
Universal Messaging Administration Guide

Version 10.3

October 2018



This document applies to Software AG Universal Messaging 10.3 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: NUM-AG-103-20210930

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html


Table of Contents

About this Documentation.......................................................................................................................5
Online Information and Support.....................................................................................................6
Data Protection...................................................................................................................................6

Overview......................................................................................................................................................7

2 Universal Messaging Enterprise Manager.........................................................................................9
Introduction.......................................................................................................................................10
Starting the Enterprise Manager....................................................................................................10
Tab-by-Tab Overview.......................................................................................................................11
Administration Using Enterprise Manager..................................................................................14
Using the Enterprise Viewer.........................................................................................................351

3 Using Command Central to Manage Universal Messaging.......................................................353
Managing Universal Messaging Using Command Central.....................................................354
Securing Communication Between Command Central and Universal Messaging..............354
Securing Access to Command Central........................................................................................356
Instance Management....................................................................................................................358
Authentication Configuration......................................................................................................360
Universal Messaging Configuration Types................................................................................360
Universal Messaging Administration Types..............................................................................387
Snooping on Channels...................................................................................................................391
Snooping on Queues......................................................................................................................393
Publishing Events...........................................................................................................................396
Universal Messaging Cloud Transformation.............................................................................398
Universal Messaging Logs............................................................................................................399
Universal Messaging Inventory...................................................................................................399
Universal Messaging Lifecycle Actions.......................................................................................399
Universal Messaging KPIs............................................................................................................400
Universal Messaging Run-time Monitoring Statuses...............................................................401
Universal Messaging and the Command Line Interface..........................................................401

4 Comparison of Enterprise Manager and Command Central Features......................................453

5 Setting up Active/Passive Clustering with Shared Storage........................................................461
About Active/Passive Clustering.................................................................................................462
Overview of Active/Passive Clustering on Windows...............................................................466
Overview of Active/Passive Clustering on UNIX......................................................................467
Configuring a Universal Messaging Active/Passive Cluster on UNIX...................................469

6 Command Line Administration Tools............................................................................................473
Introduction to the Administration Tools...................................................................................474

Universal Messaging Administration Guide 10.3 iii



Starting the Tools using the Tools Runner Application............................................................474
Performing Standard Administration Tasks on Realms and Clusters....................................476
Running a Configuration Health Check.....................................................................................482
The "Realm Information Collector" Diagnostic Tool.................................................................492
The ExportEventsFromOfflineMemFile Tool.............................................................................499
The RepublishEventsFromOfflineFile Tool.................................................................................502
Syntax reference for command line tools....................................................................................503

7 Universal Messaging Administration API.....................................................................................579
Introduction.....................................................................................................................................580
Administration API Package Documentation............................................................................583
Namespace Objects........................................................................................................................583
Realm Server Management...........................................................................................................589
Security............................................................................................................................................597
Management Information.............................................................................................................601

8 Thread Pool Monitoring....................................................................................................................609

9 Data Protection and Privacy..............................................................................................................613

iv Universal Messaging Administration Guide 10.3

Table of Contents



About this Documentation

■   Online Information and Support ....................................................................................... 6

■   Data Protection ................................................................................................................. 6

Universal Messaging Administration Guide 10.3 5



Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires credentials for Software AG's Product Support
site Empower. If you do not have Empower credentials, you must use the TECHcommunity
website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.asp and give us
a call.

Software AG TECHcommunity

You can finddocumentation and other technical information on the SoftwareAGTECHcommunity
website at http://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

6 Universal Messaging Administration Guide 10.3

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com


Overview
This administration guide covers the following areas:

“Universal Messaging Enterprise Manager” on page 9: This section describes the Enterprise
Manager, which is Universal Messaging's native graphical user interface for management of
your Universal Messaging environment. There is also a read-only version of the Enterprise
Manager, called the Enterprise Viewer, which allows unprivileged users to view the Universal
Messaging environment (see the section “Using the Enterprise Viewer” on page 351 for details).

“UsingCommandCentral toManageUniversalMessaging” on page 353: This section describes
the parts of Command Central that are specific to Universal Messaging. Command Central is
a generic tool used by many Software AG products. It provides a web browser and
command-line interface to configure and manage Universal Messaging.

“Setting upActive/Passive Clusteringwith Shared Storage” on page 461: This section describes
how to set up an active/passive cluster, using third party solutions that supply additional
hardware and software for cluster management.

“Command Line Administration Tools” on page 473: This section describes a set of command
line tools that allow you to performmany of the common actions available through Universal
Messaging.

“Universal Messaging Administration API” on page 579: This section describes the powerful
administrationAPI that allows you to build applications tomanage yourUniversalMessaging
environment programmatically.

Universal Messaging Administration Guide 10.3 7



8 Universal Messaging Administration Guide 10.3



2 Universal Messaging Enterprise Manager

■   Introduction ..................................................................................................................... 10

■   Starting the Enterprise Manager .................................................................................... 10

■   Tab-by-Tab Overview ...................................................................................................... 11

■   Administration Using Enterprise Manager ...................................................................... 14

■   Using the Enterprise Viewer ......................................................................................... 351

Universal Messaging Administration Guide 10.3 9



Introduction

The Enterprise Manager is a powerful, graphical management tool that enables the capture of
extremely granularmetrics,management and audit information frommultipleUniversalMessaging
realms. The Enterprise Manager also allows you to control, configure and administer all aspects
of any Universal Messaging realm or clusters of realms.

The EnterpriseManager has been completelywritten using theUniversalMessaging administration
API and so any of its functionality can be easily integrated into bespoke or 3rd party systems
management services.

The Enterprise Manager and administration API use in-band management. This ensures that the
flexibility of Universal Messaging connections is also made available from a management /
monitoring perspective. Universal Messaging realms can be managed remotely over TCP/IP
sockets, SSL enables sockets, HTTP andHTTPS as well as through normal and user-authenticated
HTTP/S proxies.

This guide contains information on all aspects of using the Enterprise Manager.

The read-only Enterprise Viewer

The Enterprise Viewer is a read-only version of the Enterprise Manager. It allows unprivileged
users to view the same information as with the Enterprise Manager, but does not allow you to
change the Universal Messaging environment in any way. For further information, see the section
“Using the Enterprise Viewer” on page 351.

Starting the Enterprise Manager

In order to start administering andmonitoring your Universal Messaging realm servers you need
to launch the Enterprise Manager. The Enterprise Manager is capable of connecting to multiple
Universal Messaging realms at the same time, whether these are part of a cluster / federated
namespace or simple standalone realms. A configuration file called realms.cfg is created in your
homedirectorywhich stores the EnterpriseManager's connection info, however the very first time
you launch it a bootstrap RNAME environment variable can be used to override the default
connection information. Subsequent launches will not depend on the environment variable as
long as you save your connection information (see “Realm Profiles” on page 43).

Launching on Windows platforms can be done by selecting the Enterprise Manager shortcut in
the Start Menu.

You can also open a client command prompt and type a command of the following form:
<InstallDir>\UniversalMessaging\java\<InstanceName>\bin\nenterprisemgr.exe

where <InstallDir> is the installation root location and <InstanceName> is the name of the Universal
Messaging server.

Launching on UNIX platforms can be done by executing the nenterprisemgr executable, which
you can find under the installation directory at the following location:

java/umserver/bin/nenterprisemgr

10 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Logging In

When you start the Enterprise Manager, there is a login dialog in which you can enter a user ID
and password. The user ID and password are only required for logging in if you have activated
basic authentication. If you have not activated basic authentication, the password is ignored, but
the user ID is still subject to the usual ACL checks in the Enterprise Manager.

See the section Basic Authentication in the Developer Guide for information about setting up basic
authentication.

Tab-by-Tab Overview

This section provides a high level overview of Enterprise Manager functionality on a tab by tab
basis, for each of the following node types (as displayed in EnterpriseManager's navigation pane).

“Enterprise Node” on page 11

“Realm Nodes” on page 11

“Container (Folder) Nodes” on page 13

“Channel Nodes” on page 13

“Queue Nodes” on page 13

Enterprise Node

Highlighting theEnterprise node in the tree provides anEnterprise Summary view of all realms
to which Enterprise Manager is connected, and includes information such the total number of
realms, clusters, channels, queues, events published and received, and more.

Realm Nodes

Highlighting a Realm node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events published
or consumed, numbers of connections, and memory usage.

Monitoring Tab

A container for multiple panels that enable you to view live information on the selected realm:

Logs

Provides a rolling view of Universal Messaging Logs and Plugin Logs including Access
and Error logs.

Connections

Universal Messaging Administration Guide 10.3 11

2 Universal Messaging Enterprise Manager



Provides a list of all current connections to the realm, along with details such as protocol,
user, and host. Allows connections to be "bounced" (forcing them to reconnect).

Threads

Provides details such as the number of idle and active threads per thread pool, task queue
size per thread pool and a total number of executed tasks for the respective thread pool.
It also provides details of scheduled operations each task has within the system.

Top

A "UNIX top"-like view of realmmemory usage, JVMgarbage collection statistics, channel
and connection usage.

Audit

Displays the contents of the remote audit file and receives real time updates as and when
audit events are generated.

Metrics

Provides metrics on current memory usage, such as on-heap event memory usage.

ACL Tab

Displays the realmACL and the list of subjects and their associated permissions for the realm.
Permits editing of ACLs.

Comms Tab

Provides access to management tools for TCP interfaces, IP Multicast and Shared Memory
communication methods:

Interfaces

Management of TCP Interfaces (creation, deletion, starting/stopping) aswell as configuration
of advanced interface properties.

Multicast

Management of IPMulticast Configurations (creation/deletion) and advanced configuration
tuning.

Shared Memory

Realms Tab

Provides a summary of memory, event and interface information for each realm to which
Enterprise Manager is connected.

Config Tab

Manage the settings for many groups of advanced realm configuration parameters.

Scheduler Tab

12 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Permits the user to view, add, delete and edit scheduler scripts.

JNDI Tab

Enables the creation of references to JMSTopicConnectionFactory andQueueConnectionFactory,
as well as references to Topics and Queues.

Container (Folder) Nodes

Totals Tab

Provides status information for resources and services containedwithin the selected container
branch of the namespace tree.

Monitor Tab

A "Unix top"-like view of the usage of Channels or Queues found within the container node.

Channel Nodes

Highlighting a Channel node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events published
or consumed, rates, and event storage usage.

Joins Tab

Permits the user to view, add, delete and edit joins between Channels.

ACL Tab

Permits the user to add, remove or modify entries within the Channel ACL.

Durables

Enables the viewing and deletion of durables , which provide state information for durable
consumers for the channel.

Snoop Tab

Permits snooping of events on the Channel

Connections

Enables the creation of references to JMSTopicConnectionFactory andQueueConnectionFactory,
as well as references to Topics and Queues.

Queue Nodes

Highlighting a Queue node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Universal Messaging Administration Guide 10.3 13

2 Universal Messaging Enterprise Manager



Status Tab

Provides a snapshot and historical view of statistics such as the number of events published
or consumed, rates, and event storage usage.

Joins Tab

Permits the user to view, add, delete and edit joins from any Channels to this Queue.

ACL Tab

Permits the user to add, remove or modify entries within the Queue ACL.

Snoop Tab

Permits snooping (a non-destructive read) of events on the Queue.

Administration Using Enterprise Manager

Enterprise View
The Enterprise view is the first screen you see whenever the Enterprise Manager is launched. The
screen is designed to provide an overview of the characteristics as well as current status of the set
ofUniversalMessaging realms that EnterpriseManager is currently connectedwith, yourUniversal
Messaging enterprise. This summary view includes any Universal Messaging realms you have
added to your connection information whether they are standalone development realms or
production clustered realms. Adding a Universal Messaging realm to the Enterprise Manager's
connection info will result in the realm's data being included in this view (see “Connecting to
Multiple Realms” on page 84 and “Disconnecting from Realms” on page 86).

As you navigate throughmore specific parts of theUniversalMessaging enterprise, you can always
return to this screen by selecting the root node of the navigation tree called Universal Messaging
Enterprise.

The view shows a large real time graph illustrating the total number of events published (yellow)
and consumed (red) across all Universal Messaging realms. The bottom of the screen displays 3
panels named Totals, Event Status and Connection Status respectively.

The Totals panel displays the total number of clusters, realms and resources across all Universal
Messaging realms.

The Event Status panel displays the total number of events consumed and published, as well as
the current consume and publish rates (events per second).

TheConnection Status panel displays the total number, the current number aswell as the number
of connections (sessions) being made per second across all realms at this point in time, whether
application or administrative.

14 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Realm Administration

Creating and Starting a Realm Server

Universal Messaging provides the following tools for performing general administrative tasks on
realms, such as creating a realm, checking the status of a realm, and deleting a realm.

The Universal Messaging Instance Manager:

Universal Messaging Administration Guide 10.3 15

2 Universal Messaging Enterprise Manager



For related information, see the sectionUniversal Messaging Instance Manager in the Installation
Guide.

CommandCentral: If your installation ofUniversalMessaging includes the optional Command
Central component, you can use the command line tool of Command Central to perform
administrative tasks on realms.

For related information, see the section “Universal Messaging and the Command Line
Interface” on page 401 in the Command Central part of the documentation.

Creating a Realm Server

You can use either the Universal Messaging Instance Manager or Command Central to create the
realm server. See the examples in the corresponding documentation pages at the locations
mentioned above.

Starting a Realm Server

After you have created the realm server, start the realm server as follows:

On Windows systems:

1. From the Windows Start menu, navigate to the node Start Servers that is located under the
Universal Messaging node.

2. Navigate in the hierarchy to find the node labelled Start <RealmName>, and click it. Here,
<RealmName> is the name you assigned to the realm server when you created it.

On UNIX systems:

1. Start the script nserver.sh that is located in UniversalMessaging/server/<RealmName>/bin/
under the product installation directory.

Related information on starting and stopping a realm server

For additional information on starting and stopping a realm server, see the sections Starting the
Realm Server and Stopping the Realm Server in the Installation Guide.

Viewing a Realm

TheRealm viewprovides an overviewof the characteristics the current status of the set ofUniversal
Messaging realms that Enterprise Manager is monitoring. When you select a realm node from the
namespace, the status panel is displayed by default for the realm.

16 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The top of the screen displays a panel containing several values. These values are :

Name - The name of the selected realm

Threads - Number of threads within the Realm Server's JVM

Realm Up Time - How long the realm has been running for

Last Update - The time that the last status update was sent by the realm

Universal Messaging Administration Guide 10.3 17

2 Universal Messaging Enterprise Manager



The Status panel contains real time graphs illustrating the total number of events published (yellow)
and consumed (red) across the Universal Messaging Realm, as well as the memory usage history
for the selected realm.

The bottom of the screen displays 4 panels named Event Status, Totals, Connection Status and
Memory Usage. These panels and the information displayed are described below.

Event Status

The Event Status section describes the following values :

Consumed - The total number of events consumed from all channels, queues and services
within the realm

Published - The total number of events published to all channels, queues and services within
the realm

Consumed/Sec - The number of events consumed from all channels, queues and services, per
second within the realm

Published/Sec - The number of events published to all channels, queues and services, per
second within the realm

Totals

The Totals section describes the following values :

Realms- The number of realms mounted within this realm's namespace

Channels- The number of channels that exist within this realm

Queues- The number of queues that exist within this realm

Data Groups- The number of data groups that exist within this realm

Data Streams- Total number of data streams that exist within this realm

Connection Status

The Connection Status section contains the following values :

Total - The total number of connections made to this realm

Current - The current number of connections to this realm

Rate - The number of connections being made per second to this realm

Allowed - The permitted number of concurrent connections

Memory Usage(MB)

The Memory Usage section contains the following values :

18 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Total - The total amount of MB allocated to the Realm JVM, specified by the -Xmx value for
the JVM

Free - The amount of JVM memory available for the Realm

Used - The amount of JVM memory used by the Realm

Used/sec - The amount of memory used per second by the Realm between newest update and
previous update

Monitoring a Realm

Overview

When you select a Universal Messaging realm node from the namespace, one of the available
panels to select is labeled 'Monitoring'. This panel is a container for multiple panels that enable
you to view live information on the selected realm.

There are 5 tabs available under the Monitoring section, as shown in the image below.

“Logs” on page 20

“Realm Connections” on page 25

“Threads Panel” on page 30

“Top” on page 32

“Audit” on page 37

Universal Messaging Administration Guide 10.3 19

2 Universal Messaging Enterprise Manager



Universal Messaging Enterprise Manager : Logs Panel

Each Universal Messaging realm server has a log file called nirvana.logwithin the directory
<InstallDir>\UniversalMessaging\server\<InstanceName>\data, where <InstallDir> is the disk
root location of yourUniversalMessaging installation and <InstanceName> is the name of the realm
server.

The Enterprise Manager provides a panel that displays real time log messages as they are written
to the log file. This enables you to remotely view the activity on a realm as it is happening. The
Universal Messaging Administration API also provides the ability to consume the log file entries

20 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



from an nRealmNode. See the code example "Monitor the Remote Realm Log and Audit File" for an
illustration of usage.

The Universal Messaging log file contains useful information about various activities, such as
connection attempts, channels being located and subscribed to, as well as status and warning
information.

The Logs Panel

The Enterprise Manager provides a panel for each realmwhere the realm's log file can be viewed.
To view the log file, click on the realm node from the namespace and select the panel labeled
Monitoring and then select the Logs tab. This will show the live log messages for the selected
realm. The log panel will automatically replay the last 20 log entries from the realm server and
then each entry thereafter. The image below shows an example of the log panel for a selected
realm:

The log panel also provides the ability to stream the log messages to a local file. Clicking on the
button labeled Start Stream from the log panel will prompt you to enter the name of the file you
wish to stream the log messages to. The stream can be stopped by clicking the same button again.

Universal Messaging Administration Guide 10.3 21

2 Universal Messaging Enterprise Manager



Understanding the log file

Entries in the log file have the following general format:
Timestamp LogLevel ThreadName Message

Where:

Timestamp gives the date and time that the entry was created, for example:

[Fri May 18 09:03:46.610 EEST 2018]

The time of day is given in the format hh:mm:ss.ttt, representing hours, minutes, seconds,
thousandths of a second.

LogLeveldetermines the depth of information being logged. It is displayed only if the EmbedTag
logging configuration property is set to true (default is false). See the description later in this
section for details of logging levels.

ThreadName is the name of the internal processing thread that generated the log message. This
is displayed only if the DisplayCurrentThread logging configuration property is set to true
(default is true).

Message contains the actual information that is being logged.

See the section “RealmConfiguration” on page 49 for information about configuration properties.

When a server is started, the initial entries in the log file contain useful information about the
server's configuration. The following text is an excerpt from a realm server log during startup (the
entries for LogLevel and ThreadName have been suppressed here for clarity) :
[Fri May 18 09:03:46.610 EEST 2018] ================================================
[Fri May 18 09:03:46.610 EEST 2018] Copyright (c) Software AG Limited. All rights
reserved
[Fri May 18 09:03:46.610 EEST 2018] Start date = Fri May 18 09:03:46 EEST
2018
[Fri May 18 09:03:46.610 EEST 2018] Process ID = 9040
[Fri May 18 09:03:46.610 EEST 2018]
[Fri May 18 09:03:46.610 EEST 2018] Realm Server Details :
[Fri May 18 09:03:46.610 EEST 2018] Product = Universal Messaging
[Fri May 18 09:03:46.610 EEST 2018] Realm Server name = umserver
[Fri May 18 09:03:46.610 EEST 2018] Release Identifier = 10.3.0.0.106659
[Fri May 18 09:03:46.610 EEST 2018] Build Date = May 17 2018
[Fri May 18 09:03:46.610 EEST 2018] Data Directory =

C:\SoftwareAG\UniversalMessaging\server\umserver\data
[Fri May 18 09:03:46.610 EEST 2018] Extension Directory =

C:\SoftwareAG\UniversalMessaging\server\umserver\plugins\ext
[Fri May 18 09:03:46.610 EEST 2018] Low Latency Executor = false
[Fri May 18 09:03:46.610 EEST 2018] Has License Manager = true
[Fri May 18 09:03:46.610 EEST 2018] Interfaces Running :
[Fri May 18 09:03:46.610 EEST 2018] 0) nhp0: nhp://0.0.0.0:9000 Running
[Fri May 18 09:03:46.610 EEST 2018]
[Fri May 18 09:03:46.610 EEST 2018] Realm(s) Reloaded = 1
[Fri May 18 09:03:46.610 EEST 2018] Channels Reloaded = 0
[Fri May 18 09:03:46.610 EEST 2018] Queues Reloaded = 0
[Fri May 18 09:03:46.610 EEST 2018] Data Groups Reloaded = 0
[Fri May 18 09:03:46.610 EEST 2018] Interfaces Reloaded = 1

22 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



[Fri May 18 09:03:46.610 EEST 2018]
[Fri May 18 09:03:46.610 EEST 2018] Operating System Environment :
[Fri May 18 09:03:46.610 EEST 2018] OS Name = Windows 7
[Fri May 18 09:03:46.610 EEST 2018] OS Version = 6.1
[Fri May 18 09:03:46.610 EEST 2018] OS Architecture = amd64
[Fri May 18 09:03:46.610 EEST 2018] Available Processors = 4
[Fri May 18 09:03:46.610 EEST 2018]
[Fri May 18 09:03:46.610 EEST 2018] Java Environment :
[Fri May 18 09:03:46.610 EEST 2018] Java Vendor = Oracle Corporation
[Fri May 18 09:03:46.610 EEST 2018] Java Vendor URL = http://java.oracle.com/
[Fri May 18 09:03:46.610 EEST 2018] Java Version = 1.8.0_151
[Fri May 18 09:03:46.610 EEST 2018] Java Vendor Name =

Java HotSpot(TM) 64-Bit Server VM 1.8.0_151-b12
[Fri May 18 09:03:46.610 EEST 2018] Memory Allocation = 981 MB
[Fri May 18 09:03:46.610 EEST 2018] Memory Warning = 834 MB
[Fri May 18 09:03:46.610 EEST 2018] Memory Emergency = 922 MB
[Fri May 18 09:03:46.610 EEST 2018] Nanosecond delay = Not Supported
[Fri May 18 09:03:46.610 EEST 2018] Time Zone = Eastern European Time
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 0 = SUN version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 1 = SunRsaSign version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 2 = SunEC version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 3 = SunJSSE version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 4 = SunJCE version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 5 = SunJGSS version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 6 = SunSASL version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 7 = XMLDSig version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 8 = SunPCSC version 1.8
[Fri May 18 09:03:46.610 EEST 2018] Security Provider 9 = SunMSCAPI version 1.8
[Fri May 18 09:03:46.610 EEST 2018] ================================================
[Fri May 18 09:03:46.610 EEST 2018] Startup: Realm Server Startup sequence completed

The above sequence of log entries can be found at the beginning of the Universal Messaging log
file, and shows information such as when the realmwas started, the build number and build date
of the Universal Messaging realm server, as well as environmental information like, OS, Java
version, timezone.

Log Levels

TheUniversalMessaging log level is a level from 0 to 6 that determineswhat information iswritten
to the log. Log level 0 is the most verbose level of logging and on a heavily utilized server will
produce a lot of log output. Log level 6 is the least verbose level, and will produce low levels of
log output. The log level of each log message corresponds to a value from 0 to 6. The following
list explains the log file messages levels and how they correspond to the values:

0 - TRACE (Log level 0 will output any log entries with a level in the range 0-6; this is the most
verbose level)

1 - DEBUG (Log level 1 will output any log entries with a level in the range 1-6)

2 - INFO (Log level 2 will output any log entries with a level in the range 2-6)

3 - WARN (Log level 3 will output any log entries with a level in the range 3-6)

4 - ERROR (Log level 4 will output any log entries with a level in the range 4-6)

5 - FATAL (Log level 5 will output any log entries with a level in the range 5-6)

Universal Messaging Administration Guide 10.3 23

2 Universal Messaging Enterprise Manager



6 - LOG (Log level 6 will output any log entries with a level of 6; this is the least verbose level)

Log levels can be changed dynamically on the server by using the Config panel (see “Realm
Configuration” onpage 49). The log file has amaximumsize associatedwith it.When themaximum
file size is reached, the log filewill automatically roll, and rename the old log file to _old and create
a new log file . The maximum size for a log file is set to 10000000 bytes (approximately 10MB).
This value can be changed within the Server_Common.conf file in the server/<InstanceName>/bin
directory of your installation, where <InstanceName> is the name of theUniversalMessaging realm.
You need to modify the -DLOGSIZE property within this file to change the size.

Other Logging Frameworks

By default, Universal Messaging uses a built in logging framework, but there is also the capability
to use third party open source frameworks. Currently, we support the Logback (http://
logback.qos.ch/) and Log4J2 (http://logging.apache.org/log4j/2.x/) frameworks.

To configureUniversalMessaging to use one of these frameworks, you can pass a -DLOG_FRAMEWORK
parameterwith the values LOGBACKor LOG4J2. See the section Server Parameters in the Concepts
guide for further information.

These frameworks are configured using XML configuration files loaded from the classpath. The
Universal Messaging installation provides default versions of these configuration files in the lib
directory. These files can be modified in order to produce the desired logging output. For more
information on configuration see the official documentation of the relevant framework.

Note:
WhenUniversalMessaging is configured to use Logback as the logging framework, themajority
of the server startupmessages in the server's nirvana.log filewill bewrittenwith status ERROR.
This happens due to a limitation in Logback that does not provide usage of custom log levels.
Therefore, UniversalMessagingmessages loggedwith LOG level are translated to ERROR level
when Logback is used.

The Log Manager

Universal Messaging has 3 different log managers for archiving old log files. When a log file
reaches itsmaximum size, the logmanagerwill attempt to archive it, and a new log filewill become
active. Options such as the number of log files to keep, and the maximum size of a log file are
configurable through the logging section of the Config panel (see “Realm Configuration” on
page 49). When a log file is archived and a new log file created, realm specific information such
as Universal Messaging version number will be printed to the start of the new log in a similar way
to when a realm is started. Each log manager uses a different method to store log files once they
are not the active logs for the realm.

ROLLING_OLD : This logmanager uses 2 log files. The active log file is storedwith the default
log name, and the most recently rolled log file is stored with _old appended to the log name.
e.g. nirvana.log and nirvana.log_old

ROLLING_DATE : The rolling date manager stores a configurable number of log files
(RolledLogFileDepth). Rolled log files are stored with the date they were rolled appended to
the active log file name. e.g. nirvana.logWed-Sep-14-02-31-40-117-BST-2011.

24 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager

http://logback.qos.ch/
http://logback.qos.ch/
http://logging.apache.org/log4j/2.x/


ROLLING_NUMBER : The numbered log manager stores a configurable number of log files
(RolledLogFileDepth). Rolled log files are stored with a numbered index appended to the file
name e.g. nirvana.log3 is the 3rd oldest log file

Realm Connections

When a Universal Messaging client connects to a Realm Server, the server maintains information
on the connection (see “Connection Information” onpage 607) that is available through theUniversal
MessagingAdministrationAPI. TheAPI also providesmechanisms for receiving notificationwhen
connections are added and deleted (see the code example "Connection Watch" for an illustration
of using this in the Administration API).

The Universal Messaging Enterprise Manager allows you to view the connections on a realm as
well as drilldown and view specific information about each connection, such as the last event sent
or received, and the rate of events sent and received from each connection.

To view the current realm connections, simply select a realm node from the namespace, and select
the 'Connections' tab fromwithin the 'Monitoring' tab of the selected realm node. This will display
a panel containing a table of connections, as shown in the image below.

Universal Messaging Administration Guide 10.3 25

2 Universal Messaging Enterprise Manager



The connections table contains the following information:

protocol - The protocol used in the connection.

user - The name of the connected user.

host - The host machine from which the user is connecting.

connection - The local connection ID, defined as hostname:local_port.

26 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



language - The language that the client application is using.

name - The name of the operating system on which the client application is running.

build number - the build number of the client API.

The highlighted connection above shows that the user has connection using the nhp protocol, to
localhost. In this example, the nhp interface is running on port 80, so the RNAMEof this connection
was nhp://localhost:80/

When a connection is highlighted, there a number of things that can be shown for a the connection.

Firstly, connections can be disconnected by clicking the 'Bounce' button.

Secondly, by double-clicking on a connection from the table, or by clicking the 'Show Details'
button, you are presented with a panel that contains a more detailed look at the activity for the
selected connection. The connection details panel is shown in the image below.

Universal Messaging Administration Guide 10.3 27

2 Universal Messaging Enterprise Manager



Connection Details

You will see that there are 2 separate information panels above the graphs once you have drilled
down into a connection. The first ofwhich is labelledConnectionDetails. This information contains
information about the user connection, such as user name, host protocol.

28 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Client Environment

Next to this you will see a panel that shows details regarding the client environment for this user.
These includes API language / Platform, Host OS and Universal Messaging build number

The two graphs, labeled 'Tx Event History' and 'Rx Event History' show the total (yellow) and
rates (red) for events received from the server (TX) and sent to the server (RX) for the selected
connection.

The bottom of the connection details panel shows 3 sections of information for the selected
connection, 'Events Sent', 'Events Received' and 'Status'. Each of these are described below.

Events Sent

The Events Sent section contains the values:

Total - The total number of events sent by the realm server to this connection

Rate - The rate at which events are being sent by the realm server to this connection

Max - Themaximum rate at which events have been sent by the realm server to this connection

Last Event Type - The type of the last event sent from the realm server

Bytes - Total bytes sent by the realm server to this connection

Events Received

The Events Received section contains the following values:

Total - The total number of events sent by this connection to the realm server

Rate - The rate at which events are being sent by connection to the realm server

Max - Themaximum rate at which events have been sent by this connection to the realm server

Last Event Type - The type of the last event sent from the connection to the realm server

Bytes - Total bytes sent by this connection to the realm server

Status

The Events Sent section contains the following values:

Connect Time - The amount of time this connection has been connected to the realm server

Queue Size - The number of events in the outbound queue of this connection (i.e. events
waiting to be sent to the realm server)

Last Tx - The time since the last event was received by this connection from the realm server

Last Rx - The time since the last event was sent to the server from this connection

Universal Messaging Administration Guide 10.3 29

2 Universal Messaging Enterprise Manager



Clicking on the 'Show List' button will take you back to the connections table.

Threads Status

The threads tab found within the Enterprise Manager offers 2 statistical views, thread pools and
scheduler tasks.

The thread pool display shows the number of idle and active threads per thread pool as well as
the task queue size per thread pool and a total number of executed tasks for the respective thread
pool

The Scheduler provides information pertaining to the number of scheduled operations each task
has within the system.

30 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Universal Messaging Administration Guide 10.3 31

2 Universal Messaging Enterprise Manager



Top

Within the 'Monitoring' panel of a selected Realm node you will find a panel called 'Top'. This
provides a view not unlike 'top' for unix systems or task manager for windows based systems. Its
main purpose is to present the user with a high level view of realm usage, both from a connection
perspective and also from a channel perspective.

32 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The Top panel comprises 2 sections. The top most section contains 2 real time graphs illustrating
the realm memory usage in the same way the Realm Status panel (see “Viewing a Realm” on
page 16) displays memory usage, as well as displaying JVM GC stats. This section also contains
a summary showing the number of mounted realms, the number of resources and the number of
services.

The bottom section of theMonitor panel displays a series of tabs, showing channel and connection
usage throughout the realm.

Channel Usage

The middle section of the Monitor panel displays a table showing multiple columns and rows.
This table represents channel usage throughout the realm. Each row in the table represents a
channel. Channel usage can be measured a number of ways. Each measurement corresponds to
a column within the table. By clicking on one of the column headers, all known channels will be
sorted according to their value for the selected column. For example, one of the columns is
'Connections', i.e. the number of current consumers on the channel. By clicking on the column
header labelled 'Connections', the table will be sorted according to the number of consumers each
channel has. The channel with the most number of consumers will appear at the top of the table.

Channel usage measurements are described below:

Connections - The number of consumers the channel has

Published - The rate of events published per status interval

Consumed - The rate of events consumed per status interval

Memory (bytes) - The number of bytes the channel uses from the JVM memory

%Memory - The percentage of overall JVM memory used by this channel

Disk - The amount of disk space used by this channel, only relevant for persistent / mixed
channels

Universal Messaging Administration Guide 10.3 33

2 Universal Messaging Enterprise Manager



Connection Usage

The bottom section of the monitor panel shows a similar table to that of the channel usage table
described above, except that this table represents connection usage. Each row represents a
connection. A connection corresponds to the physical aspect of a Universal Messaging Session.
Connection usage, like channel usage can bemeasured in a number of differentways. Each column
in the table represents a type ofmeasurement for a realm connection. Clicking on one of the column

34 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



headers will cause the table of connections to be sorted according to the value of the selected
column. For example, one of the columns is 'Events In', i.e. the number of events sent to the server
by the connection. By clicking on the column header labeled 'Events In', the table will be sorted
according to the number of events each connection has sent to the server. The connection with the
most 'Events In' count will appear at the top of the table.

Connection usage measurements are described below:

Queued- The number of event in the connections outbound queue

Events In - The rate of events sent by the connection to the realm server

Bytes In - The rate of bytes sent by the connection to the realm server

Events Out - The rate of events consumed by the connection from the realm server

Bytes Out - The rate of bytes consumed by the connection from the realm server

Latency - The measured time it takes the connection to consume events from the server, i.e.
time taken between leaving the realm server and being consumed by the connection.

Universal Messaging Administration Guide 10.3 35

2 Universal Messaging Enterprise Manager



Monitor Graphs

The monitor panel provides a method of graphing both channel and connection usage. It uses a
3D graph package from sourceforge (http://sourceforge.net/projects/jfreechart/) to display the
items in each table as columns in a 3D vertical bar chart. The bar charts can be update live as the
values in the tables are updated. Once a column is selected, simply click on the button labeled 'Bar

36 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager

http://sourceforge.net/projects/jfreechart/


Graph' under either the channel or connections table and a graph panel will appear, as shown in
the image below showing a graph of the number of events published for channels within a realm..

Right-clicking anywherewithin the graphwill show a pop-upmenu of options. One of the options
is labeled 'Start Live Update', which will ensure the graph consumes updates as and when they
occur to the table. Once the live update is started, you can also stop the live update by once again
right clicking on the graph and selecting 'Stop Live Update'.

You can also print the graph, and save the graph image as a '.png' file, as well as alter the properties
of the graph and its axis.

Audit Panel

Universal Messaging Realm Servers log administration operations performed on the realm to a
file. These events are called Audit Events and are stored in a local file called NirvanaAudit.mem.
These audit events are useful for tracking historical information about the realm andwhoperformed
what operation and when. The Universal Messaging Administration API provides the ability to
consume the audit file entries from an nRealmNodeM. See the code example "Monitor the Remote
Realm Log and Audit File" for an illustration of usage.

The Universal Messaging Enterprise Manager provides an Audit Panel that displays the contents
of the remote audit file and receives real time updates as and when audit events are generated.
The audit events that are written to the audit file are determined by the configuration specified
in the Config Panel (see “RealmConfiguration” on page 49) of theUniversalMessaging Enterprise
Manager.

Universal Messaging Administration Guide 10.3 37

2 Universal Messaging Enterprise Manager



Audit Events

Each audit event corresponds to an operation performed on an object within a realm. The audit
event contains the date on which it occurred, the object and the operation that was performed on
the object.

The list below shows the objects that audit events correspond to aswell as the operations performed
on them which are logged to the audit file:

Realm - CREATE, DELETE, ACCESS

Interfaces - CREATE, DELETE, MODIFY, START, STOP

Channels - CREATE, DELETE, MODIFY

Queues - CREATE, DELETE, MODIFY

Services - CREATE, DELETE

Joins - CREATE, DELETE

Realm

ACL - CREATE, DELETE, MODIFY

Channel ACL - CREATE, DELETE, MODIFY

Queue ACL - CREATE, DELETE, MODIFY

Service ACL - CREATE, DELETE, MODIFY

Audit Panel

The audit panel displays audit events for a realm server. You can view the audit panel by clicking
on the realm you wish to view the audit file for within the namespace and selecting the panel
labeled 'Audit' from within the 'Monitoring' panel of the selected realm. The image below shows
an example of the audit panel for a Universal Messaging Realm.

38 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



When you first connect to a realm, the audit panel will display the last 20 audit events from its
history. Audit files can become quite large over time on a heavily utilised realm, so the initial load
is limited to just the last 20. After that all subsequent audit events will be shown in the audit panel.

Each audit event is shown as a row in a table. The table has 5 columns:

Date - The time at which the audit event occurred on the server

Originator - Who performed the operation

Universal Messaging Administration Guide 10.3 39

2 Universal Messaging Enterprise Manager



Type - What type of object was the action performed on

Action - What action was performed

Object - The name of the object

If the object type is an ACL for either realm, resource or service, selecting the entry from the table
will also display the ACL changes in the bottom section of the audit panel. For modified ACLs,
each acl permission that has been granted or removed will be displayed as a green '+', or a red '-'
respectively.

Audit Stream

The audit panel provides a button that enables you to stream the remote audit events from the
realm to a local file. This also provides you with the option of replaying the entire audit file.

Clicking on the 'Start Stream' buttonwill prompt youwith a file chooser dialog to select the location
and name of the file that the audit events will be streamed to. Once you have selected this file,
you will be prompted whether you wish to replay the entire audit file into the stream or just the
last 20 audit entries. The image below shows this dialog:

The text below is an exert from a sample audit file than has been streamed from a server. Each
entry that relates to a modified ACL shows the permissions that have been changed, and the
permissions that are granted by either a + or -. For permissions that have remained the same, the
letter 'N' for not change will be placed after the permission.
Fri Jan 21 15:43:40 GMT 2005,CHANACL,/customer/sales:*@*,MODIFY,paul weiss@localhost,
Full(-), Last Eid(N),Purge(-),Subscribe(N),Publish(-),Named Sub(N),Modify Acls(-),
List Acls(-),

Fri Jan 21 15:43:40 GMT 2005,QUEUEACL,/partner/queries:*@*,MODIFY,
paul weiss@localhost,Full(-),Purge(-), Peek(N),Push(-),Pop(-),Modify Acls(-),
List Acls(-),

Fri Jan 21 15:43:40 GMT 2005,QUEUEACL,/partner/queries:paul weiss@localhost,MODIFY,
paul weiss@localhost, Full(N),Purge(N),Peek(N),Push(N),Pop(N),Modify Acls(N),
List Acls(N),

Fri Jan 21 16:13:10 GMT 2005,INTERFACE,nhp0,CREATE,paul weiss@localhost,
Fri Jan 21 16:15:31 GMT 2005,INTERFACE,nhp0,MODIFY,paul weiss@localhost,

Archive Audit

The audit panel provides a button that enables you to archive the audit file. As mentioned before,
depending on what is being logged to the audit file, the file can grow quite large. As it's an audit
and provides historical data, there is no automatic maintenance of the file it is down to the realm

40 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



administrators when the file is archived. The 'Archive Audit' button when clicked will simply
rename the existing audit file to a name with the current date, and start a new audit file.

Editing Connection Information

As mentioned in previous sections, Universal Messaging Enterprise manager can connect to
multiple Universal Messaging realms at the same time and allows saving connection information
in a configuration file. This configuration file can change in one of 3 ways:

1. By selecting the Save Connection Info menu option (see “Realm Profiles” on page 43) which
replaces the configuration file contents with the list of current connections.

2. When running the Enterprise manager, if a connection to a configured realm fails and the user
chooses not to retry, a second dialog appears that looks like the example in the figure below:

If the user clicks Yes, then the configuration file remains the same. However if the user chooses
no, the failed connection is removed from the configuration filewithout any further action required.
The Enterprise manager will never try to connect to that Universal Messaging realm again during
startup.

3. By using the Edit Connection Info menu option, located under the File menu as shown in the
figure below:

Universal Messaging Administration Guide 10.3 41

2 Universal Messaging Enterprise Manager



This causes the following dialog to appear:

42 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The Realm name combo box contains the complete list of configured Universal Messaging realms
that had been connected during the last Save Connection Info operation. If you have connected
to additional realms that had not been saved, these will not be included in this list. By selecting a
particular Realm name, you can also see the connection RNAME value containing the RNAME
that Enterprisemanager uses to connect to it. Clicking on the delete buttonwill remove the currently
selected realm from the connection info file and this can be repeated many times until only the
desired realms are present in the list. When this is done, click on the Save button to recreate the
connection info file.

Realm Profiles

The Universal Messaging Enterprise Manager enables administrators to group realms and their
respective connections into profiles for easymanagement and accessibility. Any number of realms
can be saved as part of a profile.

Universal Messaging Administration Guide 10.3 43

2 Universal Messaging Enterprise Manager



When profiles are reloaded the Universal Messaging Enterprise Manager automatically connects
to all realms defined within the loaded profile.

44 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Realm Federation

As well as clustering technology, Universal Messaging supports the concept of a federated
namespacewhich enables realm servers that are in different physical locations to be viewedwithin
one logical namespace.

Note:

Universal Messaging Administration Guide 10.3 45

2 Universal Messaging Enterprise Manager



Clustering and Realm Federation are mutually exclusive. If a realm is a member of a cluster,
you cannot use the realm for federation. Similarly, if a realm is part of a federation, the realm
cannot be used for clustering.

If you consider that a Universal Messaging namespace consists of a logical representation of the
objects contained within the realm, such as resources and services: a federated namespace is an
extension to the namespace that allows remote realms to be visible within the namespace of other
realms.

For example, if we had a realm located in the UK (United Kingdom), and 2 other realms located
in the US (United States) and DE (Germany), we can view the realms located in DE and USwithin
the namespace of the UK realm. Federation allows us to access the objects within the DE and US
realms from within the namespace of the UK realm.

It is possible to add realms to a Universal Messaging namespace using the Universal Messaging
Administration API or by using the Enterprise Manger as described below.

Adding Realms

The first step in order to provide federation is to add the realms. Adding a realm to another realm
can be achieved in 2 ways. The first way simply makes a communication connection from one
realm to another, so the realms are aware of each other and can communicate. This allows you to
create a channel join between these realms.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins. The description details the usage based on the Enterprise Manager, but
the same general principles apply if you are using the API.

The second option alsomakes a new communication connection, but if you specify a 'mount point',
the realm you add will also be visible within the namespace of the realm you added it to.

Mount Points

Providing amount point for added realms is similar to themount point used by file systemswhen
you mount a remote file system into another. It specifies a logical name that can be used to access
the resourceswithin themounted realm. Themount point is therefore the entry point (or reference)
within the namespace for the realm's resources and services.

For example, if I have a realm in the UK, an wish to add to it a realm in the US, I could provide a
mount point of '/us' when adding the US realm to the UK realm. Using the mount point of '/us', I
can then access the channelswithin theUS realm frommy sessionwith theUK realm. For example,
if I wanted to find a channel frommy session with the UK realm, and provided the channel name
'/us/customer/sales', I would be able to get a local channel reference to the '/customer/sales' channel
within the US realm.

Using the Enterprise Manager to add realms

In order to add a realm to another realm, first of all you need to select the realm node from the
namespace that you wish to add the realm to. Then, right-click on the realm node to display the

46 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



menu options available for a realm node. One of the menu options is labelled 'Add Realm to
Namespace', clicking on thismenu optionwill display a dialog that allows you to enter the RNAME
of the realm you wish to add and an optional mountpoint. This dialog is shown in the image
below.

The RNAME value in the dialog corresponds to the realm interface you wish the 2 realms to
communicate using. The mount point corresponds to the point within the namespace that the
realm will be referenceable.

The image below shows the namespace for a realm that has had 2 realms mounted within its
namespace, called 'eur' and 'us' respectively. As you can see the resourceswithin both themounted
realms are also displayed as part of the namespace of the 'node1' realm.

Universal Messaging Administration Guide 10.3 47

2 Universal Messaging Enterprise Manager



Sessions connected to the 'node1' realm now have access to three channels. These are :

'/global/orders' which is a local channel

48 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



'/eur/orders' which is actually a channel on another Universal Messaging Realm which has
been added to this namespace under the mountpoint '/eur'

'/us/orders' which is actually a channel on anotherUniversalMessagingRealmwhich has been
added to this namespace under the mountpoint '/us'

Example Use of Federation : Remote Joins

Once you have added the realms to one another, it is possible to create remote joins between the
channels of the realms. This is very useful when considering the physical distance and
communications available between the different realms. For example, if you wish all events
published to the /customer/sales channel in the UK realm to be available on the /customer/sales
channel in the US realm, one would create a join from the /customer/sales channel in the UK to
the /customer/sales channel on the US realm, so all events published onto the uk channel would
be sent to the us channel.

Federation and remote joins provide a huge benefit for your organization. Firstly, any consumers
wishing to consume events from the uk channel would not need to do so over a WAN link, but
simply subscribe to their local sales channel in the us. This reduces the required bandwidth between
the us and uk for your organization, since the data is only sent by the source realm once to the
joined channel in the us, as opposed to 1...n times where n is the number of consumers in the us.
Remote joins are much more efficient in this respect, and ensure the data is available as close
(physically) to the consumers as possible.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins. The description details the usage based on the Enterprise Manager, but
the same general principles apply if you are using the API.

Realm Configuration

UniversalMessaging Realms can be configured based on a number of properties that are accessible
both through the Universal Messaging Administration API as well as the Universal Messaging
EnterpriseManager. Any changesmade to the configuration properties for a UniversalMessaging
realm are automatically sent to the realm and implemented. This functionality offersmajor benefits
to Administrators, since realms can be configured remotely, without the need to be anywhere near
the actual realm itself. More importantly, multiple realms and clustered realms can also be
automatically configured remotely.

Note:
SomeUniversalMessaging realmproperties, such as theAMQPMessage Transformation setting,
are applied on a per-connection basis, meaning that clients must re-connect to pick up a change
in the realm-wide value.

This section describes the different configuration properties that are available using the Universal
Messaging Enterprise Manager.

When you select a realm from the namespace, one of the available panels in the EnterpriseManager
is labelled 'Config'. Selecting this panel displays various groups of configuration properties, with

Universal Messaging Administration Guide 10.3 49

2 Universal Messaging Enterprise Manager



each group of properties relating to a specific area within the Universal Messaging Realm. Each
group of properties contains different values for specific items.

Basic and Advanced Properties

There are currently a large number of configuration properties, and they are divided into two
categories, namely Basic andAdvanced. The properties in the Basic category are themost commonly
used ones. The properties in the Advanced category will probably be less frequently used, and
are intended for special cases or expert users.

When the Basic andAdvanced categories are expanded, youwill see a display of the configuration
properties. Properties that have a similar effect are arranged into groups; for example, properties
that determine when a client times out are contained in the group "Client Timeout Values":

50 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Note that in the example shown, the group "Client Timeout Values" appears in both the Basic and
theAdvanced category.However, the properties "EventTimeout", "HighWaterMark" etc. belonging
to this group appear only under the Basic category,whereas the properties "QueueAccessWaitLimit"
etc. belonging to the same group appear only under the Advanced category. The properties in the
Basic category are the ones which you will probably find most useful for your day-to-day work.

Configuration Groups

The configuration groups are :

1. Audit Settings - Values relating to what information is stored by the audit process

2. Client Timeout Values - Values relating to client / server interaction

Universal Messaging Administration Guide 10.3 51

2 Universal Messaging Enterprise Manager



3. Cluster Config - Values specific to the clustering engine

4. Comet Config - Values relating to the configuration of Comet

5. Connection Config - Values relating to the client server connection

6. Data Stream Config - Values relating to the configuration of Data Streams

7. DurableConfig - Values relating to usage of durables

8. Environment Config - Read only configuration values that relate to the system environment.
These cannot be changed.

9. Event Storage - Values specific to how events are stored and retrieved on the server

10. Fanout Values - Values specific to the delivery of events to clients

11. Global Values - Values specific to the realm process itself

12. Inter-Realm Comms Config - Values relating to Inter-Realm communication

13. JVM Management - Values relating to the JVM the Realm Server is using

14. Join Config - Values specific to channel join management

15. Logging Config - Values specific to logging

16. Metric Config - Values relating to metric management

17. Plugin Config - Values relating to Realm Plugins

18. Protobuf Config - Values relating to Protocol Buffers

19. Protocol AMQP Config - Values relating to the use of AMQP connections

20. Protocol MQTT Config - Values relating to the use of MQTT connections

21. RecoveryDaemon - Values relating to clients that are in recovery (i.e. replaying large numbers
of events)

22. Server Protection - Values specific to server protection

23. Thread Pool Config - Values specific to the servers thread pools.

24. TransactionManager - Values specific to the transaction engine of the RealmServer

The table below describes the properties that are available within each configuration group. It also
shows valid ranges of values for the properties and a description of what each value represents.
The “Adv. ” column shows "Y" if the property is in the Advanced category, whereas no entry
indicates that the property is in the Basic category.

Adv.DescriptionValid
values

Configuration Group/Property

Audit Settings

52 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Log to the audit file any unsuccessful
channel ACL interactions. Default is
true.

True or
False

ChannelACL

Log to the audit file any unsuccessful
realm interactions. Default is true.

True or
False

ChannelFailure

Log to the audit file any channel
maintenance activity. Default is false.

True or
False

ChannelMaintenance

Log to the audit file any successful
channel interactions. Default is false.

True or
False

ChannelSuccess

Log to the audit file any changes to
Data Group structure

True or
False

DataGroup

Log to the audit file any failed attempts
to Data Group structure

True or
False

DataGroupFailure

Log to the audit file Data Stream add
and removes

True or
False

DataStream

Log to the audit file any added or
removed security groups

True or
False

Group

Log to the audit file any changes in
group membership

True or
False

GroupMembers

Log to the audit file any interface
management activity. Default is true.

True or
False

InterfaceManagement

Log to the audit file any unsuccessful
join interactions. Default is true.

True or
False

JoinFailure

Log to the audit file any join
maintenance activity. Default is true.

True or
False

JoinMaintenance

Log to the audit file any successful join
interactions. Default is false.

True or
False

JoinSuccess

Log to the audit file any unsuccessful
queueACL interactions.Default is true.

True or
False

QueueACL

Log to the audit file any unsuccessful
queue interactions. Default is true.

True or
False

QueueFailure

Log to the audit file any queue
maintenance activity. Default is false.

True or
False

QueueMaintenance

Universal Messaging Administration Guide 10.3 53

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Log to the audit file any successful
queue interactions. Default is false.

True or
False

QueueSuccess

Log to the audit file any unsuccessful
realmACL interactions. Default is true.

True or
False

RealmACL

Log to the audit file any unsuccessful
realm interactions. Default is true.

True or
False

RealmFailure

Log to the audit file any realm
maintenance activity. Default is true.

True or
False

RealmMaintenance

Log to the audit file any successful
realm interactions. Default is false.

True or
False

RealmSuccess

Log to the audit file Snoop stream add
and removes

True or
False

SnoopStream

Client Timeout Values

The amount of ms the client will wait
for a response from the server. Small

5000 to
No Max

EventTimeout

values may cause clients to abandon
waiting for responses and disconnect
prematurely. Large values may cause
clients to take an unusually long
amount of time waiting for a response
before disconnecting. Default is 60000.

The highwatermark for the connection
internal queue. When this value is

2 to No
Max

HighWaterMark

reached the internal queue is
temporarily suspended and unable to
send events to the server. This provides
flow control between publisher and
server. Default is 3000.

The lowwater mark for the connection
internal queue. When this value is

1 to No
Max

LowWaterMark

reached the outbound internal queue
will again be ready to push event to the
server. Default is 1000.

YThemaximumnumber ofmilliseconds
it should take to gain access to an

200 toNo
Max

QueueAccessWaitLimit

internal connection queue to push
events. Once this time has elapsed the

54 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

client session will inform any listeners
registered on the sessionwhichmonitor
these connection queues. Small values
may result in an excessive number of
notifications. Default is 200.

YThemaximumnumber ofmilliseconds
an internal connection queue will wait

500 toNo
Max

QueueBlockLimit

before notifying listeners after it has
reached the HighWaterMark. Small
values may result in excessive
notifications. Default is 500.

YThemaximumnumber ofmilliseconds
it should take to gain access to an

200 toNo
Max

QueuePushWaitLimit

internal connection queue and to push
events before notifying listeners. Small
values may result in excessive
notifications. Default is 200.

The default amount of time a
transaction is valid before being

1000 to
No Max

TransactionLifeTime

removed from the tx store. Default is
20000.

Cluster Config

Size of the client request queue.10 to
10000

ClientQueueSize

If this queue is small then the clients
will wait longer and performance may
drop.

If too large then client requests are
queued but not processed.

The value used when an async
consumer of type queue or durables of

1 to 1000ClientQueueWindow

types shared queue, shared, and serial
do not set an explicit value for the
window size.

Default is 100.

Important:
A small number will reduce
performance.

Universal Messaging Administration Guide 10.3 55

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

The number of seconds to delay the
cluster processing client requestswhen

0 to
120000

ClientStateDelay

a cluster state change occurs. A large
number will delay client requests
longer than required.

Disable HTTP(s) connections between
cluster nodes. If true then the server

True or
False

DisableHTTPConnections

will only use nsp(s) connections
between realm nodes, and any nhp(s)
rnames will be switched to using
nsp(s).

Time towait for the node to form in the
cluster. Once this time has expired the

1000 to
120000

DisconnectWait

behavior is defined by the
DisconnectWhenNotReady flag.

Disconnects the client if the node has
not formed in the cluster. If set to true,

True or
False

DisconnectWhenNotReady

all non-Admin client sessions are
disconnected, but the Admin sessions
are not disconnected. If set to false, the
user request will be queued.

Enables cluster requests broadcast to
realms to be send through the reliable

True or
False

EnableMulticast

multicastmechanismwithinUniversal
Messaging. This setting only takes
effect if a multicast interface is
configured for all nodes within the
cluster.

YEnables/Disables the ability for the
slave to re-attempt a recovery of a store

True or
False

EnableStoreRecoveryRetry

if it detects changes to the store during
recovery. If true the slavewill continue
to attempt a cluster recovery of a store
which may be changing due to TTL or
capacity on the store attributes.

YNumber of concurrent pipeline threads
runningwithin the cluster engine. If set

1 to 32EnginePipelineSize

to 1, then all requests are pipelined
through one thread, else topics/queues
are bound to specific pipelines.

56 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

The time to wait for the state to move
from recovery to slave ormaster. If this

60000 to
300000

FormationTimeout

value is too small then recovering a
large number of events will result in
the realms dropping out of the cluster.

Heart Beat interval in milliseconds.
Default is 120000. A small value here

1000 to
120000

HeartBeatInterval

will cause excessive messages being
generated between realms.

The number of milliseconds that the
server will wait while trying to

5000 to
240000

InitialConnectionTimeout

establish a connection to a peer. A small
value may reduce the chance of a
connection in busy networks, while a
large number may delay cluster
formation.

YWhen a slave processes an
IsCommitted request and it is still

1000 to
30000

IsCommittedDelay

recovering the Transaction store, it will
block the clients request for this timeout
period. If this is set to a large value,
clients may experience a substantial
delay in response.

