered by your operating system to terminate the server process.

If you are running the server as part of a Terracoa cluster, you can stop all servers in
the cluster by using the cluster tool. See the section “Cluster Tool” on page 37 for
details.

M
Even Header

Terracotta Server Administration Guide Version 10.2 24

M
Odd Header

Safe Cluster Shutdown and Restart Procedure

Terracotta Server Administration Guide Version 10.2 25

8 Safe Cluster Shutdown and Restart Procedure

Although the Terracoa Server Array is designed to be crash tolerant, like any
distributed system with HA capabilities, it is important to consider the implications of
shuing down and restarting servers, what sequence that is done in, and what effects
that has on client applications and potential loss of some data.

The safest shutdown procedure

For the safest shutdown procedure, follow these steps:

1. Shut down all clients and ensure no critical operations such as backup are running
on the cluster. The Terracoa client will shut down when you shut down your
application.

2. Use the shutdown command of the cluster tool to shut down the cluster.

If you want to partially shut down a stripe with passive servers configured, you can use
the partial shutdown commands provided by the cluster tool. See the section “Cluster
Tool” on page 37 for details.

The safest restart procedure

To restart a stripe for which the failover priority is consistency, servers can be started
up in any order as it is guaranteed that the last active server is re-elected as the active
server, thus preventing data loss. This is guaranteed even if there are multiple former
active servers in the stripe at the time of shutdown (for example, one active server and
one or more suspended active servers or former active servers that were shut down,
decommissioned or had crashed).

However, if the failover priority is availability, restarting the servers in any random order
might result in data loss. For example, if an older active server is started up before the
last active server, it could win the election and become the active server with its old
data. To avoid such data loss scenarios, the last known active server must be restarted
first. All other servers must be started up after this last known active server becomes the
active server again.

However, if you do not know the most recent active server at the time of restart and
still want to restart the stripe safely without data loss, it can still be done by starting
all the servers in that stripe using the --consistency-on-start option of the server
startup script. When the servers are started up using this option, they will wait for all
peer servers to come up and then elect the most recent active server as the new active
server.

If there are multiple active servers at the time of shutdown, which can happen if the
failover priority of the cluster is availability, one of them will be chosen automatically
on restart. This choice is made based on factors like the number of clients connected to
those servers at the time of shutdown, the server that was started up first, etc.

M
Even Header

Safe Cluster Shutdown and Restart Procedure

Terracotta Server Administration Guide Version 10.2 26

Considerations and implications of not following the above procedure

Facts to understand:

Servers that are in "active" status have the "master" or "source of full truth" copy of
data for the stripe they belong to. They also have state information about in-progress
client transactions, and client-held locks.

Mirror servers (in "passive standby" state) have a "nearly" up to date copy of the data
and state information. (Any information that they don't have is redundant between
the active server and the client.)

If the active server fails (or is shut down purposely), not only does the standby
server need to reach active state, but the clients also need to reconnect to it and
complete their open transactions, or data may be lost.

A Terracoa Server Array, or "Cluster" instance has an identity, and the stripes
within the TSA have a "stripe ID". In order to protect data integrity, running
clients ensure that they only "fail over" to servers with matching IDs to the ones
they were last connected to. If cluster or stripe is completely "wiped" of data (by
purposely clearing persisted data, or having persistence disabled and having all
stripe members stopped at the same time), that will reset the stripe ID.

What happens if clients are not shut down

If clients are not shut down:

Client applications will continue sending transactions (data writes) to the active
server(s) as normal, right up until the active server is stopped. This may leave some
successful transactions unacknowledged, or falsely reported as failed to the client,
possibly resulting in some data loss.

Clients will continue to try and connect and when the server is restarted, the clients
will fail the current operation and enter a reconnect path to try and complete the
operation. When clients enter a reconnect path, it is left to the client to ensure
idempotency of the ongoing operation as the operation might either have been made
durable just before shutdown or it may have been missed during shutdown.

What happens if the active server is shut down explicitly

If the active server is shut down first:

Before shuing down any other servers, or restarting the server, ensure that you
wait until any other servers in the stripe (that were in 'standby' status) have reached
active state, and that any running clients have reconnected and re-sent their partially
completed transactions. Otherwise there may be some data loss.

M
Odd Header

Configuring the Terracotta Server

Terracotta Server Administration Guide Version 10.2 27

9 Configuring the Terracotta Server

Overview

For your application end-points to be useful they must be able to utilize storage
resources configured in your Terracoa Servers. The services offered make use of your
server's underlying JVM and OS resources, including direct-memory (oeap) and disk
persistence.

These server resources are configured in the plugins section of the Terracoa
configuration file. For related information, see the section “The Terracoa Configuration
File” on page 61.

Offheap Resources

The use of JVM Direct-Memory (oeap) is a central part of the operation of a Terracoa
Server. In effect, you must allocate and make available to your server enough oeap
memory for the proper operation of your application.

In your configuration file you define one ore more named oeap resources of a fixed size.
These named resources are then referred to in the configuration of your application end-
points to allow for their usage.

Refer to the section Clustered Caches in the Ehcache API Developer Guide for more details
about the use of oeap resources.

Example Offheap Resource Configuration
<plugins> <!--1-->
 <config>
 <ohr:offheap-resources
 xmlns:ohr="http://www.terracotta.org/config/offheap-resource">
 <ohr:resource name="primary-server-resource"
 unit="MB">384</ohr:resource> <!--2-->
 <ohr:resource name="secondary-server-resource"
 unit="MB">256</ohr:resource> <!--3-->
 </ohr:offheap-resources>
 </config>
</plugins>

1 The plugins element is a direct child of the tc-config element

2 Defines primary-server-resource with size 384MB

3 Defines secondary-server-resource with size 256MB

M
Even Header

Configuring the Terracotta Server

Terracotta Server Administration Guide Version 10.2 28

Data Directories

A data directory is a location on disk, identified by a name, and mapped to a disk
location, where a Terracoa Server's data resides.

Data directories are commonly configured by server administrators and specified in the
Terracoa Server configuration. Data directory names can be used by products that need
durable storage for persistence and fast restart from crashes. For example, restartable
cache managers need to be supplied with a data directory name to persist the restartable
CacheManager specific data.

For information on restartable servers, see the section “Platform Persistence” on
page 29 below. See also the sections Fast Restartability and Creating a Restartable Cache
Manager in the Ehcache API Developer Guide.

Sample Data Directories Configuration
<config xmlns:data="http://www.terracottatech.com/config/data-roots">
 <data:data-directories>
 <data:directory name="someData"> <!-- 1 -->
 /mnt1/data <!-- 2 -->
 </data:directory>
 <data:directory name="otherData"> <!-- 3 -->
 %(logs.path)/data <!-- 4 -->
 </data:directory>
 </data:data-directories>
</config>

1 someData is a data directory name,

2 /mnt1/data is the disk location to which someData is mapped to.

3 otherData is another data directory name mapped to a different disk
location,

4 %(logs.path)/data is the data directory which otherData is mapped to.
Note the use of %(logs.path), which gets substituted with the logs path
property

See the description of parameter substitution in the section “The Terracoa
Configuration File” on page 61 to check the complete list of available parameter
substitutions.

General Notes on Configuring Data Directories

A data directory specified in a stripe configuration file must be specified in all the
configurations of all stripes of the cluster.

Each data directory must be given a unique mount point (or disk location).

The data directories are created if they do not exist already.

M
Odd Header

Configuring the Terracotta Server

Terracotta Server Administration Guide Version 10.2 29

Changing the disk location of the data directory between server restarts, without
copying the data, is equivalent to erasing that data. It will cause unpredictable
runtime errors that depend on the exact data lost.

Platform Persistence

The Terracoa server saves its internal state on a disk which enables server restarts
without losing data. Platform persistence leverages data directories to store required
data, so at least one data directory must be configured in the server configuration.

Note: Platform persistence is mandatory and a Terracoa server will refuse to start if
there are no data directories defined.

Care must be taken to avoid losing data when restarting the stripe. Refer to the section
“Restarting a Stripe” on page 59 for more details. Passive restartable servers
automatically back up their data at restart for safety reasons. Refer to the topic Passive
servers in the section “Active and Passive Servers” on page 7 for more details.

 Changing the disk locaon of the data directory used for plaorm persistence
before restarng a server and not copying the data will result in the server
starng as if it was a new server without any data.

Platform Persistence Configuration

By default, if a single data directory is defined, it will be used for platform persistence. If
more than one data directory is defined, one of them must have the use-for-platform
aribute set to true.

If the server cannot resolve a data directory to be used for platform persistence, it will
fail to start.

Sample Server Configuration with Platform Persistence
<tc-config xmlns="http://www.terracotta.org/config"
 xmlns:data="http://www.terracottatech.com/config/data-roots"
 xmlns:persistence="http://www.terracottatech.com/config/platform-persistence">
 <plugins>
 <config>
 <data:data-directories>
 <data:directory name="platform"
 use-for-platform="true">/mnt/platform</data:directory> <!-- 1 -->
 </data:data-directories>
 <data:data-directories>
 <data:directory name="data">/mnt/data</data:directory>
 </data:data-directories>
 </config>
 </plugins>
 <servers>
 <server host="localhost" name="server1">
 <tsa-port>9410</tsa-port>
 </server>
 </servers>
</tc-config>

M
Even Header

Configuring the Terracotta Server

Terracotta Server Administration Guide Version 10.2 30

1 Indicates that the platform data directory is to be used for platform
persistence

Relation to Fast Restartability

The EhcacheFast Restartability feature depends on, and makes use of, platform
persistence.

Refer to the section Fast Restartability in the Ehcache API Developer Guide for more
information.

M
Odd Header

System Recommendations for Hybrid Caching

Terracotta Server Administration Guide Version 10.2 31

10 System Recommendations for Hybrid Caching

Hybrid Caching supports writing to one single mount, so all of the Hybrid capacity
must be presented to the Terracoa process as one continuous region, which can be a
single device or a RAID.

The mount should be used exclusively for the Terracoa server process. The software
was designed for usage on local drives (SSD/Flash in particular) - SAN/NAS storage is
not recommended. If you utilize SAN/NAS storage you will experience notably reduced
and inconsistent performance - any support requests related to performance or stability
on such deployments will require the user to reproduce the issue with local disks.