Specifies the amount of time in
milliseconds that themaster is going to

1000 to
900000

MasterRequestTimeout

wait for a slave to respond to a single
request before disconnecting it. This
timeoutwill prevent a slave frombeing
reconnected if it fails to respond to a
master request.

When a node has requested to be
master it will wait this timeout period

1000 to
60000

MasterVoteDelay

in milliseconds for the peers to agree.
If this number is too high the cluster
formation may take some time.

When themaster is lost from the cluster
and the remaining peers detect that the

1000 to
600000

MasterWaitTimeout

master has the latest state theywill wait
for this time period for the master to
reconnect. If the master fails to

Universal Messaging Administration Guide 10.3 57

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

reconnect in this time period a new
master is elected.

YIf enabled the slaveswill queue publish
requests prior to committing them to

True or
False

PublishQueueEnabled

the cluster. If enabled and a slave is
killed, any outstanding publish events
will be lost.

Number of events outstanding to be
processed by the clusters internal queue

100 to
1000

QueueSize

before sending flow control requests
back. Increased size increases the
memory usage.

When a realm loses master or slave
state then after this timeout all cluster

10000 to
No Max

StateChangeScan

based connectionswill be disconnected.
If the realm reenters the cluster then
the disconnect timeout is aborted. If
this value is too low, all clients will be
bounced while the cluster is forming.

YNumber of events sent before a cluster
sync occurs. A small numberwill effect

100 to
10000

SyncPingSize

overall performance, a large number
may result in a cluster being to far out
of sync.

Comet Config

YThe buffer size for Comet requests.
Large sizes will cause the realm to

1024 to
102400

BufferSize

consume more memory when reading
data from Comet clients. Small sizes
may introduce delays in the time taken
to read requests.

Enables logging of all comet queries,
will impact server performance.

True or
False

EnableLogging

The timeout for a Comet connection.
Small sizes may cause Comet-based

10000 to
No Max

Timeout

connections to time out prematurely.
Large sizes may increase the time a

58 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

server holds a disconnected Comet
connection open.

Connection Config

YIf set to true then buffers will be
allocated from the buffer pool and once

True or
False

AllowBufferReuse

finished with returned to the pool. If
set to false then buffers are allocated
on the fly and then left for the system
to free them. It is best to leave this set
to true. For object creation limitation it
is best to set this to true.

YThe number of Buffer Managers that
the server will allocate. This is used

1 to 256BufferManagerCount

during startup to size and manage the
network buffers. This does not need to
be large, but a rule of thumb is 1 per
core.

YThe underlying Universal Messaging
IO utilizes buffers from a pool. By

100 to
10000

BufferPoolSize

default we pre-load the pool with this
number of buffers. As the reads/writes
require buffers they are allocated from
this pool, then once used are cleared
and returned. If the size is too small we
endup creating anddestroying buffers,
and the servermay spend time creating
them when needed. If the size is too
large we have a pool of buffers which
are not used taking up memory.

This specifies the default size of the
network buffers that Universal

1024 to
1048576

BufferSize

Messaging uses for its NIO. If small,
then Universal Messaging will require
more buffers (up to the maximum
specified by BufferPoolSize) to send
an event. If too large, thenmemorymay
be wasted on large, unused buffers.

These buffers are reused automatically
by the server, and are used to transfer
data from the upper application layer

Universal Messaging Administration Guide 10.3 59

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

to the network. So, for example, the
server might use all BufferPoolSize
buffers to stream from 1 application
level buffer (depending on the relative
sizes of the buffers).

An efficient size would be about 40%
more than the average client event, or
5K (whichever is largest). If too small,
the serverwill sendmany small buffers.

Specifies the time the server will wait
for a client to complete sending the data

1000 to
120000

CometReadTimeout

YWhen the server has exceeded the
connection count, how long to hold on

10 to
60000

ConnectionDelay

to the connection before disconnecting.
If this is too low, the serverwill be busy
with reconnection attempts. Default is
60000.

Specifies the time in milliseconds that
a communications driver can be idle

120000 to
No Max

IdleDriverTimeout

before being deemed as inactive.When
this happens the server will
automatically close and remove the
driver. This must be greater than the
keep alive timeout else all connections
will be closed due to inactivity.

If there has been no communication
froma client for the configured number

10000 to
No Max

IdleSessionTimeout

of milliseconds, the client is deemed
idle and is disconnected. This typically
occurs when there are network issues
between a client and the server. If the
value is too low, the chance of
disconnecting a valid session is high.

The number of milliseconds the server
will wait before sending a heartbeat. A

5000 to
No Max

KeepAlive

small number will cause undue
network traffic. Default is 60000.

The maximum buffer size in bytes that
the server will accept. Default is
20971520 (20MB).

1024 to
No Max

MaxBufferSize

60 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Rather than using larger buffers, it is
recommended that you compress if
possible to save bandwidth and
memory on the server.

This value exists to stop a user from
accidentally ormaliciously overloading
the server and causing excessive
memory consumption.

Sets the maximum concurrent
connections to the server, -1 indicates

-1 to No
Max

MaxNoOfConnections

no restriction, default is -1. Reducing
this to a small numbermay cause client
connections to be rejected.

When writing many events to a client
the write pool thread may continue to

5 to 100MaxWriteCount

send the events before returning to the
pool to process other clients requests.
So, for example if it is set to 5, then the
thread will send 5 events from the
clients queue to the client before
returning to the pool to process another
request. If this number is small it
creates additional CPU overhead.

The number of threads to allocate to
flushing client data, Please note this

2 to 100NetworkMonitorThreads

will only take effect after a restart.
Depending on the number of
concurrent clients the latencies during
load my be higher then expected

Sets the number of queues to divide
priority levels between, up to a
maximum of 10 queues.

2 to 10PriorityQueueCount

Maximum number of clients allowed
to allocate high priority spin locks.

0 to 8PriorityReadSpinLockMaxConnections

This property is deprecated andwill be
removed in a future product release.

YThe time interval (in milliseconds),
during which the thread spin read

1 to
10000

PriorityReadSpinLockTime

handler will continuously try reading

Universal Messaging Administration Guide 10.3 61

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

events. The setting has effect onlywhen
PriorityReadType is set to Thread Spin.
Default value is 500milliseconds.

This property is deprecated andwill be
removed in a future product release.

If enabled then high priority sessions
will be enabled to run spin locks
waiting to read.

0 to 2PriorityReadType

This property is deprecated andwill be
removed in a future product release.

The number of events in a client output
queue before the server stops sending

100 toNo
Max

QueueHighWaterMark

events. A small number will cause
undue work on the server. Default is
3000.

The number of events in the clients
queue before the server resumes

50 to No
Max

QueueLowWaterMark

sending events. Must be less than the
high water mark. Default is 1000.

Number of times the thread will loop
around waiting for an event to be

1 to 20ReadCount

delivered before returning. Large
values may cause read threads to be
held for long periods of time, but avoid
context switching for delivering events.

YIf true the server will allocate
DirectByteBuffers to use for network

True or
False

UseDirectBuffering

I/O, else the server will use
HeapByteBuffers. The main difference
is where the JVMwill allocate memory
for the buffers the DirectByteBuffers
perform better. For the best
performance the DirectByteBuffers are
generally better.

Specifies the type of write handler to
use

1 to 5WriteHandlerType

Number of events to exceed in the
whEventThresholdTime to detect a peak.

1 to 2000whEventThresholdCount

62 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

This number should be small enough
to trigger peaks.

Number of milliseconds to sample the
event rate to detect peaks

1 to 2000whEventThresholdTime

Total number of events that can be sent
before a flush must be done. If this

1 to
10000

whMaxEventsBeforeFlush

number is too small then too many
flushes will result.

Specifies the total number of events per
second that a realmwill send to clients

No Min
to No
Max

whMaxEventsPerSecond

before switching modes into peak
mode. If this number is small then the
server will go into peakmode too soon
and latencies will start to increase.

Total number of milliseconds to wait
before a flush is done. If this number is
too large then latencies will increase.

1 to 1000whMaxTimeBetweenFlush

Data Stream Config

YTime interval in milliseconds to scan
the data group configuration looking

1000 to
120000

MonitorTimer

for idle / completed streams. Large
values may cause idle and inactive
datastreams to remain on datagroups
for long periods of time. Small values
may cause transient disconnections to
trigger datagroup removals for
datastreams - requiring them to be
added back into the datagroup.

YIf true then all multicast writes will be
performed by the parallel fanout
engine.

True or
False

OffloadMulticastWrite

YWhen any stream registered client
connect sends the entire Data Group
Name to ID mapping

True or
False

SendInitialMapping

DurableConfig

Universal Messaging Administration Guide 10.3 63

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

YIf true, then if the selector on a queued
durable changes, the selector is added
to the exception string.

True or
False

QueuedExtendedException

Environment Config

Number of CPUs availableREAD
ONLY

AvailableProcessors

If true, this specifies that the server is
running as an embedded server

READ
ONLY

Embedded

Universal Messaging Server
Inter-Realm Protocol Version

READ
ONLY

InterRealmProtocolVersion

Vendor of Java Virtual MachineREAD
ONLY

JavaVendor

Virtual Machine VersionREAD
ONLY

JavaVersion

Nanosecond support available through
JVM on Native OS

READ
ONLY

NanosecondSupport

Operating System ArchitectureREAD
ONLY

OSArchitecture

Operating System NameREAD
ONLY

OSName

Operating System VersionREAD
ONLY

OSVersion

Process IDREAD
ONLY

ProcessId

UniversalMessaging Server BuildDateREAD
ONLY

ServerBuildDate

Universal Messaging Server Build
Number

READ
ONLY

ServerBuildNumber

Universal Messaging Release DetailsREAD
ONLY

ServerReleaseDetails

Universal Messaging Server Build
Version

READ
ONLY

ServerVersion

64 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

The size of theOperating System's time
quantum.

READ
ONLY

TimerAdjustment

Event Storage

YThe time in milliseconds that an active
channel will delay between scans. The

100 toNo
Max

ActiveDelay

smaller the number, themore active the
server. Default is 1000.

Specifies the number of milliseconds
between scans on AutoDelete stores to

1000 to
500000

AutoDeleteScan

see if they should be deleted. The larger
this time frame, the more AutoDelete
stores will potentially not be deleted
on the server.

Sets the percentage free before the
server should run maintenance on the

0 to 100AutoMaintenanceThreshold

internal stores. It is by default 50. This
means maintenance will be performed
when 50% of the number of the events
in the file aremarked as dead – already
consumed and acknowledged so they
can be deleted.

YThe length of time in milliseconds that
cached events will be kept in memory.

1000 to
No Max

CacheAge

The larger the value, themorememory
will be utilized.

If true the server will try to cache
events in memory after they have been

True or
False

EnableStoreCaching

written/read. Please note the serverwill
need to be rebooted for this to take
effect

YThe time in milliseconds that an idle
channel will delay between scans. The

5000 to
No Max

IdleDelay

smaller the number, themore active the
server. Default is 10000.

YDefines the interval between clean up
of events on a JMS Engine Resource. A

5000 to
600000

JMSEngineAutoPurgeTime

large interval may result in topics with

Universal Messaging Administration Guide 10.3 65

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

large numbers of events waiting to be
purged.

Sets the file size in bytes that will
trigger themaintenance.With small file

1024000MaintenanceFileSizeThreshold

sizes, themaintenancewill be runmore
often. With large file sizes, the
maintenance may take longer to run.
There are no performance issues with
a big file except on startup when the
stores need to be reloaded.

Maximumsize inmemory for any topic
or queue to reach before maintenance
of the in-memory cache is run.

1048576MaintenanceMemoryThreshold

The page size to use for the event store.
This value sets the number of
events/page.

10 to
100000

PageSize

YSets the Queue Delivery Persistence
Policy. The policy is a combination of

(Values
as listed

QueueDeliveryPersistencePolicy

(a) making the disk storage locationin next
column) persistent, i.e. recoverable after a server

restart, or non-persistent, i.e. erased at
a server restart, and (b) writing events
to the disk storage location
synchronously or asynchronously.

If you choose a policy that uses a
non-persistent storage location,
unacknowledged but delivered queue
events will be stored elsewhere until
they are acknowledged or rolled back.

The available policies are:

No persistent/No sync: The storage
location is not persistent, and
writing events to disk is
asynchronous.

Persistent/No sync: The storage
location is persistent, and writing
events to disk is asynchronous.

66 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Persistent/Sync: The storage
location is persistent, and writing
events to disk is synchronous.

Persistent/No sync is the
recommended value for production
environments.

YSize of the buffer to use during reads
from the store. Note that the serverwill

1024 to
3000000

StoreReadBufferSize

need to be restarted for this to take
effect.

YSpecifies the maximum size before the
sync call is made. The lower this value,

1 to 1000SyncBatchSize

themore sync calls made and themore
overhead incurred.

If true the server will sync each file
operation for its internal files. If true,

True or
False

SyncServerFiles

this adds additional overhead to the
servermachines and can reduce overall
performance.

YSpecifies the maximum time in
milliseconds thatwill be allowed before

1 to 1000SyncTimeLimit

the sync is called. The lower this value,
the more file sync calls and the more
overhead incurred.

The number of threads allocated to
perform the management task on the

1 to 4ThreadPoolSize

channels. The more channels a server
has, the larger this number should be.

Fanout Values

YIf true allows the server to group
connections with the same selector

True or
False

ConnectionGrouping

providing improved performance. This
allows the server to optimize the way
it processes events being delivered to
the clients.

This requires a server restart to take
effect.

Universal Messaging Administration Guide 10.3 67

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Delays the publisher thread when the
store capacity is exceeded. If this is not

True or
False

DelayPublishOnCapacity

set, an exception is passed back to the
client.

YIf true, the channel will check any
shared durables for capacity before

True or
False

HonourSharedDurableCapacity

accepting a published event. If any of
these durables are over capacity, the
server will respond as if the parent
channel is over capacity. If false, the
event will be published regardless of
the number of events on its shared
durables.

Specifies the number of events
delivered to each Channel Iterator in a

1 to No
Max

IteratorWindowSize

pre fetch. This allows the client to
perform much faster by pre fetching
events on fast moving topics requiring
less client to server communication.

The default is 100.

YThemultiplier used on the HighWater
mark when processing events from a

1 to 10JMSQueueMaxMultiplier

JMS Engine Queue/Topic. If this value
is too high the serverwill consume vast
amounts of memory.

Specifies the number of threads to use
within the thread pool. If this number

2 to 64ParallelThreadPoolSize

is small then there maybe adverse
overheads. This value required a restart
to take effect.

YWhen clients start to hit high water
mark, this specifies how long to delay

0 to No
Max

PeakPublishDelay

the publisher to allow the client time
to catch up. If this is too small the
publisher can overwhelm the server.

YHow long to delay the publisher when
the subscriber's queue start to fill, in

0 to No
Max

PublishDelay

milliseconds. If this number is 0 then
no delay.

68 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Specifies whether to publish expired
events at server startup. Default is true.

True or
False

PublishExpiredEvents

Specifies whether to always send an
End Of Channel, even if we find no

True or
False

SendEndOfChannelAlways

matches within the topic. If set, the
subscriberwill always be informed that
the subscription request has completed
the recovery of the topic.

Specifywhether to send publish events
immediately. If true, then the server

True or
False

SendPubEventsImmediately

will send all publish events to clients
immediately, if false the server is
allowed to collect events before
publishing.

Maximum number of milliseconds the
queue publisher will be delayed. This

10 to
3600000

SyncQueueDelay

can be used to slow down the queue
publishers.

If true then the queue publisher will be
synchronized with the queue

True or
False

SyncQueuePublisher

consumers. This allows flow control of
queue publishers. If false then the
value of SyncQueueDelay is not used.

Global Values

YIf true then any userwith the full realm
access will have access to all channels
and queues.

True or
False

AllowRealmAdminFullAccess

YIf enabled we cache join key
information between events passed

True or
False

CacheJoinInfoKeys

over joins. This reduces the number of
objects created. If this parameter is set
to false then the serverwill create a new
byte[] and string for each joined event.

If enabled the server will call the
Garbage Collector at regular intervals

True or
False

DisableExplicitGC

to keep memory usage down. If this is
disabled then the garbage collection
will be done solely by the JVM.

Universal Messaging Administration Guide 10.3 69

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

If EnableCaching is set to true, the
channel storage properties Cache On

True or
False

EnableCaching

Reload andEnable Caching are set to
the values specified by the client.

If EnableCaching is set to false, then
the channel storage properties Cache
On Reload and Enable Caching are
set to False, regardless of the values set
by the client for these storage
properties.

If enabled the server will attempt to
perform a DNS lookup when a client

True or
False

EnableDNSLookups

connects to resolve the IP address to a
hostname. In some instances this may
slow down the initial client
connections.

YIf enabled then the serverwill hook into
the JVM's garbage collection and

True or
False

EnableWeakReferenceCleanup

release cached items when the JVM
needs memory. By enabling this, the
number of cached events storedwill be
reduced but memory will be
maintained.

If true, allows the server to use the
extended message selector syntax

True or
False

ExtendedMessageSelector

(enabling string to numeric conversions
within the message selector). Default
is true.

YThe size in bytes to be used by nhp(s)
cookies

14 to 100HTTPCookieSize

YThe number of milliseconds that the
server will wait before scanning for

5000 to
No Max

NHPScanTime

client timeouts. Default is 5000, i.e. 5
seconds.

YThe number of milliseconds the server
will wait for client authentication. If

2000 to
No Max

NHPTimeout

this number is too large, the servermay
have unwanted connections. Default is
120000, i.e. 2 minutes.

70 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Override the *@* permission for
channels / queues with explicit ACL
entry permissions. Default is false.

True or
False

OverrideEveryoneUser

YIf true, the Pause Publishing feature is
activated. Default is false.

True or
False

PauseServerPublishing

This feature causes the server to block
all attempts by clients to publish events,
and such clients will receive an
nPublishPausedException. However,
events that already exist in the
publishing client queues on the server
continue to be consumed by the
subscribing clients until the queues are
emptied.

You can use the Pause Publishing
featurewhen it is necessary to clear the
client event queues on the realm server.
This could be, for example, before
performing maintenance tasks such as
increasing buffer storage or performing
a backup, or before changing the server
configuration.

If true sends the realm's status
summary updates every second.
Default is false.

True or
False

SendRealmSummaryStats

Place Universal Messaging details into
the dictionary. The default is true.

True or
False

StampDictionary

Stamps the header with the publishing
host (true/false). If true adds additional
overhead to the server/client.

True or
False

StampHost

Stamps the header with the current
time (true/false). If true, adds
additional overhead to the server/client.

True or
False

StampTime

If this is set to true, then the server will
use an accurate millisecond clock, if

True or
False

StampTimeUseHPT

available, to stamp the dictionary. This
may impact overall performancewhen
delivering events when latency is
important.

Universal Messaging Administration Guide 10.3 71

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

This has 3 values, milli, micro or nano
accuracy

0 to 2StampTimeUseHPTScale

Stamps the header with the publishing
user (true/false). If true, adds additional
overhead to the server/client.

True or
False

StampUser

This property has two purposes:2000 to
No Max

StatusBroadcast

The number of milliseconds
between status events being
published to any clients using
AdminAPI or EnterpriseManager.
A small value increases the server
load.

The number of milliseconds
between status messages being
written to the server log, when
periodic status logging has been
activated via the EnableStatusLog
property.

Remember that if you change the value
of this property, it will affect the time
interval for both status events and
status log intervals.

The default is 5000, i.e. every 5 seconds.

Inter-Realm Comms Config

YTime for an inter-realm link to be
initially established. This value should
reflect the latency between nodes.

10000 to
120000

EstablishmentTime

YTime interval where if nothing is sent
a Keep Alive event is sent. This can be

1000 to
120000

KeepAliveInterval

used to detect if remote members are
still up and functioning.

YIf nothing has been received for this
time the connection is deemed closed.

10000 to
180000

KeepAliveResetTime

This value must be larger than the
KeepAliveInterval.

72 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

YThemaximumnumber ofmilliseconds
to wait before trying to re-establish a

1000 to
50000

MaximumReconnectTime

connection. If this value is too large,
cluster formation will be delayed. The
reconnect will be attempted at a
random amount of time between
MinimumReconnectTime and
MaximumReconnectTime.

YThe minimum time to wait before
trying to re-establish a connection. If

100 to
10000

MinimumReconnectTime

this number is too high then it may
impact the network during outages.
The reconnect will be attempted at a
random amount of time between
MinimumReconnectTime and
MaximumReconnectTime.

YIf no events are received within this
time limit, the link is assumeddead and

60000 to
180000

Timeout

will be closed. If this limit is less than
the keep alive time then the link will
be closed.

YThe maximum time to wait on a write
if the link has dropped. If a realm

1000 to
60000

WriteDelayTimeout

disconnects when we are able to write
to it, we wait for a set amount of time
for the link to come back before
abandoning the write and resetting
altogether. This insulates the cluster
against some transitive network
conditions.

JVMManagement

Thememory thresholdwhen the server
starts to aggressively scan for objects

50 to 99EmergencyThreshold

to release. If this value is too large the
servermay run out ofmemory. Default
is 94, i.e. 94%

Enable JMX beans within the server. If
enabled the server will present JMX

True or
False

EnableJMX

MBeans so it can be monitored by any
JMX client.

Universal Messaging Administration Guide 10.3 73

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

YIf true, the server will exit if it gets an
I/O Exception. Setting this to false may

True or
False

ExitOnDiskIOError

result in lost events if the server runs
out of disk space. Default is true

YIf true and for any reason an interface
cannot be started when the realm
initializes, the realm will shut down.

True or
False

ExitOnInterfaceFailure

YNumber of times a file I/O operation
will be attempted before aborting

2 to 100IORetryCount

YTime between disk I/O operations if an
I/O operation fails. If this time is large

100 to
60000

IOSleepTime

then the server may become
unresponsive for this time.

JNDI Lookup URL for the JMX Server
to use.

StringJMXRMIServerURLString

Number of milliseconds between
monitoring memory usage on the

60 to
30000

MemoryMonitoring

realm. If this value is too large then the
realm will be slow to handle memory
usage. Default is 2000.

YDefines if publishers will be throttled
back when the memory emergency
threshold is reached.

True or
False

ThrottleAllPublishersAtThreshold

Thememory thresholdwhen the server
starts to scan for objects to release. If

40 to 95WarningThreshold

this value is small then the server will
release objects too soon, resulting in a
lower performing realm. Default is 85,
i.e. 85%.

Join Config

The number of threads to be assigned
for the join recovery. Default is 2.

1 to No
Max

ActiveThreadPoolSize

The number of threads to manage the
idle and reconnection to remote servers.

1 to No
Max

IdleThreadPoolSize

This number should be kept small.
Default is 1.

74 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

YNumber of events that will be sent to
the remote server in one run. A low

1 to No
Max

MaxEventsPerSchedule

number will increase the time to
recover the remote server, a large
number will impact other joins which
are also in recovery. Default is 50.

YThe maximum events that will be
queued on behalf of the remote server.

1 to No
Max

MaxQueueSizeToUse

A low number increases the time for
the remote server to recover, a large
number increases thememory used for
this server. Default is 100.

YEvents received through remote joins
are acknowledged in batches. This
property configures the batch size.

RemoteJoinAckBatchSize

YIn addition to the batch
acknowledgement, remote join events

RemoteJoinAckInterval

get acknowledged everynmilliseconds.
This property configures this interval.

YSpecifies whether to use a queued join
event handler. Truewill enable source

True or
False

UseQueuedLocalJoinHandler

channels and destination channels to
be process events independently.

Logging Config

The default size of the log in bytes100 toNo
Max

DefaultLogSize

If enabled will display the current
thread in the log message.

True or
False

DisplayCurrentThread

Default: true

If enabled will intercept log messages
and pass to Log4J aswell. This requires
a restart before it will take effect.

True or
False

EnableLog4J

Used to control if the message tag is
displayed in log messages.

True or
False

EmbedTag

Default: false

Universal Messaging Administration Guide 10.3 75

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

If true, periodic logging of the
Universal Messaging server status is

True or
False

EnableStatusLog

activated. Themessages will be logged
at time intervals given by the
StatusBroadcast configuration
property described in the Global Values
section.

The default is true.

The server logging level, between 0 and
6, with 0 indicating very verbose, and

0 to 6fLoggerLevel

6 indicating very quiet. The more
logging requested, the more overhead
on the server. Default is 4.

The Log manager to use.0 to 2LogManager

0 = ROLLING_OLD, 1 = ROLLING_DATE, 2 =
ROLLING_NUMBER

Default: ROLLING_DATE

The number of log files to keep on disk
when using log rolling. Oldest log files

No Min
to No
Max

RolledLogFileDepth

will be deleted when new files are
created.

Note:
For further information about using
the log file, see “UniversalMessaging
Enterprise Manager : Logs Panel” on
page 20.

Metric Config

If this is set to true, the server will
make available memory usage.

True or
False

EnableEventMemoryMonitoring

If this is set to true, the server will
make available system metrics (e.g.
memory usage).

True or
False

EnableMetrics

Plugin Config

76 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Defines if plugin access log is producedTrue or
False

EnableAccessLog

Defines if plugin error log is producedTrue or
False

EnableErrorLog

Defines if plugin status log is producedTrue or
False

EnablePluginLog

YMaximum number of threads to
allocate to the plugin manager

10 to
10000

MaxNumberOfPluginThreads

YTime in milliseconds that the plugin
will read from a client. If too small, the

1000 to
30000

PluginTimeout

plugin may not load all of the clients
requests

Protobuf Config

YHold the Protocol Buffer filter cache in
memory. Default true.

True or
False

CacheEventFilter

Protocol AMQP Config

The user name to use for anonymous
users

StringAnonymousUser

The size of the buffer that will be used
to read/write on the AMQP connection

1000 to
60000

BufferSize

The type of node if it is not able to
detect it.

0 to 1DefaultNodeMode

0=Queue, 1=Topic

If true the server will accept incoming
AMQP connections

0 to No
Max

Enable

YEnables the off loading of the physical
write to a thread pool

True or
False

EnableWriteThread

YHow many times the AMQP state
engine will cycle per thread pool
allocation

4 to 100EngineLoopCount

YMaximum size of an AMQP frame10000 to
No Max

MaxFrameSize

Universal Messaging Administration Guide 10.3 77

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Largest number of threads the pool can
have.

2 to 100MaxThreadPoolSize

Smallest number of threads for the
dedicated AMQP thread pool

1 to 10MinThreadPoolSize

The address prefix for specifying topic
nodes as required by some clients

StringQueuePrefix

Enable Anonymous SASLTrue or
False

SASL_Anonymous

Enable CRAM-MD5 SASLTrue or
False

SASL_CRAM-MD5

Enable DIGEST-MD5 SASLTrue or
False

SASL_DIGEST-MD5

Enable Plain SASLTrue or
False

SASL_Plain

Sets the subscriber (receiver) credit100 toNo
Max

SubscriberCredit

YSets the network timeout10000 to
300000

Timeout

The address prefix for specifying topic
nodes as required by some clients

StringTopicPrefix

Selects the type of transformation to
use from AMQP style events to native
UM events.

0 to 3TransformToUse

0 - No transformation, 1 - Basic
Transformation, 2 - Complete
Transformation, 3 - User Configurable

Protocol MQTT Config

Defines whether the server should
disconnect clients to inform them that

True or
False

DisconnectClientsOnPublishFailure

publishing has failed. The default is
true.

If true, the server will accept incoming
MQTT connections. The default is true

True or
False

Enable

78 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

if this feature is enabled in the product
licence.

If true, the server will auto-generate
Topics for MQTT clients for

True or
False

EnableAutoCreateTopics

subscriptions and publishing. The
default is true.

Note:
This property is only applicable for
client IDs with no wildcard.

YIf true, the Client IDmust consist solely
of alphanumeric characters. The default
is false.

True or
False

EnforceAlphaNumericClientID

Note:
This property is only applicable for
MQTT 3.1.1.

YIf true, ignore the standard Client ID
maximum length check of 23 characters.
The default is true.

True or
False

IgnoreClientIDLength

Note:
This property is only applicable for
MQTT 3.1.1.

Sets the maximum number of events
that the serverwill send beforewaiting

100 to
64000

MaxOutstanding

for the client to acknowledge them
(QoS:1 and above). The default is 64000.

YIf true, the server will not recover
publish events with QoS greater than
or equal to 0. The default is false.

True or
False

QoS0AsTransient

Note:
This property is only applicable for
MQTT 3.1.1.

YThe number of milliseconds the state
of a Client ID is kept between

0 to No
Max

SessionStateTTL

connections. The default value is set to
3 days. Setting this value to 0will store
the Client ID state until a clean session
is received.

Universal Messaging Administration Guide 10.3 79

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

YIf true, the server will auto-generate
the Client ID if it has zero length. The
default is true.

True or
False

SupportZeroLength

Note:
This property is only applicable for
MQTT 3.1.1.

YTo be compliant with MQTT, stores
must use the JMS Engine. This flag
enforces this check. The default is true.

True or
False

Strict

RecoveryDaemon

YThe number of events to send in one
block to a recovering connection. Small

1 to No
Max

EventsPerBlock

values may slow down the overall
speed of recovery, however large
valuesmay saturate the recovery thread
and keep it busy from performing
recovery tasks for other stores and
connections.

Number of threads to use for client
recovery

1 to No
Max

ThreadPool

Server Protection

Enables flow control of producer
connections. Default is true.

True or
False

EnableFlowControl

YThe time in milliseconds to hold a
producing connectionbeforeprocessing

0 to
120000

FlowControlWaitTimeOne

its events. This is the longest level of
waiting.

YThe time in milliseconds to hold a
producing connectionbeforeprocessing

0 to
120000

FlowControlWaitTimeTwo

its events. This is the second level of
waiting.

YThe time in milliseconds to hold a
producing connectionbeforeprocessing

0 to
120000

FlowControlWaitTimeThree

its events. This is the first level of
waiting and the shortest wait time.

80 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

Thread Pool Config

Maximum number of threads to
allocate to the common thread pool

5 to 1000CommonPoolThreadSize

The maximum number of threads
allocated to establish client connections.

10 to No
Max

ConnectionThreadPoolMaxSize

If this number is too small then
connections may be left waiting for a
thread to process it.

The minimum number of threads
allocated to establish client connections.

4 to 100ConnectionThreadPoolMinSize

If too large then the server will have
many idle threads.

YThe time for the thread to wait for the
client to finalize the connection. If too

10000 to
300000

ConnectionThreadWaitTime

low then slow linked clients may not
be able to establish a connection.

YIf true then if NIO is available it will
be available for interfaces to use it and

True or
False

EnableConnectionThreadPooling

then all reads/writes will be done via
the Read/Write thread pools. If NIO is
not available then a limited used write
thread pool is used. This requires a
realm restart before it takes effect.

YThe maximum outstanding
unauthorized connections per

10 to
10000

MaxUnauthorisedCount

hostname (or IP address if host name
is unavailable)

The maximum number of threads to
allocate to the multiplex thread pool to
readmultiplex sessions. Default is 100.

4 to No
Max

MultiplexReadThreadPoolMaxSize

The minimum number of threads to
allocate to the multiplex thread pool to
read multiplex sessions. Default is 4.

4 to No
Max

MultiplexReadThreadPoolMinSize

YThe threshold atwhich the server starts
to warn about the number of pending

100 to
100000

PendingTaskWarningThreshold

tasks. When the number of pending
tasks is below the threshold, but over

Universal Messaging Administration Guide 10.3 81

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

100, the server logs a WARNING
message. When the number is above
the threshold, the server logs an
ERRORmessage.When the server does
not find available threads, it logs a
message that the thread pool is
exhausted. Default is 1000.

The maximum number of threads that
will be allocated to the read pool. If

4 to No
Max

ReadThreadPoolMaxSize

NIO is not available this should be set
to themaximumnumber of clients that
are expected to connect. If NIO is
available then it's best to keep this
number under 20.

This is the number of threads that will
always be present in the read thread

4 to No
Max

ReadThreadPoolMinSize

pool. If this is too small then the thread
pool will be requesting new threads
from the idle queue more often. If too
large then the server will have many
idle threads.

The number of threads assigned to the
scheduler, default is 10.

10 to 100SchedulerPoolSize

YThe time in milliseconds before
reporting a slow-running task. The

1000 to
30000

SlowTaskWarningTime

server logs the information at the
WARNING log level and generates a
thread dump. Default is 5000.

YThe time in milliseconds before
reporting a stalled task. The system

10000 to
60000

StalledTaskWarningTime

writes the information at the
WARNING log level and generates a
thread dump. When you change this
configuration, the thread pool monitor
interval is updated to monitor at the
same time interval as the value you
specify for this property. Default is
60000.

YThe interval in milliseconds at which a
thread dump is generated when the

1000 to
600000

ThreadDumpInterval

system reports slow or stalled tasks, or

82 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

when the number of pending tasks
exceeds the value of
PendingTaskWarningThreshold. The
thread dump interval applies across all
thread pools in the JVM instance.
Default is 60000.

YWhether to generate a thread dump
when the system reports a slow task.
Default is false.

True or
False

ThreadDumpOnSlowTask

When threads are released fromvarious
pools since they no longer need them

5 to 50ThreadIdleQueueSize

they end up in the idle queue. If this
idle queue exceeds this number the
threads are destroyed. Specify this
number to be large enough to
accommodate enough idle threads, so
that if any thread pool requires to
expand then it can be reused. If the
number is too large then the servermay
have many idle threads.

The maximum number of threads that
will be allocated to the write pool. If

5 to No
Max

WriteThreadPoolMaxSize

NIO is not available this should be set
to themaximumnumber of clients that
are expected to connect. If NIO is
available then it's best to keep this
number under 20.

This is the number of threads that will
always be present in the write thread

5 to No
Max

WriteThreadPoolMinSize

pool. If this is too small then the thread
pool will be requesting new threads
from the idle queue more often. If too
large then the server may have many
idle threads.

TransactionManager

The maximum number of events per
transaction, a 0 indicates no limit.

0 to No
Max

MaxEventsPerTransaction

Time in milliseconds that a transaction
will be kept active. A large numberwill

1000 to
No Max

MaxTransactionTime

Universal Messaging Administration Guide 10.3 83

2 Universal Messaging Enterprise Manager



Adv.DescriptionValid
values

Configuration Group/Property

cause the server to retain these
transactions in memory.

YThe minimum time in milliseconds,
below which the server will not store
the Transaction ID.

1000 to
60000

TTLThreshold

Double-clicking on the property you wish to modify in the configuration group will provide you
with a dialogwindowwhere the new value can be entered. The values of configuration properties
will be validated to check whether they are within the correct range of values. If you enter an
incorrect value you will be notified.

Connecting to Multiple Realms

An Enterprise Manager has the ability to connect to multiple Universal Messaging realms at the
same time. These realms can be standalone or clustered so developers and administrators can now
manage and monitor the whole Universal Messaging enterprise infrastructure from a single
instance of Enterprise Manager. Once connected to a set of Universal Messaging realms, it is
possible to save (see “Realm Profiles” on page 43) the connection information so that Enterprise
Manager automatically connects to all those realms each time it starts.

A bootstrapRNAMEenvironment variable is needed the very first time you runEnterpriseManager
or if your connection info file is empty. If you use the shortcut / link created by the installation
process this will be automatically set to point to the locally installed realm's bootstrap interface
so you don't need to take additional action. If however you open a client command prompt and
you wish to initially connect to a realm other than the local one, then you need to change your
RNAME environment variable.

For more information on how to set the RNAME variable, see the section Communication Protocols
and RNAMEs in the Developer Guide.

Please also note that once your realm connection information is saved, the RNAME environment
variable will be ignored.

Once your Enterprise manager is up and running, you have to select the Connect to Realm menu
option from the Connections menu, as shown in the figure below:

84 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The menu option will open the Connect To Realm dialog as shown in the figure below:

Universal Messaging Administration Guide 10.3 85

2 Universal Messaging Enterprise Manager



Simply fill in the RNAME that points to the interface of the Universal Messaging realm you wish
to connect to and click on theOK button. The EnterpriseManager status barwill display amessage
informing you where it is trying to connect to. If the connection is successful, a new realm node
will be rendered on the tree with the unique name of that realm. You can manage and monitor
the new realm by selecting that newly rendered tree node.

The name displayed for the realm uses the syntax: realmname(host:port), for example
realm1(MyHost:11010).

When you connect to a realm server that is part of a cluster or zone, the Enterprise Manager
automatically connects to and displays the other realms in the cluster or zone.

If you enter an incorrect RNAME, if that realm is not running or if it is running but the particular
interface is not up the connection will fail. In that case a retry dialog will appear like this one
below:

If you had typed the correct RNAME this gives you the opportunity to start theUniversalMessaging
realm or interface needed and click yes to retry the connection without entering the information
again. If however the RNAME entered was wrong or you do not wish to retry then clicking no
will close the dialog. Finally don't forget that to make this connection get attempted each time you
start Enterprise Manager you need to save your connection information.

Disconnecting from Realms

86 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Using the multiple realm connection functionality, the startup time of the Enterprise manager is
slightly increased each time you add a Universal Messaging realm to your connection list. If you
connect from a different location or network, if the development phase of a Universal Messaging
application completes or if you simply wish to have faster startup times for Enterprise Manager,
you may want to stop connecting to one or more of your Universal Messaging realms.

This section explains how it is possible to disconnect from one of multiple realms that your
Universal Messaging Enterprise manager may be connected to. To do so, simply select the
Disconnect from Realm menu option in the Connections menu as shown in the figure below:

Universal Messaging Administration Guide 10.3 87

2 Universal Messaging Enterprise Manager



This causes a disconnection dialog to appear like the one shown below:

88 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The dialog lists the names of the currently connectedUniversalMessaging realms. Select the realm
you wish to disconnect from and click OK. The disconnected realm node and any other realm
nodes that were added by it when the node was created disappear from the namespace tree.

Disconnecting from a realm is not necessarily a permanent operation. If you disconnect from a
realm that was listed in your connection information, then the disconnect is applicable for this
Enterprise Manager session only, next time you start up the connection will be attempted again.
In order to make the disconnect permanent, please save (see “Realm Profiles” on page 43) your
connection information after you disconnect.

Interface Status

UniversalMessaging interfaces (see “TCP Interfaces, IPMulticast and SharedMemory” onpage 277)
allow users to connect to a Realm using various protocols and ports on specific physical Network
interfaces on the host machine. Interfaces are also available to users through the Universal
Messaging Administration API and can provide useful status information regarding user
connections.

The Enterprise manager provides a summary of this status information for each interface. This
section will describe the status information available for each interface.

To view status information for an interface, you must first select the 'Comms' tab for the Realm
you want to view. This tab contains the interface configurations as well as Multicast and Shared
Memory configurations Select the interface you wish to view from the list of interfaces in the
'Interfaces'. By selecting the desired interface, you will be presented with a number of panels, one
of which is labeled 'Status'. This panel is shown in the image below.

Universal Messaging Administration Guide 10.3 89

2 Universal Messaging Enterprise Manager



The interface status panel has a section that describes the details of the interface status information.
The status information contains 6 values, each of which is described below.

90 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Details Panel

Idle Threads- The number of idle threads, calculated as the total threads from the interface
accept threads pool - the number of threads from the pool currently accepting connections.
Corresponds to available threads

Total Connections - The total number of successful connections made to this interface

Total Failed - The total number of failed connection attempts made to this interface

Ave Authorisation - The average time it takes a connection to authenticate with the realm
server

Pool ExhaustedCount - The number of times that the interface thread pool has had no threads
left to service incoming connection requests. When this count increases, you should increase
the number of accept threads (see “Interface Configuration” on page 282) for the interface

Ave Pool Wait - The average time that a client connection has to wait for the accept thread
pool to provide an available thread. Like the Pool Exhausted count, this is a good indicator
that the number of accept threads for an interface is too low and needs to be increased

The status panel also shows 2 graphs that depict connection attempts (successful connections are
shown in yellow, failed connection attempts are shown in red) and authentication times (average
authentication times are shown in yellow, and the last authentication time is shown in red).

Zone Administration

Overview of Zone Administration

The Enterprise Manager provides menu items for performing the administrative functions on
zones. In a zone,messages that are published to a channel on one realm are automatically forwarded
to a channel of the same name on other realms in the zone.

Note:
Messages on queues are not forwarded between realms in a zone; the zone functionality applies
only to channels.

For general information about using zones, refer to theArchitecture section of theUniversalMessaging
Concepts guide.

Zone administrative functionality is offered in the Enterprise Manager menu bar and in the
navigation tree:

Universal Messaging Administration Guide 10.3 91

2 Universal Messaging Enterprise Manager



The Zone tab in the menu bar allows you to perform operations on zones, such as creating and
deleting zones.

The Zones node in the navigation tree is the parent node of any zones you create.

The zone administration operations that you can perform are described in the following sections.

Creating a Zone

To create a zone and define it with an initial set of realms or clusters, proceed as follows:

1. Open the dialog for creating a zone.

You can do this in one of the following ways:

In the Menu bar, select Zone > Create Zone, or

In the navigation tree, select the Zones node, and from the context menu choose Create
Zone.

2. In the dialog, specify a name that will be assigned to the zone.

3. Add realms or clusters to the zone.

If you select the radio button for realms, you see all of the realms that you can add to the zone.
If you select the radio button for clusters, you see all of the clusters that you can add to the
zone.

Specify the realms or clusters you want to add to the zone, then click Add.

92 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



4. Click OK to create the zone and close the dialog.

The newly created zone is now displayed under the Zones node in the navigation tree.

If you expand the node of the new zone, you will see the realms that belong to the zone.

Note:

1. A zone can contain either realms or clusters, but not a mixture of realms and clusters.
2. A zone cannot be empty; it must contain at least one realm or cluster.

Modifying the set of realms or clusters in a zone

To modify the set of realms or clusters in a zone, proceed as follows:

1. Under the Zones node in the navigation tree, select the node representing the required zone.
In the context menu, select Modify Zone Members.

This displays the realms/clusters that are currently members of the zone, and also the
realms/clusters that are currently not members but which are available to become members.

2. As required, add realms/clusters to the zone's existingmembers, or remove existingmembers.

3. Click OK to save the modified zone and close the dialog.

Deleting a zone

To delete a zone, proceed as follows:

1. Select the Zones node in the navigation tree, then in the context menu, select Delete Zone.

Alternatively, select Zone > Delete Zone from the menu bar.

2. Select the required zone from the displayed list and click OK to delete the zone.

Creating a channel in a zone

You can create a channel for a zone, and the channel will be automatically created on all
realms/clusters in the zone.

To create a channel in a zone, proceed as follows:

1. Select the node for the zone in the navigation pane. Then, in the context menu of the node,
select Create Channel.

2. In the Add Channel dialog, specify the attributes of the channel that you wish to create.

3. Click OK to complete the dialog and create the channel.

The Enterprise Manager now creates the channel on all realms or channels in the zone.

Universal Messaging Administration Guide 10.3 93

2 Universal Messaging Enterprise Manager



Modifying a channel in a zone

If you wish to modify the attributes of a channel that was created in a zone via Create Channel,
you must modify the attributes for the channel in each of the zone members (realms, clusters)
individually.

Note:
Any changes youmake to the channel definition for a realm/cluster in a zone areNOTpropagated
automatically to the other zone members. If you wish to keep all zone members in sync, you
have to update the other zone members individually.

To modify a channel on one realm/cluster in a zone, proceed as follows:

1. Select the node for the channel under the node for the realm/cluster on which the channel is
defined.

2. In the context menu of the channel, select Edit Channel.

3. In the Modify Channel dialog, make your changes and click OK to complete the dialog.

Channel interface attributes for use in zones

For the message forwarding mechanism between realms in a zone, Universal Messaging requires
each affected realm to use an interface that has the attribute Allow for InterRealm activated. See
the section “Interface Configuration” on page 282 for a description of this attribute.

General notes on using zones

This section summarizes some operational aspects of using zones.

If a zone member (a realm or cluster) is not active (e.g. the server is down), no Enterprise
Manager operations will be allowed on the zone until all zone members are available again.

Any given realm or cluster cannot be a member of more than one zone at the same time.

Cluster Administration

Overview

This section describes the process of creating and managing a Universal Messaging cluster.
Universal Messaging Clusters enables the replication of resources across the cluster. The state of
a clustered resource is maintained across all realms within the cluster. For example if an event is
popped from a clustered queue it is popped from all nodes within the cluster.

For more information on how to use the Enterprise Manager to manage Universal Messaging
Clusters please see:

“Creating Realm Clusters” on page 102

“Deleting Realm Clusters” on page 106

94 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



“Modifying Cluster Members” on page 108

“Creating Cluster Channels” on page 110

“Creating Cluster Queues” on page 115

“Viewing and Monitoring Cluster Information” on page 97

“Manage Inter-Cluster Connections” on page 123

For more information on how to use the Enterprise Manager to manage Universal Messaging
Clusters with Sites please see:

“Creating and Managing Clusters with Sites” on page 126

Viewing the Available Clusters

The Clusters view is designed to provide an overview of the characteristics as well as current
status of the set of Universal Messaging clustered realms that enterprise manager is aware of.

This section describes the type of status information that you can observe from the Clusters
Summary view.

The top of the screen displays a large real time graph illustrating the total number of events
published (yellow) and consumed (red) across all Universal Messaging clusters.

The bottom of the screen displays 3 panels named Totals, Event Status and Connection Status.
These panels and the information displayed are described below.

Totals

The Totals section describes the following :

Clusters- The number of clusters defined within the enterprise manager and its realm nodes

Realms- The number of realms known by the enterprise manager

Channels- The number of channels that exist across all known realms

Queues- The number of queues that exist across all known realms

Data Groups- The number of data groups that exist across all known realms

Services- Total number of services that exist across all known realms

Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services across
all realms within known clusters

Consumed - The total number of events consumed from all channels, queues and services
across all realms within known clusters

Universal Messaging Administration Guide 10.3 95

2 Universal Messaging Enterprise Manager



Published/Sec - The number of events published to all channels, queues and services, per
second across all realms within known clusters

Consumed/Sec - The number of events consumed from all channels, queues and services, per
second across all realms within known clusters

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to all realms within known clusters

Current - The current number of events across all realms within known clusters

Rate - The number of connections being made per second across all realms within known
clusters

96 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Viewing Information for a Cluster

You can view information for an individual cluster by expanding the Clusters node in the
navigation pane and selecting the node for the required cluster. The view provides an overview
of the characteristics as well as current status of a selected cluster.

View of a Cluster

Universal Messaging Administration Guide 10.3 97

2 Universal Messaging Enterprise Manager



The top of the view shows the realms that have been defined for the cluster.

The view includes a real time graph illustrating the total number of events published (yellow) and
consumed (red) across all realms in the cluster.

The bottom of the screen displays 3 panels named Totals, Event Status and Connection Status.
These panels and the information displayed are described below.

Totals

The Totals section describes the following :

98 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Realms- The number of realms within the cluster

Channels- The number of channels that exist across all realms within the cluster

Queues- The number of queues that exist across all realms within the cluster

Services- Total number of services that exist across all realms within the cluster

Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services across
all realms within the cluster

Consumed - The total number of events consumed from all channels, queues and services
across all realms within the cluster

Published/Sec - The number of events published to all channels, queues and services, per
second across all realms within the cluster

Consumed/Sec - The number of events consumed from all channels, queues and services, per
second across all realms within the cluster

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to all realms within the cluster

Current - The current number of events across all realms within the cluster

Rate - The number of connections being made per second across all realms within the cluster

The Enterprise Manager provides information for the cluster through the following tabs:

Cluster Summary

Connections

Remote Cluster Connections

Logfile

Sites

Cluster Summary

The Cluster Summary tab provides an overview of all realms in the Cluster. It identifies the current
Master realm, and also shows each realm's perception of the state of all other realms.

The Cluster Summary Tab

Universal Messaging Administration Guide 10.3 99

2 Universal Messaging Enterprise Manager



Connections

The Connections tab shows all connections to realms in the Cluster. In this example, it shows a
single user connected to three realms in the Cluster:

The Cluster Connections Tab

Remote Cluster Connections

The Remote Cluster Connections tab shows all remote cluster connections for this Cluster. Clusters
can be remotely connected together providing the ability to create joins between channels in
different clusters:

The Remote Cluster Connections Tab

100 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Logfile

The Logfile tab shows a real-time Cluster-specific log, and provides the option to stream the log
output to a file:

The Cluster Logfile Tab

Sites

The Sites tab shows any site configurations (see “Creating and Managing Clusters with Sites” on
page 126) for the current cluster. Clusters that have Site configurations are known as Universal
Messaging Clusters with Sites. (Those without are known as Universal Messaging Clusters):

The Cluster Sites Tab

Universal Messaging Administration Guide 10.3 101

2 Universal Messaging Enterprise Manager



Creating a Cluster

This section describes the process of creating a Universal Messaging Cluster.

Tip:
Since the underlying purpose of a cluster is to provide resilience and high availability, we advise
against running all the servers in a cluster on a single physical or virtualmachine in a production
environment.

Important:
The Enterprise Manager does not support working with two clusters that have the same name.

Viewing Clusters in Enterprise Manager

The Enterprise Manager's top level view shows a tree node labelled Universal Messaging
Enterprise. One level below this is a tree node labelled Clusters, which contains any known
clusters.

If you use the Enterprise Manager to connect to a realm which is a member of an existing cluster,
then the cluster will automatically be displayed under the above-mentioned Clusters tree node.
When a cluster node is found, the Enterprise Manager will also automatically connect to all of the
cluster member realms (if not already connected by default as a result of having loaded realm
connection information in a custom Enterprise Manager Connection Profile). See “Connecting to
Multiple Realms” on page 84 for related information.

Preparing to Create a Cluster

Firstly, before a cluster can be created, the Enterprise Manager needs to connect to those realms
(see “Connecting to Multiple Realms” on page 84) that will form the cluster. If any realms cannot
be connected to, or you receive a 'Security Alert' message when you click on the realm node, you
may want to check that the realm is running, and check the permissions (see “Realm
Entitlements” on page 214) on the realm. If the realms you are connecting to are running ondifferent
machines, you need to ensure that all realm machines are given full permissions to connect to the
other realms in the cluster. Each realm communicates with the other cluster realms via its own
connection. The subject of each connection is as follows:

realm-realmname@ip_address

102 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



For example, in the following example, there are 3 realms that will form part of a cluster, each
realm subject needs to exists in the ACLs of the other realms. The following realm subjects need
to be added to the ACL for each realm in our example:

realm-realm1@10.140.1.1 realm-realm2@10.140.1.2 realm-realm3@10.140.1.3

The permissions given for each realm need to be 'Access Realm'. As well as this, each realm must
have a valid entry for the user@host that corresponds to the user that will create the cluster using
the Enterprise Manager. The permissions for this user must be sufficient in order to create the
cluster object. Temporarily it is often better to provide the *@* default subject 'Full' privileges to
facilitate setting up a realm and clusters.

Creating a cluster

Important:
The Enterprise Manager does not support working with two clusters that have the same name.

To create a cluster, select the 'Clusters' node under the 'Universal Messaging Enterprise' node.

Universal Messaging Administration Guide 10.3 103

2 Universal Messaging Enterprise Manager



When you select the 'Create Cluster' menu option, you are presented with the cluster dialog. The
cluster dialog allows you to select which of the realms that the Enterprise Manager is connected
to will become members of the cluster. One of the selected realms will become the master during
the cluster creation. Themaster realmwill control synchronizing the state between the other realms,
and acts as the authoritative source for this information.

104 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The cluster dialog contains a text box for you to input the name of the cluster. Below the name are
the details of the cluster members. The available realms are shown on the left hand side of the
dialog. The right hand side shows those realms that are members. When you double-click on a
realm name in the Available Realms list, or click on a realm name and click on the Add button,
the realmwill be added to the Cluster Members list. You can remove any realm from the Cluster
Members list by either double clicking on the realm from the list or by selecting the realm name,
and clicking on the Remove Button.

When you have finished selecting your cluster members, clicking on the 'OK' button presents you
with the local store migration dialog. This dialog allows you to select whether to migrate local
stores to cluster-wide stores. Selecting the Yes button will convert any local stores (channels,
queues, etc.) on the realms being added to the cluster into cluster-wide stores. These stores will
then be present on all realms in the cluster when cluster creation completes. If the name of a local
store is the same as the name of an existing cluster store, clicking the Yes button will cause the
cluster creation to fail due to a name clash. Clicking the No button will keep these stores local to
the realms, and they will not be present on other realms in the cluster when creation is completed.

If the cluster creation is successful, a new cluster node will appear under the Clusters node, and
the realms that have been selected as members will be shown beneath the cluster.

Checking the cluster state

When a cluster has been created, you canmonitor its state by selecting the cluster node. The 'Cluster
Summary' tabwill show the state of all clustermembers, andwhich realm is current clustermaster.

Universal Messaging Administration Guide 10.3 105

2 Universal Messaging Enterprise Manager



The image below shows the state of a cluster when it has been created and all realms within the
cluster are fully online.

Creating cluster channels (see “Cluster Channel Administration” on page 110) and cluster queues
(see “Cluster Queue Administration” on page 115) is not permitted if any of the cluster realms are
offline.

Deleting Clusters

When a Universal Messaging cluster needs to be deleted, all cluster resources that exist in all
cluster member realms will also be deleted. Removal of a cluster is a simple operation that can be
achieved using the EnterpriseManager. This sectionwill describe the process of removing a cluster.

In order to remove a Universal Messaging Realm cluster, you must first of all select the 'Clusters'
node from the Enterprise Manager. Right-clicking on this node will present a pop up menu, as
shown in the image below.

106 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Selecting the menu option 'Delete Cluster' will prompt you with a dialog that asks you to select a
cluster node from a list. This list will contain all known clusters within the realms you have
connected to. This dialog is shown in the image below.

Universal Messaging Administration Guide 10.3 107

2 Universal Messaging Enterprise Manager



Clicking on the 'OK' button once you have selected the cluster you wish to delete will prompt you
to answer a question. This question gives you 2 choices with regard to the cluster resources that
may exist within the cluster. These are:

Delete all cluster wide resources from each cluster realm

Convert all cluster wide resources to local within each realm

Choosing to delete all cluster resources will not remove any locally created channels, only those
created for the cluster.

Choosing to convert each one to local, will keep any data thatmay be containedwith the resources
.

This dialog is shown in the image below. Choosing 'Yes' will remove the cluster objects, 'No' will
make them all local, 'Cancel' will take no action at all.

Modifying Clusters

The Universal Messaging Enterprise Manager enables you to modify clusters. By 'Modify' we
mean adding new realms to the cluster or removing existing cluster members.

To add a new realm to a cluster, you must first of all ensure that you have connected to (see
“Connecting to Multiple Realms” on page 84) the realm you wish to add. Removing realms is
accomplished by selecting the realm you wish to remove from the cluster. This will be discussed
in more detail further on.

108 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



If for example, you have a cluster with two realms, and wish to add a third realm to the cluster,
it is possible to do so. Similarly, if you have a cluster with three (or any number of realms) and
wish to remove a realm from the cluster, this is also possible.

Adding Cluster Members

In order to add a realm to a cluster, you must first ensure that you have created a cluster (see
“Creating a Cluster” on page 102). Once you have a cluster, then also ensure you have connected
to (see “Connecting to Multiple Realms” on page 84) the realm you wish to add to your cluster.
Select the cluster node from the namespace and right-click on the node. This will present youwith
a pop-up menu. Select the menu item labelled 'Modify Cluster Members'.

The dialog this presents you displays the current members of your cluster as well as any realms
you are not connected to that are not cluster members. This dialog is shown below:

The dialog shows the name of the cluster, a list of realms which are not currently members of the
cluster (shown as a list on the left hand side), and a list of current cluster members (on the right
hand side).

As you can see from the above example, currently there are three realms within the cluster
'TestCluster'.

Double-clicking on any non-member realm, or selecting it from the list and clicking the 'Add'
button will enable you to add the realm as a member.

Note:

Universal Messaging Administration Guide 10.3 109

2 Universal Messaging Enterprise Manager



If the realm has local stores with names matching any store on the cluster, the realm will not
be added to the cluster. This is to prevent naming clashes on the cluster.

When you have added the realms youwish to add as cluster members, click on the button labelled
'OK'. This will add all realms in the right-hand list to the cluster. All cluster resources will also be
created on the newly added realms once the realms have successfully been added to the cluster.

Removing Cluster Members

Removing cluster realms is achieved by again selecting the cluster node, right-clicking on the node
and choosing the 'Modify Cluster Members' menu item. This presents the same dialog as shown
above.

To remove a realm, double-click on the realm from the 'Cluster Members' list or select the realm
and click the 'Remove' button. This will remove the realm from the list and add it back into the
non-members list.

Clicking on the button labelled 'OK' will then prompt you to answer a question. This question
allows you to select one of 2 options:

Delete all cluster wide resources from each the removed realm members

Convert all cluster wide resources to local within the removed realm members

Choosing to delete all cluster resources will not remove any locally created channels, only those
created for the cluster within the realms you are removing.

Choosing to convert each one to local, will keep any data that may be contained within the cluster
resources for the realms you wish to remove.

Adding and Removing Cluster Members

Cluster members can be added and removed in the same operation. For example, if you have a
cluster with 'realm1' and 'realm2' but want to remove 'realm2' and add 'realm3', youwould simply
remove 'realm2' and add 'realm3' from the 'Cluster Members' list in the 'Modify Cluster' dialog.
The Enterprise Manager will work out which realms to add and which to remove for you and
perform the necessary channel conversion and deletions you choose.

Cluster Channel Administration

This section describes the process of creating channels on a Universal Messaging realm cluster.
Channels are the logical rendezvous point for data that is published and subscribed. Each channel
that is created in a cluster consists of a physical object within each Universal Messaging realm
within the cluster as well as its logical reference within each realm's namespace.

Note:

Simple and Transient channels are not supported across realms in a cluster.

Creating channels using the Enterprise Manager creates the physical object within each cluster
realm. Once created, references to the cluster channels can be obtained using the Universal

110 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Messaging Client and Admin APIs, as you would with normal channels that are not cluster wide
channels. Clustered channels can also be monitored and managed using the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all resources and
services found within each realm's namespace are displayed in a tree structure under each realm
node. Each cluster node also displays the member realms that make up the cluster.

Creating Cluster Channels

To create new cluster channels, youmust first create a cluster (see “Creating a Cluster” on page 102)
if one does not already exist.

Secondly, in order to create a cluster channel, youmust select the cluster node from the namespace
tree where the channel will be created. For example, if there is a cluster called 'TestCluster', which
contains 3 realms called 'realm1', 'realm2' and 'realm3' and you want to create a channel called
'/eur/gbp' within that cluster of realms, you would need to first of all click on the cluster node
called 'TestCluster'. Then, by right-clicking on the cluster node a pop-up menu will be displayed
that shows a number of menu items (as shown in the image below).

Universal Messaging Administration Guide 10.3 111

2 Universal Messaging Enterprise Manager



By clicking on the menu item 'Create Cluster Channel', you will be prompted with a dialog box
that allows you to enter the details of the cluster channel you wish to create.

Cluster channels have exactly the same set of attributes assigned to them as normal channelswhen
they are created.

112 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The create channel dialog for cluster channels allows you to input values for each of these attributes.
The only difference is that the channel will be created across all of the realms within the cluster
and the same state will be maintained between all instances of that channel by the cluster realms.
This means, for example, that if an event is published to a clustered channel it becomes available
simultaneously on all realms in the cluster.

In order to create a Mixed cluster channel called '/eur/gbp' the following settings would be
configured:

Clicking on the 'OK' button will create the channel '/eur/gbp' across all realms within the cluster
'TestCluster' and render the channel object in the namespace tree of the Enterprise Manager. The
image below shows how the namespace tree looks after the cluster channel has been created.

Universal Messaging Administration Guide 10.3 113

2 Universal Messaging Enterprise Manager



As you can see from the image above, each realm node now contains the channel node in its
namespace tree under a folder (which we call a container node) called '/eur'. The icon used for a
cluster channel is different from that of normal channel and is denoted by the small letter 'c' in the
icon, whereas the normal channel icon does not contain the 'c'.

114 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Cluster Queue Administration

This section describes the process of creating queues on a cluster of Universal Messaging realm
servers. Each cluster queue that is created consists of a physical object within each Universal
Messaging realmwithin the cluster as well as its logical reference within each realm's namespace.

Note:

Simple and Transient queues are not supported across realms in a cluster.

Creating queues using the Enterprise Manager creates the physical object within each cluster
realm.Once created, references to the cluster queues can be obtained using theUniversalMessaging
Client and Admin APIs, as you would with normal queues that are not cluster wide queues.
Clustered queues can also be monitored and managed using the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all resources and
services found within each realm's namespace are displayed in a tree structure under each realm
node. Each cluster node also displays the member realms that make up the cluster.

Creating Cluster Queues

To create new cluster queues, youmust first create a cluster (see “Creating a Cluster” on page 102)
if you have not already done so.

Secondly, in order to create a cluster queue, you must select the cluster node from the namespace
tree where the queue will be created. For example, if there is a cluster called 'TestCluster', which
contains 3 realms called 'realm1', 'realm2' and 'realm3' and you want to create a queue called
"/eur/orders" within that cluster of realms, you would need to first of all click on the cluster node
called 'TestCluster'. Then, by right-clicking on the cluster node a pop-up menu will be displayed
that shows a number of menu items (as shown in the image below).

Universal Messaging Administration Guide 10.3 115

2 Universal Messaging Enterprise Manager



By clicking on the menu item 'Create Cluster Queue', you will be prompted with a dialog box that
allows you to enter the details of the cluster queue you wish to create.

Cluster queues have exactly the same set of attributes assigned to them as normal queues when
they are created.

116 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The create queue dialog for cluster queues allows you to input values for each of these attributes.
The only difference will be that the queuewill be created across all of the realmswithin the cluster
and the same state will be maintained between all instances of that queue by the cluster realms.

In order to create a cluster queue called '/eur/orders' attributes you would add the attributes as
shown below:

Clicking on the 'OK' button will create the queue '/eur/orders' across all realms within the cluster
'TestCluster' and render the queue object in the namespace tree of the Enterprise Manager, both
under each realm in the cluster as well as each under each realm underneath the Realms container
node. The image below shows how the namespace tree looks after the cluster queue has been
created.

Universal Messaging Administration Guide 10.3 117

2 Universal Messaging Enterprise Manager



As you can see from the image above, each realm node now contains the queue node in its
namespace tree under a folder (which we call a container node) called '/eur'. The icon used for a
cluster queue is different from that of normal queue and is denoted by a 'c' in the icon, whereas
the normal queue icon does not have a 'c'.

118 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Setting up Inter-Realm Communication

Communication between realms can occur in various configurations:

between realms in the same cluster.

between realms in a zone.

between realms in connected clusters.

The communication between realms can be secure (encrypted) or non-secure (non-encrypted).
The communication is implemented by defining one ormore interfaces on each realm. The required
setup of the interfaces is the same, regardless of which of the above configurations you use for the
communication between realms. For example, the attributeAllow for InterRealmmust be activated
on the interface that you use, otherwise the communication between realms is not possible.

The following description uses some examples from working with a cluster, but the principles
apply to all configurations.

Since all realms in a cluster are required to have the same configuration (so that for example if the
master realm goes offline, one of the other realms can become the new master), you must ensure
that any interface definitions on one realm match the interface definitions on all other realms in
the cluster.

For non-encrypted inter-realm communication, you can set up the interfaces to use either NSP
(Socket Protocol) or NHP (HTTP Protocol). In general, we recommend you to use NSP rather than
NHP for non-encrypted inter-realm communication.

For encrypted inter-realm communication, you can set up the interfaces to use eitherNSPS (Secure
Socket Protocol) or NHPS (Secure HTTP Protocol). In general, we recommend you to use NSPS
rather than NHPS for encrypted inter-realm communication.

Information about using the Enterprise Manager to manage a cluster is contained in the section
Cluster Administration. Information about managing realm interfaces is contained in the section
TCP Interfaces, IP Multicast and Shared Memory. Managing zones is described in the section Zone
Administration. Setting up an inter-cluster connection is described in the section Interconnecting
Two Clusters, and conceptual details are provided in the section Data Routing using Channel Joins
in the Concepts Guide.

Setting up non-encrypted inter-realm communication

Each realm contains by default one predefined interface, and this interface uses the NSP protocol
(i.e. socket protocol without encryption). Also by default, the interface is configured to be usable
for inter-realm communication as well as for communication between realm and clients.

If you do not define any additional interfaces on the realm, all communication between the realm
and other realms, and between the realm and clients, will use this interface. You can set up a cluster
consisting of multiple realms, each of them having just this one default interface defined.

However, in general we recommend you to set up two NSP interfaces on each realm for
non-encrypted communication, namely one interface for only inter-realm communication and one

Universal Messaging Administration Guide 10.3 119

2 Universal Messaging Enterprise Manager



interface for only client communication to the realm. The options for setting up this configuration
are available in the EnterpriseManager, under theComms > Interfaces > Basic tab of each realm.

On the interface that you will use for inter-realm communication, use the following settings:

Allow for InterRealm: yes

Allow Client Connections: no

Similarly, on the interface that you will use for client communication with the realm, use the
following settings:

Allow for InterRealm: no

Allow Client Connections: yes

After you make these changes, restart all of the realms, to ensure that the new interfaces are
activated.

When you form the cluster, communication between realms in the clusterwill use theNSP interface
that you have configured for inter-realm communication.

Setting up encrypted inter-realm communication

The assumed starting point in this scenario is that there is no cluster formed yet. All of the realms
that will later form the cluster need to be configured.

The steps required are as follows:

1. If you intend to use self-signed certificates, or if you intend to use a custom truststore (which
contains the public certificates associated with each Universal Messaging realm's private
certificate), the keystore and the truststore must be added to the Universal Messaging JVM
process.

In the file Server_Common.conf on each realm, provide details of the truststore and keystore,
according to the following pattern:
wrapper.java.additional.7="-Djavax.net.ssl.trustStore=<TRUSTSTORE>
wrapper.java.additional.8=-Djavax.net.ssl.trustStorePassword=<TRUSTSTORE_PWD>
wrapper.java.additional.9="-Djavax.net.ssl.keyStore=<KEYSTORE>
wrapper.java.additional.10=-Djavax.net.ssl.keyStorePassword=<KEYSTORE_PWD>

for example
wrapper.java.additional.7="-Djavax.net.ssl.trustStore=

/webmethods/truststores/um_truststore.jks"
wrapper.java.additional.8=-Djavax.net.ssl.trustStorePassword=nirvana
wrapper.java.additional.9="-Djavax.net.ssl.keyStore=

/webmethods/keystores/um_keystore.jks"
wrapper.java.additional.10=-Djavax.net.ssl.keyStorePassword=nirvana

See the section Server Parameters in the Concepts guide for general information about setting
up such parameters.

2. On each realm in the cluster, add two secure interfaces:

120 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



a. Add one interface using theNSPS protocol, to be used only for inter-realm communication.

Note:
The demo certificates generated by the Universal Messaging Certificate Generator tool
(see the section “How to generate certificates for use” on page 301) are only valid for the
loopback interface (localhost / 127.0.0.1). Therefore, if you use these demo certificates,
ensure that the adapter that you add is bound only on the loopback interface.

For this interface, set the following options (in the Enterprise Manager, they are located
under the Basic or Certificates tabs of the interface definition screen):

Allow for InterRealm: yes

Allow Client Connections: no

Enable client certificate validation: no

The reason for disabling client certificate validation is because Universal Messaging
does a certificate exchange between realms already when constructing a cluster, so
doing another certificate exchange at the SSL layer would be redundant.

Specify Certificates and Truststore on the interface as you would normally.

If you want to use a certain level of SSL / TLS (eg. TLS 1.2)

1. Pick the right algorithms for that interface.

2. Enforce the SSL level in the realm (using a JVM argument in Server_Common.conf).
Example: to enforce TLS1.2 globally on the Universal Messaging server, set:
wrapper.java.additional.XX=-DSSLProtocols=TLSv1.2

b. Add one more interface using the NSPS protocol, to be used only by clients for
communication with the realm. For this interface, set the following options:

Allow for InterRealm: no

Allow Client Connections: yes

Enable client certificate validation: no

3. Disable the setting for inter-realm communication on the original, non-encrypted, interface.

4. Close and restart the Enterprise Manager.

5. Restart all Universal Messaging realms (to make sure all JVM arguments are activated).

6. Use the Enterprise Manager to form the cluster.

Switching from non-encrypted to encrypted inter-realm communication

The assumed starting point in this scenario is that there is already a cluster inwhich the inter-realm
communication is not encrypted, i.e. the interface protocol is NHP orNSP, and youwant to change
this to encrypted communication, i.e. using the interface protocol NHPS or NSPS.

Universal Messaging Administration Guide 10.3 121

2 Universal Messaging Enterprise Manager



Here are the steps to follow to switch fromnon-encrypted to encrypted inter-realm communication
in a Universal Messaging cluster:

1. Close the cluster and stop any running realms.

2. In the file Server_Common.conf on each realm, provide details of the truststore and keystore,
as described in the previous section (“Setting up encrypted inter-realm communication” on
page 120).

3. Restart all realms.

4. On each realm, create two NSPS interfaces, as described in the previous section.

5. Under the Certificates tab for each of the NSPS interfaces, add a reference to the custom
truststore and the keystores containing the server signed certificates, for example:
Key store path : /webmethods/keystores/um_keystore.jks
Trust store path : /webmethods/truststores/um_truststore.jks

6. Close Enterprise Manager.

7. Set the environment variables CAKEYSTORE and CAKEYSTOREPWD for each realm to
reference the truststore containing the CA root chain, and the truststore's password. You can
set up these variables as follows:

a. Open the file Admin_Tools_Common.conf that is located in
UniversalMessaging/java/<instanceName>/bin, where <instanceName> is the name of the
realm server.

b. Locate the lines
set.default.CAKEYSTORE=
set.default.CAKEYSTOREPASSWD=

c. Set these variables to the required values, for example:
set.default.CAKEYSTORE=/webmethods/keystores/um_keystore.jks
set.default.CAKEYSTOREPASSWD=nirvana

Note that if these variables have already been assigned a value elsewhere in the session, for
example in a startup script, the values defined here in Admin_Tools_Common.confwill be ignored.

8. Restart Enterprise Manager.

By restarting the Enterprise Manager after setting values for CAKEYSTORE and
CAKEYSTOREPASSWD, the EnterpriseManagerwill be able to connect over a secured interface.

9. Disable the inter-realm connection option on each realm's non-encrypted interfaces.

10. Form the cluster.

Note on public/private keys used for inter-realm handshake

When a Universal Messaging realm starts for the first time, it automatically generates a
public/private key pair for encryption purposes and stores it in the internal keystore server.jks

122 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



file in the realm's data/RealmSpecific directory. The public keys of other nodes are also added to
this file whenever the realms are added to form a cluster.

These auto-generated keys are used for server identification only; basically whenever two realms
establish a connection, theywill exchange a single signedmessage as part of the handshake routine,
in order to confirm they know each other.

After this initial handshake has taken place, all encrypted communication between realms in a
cluster uses separate keys and keystores, as stated in the section “Setting up encrypted inter-realm
communication” on page 120 above.

Managing Inter-Cluster Connections

Creating Inter-Cluster Connections

Inter cluster connections can be created through the EnterpriseManager. To do this, firstly connect
to a realm in each cluster. Then, once both clusters are displayed in the Enterprise Manager, click
on the "Inter-Cluster Connections" tab under one of the cluster panels.

Universal Messaging Administration Guide 10.3 123

2 Universal Messaging Enterprise Manager



Next, select "Add" and choose the remote cluster from the dropdown list in the popup dialog
which will now appear:

124 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The inter-cluster connections should nowbe established, and inter-cluster joins can nowbe formed
through the Enterprise Manager or programmatically.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins. The description details the usage based on the Enterprise Manager, but
the same general principles apply if you are using the API.

Universal Messaging Administration Guide 10.3 125

2 Universal Messaging Enterprise Manager



Deleting Inter-Cluster Connections

To delete an inter-cluster connection, simply select the connection from the list and click "Delete".

Creating and Managing Clusters with Sites

126 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



This section describes the process of modifying a Universal Messaging Cluster into a Universal
Messaging Cluster with Sites. Clusters with Sites allow a standard Universal Messaging cluster to
operatewith as little as 50% of the active clustermembers (as opposed to the standard 51% quorum
in effect for clusters without sites), and provides administrators with a mechanism to prevent the
split brain scenario that would otherwise be introduced when using exactly half of a cluster's
realms.

Viewing Site Information in Enterprise Manager

The Enterprise Manager's top level view shows a tree node labelled Universal Messaging
Enterprise. One level below this is a tree node labelled Clusters, which contains any known
clusters.

After creating your cluster (see “Creating a Cluster” on page 102) and selecting the cluster's icon
in the Enterprise Manager, click the Sites tab:

Sites Tab in Cluster View. No Sites have yet been created for the above cluster.

Creating a Primary Site for a Cluster

Click the New button to create the first site. We'll assume the site is named Production. Follow the
prompts and pick a Realm to include in the site, for example realm1:

Creation of a "Production" Site.

Universal Messaging Administration Guide 10.3 127

2 Universal Messaging Enterprise Manager



Addition of an Initial Member to "Production" Site.

At this point, the new site will appear in the Sites tab:

The "Production" Site with its initial member realm is shown.

Note that the table will contain a column for all realms in the cluster. In this example we have only
added one realm to the Production site. Checking and unchecking the appropriate checkboxes
will add or remove clustered realms from the corresponding sites.

Creating a Backup Site for a Cluster

Next, follow the same steps to create the second site, which in this example we shall assume is
named : Disaster Recovery

128 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Creation of a "Disaster Recovery" Site and addition of an initial site member realm.

Addition of an Initial Member to "Disaster Recovery" Site.

The new Disaster Recovery site will now also appear in the Sites tab:

Sites Tab in Cluster View. The "Production" and "Disaster Recovery" Sites are both shown.

Universal Messaging Administration Guide 10.3 129

2 Universal Messaging Enterprise Manager



Setting a Site's IsPrime Flag

Administrators use a site's isPrime flag to determine the site that will contain a cluster's master
realm.

We recommend you to make the production site the prime site. For a discussion on the pros and
cons of whether to make the production site or the disaster recovery site the prime site, refer to
the section Clusters with Sites in the Concepts guide..

Setting the Production Site to be Prime by checking its isPrime checkbox.

Channel Administration

Overview

The Enterprise Manager allows monitoring, administration and configuration of Universal
Messaging channels.

Channel Status

The Universal Messaging Enterprise Manager allows monitoring of a channel's status in terms of
publish & consume event totals / rates as well as connection total / rates and persistent store /
memory.

130 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Channel Access Control List (ACL)

Universal Messaging offers complete control over security policies. Universal Messaging stores
security policies locally or can be driven by any external entitlements service. UniversalMessaging's
rich set of entitlements ensure that everything from a network connection through to a
channel/queue creation can be controlled on a per user and/or host basis. For more information,
see the Universal Messaging ACL's FAQ.

Channel Joins

Universal Messaging allows channels to be joined to other channels or queues creating server side
routing tableswith the possibility to apply filters based onmessage content on the local or a remote
Universal Messaging realm.

Channel Connections

Channel subscribers are reported as channel connections and can bemonitored ormanaged through
the Universal Messaging Enterprise Manager.

Channel Durables

Channel subscribers can manage their subscription's event id manually or they can become a
named subscriber and let that be managed by the Universal Messaging realm. The Universal
Messaging Enterprise Manager allows complete management of channel durables.

Channel Event Snooping

The Universal Messaging Enterprise Manager provides the ability to inspect the contents of
messages remotely using the Snoop panel.

Viewing the Channel Status

Introduction

When you select a channel object from the namespace, the first panel to be displayed on the right
hand side of the Enterprise Manager panel is the 'Status' panel. Configuration information is
always displayed at the top section of the Enterprise Manager when a channel is selected. This
configuration information shows channel type, TTL (age), capacity as well as any channel key
information available. The channel 'Status' tab shows real-time management information for the
selected channel.

The status panel is split into 2 main sections. The top section shows real time graphs representing
the events published and consumed on the channel, both in terms of rates (i.e. per status interval)
as well as the totals.

The bottom section shows the actual values plotted in the graphs for events published and
consumed, as well as information about the actual channel store at the server.

Universal Messaging Administration Guide 10.3 131

2 Universal Messaging Enterprise Manager



The image below shows the status panel for an active cluster channel.

The top most graph in the panel shows the event history for events consumed from the channel.
The red line graphs the rates at which events are being consumed while the yellow line graphs
the total events consumed from the channel.

The bottomgraph shows the event history for events published to the channel. The red line graphs
the rates atwhich events are being publishedwhile the yellow line graphs the total events published

132 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



to the channel. As the status events are consumed, and the channel (nLeafNode) is updated with
the newvalues for events consumed and published, the status panel and its graphswill be updated.

The bottom section of the status panel shows 3 types of information: Totals, Rates and Event Store.
These are discussed below.

Totals

The totals section shows 5 values:

Published - The total number of events published to the channel when the last status events
was consumed

Consumed - The total number of events consumed from the channelwhen the last status event
was consumed

Event ID - The event id of the last event published to the channel

Current Connections - The current number of consumers on the channel

Total Connections - Total number of subscribers that have subscribed to the channel

Rates

The rates section shows 3 values:

Published - The current rate of events published to the channel, calculated as (total - previous
total) / (interval 1000 milliseconds)

Consumed - The current rate of events consumed from the channel, calculated as (total -
previous total) / (interval 1000 milliseconds)

Connections - The current rate of subscriptions being made to the channel

Event Store

The event store section shows 4 values:

Used Space - The amount of space in KB used by the channel on the server (either memory,
or disk for persistent / mixed channels)

Events - The current number of events on the channel

% Free - The amount of free space in the channel store (calculated as (used space - (total space
used by all purged or aged events))

Cache Hit - The %age of events consumed from the channel event cache as opposed form the
actual physical store if persistent or mixed

Creating Channels

Universal Messaging Administration Guide 10.3 133

2 Universal Messaging Enterprise Manager



This section describes the process of creating a Universal Messaging channel on Universal
Messaging realm servers. Channels are the logical rendezvous point for data that is published and
subscribed. If you are usingUniversalMessaging Provider for JMS then channels are the equivalent
of JMS topics.

Each channel that is created consists of a physical channel within the Universal Messaging realm
as well as its logical reference within a namespace that may be made up of resources that exist
acrossmultipleUniversalMessaging realm servers. Creating channels using the EnterpriseManager
creates the physical object within the realm. Once created, references to channels can be obtained
using the Universal Messaging Client and Admin APIs. Channels can also be monitored and
managed using the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all resources and
services foundwithin the realm namespace are displayed in a tree structure under the realm node
itself. It is possible to view multiple Universal Messaging realm servers from a single enterprise
manager instance.

Creating Channels on a Universal Messaging Realm

To create new Universal Messaging channels, the Enterprise Manager provides a number of
options. Firstly, in order to create a channel, the branch where the channel will exist needs to be
selected within the namespace tree.

For example, to create a channel called '/eur/rates' on aUniversalMessaging realm called 'nirvana7'
simply right-click on the realm node to display a pop-up menu which contains a 'Create Channel'
option.

134 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



When you select this option, the resulting dialog allows you to configure the channel behavior.
See the sections “Channel Attributes” on page 137, “Channel Storage Properties” on page 138 and
“Google protobuf descriptors” on page 139 below for a description of the configuration options.

Clicking on the 'OK' button in the Add Channel dialog will create the channel with the name you
specified (in this example, '/eur/rates') on the Universal Messaging realm 'nirvana7' and render
the channel object in the namespace tree of the Enterprise Manager underneath the realm node.
This is shown in the image below.

Universal Messaging Administration Guide 10.3 135

2 Universal Messaging Enterprise Manager



As you can see from the image above, the channel node in the tree has been created under a folder
(which we call a container node) called '/eur' under the realm 'nirvana7'.

It is also possible to create channels directly underneath container nodes. For example, if wewished
to create another channel called '/eur/trades', we could repeat the process described above using
the full absolute name of the channel. This would again create a channel called trades under the
container node /eur. Alternatively, we can select the /eur node and create the new channel using
its relative name /trades. Selecting the container node and right-clicking on the node, shows another
pop-up menu of options for container nodes. One of the options is 'Create Channel'. The image
below shows this menu as it appears when the container is right-clicked.

136 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



By selecting themenu item, 'Create Channel' from the container node, you are once again presented
with the create channel dialog. This dialog looks like the dialog used previously, except the dialog
shows that the channel will be created under the container /eur.

Channel Attributes

Channels have a set of attributes assigned to themwhen they are created. TheAddChannel dialog
allows you to input values for each of these attributes.

For information about the available channel attributes, such as Channel Type and Channel TTL
(time-to-live), see the summary of Channel Attributes in the Commonly Used Features section of
the Universal Messaging Concepts guide.

Universal Messaging Administration Guide 10.3 137

2 Universal Messaging Enterprise Manager



In the example below, the channel '/eur/rates' will be created with a channel type of Simple and
a TTL of 7 seconds.

Channel Storage Properties

There are a number of Storage Properties associatedwith the channel. The storage properties allow
you to configure the operational environment of the channel. The properties can be set by clicking
the "Edit..." button to the right of "Storage Properties" in the Add Channel dialog.

138 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



For information about the available channel attributes, see the summary of Storage Properties in
the Commonly Used Features section of the Universal Messaging Concepts guide.

Google protobuf descriptors

If you wish to activate Google protocol buffer (also called "protobuf") descriptors for the channel,
click the "Set..." button to the right of "ProtobufDescriptor" in theAddChannel dialog. This allows
you to specify a file containing the required protobuf descriptors.

For general information on protocol buffers, refer to the sectionGoogle Protocol Buffers in theConcepts
guide.

Valid Channel and Queue Names

The channel and queue names can contain any of the following characters:

All letters and digits

Slash "/"

Hyphen "-"

Underscore "_"

Hash symbol "#"

Universal Messaging Administration Guide 10.3 139

2 Universal Messaging Enterprise Manager



Certain character strings are replaced:

Backslash "\" is replaced by slash "/"

Two colons "::" are replaced by slash "/"

Two slashes "//" are replaced by one slash "/"

Valid names have the following length restrictions:

Channel and queue names have a maximum limit of 235 characters.

Namespace names have a maximum limit of 255 characters.

The full path containing the data directory folder pathwith a channel or queue path appended
to it has a maximum limit of 4096 characters.

If your channel or queue name contains slash characters, for example "a/b/c", this is represented
in the Enterprise Manager view as a hierarchy, with "a" being the top node, "b" being the child
node of "a", and "c" being the child node of "b". This virtual hierarchy is just a visual aid to help
you to keep track of your channels and queues, but the store itself is not divided internally into
hierarchical parts and can only be referenced by the full name, which in this example is "a/b/c".

Note:
There is a restriction that a channel or queue name cannot be the same as an existing folder
name. So if you have named a channel "a/b/c", you cannot name a different channel "a" or "a/b".
This would lead to a display conflict in Enterprise Manager, since we would have a folder "a"
as the root of the path "a/b/c", as well as a channel "a" at the same position in the display.
Similarly, trying to assign the name "a/b" to a new channel would conflict in the display with
the folder named "a/b". You can however name a different channel "a/c", since "a" is used here
again as a virtual folder. Similarly, you can name another channel "a/b/d", since both "a" and
"a/b" are used here as virtual folders.

Editing Channels

This section describes the process of editing the attributes of a Universal Messaging channel.

Editing channels using the Enterprise Manager enables you to change specific attributes of a
channel, such as name, event time to live (TTL), capacity, channel keys or even the realm onwhich
the channel exists.

Note:

When a channel is edited, its attributes and any events found on the channel will be copied into
a temporary channel, the old channel is then deleted and then the new channel is created. The
original events are then copied from the temporary channel onto the new channel.

Since editing a channel involves deleting the old channel, certain activities and objects associated
with the old channelwill also be terminated. See the section “Deleting Channels andQueues” on
page 162 for related information.

140 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



As far as possible, channel events are held in memory for performance reasons. The temporary
channel is also held in memory, and requires the same amount of memory as the channel being
edited. The realm servermust be able to allocate sufficientmemory to store the temporary copy,
otherwise the channel edit operation will be aborted and an error will be logged. If such a
situation occurs, you can resolve it by allocating additional heap size, so that the temporary
copy can exist in memory at the same time as the channel being edited.

In order to edit a channel, select it in the namespace, and then after right-clicking on the node, a
menu will be displayed with the various options for a channel node. The image below shows this
menu.

By selecting the 'Edit Channel' option, you will be presented with a dialog that allows you to
modify the details of the channel. These details not only include the channel attributes, but also
the realm to which the channel belongs. The image below shows the edit channel dialog.

Universal Messaging Administration Guide 10.3 141

2 Universal Messaging Enterprise Manager



The Parent Realm field shows a drop down list containing all the names of the realms that the
enterprise manager is currently connected to. By selecting a realm name from the list, it is possible
to move the selected channel to any of the available realms. Clicking on the 'OK' button will
perform the edit operation on the channel.

There are also a number of Storage Properties associatedwith the channel which can be configured
by clicking the "Edit..." button to the right of "Storage Properties".

142 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Updating Protobuf Descriptors

The protocol buffer (Protobuf) definition files associated with a store (a channel or a queue) can
be updatedwithout requiring the store to be deleted and re-created. After you update the Protobuf
descriptor, all filtering will be done with the new Protobuf definitions.

To update protocol buffer definitions in the Enterprise Manager

1. Select the store whose descriptors you want to update and right-click it.

2. From the drop-down menu, select Update Protocol Buffers.

3. Select the file or files that contain the descriptors you want to set on the store (multi-select is
enabled for loading multiple file descriptor sets). Then click Open.

The new Protobuf definitions are applied to the store.

For information about updating protocol buffer definitions programmatically, for example in Java,
see the section Google Protocol Buffers in the Developer Guide.

Exporting Protobuf Descriptors

Universal Messaging Administration Guide 10.3 143

2 Universal Messaging Enterprise Manager



You can export the protocol buffer (Protobuf) definitions associated with a store (a channel or a
queue) to a folder.

To export protocol buffer definitions in the Enterprise Manager

1. Select the store whose Protobuf descriptors you want to export and right-click it.

2. From the drop-down menu, select Export Protobuf Definitions.

3. Select the folder where you want the descriptors from the store to be exported. Then click
Open.

The Protobuf definitions are exported from the store.

Copying Channels

This section describes the process of copying channels in Universal Messaging realms.

Copying channels using the Enterprise Manager enables you to duplicate channels automatically
across realms. When a channel is copied, its attributes and any events found on the channel will
be copied over onto the new channel copy.

Firstly, by selecting the channel in the namespace that you wish to copy and right-clicking on the
node, you will be presented with a menu that shows you the various options for a channel node.
The image below shows this menu.

144 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



By selecting the 'Copy Channel' option, you will be presented with a dialog that allows you to
input the details of the new channel copy. These details not only include the channel attributes,
but also the realm to which the channel will be copied. The image below shows the copy channel
dialog.

Universal Messaging Administration Guide 10.3 145

2 Universal Messaging Enterprise Manager



The Parent Realm field shows a drop down list containing all the names of the realms that the
EnterpriseManager is currently connected to. By selecting a realm name from the list, it is possible
to create a copy of the selected channel in that realm. Clicking on the 'OK' button will create the
channel on the selected realm and the channel will then appear in the namespace tree.

Creating Channel Joins

This section describes the process of joining channels on Universal Messaging realms.

Channels can be joined programmatically or by using theUniversalMessaging EnterpriseManager
as described below.

The image below shows a realm that contains the cluster channels /eur/rates and /local/rates.

146 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



By selecting any of the cluster channels, then right-clicking, you can select the 'Join Channel' menu
option. Youwill be presented with the join dialog for the selected cluster channel. This allows you
to create a join from the channel to any other channel in any realm.

We can, for example, select /local/rates as the channel we wish to join to /eur/rates, as shown
in the join dialog below, with a filter of CCY='EUR'. This will ensure that only those events with
the event property CCY equal to 'EUR' occurring on /local/rateswill be published to the /eur/
rates channel.

Universal Messaging Administration Guide 10.3 147

2 Universal Messaging Enterprise Manager



The From Channel field represents the source channel and the To Store field represents the
destination channel. The term store is a generic term for either a channel or a queue. By default,
the From Channel field contains the name of the currently selected channel from which the join
dialog was opened.

Clicking on the OK button will create the join.

By selecting the Joins tab panel for either the /local/rates channel or the /eur/rates channel,
you will be presented with a panel that shows the join just created. The image below shows the
display for the /eur/rates channel, which in this example is the destination channel. Selecting the
newly created join will also show you any relevant filtering criteria that the join has been created
with.

148 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The table that shows the joins for a channel will indicate in the Type column whether the join is
'Outgoing' or 'Incoming'. An outgoing join indicates that the selected channel is the source for the
join, whereas 'Incoming' indicates that the selected channel is the destination channel.

Deleting Joins

You can delete a join by selecting the join from the joins table, and clicking theDelete Join button.
Joins can only be deleted in the Enterprise Manager from the source (outgoing) channel. If the
destination channel (incoming) is selected, the Delete Join button will be disabled.

Inter-Cluster Joins

To add a join between channels on different clusters, first create an inter-cluster connection between
the two clusters. Next, simply select a realm in the desired destination cluster as the join destination
in the dropdown menu, as below:

Universal Messaging Administration Guide 10.3 149

2 Universal Messaging Enterprise Manager



As with non-inter-cluster joins, these joins can be specified with filters and hop-counts. If realms
in the destination cluster go down, the joinwill failover andwill continue to deliver events so long
as the destination cluster is formed.

Inter-cluster joins can also be formed programmatically .

150 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Allowing Purge

When a channel is purged, the events in the channel can also be purged. To activate this feature,
mark the checkbox Allow Purge.

Archival Joins

An archival join is a specific type of join made between a channel and a queue, where events will
not be checked for duplication. Events that are published to the source channel will appear in the
destination queue. This may result in duplicate events in the queue if the queue has multiple
sources.

The channel join dialog contains a checkbox labelled Archival. This checkbox is available when
you create a join from a channel to a queue. When you mark the checkbox, the join is defined as
an archival join.

If you use the optional Filter field, only the events matching the filter criteria will appear in the
destination queue.

Channel Connections

When a Universal Messaging client connects to a Realm Server, the server maintains information
on the connection (see “Connection Information” onpage 607) that is available through theUniversal
MessagingAdministrationAPI. TheAPI also providesmechanisms for receiving notificationwhen
connections are added and deleted (see the code example "Connection Watch" using the
Administration API).

Connection information is alsomaintainedwhenUniversalMessaging clients subscribe to channels.
This section guides you through channel connection information.

The Universal Messaging Enterprise Manager allows you to view the connections (channel
subscriptions) on a realm and drilldown to viewmore detailed information about each connection,
such as the last event sent or received, and the rate of events sent and received from each connection.

To view connections for a channel, select a channel node from the namespace, and select the
'Connections' tab. This will display a panel containing a table of connections, as shown in the
image below.

Universal Messaging Administration Guide 10.3 151

2 Universal Messaging Enterprise Manager



Connections have the following attributes:

Protocol - The protocol used in the connection

User - The name of the user connected

Host - The host machine that the user is connecting from

Connection - The local connection id, defined as hostname:local_port

152 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Sub-Name- The durable reference if one is provided. For more information about channel
durables, see “ Viewing and Managing Durables for a Channel” on page 161.

Filter - The filter string for the subscription if one has been provided

The highlighted connection above shows that the user has subscribed to the 'ClusterRates' channel
using the nsp protocol, to localhost. The user has also provided a durable called 'johnsmith' and
a filter of "region='UK'" which will ensure the user only consumes events with the value 'UK' in
the 'region' property of the event properties.

When a connection is highlighted, there a number of things that can be shown for the connection.

By double-clicking on a connection from the table, or by clicking on the 'ShowDetails' button, you
are presented with a panel that contains a more detailed look at the activity for the selected
connection. The connection details panel is shown in the image below.

Universal Messaging Administration Guide 10.3 153

2 Universal Messaging Enterprise Manager



Connection Details

You will see that there are 2 separate information panels above the graphs once you have drilled
down into a connection. The first ofwhich is labelledConnectionDetails. This information contains
information about the user connection, such as user name, host protocol.

154 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Client Environment

Next to this you will see a panel that shows details regarding the client environment for this user.
These includes API language / Platform, Host OS and Universal Messaging build number

The two graphs, labeled 'Tx Event History' and 'Rx Event History' show the total (yellow) and
rates (red) for events received from the server (TX) and sent to the server (RX) for the selected
connection.

The bottom of the connection details panel shows 3 sections of information for the selected
connection, 'Events Sent', 'Events Received' and 'Status'. Each of these are described below.

Events Sent

The Events Sent section shows the following values:

Total - The total number of events sent by the realm server to this connection

Rate - The rate at which events are being sent by the realm server to this connection

Max - Themaximum rate at which events have been sent by the realm server to this connection

Last Event Type - The type of the last event sent from the realm server

Bytes - Total bytes sent by the realm server to this connection

Events Received

The Events Received section shows the following values:

Total - The total number of events sent by this connection to the realm server

Rate - The rate at which events are being sent by connection to the realm server

Max - Themaximum rate at which events have been sent by this connection to the realm server

Last Event Type - The type of the last event sent from the connection to the realm server

Bytes - Total bytes sent by this connection to the realm server

Status

The Events Sent section shows the following values:

Connect Time - The amount of time this connection has been connected to the realm server

Queue Size - The number of events in the outbound queue of this connection (i.e. events
waiting to be sent to the realm server)

Last Tx - The time since the last event was received by this connection from the realm server

Last Rx - The time since the last event was sent to the server from this connection

Universal Messaging Administration Guide 10.3 155

2 Universal Messaging Enterprise Manager



Clicking on the 'Show List' button will take you back to the connections table.

Channel Snoop

This section describes how to snoop a Universal Messaging channel. Channels are the logical
rendezvous point for data that is published and subscribed.

Snooping a channel using the Enterprise Manager allows the display of the contents of events
containedwithin that channel. Each channel node in the namespace tree of a UniversalMessaging
realm, when selected, displays a snoop panel that provides you with a means of subscribing to
the channel so that the events' contents can be displayed in a graphical panel.

You can select where on the channel you wish to subscribe from and to, based on the event id,
and you can also provide a filter that enables you to select specific events thatmatch certain criteria.

First of all, by selecting the channel you wish to snoop in the namespace tree, the Enterprise
Manager will display a number of panels in a tabbed pane. One of these tabs is labeled 'Snoop'.
Selecting the snoop tab will display a panel like the one shown in the image below.

The snoop panel is split up into several sections. Firstly, the text fields From, To and Filter at the
top of the panel allow you enter an event id range from and to, and a selector string that will be
used to filter events being snooped on the channel. Clicking theStart buttonwill begin the channel
snoop, and start displaying any events that are published onto the channel using whatever values
you have input into the text fields.

156 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



When events are published, they are added to the main table below the text field input. This main
table shows 4 columns of summary information about each event: the event id, event tag, time to
live, and whether the event is persistent. By clicking on any event shown as a row in the main
table, more information on the event is shown in the bottom 3 panels.

The Top 2 remaining panels show a Hexadecimal view of the event data and an ASCII
representation of the same event data. The panel below that shows the contents of the event
properties (if one exists for the event) listed within a table. Each property is displayed as a row in
the table. The table columns show the name of the property, the type, and the value.

The button labeled Pause will temporarily suspend receipt of any new message being received
into the snoop panel for the selected channel. TheStop buttonwill stop snooping events and clear
all the panels and tables.

In order to snoop the contents of a Universal Messaging queue (see “Queue Snoop” on page 179)
please see that section of the enterprise .

Universal Messaging Administration Guide 10.3 157

2 Universal Messaging Enterprise Manager



Using channel snoop to edit and republish events

Channel snoop can be used not only to view event data but also to edit event data. The edited data
can then be published to the channel as a new event, and you can choose whether or not to purge
the original event. See the section “Channel Publishing” on page 158 for related information.

Channel Publishing

This section describes how to publish events to a UniversalMessaging channel from the Enterprise
Manager.

Events can be published either from scratch, or by duplicating events already published onto a
channel fromwithin the snoop (see “Channel Snoop” on page 156) panel view. Both options allow
you to add and remove event properties, set the event TTL, the event persistence, the event tag
and the number of times the event will be published to the channel.

The event data can be either manually input, obtained from an XML Document file or any other
binary file.

Publishing an event from scratch

Firstly, to publish a new event from scratch, select the desired channel you wish to publish an
event onto, and then right-click on the same node and choose the Publish menu option. This will
display a dialog as shown below where you can construct the event.

158 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



In the image above, the data for the event is simply a string. The properties are added by entering
a property key, a value and a type and then clicking on the Add Property. Once added, the
properties are displayed in the table at the bottom of the panel. To remove a property entry, click
on the property within the table view and select the Remove Property menu option. Properties
can also be edited by clicking on the property from the table and double-clicking in the cell you
wish to change. Once you hit return, the value will be updated in the table.

Publishing an event from a file

To add an XML document as the event data, click on the File button in the dialog, and choose
your XML file from the file chooser. Once opened, the contents of the file will be displayed within
the event data section of the dialog and will be non-editable. An example of this is shown in the
image below.

Universal Messaging Administration Guide 10.3 159

2 Universal Messaging Enterprise Manager



To publish the contents of any other file within the event data, repeat the above steps for XML
and select a non-XML file. The contents of the file will not be displayed, however the file will be
read in binary format when the OK button is clicked and published to the channel. Once again,
when a file is selected for publishing the event data section is non-editable.

Clicking on the Clear button will cancel any file that has previously been selected and allow you
to once again select a file or manually enter the event data.

Duplicating, editing and republishing an event

In order to duplicate or edit and republish an event that has already been published to a channel,
you must first of all select the snoop panel (see “Channel Snoop” on page 156) for the channel in
question, and snoop the channel. Once events are displayed in the snoop panel, select the event
you wish to duplicate or edit and republish from the table of events. Right-clicking on the event
will display amenuwith 2 options. The first optionPurge Event allows you to purge an individual
event from a channel. The secondmenu optionEdit and Republish Event opens the event publish
dialog with the details of the event already filled in, including the event properties, TTL and
persistence.

Properties can be added / removed from the duplicate event, and existing properties can be edited.
To edit a property, double-click in the cell of the property you wish to change and then edit its
contents. You can also choose to purge the original event from the channel by checking the Purge

160 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Original Event checkbox. If you want to create multiple copies of the event, for example for test
purposes, enter the required number of copies in the Num Of Publishes field. When you click
theOK button, the event(s) will be published onto the channel. The image below shows the publish
dialog for a JMS Message published onto a Universal Messaging channel.

The publish option is also available for queues. The republish option is also available from the
snoop panel for queues.

Viewing and Managing Durables for a Channel

Durables (named objects) are channel objects stored by a realm server, which provide state
information for durable consumers. Depending on its type, a durable can have one ormore durable
consumers connected to it. Each time a consumer connects to a durable, the consumer starts
consuming events from the last event ID successfully consumed by the previous consumer
connected to the durable. The consumed events include all events sent to the channel after the
previous consumer disconnected and before the new consumer connected.

To viewdurables for a channel in EnterpriseManager, select the channel and click theDurables
tab.

Universal Messaging Administration Guide 10.3 161

2 Universal Messaging Enterprise Manager



The durables table lists all durables present on the channel. Each row of the table shows a
separate durable. The columns of the table show the attributes of a durable, such as the name
and current event ID, the number of outstanding events, whether the durable is cluster-wide
and whether it is persistent, and what its type is.

When a durable is added or removed, or the attributes of a durable are changed, Enterprise
Manager updates the table automatically.

Note:
When the attributes of a durable are changed, Enterprise Manager updates the durables
table with a delay of several seconds.

To delete a durable from the durables table, select the durable and click Delete Durable.

Deleting Channels and Queues

To delete a store (i.e., a channel or queue), proceed as follows:

1. Select the store in the namespace of the Enterprise Manager,

2. Select Delete in the context menu of the store.

Note:
Since editing a store involves deleting the existing store before creating the new store, all of the
points mentioned below for deleting a store apply also for editing a store.

Upon deletion of a store, all assets dependent on it will be deleted and all content in the store will
be deleted. All active subscriptions to the store will be terminated, as well as all shared durables
attached to the store, along with the associated messages. Such subscriptions or shared durables
need to be recreated by the original creator of those objects after you have finished deleting the
channel.

Deleting a store which serves as a dead event store for another store will cause that reference to
be removed, therefore the user should re-create the reference.

Any joins from or to this store will need to be recreated as they are now disabled.

Before you delete a store, we suggest that you observe the following procedure:

Drain the store and its durable subscriptions, otherwise anymessages in-flight within the store
or related to the store will now be lost and transactions will not be deterministic.

Prevent all publishing activity on the store while it is being deleted; see the section Pause
Publishing in the Concepts guide for related information.

Queue Administration

Creating Queues

162 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



This section describes how to create queues on Universal Messaging realms. Each queue that is
created consists of a physical object within the Universal Messaging realm as well as its logical
reference within the namespace.

Creating queues using the Enterprise Manager creates the physical object within the realm. Once
created, references to queues can be obtained using the Universal Messaging Client and Admin
APIs. Queues can also be monitored and managed using the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all resources and
services foundwithin the realm namespace are displayed in a tree structure under the realm node
itself.

Creating Realm Queues

To create new realm queues, the Enterprise Manager provides you with a number of options.

In order to create a queue called '/eur/requests' on a realm called 'nirvana' simply right-click on
the realm node called 'nirvana' to display a pop-up menu containing an option called 'Create
queue' (as shown in the image below).

Universal Messaging Administration Guide 10.3 163

2 Universal Messaging Enterprise Manager



By clicking on the menu item 'Create Queue', you will be prompted with a dialog box that allows
you to enter the queue attributes. Queues have a set of attributes assigned to them when they are
created. The create queue dialog allows you to input values for each of these attributes.

The set of valid characters that you can use for queue names is the same as the valid character set
for channel names. For more information, see “Valid Channel and Queue Names” on page 139.

164 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Clicking on the 'OK' buttonwill create the queue '/eur/requests' on the UniversalMessaging realm
'nirvana' and render the queue object in the namespace tree of the EnterpriseManager underneath
the realm node. This is shown in the image below.

Universal Messaging Administration Guide 10.3 165

2 Universal Messaging Enterprise Manager



As you can see from the image above, the queue node in the tree has been created under a folder
(container node) called '/eur' under the realm 'nirvana'.

There are also a number of Storage Properties associated with the queue which can be configured
by clicking the "Edit..." button to the right of "Storage Properties".

166 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Queues can also be created from the context of a container nodes by specifying a relative queue
name.

For example, to create another queue called '/eur/orders', you can select the '/eur' node and create
the new queue using its relative name '/orders'. Selecting the container node and right-clicking on
the node, shows another pop-up menu of options for container nodes. One of the menu is 'Create
Queue'. The image below shows this menu as it appears when the container is right-clicked.

Universal Messaging Administration Guide 10.3 167

2 Universal Messaging Enterprise Manager



By selecting themenu item, 'Create Queue' from the container node, you are once again presented
with the create queue dialog. This dialog looks like the dialog used previously, except the title of
the dialog shows that the queue will be created under the container '/eur', as shown in the image
below.

168 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Viewing Queues

The Enterprise Manager allows you to view the status of queues, as well as ACL lists associated
with queues.

Queue Status

When you select a queue object from the namespace, the first panel to be displayed on the right
hand side of the Enterprise Manager panel is the 'Status' panel. Configuration information is
always displayed at the top section of the Enterprise Manager when a queue is selected. This
configuration information shows queue type, TTL (age) and capacity. The queue 'Status' tab shows
real-time management information for the selected queue.

The status panel is split into 2 main sections. The top section shows real time graphs representing
the events pushed and popped from the queue, both in terms of rates (i.e. per status interval) as
well as the totals.

The bottom section shows the values plotted in the graphs for events pushed and popped, as well
as information about the actual queue store at the server.

The image below shows the status panel for an active queue.

Universal Messaging Administration Guide 10.3 169

2 Universal Messaging Enterprise Manager



The top most graph in the panel shows the event history for events popped from the queue. The
red line graphs the rates at which events are being popped while the yellow line graphs the total
events popped from the queue.

The bottom graph shows the event history for events pushed onto the queue. The red line graphs
the rates at which events are being pushed while the yellow line graphs the total events pushed

170 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



to the queue. As the status events are consumed, and the queue nLeafNode () is updated with the
new values for events popped and pushed, the status panel and its graphs will be updated.

The bottom section of the status panel shows 3 types of information : Totals, Rates and Event Store.
These are discussed below.

Totals

The totals section contains the following values:

Published - The total number of events pushed to the queue when the last status event was
consumed

Consumed - The total number of events popped from the queue when the last status event
was consumed

Event ID - The event id of the last event pushed to the queue

Current Connections - The current number of asynchronous consumers on the queue

Total Connections - Total number of asynchronous consumers that have subscribed to the
queue

Rates

The rates section contains the following values:

Published - The current rate of events pushed to the queue, calculated as (total - previous
total) / (interval 1000 milliseconds)

Consumed - The current rate of events popped from the queue, calculated as (total - previous
total) / (interval 1000 milliseconds)

Connections - The current rate of asynchronous subscriptions being made to the queue

Event Store

The event store section contains the following values:

Used Space - The amount of space in KB used by the queue on the server (either memory, or
disk for persistent / mixed queues)

Events - The current number of events on the queue

% Free - The amount of free space in the queue store (calculated as (used space - (total space
used by all purged or aged events))

CacheHit - The%age of events popped from the queue event cache as opposed form the actual
physical store if persistent or mixed

Queues as targets of Channel Joins

Universal Messaging allows channels to be joined to other channels or queues creating server side
routing tableswith the possibility to apply filters based onmessage content on the local or a remote
Universal Messaging realm.

Universal Messaging Administration Guide 10.3 171

2 Universal Messaging Enterprise Manager



Queue Access Control List (ACL)

Universal Messaging offers complete control over security policies. Universal Messaging stores
security policies locally or be driven by any external entitlements service. Universal Messaging's
rich set of entitlements ensure that everything from a network connection through to a
channel/queue creation can be controlled on a per user and/or host basis. For more information
please see the Universal Messaging ACL's FAQ.

172 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Editing Queues

This section describes the process of editing queues in Universal Messaging realms. Each queue
that is created consists of a physical object within the Universal Messaging realm as well as its
logical reference within the namespace.

Editing queues using the EnterpriseManager enables you to change specific attributes for a queue,
such as name, TTL, capacity or even the realm on which the queue exists.

Universal Messaging Administration Guide 10.3 173

2 Universal Messaging Enterprise Manager



Note:

When a queue is edited, its attributes and any events found on the queue will be copied into a
temporary queue, the old queue is then deleted and then the new queue is created and the
events are then copied from the temporary queue onto the new queue.

Since editing a queue involves deleting the old queue, certain activities and objects associated
with the old queue are also terminated andmay need to be recreated. For details, see the section
“Deleting Channels and Queues” on page 162.

As far as possible, queue events are held in memory for performance reasons. The temporary
queue is also held in memory, and requires the same amount of memory as the queue being
edited. The realm servermust be able to allocate sufficientmemory to store the temporary copy,
otherwise the queue edit operationwill be aborted and an errorwill be logged. If such a situation
occurs, you can resolve it by allocating additional heap size, so that the temporary copy can
exist in memory at the same time as the queue being edited.

In order to edit a queue, select it in the namespace, and then after right-clicking on the node, a
menu will be displayed with the various options for a queue node. The image below shows this
menu.

174 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



By selecting the 'Edit Queue' option, youwill be presentedwith a dialog that allows you tomodify
the details of the queue. These details not only include the queue attributes, but also the realm to
which the queue exists. The image below shows the edit queue dialog.

Universal Messaging Administration Guide 10.3 175

2 Universal Messaging Enterprise Manager



The image shows a drop down list containing all the names of the realms that the enterprise
manager is currently connected to. By selecting a realm name from the list, it is possible to move
the selected queue to any of the available realms. Clicking on the 'OK' buttonwill perform the edit
operation on the queue.

There are also a number of Storage Properties associated with the queue which can be configured
by clicking the "Edit..." button to the right of "Storage Properties".

176 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Copying Queues

This section will describe the process of copying queues in Universal Messaging realms. Each
queue that is created consists of a physical object within the Universal Messaging realm as well
as its logical reference within the namespace.

Copying queues using the Enterprise Manager enables you to duplicate queues automatically
across realms. When a queue is copied, its attributes and any events found on the queue will be
copied over onto the new queue copy.

Firstly, by selecting the queue in the namespace that you wish to copy and right-clicking on the
node, you will be presented with a menu that shows you the various options for a queue node.
The image below shows this menu.

Universal Messaging Administration Guide 10.3 177

2 Universal Messaging Enterprise Manager



By selecting the 'Copy Queue' option, youwill be presentedwith a dialog that allows you to input
the details of the new queue copy. These details not only include the queue attributes, but also
the realm to which the queue will be copied to. The image below shows the copy queue dialog.

178 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The image shows a drop down list containing all the names of the realms that the enterprise
manager is currently connected to. By selecting a realm name from the list, it is possible to create
a copy of the selected queue in that realm. Clicking on the 'OK' button will create the queue on
the selected realm and the queue will then appear in the namespace tree.

Queue Snoop

This section will describe how to snoop a Universal Messaging queue. Each queue that is created
consists of a physical object within the Universal Messaging realm as well as its logical reference
within the namespace.