Note: System utilization is higher when using Hybrid Caching, and it is not
recommended to run multiple servers on the same machine. Doing so
could result in health checkers timing out, and killing or restarting servers.
Therefore, it is important to provision sufficient hardware, and it is highly
recommended to deploy servers on different machines.

Hybrid Caching is described in detail in the Developer Guide.

M
Even Header

Terracotta Server Administration Guide Version 10.2 32

M
Odd Header

System Recommendations for Fast Restart (FRS)

Terracotta Server Administration Guide Version 10.2 33

11 System Recommendations for Fast Restart (FRS)

Fast Restart (FRS) supports writing to one single mount, which can be a single device or
a RAID.

The mount should be used exclusively for the Terracoa server process. The software
was designed for usage on local drives (SSD/Flash in particular) - SAN/NAS storage is
not recommended. If you utilize SAN/NAS storage you will experience notably reduced
and inconsistent performance - any support requests related to performance or stability
on such deployments will require the user to reproduce the issue with local disks.

Fast Restartability is described in detail in the Developer Guide.

M
Even Header

Terracotta Server Administration Guide Version 10.2 34

M
Odd Header

Connection Leasing

Terracotta Server Administration Guide Version 10.2 35

12 Connection Leasing

Why Leasing

When a client carries out a write with IMMEDIATE or STRONG consistency, the server
ensures that every client that could be caching the old value is informed, and the write
will not complete until the server can ensure that clients will no longer serve a stale
value.

Where network disruptions prevent the server communicating with a client in a timely
manner, the server will close that client's connection to allow the write to progress.

To achieve this, each client maintains a lease on its connections to the cluster. If a client's
lease expires, the server may decide to close that client's connection. A client may also
close the connection if it realises that its lease has expired.

When TCStore serves data from its client-side cache, the client checks its lease. If it
detects that the lease has expired, it will not use potentially stale data held in the cache.

Lease Length

When selecting the length of lease, consider the range of possible client to server
roundtrip latencies over a network connection that can be considered as functional. The
lease should be longer than the largest possible such latency.

On a server that is heavily loaded, there may be some additional delay in processing
a client's request for a lease to be extended. Such a delay should be added into the
roundtrip network latency.

In addition, leases are not renewed as soon as they are issued, instead the client waits
until some portion of the lease has passed before renewing. A guideline suitable for the
current implementation is that leases should be approximately 50% longer to allow for
this.

Seing long leases, however, has the downside that, when clients are unreachable by a
server, IMMEDIATE writes could block for up to the length of a lease.

The default value of leases is currently two and a half minutes.

Lease Configuration

To configure the lease length, add a connection leasing service plugin configuration to
the tc-config file. For example:
<tc-config xmlns="http://www.terracotta.org/config"
 xmlns:lease="http://www.terracotta.org/service/lease">
 <plugins>
 <service>
 <lease:connection-leasing>
 <lease:lease-length unit="seconds">60</lease:lease-length>
 </lease:connection-leasing>
 </service>

M
Even Header

Connection Leasing

Terracotta Server Administration Guide Version 10.2 36

 </plugins>
</tc-config>

which configures a lease length of sixty seconds.

Valid values for the unit aribute are: milliseconds, seconds, minutes and hours.

Any positive integer may be used for the value within the lease-length element
as long as the length of time configured for the lease length is not more than
Long.MAX_VALUE nanoseconds, which is approximately 290 years.

M
Odd Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 37

13 Cluster Tool

The cluster tool is a command-line utility that allows administrators of the Terracoa
Server Array to perform a variety of cluster management tasks. For example, the cluster
tool can be used to:

Configure or re-configure a cluster

Obtain the status and configuration information of running servers

Dump the state of running servers

Stop the running servers

Take backups of running servers

The cluster tool script is located in tools/cluster-tool/bin under the product
installation directory as cluster-tool.bat for Windows platforms, and as cluster-
tool.sh for Unix/Linux.

Usage Flow

The following is a typical flow in a cluster setup and usage:

1. Create Terracoa configuration files for each stripe in the deployment. See the
section “The Terracoa Configuration File” on page 61 for details.

2. Start up the servers in each stripe. See the section “Starting and Stopping the
Terracoa Server” on page 23 for details.

3. Make sure the stripes are online and ready.

4. Configure the cluster using the configure command of the cluster tool. See the
section The "configure" Command" below for details.

5. Check the current status of the cluster or specific servers in the cluster using the
status command. See the section “The "status" Command” on page 43 below
for details.

Cluster Tool commands

The cluster tool provides several commands. To list them and their respective options,
run cluster-tool.sh (or cluster-tool.bat on Windows) without any arguments, or
use the option -h (long option --help).

The following section provides a list of options common to all commands, and thus need
to be specified before the command name:

Precursor options

1. -v (long option --verbose)

M
Even Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 38

This option gives you a verbose output, and is useful to debug error conditions.

2. -srd (long option --security-root-directory)

This option can be used to communicate with a server which has TLS/SSL-based
security configured. For more details on seing up security in a Terracoa cluster,
see the section “SSL/TLS Security Configuration in Terracoa” on page 69.

Note: If this option is not specified while trying to connect to a secure cluster, the
command will fail with a SECURITY_CONFLICT error.

3. -t (long option --timeout)

This option lets you specify a custom timeout value (in milliseconds) for connections
to be established in cluster tool commands.

Note: If this option is not specified, the default value of 30,000 ms (or 30 seconds)
is used.

Each command has the option -h (long option --help), which can be used to display the
usage for the command.

The following is a comprehensive explanation of the available commands:

The "configure" Command

The configure command creates a cluster from the otherwise independent Terracoa
stripes, taking as input a mandatory license key. No functionality is available on the
server until a valid license is installed. See the section “ Licensing” on page 49 for
details.

Note: All servers in any given stripe should be started with the same configuration
file. The configure command configures the cluster based on the
configuration(s) of the currently known active server(s) only. If there is a
configuration mismatch among the active and passive server(s) within the
same stripe, this command can configure the cluster while taking down any
passive server(s) with configuration mismatches. This validation also happens
upon server restart and changes will prevent the server from starting. See the
section on the reconfigure command for more information on how to update
server configurations.

The command will fail if any of the following checks do not pass:

1. License checks

a. The license is valid.

b. The provided configuration files do not violate the license.

2. Configuration checks

The provided configuration files are consistent across all the stripes.

M
Odd Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 39

The following configuration items are validated in the configuration files:

1. config:

a. offheap-resource

Oeap resources present in one configuration file must be present in all the files
with the same sizes.

b. data-directories

Data directory identifiers present in one configuration file must be present in all
the files. However, the data directories they map to can differ.

2. service

a. security

Security configuration seings present in one configuration file must match the
seings in all the files.

For more details on seing up security in a Terracoa cluster, see the section
“SSL/TLS Security Configuration in Terracoa” on page 69.

b. backup-restore

If this element is present in one configuration file, it must be present in all the
files.

3. failover-priority

The failover priority seing present in one configuration file must match the seing
in all the files.

Refer to the section “The Terracoa Configuration File” on page 61 for more
information on these elements.

The servers section of the configuration files is also validated. Note that it is not
validated between stripes but rather against the configuration used to start the servers
themselves.

server

host

It must be a strict match

name

It must be a strict match

tsa-port

It must be a strict match

Note: Once a cluster is configured, a similar validation will take place upon server
restart. It will cause the server to fail to start if there are differences.

M
Even Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 40

Usage:
configure -n CLUSTER-NAME [-l LICENSE-FILE] TC-CONFIG [TC-CONFIG...]
configure -n CLUSTER-NAME [-l LICENSE-FILE] -s HOST[:PORT] [-s HOST[:PORT]]...

Parameters:

-n CLUSTER-NAME

A name that is to be assigned to the cluster.

-l LICENSE-FILE

The path to the license file. If you omit this option, the cluster tool looks for a license
file named license.xml in the location tools/cluster-tool/conf under the
product installation directory.

TC-CONFIG [TC-CONFIG ...]

A whitespace-separated list of configuration files (minimum 1) that describes the
stripes to be added to the cluster.

-s HOST[:PORT] [-s HOST[:PORT]...

The host:port(s) or host(s) (default port being 9410) of running servers, each
specified using the -s option. Any one server from each stripe can be provided.
However, multiple servers from the same stripe will work as well. The cluster will be
configured with the configurations which were originally used to start the servers.

Note: The command configures the cluster only once. To update the configuration of
an already configured cluster, the reconfigure command should be used.

Examples

The example below shows a successful execution for a two stripe configuration and a
valid license.
./cluster-tool.sh configure -l ~/license.xml -n tc-cluster
 ~/tc-config-stripe-1.xml ~/tc-config-stripe-2.xml
Configuration successful
License installation successful
Command completed successfully

The example below shows a failed execution because of an invalid license.
./cluster-tool.sh configure -l ~/license.xml
 -n tc-cluster ~/tc-config-stripe-1.xml ~/tc-config-stripe-2.xml
Error (BAD_REQUEST): com.terracottatech.LicenseException: Invalid license

The example below shows a failed execution with two stripe configurations mis-
matching in their oeap resource sizes.
./cluster-tool.sh configure -n tc-cluster -l
 ~/license.xml ~/tc-config-stripe-1.xml ~/tc-config-stripe-2.xml
Error (BAD_REQUEST): Mismatched off-heap resources in provided config files:
[[primary-server-resource: 51200M], [primary-server-resource: 25600M]]

M
Odd Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 41

The "reconfigure" Command

The reconfigure command updates the configuration of a cluster which was
configured using the configure command. With reconfigure, it is possible to:

1. Update the license on the cluster.

2. Add new oeap resources, or grow existing ones.

3. Add new data directories.

4. Add new configuration element types.

The command will fail if any of the following checks do not pass:

1. License checks

a. The new license is valid.

b. The new configuration files do not violate the license.

2. Stripe checks

a. The new configuration files have all the previously configured servers.

b. The order of the configuration files provided in the reconfigure command is
the same as the order of stripes in the previously configured cluster.

3. Configuration checks

a. Stripe consistency checks

The new configuration files are consistent across all the stripes. For the list of
configuration items validated in the configuration files, refer to the section The
"configure" Command above for details.

b. Oeap checks

The new configuration has all the previously configured oeap resources, and
the new sizes are not smaller than the old sizes.

c. Data directories checks

The new configuration has all the previously configured data directory names.

d. Configuration type checks

The new configuration has all the previously configured configuration types.