Snooping a queue allows you to view the events contained on a queue. Each queue node in the
namespace tree of a Universal Messaging realm, when selected, displays a snoop panel that
provides you with a means of browsing the queue and present the events on the queue in a
graphical panel.

You can also provide a filter that enables you to select specific events that match a certain criteria.

First of all, by selecting the queue youwish to snoop in the namespace tree, the EnterpriseManager
will display a number of panels in a tabbed pane. One of these tabs is labelled 'Snoop'. Selecting
the snoop tab will display a panel like the one shown in the image below.

The snoop panel is split up into a number of different sections. Firstly, the 3 text fields at the top
of the panel allow you enter an event id range to and from, and a selector string that will be used
to filter events being snooped on the queue. For queues, the event id ranges are disabled. Clicking
the 'Start' button will begin the queue snoop, and start displaying any events that are published
onto the queue using whatever values you have input into the text fields.

When events are published, they are added to the main table below the text field input. This main
table shows 4 columns of basic information about each event: the event id, event tag, time to live,

Universal Messaging Administration Guide 10.3 179

2 Universal Messaging Enterprise Manager



and whether the event is persistent. By clicking on any event shown as a row in the main table,
more information on the event is shown in the bottom 3 panels. As shown in the image below.

The top 2 remaining panels showaHexidecimal viewof the event data and anASCII representation
of the same event data. The panel below that shows the contents of the event properties (if one
exists for the event) listed within a table. Each property is displayed as a row in the table. The
table columns show the name of the property, the type, and the value.

180 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The button labelled 'Pause' will temporarily suspend receipt of any new message being received
into the snoop panel for the selected queue. The 'Stop' button will stop snooping events and clear
all the panels and tables.

Channels can also be snooped using the snoop panel (see “Channel Snoop” on page 156).

Universal Messaging Administration Guide 10.3 181

2 Universal Messaging Enterprise Manager



Data Group Administration

Creating Data Groups

Universal Messaging data groups provide a very lightweight grouping structure that allows
developers to manage user subscriptions remotely and transparently.

Each data group is a resource that exists within the Universal Messaging realm server, or within
a cluster ofmultiple realm servers. Creating a data group - in this case using the EnterpriseManager
- creates the physical object within the realm. Once created, references to the data group can be
obtainedusing theUniversalMessagingClient andAdminAPIs. Data groups can also bemonitored
and managed using the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all resources and
services foundwithin the realm namespace are displayed in a tree structure under the realm node
itself. It is possible to view multiple Universal Messaging realm servers from a single enterprise
manager instance.

Creating a Data Group

In EnterpriseManager, theData Groups node existswithin the realm node. Locate theDataGroup
Node, and right click on it to bring up a context menu:

182 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Create the data group - in this example, we'll call it EURUSD_Gold :

Universal Messaging Administration Guide 10.3 183

2 Universal Messaging Enterprise Manager



The new data group can now be seen in Enterprise Manager:

184 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Publishers with the Publish to DataGroups ACL permission can now publish messages to the new
data group programmatically.

Universal Messaging Administration Guide 10.3 185

2 Universal Messaging Enterprise Manager



Creating a Nested Data Group

Choose the data group that is going to contain a new data group. In this example, we'll choose
the EURUSD_Gold data group we created earlier.

Right-click its icon, and the following context menu appears:

186 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Add the nested data group:

Universal Messaging Administration Guide 10.3 187

2 Universal Messaging Enterprise Manager



The nested data group can now be seen in the tree:

188 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Data Group Status

When you select the 'Data Groups' node from the tree, one of the available panels to select is
labeled 'Status' panel.

Universal Messaging Administration Guide 10.3 189

2 Universal Messaging Enterprise Manager



The Status panel for The 'Data Groups' node contains information regarding the publish and
consumed events onDataGroups aswell as the number ofDataGroups andData Streams currently
connected

The status information shown within this panel is explained below.

The Status panel is split into 2 main sections. The top most section of this panel shows a graph
that demonstrates Event History

The event history graph shows the rates that events are published (red) and consumed (yellow)
across all data groups in the current realm.

This graph is updated every time a status event is received from the realm in which data groups
are actively being used. The image below demonstrates the status graphs as described.

190 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The bottom section of the panel displays 4 sections of information, Event Status, Totals,
Connection Status andStorage Usage respectively. These panels and the information displayed
are described below.

Universal Messaging Administration Guide 10.3 191

2 Universal Messaging Enterprise Manager



Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services within
the container

Consumed - The total number of events consumed from all channels, queues and services
within the container

Published/Sec - The number of events published to all channels, queues and services, per
second within the container

Consumed/Sec - The number of events consumed from all channels, queues and services, per
second within the container

Totals

The Totals section describes the following :

Realms- The number of realms mounted within this container

Channels- The number of channels that exist within this container

Queues- The number of queues that exist within this container

Services- Total number of services that exist within this container

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to channels, queues and services within this
container

Current - The current number of connections made to channels, queues and services within
this container

Rate - The number of connections being made per second to channels, queues and services
within this container

Storage Usage (KB)

The Memory Usage section describes 4 values :

Total - The total amount of KB used by channels, queues and services found within this
container

Free - The free memory available in the Realm JVM

Used - The amount of memory available in the Realm JVM

192 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Change - The amount of change in Realm JVMmemory between newest update and previous
update

Adding Existing Data Groups to Data Groups

We've already seen how to use Enterprise Manager to create a new data group and add it to an
existing data group (see “Creating Data Groups” on page 182). In this section, we will add an
existing data group to a data group.

Assume that in the following example structure of data groups, we would like to add the existing
Customer_Desk_A data group,which itself already amember of theEURUSD_Gold data group,
to the GBPUSD_Gold data group too.

First, choose the data group that is going to contain a new data group. In this case, it's the
GBPUSD_Gold data group we created earlier.

Right-click its icon, and the following context menu appears:

Universal Messaging Administration Guide 10.3 193

2 Universal Messaging Enterprise Manager



Click the "Add A Data Group to GBPUSD_Gold" context menu option, then type in the name of
the data group we wish to add as a member - in this case, Customer_Desk_A:

194 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Because this data group already exists (and was a member of EURUSD_Gold), it now appears as
a member of two data groups (and thus appears twice in the tree of Data Group nodes):

Universal Messaging Administration Guide 10.3 195

2 Universal Messaging Enterprise Manager



Now, any events published to the data groups EURUSD_Gold or GBPUSD_Gold, or directly to
the data group Customer_Desk_A, will be delivered to any data streams which are members of
the Customer_Desk_A data group.

196 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Removing Data Groups from Data Groups

In this section, we will remove an existing data group from a data group.

Assume that in the following example structure of data groups, we would like to remove the
existing Customer_Desk_C data group from the EURUSD_Silver data group.

First, choose the data group that is going to be removed from its "parent" data group. In this case,
it's the Customer_Desk_C data group we created earlier.

Right-click its icon, and the following context menu appears:

Universal Messaging Administration Guide 10.3 197

2 Universal Messaging Enterprise Manager



Click the "Remove Customer_Desk_C from EURUSD_Silver" context menu option, then click OK
on the confirmation dialog.

The data group, having been removed, will either:

198 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Be moved to the top level Data Groups node if it has no other parent data groups, or

Appear in other nodes in the tree if it has at least one other parent data group.

Universal Messaging Administration Guide 10.3 199

2 Universal Messaging Enterprise Manager



In this example, the Customer_Desk_C data group was not a member of any other data groups,
so having been removed from the EURUSD_Silver data group, it now appears in the top level
Data Groups node.

Deleting Data Groups

There are two ways of deleting a data group using the Enterprise Manager:

1. by navigating the Data Groups tree

2. by typing in its name

Note that if a deleted data group is a member of more than one parent data group, then it will be
deleted from all of them, and will no longer be defined for use elsewhere.

Deleting by Navigating the Data Groups Tree

In Enterprise Manager, locate the Data Group Node (in this example, EURUSD_Gold), and right
click on it to bring up a context menu:

200 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Click OK on the confirmation dialog, and the data group will be deleted.

Universal Messaging Administration Guide 10.3 201

2 Universal Messaging Enterprise Manager



Deleting by Typing in the Data Group Name

In Enterprise Manager, right-click the Data Groups node and select the Delete A Data Group
context menu option:

202 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



In the resulting dialog box, type in the name of the data group to be deleted:

Click OK on the confirmation dialog, and the data group will be deleted.

Container Administration

Container Status

When you select a container (folder) from the namespace, one of the available panels to select is
labeled 'Totals'.

The Totals panel for a container provides status information for resources and services contained
within the selected container branch of the namespace tree.

The status information shown within this panel is explained below.

The Totals panel is split into 2 main sections. The top most section of this panel shows 2 graphs,
one demonstrates Event History, and the other Storage Usage History.

The event history graph shows the rates that events are published (red) and consumed (yellow)
across all channels, queues and services found within the selected container.

The storage usage history graph shows the total amount of storage space used by each channel,
queue and service found within the selected container.

Both graphs are updated every time a status event is received from the realm inwhich the container
exists. The image below demonstrates the Container status graphs as described.

Universal Messaging Administration Guide 10.3 203

2 Universal Messaging Enterprise Manager



The bottom section of the panel displays 4 sections of information, Event Status, Totals,
Connection Status andStorage Usage. These panels and the information displayed are described
below.

Event Status

The Event Status section describes the following :

204 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Published - The total number of events published to all channels, queues and services within
the container

Consumed - The total number of events consumed from all channels, queues and services
within the container

Published/Sec - The number of events published to all channels, queues and services, per
second within the container

Consumed/Sec - The number of events consumed from all channels, queues and services, per
second within the container

Totals

The Totals section describes the following :

Realms- The number of realms mounted within this container

Channels- The number of channels that exist within this container

Queues- The number of queues that exist within this container

Services- Total number of services that exist within this container

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to channels, queues and services within this
container

Current - The current number of connections made to channels, queues and services within
this container

Rate - The number of connections being made per second to channels, queues and services
within this container

Storage Usage (KB)

The Memory Usage section describes 4 values :

Total - The total amount of KB used by channels, queues and services found within this
container

Free - The free memory available in the Realm JVM

Used - The amount of memory available in the Realm JVM

Change - The amount of change in Realm JVMmemory between newest update and previous
update

Container Monitor Panel

Universal Messaging Administration Guide 10.3 205

2 Universal Messaging Enterprise Manager



When you select a container (folder) from the namespace, one of the available panels to select is
labeled 'Monitor'.

TheMonitor panel provides a viewnot unlike 'top' for UNIX systems or taskmanager forWindows
systems. Itsmain purpose is to present the userwith a high level view of usage. The usage is based
on channels found within the container node.

TheMonitor panel comprises 2 sections. The top-most section contains a real time graph illustrating
the realm memory usage in the same way the Realm Status panel (see “Viewing a Realm” on
page 16) displays memory usage. This section also contains a summary showing the number of
mounted realms, the number of channels, the number of queues and the number of services.

The image below demonstrates the Monitor panel for a container within a clustered realm.

206 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Channel Usage

The next section of the Monitor panel displays a table showing multiple columns and rows. This
table represents channel usage throughout the realm. Each row in the table represents a channel.
Channel usage can be measured a number of ways. Each measurement corresponds to a column
within the table. By clicking on one of the column headers, all known channels found within the
container will be sorted according to their value for the selected column. For example, one of the

Universal Messaging Administration Guide 10.3 207

2 Universal Messaging Enterprise Manager



columns is 'Connections', i.e. the number of current consumers on the channel. By clicking on the
columnheader labeled 'Connections', the tablewill be sorted according to the number of consumers
each channel has. The channel with the most number of consumers will appear at the top of the
table.

Each column used for channel usage measurements is described below:

Connections - The number of consumers the channel has

Published - The rate of events published per status interval

Consumed - The rate of events consumed per status interval

Memory (bytes) - The number of bytes the channel uses from the JVM memory

%Memory - The percentage of overall JVM memory used by this channel

Disk - The amount of disk space used by this channel, only relevant for persistent / mixed
channels

Monitor Graphs

Themonitor panel provides amethod of graphing channel usage. It uses a 3D graph package from
SourceForge (http://sourceforge.net/projects/jfreechart/) to display the items in each table as
columns in a 3D vertical bar chart. The bar charts can be update live as the values in the tables are
updated. Once a column is selected, simply click on the button labeled 'Bar Graph' under either
the channel or connections table and a graph panel will appear, as shown in the image below
showing a graph of the number of events published for channels within the container.

208 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager

http://sourceforge.net/projects/jfreechart/


Right-clicking anywherewithin the graphwill show a pop-upmenu of options. One of the options
is labeled 'Start Live Update', which will ensure the graph consumes updates as and when they
occur to the table. Once the live update is started, you can also stop the live update by once again
right clicking on the graph and selecting 'Stop Live Update'.

You can also print the graph, and save the graph image as a '.png' file, as well as alter the properties
of the graph and its axis.

Using ACLs for role-based Security

Adding ACLs

The Enterprise Manager allows Access Control Lists (ACLs) to be controlled via the ACL panel
which is displayed for each object within the namespace. These panel allows users to add entries
to the ACL, as well as remove the selected entry. The image below shows the dialog for adding
an ACL entry.

Universal Messaging Administration Guide 10.3 209

2 Universal Messaging Enterprise Manager



Clicking on the 'OK' button will add the subject to the selected objects ACL list.

Similarly, once they have been defined, Security Groups (see “Nirvana Admin API - Nirvana
Security Groups” on page 597) may be added into ACL Lists by clicking the "Add Group" button
and selecting the desired group as shown:

When an entry is selected from the ACL panel, and the 'Delete' button is selected, you will be
prompted to confirm the deletion.

After any changes made to the ACLs, only when the 'Apply' button is clicked will those changes
be sent to the realm server for processing. Clicking the 'Cancel' button will discard any changes
made and revert back to the state the Realm server has for the ACL.

To read more about the entitlements for each object, follow the links below:

“Security Groups” on page 597

“Realm ACL” on page 214

“Channel ACL” on page 216

“Queue ACL” on page 219

“Interface VIA ACL” on page 221

Security Groups

Security groups contain a list of subjects (username & host pairs) and, in addition, may contain
other Security Groups. Once a Security group is defined, the group can be added to ACL lists like
normal subject(user@host) entries are added and permissioned. This allows for "sets" of users to
be defined and granted permissions through a single entry in an ACL list, rather than each user
having an entry.

210 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Before adding a Security Group to an ACL, it must first be created. This can be done
programmatically or via the Enterprise Manager, as shown below.

Once the group has been created, user@host subjects can be added to the group using the "Add
Member" button:

Universal Messaging Administration Guide 10.3 211

2 Universal Messaging Enterprise Manager



Alternatively, groups can be added asmembers of other groups by using the "AddGroup" button.
This will present you with a dropdown list of existing groups to choose from:

212 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Membership of Security Groups can be altered dynamically, and the changes will be reflected in
the permissions for all ACL lists where the security group is an entry in the ACL list.

Aswith all ACLs inUniversalMessaging, privileges are cumulative. Thismeans that, for example,
if a user is in a group which has publish permissions on a channel, but not subscribe permissions,

Universal Messaging Administration Guide 10.3 213

2 Universal Messaging Enterprise Manager



the user will no be able to subscribe on the channel. Then, if an ACL entry is added on the channel
for his specific username/host pair, with subscribe but no publish permissions, the user will then
be able to both subscribe(from the non-groupACL permission), and publish (from the groupACL
permission).

Realm Entitlements

Realm ACLs

Asmentioned in the security introduction (see “UsingACLs for role-based Security” on page 209),
in order to perform operations within a Realm clients connecting to the realm must be given the
correct entitlements.

In order for a client to connect to a Universal Messaging Realm server there must be a RealmACL
which allows them to do so. A Realm ACL contains a list of subjects and their entitlements (i.e.
what operations they can perform within the realm).

Using the Enterprise manager, one can add to, remove or modify entries within a realm ACL.

ACLs can also be managed via the Universal Messaging administration API.

To view a Realm ACL, click on a realm node within the namespace of the Enterprise Manager,
and select the 'ACL' tab. Thiswill display the realmACL and the list of subjects and their associated
permissions for the realm. The following image displays and example of a realm ACL.

214 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



As you can see above, the realm ACL has a number of subject entries and operations that each
subject is able to perform on the realm. The operations that can be performed on a realm are
described below in the order in which they appear in the ACL panel above:

Manage ACL - Allows the subject to get and manage the list of ACL entries.

Note:

Universal Messaging Administration Guide 10.3 215

2 Universal Messaging Enterprise Manager



This permission is a combination of two permissions at the Administration API level. The
boolean setModify() API function allows/denies permission to change an ACL value, and the
boolean setList() API function allows/denies permission to access the current list of ACLs. If
both of these functions return the value true, Manage ACL is allowed, otherwise Manage
ACL is not allowed.

If the green check icon is displayed in the Manage ACL field, the corresponding two API
functions for this field are set to true.

The value of this permission cannot be changed in the Enterprise Manager.

Full - Has complete access to the secured object

Access - Can actually connect to this realm

Configure - Can set run time parameters on the realm

Channels - Can add/delete channels on this realm

Realm - Can add / remove realms from this realm

Admin API - Can use the nAdminAPI package

Manage DataGroups - Can add / remove data groups from this realm

Pub DataGroups - Can publish to data groups (including default) on this realm

Own DataGroups - Can add / delete publish to data groups even when they were not created
by the user

The green check icon shows that a subject is permitted to perform the operation. For example, the
subject *@* is shown as having no permissions for this realm. The minimum requirement for a
client to use a realm is the 'Access' privilege.Without this privilege for the *@* subject, anyUniversal
Messaging client attempting to connect, whose subject does not appear in the ACL list, will not
be able to establish a session with the Realm Server.

In order to modify the permissions for a subject, you simply need to click on the cell in the ACL
table for the subject and the operation you wish to modify permissions for. For example, if you
want to grant the *@* user the 'Access' realm privilege, you would simply click on the *@* row at
the column labelled 'access'. This would turn the cell from blank to a green check icon.

After making any changes, you then need to click on the 'Apply' button which will notify the
Realm Server of the ACL change.

Any ACL changes that are made by other Enterprise Manager users, or from any programs using
the Universal Messaging Admin API to modify ACLs will be received by all other Enterprise
Managers. This is because ACL changes are automatically sent to all Universal Messaging Admin
API clients, the Enterprise Manager being one of those clients.

Any changes made to a realm ACL where the realm is part of a cluster will be replicated to all
other cluster realms.

Channel Entitlements

216 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Channel ACLs

Once clients have established a session with a Universal Messaging Realm server, and they have
successfully been authenticated and the subject has the correct user entitlements, in order to
perform operations on channel objects, the correct entitlements must be granted to the subject on
the required channels. Each channel has an associated ACL that contains a list of subjects and a
set of privileges the subject is given for operations on the channel.

Using the Enterprise Manager, one can add to, remove or modify entries within the channel ACL.

To view a channel ACL, click on a channel node within the namespace of the Enterprise Manager,
and select the 'ACL' tab. This will display the channel ACL and the list of subjects and their
associated permissions for the channel. The following image displays and example of a channel
ACL.

Universal Messaging Administration Guide 10.3 217

2 Universal Messaging Enterprise Manager



As you can see above, the channel ACL has a number of subject entries and operations that each
subject is able to perform on the channel. The operations that can be performed on a channel are
described below in the order in which they appear in the ACL panel above:

Manage ACL - Allows the subject to get and manage the list of ACL entries.

Note:

218 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



This permission is a combination of two permissions at the Administration API level. The
boolean setModify() API function allows/denies permission to change an ACL value, and the
boolean setList() API function allows/denies permission to access the current list of ACLs. If
both of these functions return the value true, Manage ACL is allowed, otherwise Manage
ACL is not allowed.

If the green check icon is displayed in the Manage ACL field, the corresponding two API
functions for this field are set to true. If you remove the green check icon, this sets the
corresponding two API functions for this field to false.

Full - Has complete access to the secured object

Purge - Can delete events on this channel

Subscribe - Can subscribe for events on this channel

Publish - Can publish events to this channel

Named - Can the user connect using a named (durable) subscriber

The green check icon shows that a subject is permitted to perform the operation. For example, if
there is a subject *@* with only subscribe permissions for this channel, this means that any client
who has successfully established a session and has obtained a reference to this channel within
their application code can only subscribe to the channel and read events.

In order to modify the permissions for a subject, you simply need to click on the cell in the ACL
table for the subject and the operation you wish to modify permissions for. For example, if you
want to remove the subscribe permission for the *@* subject you would simply click on the *@*
row at the column labelled 'subscribe'. This would turn the cell from blank to a green check icon.
This would also ensure that only those subjects listed in the ACL and with sufficient privileges,
would be able to perform any operations on the channel.

After making any changes, you then need to click on the 'Apply' button which will notify the
Realm Server of the ACL change for that channel.

Any ACL changes that are made by other Enterprise Manager users, or from any programs using
the Universal Messaging Admin API to modify ACLs will be received by all other Enterprise
Managers. This is because ACL changes are automatically sent to all Universal Messaging Admin
API clients, the Enterprise Manager being one of those clients.

Any changes made to a channel ACL where the channel is a cluster channel will be replicated to
all other instances of the cluster channel in all other cluster realms.

Queue Entitlements

Queue ACLs

Once clients have established a session with a Universal Messaging Realm server, and they have
successfully been authenticated and the subject has the correct user entitlements, in order to
perform operations on queue objects, the correct entitlements must be granted to the subject on

Universal Messaging Administration Guide 10.3 219

2 Universal Messaging Enterprise Manager



the required queue. Each queue has an associated ACL that contains a list of subjects and a set of
privileges the subject is given for operations on the queue.

Using the Enterprise Manager, one can add to, remove or modify entries within the queue ACL.

To view a queue ACL, click on a queue node within the namespace of the Enterprise Manager,
and select the 'ACL' tab. Thiswill display the queueACL and the list of subjects and their associated
permissions for the queue. The following image displays and example of a queue ACL.

220 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



As you can see above, the queue ACL has a number of subject entries and operations that each
subject is able to perform on the queue. The operations that can be performed on a queue are
described below in the order in which they appear in the acl panel above:

Manage ACL - Allows the subject to get and manage the list of ACL entries.

Note:

This permission is a combination of two permissions at the Administration API level. The
boolean setModify() API function allows/denies permission to change an ACL value, and the
boolean setList() API function allows/denies permission to access the current list of ACLs. If
both of these functions return the value true, Manage ACL is allowed, otherwise Manage
ACL is not allowed.

If the green check icon is displayed in the Manage ACL field, the corresponding two API
functions for this field are set to true. If you remove the green check icon, this sets the
corresponding two API functions for this field to false.

Full - Has complete access to the secured object

Purge - Can delete events on this channel

Peak - Can snoop this queue (non destructive read)

Push - Can publish events to this queue

Pop - Can Consume events on this queue (destructive read)

The green check icon shows that a subject is permitted to perform the operation. For example, the
subject *@* is shown as having only peek permissions for this queue. This means that any client
who has successfully established a session and has obtained a reference to this queue within their
application code can only subscribe to the queue and read events.

In order to modify the permissions for a subject, you simply need to click on the cell in the ACL
table for the subject and the operation youwish tomodify permissions for. For example, if I wanted
remove the peek permission for the *@* subject I would simply click on the *@* row at the column
labelled 'peek'. This would turn the cell from blank to a green check icon. This would also ensure
that only those subjects listed in the ACL and with sufficient privileges, would be able to perform
any operations on the queue.

After making any changes, you then need to click on the 'Apply' button which will notify the
Realm Server of the ACL change for that queue.

Any ACL changes that are made by other Enterprise Manager users, or from any programs using
the Universal Messaging Admin API to modify ACLs will be received by all other Enterprise
Managers. This is because ACL changes are automatically sent to all Universal Messaging Admin
API clients, the Enterprise Manager being one of those clients.

Any changes made to a channel ACL where the queue is a cluster queue will be replicated to all
other instances of the cluster queue in all other cluster realms.

Interface VIA Rules

Universal Messaging Administration Guide 10.3 221

2 Universal Messaging Enterprise Manager



Each interface defined within a Universal Messaging Realm server can have an associated ACL
list, known as a VIA list.

The VIA list enables list of users to be defined who are entitled to connect to the Universal
Messaging realm using a specific protocol 'via' a specific interface.

If for example, a realm has an HTTP (nhp) interface running on port 10000, and we also want a
sockets (nsp) interface running on port 15000, and you want all external clients to connect using
the nhp interface, and all internal clients to connect using the nsp interface, this can be achieved
by providing the nhp and nsp interfaces with a list of subjects that are able to connect via the
different interfaces.

This ensures that any user that tries to connect via the nsp interface who is not part of the nsp
interface VIA list but exists in the nhp via list will be rejected and will not be able to establish a
connection via nsp. The same will apply for the nhp interface. Alternatively, by simply adding a
list of via entries to the nhp interface (and leaving the nsp via list empty), any user trying to connect
via nsp interface who is found in any other interface via list will be rejected. This allows you to
tie specific users to specific interfaces.

The default behaviour for all interfaces is that when no VIA lists exist on any defined interfaces,
all users can connect on any interface (Realm ACLs permitting, see “Realm Entitlements” on
page 214). When a user subject exists on an interface, that subject cannot use any other interface
other than the one they are listed in.

This is an extra level of security that allows administrators of Realm Servers to define a strict
approach to who can connect to the realm via specific protocols. This is particularly useful if for
example you run many services on a single Universal Messaging realm server and wish to ensure
that specific clients / groups of clients are using completely separate interfaces.

Interface ACL (VIA List)

In order to view the VIA list for an interface, select the realm where the interface is running, and
then select the 'Interfaces' tab in the EnterpriseManager. From the interface list for the realm, select
the interface from the table of interfaces, and choose the tab labelled 'VIA' from the bottom of the
interface panel. The image below shows the result of an acl entry being added to the default socket
interface running on port 9000. By adding this entry, the user johnsmith@192.168.1.2 can only use
the nsp0 interface which is using the sockets protocol on port 9000.

As with all Universal Messaging ACLs wildcards are fully supported so that for example,
*@192.168.1.2 or johnsmith@* are both relevant enforceable VIA rules.

222 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Interface VIA entries can be added to by clicking on the 'Add' button from the VIA panel and
entering the subject. Entries can be removed by selecting the entry and clicking the 'Delete' button.

Any changes to the interface VIA list will not take effect at the server until the 'Apply' button has
been clicked on the VIA panel. Changes can also be disregarded without updating the server by
clicking on the 'Cancel' button on the VIA list panel.

Universal Messaging Administration Guide 10.3 223

2 Universal Messaging Enterprise Manager



Scheduling

Overview

UniversalMessaging provides a sophisticated scheduling engine that enables tasks to be executed
as server-side scripts on a Realm Server at specific times or when certain conditions occur within
the realm. This enables realm servers to automate important tasks, enabling them to self-manage
without the need for intervention by administrators or externally scheduled tasks. The scripts
consist of initial tasks, triggered tasks and / or calendar tasks.

Administrators ofUniversalMessagingRealm servers can provide scripts that outline the conditions
and tasks to be performedwhich are then interpreted by the server. The server converts the scripts
into the actual tasks to be completed, and executes them under the correct conditions.

This section guides you through the basic tasks that can be executed by a Realm Server, time based
scheduling and conditional triggers, aswell as how towrite, modify and deploy scheduling scripts.

Note:
The Scheduler feature of the Enterprise Manager is deprecated in Universal Messaging version
10.2 and will be removed in a subsequent release.

Creating and Editing Scheduler Scripts

The Universal Messaging Enterprise Manager provides a scheduler panel that enables the user to
view, add, delete and edit scheduler scripts. To view the scheduler panel, select the realm from
the namespace and click on the 'Scheduler' tab.

The scheduler panel displays all scripts that have been deployed to the server within a table. This
table shows the name of the schedule, as defined within the script, the user name of the person
the script will be executed using (i.e. the user name of the Enterprise Manager user who deployed
the script, as well as whether the script is to be deployed cluster wide (i.e. to all realms within the
cluster node).

The image below shows the scheduler panel with no scheduling entries.

224 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The button labelled 'AddNew'when clickedwill display a dialog containing a script editing panel
that has been designed to assist with the creation of scheduling scripts. The scheduling grammar
is discussed in more detail in the writing scripts section (see “Scheduling Script Language
Summary” onpage 232), aswell as the calendar, triggers and tasks sections (see “Calendar Schedules
(Time-based Triggers)” on page 237, “Conditional Triggers for Executing Tasks” on page 239 and
“Scheduling Tasks” on page 250). The image below shows the script editor panel.

Universal Messaging Administration Guide 10.3 225

2 Universal Messaging Enterprise Manager



Once your script is complete, in order to deploy the schedule to the server, you need to click on
the 'OK' button. Once clicked, if there are any errors or problems with the script, you will be
presented with a dialog similar to the image below.

If the script does not contain any errors, the script editor panel will close and the new scheduler
script will then appear within the scheduler table. Clicking on the newly created scheduler within
the table will enable you to delete, vew and edit the schedule. The image below shows the newly
created scheduler script once selected. There are 4 scheduler panels available for each scheduler

226 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



selected from the table. Each panel is represented by a tab on the bottomhalf of themain scheduler
panel. Each of these panels is discussed below.

Script Editor Panel

The script editor panel is denoted by the tab labelled 'Script Editor' and provides the same editor
view found when you first add a new script. This panel is a simple editor pane that enables you
to modify the scheduler triggers and tasks. The image below shows this panel selected from the
available tabs.

Universal Messaging Administration Guide 10.3 227

2 Universal Messaging Enterprise Manager



Initial Tasks Panel

The initial tasks panel is denoted by the tab labelled 'Initial Tasks' and represents those tasks
defined within the initialisation section of the scheduler script. Each initial task is represented as
a row in a table with 3 columns. Column 1 labelled 'Task' is the task object (see “Scheduling
Tasks” on page 250). Column 2 labelled 'Function / Object' represents the details of the task, fo
example, if the task was to purge a channel, column 2 would show 'purge'. Column 3 labelled

228 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



'Parameter' shows any parameters listed in the scheduler script for the given task. The image below
shows an example of the Initial Tasks tab being selected.

Triggered Tasks

The triggered tasks panel is denoted by the 'Triggered Tasks' tab. This panel displays those tasks
that are triggered based on some conditional triggers. Each conditional trigger is shown as a row
in the table within this panel. Selecting a trigger from this table will then display the tasks to be

Universal Messaging Administration Guide 10.3 229

2 Universal Messaging Enterprise Manager



executed when this trigger is fired. Each task is shown in a table similar to that found in the Initial
Tasks panel. The image below shows the triggered tasks panel being selected.

Calendar Tasks

The final panel is the calendar tasks panel and is denoted by the 'Calendar Tasks' tab. This panel
shows the tasks that are scheduled to run at specific times. Each calendar task is shown as a row
within a table. This table has a total of 11 columns. The first 2 columns show the frequency and

230 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



time. The frequency is either 'Hourly', 'Daily', 'Weekly', 'Monthly' or 'Yearly' and the time is
specified asHH:MM. For hourly schedules, theHH (hours) will be displayed as XXwhich denotes
every hour.

Columns 3 to 9 represent which days of the week the task will run, starting from Monday ('Mo').
A green circlemeans the taskwill run on that day. The last 2 columns represent theDay andMonth
the task will run.

Selecting one of the rows in the table will display the actual tasks that will be executed in a similar
table to that found in the triggered tasks panel. The image below shows the calendar tasks panel
with a task selected.

Universal Messaging Administration Guide 10.3 231

2 Universal Messaging Enterprise Manager



Any changes made to the schedule within the script editor panel can either be deployed to the
realm server by clicking on the 'Apply Changes' button or discarded by clicking on the 'Undo
Changes' button.

Schedule entries can be deleted from the server by selecting them from the main scheduler table
and clicking on the 'Delete' button.

Scheduling Script Language Summary

232 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Universal Messaging scheduling works by interpreting scripts written using a simple grammar.
Administrators of realms can deploy asmany scheduling scripts as theywish to each Realm Server.

This section will cover the basic structure of a Universal Messaging scheduling script, and then
show how to write a script and deploy it to the Realm Server.

Follow the links below to view the guide for each of these:

“Scheduling Grammar” on page 233

“Declarations” on page 235

“Initial Tasks” on page 235

“Every Clause” on page 236

“When Clause” on page 236

“Else Clause” on page 237

Scheduling Grammar

The grammar for scheduling scripts is extremely simple to understand. The script must conform
to a predefined structure and include elements that map to the grammar expected by the Realm
Server Scheduler Engine.

In its simplest form theUniversalMessaging scheduler syntax startswith the command 'scheduler'.
This tells the parser that a new scheduler task is being defined. This is followed by the name of
the scheduler being defined, this is a user defined name. For example:
scheduler myScheduler {
}

Within this structure, triggers and tasks are defined. A task is the actual operation the server will
perform, and it can be executed at a certain time or frequency, or when a condition occurs. Within
the scheduler context the following verbs can be used to define tasks to be executed.

declare : Used to define the name of a trigger for later user

initialise : Is the first thing run when a scheduler is started (also run when the realm server
starts up)

every : Used to define a time/calendar based event

when : Used to define a conditional trigger and the list of tasks to execute when it fires

else : Used after a conditional trigger that will fire if the condition evaluates to false

The following shows the basic grammar and structure of a scheduling script.
/*
Comment block
*/
scheduler <User defined Name> {
declare <TRIGGER_DECLARATION>+
initialise {

Universal Messaging Administration Guide 10.3 233

2 Universal Messaging Enterprise Manager



<TASK_DECLARATION>+
}
/*
Time based tasks
*/
every <TIME_EXPRESSION> {
<TASK_DECLARATION>+
}
when ( <TRIGGER_EXPRESSION> ) {
<TASK_DECLARATION>+
} else {
<TASK_DECLARATION>+
}

where :

TRIGGER_DECLARATION ::= <TRIGGER> <NAME> (<TRIGGER_ARGUMENT_LIST>)

TRIGGER ::= Valid trigger. Learn more about triggers at “Conditional Triggers for Executing
Tasks” on page 239.

TRIGGER_ARGUMENT_LIST ::= Valid comma separated list of arguments for the trigger

TASK_DECLARATION ::= Valid task. Learn more about tasks at “Scheduling Tasks” on
page 250.

TRIGGER_EXPRESSION ::=

<TRIGGER_EXPRESSION><LOGICAL_OPERATOR><TRIGGER_EXPRESSION>|<TRIGGER>
| <NAME> <COMPARISON_OPERATOR> <VALUE>

TIME_EXPRESSION ::=

<HOURLY_EXPRESSION> | <DAILY_EXPRESSION> | <WEEKLY_EXPRESSION> |
<MONTHLY_EXPRESSION> | <YEARLY_EXPRESSION>

HOURLY_EXPRESSION ::= <MINUTES>

DAILY_EXPRESSION ::= <HOUR> <COLON> <MINUTES>

WEEKLY_EXPRESSION ::= <DAYS_OF_WEEK> <SPACE> <HOUR> <COLON> <MINUTES>

MONTHLY_EXPRESSION::= <DAY_OF_MONTH><SPACE><HOUR><COLON><MINUTES>

YEARLY_EXPRESSION ::= <DAY_OF_MONTH> <HYPHEN> <MONTH> <SPACE> <HOUR>
<COLON> <MINUTES>

MINUTES ::= Minutes past the hour, i.e. a value between 00 and 59

HOUR ::= Hour of the day, i.e. a value between 00 and 23

DAYS_OF_WEEK ::=

<DAY_OF_WEEK> | <DAY_OF_WEEK> <SPACE> <DAY_OF_WEEK>

DAY_OF_WEEK ::= Mo | Tu | We | Th | Fr | Sa | Su

234 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DAY_OF_MONTH ::= Specific day of the month to perform a task, i.e. a value between 01 and
28

MONTH ::= The month of the year, JAN, FEB, MAR etc.

NAME ::= The variable name for a trigger

COMPARISON_OPERATOR ::= > | => | < | <= | == | !=

LOGICAL_OPERATOR ::= AND | OR

COLON ::= The ":" character

SPACE ::= The space character

HYPHEN ::= The "-" character

+ ::= indicates that this can occur multiple times

VALUE ::= Any valid string or numeric value.

Declarations

The declarations section of the script defines any triggers and assigns them to local variable names.
The grammar notation defined above specifies that the declaration section of a schedule script can
contain multiple declarations of triggers. For example, the following declarations section would
be valid based on the defined grammar:
declare Config myGlobalConfig ("GlobalValues");
declare Config myAuditConfig ( "AuditSettings");
declare Config myTransConfig ( "TransactionManager");

The above declarations define 3 variables that refer to the the Config trigger. The declared objects
can be used in a time based trigger declaration, conditional triggers and to perform tasks on.

Initialise

The initialise section of the schedule script defines what tasks are executed straight away by the
server when the script is deployed. These initial tasks are also executed every time the Realm
Server is started. An example of a valid initialise section of a schedule script is shown below:
initialise {
Logger.report("Realm optimisation script and monitor startup initialising");
myAuditConfig.ChannelACL("false");
myAuditConfig.ChannelFailure("false");
myGlobalConfig.MaxBufferSize(2000000);
myGlobalConfig.StatusBroadcast(2000);

myTransConfig.MaxTransactionTime(3600000);
Logger.setlevel(4);
}

The example above ensures that each time a server starts, the tasks declared are executed. Using
the variables defined in the declarations section, as well as the Logger task, the server will always
ensure that the correct configuration values are set on the server whenever it starts.

Universal Messaging Administration Guide 10.3 235

2 Universal Messaging Enterprise Manager



Every Clause

The every clause defines those tasks that are executed at specific times and frequencies as defined
in the grammar above. Tasks can be executed every hour at a specific time pas the hour, every
day at a certain time, every week on one or more days at specific times or day, every month on a
specific day of the month and a specific day of the year.

The grammar above defines how to declare an every clause. Based on this grammar the following
examples demonstrate how to declare when to perform tasks :
Hourly Example (Every half past the hour, log a message to the realm server log)
every 30 {
Logger.report("Hourly - Executing Tasks");
}
Daily Example (Every day at 18:00, perform maintenance on the customerSales channel
)
every 18:00 {
Logger.report("Daily - performing maintenance");
Store.maintain("/customer/sales");
}
Weekly Example (Every week, on sunday at 17:30, purge the customer sales channel)
every Su 17:30 {
Logger.report("Weekly - Performing Purge");
Store.purge("/customer/sales");
}
Monthly Example (Every 1st of the month, at 21:00, stop all interfaces and start them
again)
every 01 21:00 {
Logger.report("Monthly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}
Yearly Example (Every 1st of the January, at 00:00, stop all interfaces and start them
again)
every 01-Jan 00:00 {
Logger.report("Yearly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}

When Clause

Thewhen clause defines a trigger that evaluates a specific value and executes a task if the evaluation
result is 'true'. The grammar for the when clause is defined above. The following example shows
a valid when clause :
when (MemoryManager.FreeMemory < 30000000) {
Logger.report("Memory below 30M, performing some clean up");
FlushMemory(true);
}

The above example will trigger the Realm Server JVM to call garbage collection when the amount
of free memory drops to below 30MB.

236 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Else Clause

The else clause defines an alternative action to the when clause if the when clause evaluates to
'false'. The grammar for the else clause is defined above. The following example shows a valid
when clause :
when (MemoryManager.FreeMemory < 30000000) {
Logger.report("Memory below 30M, performing some clean up");
FlushMemory(true);
} else {
Logger.report("Memory not below 30M, no clean up required");
}

The above example will trigger the Realm Server JVM to call garbage collection when the amount
of free memory drops to below 30MB.

To view a sample scheduling script, see the section “Scheduler Examples” on page 261.

Calendar Schedules (Time-based Triggers)

Calendar schedules are triggered at specific times, either hourly, daily, weekly, monthly or yearly.
Each calendar trigger is declared using the 'every' keyword. For basic information on the grammar
for calendar schedules, please read the section on time based triggers in the writing scripts help
file (see “Scheduling Script Language Summary” on page 232). The calendar, or time based triggers
are signified by using the 'every' keyword. The values entered after the keyword represent hourly,
daily, weekly, monthly or yearly frequency that the defined tasks will be executed. See “Hourly
Triggers” on page 237, “Daily Triggers” on page 238, “Weekly Triggers” on page 238, “Monthly
Triggers” on page 238, “Yearly Triggers” on page 239.

This section will describe in more detail the variations of the calendar trigger grammar.

Hourly Triggers

Hourly triggers have the simplest grammar. The value after the 'every' keyword represents the
minutes past the hour that the tasks will be executed. For example, specifying '00' means that the
tasks are executed on the hour, every hour. If you specify '30' the tasks will be executed at half
past the hour every hour:
/*
Execute every hour on the hour

*/
every 00 {
}

/*
Execute every hour at half past the hour

*/
every 30 {
}

Universal Messaging Administration Guide 10.3 237

2 Universal Messaging Enterprise Manager



Daily Triggers

Daily triggers are executed every day at a specific time. The time of day is written as 'HH:MM',
in a 24 hour clock format and represents the exact time of day that the tasks are executed. For
example, specifying '18:00' means the tasks are executed every day at 6pm. If you specify '08:30'
the tasks will be executed at 8.30am every morning.
/*
Execute day at 6pm
*/
every 18:00 {
}

/*
Execute day at 8.30am
*/
every 08:30 {
}

Weekly Triggers

Weekly triggers are executed on specific days of the week at a specific time, in the format 'DD
HH:MM' . The days are represented as a 2 character string being one of : Su; Mo; Tu; We; Th; Fr;
Sa, and you can specify more than one day. The time of day is written as 'HH:MM', in a 24 hour
clock format and represents the exact time on each given day that the tasks are executed. For
example, specifying 'Fr 18:00' means the tasks are executed every friday at 6pm. If you specify 'Mo
Tu We Th Fr 18:30' the tasks will be executed every week day at 6.30pm.
/*
Execute every friday at 6pm
*/
every Fr 18:00 {
}

/*
Execute every week day at 6.30pm
*/
every Mo Tu We Th Fr 18:30 {
}

Monthly Triggers

Monthly triggers are executed on a specific day of the month at a specific time, in the format 'DD
HH:MM' . The day is represented as a 2 digit number between 1 and 28. The time of day is written
as 'HH:MM', in a 24 hour clock format and represents the exact time on the given day of themonth
that the tasks are executed. For example, specifying '01 18:00' means the tasks are executed on the
1st of every month at 6pm.
/*
Execute on the first of every month at 6pm
*/
every 01 18:00 {
}

238 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Yearly Triggers

Yearly triggers are executed on a specific day andmonth of the year at a specific time, in the format
'DD-MMMHH:MM'. The day of the month is represented as a 2 digit number between 1 and 31,
and the month is represented as a 3 character string being one of : Jan; Feb; Mar; Apr; May; Jun;
Jul; Aug; Sep; Oct; Nov; Dec. The time of day is written as 'HH:MM', in a 24 hour clock format
and represents the exact time on the given day and month of the year that the tasks are executed.
For example, specifying '01-Jan 18:00' means the tasks are executed on the 1st of January every
year at 6pm.
/*
Execute on the first of january every year at 6pm
*/

every 01-Jan 18:00 {
}

Conditional Triggers for Executing Tasks

Conditional triggers execute tasks when specific conditions occur. Each defined trigger has a
number of attributes that can be used as part of the trigger expression and evaluated to determine
whether the tasks are executed. For basic information on the grammar for conditional triggers,
please read the section on conditional triggers in the writing scripts help file (see “Scheduling
Script Language Summary” on page 232). The conditional triggers are signified by using the 'when'
keyword. The expression entered after the keyword represent the trigger object(s) and the values
to be checked against.

This section describes in detail the triggers that are available and how to use themwithin a trigger
expression :

“Trigger Expressions” on page 240

“Store Triggers” on page 240

“Interface Triggers” on page 241

“Memory Triggers” on page 242

“Realm Triggers” on page 242

“Cluster Triggers” on page 243

“Counter Triggers” on page 243

“Timer Triggers” on page 244

“Config Triggers” on page 244

To view examples of scheduling scripts, see “Scheduler Examples” on page 261.

Universal Messaging Administration Guide 10.3 239

2 Universal Messaging Enterprise Manager



Trigger Expressions

A trigger expression is constructed from the definition of the trigger object(s) to be evaluated and
the values that will be used in the comparison. The trigger used in the expression can be either
the actual trigger object, or the declared name of the trigger from the declarations section of the
script (see “Scheduling Script Language Summary” on page 232). Multiple triggers can be used in
the expression using conditional operators (AND | OR).

For example, the following expression can be used to evaluate when a Realm's Interface accept
threads are exhausted 5 times.When this happens, the accept threads will be increased by 10. This
schedule will continually monitor the state of the interface and self-manage the accept threads so
the realm server is always able to accept connections from clients.
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter >= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}

The above schedule will monitor the number of times the accept threads are exhausted and when
the counter trigger hits 5 times, the number of threads will be increased by 10.

The next section will describe the available trigger objects and the available triggers on those
objects that can be used within

Store Triggers - Channel / Queue based triggers

Store triggers are declared using the following syntax as an example:
declare Store myChannel("/customer/sales");

The table below lists those triggers that can be evaluated on a Store object, such that the trigger
expression will look like :
when (myChannel.connections > 100) {
}

DescriptionParametersTrigger Object

Trigger on the number of
connections for the channel or
queue

Noneconnections

Trigger on the amount of free
space available in the store

NonefreeSpace

240 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

(used space - size of all purged
events)

Trigger on the amount of used
space available in the store (size
of all event on disk or memory)

usedSpace

Trigger on the number of events
on the channel / queue

NonenumOfEvents

Trigger when an event that
matches the filter is published
to the channel / queue

Valid filter Stringfilter

Interface Triggers - Universal Messaging Interface based triggers

Interface triggers are declared using the following syntax as an example:
declare Interface myNHP("nhp0");

The table below lists those triggers that can be evaluated on an Interface object, such that the trigger
expression will look like :
when (myNHP.connections > 100) {
}

DescriptionParametersTrigger Object

Trigger on the number of
connections for the interface

Noneconnections

Trigger on the average
authentication time for clients
on an interface

Noneauthentication

Trigger on the number of failed
authentication attempts

NonefailedConnections

Trigger on the average amount
of time the interface accept
thread pool has been exhausted

NoneexhaustedTime

Trigger on the number of idle
interface accept pool threads

NoneidleThreads

Trigger on the number of times
an interface accept thread pool
is exhausted (i.e. idle == 0)

NoneexhaustedCount

Universal Messaging Administration Guide 10.3 241

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

Trigger when an interface is in
a certain state

Nonestate

MemoryManager Triggers - Universal Messaging JVM Memory Management based
triggers

MemoryManager triggers are declared using the following syntax as an example:
declare MemoryManager mem;

The table below lists those triggers that can be evaluated on thememorymanagement object, such
that the trigger expression will look like :
when (mem.freeMemory < 1000000) {
}

DescriptionParametersTrigger Object

Trigger when the realm server's
JVM has a certain amount of
free memory

NonefreeMemory

Trigger when the realm server's
JVM has a certain amount of
total memory

NonetotalMemory

Trigger when the realm server
JVM runs out of memory

NoneoutOfMemory

Realm Triggers - Universal Messaging Realm based triggers

Realm triggers are declared using the following syntax as an example:
declare Realm myRealm("productionmaster");

The table below lists those triggers that can be evaluated on the realm object, such that the trigger
expression will look like :
when (realm.connections > 1000) {
}

DescriptionParametersTrigger Object

Trigger when the realm server
current connections reaches a
certain number

Noneconnections

242 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

Trigger when the realm server's
events per second sent rate
reaches a certain value

NoneeventsSentPerSecond

Trigger when the realm server's
events per second sent received
reaches a certain value

NoneeventsReceivedPerSecond

Cluster Triggers - Universal Messaging Cluster based triggers

Cluster triggers are declared using the following syntax as an example, assuming a cluster ismade
up of 4 realms:
declare Cluster myNode1("realm1");
declare Cluster myNode2("realm2");
declare Cluster myNode3("realm3");
declare Cluster myNode4("realm4");

The table below lists those triggers that can be evaluated on the cluster object, such that the trigger
expression will look like :
when ( Cluster.nodeOnline("realm1") == true ){
}

DescriptionParametersTrigger Object

Trigger when cluster has
quorum == true or false

NonehasQuorum

Trigger when a cluster realm is
voted master

NoneisMaster

Trigger when a cluster realm is
online or offline

NonenodeOnline

Counter Triggers - Counter value based triggers

Counter triggers allow you to keep a local count of events occurringwith the UniversalMessaging
scheduler engine. The values of the Counters can be incremented / decremented and reset within
the tasks section of a trigger declaration. Counter triggers are declared using the following syntax
as an example:
declare Counter counter1 ("myCounter");

The counter trigger can be evaluated by referencing the Counter object itself, such that the trigger
expression will look like :
when ( counter1 > 5) {
}

Universal Messaging Administration Guide 10.3 243

2 Universal Messaging Enterprise Manager



Timer Triggers - Timer based triggers

Timer triggers allow you to start a timer that will keep track of how long (in seconds) it has been
running and then evaluate the running timewithin a trigger expression. Time triggers are declared
using the following syntax as an example:
declare Timer reportTimer ("myTimer");

The timer trigger can be evaluated by referencing the timer object itself, such that the trigger
expression will look like :
when ( reportTimer == 60 ) {
}

Config Triggers - Universal Messaging configuration triggers

Config triggers refer to any of the configuration values available in the Config panel for a realm.
Any configuration value can be used as part of a trigger expression. Config triggers are declared
using the following syntax as an example (the example refers to the 'Global Values' configuration
group):
declare Config myGlobal ("Global Values");

The table below lists the triggers that can be evaluated on a Config object, such that the task
expression will look like :
when (myGlobal.MaxNoOfConnections == -1) {
}

DescriptionParametersTrigger Object

Global Values

The number of threads assigned
to the scheduler

NoneSchedulerPoolSize

Sets the maximum concurrent
connections to the server, -1
indicates no restriction

NoneMaxNoOfConnections

The number of ms between
status events being published

NoneStatusBroadcast

The number ofmilliseconds the
server will wait for client
authentication

NoneNHPTimeout

The number ofmilliseconds that
the server will wait before
scanning for client timeouts

NoneNHPScanTime

244 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

Place Universal Messaging
details into the dictionary
(true/false)

NoneStampDictionary

If true, allows the server to use
the extended message selector
syntax (true/false)

NoneExtendedMessageSelector

When the server has exceeded
the connection count, how long

NoneConnectionDelay

to hold on to the connection
before disconnecting

Allow the server to support
older clients (true/false)

NoneSupportVersion2Clients

If true sends the realms status
summary updates (true/false)

NoneSendRealmSummaryStats

Audit Settings

Log to the audit file any realm
maintenance activity

NoneRealmMaintenance

Log to the audit file any
interface management activity

NoneInterfaceManagement

Log to the audit file any channel
maintenance activity

NoneChannelMaintenance

Log to the audit file any queue
maintenance activity

NoneQueueMaintenance

Log to the audit file any service
maintenance activity

NoneServiceMaintenance

Log to the audit file any join
maintenance activity

NoneJoinMaintenance

Log to the audit file any
successful realm interactions

NoneRealmSuccess

Log to the audit file any
successful channel interactions

NoneChannelSuccess

Log to the audit file any
successful queue interactions

NoneQueueSuccess

Universal Messaging Administration Guide 10.3 245

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

Log to the audit file any
successful realm interactions

NoneServiceSuccess

Log to the audit file any
successful join interactions

NoneJoinSuccess

Log to the audit file any
unsuccessful realm interactions

NoneRealmFailure

Log to the audit file any
unsuccessful channel
interactions

NoneChannelFailure

Log to the audit file any
unsuccessful queue interactions

NoneQueueFailure

Log to the audit file any
unsuccessful service interactions

NoneServiceFailure

Log to the audit file any
unsuccessful join interactions

NoneJoinFailure

Log to the audit file any
unsuccessful realm acl
interactions

NoneRealmACL

Log to the audit file any
unsuccessful channel acl
interactions

NoneChannelACL

Log to the audit file any
unsuccessful queue acl
interactions

NoneQueueACL

Log to the audit file any
unsuccessful service acl
interactions

NoneServiceACL

Client Timeout Values

The amount ofms the clientwill
wait for a response from the
server

NoneEventTimeout

The maximum amount of time
to wait when performing an

NoneDisconnectWait

operation when disconnected
before throwing session not
connected exception

246 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

The default amount of time a
transaction is valid before being
removed from the tx store

NoneTransactionLifeTime

The amount of time the client
will wait for keep alive

NoneKaWait

interactions between server
before acknowledging
disconnected state

The low water mark for the
connection internal queue.

NoneLowWaterMark

When this value is reached the
outbound internal queue will
again be ready to push event to
the server

The high water mark for the
connection internal queue.

NoneHighWaterMark

When this value is reached the
internal queue is temporarily
suspended and unable to send
events to the server. This
provides flow control between
publisher and server.

The maximum number of
milliseconds a queue will have

NoneQueueBlockLimit

reached HWMbefore notifying
listeners

The maximum number of
milliseconds it should take to

NoneQueueAccessWaitLimit

gain access to a queue to push
events before notifying listeners

The maximum number of
milliseconds it should take to

NoneQueuePushWaitLimit

gain access to a queue and to
push events before notifying
listeners

Cluster Config

Heart Beat interval in
milliseconds

NoneHeartBeatInterval

Universal Messaging Administration Guide 10.3 247

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

Number of events outstandingNoneEventsOutStanding

Event Storage

The time in ms that cached
events will be kept in memory
for

NoneCacheAge

The number of threads allocated
to perform the management
task on the channels

NoneThreadPoolSize

The time inmilliseconds that an
active channel will delay
between scans

NoneActiveDelay

The time inmilliseconds that an
idle channel will delay between
scans

NoneIdleDelay

Fanout Values

The number of client threads
allowed to execute concurrently
in the server

NoneConcurrentUser

The number of milliseconds
between the server will wait
before sending a heartbeat

NoneKeepAlive

The number of events in a client
output queue before the server
stops sending events

NoneQueueHighWaterMark

The number of events in the
clients queue before the server
resumes sending events

NoneQueueLowWaterMark

The maximum buffer size that
the server will accept

NoneMaxBufferSize

How long to delay the publisher
when subscribers queue start to
fill, in milliseconds

NonePublishDelay

Publish expired events at server
startup (true/false)

NonePublishExpiredEvents

248 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

JVMManagement

Number of milliseconds
between monitoring memory
usage on the realm

NoneMemoryMonitoring

The memory threshold when
the server starts to scan for
objects to release

NoneWarningThreshold

The memory threshold when
the server starts to aggressively
scan for objects to release

NoneEmergencyThreshold

If true, the server will exit if it
gets a I/O Exception

NoneExitOnDiskIOError

Join Config

Number of events that will be
sent to the remote server in one
run

NoneMaxEventsPerSchedule

The maximum events that will
be queued on behalf of the
remote server

NoneMaxQueueSizeToUse

The number of threads to be
assigned for the join recovery

NoneActiveThreadPoolSize

The number of threads to
manage the idle and
reconnection to remote servers

NoneIdleThreadPoolSize

Logging Config

The server logging levelNonefLoggerLevel

RecoveryDaemon

Number of threads to use for
client recovery

NoneThreadPool

The number of events to send
in one block

NoneEventsPerBlock

Universal Messaging Administration Guide 10.3 249

2 Universal Messaging Enterprise Manager



DescriptionParametersTrigger Object

TransactionManager

Time in milliseconds that a
transaction will be kept active

NoneMaxTransactionTime

The maximum number of
events per transaction, a 0
indicates no limit

NoneMaxEventsPerTransaction

The minimum time in
milliseconds, below which the

NoneTTLThreshold

server will not store the
Transaction ID

Scheduling Tasks

Tasks are executed by either time based (calendar, see “Calendar Schedules (Time-based
Triggers)” on page 237) or conditional triggers (see “Conditional Triggers for Executing Tasks” on
page 239). There are a number of tasks that can be executed by theUniversalMessaging Scheduling
engine. Each task corresponds to a unit of work that performs an operation on the desired object
within a Universal Messaging realm.

This section will discuss the available tasks that can be declared within a Universal Messaging
scheduling script :

“Task Expressions” on page 250

“Store Tasks” on page 251

“Interface Tasks” on page 252

“Memory Tasks” on page 253

“Counter Tasks” on page 253

“Timer Tasks” on page 254

“Config Tasks” on page 254

To view examples of scheduling scripts, see “Scheduler Examples” on page 261.

Task Expressions

Task expressions are comprised of the object on which you wish to perform the operation, and
the required parameters. For more information on the grammar for task expressions, please see
the section (see “Scheduling Script Language Summary” on page 232). The following sectionswill
describe the task objects and the parameters required to perform them. The example below
demonstrates both Interface, Logger and Counter tasks.

250 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter >= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}

Store Tasks - Channel / Queue operations

Store tasks can be used by first of all declaring the desired object as in the following syntax:
declare Store myChannel("/customer/sales");

The table below lists those tasks available on a Store object, such that the task expression will look
like :
when (myChannel.numOfEvents < 100) {
myChannel.maintain();
}

DescriptionSyntaxTask Object

Perform maintenance on a
channel so that any purged

Store.maintain("*");
Store.maintain("/customer/sales");
myChannel.maintain();

maintain

events are removed from the
channel or queue event
store.

Publish an event to the
channel / queue, using the

myChannel.publish("Byte array data",
"tag", "key1=value1:key2:value2" );publish

given byte array, event tag
and event dictionary values.

Purge all events on a
channel, or events between

myChannel.purge();
myChannel.purge(0, 100000);
myChannel.purge(0, 10000,

"key1 = 'value1'");

purge

a start and end eid, or using
a purge filter.

Create the channel using the
name itwas declared as, and

myChannel.createChannel(0, 0, "P");createChannel

the ttl, capacity and type
specified in the parameters

Create the queue using the
name itwas declared as, and

myChannel.createQueue(0, 0, "P");createQueue

Universal Messaging Administration Guide 10.3 251

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTask Object

the ttl, capacity and type
specified in the parameters

Interface Tasks - Universal Messaging Interface operations

Interface tasks are operations that can be performed on all interfaces or individually declared
interfaces. To declare an interface use the following syntax as an example:
declare Interface myNHP("nhp0");

The table below lists those tasks that can be executed on an Interface object, such that the task
expression will look like :
when (myNHP.connections > 1000) {
myNHP.threads("+10");
}

DescriptionSyntaxTask Object

Stop the interfacemyNHP.stop();
Interface.stop("nhp0");stop

Start The interfacemyNHP.start();
Interface.start("nhp0");start

Stop all interfaces on
the realm

Interface.stopAll();stopAll

Start all interfaces on
the realm

Interface.startAll();startAll

Set the interface
authentication time to

myNHP.authTime(20000);
myNHP.authTime("+10000");authTime

a value, or increase /
decrease it by a value.

Set the interface
backlog time to a value,

myNHP.backlog(200);
myNHP.backlog("+100");backlog

or increase / decrease it
by a value.

Set whether an
interface is

myNHP.autoStart("true");
myNHP.autoStart("false");autoStart

automatically started
when the realm is
started.

Set whether an
interface is available to

myNHP.advertise("true");
myNHP.advertise("false");advertise

252 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTask Object

clients using the admin
API.

Set whether an
interface (SSL) requires

myNHP.certificateValidation("true");
myNHP.certificateValidation("false");certificateValidation

clients to provide a
certificate to
authenticate.

Set the interface accept
threads to a value or

myNHP.threads(10);
myNHP.threads("+10");threads

increase / decrease it by
a value.

MemoryManager Triggers - Universal Messaging JVM Memory Management
operations

MemoryManager triggers are declared using the following syntax as an example:
declare MemoryManager mem;

The table below lists those triggers that can be evaluated on thememorymanagement object, such
that the task expression will look like :
when (mem.freeMemory < 1000000) {
}

DescriptionSyntaxTask Object

Cause the JVM to call garbage
collection, and optionally
release used memory

mem.flush(true);
mem.flush(false);flush

Counter Tasks - Counter tasks

Counter tasks allow you to increment, decrement, set and reset a local counterwithin theUniversal
Messaging scheduling engine. Counter tasks are declared using the following syntax as an example:
declare Counter counter1 ("myCounter");

The counter task can be executing by referencing the Counter object itself, and calling one of a
number of available tasks. The basic counter task expression will look like :
when ( counter1 > 5) {
counter1.reset();
}

The table below shows the tasks that can be executed on the Counter task.

Universal Messaging Administration Guide 10.3 253

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTask Object

Decrement the counter by 1counter1.dec()dec

Increment the counter by 1counter1.inc()inc

Set the counter to a valuecounter1.set(5)set

Reset the counter to 0counter1.reset()reset

Timer Tasks - Timer operations

Timer tasks allow you to start, stop and reset the timer. Time tasks are declared using the following
syntax as an example:
declare Timer reportTimer ("myTimer");

The timer task can be executed by referencing the timer object itself, such that the task expression
will look like :
when ( reportTimer == 60 ) {
reportTimer.reset();
}

The table below shows the tasks that can be executed on the Counter task.

DescriptionSyntaxTask Object

Start the timerreportTimer.start()start

Stop the timerreportTimer.stop()inc

Reset the timerreportTimer.reset()reset

Config Tasks - Channel / Queue based triggers

Config tasks can be used to set any configuration value available in the Config panel for a realm.
Any configuration value can be used as part of a trigger task expression. Config tasks are declared
using the following syntax as an example (below example refers to the 'Global Values' configuration
group):
declare Config myGlobal ("Global Values");
declare Config myAudit ("Audit Settings");
declare Config myClientTimeout ("Client Timeout Values");
declare Config myCluster ("Cluster Config");
declare Config myEventStorage ("Event Storage");
declare Config myFanout ("Fanout Values");
declare Config myJVM ("JVM Management");
declare Config myJoinConfig ("Join Config");
declare Config myLoggingConfig ("Logging Config");
declare Config myRecovery ("RecoveryDaemon");
declare Config myTXMgr ("TransactionManager");

254 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The table below lists those tasks that can be evaluated on a config object, such that the task
expression will look like :
when (myGlobal.MaxNoOfConnections == -1) {
myGlobal.MaxNoOfConnections(1000);
}

DescriptionSyntaxTrigger Object

Global Values

The number of threads
assigned to the
scheduler

myGlobal.SchedulerPoolSize(10);SchedulerPoolSize

Sets the maximum
concurrent connections

myGlobal.MaxNoOfConnections(-1);MaxNoOfConnections

to the server, -1
indicates no restriction

The number of ms
between status events
being published

myGlobal.StatusBroadcast(2000);StatusBroadcast

The number of
milliseconds the server

myGlobal.NHPTimeout(2000);NHPTimeout

will wait for client
authentication

The number of
milliseconds that the

myGlobal.NHPScanTime(10000);NHPScanTime

server will wait before
scanning for client
timeouts

Place Universal
Messaging details into

myGlobal.StampDictionary(true);StampDictionary

the dictionary
(true/false)

If true, allows the server
to use the extended

myGlobal.ExtendedMessageSelector (true);ExtendedMessageSelector

message selector syntax
(true/false)

When the server has
exceeded the connection

myGlobal.ConnectionDelay(2000);ConnectionDelay

count, how long to hold
on to the connection
before disconnecting

Universal Messaging Administration Guide 10.3 255

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTrigger Object

Allow the server to
support older clients
(true/false)

myGlobal.SupportVersion2Clients (true);SupportVersion2Clients

If true sends the realms
status summaryupdates
(true/false)

myGlobal.SendRealmSummaryStats (true);SendRealmSummaryStats

Audit Settings

Log to the audit file any
realm maintenance
activity

myAudit.RealmMaintenance (false);RealmMaintenance

Log to the audit file any
interface management
activity

myAudit.InterfaceManagement (false);InterfaceManagement

Log to the audit file any
channel maintenance
activity

myAudit.ChannelMaintenance (false);ChannelMaintenance

Log to the audit file any
queue maintenance
activity

myAudit.QueueMaintenance (false);QueueMaintenance

Log to the audit file any
service maintenance
activity

myAudit.ServiceMaintenance (false);ServiceMaintenance

Log to the audit file any
join maintenance
activity

myAudit.JoinMaintenance(false);JoinMaintenance

Log to the audit file any
successful realm
interactions

myAudit.RealmSuccess(false);RealmSuccess

Log to the audit file any
successful channel
interactions

myAudit.ChannelSuccess(false);ChannelSuccess

Log to the audit file any
successful queue
interactions

myAudit.QueueSuccess(false);QueueSuccess

256 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTrigger Object

Log to the audit file any
successful realm
interactions

myAudit.ServiceSuccess(false);ServiceSuccess

Log to the audit file any
successful join
interactions

myAudit.JoinSuccess(false);JoinSuccess

Log to the audit file any
unsuccessful realm
interactions

myAudit.RealmFailure(false);RealmFailure

Log to the audit file any
unsuccessful channel
interactions

myAudit.ChannelFailure(false);ChannelFailure

Log to the audit file any
unsuccessful queue
interactions

myAudit.QueueFailure(false);QueueFailure

Log to the audit file any
unsuccessful service
interactions

myAudit.ServiceFailure(false);ServiceFailure

Log to the audit file any
unsuccessful join
interactions

myAudit.JoinFailure(false);JoinFailure

Log to the audit file any
unsuccessful realm acl
interactions

myAudit.RealmACL(false);RealmACL

Log to the audit file any
unsuccessful channel acl
interactions

myAudit.ChannelACL(false);ChannelACL

Log to the audit file any
unsuccessful queue acl
interactions

myAudit.QueueACL(false);QueueACL

Log to the audit file any
unsuccessful service acl
interactions

myAudit.ServiceACL(false);ServiceACL

Client Timeout Values

The amount of ms the
client will wait for a

myClientTimeout.EventTimeout (10000);EventTimeout

Universal Messaging Administration Guide 10.3 257

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTrigger Object

response from the
server

The maximum amount
of time to wait when

myClientTimeout.DisconnectWait (30000);DisconnectWait

performing anoperation
when disconnected
before throwing session
not connected exception

The default amount of
time a transaction is

myClientTimeout.TransactionLifeTime
(10000);

TransactionLifeTime

valid before being
removed from the tx
store

The amount of time the
client will wait for keep

myClientTimeout.KaWait(10000);KaWait

alive interactions
between server before
acknowledging
disconnected state

The low water mark for
the connection internal

myClientTimeout.LowWaterMark (200);LowWaterMark

queue. When this value
is reached the outbound
internal queue will
again be ready to push
event to the server

The highwatermark for
the connection internal

myClientTimeout.HighWaterMark (500);HighWaterMark

queue. When this value
is reached the internal
queue is temporarily
suspended and unable
to send events to the
server. This provides
flow control between
publisher and server.

The maximum number
of milliseconds a queue

myClientTimeout.QueueBlockLimit (5000);QueueBlockLimit

will have reachedHWM
before notifying
listeners

258 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTrigger Object

The maximum number
ofmilliseconds it should

myClientTimeout.QueueAccessWaitLimit
(10000);

QueueAccessWaitLimit

take to gain access to a
queue to push events
before notifying
listeners

The maximum number
ofmilliseconds it should

myClientTimeout.QueuePushWaitLimit
(12000);

QueuePushWaitLimit

take to gain access to a
queue and to push
events before notifying
listeners

Cluster Config

Heart Beat interval in
milliseconds

myCluster.HeartBeatInterval (60000);HeartBeatInterval

Number of events
outstanding

myCluster.EventsOutStanding (10);EventsOutStanding

Event Storage

The time in ms that
cached events will be
kept in memory for

myEventStorage.CacheAge(360000);CacheAge

The number of threads
allocated to perform the

myEventStorage.ThreadPoolSize(2);ThreadPoolSize

management task on the
channels

The time inmilliseconds
that an active channel

myEventStorage.ActiveDelay(1000);ActiveDelay

will delay between
scans

The time inmilliseconds
that an idle channel will
delay between scans

myEventStorage.IdleDelay(60000);IdleDelay

Fanout Values

The number of client
threads allowed to

myFanout.ConcurrentUser(5);ConcurrentUser

Universal Messaging Administration Guide 10.3 259

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTrigger Object

execute concurrently in
the server

The number of
milliseconds between

myFanout.KeepAlive(60000);KeepAlive

the server will wait
before sending a
heartbeat

The number of events in
a client output queue

myFanout.QueueHighWaterMark(500);QueueHighWaterMark

before the server stops
sending events

The number of events in
the clients queue before

myFanout.QueueLowWaterMark(200);QueueLowWaterMark

the server resumes
sending events

The maximum buffer
size that the server will
accept

myFanout.MaxBufferSize(1024000);MaxBufferSize

How long to delay the
publisher when

myFanout.PublishDelay(100);PublishDelay

subscribers queue start
to fill, in milliseconds

Publish expired events
at server startup
(true/false)

myFanout.PublishExpiredEvents(true);PublishExpiredEvents

Join Config

Number of events that
will be sent to the
remote server in one run

myJoinConfig.MaxEventsPerSchedule
(200);

MaxEventsPerSchedule

The maximum events
that will be queued on

myJoinConfig.MaxQueueSizeToUse (50);MaxQueueSizeToUse

behalf of the remote
server

The number of threads
to be assigned for the
join recovery

myJoinConfig.ActiveThreadPoolSize (4);ActiveThreadPoolSize

260 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionSyntaxTrigger Object

The number of threads
to manage the idle and

myJoinConfig.IdleThreadPoolSize (2);IdleThreadPoolSize

reconnection to remote
servers

Logging Config

The server logging levelmyLoggingConfig.fLoggerLevel(4);fLoggerLevel

RecoveryDaemon

Number of threads to
use for client recovery

myRecovery.ThreadPool(5);ThreadPool

The number of events to
send in one block

myRecovery.EventsPerBlock(300);EventsPerBlock

TransactionManager

Time in milliseconds
that a transactionwill be
kept active

myTXMgr.MaxTransactionTime (1000);MaxTransactionTime

The maximum number
of events per

myTXMgr.MaxEventsPerTransaction
(1000);

MaxEventsPerTransaction

transaction, a 0 indicates
no limit

The minimum time in
milliseconds, below

myTXMgr.TTLThreshold(1000);TTLThreshold

which the server will
not store the
Transaction ID

Scheduler Examples

Below is a list of example scheduling scripts that can help you become accustomed to writing
Universal Messaging Scheduling scripts.

“Generic Example” on page 262

“Store Triggers” on page 263

“Interface Triggers” on page 264

“Memory Triggers” on page 264

Universal Messaging Administration Guide 10.3 261

2 Universal Messaging Enterprise Manager



“Realm Triggers” on page 265

“Cluster Triggers” on page 265

“Counter Triggers” on page 266

“Timer Triggers” on page 266

“Config Triggers” on page 267

Universal Messaging Scheduling : Example Realm Script
/*
Comments must be enclosed in /* and */ sections
This is an example scheduler script
*/
scheduler realmSchedule {
declare Config myGlobalConfig ("GlobalValues");
declare Config myAuditConfig ( "AuditSettings");
declare Config myTransConfig ( "TransactionManager");
initialise {
Logger.report("Realm optimisation script and monitor startup initialising");
myAuditConfig.ChannelACL("false");
myAuditConfig.ChannelFailure("false");
myGlobalConfig.MaxBufferSize(2000000);
myGlobalConfig.StatusBroadcast(2000);

myTransConfig.MaxTransactionTime(3600000);
Logger.setlevel(4);
}
every 30 {
Logger.report("Hourly - Executing Tasks");
}
every 18:00 {
Logger.report("Daily - performing maintenance");
Store.maintain("/customer/sales");
}
every We 17:30 {
Logger.report("Weekly - Performing Purge");
Store.purge("/customer/sales");
}
every 01 21:00 {
Logger.report("Monthly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}
every 01-Jan 00:00 {
Logger.report("Yearly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}
when (MemoryManager.FreeMemory <30000000) {
Logger.report("Memory below 30M, performing some clean up");
MemoryManager.FlushMemory("true");
} else {
Logger.report("Memory not below 30M, no clean up required");
}
}

262 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Universal Messaging Scheduling : Store Triggers Example
scheduler myStore {
declare Store myPubChannel("myChannel");
declare Store myPubQueue("myQueue");

/*
Create the channels if they do not exist on the server
*/
initialise{
myPubChannel.createChannel( 0, 0, "P");
myPubQueue.createQueue( 0, 0, "M");
myPubChannel.publish("Data to store in the byte array", "tag info",

"key1=value1:key2=value2" );
myPubQueue.publish("Data to store in the byte array", "tag info",

"key1=value1:key2=value2" );
}

/*
At 4:30 each morning perform maintenance on the stores to release unused space
*/
every 04:30 {
myPubQueue.maintain();
myPubChannel.maintain();
}

/*
Every hour publish an event to the Channel
*/
every 0 {
myPubChannel.publish("Data to store in the byte array", "tag info",

"key1=value1:key2:value2" );
myPubQueue.publish("Data to store in the byte array", "tag info",

"key1=value1:key2:value2" );
}

/*
Every 1/2 hour purge the channels/queue
The purge takes 3 optional parameters
StartEID
EndEID
Filter string

So it could be
myPubChannel.purge(0, 100000);

or
myPubChannel.purge(0, 10000, "key1 = 'value1'");

*/
every 0 {
myPubChannel.purge();
myPubQueue.purge();
}

/*
When the number of events == 10 we purge the channel

*/
when(myPubChannel.numOfEvents == 10){
myPubChannel.purge();
}

/*
When the free space is greater then 60% perform maintenance

*/
when(myPubChannel.freeSpace> 60){
myPubChannel.maintain();

Universal Messaging Administration Guide 10.3 263

2 Universal Messaging Enterprise Manager



}
/*
When the number of connections on a channel reach 20 log an entry
*/
when(myPubChannel.connections == 20){
Logger.report("Reached 20 connections on the channel");
}
/*
Maintain all channels and queues at midnight every night
*/
every 00:00 {
Store.maintain("*");
}
}

Universal Messaging Scheduling : Interface Triggers Example
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter>= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}
}

Universal Messaging Scheduling : Memory Triggers Example
scheduler myMemory {
/*
Declare the MemoryManager task/trigger. Not really required to do
*/
declare MemoryManager mem;
/*
Just using the MemoryManager task / trigger and not the declared mem as an example.
*/
when (MemoryManager.freeMemory <10000000){
MemoryManager.flush(false);
}
/*
Now when the Free Memory on the realm drops below 1000000 bytes force the
realm to release ALL available memory
*/
when ( mem.freeMemory <1000000){
mem.flush(true);
}
/*
This is the same as the one above, except not using the declared name.
*/
when ( MemoryManager.freeMemory <1000000){
MemoryManager.flush(true);
}

264 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



/*
totalMemory available on the realm

*/
when ( MemoryManager.totalMemory <20000000 ){
Logger.report("Declared Memory too small for realm");
}

/*
Out Of Memory counter, increments whenever the realm handles an out of memory exception
*/
when ( MemoryManager.outOfMemory> 2){
Logger.report("Realm has run out of memory more then the threshold allowed");
}

}

Universal Messaging Scheduling : Realm Triggers Example
scheduler realmSchedule {
declare Realm myRealm ("productionmaster");
declare Config myGlobalConfig ( "GlobalValues");
when (Realm.connections> 1000) {
Logger.report("Reached 1000 connections, setting max connections");
myGlobalConfig.MaxNoOfConnections(1000);
}
when (Realm.eventsSentPerSecond> 10000) {
Logger.report("Reached 10000 events per second, reducing max connection count by

100");
myGlobalConfig.MaxNoOfConnections("-100");
}

}

Universal Messaging Scheduling : Cluster Triggers Example
/*
This script tests the cluster triggers. It is assumed the cluster is created with 4
realms
named realm1, realm2, realm3, realm4
*/
scheduler myCluster{
declare Cluster myNode1("realm1");
declare Cluster myNode2("realm2");
declare Cluster myNode3("realm3");
declare Cluster myNode4("realm4");

/*
This will trigger when realm1 is online to the cluster

*/
when ( myNode1.nodeOnline == true ){
Logger.report("Realm1 online");
}

/*
This can also be written as

*/
when ( Cluster.nodeOnline("realm1") == true ){
Logger.report("Realm1 online");
}
when ( myNode2.nodeOnline == true ){
Logger.report("Realm2 online");
}
when ( myNode3.nodeOnline ==true ){

Universal Messaging Administration Guide 10.3 265

2 Universal Messaging Enterprise Manager



Logger.report("Realm3 online");
}
when ( myNode4.nodeOnline == true ){
Logger.report("Realm4 online");
}
when ( Cluster.hasQuorum == true ){
Logger.report("Cluster now has quorum and is running" );
}
when ( Cluster.isMaster("realm1") == true){
Logger.report("This local realm is the master realm of the cluster");
}
}

Universal Messaging Scheduling : Counter Trigger Example
scheduler myCounter{
/*
Define some new counters
*/
declare Counter counter1 ("myCounter");
declare Counter counter2 ("myAdditional");
/*
When the counter reaches 5 reset it to 0;
*/
when(counter2> 5 ){
counter2.reset();
}
/*
If counter1 is less then 3 then increment the value
*/
when(counter1 <3){
counter1.inc();
counter2.dec();
}
/*
if Counter2 equals 0 then set counter1 to 5
*/
when(counter2 == 0 ){
counter1.set(5);
}
}

Universal Messaging Scheduling :Time Triggers Example
scheduler myTimers{
/*
Define some new timers
*/
declare Timer reportTimer ("myTimer");
declare Timer testTimer ("myDelay");
initialise{
testTimer.stop();
}
/*
In 60 seconds log a report and start the second timer
*/
when(timer == 60){
Logger.report("Timer has fired!");

266 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



testTimer.start();
}

/*
When the second timer hits 30 seconds, log it and reset all timers to do it again
*/
when(testTimer == 30){
Logger.report("Test dela fired, resetting timers");
testTimer.reset();
testTimer.stop();
timer.reset();
}

}

Universal Messaging Scheduling : Configuration Example
scheduler myConfig {
/*
Declare local names for the Connection Config and the Logging Config configuration

groups.
Can be used for both triggers and tasks

*/
declare Config myConnectionConfig ("Connection Config");
declare Config myLoggingConfig ("Logging Config");

/*
When this scheduler task is initialised, set the Realms log level to 2

*/
initialise{
myLoggingConfig.fLoggerLevel(2);
}

/*
Then if the log level is ever set to 0, automatically reset it to 2.

*/
when(myLoggingConfig.fLoggerLevel == 0){
myLoggingConfig.fLoggerLevel(2);
}

/*
If the maximum number of connections on the realm is less than 0,
implying no limit, then set it to 100.

*/
when(myConnectionConfig.MaxNoOfConnections <0){
myConnectionConfig.MaxNoOfConnections(100);
}

}

Integration with JNDI
UniversalMessaging supports integrationwith JNDI through its ownprovider for JNDI. Universal
Messaging's provider for JNDI enables clients usingUniversal Messaging Provider for JMS to locate
references to JMS administered objects.

As with all Java APIs that interface with host systems, JNDI is independent of the system's
underlying implementation. In the case of the Universal Messaging product, the JNDI provider
stores object references in the Universal Messaging channel /naming/defaultContext, which is the
channel representing the Universal Messaging Initial Context for JNDI, and locates the references
to the objects using a channel iterator. Note that if a realm is part of a cluster, the channel will be
created on all cluster realm servers. This ensures that any object references bound into the context

Universal Messaging Administration Guide 10.3 267

2 Universal Messaging Enterprise Manager



are available on each realm server in the cluster. See the section “Creating The Initial Context” for
information about how and when the channel for the Initial Context is created.

Setting Up the Context and Connection Factories for JNDI

The provider for JNDI can be managed using the Enterprise Manager tool, by selecting any realm
node from the namespace tree, and then clicking on the JNDI tab in the right hand panel. This
opens the JNDI panel for the selected realm. The JNDI panel enables the creation of the provider
and Initial Context for JNDI, and of TopicConnectionFactory and QueueConnectionFactory
references for JMS, as well as references to Topics and Queues.

Creating The Initial Context

When you select a realm node from the namespace tree, one of the tabs on the right hand side of
the Enterprise Manager will be labelled JNDI.

Selecting this tab will display the default JNDI panel for a realm.

If the Universal Messaging channel /naming/defaultContext has not been created yet, you will be
prompted to create it.

The Initial Context uses the (potentially clustered) Universal Messaging context channel to store
all JNDI references. This channel is called /naming/defaultContext. When the channel is initially
created, full permissions are assigned to the first client who creates it and to all other users and
clients who wish to use the channel.

Removing/destroying the Initial Context is as simple as deleting the /naming/defaultContext
channel. This will of course result in the loss of all existing JNDI references (so make sure you
don't accidentally delete this channel).

If the Initial Context no longer exists, then clicking the Create JNDI context button at the bottom
of the screenwill recreate it (though it will not contain any of its previous JNDI entries/references).

Viewing the JNDI Namespace

Whenever youopen the JNDIPanel, EnterpriseManagerwill enable display of the JNDINamespace.
The JNDI Namespace is displayed as a tree structure within the Namespace section of the panel.
The root of this tree will be the JNDI Provider URL.

268 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



In the case of a cluster, the display will show a comma-separated list of RNAME values for each
server in the cluster.

If you are using a horizontal scalability connection factory, the URL syntax allows you to specify
multiple connection URLs, where each connection URL can specify either a standalone realm or
a cluster.

The JNDI namespace tree renders 6 "folders":

Connection Factories

Queue Connection Factories

Queues

Topic Connection Factories

Topics

XA Connection Factories

The image below shows this view after the JNDI panel has been loaded with the JNDI namespace
tree expanded:

You can also use the Refresh button to update the contents of the JNDI namespace tree with any
changes done outside the current instance of the Enterprise Manager.

Universal Messaging Administration Guide 10.3 269

2 Universal Messaging Enterprise Manager



Creating Connection Factories

By using a connection factory you can connect to both topics and queues. With a topic connection
factory (see description below) you connect only to topics, and with a queue connection factory
(also described below) you connect to queues. Normally connection factories can be used as a
more generic replacement for both topic connection factories and queue connection factories.

How to create a connection factory

To create a connection factory, proceed as follows:

1. Select the node Connection Factories and open the context menu of this node.

2. In the dialog, supply a name to be displayed for the new connection factory, for example
"connectionFactory2". Also provide a connection URL, for example "nsp://localhost:9000".

You can specify a cluster of realms by specifying a comma-separated list of connection URLs,
for example "nsp://localhost:9000,nsp://localhost:9010".

I f youwant to use a horizontal scalability connection factory, you can specify several connection
URLs, where each connection URL can point to a standalone realm or a cluster. In this case,
each connection URL is bounded by a set of round brackets - "(" and ")".

Examples:

(UM1)(UM2)(UM3)(UM4) - Indicates 4 standalone realms, namely UM1, UM2, UM3 and
UM4, so 4 connections will be constructed here.

(UM1,UM2)(UM3,UM4) - Indicates 2 clusters, one consisting of UM1 and UM2 and the
other consisting of UM3 and UM4, so only 2 connections will be constructed here.

(UM1)(UM2,UM3)(UM4) - Indicates one cluster consisting of UM2 and UM3, and two
standalone realms, namely UM1 and UM4. A total of 3 connections will be constructed
here

For the round-robin URL syntax, the following rules apply:

Each set of brackets must contain at least one valid connection URL.

There is no limit on the number of sets of brackets in the URL.

Each set of bracket indicates a unique connection, and the realm names within each sets
of brackets will be supplied unchanged to the underlying implementation.

For more information on horizontal scalability connection factories, see the section "Provider
for JMS" in the Developer Guide.

3. Use the dropdown list to select the appropriate durable type for durable consumers for topics
that can be created using this connection factory.

The following durable types are supported:

Named: There can be only one active consumer at a time.

270 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Shared:Multiple durable consumers can connect to the same durable subscription and can
consume messages in a round-robin manner.

Shared-Queued:Multiple durable consumers can connect to the same durable subscription
and can consume messages in a round-robin manner using a queue-based durable.

Serial: Multiple durable consumers can connect to the same durable subscription and can
consume messages in a serial manner.

Priority: Multiple consumers can connect to the same durable subscription but there can
be only one active consumer at any one time.

Durable subscribers can be defined only for topics; they are not available for queues.

4. Click OK to save your changes and close the dialog.

Editing Connection Factories

To edit an existing connection factory, proceed as follows:

1. Expand the node Connection Factories to display the available connection factories. Then
double-click the required connection factory to open the edit dialog.

2. Make your changes in the dialog.

3. Click OK to save your changes and close the dialog.

Creating Topic and Queue Connection Factories

In order to allow JMS clients to use the Universal Messaging Context Factory to reference objects
via JNDI, we first of all need to create Topic and Queue connection factories.

To create a topic connection factory, proceed as follows:

1. Select the tree node labelled Topic Connection Factories and select the menu option New
Topic Connection Factory.

2. In the dialog, supply a name for the connection factory. Enter any name (in this example, we
will use the name TopicConnectionFactory). Also provide a connection URL, for example
"nsp://localhost:9000".

3. Select the desired durable type from the dropdown list.

4. Click OK to save your changes and close the dialog.

Youwill see that a new node has been created under the Topic Connection Factories folder with
the name that you entered. The image below shows the JNDI namespace with a newly created
topic connection factory:

Universal Messaging Administration Guide 10.3 271

2 Universal Messaging Enterprise Manager



The Topic Connection Factory object you just created is actually stored as an event, published onto
the /naming/defaultContext channel. This event is what will be referenced by JMS clients when
they attempt to find the details for the connection factory.

To create a queue connection factory, proceed as follows:

1. Select the tree node labelled Queue Connection Factories and select the menu option New
Queue Connection Factory.

2. In the dialog, supply a name for the connection factory. Also provide a connection URL, for
example "nsp://localhost:9000".

3. Click OK to save your changes and close the dialog.

You will see that a new node has been created under the Queue Connection Factories folder
with the name that you entered.

Note:
Durable types are only applicable to topics or normal connection factories.

Creating References to Topics and Queues

When JMS clients use the Universal Messaging Initial Context for JNDI, they also reference the
topics and queues from the same Initial Context. In order for these clients to access these objects
we need to create references to each topic and queue. Creating such references will also create the

272 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



underlying channel or queue if it does not already exist; note that channels or queues created in
this way will have the same default permissions as channels or queues created manually.

In this example, we will add a new topic into the JNDI namespace that corresponds to a Universal
Messaging channel that already exists as a cluster channel. To do this, first, right-click on the folder
called Topics within the JNDI namespace, and select the menu option New Topic. If we enter the
name GlobalOrderStatus, then a new object will be created under the Topics folder called
GlobalOrderStatus. This is because, under the covers, a corresponding event was published to
the /naming/defaultContext channel. JMS clients can thus look up the reference to this topic
(channel) and begin using it within their application. The following image shows the newly created
Topic within the JNDI namespace for the existing topic GlobalOrderStatus:

Viewing / Editing JNDI Settings

You can view and edit JNDI settings using the JNDI tab. With this tab you can also add new
properties to existing JNDI entries.

Viewing JNDI Settings of a connection factory

To view the JNDI settings of an existing connection factory:

Universal Messaging Administration Guide 10.3 273

2 Universal Messaging Enterprise Manager



Select a realm node from the namespace tree, and select the JNDI tab.

Expand the node Topic Connection Factories to display the available connection factories.

Double-click the required connection factory to open the dialog.

The dialog displays all of the mandatory and optional JNDI parameters in tabular format. The
mandatory parameters are shown at the start of the dialog, andmust always be present and contain
a value. The optional parameters are parameters that are not required by JNDI, but which you
can define for your own purposes. The optional parameters are listed under the headingOptional
Parameter. The image below shows an example of JNDI settings for a connection factory.

Editing JNDI Settings of a connection factory

The dialog described above in the section Viewing JNDI Settings of a connection factory allows you
to edit the values displayed. To edit a value, move the cursor to the appropriate field and enter a
new value. The following general rules apply:

For mandatory parameters, you can edit the value but not the name.

For optional parameters, you can change the parameter's key, value and data type.

When you have finished making your edits, confirm the changes and close the dialog.

274 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The edits you have just made cause an event containing the new JNDI settings to be published on
the /naming/defaultContext channel. Also, the old event on the /naming/defaultContext channel
containing the previous JNDI settings will be purged automatically.

Adding a New JNDI Parameter for a connection factory

In the view/edit dialog described above, there is a panel Property Input. This panel allows you
to enter new optional JNDI settings for the connection factory, consisting of a key, value and data
type.

To add a new optional setting, enter values for each of the key, value and data type fields, then
click Add. A new row containing the definition will be added in the Optional Parameter table.

When you have finished adding new optional settings, confirm the changes and close the dialog.

The edits you have just made cause an event containing the new JNDI settings to be published on
the /naming/defaultContext channel. Also, the old event on the /naming/defaultContext channel
containing the previous JNDI settings will be purged automatically.

Viewing JNDI settings using Channel Snoop

As described above, JNDI settings are stored as events on the /naming/defaultContext channel.
You can use the Channel Snoop feature (see the section “Channel Snoop” on page 156) to view the
individual events on the /naming/defaultContext channel.

To view the individual events, first select the /naming/defaultContext channelwithin the Enterprise
Manager namespace, then select the Snoop tab. In the Snoop display, click Start. Now you will
see the events representing the JNDI entries that have been created. By selecting any event you
will see the content of each event on the channel and the corresponding JNDI context information
given to the JMS applications that will require it.

Note:
In most cases, Channel Snoop allows you not only to view events on any channel but also edit
them (using the "edit and republish" feature). However, in the particular case of the /naming/
defaultContext channel, the "edit and republish" feature for editing JNDI settings has been
disabled. If you wish to edit JNDI settings in the /naming/defaultContext channel, you can
ONLY do this via the JNDI tab, as described above in the section “Viewing / Editing JNDI
Settings” on page 273.

The image below shows an example of the Topic Connection Factory created earlier using the
JNDI panel:

Universal Messaging Administration Guide 10.3 275

2 Universal Messaging Enterprise Manager



Note:
If an old event on the /naming/defaultContext channel has been purged (as a result of the JNDI
editing mechanism as described above) while you are viewing the Snoop display, you need to
select Stop and then Start again to see the changes in the Snoop display.

276 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



TCP Interfaces, IP Multicast and Shared Memory

Overview of Working with Interfaces

UsingEnterpriseManager, you can configure communicationmechanisms includingTCP Interfaces,
IP Multicast and Shared Memory (SHM):

TCP Interfaces

Interfaces within a Universal Messaging Realm Server define a protocol, a network interface and
a port number. When a Universal Messaging client connects to a realm using an RNAME, they
are actually connecting to an Interface that has been created on the Universal Messaging Realm.

If amachine that is running aUniversalMessagingRealmhasmultiple physical network interfaces,
with different IP addresses, it is possible to bind specific protocols to specific ports. This way you
are able to segment incoming network traffic to specific clients.

For example, if a realm is running on a machine that has an external internet facing network
interface, as well as an internal interface, you can create a Universal Messaging interface that uses
nhp or nhps on port 80 or 443 respectively using the external facing interface.

If on the other hand when there are multiple network interfaces, and you do not wish to segment
network traffic for specific protocols, you can specify to bind to all known network interfaces to
the specified protocol and port.

The default realm settingwhen you first install UniversalMessaging creates aUniversalMessaging
Socket Protocol Interface that binds to port 9000, on all known network interfaces.

Once this basic understanding of Universal Messaging interfaces is understood, you can then set
about performing a number of operations using the Universal Messaging Enterprise Manager:

“Creating Interfaces” on page 278

“Deleting Interfaces” on page 286

“Creating SSL Interfaces” on page 286

“Stopping Interfaces” on page 285

“Starting Interfaces” on page 285

“Interface Configuration” on page 282

“JavaScript Interface Panel” on page 286

“Modify Interfaces” on page 285

“Interface Plugins” on page 289

“Interface VIA rules” on page 221

Universal Messaging Administration Guide 10.3 277

2 Universal Messaging Enterprise Manager



IP Multicast

“IP Multicast Configuration” on page 595

Shared Memory (SHM)

“Shared Memory Configuration” on page 294

Creating Interfaces

This section describes how to create interfaces for a realm. For general information about interfaces,
see “TCP Interfaces, IP Multicast and Shared Memory” on page 277.

To reach the dialog for defining and managing interfaces for a realm, proceed as follows:

1. In the namespace tree in the navigation frame, select the realm for which you want to create
an interface.

2. Select the Comms tab in the Realm Details frame.

3. Select the Interfaces tab.

You now see a table containing all of the available interfaces on a the selected realm.

The default interface is nsp (Universal Messaging Socket Protocol) and it binds to 0.0.0.0 (i.e. all
known interfaces) on port 9000. Refer to the section “Usage of 0.0.0.0WhenDefining Interfaces” on
page 281 below for related information.

Please note that adding an SSL enabled interface (see “Creating an SSL network interface to a
UniversalMessaging Realm Server” on page 297) for either SSL enabled sockets orHTTPS requires
some additional steps.

The image below shows the Interfaces tab containing the default realm interface.

278 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The interfaces table consists of 5 columns:

Name : Defined as protocol + n, where n is a unique sequence number for the interfaces for
that protocol.

Status : Showswhether the interface is 'Running', 'Stopped' or 'Error'. The error status is shown
if the interface has not been started due to an error.

Adapter : The physical network interface to bind to, expressed either as an IP address or a
hostname. The IP address 0.0.0.0 defines all known interfaces. You can use the hostname if
you want the interface to be independent of the underlying IP address. Refer to the section
“Usage of 0.0.0.0 When Defining Interfaces” on page 281 below for related information.

Universal Messaging Administration Guide 10.3 279

2 Universal Messaging Enterprise Manager



Port : The port to bind to.

Threads : An indicator for the number of accept threads the interface has free to accept
connections. A full green bar denotes all are free.

To add a new interface, click on the Add Interface button, which will show a dialog that allows
you to choose the protocol, the adapter, the port as well as whether the interface should be started
automatically when it is created and also when the server restarts. This dialog is shown below:

In the example above, we have chosen to add a Universal Messaging HTTP Interface (nhp) that
will be bound to all known network interfaces (0.0.0.0) on port 80. If you select the Auto Start
option (by ticking the Auto Start checkbox), then click the OK button, this means that when the
interface is created in the realm server, it will automatically be started. Auto Start will also cause
that interface to be started whenever the realm is restarted. Once the interface has been created it
will appear in the interfaces table as shown in the image below.

Further instructions on configuringUniversalMessaging interfaces are also available in the section
“Interface Configuration” on page 282.

In addition a VIA rule (see “Interface VIA Rules” on page 221) can be added to interfaces as a
security enhancement.

HTTP / HTTPS Interface

The Javascript tab allows configuration of Comet delivery and is available for HTTP /HTTPS (nhp
/ nhps) interfaces.

280 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Usage of 0.0.0.0 When Defining Interfaces

When a client connects to a server, the server will deliver all interfaces that are marked as
"advertised" (this is set using the checkbox Advertise Interface under the panel Comms >
Interfaces > Basic). If you have interfaces bound to 0.0.0.0 (i.e. all known interfaces), then this
will include both 127.0.0.1 (localhost) and any IP address that the server node has. This means
that the client will receive at least 2 interfaces that it will use to reconnect to the realm.

If the client connection needs to be restarted for any reason, the clientwill attempt to iterate through
this list of interfaces until it is successful on reconnection. However, the order of iterating through
this list is not deterministic.

On a successful connection, the Universal Messaging realm server will construct a client principal
name in the format <userName>@<IP-Address> used to check permissions on realm resources (e.g.
channels or queues), where <IP-Address> is the IP address of the machine where the client is
running. The IP address of the client in turn depends on the network interface the client used to
connect to the server. In the aforementioned example with a server adapter bound on all network
interfaces (0.0.0.0), a local client (i.e. on the same machine as the server) may connect over the

Universal Messaging Administration Guide 10.3 281

2 Universal Messaging Enterprise Manager



loopback interface to the server (localhost) so the connection will come from 127.0.0.1, but that
same client may also connect over the real network interface, in which case the IP address will be
the address of this network interface. Thus one and the same client may end up with different
principal names when reconnecting to the realm server. This may lead to permission issues if a
resource's default ACLhas been establishedusing one principal name, and is subsequently accessed
with a different principal name after a reconnection.

To avoid this, you should either create the interface for an external IP address (not "localhost") or
ensure that required ACLs are configured.

Interface Configuration

Each interface on a Universal Messaging Realm has a number of configurable attributes that
determine the interface behavior. Some of these attributes are standard across all types of interface
protocols, and some are specific to a particular protocol.

This section will describe the attributes that are common to interfaces of all types.

For additional information on specific interfaces types, see “TCP Interfaces, IP Multicast and
Shared Memory” on page 277.

Basic Interface Attributes

When an interface is selected from the table of interfaces on the Interfaces tab, there are a number
of attributes that are configurable for the interface. Below the interfaces table, there is a set of tabs,
one of which is labelled Basic, as shown in the image below.

282 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The basic interface configuration panel shows configurable attributes. These are explained in the
following section:

Accept Threads

Each Universal Messaging realm interface contains a server socket. TheAccept Threads attribute
corresponds to the number of threads that are able to perform the accept() for a client connection.
The accept() operation on a Universal Messaging interface performs the handshake and
authentication for the client connection. For more heavily utilised interfaces, the accept threads
will need to be increased. For example, on an nhp (http) or nhps (https) interface, each client
request corresponds to a socket accept() on the interface, and so the more requests being made,
the busier the interface will be, so the accept threads needs to be much higher than that of say an
nsp (socket) interface. Socket interfaces maintain a permanent socket connection, and so the
accept() is only performed once when the connection is first authenticated.

Advertise Interface

All interfaces that are advertised by a realm server are available to users (with the correct
permissions) of theUniversalMessagingAdminAPI. This property specifieswhether the interface
is indeed advertised to such users.

Alias

Each interface on a Universal Messaging Realm Server can have an associated alias in the form of
host:port. This alias can be specified here.

For information on interface plugins please see “Interface plugins” on page 289.

For information on addingVIA rules for an interface please see “Interface VIARules” on page 221.

When you change any of these attributes, the changes need to be applied by clicking the Apply
button. For more information, refer to the modifying interfaces documentation (see “Modifying
Interfaces” on page 285).

Allow Client Connections

If this attribute is activated, clients are allowed to connect to the realm over this interface.

If this attribute is deactivated, clients are not allowed to connect to the realm over this interface.
Note that Administration API connections, e.g. Enterprise Manager, count as client connections,
so at least one of the available interfaces should allow such Administration API connections. If a
realm has been definedwith only one interface and you deactivate theAllow Client Connections
attribute on the interface, this settingwill be ignored. This is because essential administration tools
like the Enterprise Manager would not otherwise be able to access the realm.

Allow for InterRealm

If this attribute is activated, the interface can be used for any of the following kinds of internal
communication (i.e. Universal Messaging's own message passing) between realms:

Universal Messaging Administration Guide 10.3 283

2 Universal Messaging Enterprise Manager



Inter-realm communication: between realms in the same cluster.

Inter-zone communication: between realms in a zone.

Inter-cluster communication: between realms in connected clusters.

Important:
If you do not activate this attribute for the interface, the interface cannot be used for any of the
above scenarios.

If you activate Allow for InterRealm and deactivate Allow Client Connections for the same
interface, the interface can only be used for internal communication between realms, so no
communication with an external client is possible using such an interface. There are situations in
which this configuration can be useful. For more information, see the section “Setting up Inter-
Realm Communication” on page 119.

Autostart Interface

TheAutostart attribute specifieswhether the interface is started automaticallywhen theUniversal
Messaging realm server is started. When this option is not selected, the interface must be started
manually in order for it to be used by connecting clients. Please note that if Autostart is not set it
must be started either manually or using the Universal Messaging Administration API whenever
after the realm is started.

If Autostart is selected then the interface will be started once the Apply button is pressed.

Auth Time

TheAuth Time attribute corresponds to the amount of time a client connection using this interface
can take to perform the correct handshake with the realm server. For example, the default is 10000
milliseconds, but for some clients connecting on slowmodems, andwho are using the nhps (https)
protocol, this defaultAuth Timemay need to be increased. If any client connection fails to perform
the handshake in the correct timeframe, the connection is closed by the realm server.

Backlog

The Backlog attribute specifies the maximum size of the incoming IP socket request queue. The
operating system that the realm server is running on may specify a maximum value for this
property. When the maximum queue size is reached the operating system will refuse incoming
connections until the request queue reduces in size and more requests can be serviced. For more
information on this value, please see the systemadministration documentation for yourOperating
System.

Enable HTTP 1.1

Enable the usage of HTTP 1.1 protocol on this interface.

284 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Enable NIO

Specify whether NIO should be used for this interface.

Receive Buffersize

This specifies the size of the receive buffer on the socket

Select Threads

TheSelect Threads option specifies the number of threads allocated tomonitor socket reads/writes
on the interface if NIO is enabled. When a socket needs to be read, these threads will fire and pass
on the request to the read thread pool. If the socket is blocked during awrite, thenwhen the socket
is available to be written to, these threads will fire and the request will be passed on to the write
thread pool. The number of select threads should not typically exceed the number of cores available.

Send Buffersize

This specifies the size of the send buffer on the socket.

Starting Interfaces

Interfaces can be started by selecting the realm node where the interface you want to start is
running, and selecting the Interfaces tab. From the table of configured interfaces, select the interface
you want to start and double-click on the row. Alternatively, you can click on the Status column
for the interface. Both will present you with a dialog for starting the selected interface.

Clicking on the Start button will start the interface on the realm server.

Modifying Interfaces

Each interface within a Universal Messaging realm has a number of configuration attributes (see
“Interface Configuration” on page 282) that can be modified using the Enterprise Manager. Once
modified, these can be applied to the interface on the fly. Modifying an interface will cause it to
restart, closing all connections to the interface. However, since Universal Messaging clients will
automatically reconnect to the realm server, the service disruption should be minimal.

When you havemodified the configuration attributes for the selected interface, the Interfaces panel
contains a button labelled Apply. Clicking on this button will send the modified attributes to the
realm server and apply them to the interface, causing it to restart. If there are any clients connected
to the interface they will automatically reconnect after restart.

Stopping Interfaces

Interfaces can be stopped by selecting the realm node where the interface you want to stopped is
running, and selecting the Interfaces tab. From the table of configured interfaces, select the interface
you want to stop and double-click on the row. Alternatively, you can click on the Status column

Universal Messaging Administration Guide 10.3 285

2 Universal Messaging Enterprise Manager



for the interface. Both will have the same effect, and will present you with a dialog for stopping
the selected interface.

Clicking on the Stop button will stop the interface on the realm server.

Deleting Interfaces

Interfaces can be deleted by simply selecting the realm nodewhere the interface youwant to delete
is running, and selecting the Interfaces tab. From the table of configured interfaces, you can simply
select the interface you want to delete and click the Delete Interface button.

When you delete an interface, Universal Messaging first stops the interface, then closes all clients
connected to the interface, then removes the interface from the realm.

SSL Interfaces

Universal Messaging supports SSL encryption by providing two SSL-enabled protocols. These
protocols enable clients to connect to a Universal Messaging realm server running a specific
protocol on a port using all or specific physical network interfaces.

Defining an SSL-enabled interface ensures that clients wishing to connect to a realm server can
do so only after presenting the correct SSL credentials and authenticating with the server.

SSL authentication occurs within the Universal Messaging handshake which uses the JVM's JSSE
provider. This ensures that any unauthorized connections are SSL authenticated before any
Universal Messaging specific operations can be performed.

Creating an SSL enabled interface is the same as creating a non-SSL interface (see “Creating
Interfaces” on page 278) except where there are a number of SSL-related attributes in addition to
the basic attributes (see “Interface Configuration” on page 282).

For information on how to create an SSL interface using the Universal Messaging Enterprise
Manager, see “Creating an SSL network interface to a Universal Messaging Realm Server” on
page 297.

JavaScript Interface Panel

Universal Messaging HTTP and HTTPS (nhp and nhps) interfaces have configuration options
specific to their communication with web clients using JavaScript. These options are accessible
through the JavaScript panel when viewing an nhp or nhps interface.

286 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The Interface Panel

JavaScript Interface Properties

DescriptionOption Name

Recommended Setting: EnabledEnable JavaScript

Allows JavaScript clients to connect on this interface.

Recommended Setting: EnabledEnable WebSockets

Toggles the ability for clients to communicate with the server using the
HTMLWebSocket Protocol on this interface.

Recommended Setting: EnabledCORS Allow
Credentials

Universal Messaging Administration Guide 10.3 287

2 Universal Messaging Enterprise Manager



DescriptionOption Name

Toggles the server sending an "Access-Control-Allow-Credentials: true"
header in response to XHR-with-CORS requests from the client. This is
required if the application, or website hosting the application, or
intermediate infrastructure such as reverse proxy servers or load balancers,
uses cookies.

Leave this enabled unless recommended otherwise by support. Disabling
thiswill inmost environments prevent all CORS-baseddrivers fromworking
correctly.

Recommended Setting: *CORS Allowed
Origins

A comma separated list of the host names (and IP addresses, if they appear
in URLs) of the server/s which host your JavaScript application's HTML.
Use an * (asterisk) as a wildcard value if you do not wish to limit the hosts
that can serve applications to clients. This server will accept and respond
with the required Access-Control-Allow-Origin header when requests
originate from a hostname in this list. This header allows CORS enabled
transport mechanism to bypass cross site security restrictions in modern
browsers.

It is important that this is set appropriately, or approximately half of the
communication drivers available to JavaScript clients will fail.

Recommended Setting: EnabledEnable GZIP for
LongPoll

This will allow the server to gzip responses sent to LongPoll clients. This
can reduce network utilization on servers with many LongPoll clients. It
increases CPU resource utilization.

Recommended Setting: 1000GZIP Minimum
Threshold

The minimum message size is bytes required for the server to begin
compressing data sent to LongPoll clients.

Recommended Setting: 100Long Poll Active
Delay

The time between clients sending long poll requests to the server in
milliseconds. Reducing this may reduce latency up to a certain threshold
but will increase both client and server memory, CPU and network usage.

Recommended Setting: 25000Long Poll Idle Delay

The time between clients sending long poll when the client is in idle mode.
A client is put in idle mode when no communication takes place between
client and server for a period of time. Reducing this may be necessary if a
client is timing out owing to local TCP/IP settings, proxy settings, or other
infrastructure settings, but will result in highermemory, CPU and network
usage on both the client and the server. It is however vital that this value
is lower than the timeouts used in any intermediate proxy server, reverse

288 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



DescriptionOption Name

proxy server, load balancer or firewall. Since many such infrastructure
components have default timeouts of as little as 30 seconds, a value of less
than 30000 would be prudent. If long polling client sessions continually
disconnect and reconnect, then lower this value.

Header Key/Value pairs which are sent in the HTTP packets to the client.Custom Header
Config

Interface plugins

Universal Messaging supports the concept of plugins that actively process client requests made
to nhp and nhps interfaces. There available plugins are:

File (Provides behavior similar to a web server)

XML (Browse resources and events in XML)

Proxy Passthrough (Enable http/s requests for specific URLs to be forwarded to another
host:port)

The plugins are discussed in more detail in the section “Plugins” on page 305.

Multicast Configuration

UniversalMessaging delivers 'ultra-low latency' to a large number of connected clients by including
IP Multicast functionality for both the delivery of events to Data Group consumers as well as
between inter-connected realms within a Universal Messaging cluster.

For a description ofMulticastmessaging, refer to the sectionMulticast: AnOverview in the Concepts
guide.

Setting Up Multicast for Data Group Delivery

The first step in configuring a Universal Messaging Realm for Multicast Data Group delivery is
to create the Multicast adapter configuration. Once you have the information described in the
previous section, and your Universal Messaging realm is running, start the Enterprise Manager
and connect to your realm. Once connected, select the realm node from the tree, and choose the
Multicast tab in the right hand panel, as shown below.

Universal Messaging Administration Guide 10.3 289

2 Universal Messaging Enterprise Manager



Clicking on the "AddMulticast Config" button opens a dialog that enables you to enter theMulticast
IP Address, as well as the Network Adapter Address of your multicast configuration, as shown
below.

290 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



When you click on ok in the dialog, the newMulticast configuration will appear in the table. You
then need to select that the multicast configuration is to be used for Data Groups by clicking on
the "Use for DataGroups" check box. Then click the "Apply" button and the configuration will be
sent to the server. The completed multicast Configuration is shown in the table as seen in the
image below.

Universal Messaging Administration Guide 10.3 291

2 Universal Messaging Enterprise Manager



Now you have created the Multicast configuration, you need to create your Multicast enabled
Data Groups. To do this, simply click on the Data Groups node in the tree, and right click "Create
Data Group". This will open up the standard create Data Group dialog but with an additional
check box for enabling Multicast. This is shown in the image below.

292 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Now your data group is ready to be used forMulticast Delivery. If you are familiar with Universal
Messaging Data Groups, you will be familiar with our example Data Group programs which you
can use to test this out, or you may have your own Data Group setup that you can use. If your
Data Groups are created programmatically, then the key thing to remember is that when you call
the nSession.createDataGroup, you now need to also pass in an additional boolean that marks the
Data Group as Multicast enabled.

Setting Up Multicast for Cluster Inter Realm Communication

If you have a clustered setup, and you wish to setup Multicast between your realms for the inter
realm communication, the setup is the same, however on each realm that you create a Multicast
Configuration, the configuration itself needs to set the "Use for Clusters" checkbox. The Multicast
address can be the same for all realms, or you can choose a different Multicast Address per realm.
With this feature enabled, each realmwill know theMulticast address for each of the other realms
in the cluster and will listen on these addresses for inter realm cluster communication.