Usage:
reconfigure -n CLUSTER-NAME TC-CONFIG [TC-CONFIG...]
reconfigure -n CLUSTER-NAME -l LICENSE-FILE -s HOST[:PORT] [-s HOST[:PORT]]...
reconfigure -n CLUSTER-NAME -l LICENSE-FILE TC-CONFIG [TC-CONFIG...]

Parameters:

-n CLUSTER-NAME

The name of the configured cluster.

M
Even Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 42

TC-CONFIG [TC-CONFIG ...]

A whitespace-separated list of configuration files (minimum 1) that describe the new
configurations for the stripes.

-l LICENSE-FILE

The path to the new license file.

-s HOST[:PORT] [-s HOST[:PORT]]...

The host:port(s) or host(s) (default port being 9410) of servers, each specified
using the -s option.

Servers in the provided list will be sequentially contacted for connectivity, and the
command will be executed on the first reachable server.

reconfigure command usage scenarios:

1. License update

When it is required to update the license, most likely because the existing license has
expired, the following reconfigure command syntax should be used:
reconfigure -n CLUSTER-NAME -l LICENSE-FILE -s HOST[:PORT] [-s HOST[:PORT]]...

Note: A license update does not require the servers to be restarted.

2. Configuration update

When it is required to update the cluster configuration, the following reconfigure
command syntax should be used:
reconfigure -n CLUSTER-NAME TC-CONFIG [TC-CONFIG...]

The steps below should be followed in order:

a. Update the Terracoa configuration files with the new configuration, ensuring
that it meets the reconfiguration criteria mentioned above.

b. Run the reconfigure command with the new configuration files.

c. Restart the servers with the new configuration files for the new configuration to
take effect.

3. License and configuration update at once

In the rare event that it is desirable to update the license and the cluster
configuration in one go, the following reconfigure command syntax should be
used:
cluster-tool.sh reconfigure -n
 CLUSTER-NAME -l LICENSE-FILE TC-CONFIG [TC-CONFIG...]

The steps to be followed here are the same as those mentioned in the Configuration
update section above.

Examples

M
Odd Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 43

The example below shows a successful re-configuration of a two stripe cluster tc-
cluster with new stripe configurations.
./cluster-tool.sh reconfigure -n tc-cluster
 ~/tc-config-stripe-1.xml ~/tc-config-stripe-2.xml
License not updated (Reason: Identical to previously installed license)
Configuration successful
Command completed successfully.

The example below shows a failed re-configuration because of a license violation.
./cluster-tool.sh reconfigure -n tc-cluster
 -l ~/license.xml -s localhost:9410
Error (BAD_REQUEST): Cluster offheap resource is not within the limit of the license.
Provided: 409600 MB, but license allows: 102400 MB only

The example below shows a failed re-configuration of a two stripe cluster with new
stripe configurations having fewer data directories than existing configuration.
./cluster-tool.sh reconfigure -n tc-cluster
 ~/tc-config-stripe-1.xml ~/tc-config-stripe-2.xml
License not updated (Reason: Identical to previously installed license)
Error (CONFLICT): org.terracotta.exception.EntityConfigurationException:
 Entity: com.terracottatech.tools.client.TopologyEntity:topology-entity
lifecycle exception:
 Entity: com.terracottatech.tools.client.TopologyEntity:topology-entity
lifecycle exception:
 Entity: com.terracottatech.tools.client.TopologyEntity:topology-entity
lifecycle exception: org.terracotta.entity.ConfigurationException:
 Mismatched data directories. Provided: [use-for-platform, data],
 but previously known: [use-for-platform, data, myData]

The "status" Command

The status command displays the status of a cluster, or particular server(s) in the same
or different clusters..

Usage:
status -n CLUSTER-NAME -s HOST[:PORT] [-s HOST[:PORT]]...
status -s HOST[:PORT] [-s HOST[:PORT]]...

Parameters:

-n CLUSTER-NAME

The name of the configured cluster.

-s HOST[:PORT] [-s HOST[:PORT]]...

The host:port(s) or host(s) (default port being 9410) of running servers, each
specified using the -s option.

When provided with option -n, servers in the provided list will be sequentially
contacted for connectivity, and the command will be executed on the first reachable
server. Otherwise, the command will be individually executed on each server in the
list.

Examples

The example below shows the execution of a cluster-level status command.

M
Even Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 44

./cluster-tool.sh status -n tc-cluster -s localhost
Cluster name: tc-cluster
Stripes in the cluster: 2
Servers in the cluster: 4
 Server{name='server-1', host='localhost', port=9410},
 Server{name='server-2', host='localhost', port=9610} (stripe 1)
 Server{name='server-3', host='localhost', port=9710},
 Server{name='server-4', host='localhost', port=9910} (stripe 2)
Total configured offheap: 102400M
Backup configured: true
SSL/TLS configured: false
IP whitelist configured: false
Data directories configured: data, myData
| STRIPE: 1 |
+--------------------+----------------------+--------------------------+
| Server Name | Host:Port | Status |
+--------------------+----------------------+--------------------------+
| server-1 | localhost:9410 | ACTIVE-COORDINATOR |
| server-2 | localhost:9610 | PASSIVE-STANDBY |
+--------------------+----------------------+--------------------------+
| STRIPE: 2 |
+--------------------+----------------------+--------------------------+
| Server Name | Host:Port | Status |
+--------------------+----------------------+--------------------------+
| server-3 | localhost:9710 | ACTIVE-COORDINATOR |
| server-4 | localhost:9910 | PASSIVE-STANDBY |
+--------------------+----------------------+--------------------------+

The example below shows the execution of a server-level status command. No
server is running at localhost:9510, hence the UNKNOWN status.

./cluster-tool.sh status -s localhost:9410 -s localhost:9510 -s localhost:9910
+----------------------+--------------------------+----------------+
| Host:Port | Status | Cluster |
+----------------------+--------------------------+----------------+
localhost:9410	ACTIVE-COORDINATOR	tc-cluster
localhost:9510	UNKNOWN	UNKNOWN
localhost:9910	PASSIVE-STANDBY	tc-cluster
+----------------------+--------------------------+----------------+
Error (PARTIAL_FAILURE): Command completed with errors.

The "dump" Command

The dump command dumps the state of a cluster, or particular server(s) in the same or
different clusters. The dump of each server can be found in its logs.

Usage:
dump -n CLUSTER-NAME -s HOST[:PORT] [-s HOST[:PORT]]...
dump -s HOST[:PORT] [-s HOST[:PORT]]...

Parameters:

-n CLUSTER-NAME

The name of the configured cluster.

-s HOST[:PORT] [-s HOST[:PORT]]...

The host:port(s) or host(s) (default port being 9410) of running servers, each
specified using the -s option.

M
Odd Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 45

When provided with option -n, servers in the provided list will be sequentially
contacted for connectivity, and the command will be executed on the first reachable
server. Otherwise, the command will be individually executed on each server in the
list.

Examples

The example below shows the execution of a cluster-level dump command.
./cluster-tool.sh dump -n tc-cluster -s localhost:9910
Command completed successfully.

The example below shows the execution of a server-level dump command. No server
is running at localhost:9510, hence the dump failure.

./cluster-tool.sh dump -s localhost:9410 -s localhost:9510 -s localhost:9910
Dump successful for server at: localhost:9410
Connection refused from server at: localhost:9510
Dump successful for server at: localhost:9910
Error (PARTIAL_FAILURE): Command completed with errors.

The "stop" Command

The stop command stops the cluster, or particular server(s) in the same or different
clusters.

Usage:
stop -n CLUSTER-NAME -s HOST[:PORT] [-s HOST[:PORT]]...
stop -s HOST[:PORT] [-s HOST[:PORT]]...

Parameters:

-n CLUSTER-NAME

The name of the configured cluster.

-s HOST[:PORT] [-s HOST[:PORT]]...

The host:port(s) or host(s) (default port being 9410) of running servers, each
specified using the -s option.

When provided with the option -n, servers in the provided list will be sequentially
contacted for connectivity, and the command will be executed on the first reachable
server. Otherwise, the command will be individually executed on each server in the
list.

Examples

The example below shows the execution of a cluster-level stop command.
./cluster-tool.sh stop -n tc-cluster -s localhost
Command completed successfully.

The example below shows the execution of a server-level stop command. No server
is running at localhost:9510, hence the stop failure.

./cluster-tool.sh stop -s localhost:9410 -s localhost:9510 -s localhost:9910
Stop successful for server at: localhost:9410
Connection refused from server at: localhost:9510
Stop successful for server at: localhost:9910

M
Even Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 46

Error (PARTIAL_FAILURE): Command completed with errors.

The "ipwhitelist-reload" Command

The ipwhitelist-reload command reloads the IP whitelist on a cluster, or particular
server(s) in the same or different clusters. See the section “Securing TSA Access using a
Permied IP List” on page 65 for details.

Usage:
ipwhitelist-reload -n CLUSTER-NAME -s HOST[:PORT] [-s HOST[:PORT]]...
ipwhitelist-reload -s HOST[:PORT] [-s HOST[:PORT]]...

Parameters:

-n CLUSTER-NAMEThe name of the configured cluster.

-s HOST[:PORT] [-s HOST[:PORT]]...

The host:port(s) or host(s) (default port being 9410) of running servers, each
specified using the -s option.

When provided with the option -n, servers in the provided list will be sequentially
contacted for connectivity, and the command will be executed on the first reachable
server. Otherwise, the command will be individually executed on each server in the
list.

Examples

The example below shows the execution of a cluster-level ipwhitelist-reload
command.
./cluster-tool.sh ipwhitelist-reload -n tc-cluster -s localhost
IP white-list reload successful for server at: localhost:9410
IP white-list reload successful for server at: localhost:9610
IP white-list reload successful for server at: localhost:9710
IP white-list reload successful for server at: localhost:9910
Command completed successfully.

The example below shows the execution of a server-level ipwhitelist-reload
command. No server is running at localhost:9510, hence the IP whitelist reload
failure.
./cluster-tool.sh ipwhitelist-reload -s localhost:9410
 -s localhost:9510 -s localhost:9910
IP white-list reload successful for server at: localhost:9410
Connection refused from server at: localhost:9510
IP white-list reload successful for server at: localhost:9910
Error (PARTIAL_FAILURE): Command completed with errors.

The "backup" Command

The backup command takes a backup of the running Terracoa cluster.

Usage:
backup -n CLUSTER-NAME -s HOST[:PORT] [-s HOST[:PORT]]...

Parameters:

-n CLUSTER-NAME

M
Odd Header
Cluster Tool

Terracotta Server Administration Guide Version 10.2 47

The name of the configured cluster.

-s HOST[:PORT] [-s HOST[:PORT]]...

The host:port(s) or host(s) (default port being 9410) of running servers, each
specified using the -s option.

When provided with the option -n, servers in the provided list will be sequentially
contacted for connectivity, and the command will be executed on the first reachable
server. Otherwise, the command will be individually executed on each server in the
list.

Examples

The example below shows the execution of a cluster-level successful backup
command. Note that the server at localhost:9610 was unreachable.
./cluster-tool.sh backup -n tc-cluster -s localhost:9610 -s localhost:9410
PHASE 0: SETTING BACKUP NAME TO : 996e7e7a-5c67-49d0-905e-645365c5fe28
localhost:9610: TIMEOUT
localhost:9410: SUCCESS
localhost:9710: SUCCESS
localhost:9910: SUCCESS
PHASE (1/4): PREPARE_FOR_BACKUP
localhost:9610: TIMEOUT
localhost:9910: NOOP
localhost:9410: SUCCESS
localhost:9710: SUCCESS
PHASE (2/4): ENTER_ONLINE_BACKUP_MODE
localhost:9710: SUCCESS
localhost:9410: SUCCESS
PHASE (3/4): START_BACKUP
localhost:9710: SUCCESS
localhost:9410: SUCCESS
PHASE (4/4): EXIT_ONLINE_BACKUP_MODE
localhost:9710: SUCCESS
localhost:9410: SUCCESS
Command completed successfully.

The example below shows the execution of a cluster-level failed backup command.
./cluster-tool.sh backup -n tc-cluster -s localhost:9610
PHASE 0: SETTING BACKUP NAME TO : 93cdb93d-ad7c-42aa-9479-6efbdd452302
localhost:9610: SUCCESS
localhost:9410: SUCCESS
localhost:9710: SUCCESS
localhost:9910: SUCCESS
PHASE (1/4): PREPARE_FOR_BACKUP
localhost:9610: NOOP
localhost:9410: SUCCESS
localhost:9710: SUCCESS
localhost:9910: NOOP
PHASE (2/4): ENTER_ONLINE_BACKUP_MODE
localhost:9410: BACKUP_FAILURE
localhost:9710: SUCCESS
PHASE (CLEANUP): ABORT_BACKUP
localhost:9410: SUCCESS
localhost:9710: SUCCESS
Backup failed as some servers '[Server{name='server-1', host='localhost', port=9410},
 [Server{name='server-2', host='localhost', port=9710}]]',
 failed to enter online backup mode.

M
Even Header

Terracotta Server Administration Guide Version 10.2 48

M
Odd Header

Licensing

Terracotta Server Administration Guide Version 10.2 49

14 Licensing

This document describes the installation and update procedures for Terracoa Ehcache
and Terracoa DB licenses.

Installing a license

A Terracoa license is installed on a Terracoa cluster using the cluster tool configure
command, thereby enabling cluster configuration and license installation in one go. The
command ensures that:

The license is a valid Software AG license.

The license has not expired already.

The Terracoa configuration files do not violate the license.

The following example configures a Terracoa cluster using the license file
license.xml, the name tc-cluster, and the configuration file tc-config.xml.
cluster-tool.sh configure -l license.xml -n tc-cluster tc-config.xml
Command completed successfully.

See the section “Cluster Tool” on page 37 for a detailed explanation of the command
usage.

License expiration

License expiry checks are done every midnight (UTC time) to ensure that the license
in use did not expire. Midnight here is the time at the start of the day, i.e. '00:00' hours.
As an example, for a license which is valid till December 31, the midnight check on
December 31 will pass, but the check on January 1 midnight will fail, and license will be
deemed as expired. When a license expires, a warning message like the following will be
logged every 30 minutes in the server logs:
ATTENTION!! LICENSE expired. Time since expiry 1 day(s)

The license must be renewed within 7 days of expiry. If it is not done, the cluster will be
shut down with the following message in the server logs:
Shutting down the server as a new license is not installed within 7 days.

License renewal

If your license expires, a new license can be obtained by contacting Software AG
support. The new license can then be installed using the cluster tool reconfigure
command as follows:
cluster-tool.sh reconfigure -l license.xml -s localhost:9410
Command completed successfully.

See the section “Cluster Tool” on page 37 for a detailed explanation of the command
usage.

M
Even Header

Terracotta Server Administration Guide Version 10.2 50

M
Odd Header

Backup, Restore and Data Migration

Terracotta Server Administration Guide Version 10.2 51

15 Backup, Restore and Data Migration

■ Overview ... 52

■ Data Directory Structure .. 52

■ Online Backup .. 53

■ Offline Backup .. 55

■ Restore ... 55

■ Data Migration of Ehcache data .. 56

■ Technical Details .. 57

M
Even Header

Backup, Restore and Data Migration

Terracotta Server Administration Guide Version 10.2 52

Overview
The Backup and Restore feature enables you as an administrator of a Terracoa cluster
to take a backup of the cluster and restore it from the backed up data when required.

Terracoa supports two ways of taking a backup:

1. Online backup using the cluster-tool. This is the recommended method.

2. Manual offline backup

Restore and Ehcache data migration are manual offline processes.

Note: Migration of TCStore data is currently not supported.

When a passive server starts and discovers it has data, the data is
automatically backed up for safety reasons. However, this data is not cluster-
wide consistent, and must not be used for restoration. Refer to the topic
Passive servers in the section “Active and Passive Servers” on page 7 for more
information.

Terms

Backup and Restore : Taking a snapshot of the cluster data such that it can later be
installed back on the same cluster, bringing it back to the initial state.

Data Migration : Taking a snapshot of the cluster data, but installing it on a different cluster,
bringing it to the state of the original cluster. Data Migration is also desirable in cases
when only Ehcache data is needed, and not the platform data.

Data Directory Structure
Following is a sample data directory structure of a server containing Ehcache and
TCStore data:
/tmp/data1/
└── server-1
 ├── ehcache
 │ └── frs
 │ └── default-frs-container
 │ ├── default-cachedata
 │ │ ├── FRS.lck
 │ │ ├── frs.backup.lck
 │ │ └── seg000000000.frs
 │ └── metadata
 │ ├── FRS.lck
 │ ├── frs.backup.lck
 │ └── seg000000000.frs
 ├── platform-data
 │ ├── entityData
 │ │ ├── FRS.lck
 │ │ ├── frs.backup.lck

M
Odd Header

Backup, Restore and Data Migration

Terracotta Server Administration Guide Version 10.2 53

 │ │ ├── seg000000000.frs
 │ │ └── seg000000001.frs
 │ └── transactionsData
 │ ├── FRS.lck
 │ ├── frs.backup.lck
 │ ├── seg000000000.frs
 │ └── seg000000001.frs
 └── store
 ├── data
 │ ├── FRS.lck
 │ ├── frs.backup.lck
 │ └── seg000000000.frs
 └── meta
 ├── FRS.lck
 ├── frs.backup.lck
 └── seg000000000.frs

where:

1. /tmp/data1 is the data directory path (for a given data directory) defined in the
server configuration file

2. server-1 is the server name defined in the server configuration file

3. ehcache is the directory containing Ehcache data

4. platform-data is the directory containing platform specific logs

5. store is the directory containing TCStore data

Online Backup
Online backup of a Terracoa cluster is performed by the cluster-tool, and is the
recommended method to take a backup. The following section describes the online
backup feature and the process:

Configuring the Backup feature

To allow the server to use the Backup feature, ensure that you have set up the <backup-
restore> and <backup-location> elements in the server configuration file, as shown
in the following snippet:
<tc-config>
 <plugins>
 ...
 <service>
 <backup-restore xmlns="http://www.terracottatech.com/config/backup-restore">
 <backup-location path="/path/to/backup/dir" />
 </backup-restore>
 </service>
 ...
 </plugins>
 ...
</tc-config>

The path in the <backup-location> element can be absolute, or relative to the directory
where the configuration file is located. If the directory specified by the backup location
path is not present, it will be created during backup.

M
Even Header

Backup, Restore and Data Migration

Terracotta Server Administration Guide Version 10.2 54

Prerequisites

Before proceeding with the online backup, ensure that:

1. At least one server in each stripe is up and running.

2. The servers have read and write permissions to the backup location.

3. Backup location has enough space available to store the backup data.

4. cluster-tool has fast connectivity to all the servers and the cluster is not heavily
loaded with application requests.

Taking an online Backup

A backup is taken using the cluster-tool. Visit “Cluster Tool” on page 37 for details on
the backup command. If the backup fails for some reason, you can check the server logs
for failure messages. Additionally, running the backup command using the -v (verbose)
option might help.

Backup directory structure

The following diagram shows an example of the directory structure that results from a
backup:
/tmp/backup1/
└── 7c868f83-5075-4b32-bef5-56f29fdcc6f0
 └── stripe0
 └── server-1
 └── datadir
 ├── ehcache
 │ └── frs
 │ └── default-frs-container
 │ ├── default-cachedata
 │ │ └── seg000000000.frs
 │ └── metadata
 │ └── seg000000000.frs
 ├── platform-data
 │ ├── entityData
 │ │ ├── seg000000000.frs
 │ │ └── seg000000001.frs
 │ └── transactionsData
 │ ├── seg000000000.frs
 │ └── seg000000001.frs
 └── store
 ├── data
 │ └── seg000000000.frs
 └── meta
 └── seg000000000.frs

where:

1. /tmp/backup1/ is the backup location defined in the configuration file

2. 7c868f83-5075-4b32-bef5-56f29fdcc6f0 is an ID created by the backup
command to uniquely identify a backup instance

3. stripe0 is the stripe sequence in the cluster

M
Odd Header

Backup, Restore and Data Migration

Terracotta Server Administration Guide Version 10.2 55

4. server-1 is the server name defined in the server configuration file

5. datadir is the data directory name (for a given data directory) defined in the server
configuration file

Offline Backup
In the rare scenario when an online backup cannot be taken, an offline backup can be
taken. The process is described as follows:

Taking an offline Backup

Follow the steps in the specified order to back up cluster data:

1. Shut down the cluster, while taking a note of the current active servers.

2. Copy the contents of the required data directories of all the servers which were
actives prior to the shutdown to a desired location.