Advanced Multicast Settings

The default settings for the Multicast configurations you create are aimed at providing the lowest
possible latency. With this in mind, the configuration is such that the multicast client will ack
every 1 second, and the server will maintain a list of un-acked events (default 9000). Should the
publish rate exceed 9000 per second, youmay notice that the delivery ratesmight be quite irregular.
This is down to the fact that the client will only acknowledge every 1 second, and so the server
will automatically back off the delivery until it receives an acknowledgement from the client and
can therefore clear its unacknowledged queue. If this happens, you can change both the Unacked
Window Size to be > 9000 and the Keep Alive Interval (ack interval) to be less than 1 second (see
image of the Advanced Settings tab below).

Universal Messaging Administration Guide 10.3 293

2 Universal Messaging Enterprise Manager



Shared Memory Configuration

In order to create a Shared Memory (SHM) interface you will need to select the realm node from
the namespace tree to which you wish to add the interface, then in the right hand tabbed area
therewill be a tab labeled "Comms". Select it, and youwill be presentedwith the "SharedMemory"
tab:

294 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Now select "Add SHMConfig" and you be presentedwith the below configuration box, it contains
three parameters

Universal Messaging Administration Guide 10.3 295

2 Universal Messaging Enterprise Manager



1. Path: This is the directory within which the files needed for SHM communication will be
created. (Please note that when choosing a path, ensure that the local user id of the server can
access this directory, for example, /dev/shm will require root / super user access, or shm
communication will not work)

2. Buffer Size: This is the size of the allocated memory in bytes a connection will use, it will also
create a file of the same size which is used for mapping.

3. Timeout: This is the idle timeout for a connection, if no activity is detected on the connection
it is closed.

Once you press okay the driver is created and ready to go. If you wish to edit any of those values
you can edit them by double clicking any on the field you wish to change and then applying them
with the apply button or resetting them by pressing cancel.

296 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Creating an SSL network interface to a Universal Messaging Realm Server

Network Interfaces can be added to a Universal Messaging realm using the Universal Messaging
Administration API or by using the Universal Messaging Enterprise Manager.

To add an SSL interface using the Enterprise Manager GUI, follow the steps below:

Step 1: Click on the interfaces panel for a realm. In the example below an interface is being added
to the realm "node1". An interface could also be added however to any other realm shown in the
EnterpriseManager. This abilitymakes centralized remote administration very easy usingUniversal
Messaging.

Universal Messaging Administration Guide 10.3 297

2 Universal Messaging Enterprise Manager



Step 2: Click on the Add Interface button in order to bring up the Add Interface dialog box. In the
dialog choose the network protocol youwould like to use for this interface. The choices are Sockets,
Secure Sockets, HTTP and HTTPS. Choose either Secure Sockets or Secure HTTPS to add an SSL
interface.

In this example HTTPS is chosen as the protocol and the interface is added to the network adapter
192.168.1.5. This will run the network interface on that IP Address. Alternatively, you could add
a hostname that will resolve to the IP address of the chosen interface, or you can also specify
127.0.0.1 for localhost or 0.0.0.0 for all network interfaces on this machine.

298 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Step 3: When a new interface is added, if the Auto Start option is not selected the realm interface
will not start automatically when a realm starts, and it will have to be started manually.

After the interface has been added you should see the following in your interfaces panel:

Universal Messaging Administration Guide 10.3 299

2 Universal Messaging Enterprise Manager



In this example you can see that this realm now has 2 network interfaces and that the one just
added ("nhps0") has been started.

If you did not choose to start the interface automatically, then in order to start the interface you
need to click on the line containing the stopped traffic light. This will populate the tabs at the
bottom with details for this interface.

Click on the Certificates tab. You will see that the first 2 text boxes have been automatically filled
in. In the Universal Messaging download, we provide a utility called Certificate Generator (see
“How to generate certificates for use” on page 301) that can generate sample .jks files containing
certificates bound to localhost, for the server, the client and the truststore used by jsse. In this
example we are going to use the sample jks files in order to demonstrate creating an SSL interface.

If youwould like instructions on generating your own certificates (see “How to generate certificates
for use” on page 301) for use with Universal Messaging please see our FAQ.

The text field titled 'Key store path' should contain something similar to:
c:\Universal Messaging\server\umserver\bin\server.jks

which should be the path to the sample Java keystore for the server, bound to localhost. The text
field 'Trust store path' should contain something similar to the following:
c:\Universal Messaging\server\umserver\bin\nirvanacacerts.jks

Next, fill in the entries for the 'Key Store Passwd' and 'CA Store Passwd' with 'password'. This is
the password for both the server keystore and the CA (truststore) keystore.

Next select the 'Basic' tab and click on the autostart interface checkbox. Clicking on this boxmeans
that the interface will be started automatically when the Universal Messaging realm server is
started.

Note:
If you intend to use an SSL interface for inter-realm communication, you need to ensure that
the option "Allow for InterRealm" is selected and the option "Allow Client Connections" is
deselected. Similarly, If you intend to use an SSL interface for communication between clients
and the realm, you need to ensure that the option "Allow for InterRealm" is deselected and the
option "Allow Client Connections" is selected. Related information is available in the section
“Setting up Inter-Realm Communication” on page 119.

Then click on apply and the Interface will be started.

Alternatively if you do not wish to autostart then double click on the line with the stopped traffic
light. This will bring up a dialog which allows you to start that network interface.

If the network interface fails to start then please inspect the Universal Messaging log file via the
messages tab. Please contact your software supplier if any other issues arise.

Similarly, if you wish to stop an interface, simply double-click on the interface you want to stop
from the interface table, and click on the 'stop' button.

There is no limit to the number of network interfaces that can be added to a realm and each can
have its own configuration such SSL chains etc applied. This allows you to isolate customers from
each other while still using only one Universal Messaging realm server.

300 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



In this example we have used our own sample Java keystores which will only work when using
the loopback interface of your realm server host. If youwish to provide SSL capabilities for remote
connections, you must ensure you have your own keystores and valid certificate chains.

Connecting to an NHPS Interface

To connect to an nhps interface on a Universal Messaging server in the Enterprise Manager, you
configure the following truststore and client keystore properties in the Software AG_directory
\UniversalMessaging\java\instance_name\bin\Admin_Tools_Common.conf file of the server:

set.default.CAKEYSTORE=<path_to_truststore> - Required.

set.default.CAKEYSTOREPASSWD=<truststore_password> - Required.

set.default.CKEYSTORE=<path_to_client_keystore> - Required onlywhen client authentication
is enabled.

set.default.CKEYSTOREPASSWORD=<keystore_password> - Required only when client
authentication is enabled.

The certificates must be in .jks (java keystore) format.

Important:
If you have these properties configured both in the Software AG_directory
\UniversalMessaging\java\instance_name\bin\nenterprisemgr.conf file and
Admin_Tools_Common.conf file, the values in nenterprisemgr.conf override the values in
Admin_Tools_Common.conf. Software AG recommends that you configure the properties in
the Admin_Tools_Common.conf file.

In addition, optionally, you can configure an nhps url to which clients connect by default. You
specify the url as a value of the -DRNAME property in the nenterprisemgr.conf file of the server,
for example:
wrapper.java.additional.3=-DRNAME=nhps://umserver:8000

Enabling Client Authentication

You use the Enable Client Cert Validation check box on the Interfaces > Certificates tab to
enable or disable client authentication for an nhps interface on a Universal Messaging server. If
you enable client authentication, you must specify the client keystore certificate and kesystore
password as properties in the Admin_Tools_Common.conf file of the server instance.

How to generate certificates for use

Generating Demo / Development certificates

In order to generate a demo SSL certificate you can use the Java keytool utility or the Universal
Messaging Certificate Generator utility.

Note:

Universal Messaging Administration Guide 10.3 301

2 Universal Messaging Enterprise Manager



TheCertificateGenerator utility is deprecated inUniversalMessaging v10.2 andwill be removed
in a future version of the product.

The third-party Java keytool utility can be used to create and handle certificates. Keytool stores
all keys and certificates in a keystore.

The Universal Messaging Certificate Generator utility can be used to generate a self signed server
certificate, a self signed client certificate and a trust store for the above two.

You can run the Certificate Generator from the Start Menu on Windows by selecting the
server/<realm name>/Create Demo SSL Certificates

Alternatively you can open a server Command Prompt and run the utility as required for your
platform:

Windows 32-bit systems:

CertificateGenerator.exe

UNIX-based systems:

./CertificateGenerator

OS X:

./CertificateGenerator.command

This will generate 3 files:

client.jks : Self signed certificate you could use if you have client certificate authentication
enabled.

server.jks : Self signed certificate with a CN=localhost . Please note: You can only connect to
interfaces using this by specifying a localhost RNAMEdue to the HTTPS protocol restrictions.

nirvanacacerts.jks: Keystore that contains the public certificate part of the 2 key pairs above.
This should be used as a trust store by servers and clients.

It is also possible to customize some elements of these certificates stores such as the password, the
host bound to the server CN attribute and they key size.This can be done by passing the following
optional command line arguments to the Certificate Generator:

Windows 32-bit systems:

CertificateGenerator.exe <password> <host> <key size>

UNIX-based systems:

./CertificateGenerator <password> <host> <key size>

OS X:

./CertificateGenerator.command <password> <host> <key size>

302 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Generating Production certificates

In order to obtain a real SSLCertificate, youmust first generate a CSR (Certificate Signing Request).
A CSR is a body of text that contains information specific to your company and domain name.
This is a public key for your server.

The Java keytool utility can be used to create and handle certificates. Keytool stores all keys and
certificates in a keystore. For a detailed description of keytool please see its documentation.

Step 1: Create a keystore

Use the keytool to create a keystore with a private/public keypair.

keytool -genkey -keyalg "RSA" -keystore keystore -storepass password -validity 360

You will be prompted for information about your organisation. Please note that when it asks for
"User first and last name", please specify the hostname that Universal Messaging will be running
on ( e.g. www.yoursite.com ).

Step 2: Create a certificate request

Use the keytool to create a certificate request.

keytool -certreq -keyalg "RSA" -file your.host.com.csr -keystore keystore

This will generate a file containing a certificate request in text format. The request itself will look
someting like this :
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBtTCCAR4CAQAwdTELMAkGA1UEBhMCVVMxDzANBgNVBAgTBmxvbmRvbjEPMA0GA1UEBxMGbG9u
ZG9uMRQwEgYDVQQKEwtteS1jaGFubmVsczEMMAoGA1UECxMDYml6MSAwHgYDVQQDExdub2RlMjQ5
Lm15LWNoYW5uZWxzLmNvbTCBnzANBeddiegkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAycg0MJ7PXkQM9sLj
1vWa8+7Ce0FDU4tpcMXlL647dwok3uUGXuaz72DmFtb8OninjawingsjxrMBDK9fXG9hqfDvxWGyU0DEgbn+Bg

O3XqmUbyI6eMzGdf0vTyBFSeQIinigomontoyaU9Ahq1T7C6zlryJ9n6XZTW79E5UcbSGjoNApBOgVOCPKBs7/CR
hZECAwEAAaAAMA0GCSqGSIb3DQEBBAUAA4GBAB7TkFzQr+KvsZCV/pP5IT0c9tM58vMXkds2J7TY
Op3AueMVixRo14ruLq1obbTudhc385pPgHLzO7QHEKI9gJnM5pR9yLL72zpVKPQ9XOImShvO05Tw
0os69BjZeW8LTV60v4w3md47IeGE9typGGxBWscVbXzB4sgVlv0JtE7b
-----END NEW CERTIFICATE REQUEST-----

Step 3: Submit your certificate request to a certificate supplier

Certificate vendors will typically ask you to paste the certificate request into a weborder form.
This will be used as a public key to generate you private key. Please include the (BEGIN and END)
tags when you paste the certificate request.

Please note that a cert of PKCS #7 format is required so that it can be imported back into keytool.
(step 4)

The certificate vendor will then provide you with a certificate which that will look something like
this:

Please paste this certificate into a file called your.host.com.cer [Note. please include the (BEGIN
and END) tags]
-----BEGIN PKCS #7 SIGNED DATA-----

Universal Messaging Administration Guide 10.3 303

2 Universal Messaging Enterprise Manager



MIIFpAYJKoZIhvcNAQcCoIIFlTCCBZECAQExADALBgkqhkiG9w0BBwGgggV5MIIC
2DCCAkGgAwIBAgICErYwDQYJKoZIhvcNAQEEBQAwgYcxCzAJBgNVBAYTAlpBMSIw
IAYDVQQIExlGT1IgVEVTVElORyBQVVJQT1NFUyBPTkxZMR0wGwYDVQQKExRUaGF3
dGUgQ2VydGlmaWNhdGlvbjEXMBUGA1UECxMOVEVTVCBURVNUIFRFU1QxHDAaBgNV
BAMTE1RoYXd0ZSBUZXN0IENBIFJvb3QwHhcNMDQwOTA2MTYwOTIwWhcNMDQwOTI3
MTYwOTIwWjB1MQswCQYDVQQGEwJVUzEPMA0GA1UECBMGbG9uZG9uMQ8wDQYDVQQH
EwZsb25kb24xFDASBgNVBAoTC215LWNoYW5uZWxzMQwwCgYDVQQLEwNiaXoxIDAe
BgNVBAMTF25vZGUyNDkubXktY2hhbm5lbHMuY29tMIGfMA0GCSqGSIb3DQEBAQUA
A4GNADCBiQKBgQDJyDQwns9eRAz2wuPW9Zrz7sJ7QUNTi2lwxeUvrjt3CiTe5QZe
5rPvYOYW1vw6PGswEMr19cb2Gp8O/FYbJTQMSBuf4GA7deqZRvIjp4zMZ1/S9PIE
VJ5AhT0CGrVPsLrOWvIn2fpdlNbv0TlRxtIaOg0CkE6BU4I8oGzv8JGFkQIDAQAB
o2QwYjAMBgNVHRMBAf8EAjAAMDMGA1UdHwQsMCowKKAmoCSGImh0dHA6Ly93d3cu
dGhhd3RlLmNvbS90ZXN0Y2VydC5jcmwwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG
AQUFBwMCMA0GCSqGSIb3DQEBBAUAA4GBAHGPR6jxU/h1U4yZGt1BQoydQSaWW48e
r7slod/2ff66LwC4d/fymiOTZpWvbiYFH1ZG98XjAvoF/V9iNpF5ALfIkeyJjNj4
ZryYjxGnbBa77GFiS4wvUk1sngnoKpaxkQh24t3QwQJ8BRHWnwR3JraNMwDWHM1H
GaUbDBI7WyWqMIICmTCCAgKgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBhzELMAkG
A1UEBhMCWkExIjAgBgNVBAgTGUZPUiBURVNUSU5HIFBVUlBPU0VTIE9OTFkxHTAb
BgNVBAoTFFRoYXd0ZSBDZXJ0aWZpY2F0aW9uMRcwFQYDVQQLEw5URVNUIFRFU1Qg
VEVTVDEcMBoGA1UEAxMTVGhhd3RlIFRlc3QgQ0EgUm9vdDAeFw05NjA4MDEwMDAw
MDBaFw0yMDEyMzEyMTU5NTlaMIGHMQswCQYDVQQGEwJaQTEiMCAGA1UECBMZRk9S
IFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEChMUVGhhd3RlIENlcnRpZmlj
YXRpb24xFzAVBgNVBAsTDlRFU1QgVEVTVCBURVNUMRwwGgYDVQQDExNUaGF3dGUg
VGVzdCBDQSBSb290MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC1fZBvjrOs
fwzoZvrSlEH81TFhoRPebBZhLZDDE19mYuJ+ougb86EXieZ487dSxXKruBFJPSYt
tHoCin5qkc5kBSz+/tZ4knXyRFBO3CmONEKCPfdu9D06y4yXmjHApfgGJfpA/kS+
QbbiilNz7q2HLArK3umk74zHKqUyThnkjwIDAQABoxMwETAPBgNVHRMBAf8EBTAD
AQH/MA0GCSqGSIb3DQEBBAUAA4GBAIKM4+wZA/TvLItldL/hGf7exH8/ywvMupg+
yAVM4h8uf+d8phgBi7coVx71/lCBOlFmx66NyKlZK5mObgvd2dlnsAP+nnStyhVH
FIpKy3nsDO4JqrIgEhCsdpikSpbtdo18jUubV6z1kQ71CrRQtbi/WtdqxQEEtgZC
JO2lPoIWMQA=
-----END PKCS #7 SIGNED DATA-----

Step 4: Store the certificate in your keystore

Use the keytool to store the generated certificate :

keytool -keystore keystore -keyalg "RSA" -import -trustcacerts -file your.host.com.cer

Once step 4 is completed you now have a Universal Messaging server keystore and can add an
SSL interface (see “Creating an SSL network interface to a Universal Messaging Realm Server” on
page 297).

Please note that if you completed steps 1 to 4 for test certificates then you will also need to create
a store for the CA root certificate as UniversalMessagingwill not be able to start the interface until
it validates where it came from. Certificate vendors typically provide test root certificates which
are not recognized by browsers etc. In this case you will need to add that cert to another store and
use that as your cacert. When specifying certificates for a Universal Messaging SSL interface this
would be specified as the Trust Store Path in the certificates tab.

If you are using anonymous SSL then you will have to provide this cacert to clients also as this
will not be able to validate the Universal Messaging certificate without it. Please see the Security
section of our Concepts guide for more information on configuring Universal Messaging clients
to use certificates.

304 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Plugins
The Universal Messaging Realm Server supports the concept of Plugins within the context of the
NHP or NHPS protocols. The plugins are initiated when the underlying Universal Messaging
driver receives an HTTP/S packet which is not part of the standard Universal Messaging protocol.
At this point it passes the request over to the PluginManager to see if there is any registered plugin
interested in the packet's URL. If there is, then the request is forwarded to this plugin for processing.
There are several plugins supported by Universal Messaging. Please see below for available
documentation:

“File Plugin” on page 306

“XML Plugin” on page 310

“Proxy passthrough Plugin” on page 314

“REST Plugin” on page 316

“Servlet Plugin” on page 335

Note:
The following server plugins are deprecated in UniversalMessaging v10.2 andwill be removed
in a future version of the product: Graphics, XML, Proxy passthrough, Servlet.

Configuration

Configuration of a plugin can be done programmatically with the Administration API supplied
with Universal Messaging or it can be done with the Enterprise Manager application. For the rest
of this document the EnterpriseManagerwill be used to describe how to set up and use the plugins.

In order to add a plugin, first of all you need to have created the nhp or nhps interface (see “Creating
Interfaces” on page 278) thatwill use the pluginwithin the realmwhere youwish to run the plugin.

Once the interface is created, proceed as follows to access the plugin configuration dialog:

1. In the navigation frame, select the realm where you want to add the plugin.

2. In the Realm Details frame, navigate to the list of defined interfaces for the realm, using
Comms > Interfaces.

3. Select the interface from the table of configured interfaces.

4. Select the tab Plugins from the interface configuration panel.

5. Click Add Plugin. This displays the plugin configuration dialog, which enables you to choose
which plugin you wish to add.

The diagram below shows a new file plugin about to be added to the known interface nhp0.

Universal Messaging Administration Guide 10.3 305

2 Universal Messaging Enterprise Manager



URL Path

When you configure a plugin, you are required to add a URL Path. The URL Path is what the
realm server uses to determine if the request if destined for a plugin. If the server name and path
within theURL supplied in the plugin configuration dialogmatch the server name and pathwithin
the request to a configured plugin, then this request is passed to the correct configured plugin for
processing.

For example:

If a request with a URL of http://realmServer/pluginpath/index.html is made to the server, the
file path will be extracted, i.e. pluginpath/index.html, and the configured plugins will be scanned
for a match. If there is a file plugin configured with a URL Path pluginpath, then this plugin will
get a request for index.html.

Similarly:

If a request with a URL of http://realmServer/pluginpath/pictures/pic1.jpg is received, then
the same file plugin would get a request for pictures/pic1.jpg.

File Plugin

The file plugin enables the Universal Messaging realm server to serve static web pages. This can
be used for example to have the realm server serve applets and supported files without the need
for a dedicatedweb server. For example, if you are running a file plugin on your realm server host
called webhost, on an nhp interface running on port 80, you could type in a URL within a web

306 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



browser http://webhost:80/index.htmlwhich will return the index page defined within the file
plugin's base path directory.

This enables the realm server to act as a web server and can even be used to serve applets to client
browsers that may directly communicate with the realm server and publish and consume events
from channels.

Important:
The root file directory that the file plugin points to using the BasePath parameter can be any
disk location. All files under that location are potentially visible to any HTTP client that can
connect to the Universal Messaging realm server. We would recommend that you do not point
the file plugin to a directory that contains any sensitive data, without also configuring suitable
access controls. These could be at the network level (restricting network access to the server),
in the file plugin configuration (it supportsHTTPbasic authenticationwith a username/password
file) or by using file permissions at the Operating System level (so that sensitive data cannot be
read by the realm server process). Or of course a combination of these.

Configuration

Once you have created the file plugin on the interface you require it on, you can then select it from
the Plugins panel for the selected interface and enter values as you wish for the configuration
parameters.

The file plugin requires configuration information defining its behavior as well as the location of
the files it is required to serve to the clients. Below is a table that shows each configuration parameter
and describes what it is used for.

Default ValueDescriptionParameter Name

1024Size of the internal buffer to use to
send the data.

BufferSize

The UniversalMessaging/doc
directory under the product
installation directory.

Path used to locate the files.BasePath

index.htmlIf no file name is specified which file
should be returned.

DefaultName

None.Name of the file to send when file
cannot be located

FileNotFoundPage

None.Name of the file containing the
usernames and passwords.

UserFile

None.Name of the authentication realmSecurity Realm

Built in types used.Name of the file to load the mime
type information from. The format of

MimeType

this file is : <mimetype>
<fileExtension>

Universal Messaging Administration Guide 10.3 307

2 Universal Messaging Enterprise Manager



Default ValueDescriptionParameter Name

100Number of objects to store in the
cache

CachedObjects

20KSize in bytes that can be stored in the
cache

CacheObjectSize

FALSEChoose true to have separate log files
for the access and error logs.

SeparateAccessandErrorLogs

The image below shows the Enterprise Manager Interfaces panel with an nhp interface running
on port 9000. This interface has a file plugin configured with the default settings and its URL path
is /. The default BasePath setting is the UniversalMessaging/doc directory in the file hierarchy for
your local product installation, which iswhere the default product installation places theUniversal
Messaging API docs. Once the plugin is created, you can click the Apply button which will restart
the interface and enable the new file plugin.

308 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



From a browser, it is now possible to enter the URL http://localhost:9000/which will then
render the default index.html page from the UniversalMessaging/doc directory for the API docs.
The image below demonstrates the browser view from a realm that has a file plugin on an nhp
interface on port 9000, and displaying the default API docs found in the UniversalMessaging/doc
directory.

Universal Messaging Administration Guide 10.3 309

2 Universal Messaging Enterprise Manager



XML Plugin

The XML Plugin can be used to query the realm server, its queues and channels. It returns the
data in XML format. This plugin also supports style sheets, so the XML can be transformed into
HTML or any format required. For example, a client can publish XML data onto a Universal

310 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Messaging realm's channel, then using a standard web browser, get the server to transform the
XML into HTML via a stylesheet, thereby enabling the web browser to view events on the realm.

This functionality enables realm data to be viewed from a channel without any requirement for a
Java client. All that is required is for the client to have a browser.

Important:
Never include XSL code from untrusted sources into the plugin's XSL code, as this can lead to
a security risk for the client browser (or other client application) accessing the plugin. The
Universal Messaging realm server itself is not at risk, since it does not execute the plugin's XSL
code.

Configuration

Once you have created the XML plugin on the interface you require it on, you can then select it
from thePlugins panel for the selected interface and enter values as youwish for the configuration
parameters.

The XML plugin requires configuration information relating to its behavior as well as the entry
point in the namespace for the channels you wish to make available to serve to the clients. Below
is a table that shows each configuration parameter and describes what it is used for.

Default ValueDescriptionParameter Name

/Name of the channel or folder to render.ChannelRoot

None.Name of the authentication realmSecurity Realm

None. If you specify a filename
without a path, the default path is

Name of the style sheet file to use to
process the resulting XML.

StyleSheet

UniversalMessaging/server/<InstanceName>/bin
under the product installation root
location.

None.Name of the file containing the
usernames and passwords

UserFile

Note:
As a starting point for creating your own stylesheet, you can use the stylesheet xml2html.xsl
that is supplied in the UniversalMessaging/doc/style directory in the file hierarchy for your
local product installation.

The image below shows the Enterprise Manager Interface panel with an nhp interface running
on port 9005. This interface has an XML plugin configured to use the xml2html.xsl stylesheet and
its URL path as /xml. The default ChannelRoot setting is /, which is the root of the namespace, i.e.
all channels. Once the plugin is created, you can click the Apply button which will restart the
interface and enable the new XML plugin.

Universal Messaging Administration Guide 10.3 311

2 Universal Messaging Enterprise Manager



From a browser, you can now enter the URL http://localhost:9005/xml/which will render the
realm information page using the stylesheet. The image below demonstrates the browser view
from a realm that has an XML plugin on an nhp interface on port 9005.

If you use the stylesheet xml2html.xsl delivered with the product, the result will be similar to the
display below. The realm information is displayed at the top of the page, and the information on
resources is shown beneath.

312 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



As you can see above, each resource is shown as a link within a table showing the information
obtainable from the XML plugin. Clicking on a channel link will then take you to another page
that has been rendered by the XML plugin which will show you the list of events on a channel.
The image below shows the event list for the JNDI naming channel.

Universal Messaging Administration Guide 10.3 313

2 Universal Messaging Enterprise Manager



The XML plugin will determine whether the events on the channel contain byte data, dictionaries
or XML documents and return the relevant elements within the XML document. The stylesheet
applied to the XML document then examines each element to find out how to render it within the
browser. Each event on the channel or queue is shown in the table with event ID, its size in bytes
and links to either the byte data, the dictionary or the XML data. These links are generated by the
stylesheet. Clicking on the data or dictionary links will again return an XML document from the
XML plugin that will be rendered to show either the base64 encoded event data or the event
dictionary.

If any events contain XML documents, these will be returned directly from the XML plugin. The
stylesheet providedwill not render event XMLdocuments, since the structure of these is unknown.
You will need to provide your own stylesheet to render your own XML event documents.

Proxy Passthrough Plugin

314 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



The Proxy Passthrough Plugin can be used to forward http(s) requests from specific URLs to
another host. For example, if you want to forward requests from one realm to another realm, or
to another web server, you can use the proxy passthrough plugin.

This functionality enables realms to act as a proxy to forwardURL requests to any host that accepts
http(s) connections.

Configuration

Once you have created the proxy passthrough plugin on the interface you require it on, you can
then select it from the plugins panel for the selected interface and enter values as you wish for the
configuration parameters.

The proxy passthrough plugin requires configuration information relating to the host and port
that requests will be forwarded to. Below is a table that shows each configuration parameter and
describes what it is used for.

Default ValueDescriptionParameter Name

Host name of the process that requests
for the URL will be forwarded to

HostName

80Port on which the requests will be sent
to the host

Port

The image below shows the Enterprise Manager Interface panel with an nhp interface running
on port 9000. This interface has a proxy passthrough plugin configured to redirect requests from
this interface using the URL path of /proxy and will forward these requests to any File Plugins
and XML Plugins located on the productionmaster realm's nhp interface running on port 9005.

Universal Messaging Administration Guide 10.3 315

2 Universal Messaging Enterprise Manager



From a browser, it is now possible to enter the URL http://localhost:9000/proxy/which will
redirect this request to the interface on the productionmaster realm interface running on port 9005.
This will display the details of the productionmaster realm as if you had specified the URL
http://productionmaster:9005/ in your browser.

REST Plugin

The REST plugin allows access to the Universal Messaging REST API, and can be enabled on any
HTTP or HTTPS (NHP or NHPS) interface. The Universal Messaging REST API is designed for
publishing, purging and representing events published on channels and queues in 2 initial
representations: JSON and XML.

The Universal Messaging REST API supports three different HTTP commands. GET is used for
representations of events, POST for publishing andPUT for purging. BothXMLand JSONsupport
byte arrays, XML andDictionary events for publishing, whichmap to native UniversalMessaging
event types. There are two MIME types available: text and application.

Configuration

Once you have created the REST plugin on the interface you require it on, you can then select it
from the plugins panel for that interface and enter values as desired for the configuration
parameters.

316 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Default ValueDescriptionParameter Name

BlankAdd the username to the session's cookies.AddUserAsCookie

BlankA list of key=value strings, which are passed to the
Authenticator's init() function.

AuthParameters

BlankClassname of Authenticator to use. If blank, no
authentication is used.

Authenticator

FalseEnables Realm status details. Default is disabled, for
security reasons.

EnableStatus

BlankA comma separated list of groups. The user must be
amember of at least one in order to be granted access.

GroupNames

FalseIncludes type information for event dictionaries.IncludeTypeInfo

BlankName of the namespace folder to be used as root.NamespaceRoot

TrueIf set to true and authentication is enabled,
fAuthenticator.reload() is called on each request.

ReloadUserFileDynamically

BlankA comma-separated list of names. The user must
have at least one to gain access.

RoleNames

BlankName of the authentication realm.Security Realm

300Time in seconds to time-out inactive http sessions.SessionTimeout

The REST plugin supportsWADLdocumentationwhich is accessible through theHTTPOPTIONS
command. Once you have completed setting up your REST plugin, you can verify it works by
opening a browser to the NHP interface in the mount URL path, and appending the query string
?method=options. For example, for anNHP interface running on port 9000 on localhost, and having
the pluginmounted on "/rest", open a browser to http://localhost:9000/rest/API?method=options.

Following this will display an HTML version of the full Universal Messaging REST API
documentation which is generated by applying an XSL processor to the WADL XML document.
TheXMLdocument itself can be obtained by accessing the pluginURLwithout the ?method=options
query string. For example, the curl command line tool can be used as follows:
curl -XOPTIONS http://localhost:9000/rest/API

What follows is a summary of the three HTTP commands for both XML and JSON, and what
functionality each provides, as well as detailed examples of requests and responses for each
command.

XML: GET

Provides XML representations of channels/queues or events in a channel or queue as specified by
the ChannelOrQueue parameter. The parameter is represented by the URI Path following the
REST Plugin mount.

Universal Messaging Administration Guide 10.3 317

2 Universal Messaging Enterprise Manager



If the value supplied corresponds to aUniversalMessaging namespace container, the representation
returned is a list of channels and queues present in the container. If the value supplied corresponds
to a channel or queue then the representation returned is a list of events. Finally if the value
supplied does not correspond to either a container or a channel / queue a 404 response will be
returned with no body.

Available response representations:

“text/xml” on page 319

“application/xml” on page 319

XML: POST

Allows publishing of an event to a channel or queue specified by the ChannelOrQueue parameter,
which is represented by the URI Path following the REST Plugin mount. For example http://
localhost:9000/rest/API/xml/testchannel expects an XML byte, XML or dictionary event to be
published to channel testchannel.

Acceptable request representations:

“text/xml” on page 324

“application/xml” on page 324

Available response representations:

“text/xml” on page 328

“application/xml” on page 328

XML: PUT

Allows purging of 1 or more events already published on a channel or queue specified by the
ChannelOrQueue parameter, which is represented by the URI Path following the REST Plugin
mount. For example http://localhost:9000/rest/API/xml/testchannel expects a request to purge
events to be published to channel testchannel. Purging can be specified by EID and selector.

Acceptable request representations:

“text/xml” on page 328

“application/xml” on page 328

Available response representations:

“text/xml” on page 328

“application/xml” on page 328

318 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



JSON: GET

Provides JSON representations of channels/queues or events in a channel or queue as specified
by the ChannelOrQueue parameter. The parameter is represented by the URI Path following the
REST Plugin mount.

If the value supplied corresponds to aUniversalMessaging namespace container, the representation
returned is a list of channels and queues present in the container. If the value supplied corresponds
to a channel or queue then the representation returned is a list of events. Finally if the value
supplied does not correspond to either a container or a channel / queue a 404 response will be
returned with no body.

Available response representations:

“application/json” on page 329

JSON: POST

Allows publishing of an event to a channel or queue specified by the ChannelOrQueue parameter,
which is represented by the URI Path following the REST Plugin mount. For example http://
localhost:9000/rest/API/json/testchannel expects a JSON byte, XML or dictionary event to be
published to channel testchannel.

Acceptable request representations:

“application/json” on page 332

Available response representations:

“application/json” on page 333

JSON: PUT

Allows purging of 1 or more events already published on a channel or queue specified by the
ChannelOrQueue parameter, which is represented by the URI Path following the REST Plugin
mount. For example http://localhost:9000/rest/API/json/testchannel expects a request to
purge events to be published to channel testchannel. Purging can be specified by EID and selector.

Acceptable request representations:

“application/json” on page 334

Available response representations:

“application/json” on page 334

Representation: XML

XML REPRESENTATION : An XML representation of channels/queues or events in a channel or
queue as specified by the ChannelOrQueue parameter.

Universal Messaging Administration Guide 10.3 319

2 Universal Messaging Enterprise Manager



Should the parameter point to an existing container, the response code is 200 and the response
looks like this:
<Nirvana-RealmServer-ChannelList NumberOfChannels="2">

<!--Constructed by my-channels Nirvana REST-Plugin :
Wed Mar 02 16:07:28 EET 2011-->

<Channel EventsConsumed="0" EventsPublished="0" LastEventID="-1"
Name="testqueue" NumberEvents="0"
fqn="http://localhost:8080/rest/API/xml/testqueue"/>

<Channel EventsConsumed="0" EventsPublished="2" LastEventID="223"
Name="testchannel" NumberEvents="2"
fqn="http://shogun:8080/rest/API/xml/testchannel"/>

</Nirvana-RealmServer-ChannelList>

If the REST plugin is configured to include realm status, some additional information about the
realm is presented:
<Nirvana-RealmServer-ChannelList NumberOfChannels="2">

<!--Constructed by my-channels Nirvana REST-Plugin :
Wed Mar 02 16:07:28 EET 2011-->

<Channel EventsConsumed="0" EventsPublished="0" LastEventID="-1"
Name="testqueue" NumberEvents="0"
fqn="http://localhost:8080/rest/API/xml/testqueue"/>

<Channel EventsConsumed="0" EventsPublished="2" LastEventID="223"
Name="testchannel" NumberEvents="2"
fqn="http://shogun:8080/rest/API/xml/testchannel"/>

<RealmStatus FreeMemory="498101048" RealmName="nirvana6" Threads="87"
TotalConnections="0" TotalConsumed="0"
TotalMemory="530186240" TotalPublished="2"/>

</Nirvana-RealmServer-ChannelList>

Should the parameter point to an existing channel or queue, the response code is 200 and the
response looks like this:
<Nirvana-RealmServer-EventList>

<!--Constructed by my-channels Nirvana REST-Plugin :
Wed Mar 02 16:10:57 EET 2011-->

<Details ChannelName="http://localhost:8080/rest/API/xml/testsrc"
FirstEvent=

"http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&amp;EID=first"

LastEID="223"
LastEvent=

"http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&amp;EID=last"
NextLink="http://localhost:8080/rest/API/xml/testsrc?EID=224" StartEID="222"/>

<Event ByteLink="http://localhost:8080/rest/API/xml/testsrc?Data=Byte&amp;EID=222"

DataSize="9" EID="222" Tag="Test Tag" hasByte="true"/>
<Event

DictionaryLink=
"http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&amp;EID=223"

EID="223" hasDictionary="true"/>
</Nirvana-RealmServer-EventList>

You can follow the provided links to view individual events. If you choose to look at an individual
byte event, the response code is 200 and the response looks like this:
<Nirvana-RealmServer-RawData>

<!--Constructed by my-channels Nirvana REST-Plugin :

320 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Wed Mar 02 16:13:17 EET 2011-->
<EventData ChannelName="http://localhost:8080/rest/API/xml/testsrc" EID="222">

<Data>
<![CDATA[VGVzdCBCb2R5]]>

</Data>
<Tag>

<![CDATA[Test Tag]]>
</Tag>

</EventData>
</Nirvana-RealmServer-RawData>

If you choose to look at an individual XML event, the response code is 200 and the response looks
like this:
<Nirvana-RealmServer-XMLData>

<!--Constructed by my-channels Nirvana REST-Plugin :
Wed Mar 02 16:13:17 EET 2011-->

<EventData ChannelName="http://localhost:8080/rest/API/xml/testsrc" EID="222"
isDOM="true">
<Data>

<myUserDataTag>
Some User Data

</myUserDataTag>
</Data>
<Tag>

<![CDATA[Test Tag]]>
</Tag>

</EventData>
</Nirvana-RealmServer-XMLData>

If you choose to look at an individual Dictionary event, the response code is 200 and the response
looks like this:
<DictionaryData isPersistent="true" TTL="0">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>
<Dictionary Key="testdictionary">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>
<Data Key="testlong">

<![CDATA[1]]>
</Data>
<Data Key="testfloat">

<![CDATA[1.0]]>
</Data>

Universal Messaging Administration Guide 10.3 321

2 Universal Messaging Enterprise Manager



<Data Key="testcharacter">
<![CDATA[a]]>

</Data>
<Data Key="testboolean">

<![CDATA[true]]>
</Data>

</Dictionary>
<Data Key="testlong">

<![CDATA[1]]>
</Data>
<Data Key="testfloat">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter">

<![CDATA[a]]>
</Data>
<Data Key="testboolean">

<![CDATA[true]]>
</Data>
<DataArray Key="teststringarray">

<ArrayItem Index="0">
<![CDATA[one]]>

</ArrayItem>
<ArrayItem Index="1">

<![CDATA[two]]>
</ArrayItem>
<ArrayItem Index="2">

<![CDATA[three]]>
</ArrayItem>

</DataArray>
<DataArray Key="testbytearray">

<ArrayItem Index="0">
<![CDATA[YSBib2R5]]>

</ArrayItem>
</DataArray>
<DataArray Key="testdictionaryarray">

<ArrayItem Index="0">
<Data Key="testdouble">

<![CDATA[1.0]]>
</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
<ArrayItem Index="1">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
</DataArray>

</DictionaryData>

322 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



If the rest plugin is configured to include type information in representations, dictionary event
representations will include them. In this case, responses looks like this:
<DictionaryData isPersistent="true" TTL="0">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>
<Dictionary Key="testdictionary">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>
<Data Key="testlong" Type="1">

<![CDATA[1]]>
</Data>
<Data Key="testfloat" Type="5">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter" Type="6">

<![CDATA[a]]>
</Data>
<Data Key="testboolean" Type="3">

<![CDATA[true]]>
</Data>

</Dictionary>
<Data Key="testlong" Type="1">

<![CDATA[1]]>
</Data>
<Data Key="testfloat" Type="5">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter" Type="6">

<![CDATA[a]]>
</Data>
<Data Key="testboolean" Type="3">

<![CDATA[true]]>
</Data>
<DataArray ArrayType="0" Key="teststringarray">

<ArrayItem Index="0">
<![CDATA[one]]>

</ArrayItem>
<ArrayItem Index="1">

<![CDATA[two]]>
</ArrayItem>
<ArrayItem Index="2">

<![CDATA[three]]>
</ArrayItem>

</DataArray>

Universal Messaging Administration Guide 10.3 323

2 Universal Messaging Enterprise Manager



<DataArray ArrayType="7" Key="testbytearray">
<ArrayItem Index="0">

<![CDATA[YSBib2R5]]>
</ArrayItem>

</DataArray>
<DataArray ArrayType="9" Key="testdictionaryarray">

<ArrayItem Index="0">
<Data Key="testdouble" Type="2">

<![CDATA[1.0]]>
</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
<ArrayItem Index="1">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
</DataArray>

</DictionaryData>

Finally, should the parameter point to a non existing container or channel / queue, the response
code is 404 without a response body

XML PUBLISH REQUEST

XML Byte events can be represented as follows:
<EventData isDom="false" isPersistent="true" TTL="0">

<Data>
<![CDATA[YSBib2R5]]>

</Data>
<Tag>

<![CDATA[YSB0YWc=]]>
</Tag>

</EventData>

Important:
data and tag should always be submitted in base64 encoded form.

XML DOM events can be represented as follows:
<EventData isDom="true" isPersistent="true" TTL="0">

<Data>
<![CDATA[YSBib2R5]]>

</Data>
<Tag>

<![CDATA[YSB0YWc=]]>
</Tag>

324 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



</EventData>

Important:
data and tag should always be submitted in base64 encoded form.

XML Dictionary events can be represented as follows:
<DictionaryData isPersistent="true" TTL="0">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>
<Dictionary Key="testdictionary">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>
<Data Key="testlong">

<![CDATA[1]]>
</Data>
<Data Key="testfloat">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter">

<![CDATA[a]]>
</Data>
<Data Key="testboolean">

<![CDATA[true]]>
</Data>

</Dictionary>
<Data Key="testlong">

<![CDATA[1]]>
</Data>
<Data Key="testfloat">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter">

<![CDATA[a]]>
</Data>
<Data Key="testboolean">

<![CDATA[true]]>
</Data>
<DataArray Key="teststringarray">

<ArrayItem Index="0">
<![CDATA[one]]>

</ArrayItem>
<ArrayItem Index="1">

<![CDATA[two]]>
</ArrayItem>

Universal Messaging Administration Guide 10.3 325

2 Universal Messaging Enterprise Manager



<ArrayItem Index="2">
<![CDATA[three]]>

</ArrayItem>
</DataArray>
<DataArray Key="testbytearray">

<ArrayItem Index="0">
<![CDATA[YSBib2R5]]>

</ArrayItem>
</DataArray>
<DataArray Key="testdictionaryarray">

<ArrayItem Index="0">
<Data Key="testdouble">

<![CDATA[1.0]]>
</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
<ArrayItem Index="1">

<Data Key="testdouble">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger">

<![CDATA[1]]>
</Data>
<Data Key="teststring">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
</DataArray>

</DictionaryData>

Optionally, dictionary events can include type information (see “Types” on page 334). This allows
the Universal Messaging REST API to preserve these types when publishing the event. The types
are defined as byte constants to keep typed dictionary events compact in size.

XML Dictionary events (with type information) can be represented as follows:
<DictionaryData isPersistent="true" TTL="0">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>
<Dictionary Key="testdictionary">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

326 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



<![CDATA[teststringvalue]]>
</Data>
<Data Key="testlong" Type="1">

<![CDATA[1]]>
</Data>
<Data Key="testfloat" Type="5">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter" Type="6">

<![CDATA[a]]>
</Data>
<Data Key="testboolean" Type="3">

<![CDATA[true]]>
</Data>

</Dictionary>
<Data Key="testlong" Type="1">

<![CDATA[1]]>
</Data>
<Data Key="testfloat" Type="5">

<![CDATA[1.0]]>
</Data>
<Data Key="testcharacter" Type="6">

<![CDATA[a]]>
</Data>
<Data Key="testboolean" Type="3">

<![CDATA[true]]>
</Data>
<DataArray ArrayType="0" Key="teststringarray">

<ArrayItem Index="0">
<![CDATA[one]]>

</ArrayItem>
<ArrayItem Index="1">

<![CDATA[two]]>
</ArrayItem>
<ArrayItem Index="2">

<![CDATA[three]]>
</ArrayItem>

</DataArray>
<DataArray ArrayType="7" Key="testbytearray">

<ArrayItem Index="0">
<![CDATA[YSBib2R5]]>

</ArrayItem>
</DataArray>
<DataArray ArrayType="9" Key="testdictionaryarray">

<ArrayItem Index="0">
<Data Key="testdouble" Type="2">

<![CDATA[1.0]]>
</Data>
<Data Key="testinteger" Type="4">

<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
<ArrayItem Index="1">

<Data Key="testdouble" Type="2">
<![CDATA[1.0]]>

</Data>
<Data Key="testinteger" Type="4">

Universal Messaging Administration Guide 10.3 327

2 Universal Messaging Enterprise Manager



<![CDATA[1]]>
</Data>
<Data Key="teststring" Type="0">

<![CDATA[teststringvalue]]>
</Data>

</ArrayItem>
</DataArray>

</DictionaryData>

Important:
byte[ ] types should always be submitted in base64 encoded form.

XMLPUBLISHRESPONSE : A XML representation to indicate the status of attempting to publish
an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the publish call be successful, the response code is 201 and the response looks like this:
<Nirvana-RealmServer-PublishRequest>

<response value="ok"/>
</Nirvana-RealmServer-PublishRequest>

Should the publish call fail for any reason, the response code is 400 and the response looks like
this:
<Nirvana-RealmServer-Error>

<response value="failInput"/>
<errorcode value="ErrorCode"/>
<errormessage value="Error Message"/>

</Nirvana-RealmServer-Error>

XML PURGE REQUEST : A XML representation of a Purge Request that indicates the event(s)
to purge.

A XML purge request looks as follows:
<Nirvana-RealmServer-PurgeRequest startEID="10" endEID="20" purgeJoins="false">

<selector>
<![CDATA[]]>

</selector>
</Nirvana-RealmServer-PurgeRequest>

XML PURGE RESPONSE : A XML representation to indicate the status of attempting to purge
an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the purge call be successful, the response code is 200 and the response looks like this:
<Nirvana-RealmServer-PurgeRequest>

<response value="ok"/>
</Nirvana-RealmServer-PurgeRequest>

Should the purge call fail for any reason, the response code is 400 and the response looks like this:
<Nirvana-RealmServer-Error>

<response value="failInput"/>
<errorcode value="ErrorCode"/>
<errormessage value="Error Message"/>

</Nirvana-RealmServer-Error>

328 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Representation: JSON

JSON REPRESENTATION : A JSON representation of channels/queues or events in a channel
or queue as specified by the ChannelOrQueue parameter.

Should the parameter point to an existing container, the response code is 200 and the response
looks like this:
{

"Channels":
[ {

"EventsConsumed": "0",
"EventsPublished": "0",
"LastEventID": "-1",
"Name": "testqueue",
"NumberEvents": "0",
"fqn": "http://localhost:8080/rest/API/json/testqueue"

}, {
"EventsConsumed": "0",
"EventsPublished": "0",
"LastEventID": "212",
"Name": "testchannel",
"NumberEvents": "0",
"fqn": "http://localhost:8080/rest/API/json/testchannel"

} ],
"Comment": "Constructed by my-channels Nirvana REST-Plugin :

Wed Mar 02 11:38:30 EET 2011",
"Name":
"Nirvana-RealmServer-ChannelList",
"NumberOfChannels": "2",

}

If the REST plugin is configured to include realm status, some additional information about the
realm is presented:
{

"Channels":
[ {

"EventsConsumed": "0",
"EventsPublished": "0",
"LastEventID": "-1",
"Name": "testqueue",
"NumberEvents": "0",
"fqn": "http://localhost:8080/rest/API/json/testqueue"

}, {
"EventsConsumed": "0",
"EventsPublished": "0",
"LastEventID": "212",
"Name": "testchannel",
"NumberEvents": "0",
"fqn": "http://localhost:8080/rest/API/json/testchannel"

} ],
"Comment": "Constructed by my-channels Nirvana REST-Plugin :

Wed Mar 02 11:38:30 EET 2011",
"Name": "Nirvana-RealmServer-ChannelList",
"NumberOfChannels": "2",
"Realm": {

Universal Messaging Administration Guide 10.3 329

2 Universal Messaging Enterprise Manager



"FreeMemory": "503291048",
"RealmName": "nirvana6",
"Threads": "104",
"TotalConnections": "1",
"TotalConsumed": "0",
"TotalMemory": "530186240",
"TotalPublished": "0"

}
}

Should the parameter point to an existing channel or queue, the response code is 200 and the
response looks like this:
{

"ChannelName": "http://localhost:8080/rest/API/json/testsrc",
"Comment": "Constructed by my-channels Nirvana REST-Plugin : Wed
Mar 02 12:19:22 EET 2011",
"Events":
[ {

"ByteLink": "http://localhost:8080/rest/API/json/testsrc?Data=Byte&EID=213",
"DataSize": "9",
"EID": "213",
"Tag": "Test Tag",
"hasByte": "true"

}, {
"DictionaryLink":

"http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=214",
"EID": "214",
"hasDictionary": "true"

} ],
"FirstEvent":

"http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=first",
"LastEID": "214",
"LastEvent": "http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=last",
"Name": "Nirvana-RealmServer-EventList",
"NextLink": "http://localhost:8080/rest/API/json/testsrc?EID=215",
"StartEID": "213"

}

You can follow the provided links to view individual events. If you choose to look at an individual
byte event, the response code is 200 and the response looks like this:
{

"ChannelName": "http://localhost:8080/rest/API/json/testsrc",
"Comment": "Constructed by my-channels Nirvana REST-Plugin :

Wed Mar 02 12:21:46 EET 2011",
"Data": "VGVzdCBCb2R5",
"EID": "213",
"Name": "Nirvana-RealmServer-RawData",
"Tag": "Test Tag"

}

If you choose to look at an individual XML event, the response code is 200 and the response looks
like this:
{

"ChannelName": "http://localhost:8080/rest/API/json/testsrc",
"Comment": "Constructed by my-channels Nirvana REST-Plugin :

Wed Mar 02 12:21:46 EET 2011",

330 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



"Data": "VGVzdCBCb2R5",
"EID": "213",
"Name": "Nirvana-RealmServer-XMLData",
"Tag": "Test Tag"

}

If you choose to look at an individual Dictionary event, the response code is 200 and the response
looks like this:
{

"dictionary":
{

"testboolean": [true],
"testcharacter": ["a"],
"testdictionary": [
{

"testboolean": [true],
"testcharacter": ["a"],
"testdouble": [1],
"testfloat": [1],
"testinteger": [1],
"testlong": [1],
"teststring": ["teststringvalue"]

}],
"testdouble": [1],
"testfloat": [1],
"testinteger": [1],
"testlong": [1],
"teststring": ["teststringvalue"],
"teststringarray": [[

"one",
"two",
"three"

]]
},
"isPersistent": true

}

If the rest plugin is configured to include type information in representations, dictionary event
representations will include them. In this case, responses looks like this:
{

"dictionary":
{

"testboolean": [ true, 3 ],
"testcharacter": [ "a", 6 ],
"testdictionary":
[ {

"testboolean": [ true, 3 ],
"testcharacter": [ "a", 6 ],
"testdouble": [ 1, 2 ],
"testfloat": [ 1, 5 ],
"testinteger": [ 1, 4 ],
"testlong": [ 1, 1 ],
"teststring": [ "teststringvalue", 0 ]

}, 9 ],
"testdouble": [ 1, 2 ],
"testfloat": [ 1, 5 ],
"testinteger": [ 1, 4 ],

Universal Messaging Administration Guide 10.3 331

2 Universal Messaging Enterprise Manager



"testlong": [ 1, 1 ],
"teststring": [ "teststringvalue", 0 ],
"teststringarray":
[[

"one",
"two",
"three"

], 100, 0 ]
},
"isPersistent": true

}

Finally, should the parameter point to a non existing container or channel / queue, the response
code is 404 without a response body

JSON PUBLISH REQUEST

JSON Byte events can be represented as follows:
{

"data": "VGVzdCBCb2R5",
"isPersistent": true,
"tag": "VGVzdCBUYWc="

}

Important:
data and tag should always be submitted in base64 encoded form.

JSON DOM events can be represented as follows:
{

"data": "VGVzdCBCb2R5",
"isDOM": true,
"isPersistent": true,
"tag": "VGVzdCBUYWc="

}

Important:
data and tag should always be submitted in base64 encoded form.

JSON Dictionary events can be represented as follows:
{

"dictionary":
{

"testboolean": [true],
"testcharacter": ["a"],
"testdictionary":
[{

"testboolean": [true],
"testcharacter": ["a"],
"testdouble": [1],
"testfloat": [1],
"testinteger": [1],
"testlong": [1],
"teststring": ["teststringvalue"]

}],
"testdouble": [1],

332 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



"testfloat": [1],
"testinteger": [1],
"testlong": [1],
"teststring": ["teststringvalue"],
"teststringarray":
[[

"one",
"two",
"three"

]]
},
"isPersistent": true

}

Optionally, dictionary events can include type information (see “Types” on page 334). This allows
the Universal Messaging REST API to preserve these types when publishing the event. The types
are defined as byte constants to keep typed dictionary events compact in size.

Dictionary events (with type information) can be represented as follows:
{

"dictionary":
{

"testboolean": [ true, 3 ],
"testcharacter": [ "a", 6 ],
"testdictionary":
[ {

"testboolean": [ true, 3 ],
"testcharacter": [ "a", 6 ],
"testdouble": [ 1, 2 ],
"testfloat": [ 1, 5 ],
"testinteger": [ 1, 4 ],
"testlong": [ 1, 1 ],
"teststring": [ "teststringvalue", 0 ]

}, 9 ],
"testdouble": [ 1, 2 ],
"testfloat": [ 1, 5 ],
"testinteger": [ 1, 4 ],
"testlong": [ 1, 1 ],
"teststring": [ "teststringvalue", 0 ],
"teststringarray":
[ [

"one",
"two",
"three"

], 100, 0 ]
},
"isPersistent": true

}

Important:
byte[] types should always be submitted in base64 encoded form.

JSON PUBLISH RESPONSE : A JSON representation to indicate the status of attempting to
publish an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the publish call be successful, the response code is 201 and the response looks like this:

Universal Messaging Administration Guide 10.3 333

2 Universal Messaging Enterprise Manager



{
"Response": "OK"

}

Should the publish call fail for any reason, the response code is 400 and the response looks like
this:
{

"errorcode": "ErrorCode",
"errormessage": "Error Message",
"response": "failInput"

}

JSON PURGE REQUEST : A JSON representation of a Purge Request that indicates the event(s)
to purge.

A JSON purge request looks as follows:
{

"endEID": 20,
"purgeJoins": false,
"selector": "",
"startEID": 10

}

JSON PURGE RESPONSE : A JSON representation to indicate the status of attempting to purge
an event to the channel or queue specified by the ChannelOrQueue parameter

Should the purge call be successful, the response code is 200 and the response looks like this:
{

"Response": "OK"
}

Should the purge call fail for any reason, the response code is 400 and the response looks like this:
{

"errorcode": "ErrorCode",
"errormessage": "Error Message",
"response": "failInput"

}

Types

IDType

0String

1Long

2Double

3Boolean

4Integer

334 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



IDType

5Float

6Character

7Byte

8Short

9Dictionary

100Array

Servlet Plugin

The servlet plugin enables the Universal Messaging realm server to serve Java servlets.

Configuration

Once you have created the servlet plugin on an interface, you can then select it from the Plugins
panel for the interface and configure the plugin parameters.

The servlet plugin requires configuration information relating to its behavior, aswell as the location
of the servlets it is required to serve to the clients. Below is a table that shows each configuration
parameter and describes what each is used for.

To ensure security, the EnforceConfigFile option can be set to true; this allows only those classes
specified in the configuration file to be loaded. Alternatively, the EnforceStrictClassLoader option
can be set; this prevents classes being loaded from different class loaders to that of the servlet, and
thereby also prevents arbitrary classes from being loaded.