3. Name the directories in the manner described in the “Backup directory structure” on
page 54 section above. Although this step is optional, it helps identify different
instances of backup, and keeps the restore steps consistent for online and offline
backup procedures.

4. Save the configuration files as well. These files will be used to start the stripes after a
restore is performed.

Restore
The restore operation is a manual operation. During the Restore operation, you use
standard operating system mechanisms to copy the complete structure (directories,
subdirectories and files) of the backup into the original location. Some small structural
and/or naming changes are required in the restored directories after the copy, as
described in the sections below.

Note: Restoring cache data will bring back cache entries which might have become
stale by the time a restore is finished.

Performing a Restore

Before you start the Restore operation, ensure that all activity has stopped on the cluster
and that the cluster is not running.

If you compare the structure of the backup under /tmp/backup1 with the original
structure under /tmp/data1 (see both structural diagrams above), you will see some
differences. You will also see that this is a single stripe cluster. Therefore, when you copy
the /tmp/backup1/<backup-name> directory structure back to /tmp/data1, you need to
make the following changes:

M
Even Header

Backup, Restore and Data Migration

Terracotta Server Administration Guide Version 10.2 56

1. First choose a server as the active server for your stripe.

2. Note down the name aribute of that server in the configuration file. If there is no
name aribute, skip step 4 mentioned below.

3. Create an empty directory for each path specified by the data directory in your
configuration file. This will be the target directory for your restored data. Repeat this
step for every data directory path specified in your configuration file.

4. If the name aribute for this server is specified, create a sub-directory with the name
of the server under the data directories created above. For example, if the name
aribute is server-2 for the chosen active server for this stripe and the location
specified for the data directory datadir is /tmp/data1, your target directory should
look like /tmp/data1/server-2.

5. From the backup, copy the contents of <stripe-id>/<server-name>/<data-
directory> to this newly created directory. For example, in the example given
above, copy from /tmp/backup1/<backup-name>/stripe0/server-1/data to /
tmp/data1/server-2.

6. Start the server with the newly created data directory with the configuration file
which was backed up from the original cluster.

7. You can now bring up the passive servers in the stripe. Please note that you don't
need to copy the backup data to the passive servers as they will automatically
receive the data when they synchronize with the active server. It is advisable to
remove any old data on the passive servers before you bring up the passive servers.

8. Repeat the above steps for other stripes in the cluster.

Data Migration of Ehcache data

Note: As noted above, data migration is currently not available for TCStore data.

Data migration can be performed to move Ehcache data to a new cluster without
moving the platform data. Please note that only restartable caches contained in a
restartable cache manager can be recovered. Since the data migration works at the data
directory level, all the data of all restartable cache managers that use the same data
directory will be recovered together.

How to perform an offline data migration

Follow the steps in the specified order to perform a migration of cluster data:

1. Shut down the source cluster and copy the contents of all ehcache directories from
all required data directories of all active servers in the cluster. You can skip copying
data directories containing restartable cache managers that you do not wish to
migrate.

2. Start the target cluster (you can just start the active servers at this time) with the
same number of stripes as the source cluster. Create the desired cache manager

M
Odd Header

Backup, Restore and Data Migration

Terracotta Server Administration Guide Version 10.2 57

configuration using a client. The cluster URI (including the cluster tier manager
name for the cache manager) can be different in the new cluster. If the name
part of the URI is different, specify the old name as the restart identifier when
using the cache manager configuration API, so that the system can map the data
corresponding to a given cache manager correctly. If there are more than one cache
managers under the same data directory, use the configuration API to create all the
cache managers in the target cluster.

For related information, see the section Fast Restartability of the Ehcache API Developer
Guide.

3. Shut down the target cluster and copy the data to the matching data directories. The
data directory paths can be different on the target cluster, but must have sufficient
space to contain the data being copied over.

4. Once the data is available in all the stripes, you can start the target cluster. It now
loads all the cache data that was moved from the source cluster.

Technical Details
Causal and Sequential Consistency across stripes

Since TCStore and Ehcache support only causal consistency (per key) and sequential
consistency (across keys for a single thread of execution), the backup image across the
cluster (be it single stripe or multi-stripe) must be consistent cluster wide for the point-
in-time when the backup was taken.

For instance, suppose a single thread of execution from a single client synchronously
made changes to keys A, then B, then C and then D in that order. Now if the backup was
captured when the client had made changes to C, intuitively the backup MUST have all
the previous changes made to A and B, regardless of the stripe where those mutations
occurred. Thus on a restore of this point-in-time backup, if the restored data has C, then
it MUST contain the changes made to A and B. Of course, it is to be expected that such
a restoration may have permanently lost D, due to the point-in-time nature of restoring
from backups.

As another example, say a system had long keys from 1 to 1000 and mutated them one
by one exactly in that order. If the backup had 888 as the largest key, then all keys from 1
to 887 MUST also exist in the backup.

Causal consistency (per key) is always implied, as a key is always within a stripe. The
backup taken must be consistent for a point in time snapshot, which implies that when a
snapshot is taken, all mutations/changes that happen in the system AFTER the snapshot
is taken MUST not reflect in the backup.

Consistency of multiple FRS logs within a stripe

Since platform data is also backed up, there are at least two FRS logs that needs to be
backed up in a consistent fashion even within a single stripe.

M
Even Header

Terracotta Server Administration Guide Version 10.2 58

M
Odd Header

Restarting a Stripe

Terracotta Server Administration Guide Version 10.2 59

16 Restarting a Stripe

Restart behavior is closely related to failover, but the difference is that the interruption
period is typically much longer. A restart waits for the server to return instead of
waiting for a new active server to be elected.

Unless a timeout is set, the time the clients will wait for the server to return is indefinite.

Note that a stripe can be both restartable and possess high-availability, if it is configured
for restart support but also contains multiple servers. In this case, failover will progress
as normal unless the entire stripe is taken offline.

Comparison with failover

The process of a client reconnecting to a restarted server is very similar to a newly-
promoted active server after a fail-over. Both scenarios involve the clients reconnecting
to re-send their in-flight transactions. Also, both will progress as normal once all clients
have reconnected or the reconnect window closes.

The primary difference is that restart only requires one server, whereas high-availability
requires at least two.

M
Even Header

Terracotta Server Administration Guide Version 10.2 60

M
Odd Header

The Terracotta Configuration File

Terracotta Server Administration Guide Version 10.2 61

17 The Terracotta Configuration File

This document describes the elements of the Terracoa configuration file, which is an
XML-formaed file named tc-config.xml by default.

This file serves to configure all the members of a single Terracoa Server Array (TSA)
stripe. Refer to the section “Cluster Architecture” on page 5 for details on various
different TSA topologies.

You can use a sample configuration file provided in the kit as the basis for your
Terracoa configuration. Some samples have inline comments describing the
configuration elements. Be sure to start with a clean file for your configuration.

Explanation of Configuration Sections

The Terracoa configuration file is divided into several main, unordered sections. For
general configuration purposes, the most relevant sections are:

Section Description

Servers The servers section defines all the servers which will make up this
stripe of a cluster. High-availability is enabled by configuring and
running at least 2 servers in this stripe. Note that there is no explicit
configuration of which server takes an active or passive role, as that
may change over the lifetime of the cluster.

Each server element in the servers section is identified by a name
given by the name aribute:

<server ... name="ServerName">

To start the server with the name "ServerName", you pass the
option -n ServerName to the start script. Refer to the section
“Starting and Stopping the Terracoa Server” on page 23 for more
details.

Plugins The plugins section extends the capabilities of the listed servers
by (1) registering and configuring additional services made
available to those servers, and (2) providing general configuration
information made available to all services.

The use of extension points is required for the server to work with
your application end-points.

Refer to the section “Configuring the Terracoa Server” on page 27
for concrete examples.

M
Even Header

The Terracotta Configuration File

Terracotta Server Administration Guide Version 10.2 62

Section Description

Properties The tc-properties section exposes a list of key-value pairs to
further customize the behavior of the cluster. Note that this section
is normally empty.

Simple Configuration Sample

This is an example of a very simple server configuration file.
<tc-config xmlns="http://www.terracotta.org/config">
 <servers>
 <server host="localhost" name="testServer0">
 <logs>terracotta-kit-test/testServer0/logs</logs>
 <tsa-port>26270</tsa-port>
 <tsa-group-port>26271</tsa-group-port>
 </server>
 </servers>
</tc-config>

This shows the key components of a standard configuration but describes only a single
server with no extension points used.

Key points:

Configuration namespace: “hp://www.terracoa.org/config”.

Only a single server with name testServer0.

Server name is important as it is used when starting a server so it knows which
server it is.

localhost should be replaced with the actual fully-qualified hostname or IP
address of the server, in a real deployment.

Note: Using localhost as hostname will not work correctly if clients and
operator console are connecting from other hosts, since the configured
hostname is sent to clients and other members of the stripe as the
authoritative hostname to reach this server.

A relative path to a logs directory is given.

All relative paths are with respect to the location of the containing configuration
file.

The tsa-port is the port that clients will use when connecting to the server (default:
9410).

The tsa-group-port is for inter-server communication among stripe members, even
though there are no other servers in this case (default: 9530).

Neither restartability nor failover would be possible with the above sample
configuration, as restart support requires an extension point which provides that
capability, and failover requires at least 2 servers in the cluster.

http://www.terracotta.org/config

M
Odd Header

The Terracotta Configuration File

Terracotta Server Administration Guide Version 10.2 63

Parameter Substitution

Parameter substitution provides a way to substitute variables with pre-defined system
properties in the Terracoa Server configuration file. Thus, a significant number of
fields can be intelligently populated based on machine specific properties. Parameter
substitution is most commonly done for hostname, IP address and directory path
substitutions.

The following predefined substitutions are available for use:

Parameter Description

%h the fully-qualified host name

%i the IP address

%H the user's home directory

%n the username

%o the operating system name

%a the processor architecture

%v the operating system version

%t the temporary directory (on Linux or Solaris, e.g., /tmp)

%(property) the Java system property of the JVM (e.g. %(java.home),
%(logs.path))

%D the time stamp (yyyyMMddHHmmssSSS)

These parameters can be used where appropriate, including for elements or aributes
that expect strings or paths for values:

the name, host and bind aributes of the <server> element

the logs child element of the <server> element

data-roots

Important: Be careful when you specify substitution parameters in the host aribute
of the <server> element in tc-config. If multiple servers from the same
stripe containing substitution parameters in host are started on different
hosts, they will not be able to communicate with each other since each host

M
Even Header

The Terracotta Configuration File

Terracotta Server Administration Guide Version 10.2 64

substitutes the parameter based on its own host name. Similarly, tools like
the cluster tool will not be able to connect to the servers, as they don't know
which host the server is running on.

Note: The variable %i is expanded into a value determined by the host's networking
setup. In many cases that setup is in a hosts file containing mappings
that may influence the value of %i. Test this variable in your production
environment to check the value it interpolates.

M
Odd Header

Securing TSA Access using a Permitted IP List

Terracotta Server Administration Guide Version 10.2 65

18 Securing TSA Access using a Permitted IP List

Overview

The IP whitelisting feature enables you as the cluster administrator to ensure that only
clients from certain explicitly named IP addresses can access the TSA. You can use this
feature, for example, to secure the TSA from malicious clients aempting to connect to
the TSA. The term "clients" here refers to TSA Clients communicating using the TSA
wire protocol.

Note: It should be understood that usage of this feature in itself does not provide
a strong level of security for the TSA. The ideal way to enforce connection
restrictions based on IP addresses would be to use host-level firewalls.

Terracoa servers also support SSL/TLS based security. For more information on seing
up SSL/TLS based security in a Terracoa cluster, see the section “SSL/TLS Security
Configuration in Terracoa” on page 69

Whitelist file

A whitelist file is a plain-text file containing a list of IPs, such that only the clients
running on these IPs are allowed to access the TSA. The server IPs specified in the tc-
config, and the localhost IPs of the server are always whitelisted. An empty whitelist file
has the semantics of black-listing all the IPs, except the IPs fetched from the tc-config,
and those corresponding to localhost.

The following rules need to be followed for a whitelist file to be considered valid, and
the entries in it to be parsed properly:

1. The whitelist file must be named "whitelist.txt".

2. The file must be kept under a security root directory such that the user account
running the Terracoa server has read permissions to it. For more information on
using a security root directory, see the section Security root directory in “SSL/TLS
Security Configuration in Terracoa” on page 69.

3. The entries can be IP addresses, or CIDR notations (to represent IP ranges). Any
entry that is not a valid IP address or a valid CIDR will be ignored.

4. Each line in the file can contain either a single IP address or a comma-separated list
of IP addresses.

5. Lines beginning with # are considered as comments, and are ignored during parsing.

6. Blank lines are ignored as well.

The following is an example of a valid whitelist file:
whitelist for Terracotta cluster
Caching clients
192.168.5.28, 192.168.5.29, 192.168.5.30

M
Even Header

Securing TSA Access using a Permitted IP List

Terracotta Server Administration Guide Version 10.2 66

10.60.98.0/28
Other clients
192.168.10.0/24

Usage

To allow the Terracoa cluster to use the whitelisting feature, the tc-config file must be
supplemented with <security-root-directory> and <whitelist> tags under the
<security> element, as in the following snippet:
<plugins>
...
 <service>
 <security xmlns="http://www.terracottatech.com/config/security">
 <security-root-directory>/path/to/security-root-directory</security-root-directory>
 <whitelist/>
 </security>
 </service>
</plugins>
...

The path in the <security-root-directory> element can be absolute, or relative to
the directory where the tc-config file is located. If the whitelist file is not found at the
specified location, or there is an error reading the file, the server startup will fail with an
appropriate error message.

If hostnames are used in the tc-config entries instead of IPs, the server will aempt to
resolve these hostnames to IPs. If the resolution fails, the server startup will fail with an
appropriate error message. Note that hostname resolution is done for tc-config files only,
and any hostnames present inside the whitelist file will be ignored.

A multi-stripe cluster should be started with the same file, or identical copies of the
whitelist file. Similarly, when updates to the file are desired, they should be performed
on all the stripes, as described in the following section.

Dynamic updates

After a cluster is started with whitelisting enabled, entries can be dynamically added
or removed from the whitelist file without the need for server restarts. To perform a
dynamic update, edit the whitelist file as needed, and run the ipwhitelist-reload
cluster-tool command to notify the servers in the cluster to reload the whitelist file. Refer
to the section “Cluster Tool” on page 37 for details of the usage.

Errors during whitelist reload, if any, are logged in individual Terracoa Server logs.
Thus, after every update operation, server logs should be checked to verify that the
updates took effect in all the servers.

If a cluster is not yet configured and the whitelist file needs to be reloaded on the
servers, the server-level ipwhitelist-reload command can be used. It also comes
in handy when the machine from where the cluster tool is to be used is itself not
whitelisted initially. In this scenario, adding this machine's IP in the whitelist file, and
running the server-level ipwhitelist-reload command will ensure that cluster tool
can configure the cluster later.

If any failures happen while reading the whitelist and the tc-config files during a
dynamic update, the updates will be ignored and the server will continue with the

M
Odd Header

Securing TSA Access using a Permitted IP List

Terracotta Server Administration Guide Version 10.2 67

current whitelist. No partial updates will be applied. The update will not be retried,
and the ipwhitelist-reload command will have to be run again after resolving the
problems.

Connection Behaviour

When a client connects to a server on the tsa-port, the server accepts the socket
connection, and verifies if the IP in the incoming client connection is whitelisted. If it
finds that the client IP is not whitelisted, it closes the socket connection.

If a whitelisted client is removed from the whitelist via a dynamic update, it will
remain connected to the cluster as long as there is no network disconnection or explicit
connection closure from the client. Subsequent connection aempts from the client to
cluster will fail.

M
Even Header

Terracotta Server Administration Guide Version 10.2 68

M
Odd Header

SSL/TLS Security Configuration in Terracotta

Terracotta Server Administration Guide Version 10.2 69

19 SSL/TLS Security Configuration in Terracotta

Terracoa supports the following modes of security:

1. SSL/TLS-based: Secures the entire cluster with encrypted connections using Transport
Layer Security (TLS) protocol (formerly known as Secure Sockets Layer (SSL)
Protocol), and provides two-way verification of the identities of the two hosts
involved in the communication. This includes securing communication across the
servers in the cluster, as well as between clients and the cluster.

2. IP whitelist based: Allows you to ensure that only clients from known IP addresses can
access the TSA.

This document assumes a good understanding of SSL/TLS fundamentals, and only
describes SSL/TLS security configuration in Terracoa. For information on IP whitelist
based security, see the section “Securing TSA Access using a Permied IP List” on
page 65.

Security root directory

To configure SSL/TLS security, each client and server must have a security root
directory. It is the central place for certificates, and other security-related files.

Important: Certificates must be created using the RSA algorithm, preferably with a key
size of 4096.

The security root directory, and the files and directories contained in it should be
readable by the respective client or server process.

If IP whitelisting based security is needed, this directory should contain a single plain-
text file named whitelist.txt.

If SSL/TLS based security is needed, this directory should contain the following two sub-
directories as explained below:

identity: contains keystore files with this host's private key and the host's
certificate. This directory should only be readable by users who are authorized to
run the respective Terracoa client or server.

trusted-authority: contains truststore files with certificates trusted by this host.

Important: Ensure that the identity directory is readable only by users who are
authorized to run the respective Terracoa client or server.

Certificate generation

Keystore rules

M
Even Header

SSL/TLS Security Configuration in Terracotta

Terracotta Server Administration Guide Version 10.2 70

Keystores can be generated in any way desirable, and placed in the identity directory, as
long as the following rules are followed:

Keystore must be of type jks.

Keystore filename must be in ${common name}-${yyyyMMddThhmmss}.jks format
(e.g. com.organization.host-20180223T102319.jks). yyyyMMddThhmmss should
represent the time of creation (timestamp) of the file. When multiple keystores are
present, the keystore with the latest timestamp will be used.

Keystore must have only one terracotta_security_alias entry, and it should
contain a private key and the host's certificate.

Common Name field in the Distinguished Name in the host's certificate must match
the host name and the common name fragment in the keystore filename.

Private key and the host's certificate must be within its period of validity.

Password for the keystore and the terracotta_security_alias store entry must
be terracotta_security_password.

Certificate must be created using the RSA algorithm, preferably with a key size of
4096.

Truststore rules

Similarly, truststores could be generated in any way desirable, and placed in the
trusted-authority directory, as long as the following rules are followed:

Truststore must be of type jks.

Truststore filename must be in trusted-authority-${yyyyMMddThhmmss}.jks
format (e.g. trusted-authority-20180223T102319.jks). When multiple
truststores are present, all the truststores will be used.

Truststore must have only one terracotta_security_alias entry, and it should
contain a trusted certificate.

Trusted certificate must be within its period of validity.

Password for the truststore must be terracotta_security_password.

Certificate must be created using the RSA algorithm, preferably with a key size of
4096.

Certificate rotation

If the certificates expire or get compromised, they must be rotated. Following are the
different ways of rotating them:

Certificate rotation with cluster shutdown

The followed steps need to be performed in order:

1. Generate new keystore and truststore files following the rules mentioned in the
Keystore rules and Truststore rules topics above.

M
Odd Header

SSL/TLS Security Configuration in Terracotta

Terracotta Server Administration Guide Version 10.2 71

2. Shut down all the servers and clients.

3. Replace the old keystores and truststores with the new keystores and truststores in
the corresponding identity and trusted-authority directories of each client and
server.

4. Start all the servers and the clients for the new certificates to take effect.

The above sequence has the advantage that it is simple to perform, with the drawback of
requiring the entire cluster and the clients to be restarted.

Certificate rotation with rolling restarts

The followed steps need to be performed in order:

1. Generate new keystore and truststore files following the rules mentioned in the
Keystore rules and Truststore rules topics above.