DefaultValueDescriptionParameter Name

falseAdd the username to the session cookies.AddUserAsPlugin

List of key=value string which is passed to
authenticators init function.

AuthParameters

(default)Classname of authenticator to use, leave blank
for default

AddUserAsPlugin

trueAutomatically reload servlet class if it changesEnableClassReload

trueIf true, only servlets within the
ServletConfigFile will be executed.

EnforceConfigFile

trueIf true, only servlets loaded by the initial class
loader will be executed. Any classes loaded by
parent loader will be ignored.

EnforceStrictClassLoader

Universal Messaging Administration Guide 10.3 335

2 Universal Messaging Enterprise Manager



DefaultValueDescriptionParameter Name

A comma separated list of groups to which a
user must be a member of to be granted access.

GroupNames

Name of the file to load the mime type
information from. The format of the file is same
as the apache mime types.

MimeType

File containing the servlet properties. The file
should be a java properties file that contains

Properties

one property per line prefixedwith the full class
name. For example for a servlet class
com.example.Servlet defining a property called
RNAME you should have a line as follows:
com.example.Servlet.RNAME=nsp://localhost:9000

trueIf true, the user file will get reloaded on each
auth request.

ReloadUserFileDynamically

A comma separated list of groups to which a
user must have one to be granted access.

RoleNames

Name of the authentication realm.Security Realm

File which contains all the valid servlets which
will run. The file should be a text file containing

Servlet Config File

one full servlet class name per line, indicating
only these should be allowed to run. For
example having a single line
com.example.Servletwouldmean that only that
servlet will be allowed to run irrespective of
how many exist in the server classpath.

Directory in which to locate servlet classesServlet Path

Time in seconds before timeout of servlet
session not in use.

SessionTimeout

Exporting and Importing Realm XML Configurations
You can export a realm configuration into an XML representation, and then import the XML
representation into another realm, using the Enterprise Manager. The XML export and import
functionality enables you to automatically configuremultiple realms based on a standard structure,
for example when you want to clone realms and their internal structure.

You can export specific elements of a realm or the entire realm structure. The exported XML can
contain any or all of the following elements:

Clusters

336 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



Realm access control lists (ACLs)

Channels

Channel ACLs

Queues

Queue ACLs

Configuration parameters

JNDI assets

Durables

Interfaces

Plugins

Scheduling information

After you exported the realm configuration, you can import the XML into another realm. Importing
the XML automatically creates and configures the objects selected for import from the XML file.
The export and import marshal the realm objects from their Administration API representation
into XML and back again.

Exporting a Realm Configuration into an XML File

Use the following procedure to export a realm or specific elements of a realm into an XML file.

To export a realm configuration into an XML file

1. In the Enterprise Manager, go to Realms and select the realm that you want to export.

2. Right-click the realm node and select Export Realm to XML.

3. In the Export to field, specify the path to the file to which you want to export the realm
configuration.

4. Select the realm elements to export:

Select Export all to export the entire realm structure.

Select one or more options under Realm Export, Channels, Cluster Export, Interfaces,
Queues, and Data Groups to export specific elements of the realm structure.

5. Click OK.

Importing a Realm Configuration from an XML File

Universal Messaging Administration Guide 10.3 337

2 Universal Messaging Enterprise Manager



Before importing an XML representation of a realm configuration to another realm, you must
export the realm configuration as described in “Exporting a Realm Configuration into an XML
File” on page 337.

Use the following procedure to import a realm or specific elements of a realm from an XML file
into another realm.

To import a realm configuration from an XML file

1. In the Enterprise Manager, go to Realms and select the realm into which you want to import
the XML configuration.

2. Right-click the realm node and select Import Realm from XML.

3. In the Import from field, specify the path to the file from which you want to import the realm
configuration.

4. Select the realm elements to import:

Select Import all to import the entire realm structure.

Select one or more options under Realm Export, Channels, Cluster Export, Interfaces,
Queues, and Data Groups to import specific elements of the realm structure.

Important:
Importing a configuration that contains clustered transient channels and queues will fail
because transient channels and queues are not supported in a cluster. To resolve this situation,
you can use the Convert cluster-wide transient channels and queues to mixed option
to automatically convert all clustered transient channels and queues to mixed. However, be
aware that converting clustered transient channels and queues to mixed might cause
additional disk andmemory consumption for events published to these channels and queues.
If you are importing into a realm that is part of a cluster, theConvert cluster-wide transient
channels and queues to mixed option is selected by default.

5. Click OK.

Using the clusterWide Attribute for Channels and Queues

When you export channels or queues to an XML file, each channel or queue in the XML file has a
clusterWide attribute. If you export a clustered channel or queue, the attribute is set to true. If
you export a non-clustered channel or queue, the attribute is set to false.

Before you import the XML file into a realm, you can manually edit the XML file and modify the
clusterWide attribute of each channel or queue, depending on howyouwant to import the channel
or queue. To import a channel or queue as clustered while doing an import on a clustered realm,
set clusterWide to true. To import a channel or queue as non-clustered, set clusterWide to false.

Sample XML File for Import

338 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<NirvanaRealm name="realm0" exportDate="2021-01-12+02:00" comment="Realm configuration
from realm0" version="BuildIdentifier" buildInfo="BuildIdentifier">

<RealmConfiguration>
<ConfigGroup name="Audit Settings">

<ConfigItem name="ChannelACL" value="true"/>
<ConfigItem name="ChannelFailure" value="true"/>
<ConfigItem name="ChannelMaintenance" value="false"/>
<ConfigItem name="ChannelSuccess" value="false"/>
<ConfigItem name="DataGroup" value="false"/>
<ConfigItem name="DataGroupFailure" value="false"/>
<ConfigItem name="DataStream" value="false"/>
<ConfigItem name="Group" value="true"/>
<ConfigItem name="GroupMembers" value="true"/>
<ConfigItem name="InterfaceManagement" value="true"/>
<ConfigItem name="JoinFailure" value="true"/>
<ConfigItem name="JoinMaintenance" value="true"/>
<ConfigItem name="JoinSuccess" value="false"/>
<ConfigItem name="QueueACL" value="true"/>
<ConfigItem name="QueueFailure" value="true"/>
<ConfigItem name="QueueMaintenance" value="false"/>
<ConfigItem name="QueueSuccess" value="false"/>
<ConfigItem name="RealmACL" value="true"/>
<ConfigItem name="RealmFailure" value="true"/>
<ConfigItem name="RealmMaintenance" value="true"/>
<ConfigItem name="RealmSuccess" value="false"/>
<ConfigItem name="SnoopStream" value="false"/>

</ConfigGroup>
<ConfigGroup name="Client Timeout Values">

<ConfigItem name="EventTimeout" value="60000"/>
<ConfigItem name="HighWaterMark" value="3000"/>
<ConfigItem name="LowWaterMark" value="1000"/>
<ConfigItem name="QueueAccessWaitLimit" value="200"/>
<ConfigItem name="QueueBlockLimit" value="500"/>
<ConfigItem name="QueuePushWaitLimit" value="200"/>
<ConfigItem name="TransactionLifeTime" value="20000"/>

</ConfigGroup>
<ConfigGroup name="Cluster Config">

<ConfigItem name="ClientQueueSize" value="1000"/>
<ConfigItem name="ClientQueueWindow" value="100"/>
<ConfigItem name="ClientStateDelay" value="5000"/>
<ConfigItem name="ClusterMode" value="0"/>
<ConfigItem name="DisableHTTPConnections" value="true"/>
<ConfigItem name="DisconnectWait" value="30000"/>
<ConfigItem name="DisconnectWhenNotReady" value="false"/>
<ConfigItem name="EnableMulticast" value="true"/>
<ConfigItem name="EnableStoreRecoveryRetry" value="true"/>
<ConfigItem name="EnginePipelineSize" value="2"/>
<ConfigItem name="FormationTimeout" value="120000"/>
<ConfigItem name="HeartBeatInterval" value="120000"/>
<ConfigItem name="InitialConnectionTimeout" value="30000"/>
<ConfigItem name="IsCommittedDelay" value="5000"/>
<ConfigItem name="MasterRequestTimeout" value="60000"/>
<ConfigItem name="MasterVoteDelay" value="10000"/>
<ConfigItem name="MasterWaitTimeout" value="10000"/>
<ConfigItem name="PublishQueueEnabled" value="true"/>
<ConfigItem name="QueueConsistencyCheck" value="false"/>
<ConfigItem name="QueueSize" value="1000"/>
<ConfigItem name="StateChangeScan" value="60000"/>
<ConfigItem name="SyncPingSize" value="1000"/>

Universal Messaging Administration Guide 10.3 339

2 Universal Messaging Enterprise Manager



</ConfigGroup>
<ConfigGroup name="Comet Config">

<ConfigItem name="BufferSize" value="5120"/>
<ConfigItem name="EnableLogging" value="false"/>
<ConfigItem name="Timeout" value="60000"/>

</ConfigGroup>
<ConfigGroup name="Connection Config">

<ConfigItem name="AllowBufferReuse" value="true"/>
<ConfigItem name="BufferManagerCount" value="16"/>
<ConfigItem name="BufferPoolSize" value="100"/>
<ConfigItem name="BufferSize" value="102400"/>
<ConfigItem name="CometReadTimeout" value="20000"/>
<ConfigItem name="ConnectionDelay" value="60000"/>
<ConfigItem name="IdleDriverTimeout" value="300000"/>
<ConfigItem name="IdleSessionTimeout" value="300000"/>
<ConfigItem name="KeepAlive" value="60000"/>
<ConfigItem name="MaxBufferSize" value="20971520"/>
<ConfigItem name="MaxNoOfConnections" value="-1"/>
<ConfigItem name="MaxWriteCount" value="30"/>
<ConfigItem name="NetworkMonitorThreads" value="4"/>
<ConfigItem name="PriorityQueueCount" value="10"/>
<ConfigItem name="PriorityReadSpinLockMaxConnections" value="2"/>
<ConfigItem name="PriorityReadSpinLockTime" value="500"/>
<ConfigItem name="PriorityReadType" value="1"/>
<ConfigItem name="QueueHighWaterMark" value="3000"/>
<ConfigItem name="QueueLowWaterMark" value="1000"/>
<ConfigItem name="ReadCount" value="10"/>
<ConfigItem name="UseDirectBuffering" value="true"/>
<ConfigItem name="WriteHandlerType" value="3"/>
<ConfigItem name="whEventThresholdCount" value="350"/>
<ConfigItem name="whEventThresholdTime" value="500"/>
<ConfigItem name="whMaxEventsBeforeFlush" value="100"/>
<ConfigItem name="whMaxEventsPerSecond" value="100000"/>
<ConfigItem name="whMaxTimeBetweenFlush" value="2"/>

</ConfigGroup>
<ConfigGroup name="Data Stream Config">

<ConfigItem name="MonitorTimer" value="10000"/>
<ConfigItem name="OffloadMulticastWrite" value="false"/>
<ConfigItem name="SendInitialMapping" value="true"/>

</ConfigGroup>
<ConfigGroup name="DurableConfig">

<ConfigItem name="DurableNameFiltering" value="false"/>
<ConfigItem name="QueuedExtendedException" value="false"/>

</ConfigGroup>
<ConfigGroup name="Environment Config">

<ConfigItem name="AvailableProcessors" value="4"/>
<ConfigItem name="Embedded" value="false"/>
<ConfigItem name="InterRealmProtocolVersion" value="1"/>
<ConfigItem name="JavaVendor" value="Oracle Corporation"/>
<ConfigItem name="JavaVersion" value="1.8.0_271"/>
<ConfigItem name="NanosecondSupport" value="true"/>
<ConfigItem name="OSArchitecture" value="amd64"/>
<ConfigItem name="OSName" value="Windows 10"/>
<ConfigItem name="OSVersion" value="10.0"/>
<ConfigItem name="ProcessId" value="33468"/>
<ConfigItem name="ServerBuildDate" value="12-Feb-1964"/>
<ConfigItem name="ServerBuildNumber" value="BuildNumberHere"/>
<ConfigItem name="ServerReleaseDetails" value="BuildIdentifier"/>
<ConfigItem name="ServerVersion" value="RealmServerVersion"/>

</ConfigGroup>

340 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



<ConfigGroup name="Event Storage">
<ConfigItem name="ActiveDelay" value="1000"/>
<ConfigItem name="AutoDeleteScan" value="5000"/>
<ConfigItem name="AutoMaintenanceThreshold" value="50"/>
<ConfigItem name="CacheAge" value="60000"/>
<ConfigItem name="EnableStoreCaching" value="false"/>
<ConfigItem name="IdleDelay" value="10000"/>
<ConfigItem name="JMSEngineAutoPurgeTime" value="5000"/>
<ConfigItem name="JMSEngineIndividualPurgeEnabled" value="false"/>
<ConfigItem name="MaintenanceFileSizeThreshold" value="104857600"/>
<ConfigItem name="MaintenanceMemoryThreshold" value="104857600"/>
<ConfigItem name="PageSize" value="5000"/>
<ConfigItem name="QueueDeliveryPersistencePolicy" value="1"/>
<ConfigItem name="StoreReadBufferSize" value="32768"/>
<ConfigItem name="SyncBatchSize" value="50"/>
<ConfigItem name="SyncServerFiles" value="false"/>
<ConfigItem name="SyncTimeLimit" value="20"/>
<ConfigItem name="ThreadPoolSize" value="4"/>

</ConfigGroup>
<ConfigGroup name="Fanout Values">

<ConfigItem name="ConnectionGrouping" value="true"/>
<ConfigItem name="DelayPublishOnCapacity" value="true"/>
<ConfigItem name="HonourSharedDurableCapacity" value="true"/>
<ConfigItem name="IteratorWindowSize" value="100"/>
<ConfigItem name="JMSQueueMaxMultiplier" value="10"/>
<ConfigItem name="ParallelThreadPoolSize" value="2"/>
<ConfigItem name="PeakPublishDelay" value="1"/>
<ConfigItem name="PublishDelay" value="1"/>
<ConfigItem name="PublishExpiredEvents" value="true"/>
<ConfigItem name="SendEndOfChannelAlways" value="false"/>
<ConfigItem name="SendPubEventsImmediately" value="true"/>
<ConfigItem name="SyncQueueDelay" value="1000"/>
<ConfigItem name="SyncQueuePublisher" value="false"/>

</ConfigGroup>
<ConfigGroup name="Global Values">

<ConfigItem name="AllowRealmAdminFullAccess" value="true"/>
<ConfigItem name="CacheJoinInfoKeys" value="true"/>
<ConfigItem name="DisableExplicitGC" value="true"/>
<ConfigItem name="EnableCaching" value="false"/>
<ConfigItem name="EnableDNSLookups" value="true"/>
<ConfigItem name="EnableWeakReferenceCleanup" value="true"/>
<ConfigItem name="ExtendedMessageSelector" value="true"/>
<ConfigItem name="HTTPCookieSize" value="14"/>
<ConfigItem name="NHPScanTime" value="5000"/>
<ConfigItem name="NHPTimeout" value="120000"/>
<ConfigItem name="OverrideEveryoneUser" value="false"/>
<ConfigItem name="PauseServerPublishing" value="false"/>
<ConfigItem name="SendRealmSummaryStats" value="false"/>
<ConfigItem name="StampDictionary" value="true"/>
<ConfigItem name="StampHost" value="true"/>
<ConfigItem name="StampTime" value="true"/>
<ConfigItem name="StampTimeUseHPT" value="false"/>
<ConfigItem name="StampTimeUseHPTScale" value="0"/>
<ConfigItem name="StampUser" value="true"/>
<ConfigItem name="StatusBroadcast" value="5000"/>

</ConfigGroup>
<ConfigGroup name="Inter-Realm Comms Config">

<ConfigItem name="EstablishmentTime" value="30000"/>
<ConfigItem name="KeepAliveInterval" value="10000"/>
<ConfigItem name="KeepAliveResetTime" value="35000"/>

Universal Messaging Administration Guide 10.3 341

2 Universal Messaging Enterprise Manager



<ConfigItem name="MaximumReconnectTime" value="20000"/>
<ConfigItem name="MinimumReconnectTime" value="1000"/>
<ConfigItem name="Timeout" value="120000"/>
<ConfigItem name="WriteDelayTimeout" value="30000"/>

</ConfigGroup>
<ConfigGroup name="JVM Management">

<ConfigItem name="EmergencyThreshold" value="94"/>
<ConfigItem name="EnableJMX" value="false"/>
<ConfigItem name="ExitOnDiskIOError" value="true"/>
<ConfigItem name="ExitOnInterfaceFailure" value="false"/>
<ConfigItem name="IORetryCount" value="10"/>
<ConfigItem name="IOSleepTime" value="500"/>
<ConfigItem name="JMXRMIServerURLString"

value="service:jmx:rmi:///jndi/rmi://localhost:9999/server"/>
<ConfigItem name="MemoryMonitoring" value="2000"/>
<ConfigItem name="ThrottleAllPublishersAtThreshold" value="true"/>
<ConfigItem name="WarningThreshold" value="85"/>

</ConfigGroup>
<ConfigGroup name="Join Config">

<ConfigItem name="ActiveThreadPoolSize" value="2"/>
<ConfigItem name="IdleThreadPoolSize" value="1"/>
<ConfigItem name="MaxEventsPerSchedule" value="1000"/>
<ConfigItem name="MaxQueueSizeToUse" value="100"/>
<ConfigItem name="RemoteJoinAckBatchSize" value="100"/>
<ConfigItem name="RemoteJoinAckInterval" value="1000"/>
<ConfigItem name="UseQueuedLocalJoinHandler" value="false"/>

</ConfigGroup>
<ConfigGroup name="Logging Config">

<ConfigItem name="DefaultLogSize" value="10000000"/>
<ConfigItem name="DiagnosticsEnabledStores" value="!"/>
<ConfigItem name="DisplayCurrentThread" value="true"/>
<ConfigItem name="EmbedTag" value="false"/>
<ConfigItem name="EnableLog4J" value="false"/>
<ConfigItem name="EnableStatusLog" value="true"/>
<ConfigItem name="LogManager" value="1"/>
<ConfigItem name="RolledLogFileDepth" value="10"/>
<ConfigItem name="fLoggerLevel" value="0"/>

</ConfigGroup>
<ConfigGroup name="Metric Config">

<ConfigItem name="EnableEventMemoryMonitoring" value="true"/>
<ConfigItem name="EnableMetrics" value="true"/>

</ConfigGroup>
<ConfigGroup name="Plugin Config">

<ConfigItem name="EnableAccessLog" value="true"/>
<ConfigItem name="EnableErrorLog" value="true"/>
<ConfigItem name="EnablePluginLog" value="true"/>
<ConfigItem name="MaxNumberOfPluginThreads" value="200"/>
<ConfigItem name="PluginTimeout" value="30000"/>

</ConfigGroup>
<ConfigGroup name="Protobuf Config">

<ConfigItem name="CacheEventFilter" value="true"/>
</ConfigGroup>
<ConfigGroup name="Protocol AMQP Config">

<ConfigItem name="AnonymousUser" value="anonymous_amqp"/>
<ConfigItem name="BufferSize" value="10240"/>
<ConfigItem name="DefaultNodeMode" value="0"/>
<ConfigItem name="Enable" value="true"/>
<ConfigItem name="EnableWriteThread" value="false"/>
<ConfigItem name="EngineLoopCount" value="50"/>
<ConfigItem name="MaxFrameSize" value="10000000"/>

342 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



<ConfigItem name="MaxThreadPoolSize" value="10"/>
<ConfigItem name="MinThreadPoolSize" value="1"/>
<ConfigItem name="QueuePrefix" value="queue://"/>
<ConfigItem name="SASL_Anonymous" value="true"/>
<ConfigItem name="SASL_CRAM-MD5" value="false"/>
<ConfigItem name="SASL_DIGEST-MD5" value="false"/>
<ConfigItem name="SASL_Plain" value="false"/>
<ConfigItem name="SubscriberCredit" value="1000"/>
<ConfigItem name="Timeout" value="60000"/>
<ConfigItem name="TopicPrefix" value="topic://"/>
<ConfigItem name="TransformToUse" value="2"/>

</ConfigGroup>
<ConfigGroup name="Protocol MQTT Config">

<ConfigItem name="DisconnectClientsOnPublishFailure" value="true"/>
<ConfigItem name="Enable" value="true"/>
<ConfigItem name="EnableAutoCreateTopics" value="true"/>
<ConfigItem name="EnforceAlphaNumericClientID" value="false"/>
<ConfigItem name="IgnoreClientIDLength" value="true"/>
<ConfigItem name="MaxOutstanding" value="64000"/>
<ConfigItem name="QoS0AsTransient" value="false"/>
<ConfigItem name="SessionStateTTL" value="259200000"/>
<ConfigItem name="Strict" value="true"/>
<ConfigItem name="SupportZeroLength" value="true"/>

</ConfigGroup>
<ConfigGroup name="RecoveryDaemon">

<ConfigItem name="EventsPerBlock" value="500"/>
<ConfigItem name="ThreadPool" value="4"/>

</ConfigGroup>
<ConfigGroup name="Server Protection">

<ConfigItem name="EnableFlowControl" value="false"/>
<ConfigItem name="FlowControlWaitTimeOne" value="16000"/>
<ConfigItem name="FlowControlWaitTimeThree" value="10000"/>
<ConfigItem name="FlowControlWaitTimeTwo" value="13332"/>

</ConfigGroup>
<ConfigGroup name="Thread Pool Config">

<ConfigItem name="CommonPoolThreadSize" value="5"/>
<ConfigItem name="ConnectionThreadPoolMaxSize" value="10"/>
<ConfigItem name="ConnectionThreadPoolMinSize" value="4"/>
<ConfigItem name="ConnectionThreadWaitTime" value="120000"/>
<ConfigItem name="EnableConnectionThreadPooling" value="true"/>
<ConfigItem name="MaxUnauthorisedCount" value="1000"/>
<ConfigItem name="PendingTaskWarningThreshold" value="1000"/>
<ConfigItem name="ReadThreadPoolMaxSize" value="100"/>
<ConfigItem name="ReadThreadPoolMinSize" value="4"/>
<ConfigItem name="SchedulerPoolSize" value="10"/>
<ConfigItem name="SlowTaskWarningTime" value="5000"/>
<ConfigItem name="StalledTasksWarningTime" value="60000"/>
<ConfigItem name="ThreadDumpInterval" value="60000"/>
<ConfigItem name="ThreadDumpOnSlowTask" value="false"/>
<ConfigItem name="ThreadIdleQueueSize" value="10"/>
<ConfigItem name="WriteThreadPoolMaxSize" value="1000"/>
<ConfigItem name="WriteThreadPoolMinSize" value="5"/>

</ConfigGroup>
<ConfigGroup name="TransactionManager">

<ConfigItem name="MaxEventsPerTransaction" value="0"/>
<ConfigItem name="MaxTransactionTime" value="300000"/>
<ConfigItem name="TTLThreshold" value="1000"/>

</ConfigGroup>
</RealmConfiguration>

<RealmPermissionSet>

Universal Messaging Administration Guide 10.3 343

2 Universal Messaging Enterprise Manager



<RealmACLEntry listACLEntries="false" modifyACLEntries="false"
fullControl="true"
connectToRealm="false" changeRealmConfig="false" addremoveChannels="false"
addremoveJoins="false"
addremoveRealms="false" overrideConnectionCount="false" useAdminAPI="false"
manageDatagroups="false"
publishDatagroups="false" ownDatagroups="false" host="0:0:0:0:0:0:0:1" name="rgav"/>

<RealmACLEntry listACLEntries="false" modifyACLEntries="false"
fullControl="true"
connectToRealm="false" changeRealmConfig="false" addremoveChannels="false"
addremoveJoins="false"
addremoveRealms="false" overrideConnectionCount="false" useAdminAPI="false"
manageDatagroups="false"
publishDatagroups="false" ownDatagroups="false" host="127.0.0.1" name="rgav"/>

<RealmGroupACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
connectToRealm="true" changeRealmConfig="true" addremoveChannels="true"
addremoveJoins="true"
addremoveRealms="true" overrideConnectionCount="true" useAdminAPI="true"
manageDatagroups="true"
publishDatagroups="true" ownDatagroups="true" groupname="Everyone"/>

</RealmPermissionSet>
<ClusterSet>

<ClusterEntry name="cluster_1">
<ClusterMember name="realm0" rname="nsp://localhost:11000"

canBeMaster="true"/>
<ClusterMember name="realm1" rname="nsp://localhost:11010"

canBeMaster="true"/>
<ClusterMember name="realm2" rname="nsp://localhost:11020"

canBeMaster="true"/>
</ClusterEntry>

</ClusterSet>
<RealmSet>

<RealmEntry name="realm1" rname="nhp://10.248.27.186:11010"/>
<RealmEntry name="realm2" rname="nhp://10.248.27.186:11020"/>

</RealmSet>
<ChannelSet>

<ChannelEntry>
<ChannelAttributesEntry name="/customer/sales/JMSTopic" TTL="0" capacity="0"

EID="0"
clusterWide="true" jmsEngine="true" mergeEngine="false" type="MIXED_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<ChannelPermissionSet>
<ChannelACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false" getLastEID="true" purgeEvents="false" subscribe="true"
publish="true"
useNamedSubcription="false" host="*" name="user"/>

<ChannelACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
getLastEID="true" purgeEvents="true" subscribe="true" publish="true"
useNamedSubcription="true"
host="192.168.1.2" name="user"/>

<ChannelGroupACLEntry listACLEntries="false" modifyACLEntries="false"

344 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



fullControl="false" getLastEID="true" purgeEvents="false" subscribe="true"
publish="false"
useNamedSubcription="true" groupname="Everyone"/>

</ChannelPermissionSet>
</ChannelEntry>
<ChannelEntry>

<ChannelAttributesEntry name="/naming/defaultContext" TTL="0" capacity="0"
EID="2"

clusterWide="true" jmsEngine="false" mergeEngine="false" type="MIXED_TYPE"/>
<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<ChannelPermissionSet>
<ChannelACLEntry listACLEntries="true" modifyACLEntries="true"

fullControl="true"
getLastEID="true" purgeEvents="true" subscribe="true" publish="true"
useNamedSubcription="true"
host="10.248.27.186" name="rgav"/>

<ChannelGroupACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true" getLastEID="true" purgeEvents="true" subscribe="true" publish="true"

useNamedSubcription="true" groupname="Everyone"/>
</ChannelPermissionSet>
<ChannelKeySet>

<ChannelKeyEntry keyName="alias" keyDepth="1"/>
</ChannelKeySet>
<EventsSet>

<Event id="0">
<EventAttribSet>

<EventAttrib name="nrvpub.time" type="Long"
value="1610454161489"/>

<EventAttrib name="nrvpub.host" type="String"
value="10.248.27.186"/>

<EventAttrib name="nrvpub.name" type="String" value="rgav"/>
<EventAttrib name="JMSDeliveryMode" type="String"

value="PERSISTENT"/>
<EventAttrib name="JMSPriority" type="Byte" value="4"/>

</EventAttribSet>
<EventPropSet>

<EventProp name="JMS_my-channels_EnableMultiplexedConnections"

type="Boolean" value="true"/>
<EventProp name="JMS_my-channels_RandomRNames" type="Boolean"

value="false"/>
<EventProp name="JMS_my-channels_RetryCommit" type="Boolean"

value="false"/>
<EventProp name="JMS_my-channels_ConxExceptionOnRetryFailure"

type="Boolean" value="false"/>
<EventProp name="JMS_my-channels_MaxReconnectAttempts"

type="Integer"
value="-1"/>

<EventProp name="JMS_my-channels_EnableSharedDurable"
type="Boolean"
value="true"/>

Universal Messaging Administration Guide 10.3 345

2 Universal Messaging Enterprise Manager



<EventProp name="JMS_my-channels_EnableSerialDurable"
type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_EnableSingleSharedDurableAck"

type="Boolean" value="false"/>
<EventProp name="JMS_my-channels_EnableSingleQueueAck"

type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_SyncWritesToDisc"
type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_SyncSendPersistent"
type="Boolean"
value="true"/>

<EventProp name="JMS_my-channels_InitialConnectionRetryCount"

type="Integer" value="2"/>
<EventProp name="JMS_my-channels_SyncBatchSize" type="Integer"

value="50"/>
<EventProp name="JMS_my-channels_SyncTime" type="Integer"

value="20"/>
<EventProp name="JMS_my-channels_GlobalStoreCapacity"

type="Integer"
value="0"/>

<EventProp name="JMS_my-channels_AutoAckCount" type="Integer"
value="50"/>

<EventProp name="JMS_my-channels_WindowSize" type="Integer"
value="100"/>

<EventProp name="JMS_my-channels_useInfiniteWindowSize"
type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_UnAckedSize" type="Integer"
value="100"/>

<EventProp name="JMS_my-channels_RedliveredSize" type="Integer"
value="100"/>

<EventProp name="JMS_my-channels_ThreadPoolSize" type="Integer"
value="30"/>

<EventProp name="JMS_my-channels_AutoReconnectAfterACL"
type="Boolean"
value="false"/>

<EventProp name="JMS_my-channels_ImmediateReconnect"
type="Boolean"
value="true"/>

<EventProp name="JMS_my-channels_ReconnectInterval" type="Long"
value="2000"/>

<EventProp name="JMS_my-channels_UseJMSEngine" type="Boolean"
value="true"/>

<EventProp name="JMS_my-channels_DisconnectAfterClusterFailure"

type="Boolean" value="true"/>
<EventProp name="JMS_my-channels_ConnectionTimeout" type="Long"

value="10000"/>
<EventProp name="JMS_my-channels_PermittedKeepAlivesMissed"

type="Integer" value="2"/>
<EventProp name="JMS_my-channels_SyncNamedTopicAcks"

type="Boolean"
value="true"/>

346 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



<EventProp name="JMS_my-channels_AdapterBuffer" type="Integer"

value="1310720"/>
<EventProp name="JMS_my-channels_WriteHandler" type="Integer"

value="3"/>
<EventProp name="JMS_my-channels_SyncQueueAcks" type="Boolean"

value="true"/>
<EventProp name="JMS_my-channels_SyncTopicAcks" type="Boolean"

value="true"/>
<EventProp name="JMS_my-channels_AutoCreateResource"

type="Boolean"
value="true"/>

<EventProp name="JMS_my-channels_FollowMaster" type="Boolean"
value="false"/>

<EventProp name="alias.type" type="Integer" value="1"/>
<EventProp name="alias" type="String"

value="ExampleConnectionFactory"/>
<EventProp name="alias.reference.classname" type="String"

value="javax.jms.ConnectionFactory"/>
<EventProp name="alias.reference.factoryclass" type="String"

value="com.pcbsys.nirvana.nJMS.ConnectionFactoryFactory"/>
<EventProp name="alias.reference.url" type="String"

value="{&quot;JMS_my-channels_EnableMultiplexedConnections&quot;:[3,true],&quot;
JMS_my-channels_RandomRNames&quot;:[3,false],&quot;JMS_my-channels_RetryCommit&quot;
:[3,false],&quot;JMS_my-channels_ConxExceptionOnRetryFailure&quot;:[3,false],&quot;
JMS_my-channels_MaxReconnectAttempts&quot;:[4,-1],&quot;JMS_my-channels_EnableSharedDurable&quot;
:[3,true],&quot;JMS_my-channels_EnableSerialDurable&quot;:[3,false],&quot;
JMS_my-channels_EnableSingleSharedDurableAck&quot;:[3,false],&quot;
JMS_my-channels_EnableSingleQueueAck&quot;:[3,false],&quot;JMS_my-channels_SyncWritesToDisc&quot;
:[3,false],&quot;JMS_my-channels_SyncSendPersistent&quot;:[3,true],&quot;
JMS_my-channels_InitialConnectionRetryCount&quot;:[4,2],&quot;JMS_my-channels_SyncBatchSize&quot;
:[4,50],&quot;JMS_my-channels_SyncTime&quot;:[4,20],&quot;JMS_my-channels_GlobalStoreCapacity&quot;
:[4,0],&quot;JMS_my-channels_AutoAckCount&quot;:[4,50],&quot;JMS_my-channels_WindowSize&quot;
:[4,100],&quot;JMS_my-channels_useInfiniteWindowSize&quot;:[3,false],&quot;
JMS_my-channels_UnAckedSize&quot;:[4,100],&quot;JMS_my-channels_RedliveredSize&quot;
:[4,100],&quot;JMS_my-channels_ThreadPoolSize&quot;:[4,30],&quot;
JMS_my-channels_AutoReconnectAfterACL&quot;:[3,false],&quot;
JMS_my-channels_ImmediateReconnect&quot;:[3,true],&quot;JMS_my-channels_ReconnectInterval&quot;
:[1,2000],&quot;JMS_my-channels_UseJMSEngine&quot;:[3,true],&quot;
JMS_my-channels_DisconnectAfterClusterFailure&quot;:[3,true],&quot;
JMS_my-channels_ConnectionTimeout&quot;:[1,10000],&quot;
JMS_my-channels_PermittedKeepAlivesMissed&quot;:[4,2],&quot;
JMS_my-channels_SyncNamedTopicAcks&quot;:[3,true],&quot;JMS_my-channels_AdapterBuffer&quot;
:[4,1310720],&quot;JMS_my-channels_WriteHandler&quot;:[4,3],&quot;
JMS_my-channels_SyncQueueAcks&quot;:[3,true],&quot;JMS_my-channels_SyncTopicAcks&quot;
:[3,true],&quot;JMS_my-channels_AutoCreateResource&quot;:[3,true],&quot;
JMS_my-channels_FollowMaster&quot;:[3,false]}"/>

<EventProp name="alias.stringRefAddr.type" type="String"
value="ConnectionFactory"/>

<EventProp name="alias.stringRefAddr.addr" type="String"
value="nsp://localhost:11000,nsp://localhost:11010,nsp://localhost:11020"/>

</EventPropSet>
<EventData>RXhhbXBsZUNvbm5lY3Rpb25GYWN0b3J5</EventData>

</Event>
<Event id="1">

<EventAttribSet>
<EventAttrib name="nrvpub.time" type="Long"

value="1610454171673"/>

Universal Messaging Administration Guide 10.3 347

2 Universal Messaging Enterprise Manager



<EventAttrib name="nrvpub.host" type="String"
value="10.248.27.186"/>

<EventAttrib name="nrvpub.name" type="String" value="rgav"/>
<EventAttrib name="JMSDeliveryMode" type="String"

value="PERSISTENT"/>
<EventAttrib name="JMSPriority" type="Byte" value="4"/>

</EventAttribSet>
<EventPropSet>

<EventProp name="alias.type" type="Integer" value="1"/>
<EventProp name="alias" type="String"

value="/customer/sales/JMSTopic"/>
<EventProp name="alias.reference.classname" type="String"

value="javax.jms.Topic"/>
<EventProp name="alias.reference.factoryclass" type="String"

value="com.pcbsys.nirvana.nJMS.TopicFactory"/>
<EventProp name="alias.reference.url" type="String" value=""/>
<EventProp name="alias.stringRefAddr.type" type="String"

value="Topic"/>
<EventProp name="alias.stringRefAddr.addr" type="String"

value="/customer/sales/JMSTopic"/>
</EventPropSet>
<EventData>L2N1c3RvbWVyL3NhbGVzL0pNU1RvcGlj</EventData>

</Event>
<Event id="2">

<EventAttribSet>
<EventAttrib name="nrvpub.time" type="Long"

value="1610454193768"/>
<EventAttrib name="nrvpub.host" type="String"

value="10.248.27.186"/>
<EventAttrib name="nrvpub.name" type="String" value="rgav"/>
<EventAttrib name="JMSDeliveryMode" type="String"

value="PERSISTENT"/>
<EventAttrib name="JMSPriority" type="Byte" value="4"/>

</EventAttribSet>
<EventPropSet>

<EventProp name="alias.type" type="Integer" value="1"/>
<EventProp name="alias" type="String"

value="/customer/sales/JMSQueue"/>
<EventProp name="alias.reference.classname" type="String"

value="javax.jms.Queue"/>
<EventProp name="alias.reference.factoryclass" type="String"

value="com.pcbsys.nirvana.nJMS.QueueFactory"/>
<EventProp name="alias.reference.url" type="String" value=""/>
<EventProp name="alias.stringRefAddr.type" type="String"

value="Queue"/>
<EventProp name="alias.stringRefAddr.addr" type="String"

value="/customer/sales/JMSQueue"/>
</EventPropSet>
<EventData>L2N1c3RvbWVyL3NhbGVzL0pNU1F1ZXVl</EventData>

</Event>
</EventsSet>

</ChannelEntry>
<ChannelEntry>

<ChannelAttributesEntry name="/partner/sales" TTL="0" capacity="0" EID="0"

clusterWide="true" jmsEngine="false" mergeEngine="false" type="MIXED_TYPE"/>
<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

348 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<ChannelPermissionSet>
<ChannelACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false" getLastEID="true" purgeEvents="false" subscribe="true"
publish="true"
useNamedSubcription="false" host="*" name="user"/>

<ChannelACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
getLastEID="true" purgeEvents="true" subscribe="true" publish="true"
useNamedSubcription="true"
host="192.168.1.2" name="user"/>

<ChannelGroupACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false" getLastEID="true" purgeEvents="false" subscribe="true"
publish="false"
useNamedSubcription="true" groupname="Everyone"/>

</ChannelPermissionSet>
<DurableSet>

<durableEntry name="serial_durable" EID="-1" outstandingEvents="0"
clusterWide="true" persistent="true" shared="false" serial="true"/>

<durableEntry name="shared_durable" EID="-1" outstandingEvents="0"
clusterWide="true" persistent="true" shared="true" serial="false"/>

</DurableSet>
</ChannelEntry>

</ChannelSet>
<QueueSet>

<QueueEntry>
<ChannelAttributesEntry name="/customer/sales/JMSQueue" TTL="0" capacity="0"

EID="0"
clusterWide="true" jmsEngine="false" mergeEngine="false" type="MIXED_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"
EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>

<QueuePermissionSet>
<QueueACLEntry listACLEntries="false" modifyACLEntries="false"

fullControl="false"
purge="false" peek="true" push="true" pop="true" host="*" name="user"/>

<QueueACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
purge="true" peek="true" push="true" pop="true" host="192.168.1.2" name="user"/>

<QueueGroupACLEntry listACLEntries="false" modifyACLEntries="false"
fullControl="false" purge="false" peek="true" push="false" pop="false"
groupname="Everyone"/>

</QueuePermissionSet>
</QueueEntry>
<QueueEntry>

<ChannelAttributesEntry name="/partner/queries" TTL="0" capacity="0"
EID="0"
clusterWide="true" jmsEngine="false" mergeEngine="false" type="MIXED_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="true" SyncOnEachWrite="false"

SyncMaxBatchSize="0" SyncBatchTime="0" PerformAutomaticMaintenance="true"
EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true" ReadBufferSize="10240" Priority="4"

Universal Messaging Administration Guide 10.3 349

2 Universal Messaging Enterprise Manager



EnableMulticast="false" MultiFileEventsPerSpindle="50000" StampDictionary="0"/>
<QueuePermissionSet>

<QueueACLEntry listACLEntries="false" modifyACLEntries="false"
fullControl="false"
purge="false" peek="true" push="true" pop="true" host="*" name="user"/>

<QueueACLEntry listACLEntries="true" modifyACLEntries="true"
fullControl="true"
purge="true" peek="true" push="true" pop="true" host="192.168.1.2" name="user"/>

<QueueGroupACLEntry listACLEntries="false" modifyACLEntries="false"
fullControl="false" purge="false" peek="true" push="false" pop="false"
groupname="Everyone"/>

</QueuePermissionSet>
</QueueEntry>

</QueueSet>
<DataGroupSet/>
<RealmInterfaces>

<RealmNHPInterface>
<RealmInterface name="nhp0" port="11000" adapter="0.0.0.0" autostart="true"

advertise="true" authtime="10000" backlog="100" acceptThreads="10" selectThreads="2"

sendbuffersize="1310720" receivebuffersize="1310720" allowforinterrealm="true"
allowclientconnections="true" EnableNIO="true"/>

<RealmInterfacePlugin mountPoint="/" name="File Plugin">
<NirvanaFilePlugin>

<PluginConfigEntry name="AddUserAsCookie" value=""
description="Add the username to the sessions cookies"/>

<PluginConfigEntry name="AuthParameters" value=""
description="List of key=value string which is passed to the authenticators init
function"/>

<PluginConfigEntry name="Authenticator" value=""
description="Name of authenticator to use, leave to use default, else classname to
use"/>

<PluginConfigEntry name="BasePath"
value="C:\Users\RGAV\dev\NUM-15094\ide\realmDirectories\realm0\plugins\htdocs"
description="Path used to locate the files"/>

<PluginConfigEntry name="BufferSize" value=""
description="Size of the internal buffer to use to send the data"/>

<PluginConfigEntry name="Cache-Control" value=""
description="Specifies the cache control for the plugin"/>

<PluginConfigEntry name="CacheObjectSize" value=""
description="Size in bytes that can be stored in the cache"/>

<PluginConfigEntry name="CachedObjects" value=""
description="Number of objects to store in the cache"/>

<PluginConfigEntry name="DefaultName" value="index.html"
description="If no file name is specified which file should be returned"/>

<PluginConfigEntry name="EnableURLRewrite" value=""
description="If the plugin will scan the source and rewrite the urls"/>

<PluginConfigEntry name="FileNotFoundPage" value=""
description="name of the file to send when file can not be located"/>

<PluginConfigEntry name="GroupNames" value=""
description="A comma seperated list of groups which the user must be a member of at
least one to
be granted access"/>

<PluginConfigEntry name="MimeType" value="" description="Name of
the file to
load the mime type information from"/>

<PluginConfigEntry name="ReloadUserFileDynamically" value=""
description="Choose true to have the user file get reloaded on each auth request"/>

350 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



<PluginConfigEntry name="RoleNames" value="" description="A comma
seperated

list of roles which the user must have at least one of to be granted access"/>
<PluginConfigEntry name="Security Realm" value="" description="Name

of the
authentication realm"/>

<PluginConfigEntry name="SeparateAccessandErrorLogs" value=""
description="Choose true to have separate log files"/>

</NirvanaFilePlugin>
</RealmInterfacePlugin>
<JavascriptConfigEntry CORSAllowedOrigins="*" EnableJavaScript="true"

EnableWebSockets="true" CORSAllowCredentials="true" EnableGZipLP="true"
MinimumBytesBeforeGZIP="1000" AjaxLPIdleDelay="60000" AjaxLPActiveDelay="100"/>

</RealmNHPInterface>
</RealmInterfaces>
<RealmSecurityGroupSet/>
<RealmSchedulerSet>

<Scheduler
source="c2NoZWR1bGVyIHJlYWxtTG9nU2NoZWR1bGUgewoJaW5pdGlhbGlzZSB7CgogCQlMb2dnZXI
ucmVwb3J0KCJEZWZhdWx0IHJlYWxtIGxvZyBmaWxlIGF1dG8gcm9sbCBpbml0aWFsaXNlZCIpOwoKCSB9CgoJZXZlcnkgMDow
MCB7CgoJCUxvZ2dlci5yb2xsKCk7CgkJTG9nZ2VyLnJlcG9ydCgiTG9nIGF1dG9tYXRpY2FsbHkgcm9sbGVkIGJ5IGRlZmF1b
HQgc2NoZWR1bGVkIHNjcmlwdC4gSWYgdGhpcyBpcyBub3QgcmVxdWlyZWQgcGxlYXNlIHJlbW92ZSB0aGUgc2NyaXB0IGZyb2
0gdGhlIHNlcnZlciIpOwoKCX0KfQ==" subject="[rgav@0:0:0:0:0:0:0:1, rgav@127.0.0.1]"
clusterWide="false"/>

</RealmSchedulerSet>
</NirvanaRealm>

Using the Enterprise Viewer

The Enterprise Viewer is a read-only version of the Enterprise Manager. Its purpose is to allow
clients to view the Universal Messaging environment without the need for special administration
rights.

Basically, it offers the same views as the Enterprise Manager, but you cannot use it to modify your
Universal Messaging environment in any way. This means, for example, that you cannot create
or delete channels and queues, and you cannot publish any events.

Starting the Enterprise Viewer

Windows platforms

Windows users can start the Enterprise Viewer by selecting the appropriate component from the
Universal Messaging group in the Windows Start menu.

You can also type a command of the following form on the command line:
<InstallDir>\UniversalMessaging\java\<InstanceName>\bin\nenterpriseview.exe

where <InstallDir> is the installation root location and <InstanceName> is the name of the Universal
Messaging server.

UNIX-based platforms

You can launch the Enterprise Viewer on UNIX-based platforms by starting the nenterpriseview
executable, which you can find at the following location:

Universal Messaging Administration Guide 10.3 351

2 Universal Messaging Enterprise Manager



<InstallDir>/UniversalMessaging/java/umserver/bin/nenterpriseview

352 Universal Messaging Administration Guide 10.3

2 Universal Messaging Enterprise Manager



3 Using Command Central to Manage Universal

Messaging

■   Managing Universal Messaging Using Command Central ........................................... 354

■   Securing Communication Between Command Central and Universal Messaging ....... 354

■   Securing Access to Command Central ........................................................................ 356

■   Instance Management .................................................................................................. 358

■   Authentication Configuration ........................................................................................ 360

■   Universal Messaging Configuration Types .................................................................... 360

■   Universal Messaging Administration Types .................................................................. 387

■   Snooping on Channels ................................................................................................. 391

■   Snooping on Queues .................................................................................................... 393

■   Publishing Events ......................................................................................................... 396

■   Universal Messaging Cloud Transformation ................................................................. 398

■   Universal Messaging Logs ........................................................................................... 399

■   Universal Messaging Inventory .................................................................................... 399

■   Universal Messaging Lifecycle Actions ........................................................................ 399

■   Universal Messaging KPIs ........................................................................................... 400

■   Universal Messaging Run-time Monitoring Statuses .................................................... 401

■   Universal Messaging and the Command Line Interface ............................................... 401

Universal Messaging Administration Guide 10.3 353



Managing Universal Messaging Using Command Central

You can configure and administer Universal Messaging server instances using the Command
Central web or command-line interface.

Command Central uses one of the Universal Messaging ports (interfaces) for configuration and
administration. Command Central checks the interfaces of a Universal Messaging server instance
in the following order and chooses the first available interface to connect to the server:

1. Interfaces that use the HTTP protocol (nhp).

2. Interfaces that use the socket protocol (nsp).

3. Interfaces that use the HTTPS protocol (nhps).

4. Interfaces that use the SSL protocol (nsps).

Note:
Command Central does not use interfaces that use the shared memory protocol (shm).

In case of a disconnection between Command Central and the Universal Messaging server,
Command Central uses the same order to connect to a new Universal Messaging port.

Securing Communication Between Command Central and
Universal Messaging

If you want to guarantee secure communication between Command Central and Universal
Messaging, you must have only an nhps or nsps port (interface) configured on the Universal
Messaging server.When the UniversalMessaging server instance is configuredwith a single nhps
or nsps interface, Command Central uses this interface to connect automatically to the Universal
Messaging server. By default, Command Central uses the same truststore file and, in case of
client-side authentication, the same keystore file that are configured in the nhps or nsps interface.

If you want to specify truststore and keystore files that are different from the ones configured in
the nhps or nsps interface, you can use either the standard Java Secure Socket Extension (JSSE)
system properties or the Universal Messaging client system properties for secure communication.
For information about how to configure the properties, see “ Configuring the JSSE System
Properties” on page 355 and “Configuring theUniversalMessagingClient Properties” on page 355.

Considerations When Using System Properties to Specify
Truststore and Keystore Files
Consider the following information before you use system properties to specify custom truststore
and keystore files for secure communication betweenCommandCentral and aUniversalMessaging
server instance:

If you want to connect to a Universal Messaging server instance that is part of a cluster or a
zone, or that you plan to add to a cluster or a zone, ensure that the custom truststore contains
the certificates of all server instances that are part of the cluster or zone.

354 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Configuring the standard JSSE system properties might impact all product instances that use
secure sockets layer (SSL) in the same Platform Manager installation.

Configuring the JSSE System Properties
Use the following procedure to configure the JSSE system properties for a custom truststore and
keystore to secure communication between Command Central and Universal Messaging.

Important:
Setting the JSSE system properties might impact all run-time components that use SSL in the
same Platform Manager installation.

To configure the JSSE system properties

1. In the Command Central web user interface, go to the Platform Manager instance that is in
the same installation as the Universal Messaging server.

2. Click Configuration > Java System Properties > Edit.

3. Add the following properties:

com.softwareag.um.plugin.use.ssl.system.properties=true

javax.net.ssl.keyStore=<path to the custom keystore> - Required only if client
authentication is enabled on the nsps or nhps interface.

javax.net.ssl.keyStorePassword=<password of the custom keystore> - Required only if
client authentication is enabled on the nsps or nhps interface.

javax.net.ssl.trustStore=<path to the custom truststore>

javax.net.ssl.trustStorePassword=<password of the custom truststore>

4. Click Apply.

5. Restart Platform Manager.

Configuring the Universal Messaging Client Properties
Use the following procedure to configure the Universal Messaging client system properties for a
custom truststore and keystore to secure communication betweenCommandCentral andUniversal
Messaging.

To configure the Universal Messaging client system properties

1. In the Command Central web user interface, go to the Platform Manager instance that is in
the same installation as the Universal Messaging server.

Universal Messaging Administration Guide 10.3 355

3 Using Command Central to Manage Universal Messaging



2. Click Configuration > Java System Properties > Edit.

3. Add the following properties:

com.softwareag.um.plugin.use.ssl.system.properties=true

com.softwareag.um.client.ssl.keystore_path=<path to the custom keystore> - Required
only if client authentication is enabled on the nsps or nhps interface.

com.softwareag.um.client.ssl.keystore_password=<password of the custom keystore>
- Required only if client authentication is enabled on the nsps or nhps interface.

com.softwareag.um.client.ssl.certificate_alias=<the alias of the certificate in
the keystore that Command Central should use> - Required only if client authentication
is enabled on the nsps or nhps interface and the keystore containsmore than one certificate.

com.softwareag.um.client.ssl.truststore_path=<path to the custom truststore>

com.softwareag.um.client.ssl.truststore_password=<password of the custom
truststore>

4. Click Apply.

5. Restart Platform Manager.

Switching Off the System Properties Mode
To stop using custom truststore and keystore files for secure communication between Command
Central and a Universal Messaging server instance, you must set
com.softwareag.um.plugin.use.ssl.system.properties to false.

To stop using custom truststore and keystore files

1. In the Command Central web user interface, go to the Platform Manager instance that is in
the same installation as the Universal Messaging server instance.

2. Click Configuration > Java System Properties > Edit.

3. Set com.softwareag.um.plugin.use.ssl.system.properties to false.

4. Click Apply.

5. Restart Platform Manager.

Securing Access to Command Central

Secure access to Command Central by performing one or more of the following tasks:

356 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Changing the Authentication Mode

1. Click the Instances tab to view all the available Universal Messaging server instances.

2. Click an Universal Messaging instance name to access the Dashboard.

The Dashboard contains information about the specific Universal Messaging server instance
such as status, alerts, and KPIs.

3. In the Details section of the Dashboard, click in the Authentication field to change the
authentication mode.

The Authentication Mode dialog box appears.

4. Select one of the following authentication modes:

System default: Use default authentication method.

None: No authentication method is used.

Trusted: Password-less authentication for predefined administrative user account.

Delegated: SAML-based authentication and authorization for the currently logged in user.

Fixed user: Authenticate the specified administrative user credentials. Provide a user
name and password for the user.

Note:
To use basic authentication, you must change the authentication mode for a run-time
component to Fixed User. Command Central uses basic authentication with a fixed user
to communicatewith PlatformManager.WithFixed User authentication, the authentication
credentials for the Platform Manager will be fixed.

Verifying the Outbound Authentication Settings
Use the following steps to verify that Command Central is configured with the correct outbound
authentication settings.

To verify that Command Central is configured with the correct user credentials

1. In Command Central, on the Overview tab for the product component, click . Check that
the product status is Online and the JVM KPIs are updated.

2. On the Logs tab, check the product log for authentication errors.

Universal Messaging Administration Guide 10.3 357

3 Using Command Central to Manage Universal Messaging



Using Unix Shell Scripts to Change Connection Credentials for
Managed Products
You can use the following sample UNIX shell script to configure basic authentication credentials
for product components managed by Command Central.
NODE_ALIAS=local
USERNAME=Administrator
PASSWORD=secret
RCID=integrationServer-default
# RCID=MwsProgramFiles-default
# RCID=Universal-Messaging-nirvana
# RCID=OSGI-CTP
# RCID=OSGI-InfraDC

sagcc get configuration data $NODE_ALIAS $RCID COMMON-LOCAL-USERS-Administrator

-o administrator.xml
sed "s,/>,><Password>${PASSWORD}</Password></User>,g" administrator.xml >

administrator_new.xml
sagcc update configuration data $NODE_ALIAS $RCID COMMON-LOCAL-USERS

-Administrator -o administrator_new.xml

# verify connection
sagcc get monitoring runtimestatus $NODE_ALIAS $RCID -e ONLINE

Instance Management

You can create and delete Universal Messaging server instances using Command Central web or
command-line interface.

Creating an Instance

To create an instance

1. In theEnvironmentspane, select the environment inwhich youwant to create the newproduct
instance.

2. Click the Installations tab.

3. Select the installation by clicking the installation name in the table.

4. Click the Instances tab.

5. Click , and select Universal Messaging Server.

358 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



6. Specify the following instance properties:

DescriptionProperty

Required.Name of the newUniversalMessaging server instance.
Case-insensitive and can include upper and lower case alphabetic

Instance name

characters, digits (0-9), underscores (_), and non-leading hyphens
(-).

Specific host or IP address to bind. The instance will bind to all
available interfaces if this field is left blank.

NHP interface binding

Port number for the Universal Messaging server instance.NHP interface port

Absolute path to the data directory of the Universal Messaging
server instance. If you do not specify a value, the default path
"install directory/UniversalMessaging/server/instance name" is used.

Data directory

The registered Universal Messaging license file. Select one of the
registered license files from the list.

License file

Initial configuration settings for the Universal Messaging server
instance. Options are:

Configuration profile

webMethods suite use cases

Standalone use cases

Custom

7. Click Next, and then click Finish.

Deleting an Instance

To delete an instance

1. In theEnvironmentspane, select the environment inwhich youwant to create the newproduct
instance.

2. Click the Instances tab.

3. Select the Universal Messaging instance to be deleted and then click .

4. Click Ok to confirm deletion and then click Finish.

Note:

Universal Messaging Administration Guide 10.3 359

3 Using Command Central to Manage Universal Messaging



TheWindows service associatedwith the instance is automatically deletedwhen the instance
is deleted.

Authentication Configuration

Perform the following steps to enable basic authentication for UniversalMessaging server instance
users. For more information about authentication, the Authentication Overview section in the
Universal Messaging Concepts guide.