2. Deploy new truststores in corresponding trusted-authority directories of each
client and server.

3. Restart all the passive servers and clients. Once the passive servers reach PASSIVE-
STANDBY status, restart all the active servers.

4. Replace old keystores with the new keystores in corresponding identity directories
of each client and server.

5. Restart all the passive servers and clients. Once the passive servers reach PASSIVE-
STANDBY status, restart all the active servers.

6. Delete old truststores from corresponding trusted-authority directories of each
client and server.

7. Restart all the passive servers and clients. Once the passive servers reach PASSIVE-
STANDBY status, restart all the active servers.

The above sequence has the advantage that it does not require cluster downtime, with
the drawback of having a significant number of steps.

Changes needed to enable security

Once the required security root directories are created, they can be used to enable SSL/
TLS connections. The following examples illustrate how to do it on the server and
different Terracoa clients:

Terracoa Server

The following are examples of additions to Terracoa configuration file(s) that need to
be made in different security configurations:

1. When only SSL/TLS based security is needed:
<service>
 <security xmlns="http://www.terracottatech.com/config/security">
 <security-root-directory>/path/to/security-root-directory
 </security-root-directory>
 <ssl-tls/>
 </security>

M
Even Header

SSL/TLS Security Configuration in Terracotta

Terracotta Server Administration Guide Version 10.2 72

</service>

1. When both SSL/TLS and IP whitelist based security are needed:
<service>
 <security xmlns="http://www.terracottatech.com/config/security">
 <security-root-directory>/path/to/security-root-directory
 </security-root-directory>
 <ssl-tls/>
 <whitelist/>
 </security>
</service>

1. When only IP whitelist based security is needed:
<service>
 <security xmlns="http://www.terracottatech.com/config/security">
 <security-root-directory>/path/to/security-root-directory
 </security-root-directory>
 <whitelist/>
 </security>
</service>

Cluster tool

To enable the cluster tool to connect to a secure cluster, each cluster tool command must
be prefixed with -srd (or long option --security-root-directory) as in the following
example:
./cluster-tool.sh -srd /path/to/security-root-directory
 configure -l ~/license.xml
 -n tc-cluster ~/tc-config-stripe-1.xml ~/tc-config-stripe-2.xml
Configuration successful
License installation successful
Command completed successfully.

Aempting to connect to a secure cluster without the -srd option will fail. Commands
without this option retain their behavior. For more information on cluster tool
commands, see “Cluster Tool” on page 37.

Ehcache Client

An Ehcache client can define either an XML or a programmatic configuration, both of
which support security configuration. The following are the examples of usages of each:

1. API Example
PersistentCacheManager cacheManager = CacheManagerBuilder
 .newCacheManagerBuilder()
 .with(EnterpriseClusteringServiceConfigurationBuilder.
 enterpriseSecureCluster(connectionURI, securityRootDirectoryPath) (1)
 .autoCreate())
 .build(true);

1 EnterpriseClusteringServiceConfigurationBuilder
enterpriseSecureCluster(URI, Path) lets you create a
CacheManager using a secure connection. The first argument is the
URI of the Terracoa cluster, appended with the CacheManager
name. The second argument is the path to the client's security root
directory. The EnterpriseClusteringServiceConfigurationBuilder

M
Odd Header

SSL/TLS Security Configuration in Terracotta

Terracotta Server Administration Guide Version 10.2 73

enterpriseCluster(URI) API continues to provide unsecured
connections to unsecured clusters.

2. XML Example
<ehcache:config
 xmlns:ehcache="http://www.ehcache.org/v3"
 xmlns:tc="http://www.terracottatech.com/v3/terracotta/ehcache">
 <ehcache:service>
 <tc:cluster>
 <tc:connection url="${cluster-uri}/CM"
 security-root-directory="${security-root-directory}"/> (1)
 <tc:server-side-config auto-create="true"/>
 </tc:cluster>
 </ehcache:service>
</ehcache:config>

1 security-root-directory lets you specify the path to the client's
security root directory. Not passing this option retains the behavior of
communicating with an unsecured cluster.

TC Store Client
DatasetManager datasetManager =
 DatasetManager.secureClustered(connectionURI, securityRootDirectoryPath) (1)
 .build();

1 DatasetManager.secureClustered(URI, Path) lets you create a
DatasetManager using a secure connection. The first argument is the
URI of the Terracoa cluster. The second argument is the path to the
security root directory which is to be used for the connection. The
DatasetManager.clustered(URI) API continues to provide unsecured
connections to unsecured clusters.

Terracoa Management Console

For information on configuring SSL/TLS based security, see the topic Security in the
section Geing Started with the Terracoa Management Console in the Terracoa Management
and Monitoring guide.

M
Even Header

Terracotta Server Administration Guide Version 10.2 74

M
Odd Header

SSL/TLS Troubleshooting guide

Terracotta Server Administration Guide Version 10.2 75

20 SSL/TLS Troubleshooting guide

This document provides a list of the most commonly seen problems related to “SSL/TLS
Security Configuration in Terracoa” on page 69, and their solutions:

Problem category: Host fails to start

This section describes the most commonly seen problems related to a host (server or a
client) startup.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
configured security-root-directory /path/to/security-root-directory
does not exist

Diagnosis

The specified security root directory does not exist.

Action

Make sure that the directory exists and contains identity and trusted-authority
directories with valid keystores and truststores in them.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
identity directory doesn't exist in configured
security-root-directory /path/to/security-root-directory

Diagnosis

The specified security root directory does not contain an identity directory.

Action

Make sure that the directory exists inside the security root directory and contains valid
keystores.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
trusted-authority directory doesn't exist in configured
security-root-directory /path/to/security-root-directory

Diagnosis

M
Even Header

SSL/TLS Troubleshooting guide

Terracotta Server Administration Guide Version 10.2 76

The specified security root directory does not contain a trusted-authority directory.

Action

Make sure that the directory exists inside the security root directory and contains valid
truststores.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No acceptable keystore files found in identity directory
/path/to/security-root-directory/identity

Diagnosis

Either of:

identity directory does not contain any keystores.

identity directory contains keystores, but their file names are not
in the format ${common name}-${yyyyMMddThhmmss}.jks (e.g.
com.organization.host-20180223T102319.jks).

Action

Make sure that identity directory contains keystores which follow the “Keystore
Rules” on page 69.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No acceptable truststore files found in trusted-authority directory
/path/to/security-root-directory/trusted-authority

Diagnosis

Either of:

trusted-authority directory does not contain any truststores.

trusted-authority directory contains truststores, but their file names are not
in the format ${common name}-${yyyyMMddThhmmss}.jks (e.g. trusted-
authority-20180223T102319.jks).

Action

Make sure that trusted-authority directory contains truststores which follow the
“Keystore Rules” on page 69.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Tried to use the password terracotta_security_password to load the

M
Odd Header

SSL/TLS Troubleshooting guide

Terracotta Server Administration Guide Version 10.2 77

keystore file
/path/to/security-root-directory/identity/com.organization.host-20180131T120830.jks
but that failed

Diagnosis

Latest keystore file does not have terracotta_security_password as its password,
where latest keystore file is the keystore file with the latest timestamp string in
the filename (e.g., host-20180131T120830.jks is considered newer than both
host-20170131T120830.jks and host-20180131T120822.jks).

Action

Make sure the keystores follow the “Keystore Rules” on page 69.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Tried to use the password terracotta_security_password to read the
keystore entry with alias terracotta_security_alias in the keystore
file
/path/to/security-root-directory/identity/com.organization.host-20180131T120830.jks
but that failed

Diagnosis

Latest keystore file does not have terracotta_security_password as
terracotta_security_alias entry password, where latest keystore file is the keystore
file with the latest timestamp string in the filename (e.g., host-20180131T120830.jks
is considered newer than both host-20170131T120830.jks and
host-20180131T120822.jks).

Action

Make sure the keystores follow the “Keystore Rules” on page 69.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Unable to find required private key/certificate chain entry using
alias terracotta_security_alias in keystore file
/path/to/security-root-directory/identity/com.organization.host-20180131T120830.jks

Diagnosis

Latest keystore file does not have terracotta_security_alias as certificate
alias, where latest keystore file is the keystore file with the latest timestamp string
in the filename (e.g., host-20180131T120830.jks is considered newer than both
host-20170131T120830.jks and host-20180131T120822.jks).

Action

Make sure the keystores follow the “Keystore Rules” on page 69.

Symptom

M
Even Header

SSL/TLS Troubleshooting guide

Terracotta Server Administration Guide Version 10.2 78

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Certificate in keystore file
/path/to/security-root-directory/identity/com.organization.host-20180131T120830.jks
is expired

Diagnosis

Latest keystore file contains an expired certificate, where latest keystore file is the keystore
file with the latest timestamp string in the filename (e.g., host-20180131T120830.jks
is considered newer than both host-20170131T120830.jks and
host-20180131T120822.jks).

Action

Make sure the keystores follow the “Keystore Rules” on page 69.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Certificate in keystore file
/path/to/security-root-directory/identity/com.organization.host-20180131T120830.jks
is not valid yet

Diagnosis

Latest keystore file contains a certificate with a future start date, where
latest keystore file is the keystore file with the latest timestamp string in the
filename (e.g., host-20180131T120830.jks is considered newer than both
host-20170131T120830.jks and host-20180131T120822.jks).

Action

Make sure the keystores follow the “Keystore Rules” on page 69.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
The common name org.host of the certificate that was loaded from
keystore file
/path/to/security-root-directory/identity/com.organization.host-20180131T120830.jks
doesn't match the common name com.organization.host in the filename
com.organization.host-20180131T120830.jks

Diagnosis

Common Name field in the Distinguished Name in the host's certificate does not match
the common name fragment in the latest keystore filename.

Action

Make sure the keystores follow the “Keystore Rules” on page 69.

M
Odd Header

SSL/TLS Troubleshooting guide

Terracotta Server Administration Guide Version 10.2 79

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No valid trusted certificates found in trusted-authority directory
/path/to/security-root-directory/trusted-authority; Unable to find
required trusted certificate entry using alias
terracotta_security_alias in truststore file
/path/to/security-root-directory/trusted-authority/trusted-authority-20180131T120832.jks

Diagnosis

No valid truststores were found. The specific truststore reported in the
Exception message contains a certificate which uses an alias other than
terracotta_security_alias. Note that this Exception can be followed by one or more
Suppressed Exceptions that can indicate why other truststores could not be used.

Action

Make sure the truststores follow the “Truststore rules” on page 70.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No valid trusted certificates found in trusted-authority directory
/path/to/security-root-directory/trusted-authority; Certificate in
truststore file
/path/to/security-root-directory/trusted-authority/trusted-authority-20180131T120834.jks
is expired

Diagnosis

No valid truststores were found. The specific truststore reported in the Exception
message contains an expired certificate. Note that this Exception can be followed by
one or more Suppressed Exceptions that can indicate why other truststores could not be
used.

Action

Make sure the truststores follow the “Truststore rules” on page 70.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No valid trusted certificates found in trusted-authority directory
/path/to/security-root-directory/trusted-authority; Certificate in
truststore file
/path/to/security-root-directory/trusted-authority/trusted-authority-20180131T120834.jks
is not valid yet

Diagnosis

No valid truststores were found. The specific truststore reported in the Exception
message contains a certificate with a future start date. Note that this Exception can be

M
Even Header

SSL/TLS Troubleshooting guide

Terracotta Server Administration Guide Version 10.2 80

followed by one or more Suppressed Exceptions that can indicate why other truststores
could not be used.

Action

Make sure the truststores follow the “Truststore rules” on page 70.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
No valid trusted certificates found in trusted-authority directory
security-root-client\trusted-authority; Tried to use the password
terracotta_security_password to load the truststore file
security-root-client\trusted-authority\trusted-authority-20180131T120832.jks
but that failed

Diagnosis

No valid truststores were found. The specific truststore reported in the Exception
message does not have terracotta_security_password as its password. Note that this
Exception can be followed by one or more Suppressed Exceptions that can indicate why
other truststores could not be used.

Action

Make sure the truststores follow the “Truststore rules” on page 70.

Symptom

Host fails to start with an Exception message similar to:
java.lang.RuntimeException:
com.terracottatech.security.common.exception.SecurityConfigurationException:
Unable to validate certificate chain with alias
terracotta_security_alias in keystore file
/path/to/security-root-directory/identity/com.organization.host-20180131T120830.jks
using truststore file(s)

Diagnosis

Host certificate in latest keystore file is not signed by any of the known trusted
authorities, and thus cannot be validated by any of the truststore files. Latest
keystore file here is the keystore file with the latest timestamp string in the
filename (e.g., host-20180131T120830.jks is considered newer than both
host-20170131T120830.jks and host-20180131T120822.jks).

Action

Make sure that the latest keystore file contained in the identity directory is signed by the
truststores in the trusted-authority directory.

Problem category: Connection fails to establish

Symptom
org.terracotta.connection.ConnectionException:
com.terracottatech.connection.ProbableSecurityConfigurationException:
Handshake with server failed when this client tried to initiate a

M
Odd Header

SSL/TLS Troubleshooting guide

Terracotta Server Administration Guide Version 10.2 81

non-secure connection. Possible reason: server is running with
security enabled.

Diagnosis

The client which tried to establish a connection to a server running with SSL/TLS
configuration is not using an SSL/TLS configuration.

Action

Make sure the client uses a correct SSL/TLS configuration (via a secure API, an XML
config, command parameters etc.) so that it can establish a secure connection with an
SSL/TLS security-enabled server.

Symptom
org.terracotta.connection.ConnectionException:
com.terracottatech.connection.ProbableSecurityConfigurationException:
Handshake with server failed when this client tried to initiate a
secure connection. Possible reasons: client security configuration
is not valid, or server is not running with security
enabled.

Diagnosis

Either of:

1. The client is using an SSL/TLS security configuration but the server is not.

2. The client cannot validate the server because the server's CA certificate is not present
in the client's trusted certificates.

3. The server cannot validate the client because the client's CA certificate is not present
in the server's trusted certificates.

Action

Make sure that:

1. The client uses an unsecured configuration (via an unsecured API, an XML config,
command parameters etc.) if the server is running with an unsecured configuration.

2. The client and the server certificates are signed by the same CA and their trusted-
authority directories contain the same truststores.

M
Even Header

Terracotta Server Administration Guide Version 10.2 82

M
Odd Header

Terracotta Server Migration from Terracotta BigMemory Max v4 to Terracotta DB v10

Terracotta Server Administration Guide Version 10.2 83

21 Terracotta Server Migration from Terracotta
BigMemory Max v4 to Terracotta DB v10

Terracoa DB 10.x is significantly different from Terracoa BigMemory Max 4.x and
Terracoa 3.x in terms of handling of cluster topology, data storage formats, and other
functionality. Because of this, you cannot migrate data and configuration for a Terracoa
BigMemory Max server to a Terracoa DB server. If you install Terracoa DB on the
same machines that host Terracoa BigMemory Max, however, you can find the host
names, addresses, and so on that you used for the Terracoa DB BigMemory Max
installation in the server configuration files.

M
Even Header

Terracotta Server Administration Guide Version 10.2 84

M
Odd Header

Using Command Central to Manage Terracotta

Terracotta Server Administration Guide Version 10.2 85

22 Using Command Central to Manage Terracotta

Software AG Command Central is a tool that release managers, infrastructure engineers,
system administrators, and operators can use to perform administrative tasks from a
centralized location. It assists with configuration, management, and monitoring tasks in
a simple and flexible manner.

Terracoa server instances can be managed from Command Central like other Software
AG products. Both the Command Line and Web Interfaces of Command Central are
supported.

Disk location

The Terracoa related files can be found under {installation_root}/TerracottaDB/
server/SPM. This directory contains the following:

1. bin: Contains scripts to start and shut down the server.

2. conf: Contains Terracoa specific configuration files, including tc-config.xml. If any
changes to the configuration are required, such as increasing the oeap or changing
the server name, the tc-config.xml file needs to be updated manually.

3. logs: Contains Terracoa server and Terracoa DB Platform Manager Plug-in logs.

Supported Commands

Terracoa supports the following Command Central CLI (Command Line Interface)
commands:

1. Inventory

sagcc list inventory components : Lists information about run-time
components.

sagcc get inventory components : Retrieves information about a specified
run-time component.

2. Lifecycle

sagcc exec lifecycle : Executes a lifecycle action against run-time
components. See “ Lifecycle Actions for Terracoa” on page 86 for
Terracoa-specific information about Lifecycle Actions.

3. Monitoring

sagcc get monitoring state : Retrieves the run-time status and run-time
state of a run-time component.

sagcc get monitoring alerts : Lists the alerts for a specified run-time
component.

M
Even Header

Using Command Central to Manage Terracotta

Terracotta Server Administration Guide Version 10.2 86

sagcc get monitoring runtimestatus : Retrieves the run-time status of a
run-time component.

4. Configuration

sagcc get configuration data : Retrieves data for a specified configuration
instance that belongs to a specified run-time component.

sagcc list configuration types : Lists information about configuration
types for the specified run-time component. See “ Supported Configuration
Types” on page 86 for Terracoa-specific information about configuration
types.

sagcc list configuration instances : Retrieves information about a specific
configuration instance that belongs to a specified run-time component.

5. Diagnostics

sagcc list diagnostics logs : Lists the log files that a specified run-time
component supports.

sagcc get diagnostics logs : Retrieves log entries from a log file. Log
information includes the date, time, and description of events that occurred with
a specified run-time component.

For information about Command Central CLI commands, see the Command Central
Help.

Supported Configuration Types

Terracoa supports creating instances of the following configuration types:

JVM-OPTIONS: The JVM memory seings for the Terracoa Server instance in
JAVA_OPTS environment variable format.

Changes to this configuration will be effective upon a server restart.

TC-SERVER-NAME: The name for the Terracoa Server instance. The default is the
hostname of the machine the server is running on. This name should match the
server name in the Terracoa configuration file. Therefore, after changing it from
Command Central, proceed to the conf directory mentioned in the “ Disk location”
on page 85 section above, and update the tc-config.xml with the same name.

Changes to this configuration will be effective upon a server restart.

Lifecycle Actions for Terracotta

Terracoa supports the following lifecycle actions with the sagcc exec lifecycle CLI
command and the Command Central Web Interface:

Start: Start a server instance.

Restart: Restart a running server instance.

Stop: Stop a running server instance.

M
Odd Header

Using Command Central to Manage Terracotta

Terracotta Server Administration Guide Version 10.2 87

Runtime Monitoring Statuses for Terracotta

Terracoa can return the following statuses from sagcc get monitoring
runtimestatus and sagcc get monitoring state CLI commands and the Command
Central Web Interface:

ONLINE_MASTER: The server instance is running and is the master (Active) in its
stripe.

ONLINE_SLAVE: The server instance is running and is a slave (Passive) in its stripe.

STARTING: The server instance is starting. This is usually shown when the startup
takes longer than expected because either it is a slave (Passive) synchronizing with
its master (Active), or it is recovering from an error condition.

STOPPING: The server instance is stopping.

STOPPED: The server instance is not running.

FAILED: The server instance was running, but crashed. Check the server logs to find
out the reason.

UNRESPONSIVE: The server instance is running, but is not responding.

UNKNOWN: The state of the server instance is not known. This is most likely because
of an unexpected exception or error that occurred while trying to fetch the server
status.

	Table of Contents
	Cluster Architecture
	Active and Passive Servers
	Clients in a Cluster
	Electing an Active Server
	Failover
	Failover Tuning
	Starting and Stopping the Terracotta Server
	Safe Cluster Shutdown and Restart Procedure
	Configuring the Terracotta Server
	System Recommendations for Hybrid Caching
	System Recommendations for Fast Restart (FRS)
	Connection Leasing
	Cluster Tool
	Licensing
	Backup, Restore and Data Migration
	Overview
	Data Directory Structure
	Online Backup
	Offline Backup
	Restore
	Data Migration of Ehcache data
	Technical Details

	Restarting a Stripe
	The Terracotta Configuration File
	Securing TSA Access using a Permitted IP List
	SSL/TLS Security Configuration in Terracotta
	SSL/TLS Troubleshooting guide
	Terracotta Server Migration from Terracotta BigMemory Max v4 to Terracotta DB v10
	Using Command Central to Manage Terracotta