Important:
JAAS Authentication with Software AG Security infrastructure component is required for
completing basic authentication configuration, for more information see the Server JAAS
Authentication with Software AG Security infrastructure component section in the Universal
Messaging Concepts guide.

1. Use the Internal Users configuration type inCommandCentral if youwant to add new internal
users.

2. Use the Realm ACL configuration type to add the internal users in the format username@host,
and configure the ACLs. For more information see “Realm Access Control Lists (ACLs)” on
page 372.

3. Change the default Authentication Mode from None to Fixed User and provide a new user
name and password. See “Changing the Authentication Mode” on page 357 for more
information.

Universal Messaging Configuration Types

You can configure the following configuration types for a Universal Messaging server instance:

Internal Users

Licenses

Ports

Memory

Realm ACL

Groups

Properties

JNDI Connection Factories

JNDI Destinations

Channels

Queues

Zone

360 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Java System Properties

JVM Options

Clustering

Working with Universal Messaging Configuration Types
Perform the following steps to add, edit, or delete Universal Messaging configuration type items
in the Command Central web user interface.

Note:
The Universal Messaging server instance must be running during configuration.

To add, edit, or delete an item for an Universal Messaging configuration type

1. Select the Universal Messaging environment from the Environment pane, then click the
instance from the Instances tab.

2. Click the Configuration tab.

3. Select the configuration type from the drop-down list.

Universal Messaging displays the available or default values for the selected Universal
Messaging configuration type.

4. To add an item for the Universal Messaging configuration type, click . Enter the required
values, and click Save.

5. To edit an item for a configuration type, click on the item that you want to update and then
click Edit. Make the necessary changes and click one of the following:

Test to test the configuration type item.

Save to save your changes.

Cancel to cancel the edits to the configuration type item.

6. To delete an item for a configuration instance, click .

User Management
You can access the user management configuration options for a Universal Messaging server
instance by selecting a Universal Messaging instance name and selecting Internal Users from the
configurations list. You can add new users, list existing users, change the password of an user, or
delete a user from the user repository.

Universal Messaging Administration Guide 10.3 361

3 Using Command Central to Manage Universal Messaging



Information to authenticate the users of a Universal Messaging server instance is stored in the
user repository users.txt file. The default location of the users.txt file is
<InstallDir>/common/conf/users.txt. The users.txt file is generated only after you create a new
internal user.

The path to the users.txt file is added in the jaas.conf file present in
<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/jaas.conf. If you specify a relative
path in the jaas.conf file, the users.txt file will be created in a directory relative to the bin directory
of the Universal Messaging server instance. You can provide a custom name instead of the default
users.txt, and a custom path in the jaas.conf file.

You can also use the command line interface commands or internaluserrepo.bat/sh script in
<InstallDir>/common/bin to configure users of a Universal Messaging server instance. For more
information, see Software AGCommandCentral and Software AGPlatformManager CommandReference.

License Management
For a Universal Messaging server, you can configure the license, view the details of the license
that is configured, and retrieve the location of the license file.

Note:
You cannot change the location of a Universal Messaging license file.

Ports Configuration
In the Command Central web user interface, you can view, create, enable, disable, or edit the
following Universal Messaging server ports (interfaces):

NSP

NHP

NHPS

NSPS

SHM

On the Configuration > Ports page, you can view all the ports configured for aUniversalMessaging
server instance, as well as the following basic attributes for a port:

DescriptionColumn

Whether a port is enabled or disabled.Enabled

An alias that is used to recognize the port. Each port (interface)
on aUniversalMessaging server instance has an associated alias.

Alias

Address The number of an NSP, NHP, NHPS, or NSPS port. The port
number is unique.

362 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionColumn

The path of an SHM port.

The type of the port. The port uses one of the following protocols:Protocol

NSP (Socket protocol)

NHP (HTTP protocol)

NHPS (HTTPS protocol)

NSPS (SSL protocol)

SHM (shared memory protocol)

Configuring an NSP Port

To configure an NSP port (interface) for a Universal Messaging server instance

1. In Command Central, navigate to Environments > Instances > All >
Universal-Messaging-instanceName > Configuration > Ports.

2. Click and select NSP.

3. Specify values for the following fields:

DescriptionField

Enable or disable this NSP port.Enabled

Provide an alias for the port. EachUniversalMessaging server
instance can have an associated alias in the form of host:port.

Adapter alias

This alias is used to inform other servers how to contact this
server, if this server is behind a NAT or a Proxy Server. This
alias is not the same as the Universal Messaging assigned
interface alias.

Required. Provide a unique port number. The port number
must be unique and cannot be used again in a Universal
Messaging server instance.

Number

Provide the size of the Internet Protocol (IP) socket queue.Backlog

The IP address to which to bind this port, if your machine has
multiple IP addresses and youwant the port to use this specific
address.

Bind address

You cannot change this attribute after you create the port.

Universal Messaging Administration Guide 10.3 363

3 Using Command Central to Manage Universal Messaging



DescriptionField

Automatically start this port when starting the Universal
Messaging server instance.

Autostart interface

Allow the Universal Messaging server instance to send
information about this port to the client.

Advertise interface

Allow port communication between two or more Universal
Messaging server instances. For example, allowcommunication
between clusters, or joins.

Allow for inter-realm

Allow clients to connect to this port.Allow client connections

Enable NIO (Network Input/Output) on this port.Enable NIO

Allow the ports to respond to policy requests. You can run a
policy file server on a socket interface that will automatically

Enable policy server

handle these requests. Once this is set up, you will also need
to set up a client access policy in the clientaccesspolicy.xml
file in the /install/server/name/plugins/htdocs directory of
the server.

Provide the time in milliseconds (ms) that the Universal
Messaging server instance waits for the client to complete the
authentication process. Default is 10000 milliseconds.

Auth time

Provide the number of threads processing the accepted sockets.Accept threads

Provide the number of threads allocated for selection.Select threads

Provide the size of the socket send buffer.Send buffer size

Provide the size of the socket receive buffer.Receive buffer size

Formore information about the basic port properties, see “InterfaceConfiguration” on page 282.

4. Optionally, click Test to validate the configuration.

5. Click Save.

Configuring an NHP Port

To configure an NHP port (interface) for a Universal Messaging server instance

1. In Command Central, navigate to Environments > Instances > All >
Universal-Messaging-instanceName > Configuration > Ports.

2. Click and select NHP.

364 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



3. Specify values for the following fields:

Connection Basics

DescriptionField

Enable or disable this NHP port.Enabled

Specify an alias for the port. Each interface on a Universal
Messaging server instance can have an associated alias in the

Adapter alias

format host:port. This alias is used to tell other servers how to
contact this server, if this server is behind a NAT or a Proxy
Server. This alias is not the same as the Universal Messaging
assigned interface alias.

Required. Set port number. The port number must be unique
and cannot be used again in a Universal Messaging server
instance.

Number

Provide the size of the Internet Protocol (IP) socket queue.Backlog

The IP address to which to bind this port, if your machine has
multiple IP addresses and youwant the port to use this specific
address.

Bind address

You cannot change this attribute after you create the port.

Automatically start this port when starting the Universal
Messaging server instance.

Autostart interface

Allow the Universal Messaging server instance to send
information about this port to the client.

Advertise interface

Allow port communication between two or more Universal
Messaging server instances. For example, allowcommunication
between clusters, or joins.

Allow for inter-realm

Allow clients to connect to this port.Allow client connections

Enable NIO (Network Input/Output) on this port.Enable NIO

Enable the usage of HTTP 1.1 protocol on this port.Enable HTTP 1.1

Provide the time in milliseconds (ms) that the Universal
Messaging server instance waits for the client to complete the
authentication process. Default is 10000 milliseconds.

Auth time

Provide the number of threads processing the accepted sockets.Accept threads

Provide the number of threads allocated for selection.Select threads

Provide the size of the socket send buffer.Send buffer size

Universal Messaging Administration Guide 10.3 365

3 Using Command Central to Manage Universal Messaging



DescriptionField

Provide the size of the socket receive buffer.Receive buffer size

Formore information about the basic port properties, see “InterfaceConfiguration” on page 282.

JavaScript Interface Properties

Set these properties to configure communication with web clients using JavaScript.

Formore information and description about the JavaScript interface properties, see “JavaScript
Interface Panel” on page 286.

DescriptionField

Allow JavaScript client connections using this port (interface).Enable JavaScript

Toggle the ability for clients to communicate with the server
using the HTMLWebSocket Protocol on this interface.

Enable WebSockets

Enable GZIP compression on HTTP long poll connections.Enable GZIP for long poll

Allow Cross-Origin Resource Sharing (CORS) credentials.CORS allow credentials

A comma separated list of the host names (and IP addresses,
if they appear in URLs) of the servers that host your JavaScript
application's HTML files.

CORS allowed origins

Important:
If this property is not set correctly, many communication
drivers available to JavaScript clients may fail.

The time between clients sending long poll requests to the
server in milliseconds. Reducing this may reduce latency but

Long poll active delay

will increase both client and servermemory, CPU, andnetwork
usage.

Set theminimummessage size is bytes required for the server
to begin compressing data sent to long poll clients.

GZIP minimum threshold

The time between clients sending long poll when the client is
in idle mode.

Long poll idle delay

Custom Headers

Custom headers are paired with Header Key/Value pairs which are sent in the HTTP packets
to the client.

4. Optionally, click Test to validate the configuration.

5. Click Save.

366 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Configuring an NHPS Port

To configure an NHPS port (interface) for a Universal Messaging server instance

1. In Command Central, navigate to Environments > Instances > All >
Universal-Messaging-instanceName > Configuration > Ports.

2. Click and select NHPS.

3. Specify values for the following fields:

Connection Basics

DescriptionField

Enable or disable this NHPS port.Enabled

Provide an alias for the port. EachUniversalMessaging server
instance can have an associated alias in the form of host:port.

Adapter alias

This alias is used to tell other servers how to contact this server,
if this server is behind a NAT or a Proxy Server. This alias is
not the same as the Universal Messaging assigned interface
alias.

Required. Set port number. The port number must be unique
and cannot be used again in a Universal Messaging server
instance.

Number

Set the size of the Internet Protocol (IP) socket queue.Backlog

The IP address to which to bind this port, if your machine has
multiple IP addresses and youwant the port to use this specific
address.

Bind address

You cannot change this attribute after you create the port.

Automatically start this port when starting the Universal
Messaging server instance.

Autostart interface

Allow the Universal Messaging server instance to send
information about this port to the client.

Advertise interface

Allow port communication between two or more Universal
Messaging server instances. For example, allowcommunication
between clusters, or joins.

Allow for inter-realm

Allow clients to connect to this port.Allow client connections

Enable NIO (Network Input/Output) on this port.Enable NIO

Universal Messaging Administration Guide 10.3 367

3 Using Command Central to Manage Universal Messaging



DescriptionField

Enable the usage of HTTP 1.1 protocol on this port.Enable HTTP 1.1

Provide the time in milliseconds (ms) that the Universal
Messaging server instance waits for the client to complete the
authentication process. Default is 10000 milliseconds.

Auth time

Provide the number of threads processing the accepted sockets.Accept threads

Provide the number of threads allocated for selection.Select threads

Provide the size of the socket send buffer.Send buffer size

Provide the size of the socket receive buffer.Receive buffer size

Formore information about the basic port properties, see “InterfaceConfiguration” on page 282.

JavaScript Interface Properties

Set these properties to configure communication with web clients using JavaScript.

Formore information and description about the JavaScript interface properties, see “JavaScript
Interface Panel” on page 286.

DescriptionField

Allow JavaScript client connections using this port (interface).Enable JavaScript

Toggle the ability for clients to communicate with the server
using the HTMLWebSocket Protocol on this interface.

Enable WebSockets

Enable GZIP compression on HTTP long poll connections.Enable GZIP for long poll

Allow Cross-Origin Resource Sharing (CORS) credentials.CORS allow credentials

A comma-separated list of the host names (and IP addresses,
if they appear in URLs) of the servers that host your JavaScript
application's HTML files.

CORS allowed origins

Important:
If this property is not set correctly, many communication
drivers available to JavaScript clients may fail.

The time between clients sending long poll requests to the
server in milliseconds. Reducing this may reduce latency but

Long poll active delay

will increase both client and servermemory, CPU, andnetwork
usage.

Set theminimummessage size is bytes required for the server
to begin compressing data sent to long poll clients.

GZIP minimum threshold

368 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionField

The time between clients sending long poll when the client is
in idle mode.

Long poll idle delay

Custom Headers

Custom headers are paired with Header Key/Value pairs that are sent in the HTTP packets to
the client.

Security Configuration

DescriptionField

Whether or notUniversalMessaging requires client certificates
for all requests. Select:

Client authentication

None if Universal Messaging does not require client
certificates for all requests.

REQUIRE_CERTIFICATE if you want Universal
Messaging to require client certificates for all requests.

File type of the keystore file. Universal Messaging supports
only the JKS file type.

Keystore type

Location of the keystore file.Keystore server location

Password required to access the SSL certificate in the keystore
file.

Keystore password

Password required to access a specific private key in the
keystore file.

Keystore key password

File type of the truststore file. Universal Messaging supports
only the JKS file type.

Truststore type

Location of the truststore file.Truststore server location

Password required to access the SSL certificate in the truststore
file.

Truststore password

4. Optionally, click Test to validate the configuration.

5. Click Save.

Configuring an NSPS Port

To configure an NSPS port (interface) for a Universal Messaging server instance

Universal Messaging Administration Guide 10.3 369

3 Using Command Central to Manage Universal Messaging



1. In Command Central, navigate to Environments > Instances > All >
Universal-Messaging-instanceName > Configuration > Ports.

2. Click and select NSPS.

3. Specify values for the following fields:

Connection Basics

DescriptionField

Enable or disable this NSPS port.Enabled

Provide an alias for the port. EachUniversalMessaging server
instance can have an associated alias in the form of host:port.

Adapter alias

This alias is used to tell other servers how to contact this server
if this server is behind a NAT or a Proxy Server. This alias is
not the same as the Universal Messaging assigned interface
alias.

Required. Set port number. The port number must be unique
and cannot be used again in a Universal Messaging server
instance.

Number

Set the size of the Internet Protocol (IP) socket queue.Backlog

The IP address to which to bind this port, if your machine has
multiple IP addresses and youwant the port to use this specific
address.

Bind address

You cannot change this attribute after you create the port.

Automatically start this port when starting the Universal
Messaging server instance.

Autostart interface

Allow the Universal Messaging server instance to send
information about this port to the client.

Advertise interface

Allow port communication between two or more Universal
Messaging server instances. For example, allowcommunication
between clusters, or joins.

Allow for inter-realm

Allow clients to connect to this port.Allow client connections

Enable NIO (Network Input/Output) on this port.Enable NIO

Allow the ports to respond to policy requests. You can run a
policy file server on a socket interface that will automatically

Enable policy server

handle these requests. Once this is set up, you will also need
to set up a client access policy in the clientaccesspolicy.xml

370 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionField

file in the /install/server/name/plugins/htdocs directory of
the server.

Provide the time in milliseconds (ms) that the Universal
Messaging server instance waits for the client to complete the
authentication process. Default is 10000 milliseconds.

Auth time

Provide the number of threads processing the accepted sockets.Accept threads

Provide the number of threads allocated for selection.Select threads

Provide the size of the socket send buffer.Send buffer size

Provide the size of the socket receive buffer.Receive buffer size

Formore information about the basic port properties, see “InterfaceConfiguration” on page 282.

Security Configuration

DescriptionField

Whether or notUniversalMessaging requires client certificates
for all requests. Select:

Client authentication

None if Universal Messaging does not require client
certificates for all requests.

REQUIRE_CERTIFICATE if you want Universal
Messaging to require client certificates for all requests.

File type of the keystore file. Universal Messaging supports
only the JKS file type.

Keystore type

Location of the keystore file.Keystore server location

Password required to access the SSL certificate in the keystore
file.

Keystore password

Password required to access a specific private key in the
keystore file.

Keystore key password

File type of the truststore file. Universal Messaging supports
only the JKS file type.

Truststore type

Location of the truststore file.Truststore server location

Password required to access the SSL certificate in the truststore
file.

Truststore password

4. Optionally, click Test to validate the configuration.

Universal Messaging Administration Guide 10.3 371

3 Using Command Central to Manage Universal Messaging



5. Click Save.

Configuring an SHM Port

To configure an SHM port (interface) for a Universal Messaging server instance

1. In Command Central, navigate to Environments > Instances > All >
Universal-Messaging-instanceName > Configuration > Ports.

2. Click and select SHM.

3. Specify values for the following fields:

DescriptionField

Enable or disable the SHM port.Enabled

The directory in which the files required for SHM (shared
memory) communication are created. The default value is
/dev/shm.

Path

Note:
When choosing a path, ensure that the local ID of the server
can access this directory.

The size in bytes of the allocated memory that a connection
uses. The default value is 1024000. A file of the same size is
also created for mapping.

Buffer size

The idle time in milliseconds before a connection is closed.
The default value is 20000.

Timeout

4. Optionally, click Test to validate the configuration.

5. Click Save.

Memory Configuration
You can view and update the initial memory size and maximum memory size of a Universal
Messaging server instance.

Realm Access Control Lists (ACLs)
You can configure the permissions for a Universal Messaging server instance by editing one or
more of the following parameters:

372 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Specify...Configure...

User name in the format user@host, or name of an existing group
in the format groupname.

Subject

Allow ACL management.Manage ACL

Grant full privileges to the user or group.Full

Allow access to the realm.Access

Allow realm configuration.Configure

Allow channel configuration and administration.Channels

Allow realm configuration and management.Realm

Allow use of Universal Messaging Admin API.Admin API

Allow management of data groups.Manage data groups

Allow ownership of data groups.Own data groups

Allow publishing to global data groups.Publish to data groups

Group Management
You can add, edit, or delete a new security group using the Command Central web user interface.
You can define subjects for a specific group, the subjects can be an existing group or an individual
user in the format user@host.

For more information about Universal Messaging security groups, see “Security Groups” on
page 210.

General Properties
You can configure a UniversalMessaging server instance by editing the configuration parameters.
The large number of Universal Messaging configuration parameters are organized into groups.
The parameters in each group are organized into two categories: Basic and Advanced. The
properties in the Basic category are commonly used. The properties in the Advanced category is
less frequently used, and are intended for special cases or expert users.

Note:
You can view and configure properties only when the Universal Messaging server instance is
Online.

To modify...Configure this group...

Parameters to configure what gets logged in the audit file.Audit Settings

Universal Messaging Administration Guide 10.3 373

3 Using Command Central to Manage Universal Messaging



To modify...Configure this group...

Parameters to configure client-server communication timeout
settings.

Client Timeout Values

Parameters to configure clustering.Cluster Config

Parameters to configure Comet communication protocol
connection.

Comet Config

Parameters to configure client-server connection.Connection Config

Parameters to configure data streams.Data Stream Config

System environment configuration parameters.Environment Config

Note:
You cannot modify the environment configuration
parameters, the parameters are read-only.

Parameters to configure how events are stored, and retrieved
from the server.

Event Storage

Parameters to configure delivery of events to the clients.Fanout Values

Parameters to configure various global Universal Messaging
server instance properties. For example,
AllowRealmAdminFullAccess.

Global Values

Parameters to configure communication across Universal
Messaging server instances.

Inter-Realm Comms Config

Parameters to configure the JVM used by the Universal
Messaging server.

JVMManagement

Parameters to modify join properties.Join Config

Parameters to modify logging configuration.Logging Config

Parameters to enable or disable system metrics such as
memory usage.

Metric Config

Parameters to configure MQTT.MQTT Config

Parameters for Universal Messaging server plugin
configuration.

Plugin Config

Parameters to configure Google protocol buffers.Protobuf Config

Parameters to configure AMQP connections.Protocol AMQP Config

Parameters to configure MQTT connections.Protocol MQTT Config

374 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



To modify...Configure this group...

Parameters to configure clients that are in recovery and
replaying large number of events.

RecoveryDaemon

Parameters to configure server protection such as flow control
of producer connections.

Server Protection

Parameters for server thread pools.Thread Pool Config

Parameters for Universal Messaging transaction engine.TransactionManager

For information about configuration group parameters and their values, see “Realm
Configuration” on page 49.

JNDI Management
You can configure connection factories and destinations in a JNDI namespace using the Command
Central web user interface or the command line. You can perform the following operations on
JNDI entries:

Create

Get

Update

Delete

JNDI Connection Factories

You can perform create, get, update, and delete operations on the following connection factory
types:

Connection Factory

Topic Connection Factory

Queue Connection Factory

XA Connection Factory

The table describes the connection factory configuration parameters:

Specify...Configure...

Required and unique.Name of the new connection factory. Once
created, you cannot edit the JNDI connection factory name. For
example, connectionfactory1.

Name

Required. Type of connection factory selected when creating the
connection factory. For example, XA Connection Factory.

Type

Universal Messaging Administration Guide 10.3 375

3 Using Command Central to Manage Universal Messaging



Specify...Configure...

Note:
This field cannot be edited.

Required. Universal Messaging server URL for binding the
connection factory. For example, nsp://umhostname:9000. A

Connection URL

cluster of server instances is specified using a comma-separated
list of connection URLs, for example,
nsp://localhost:9000,nsp://localhost:9010. You can use a horizontal
scalability connection factory to specify several connectionURLs,
where each connection URL can point to a standalone realm or
a cluster.

Horizontal scalability connection factories allow clients to publish
messages to a set of servers or consume messages from a set of
servers in a round-robin manner:

For round-robin publishing, onemessage or transaction gets
published to the first realm node or cluster, the next message
to the next realm node or cluster, and so on.

For round-robin consuming, there is no guarantee about the
order in which the events are delivered.

For a horizontal scalability connection factory, you specify several
connection URLs, using the horizontal scalability URL syntax.

See the sectionURL Syntax for Horizontal Scalability in theConcepts
guide for details of this syntax.

Example:

(UM1,UM2)(UM3,UM4) - Indicates 2 clusters, one consisting of
UM1 and UM2 and the other consisting of UM3 and UM4, so
only 2 connections will be constructed here.

Note:
Round-robin delivery is not supported for XA Connection
Factory.

Select the durable type. The durable type Named is selected by
default.

Durable type

Note:
You can configure the durable type property only for
Connection Factory and Topic Connection Factory.

JNDI Destinations

376 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



You can perform create, get, and delete operations on the following destination types:

Note:
Update operation for JNDI destinations is not supported.

Topics

Queues

The table describes the destination configuration parameters:

Specify...Configure...

Required and unique. Name of the JNDI destination. Once
created, you cannot edit the JNDI destination name. Name can

Lookup Name

include upper and lower case alphabetic characters, digits (0-9),
double colon (::), slash (/), and periods (.), for example,
destination1. Use the double colon (::) for specifying nested name
space, for example, destination1::destination2.

Required. Type of destination.Destination Type

Note:
This field cannot be edited.

Required and unique. Name of the JMS channel or queue. Once
created, you cannot edit the store name. Store name can include

Store Name

upper and lower case alphabetic characters, digits (0-9), double
colon (::), and slash (/).

Select to enable auto-creation of JMS channel.Auto-Create JMS Channel

Note:

Creating a connection factory and destination with the same name is not allowed for a
Universal Messaging server instance.
Deleting a JNDI destinationwill not delete the channel or queue that exists in the Universal
Messaging server instance.

Channel Configuration
You can view, create, update, and delete a channel using the Command Central web or
command-line interface.

You can configure the following properties:

Channel Properties

Description..Property...

Required. Name of the channel to be created.Name

Universal Messaging Administration Guide 10.3 377

3 Using Command Central to Manage Universal Messaging



Description..Property...

Note:
Once a channel is created, you cannot edit the channel name.

Type of channel. Universal Messaging channel types:Type

Transient

Simple

Reliable

Persistent

Mixed (default)

Off-heap

Paged

Specifies how long (in milliseconds) each event is retained on
the channel after being published. For example, if you specify a

TTL (ms)

TTL of 10000, the events on the channel will be automatically
removed by the server after 10000 milliseconds. Specify 0 for
events to remain on the channel indefinitely.

Event capacity of the channel. Specifies the maximum number
of events that can be on a channel, once published. Specify 0 to

Capacity

store unlimited events. The maximum channel capacity is
2147483646.

Channel or queue to be used to store events that are purged
before being consumed.

Dead event store

Type of engine to be used for the channel. By default, Universal
Messaging retains all events on the channel for a specified TTL,

Engine

modify the retention behavior by selecting JMS engine orMerge
engine.

Selected automatically if theUniversalMessaging server instance
is part of a cluster.

Cluster-wide

Absolute path to the Protocol Buffer (protobuf) descriptor file
that is stored on the machine where Software AG Platform
Manager is installed.

Protobuf descriptor

Storage Properties

378 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Description..Property...

Select to retain events till they reach their TTL. Cancel the
selection to purge events from the channel storage file.

Auto-maintenance

Select to prevent publishing of data when the channel is full.
Cancel the selection to purge the oldest published event.

Honor capacity

Select for the events to be stored in the cachememory and reused.
Cancel the selection to read and stored in the file store.

Enable caching

Select to enable caching during reload.Cache on reload

Select to enable read buffering for the store on the Universal
Messaging server.

Enable read buffering

Select to enable multicast client to receive events over multitask
connections.

Enable multicast

Read buffer size in bytes.Read buffer size

Select to sync each write to the file system.Sync each write

Configurable only when Sync each write is selected. Number
of events that is to be synced with the file system at once.

Sync batch size

Configurable only when Sync each write is selected. Time in
milliseconds (ms) between syncs with the file system.

Sync batch time

Target number of events that are written to an archive after
fanout.

Fanout archive target

Priority range. 0 (lowest) to 9 (highest).Priority

Maximum number of events allowed per file.Events per spindle

Select to stamp events on the channel by the server.Stamp dictionary

Channel Keys

Description...Column...

Name of the channel publish key.Key name

Depth of the channel publish key. Depth is themaximumnumber
of events that can exist on a channel for a specific key name.

Depth

Channel ACL

Universal Messaging Administration Guide 10.3 379

3 Using Command Central to Manage Universal Messaging



Description...Column...

User name in the format user@host or the name of an existing
group.

Subject

Select to allow the user or group to manage ACLs.Manage ACL

Select to grant full privileges to the user or group.Full

Select to allow the user or group to delete events.Purge

Select to allow the user or group to subscribe to events.Subscribe

Select to allow the user or group to publish events.Publish

Select to allow the user or group to connect to this channel using
durable subscriptions.

Named (durable)

Joins

You can add and delete joins, but cannot edit channel join properties.

Description...Column...

Type of join. Outgoing: channel is source. Incoming: channel is
destination.

Type

Destination channel or queue.Destination name

Name of the target instance. Required only if the channel or
queue is in a remote Universal Messaging server instance.

Target instance name

URL of the target Universal Messaging server instance that has
the destination channel or queue for the join.

Target instance URL

Type the filtering criteria, a string or a regular expression. Events
will be routed to the destination channel based on the filtering
criteria.

Filter

Type the maximum number of subsequent joins.Hop count

Last retrieved event ID.Event ID

Select to allow purging of events on the channel.Allow purge

Select to enable archival join. Archival join is a join between a
channel and a queue where events will not be checked for
duplication.

Archival

380 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Queue Configuration
You can view, create, update, anddelete a queue using theCommandCentralweb or command-line
interface.

You can configure the following properties:

Queue Properties

Description..Property...

Required. Name of the queue to be created. You cannot edit the
queue name.

Name

Type of queue. Universal Messaging queue types:Type

Transient

Simple

Reliable

Persistent

Mixed (default)

Off-heap

Paged

Specifies how long (inmilliseconds) each event is retained in the
queue after being published. For example, if you specify a TTL

TTL (ms)

of 10000, the events on the queue will be automatically removed
by the server after 10000 milliseconds. Specify 0 for events to
remain on the queue indefinitely.

Event capacity of the queue. Specifies the maximum number of
events that can be on a queue once published. Specify 0 to store
unlimited events. The maximum queue capacity is 2147483646.

Capacity

Channel or queue to be used to store events that are purged
before being consumed.

Dead event store

Selected automatically if theUniversalMessaging server instance
is part of a cluster.

Cluster-wide

Absolute path to the Protocol Buffer descriptor file that is stored
on themachinewhere SoftwareAGPlatformManager is installed.

Protobuf descriptor

Storage Properties

Universal Messaging Administration Guide 10.3 381

3 Using Command Central to Manage Universal Messaging



Description..Property...

Select to retain events till they reach their TTL. Cancel the
selection to purge events from the queue storage file.

Auto-maintenance

Select to prevent publishing of datawhen the queue is full. Cancel
the selection to purge the oldest published event.

Honor capacity

Select for the events to be stored in the cachememory and reused.
Cancel the selection to read and stored in the file store.

Enable caching

Select to enable caching during reload.Cache on reload

Select to enable read buffering for the store on the Universal
Messaging server.

Enable read buffering

Select to enable multicast client to receive events over multitask
connections.

Enable multicast

Read buffer size in bytes.Read buffer size

Select to sync each write to the file system.Sync each write

Configurable only when Sync each write is selected. Number
of events that is to be synced with the file system at once.

Sync batch size

Configurable only when Sync each write is selected. Time in
milliseconds (ms) between syncs with the file system.

Sync batch time

Target number of events that are written to an archive after
fanout.

Fanout archive target

Priority range. 0 (lowest) to 9 (highest).Priority

Maximum number of events allowed per file.Events per spindle

Select to stamp events on the channel by the server.Stamp dictionary

Queue ACL

Description...Column...

User name in the format user@host or the name of an existing
group.

Name

Select to allow the user or group to manage ACLs.Manage ACL

Select to grant full privileges to the user or group.Full

Select to allow the user or group to purge events.Purge

Select to allow the user or group to peek events.Peek

Select to allow the user or group to push events.Push

382 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Description...Column...

Select to allow the user or group to pop events.Pop

Joins

You can view the following join properties:

Description...Column...

Type of join.Type

Destination channel.Destination name

Name of the target instance. Required only if the target channel
is in a remote Universal Messaging server instance.

Target instance name

URL of the target Universal Messaging server instance that has
the destination channel for the join.

Target instance URL

Destination channel.Remote node

Maximum number of subsequent joins.Hop count

Last retrieved event ID.Event ID

Allow purging of events in the queue.Allow purge

Archival join is a join between a channel and a queue where
events will not be checked for duplication.

Archival

Zones
Zones are a logical grouping of one or more Universal Messaging server instances (realms) that
maintain active connections to each other. Each Universal Messaging server instance can be a
member of zero or one zone, but a server instance cannot be a member of more than one zone. For
more information about zones, see the Zones section in the Universal Messaging Concepts guide.

You can create, edit, or delete a zone using the Command Central web user interface. You can
create Zone with Realms consisting one or more reams, or create Zone with Clusters consisting
one ormoreUniversalMessaging clusters. You can export the zone configuration using theExport
option.

Important:
If the server instances that youwant to add to the zone have only nsps or nhps interfaces, ensure
that the keystore and truststore of each server instance contain the certificates required for
communicating with the rest of the server instances. To do so for a server instance:

1. Create a keystore and a truststore.
2. Import the certificate of the server instance into the key store.
3. Import the certificates of all servers that you want to add to the zone into the truststore.

Universal Messaging Administration Guide 10.3 383

3 Using Command Central to Manage Universal Messaging



4. Add the paths to the keystore and truststore, aswell as the keystore and truststore passwords,
to the corresponding JSSE system properties in the Server_Common.conf file of the server
instance. The file is located in the Software AG_directory
\UniversalMessaging\server\instanceName\bin directory.

The table describes the zone parameters required to create a zone:

Specify...Configure...

Required. Name of the zone, it is used to uniquely identify this
zone.

Zone name

Required. Provide server URL and name if you are creating a
Zone with Realms or provide all or one of the cluster nodes if
you are creating a Zone with Clusters.

Servers (for Zone with Realms)

or

Clustered servers (for Zonewith
Clusters)

Server URL: Universal Messaging server URL.

Server name: Name of the Universal Messaging server.

Cluster configuration: Automatically populated with the
cluster name.

Note:
You can provide any one cluster node and all the running
nodes of the cluster will be added to the zone.

Java System Properties
You can add, view, edit, and delete Java system properties from the Command Central web user
interface. Restart the Universal Messaging instance for the changes to take effect.

Note:
You cannot delete the default Java system properties that are already present.

To export the Java system properties in XML format, click Export. Click Edit to add a custom
property.

You can edit the following Java system properties:

DescriptionProperty

Name of the license file.LICENCE_FILE

Absolute path to the location of the license file.LICENCE_DIR

Absolute path to the location of the data directory.DATADIR

Note:
Modifying the DATADIR property does not copy the existing
data directory to the new location.

384 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



You can delete a property value by passing an empty value for the property, this will revert the
property to its default value.

JVM Options
You can add, view, edit, and delete the JVMoptions from the CommandCentral web user interface.
Restart the Universal Messaging instance for the changes to take effect.

The JVM options are stored in the Server_ Common.conf file located in the
<InstallDir>/UniversalMessaging/server/<InstanceName>/bin folder. If you add a custom JVM
option, it is added to the Custom_Server_Common.conf file. These options are given to the Java
Service Wrapper when it launches the JVM.

Formore information about the Java ServiceWrapper, see Software AG Infrastructure Administrator's
Guide.

To export the JVM options in XML format, click Export. Click Edit to add a custom JVM option.

Note:
You can edit but cannot delete the default JVM options that are already present.

Cluster Management

Before You Create a Universal Messaging Cluster

Before you create or update a Universal Messaging cluster:

Ensure that the server instances that you want to add to the cluster are running.

Verify that the permissions on the server machines allow connections to the other servers in
the cluster.

Ensure that the /naming/defaultContext channel exists only on one or none of the nodes that
will form the cluster. The Universal Messaging server instance used as a JNDI provider uses
the /naming/defaultContext channel to store JMS references and JNDI objects. If channels exists
on multiple nodes, you cannot create the cluster.

Ensure that the keystore and truststore of each server instance in the cluster contain the
certificates required for communicating with the rest of the server instances. This is required
when the server instances that youwant to add to the cluster have only nsps or nhps interfaces.
Perform the following steps for a server instance:

1. Create a keystore and a truststore.

2. Import the certificate of the server instance into the keystore.

3. Import the certificates of all servers that you want to add to the cluster into the truststore.

4. Add the paths to the keystore and truststore, as well as the keystore and truststore
passwords, to the corresponding JSSE system properties in the Server_Common.conf file

Universal Messaging Administration Guide 10.3 385

3 Using Command Central to Manage Universal Messaging



of the server instance. The file is located in the Software AG_directory
\UniversalMessaging\server\instanceName\bin directory.

Cluster Configuration Fields

Specify...Field

Unique cluster name.Cluster Name

Server instances URL (for example, nsp://127.0.0.1:9002) of each server node.Server URL

When you save the cluster details, the Server Name field is populated with
the name of the server corresponding to the specified server URL.

Name of the site (Optional) to which the server node belongs.Cluster Site

Nameof the primary site (Optional), if you have configured sites in the cluster.Prime Site

Cluster Configuration Tasks Supported

Cluster configuration tasks that you can perform:

Create a cluster of two ormore server instances. The cluster create operation converts the local
stores to cluster-wide stores for the selected master node. For the other nodes, the stores must
be empty for the cluster create operation to be successful.

Add one or more server instances to the existing cluster

Remove one or more server instances from the existing cluster

Upgrade a cluster

Create sites and assign server instances to the sites

Assign a site as the prime site of a cluster

Remove one or more server instances from a cluster site

Remove sites from a cluster

Delete a cluster

Note:
The cluster delete operation does not delete any stores on the nodes.

Migrate a cluster

Cluster Migration

You can now automatically migrate Universal Messaging clusters using Command Central
composite templates. Use Command Central composite templates to migrate all the Universal

386 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Messaging server instances that are part of the cluster, and add the following property to resolve
the cluster node connections successfully after migration:

Add the following property to the um-cluster section of the composite template YAML file
present in the following directory: <InstallDir>/profiles/CCE/data/templates/composite :

<ClusterSettings>
...

<ExtendedProperties>
<Property name="migrationType">SAME_HOST or CROSS_HOST</Property>

</ExtendedProperties>
</ClusterSettings>

Note:
A Universal Messaging server instance mapping file called remote_realms_bootstrap.conf
containing information about the newUniversalMessaging hosts is automatically generated
in each of the Universal Messaging server instances. The mapping file is used to identify
the new hosts, and to form the new cluster.

Universal Messaging Administration Types

CommandCentral lets you administer andmonitor the following on aUniversalMessaging server
instance:

Durable Subscribers

Channels

Queues

Durable Subscribers
You can search,monitor, and delete durable subscribers for a UniversalMessaging server instance.
You can browse and purge events on a specific durable subscriber.

Types of durable subscribers:

Shared

Shared - Queued

Priority

Serial

Durable

Note:
You can purge events only for shared durable subscribers.

The table displays the following durable subscriber attributes:

Universal Messaging Administration Guide 10.3 387

3 Using Command Central to Manage Universal Messaging



DescriptionAttribute

Name of the durable subscriber.Name

Name of the channel to which the durable subscriber belongs.Channel

Type of the durable subscriber (Shared, Shared -Queued, Priority,
Serial, or Durable).

Durable type

Event ID of the last successfully consumed event.Last event ID

The number of events outstanding for a particular durable
subscriber.

Outstanding events

Note:
The outstanding event count displayed for a non-shared
durable is only an estimate.

The last date and time when the durable subscriber read,
committed, or rolled back an event.

Last read time

Select a durable subscriber to view:

Durable details

Browse events

Bulk purge

The Durable details page contains the following information about a durable subscriber:

Details

DescriptionAttribute

Name of the durable subscriber.Name

Name of the channel to which the durable subscriber belongs.Channel

Type of the durable subscriber (Shared, Shared -Queued, Priority,
Serial, or Durable).

Durable type

Whether the durable subscriber is on a channel that is part of a
Universal Messaging cluster.

Cluster-wide

Whether the durable subscriber is persistent. Persistent durable
subscribers retrieve the last event ID consumed before the
Universal Messaging server instance was restarted.

Persistent

Events are filtered based on the defined selector.Selector

Status

388 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionAttribute

Event ID of the last successfully consumed event.Last event ID

The size of the store available for the Shared - Queued durable.Store size (KB)

The number of outstanding events for the durable subscriber.Total events

The number of outstanding events waiting for a commit or a
rollback.

Pending events

The last date and time when the durable subscriber read,
committed, or rolled back an event.

Last read time

The last time the durable was written to. Typically, this is the
last time an event was added to the durable subscriber.

Last write time

Connections

DescriptionAttribute

Connection ID.ID

Client subscription mode (subscription based or getNext).Mode

Window size specified by the client.Max pending

Total acknowledged events.Acknowledged

Total rolled back events.Rolled back

Event queues waiting to be acknowledged or rolled back.Pending

Last time the session acknowledged, rolled back, or read an event
from the durable subscriber.

Last read time

The Browse events page displays the event list and lets you to browse events for a durable
subscriber. Events are displayed in the order of old to new.Amaximumof 1000 events are displayed
in the table with a maximum combined size of 10 MB. For example, if two events of size 10 MB
and 100 MB are present for the durable subscriber, only the event of size 10 MB is displayed, and
no other events are displayed. Click Browse events to refresh the events displayed in the table.

DescriptionAttribute

Unique ID to identify the event.Event ID

Specifies how long (in milliseconds) each event is retained.TTL (ms)

Shows the tag information of the event if an event tag exists.Tag

Content of the event.Event data

Universal Messaging Administration Guide 10.3 389

3 Using Command Central to Manage Universal Messaging



DescriptionAttribute

Note:
If the payload is Protocol Buffers (Protobuf), the event data
will contain the message "Protobuf payload" and not the
decoded payload.

Size of the event in bytes.Event size (bytes)

Note:
Event size is the total size of the event that is the sum of event
data and event properties.

Event properties represented as key-value pairs.Event properties

Shows whether the event is persistent or not.Persistent

You can select an event ID to view the event data and event properties.

TheBulk purge option allows you to purge events in bulk for a durable subscriber. You can purge
events by providing an event range, event filter, or purge all the events.

Channels
You can search and monitor the following channel attributes:

DescriptionAttribute

Name of the channel.Name

Event ID of the last event that was consumed from the channel.
Event ID is -1 if the channel is empty.

Event ID

Number of events in the channel that are yet to be consumed.Events

Number of current connections to the channel.Current Connections

Percentage of free storage available in the channel.% Free

Select a channel to view detailed information about the status of the channel and the durable
subscribers (named objects) subscribed to the channel. You can also delete a durable subscriber
subscribed to the channel.

Queues
You can search and monitor the following queue attributes:

390 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionAttribute

Name of the queue.Name

Event ID of the last event thatwas popped from the queue. Event
ID is -1 if the queue is empty.

Event ID

Number of events in the queue that are yet to be consumed.Events

Number of current connections to the queue.Current Connections

Percentage of free storage available in the queue.% Free

Select a queue to view detailed information about the status of the queue.

Snooping on Channels

Important:
The event snooping functionality works with Command Central 10.4 and higher.

When you select a channel on theUniversal-Messaging-instance_name >Administration >Channels
page in Command Central, you can perform the following operations:

Start snooping on events on the channel.

Stop snooping on events on the channel.

View details about a snooped event.

Purge one or more events from the channel.

Considerations When Snooping on Channels
Consider the following information when you want to snoop on events on a channel:

Snooping on events on a channel is performed per user. Only the user who started snooping
can stop it. However, CommandCentral allowsmore than one person to log in asAdministrator
at the same time, which might result in simultaneous attempts to perform various snooping
operations on the same channel.

When snooping is inactive for five minutes, for example, because the user logged off or
navigated away from the channel details page, the snoop stops automatically.

If the Universal Messaging server becomes unavailable after the snoop on the channel started,
Command Central stops snooping on all channels on that Universal Messaging server for all
Command Central users. If you try to start snooping while the Universal Messaging server is
still unavailable, Command Central returns an error.

Starting the Channel Snoop
The event snooping functionality works with Command Central 10.4 and higher.

Universal Messaging Administration Guide 10.3 391

3 Using Command Central to Manage Universal Messaging



To start snooping on events on a channel

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instance_name > Administration > Channels.

2. Select the channel on which you want to start snooping on events, and then click the Snoop
tab.

3. Do one of the following:

To snoop on all events published on the channel, click Start.

To snoop on a range of events, in the From Event ID field specify the ID of the first event
in the range, and in the To Event ID field, specify the ID of the last event in the range. Click
Start. You can also specify additional filtering criteria based on the properties of the event.

Note:
If you do not specify a value in the From Event ID field, the range of events starts with
the first event on the channel and ends with the event specified in the To Event ID field.
If you do not specify a value in the To Event ID field, the range of events starts with the
event specified in the From Event ID field and ends with the last event on the channel.

Command Central populates the snooped events table with the events published on the channel.

Stopping the Channel Snoop

To stop snooping on events on a channel

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instance_name > Administration > Channels.

2. Select the channel on which you want to stop snooping.

3. Click the Snoop tab, and then click Stop.

Viewing Channel Event Details
After you start snooping on a channel in the Command Central web user interface, the snooped
events table on the channel details page displays information about each event including the event
ID, tag, time to live (TTL), and data, as well as whether the event is persistent.

When you select an event in the table, you can view additional details about the event including
the type of event (persistent, transient, or protobuf), a hexadecimal view of the event data, an
ASCII representation of the event data, the header and properties of the event, and the Protobuf
descriptor for Protobuf events.

392 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



If the event is a Protobuf event and its Protobuf descriptor matches the name of a Protobuf file
descriptor that has already been uploaded on the channel, the ASCII representation of the event
is the decoded Protobuf content in JSON format.

Purging Snooped Events from a Channel
After you start snooping on a channel, you can purge snooped events from the channel. You can
purge a single event, a range of events, or all events.

For information about how to start snooping, see “Starting the Channel Snoop” on page 391.

To purge events

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instance_name > Administration > Channels.

2. Select the channel on which you want to purge snooped events, and then click the Snoop tab.

3. (Optional) To purge a single event directly from the snooped events table, click .

4. Click Purge Events and on the Purge Events page, do one of the following:

To purge all events, click Purge.

To purge a range of events, in the From Event ID field specify the ID of the first event in
the range, and in the To Event ID field, specify the ID of the last event in the range. Then
click Purge.

Note:
If you do not specify a value in the From Event ID field, the range of events to purge
starts with the first event on the channel and ends with the event specified in the To
Event ID field. If you do not specify a value in the To Event ID field, the range of events
to purge starts with the event specified in the From Event ID field and ends with the
last event on the channel.

Snooping on Queues

Important:
The event snooping functionality works with Command Central 10.4 and higher.

When you select a queue on the Universal-Messaging-instance_name > Administration > Queues
page in Command Central, you can perform the following operations:

Start snooping on events on the queue.

Stop snooping on events on the queue.

View details about a snooped event.

Universal Messaging Administration Guide 10.3 393

3 Using Command Central to Manage Universal Messaging



Purge all events from the queue.

Considerations When Snooping on Queues
Consider the following information when you want to snoop on events on a queue:

Snooping on events on a queue is performed per user. Only the user who started snooping
can stop it. However, CommandCentral allowsmore than one person to log in asAdministrator
at the same time, which might result in simultaneous attempts to perform various snooping
operations on the same queue.

When snooping is inactive for five minutes, for example, because the user logged off or
navigated away from the queue details page, the snoop stops automatically.

If the Universal Messaging server becomes unavailable after the snoop on the queue started,
Command Central stops snooping on all queues on that Universal Messaging server for all
Command Central users. If you try to start snooping while the Universal Messaging server is
still unavailable, Command Central returns an error.

Starting the Queue Snoop
The event snooping functionality works with Command Central 10.4 and higher.

To start snooping on events on a queue

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instance_name > Administration > Queues.

2. Select the queue onwhich youwant to start snooping on events, and then click the Snoop tab.

3. Do one of the following:

To snoop on all events published on the queue, click Start.

To snoop on a range of events, in the From Event ID field specify the ID of the first event
in the range, and in the To Event ID field, specify the ID of the last event in the range. Click
Start. You can also specify additional filtering criteria based on the properties of the event.

Note:
If you do not specify a value in the From Event ID field, the range of events starts with
the first event on the queue and ends with the event specified in the To Event ID field.
If you do not specify a value in the To Event ID field, the range of events starts with the
event specified in the From Event ID field and ends with the last event on the queue.

Command Central populates the snooped events table with the events published on the queue.

394 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Stopping the Queue Snoop

To stop snooping on events on a queue

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instance_name > Administration > Queues.

2. Select the queue on which you want to stop snooping.

3. Click the Snoop tab, and then click Stop.

Viewing Queue Event Details
After you start snooping on a queue in the Command Central web user interface, the snooped
events table on the queue details page displays information about each event including the event
ID, tag, time to live (TTL), and data, as well as whether the event is persistent.

When you select an event in the table, you can view additional details about the event including
the type of event (persistent, transient, or protobuf), a hexadecimal view of the event data, an
ASCII representation of the event data, the header and properties of the event, and the Protobuf
descriptor for Protobuf events.

If the event is a Protobuf event and its Protobuf descriptor matches the name of a Protobuf file
descriptor that has already been uploaded on the queue, the ASCII representation of the event is
the decoded Protobuf content in JSON format.

Purging Snooped Events from a Queue
After you start snooping on a queue, you can purge all snooped events from the queue.

For information about how to start snooping, see “Starting the Queue Snoop” on page 394.

To purge events

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instance_name > Administration > Queues.

2. Select the queue on which you want to purge the snooped events, and then click Purge All
Events.

Universal Messaging Administration Guide 10.3 395

3 Using Command Central to Manage Universal Messaging



Publishing Events

Publishing Events on a Channel or Queue

Important:
The event publishing functionality works with Command Central 10.4 and higher.

Use the following procedure to create a new event and publish it on aUniversalMessaging channel
or queue, using the Command Central web user interface.

To publish an event on a channel or queue

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instance_name > Administration.

2. Do one of the following:

To publish an event on a channel, from the drop-down menu, select Channels and then
select the channel on which you want to publish the event.

To publish an event on a queue, from the drop-downmenu, select Queues and then select
the queue on which you want to publish the event.

3. Click the Publish tab and specify values for the following fields as required:

ValueProperty

Required. The content of the event.Event data

Optional. The tag of the event.Tag

Optional. The time-to-live (TTL) of the event in milliseconds.
Defines how long the event remains available on the channel or

TTL (ms)

queue. If you specify a TTL of 0, the event remains on the channel
or queue indefinitely.

Optional. Whether the event is persistent.Persistent

Optional. Whether the event is transient.Transient

Optional. Click to add event properties. For each property,
specify the name, type, and value.

Properties

Optional. The number of times to publish the event. If you do not
select the option, it defaults to 1.

Number of publishes

396 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



ValueProperty

Optional.Whether to send the event as a Protobuf event. Formore
information about how to publish Protobuf events, see
“Publishing Protobuf Events” on page 397.

Publish as a Protobuf
event

Required only for Protobuf events. The Protobuf file descriptor
that defines the message schema to be used for converting the
event data into a Protobuf event.

Protobuf descriptor

4. Click Publish.

When you start snooping on events on the channel or queue, CommandCentral displays the event
in the snooped events table.

For information about how to snoop on channels and queues, see “Snooping on Channels” on
page 391 and “Snooping on Queues” on page 393.

Publishing Protobuf Events

Important:
The event publishing functionality works with Command Central 10.4 and higher.

Perform the following actions to publish a Protobuf event, using the Command Central web user
interface:

1. Before publishing the Protobuf event, upload on the channel or queue the Protobuf file
descriptor that defines the Protobuf schema, as part of a file descriptor set. For information
about uploading a Protobuf file descriptor set on a channel or queue, see “Channel
Configuration” on page 377 or “Queue Configuration” on page 381.

2. When you create the event on the Publish tab for a channel or queue, do the following:

a. In the Event data field, specify a JSON string that represents the Protobuf event.

b. Select the Publish as a Protobuf event option.

c. In the Protobuf descriptor field, specify the name of the Protobuf file descriptor that
defines the message schema.

Important:
If you do not specify a Protobuf descriptor or if the specified Protobuf descriptor value
does not correspond to any Protobuf file descriptor on the channel or queue, the system
returns an error that no Protobuf descriptor was found on the channel or queue and
does not create a Protobuf event.

For information about how to publish events, see “Publishing Events on aChannel orQueue” on
page 396.

For more information about working with Protobuf events, see the "Google Protocol Buffers"
section in the Universal Messaging Concepts guide.

Universal Messaging Administration Guide 10.3 397

3 Using Command Central to Manage Universal Messaging



Republishing Events on a Channel or Queue
Before republishing a snooped event, you must start snooping on the channel or queue. For
information about how to start snooping, see “Starting the Channel Snoop” on page 391 and
“Starting the Queue Snoop” on page 394.

To republish events

1. In Command Central, go to Environments > Instances > All >
Universal-Messaging-instance_name > Administration.

2. Do one of the following:

To republish an event on a channel, from the drop-downmenu, select Channels and then
select the channel on which you want to republish the event.

To republish an event on a queue, from the drop-down menu, select Queues and then
select the queue on which you want to republish the event.

3. Click the Snoop tab and then click the snooped event that you want to republish.

4. Click Republish and modify the event fields as required.

5. Optionally, select Purge Original Event.

6. Click Publish.

Universal Messaging Cloud Transformation

Universal Messaging Integration with LAR
The current on-premise asset deploymentmodel uses a push-modelwhich is supported inDeployer
and Command Central Deployer API. On cloud-based deployment, the cloud and container
deployments require a pull-model approach for asset deployment rather than push-model.

The pull-model is based on Landscape Asset Repository (LAR) and its change listeners. Universal
Messaging needs to integrate with the LAR based updatemechanism for deployment of its assets.

Configuration types supported on cloud deployment

The following table lists the configuration types supported on cloud deployments:

398 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionConfiguration type

On JNDI look up for the connection factory, connection factory URL
will be set to the value used while building the JNDI context
(java.naming.provider.url)

JNDI connection factory

For native messaging, Integration Server creates the channel or queue
as soon as the publishable document type is created. Thiswould include
the protocol buffer definitions.

JNDI destinations

Only JMS destination deployment is supported for cloud-based
deployment as native ones are created by Integration Server. All the
JNDI destinations are exported with the parameter autoCreateDest set
to true, so that all the channels or queues are created automatically. The
newly created channel or queueswill have default UniversalMessaging
configurations. For more information about JNDI destinations, see
“JNDI Asset Configuration Commands” on page 412.

The durables will be created automatically after the Integration Server
triggers are started for the first time.

Realm ACLs and Groups. The basic authentication is enabled by default and the default ACL
setting will have full privileges.

Common Users. The Universal Messaging users are migrated and the users are created (stored
in users.txt file) with custom passwords.

Note:
If you want to change the instance name, server name or runtime component ID, you have to
manually edit the template.yaml file. The template.yaml file is generated by Designer and
contains Universal Messaging configuration.

Universal Messaging Logs

You can view, download, and search all theUniversalMessaging logs at one place in the Command
Central web user interface. You can access the logs for a Universal Messaging server instance by
selecting a Universal Messaging instance name and clicking the Logs tab.

Universal Messaging Inventory

When you view installations in an environment, Command Central displays the Universal
Messaging server instances listed in the <InstallDir>/UniversalMessaging/server directory of an
installation. Command Central lists all the folders (except the templates) in the server directory.

Universal Messaging Lifecycle Actions

You can start, stop, and restart a Universal Messaging server instance from the Command Central
web user interface. The following legend describes what each one of the lifecycle operations.

Universal Messaging Administration Guide 10.3 399

3 Using Command Central to Manage Universal Messaging



Start. Start a server instance that has stopped.

Stop. Stop a running server instance.

Restart. Restart a running server instance.

Universal Messaging KPIs

You can view the following key performance indicators (KPIs) to monitor the performance of the
Universal Messaging servers:

DescriptionKPI

Indicates the utilization of JVM memory.JVMMemory

Themarginal, critical, andmaximum values for this KPI depend
on the maximum memory size of the JVM.

Marginal is 80% of the maximum JVMmemory.

Critical is 95% of the maximum JVMmemory.

Maximum is 100% of the maximum JVMmemory.

Indicates the total number of events currently waiting to be
processed by the fanout engine. If the fanout backlog is more

Fanout Backlog

than the critical value, there is a possibility that the subscribers
receive the published events after some delay.

The KPI uses the following marginal, critical, and maximum
values:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water mark) of
fanout backlog. Default is 100.

Indicates the total number of tasks in the read,write, and common
read/write pools. If the number of read and write tasks queued

Queued Tasks

is more than the critical value, it indicates that the Universal
Messaging server is unable to match the speed of the publishers
and subscribers.

The KPI uses the following marginal, critical, and maximum
values:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

400 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionKPI

Maximum is 100% of the peak value (high-water mark) of
read and write tasks queued. Default is 100.

Universal Messaging Run-time Monitoring Statuses

TheCommandCentral instances page displays the run-time status of aUniversalMessaging server
instance in the status column. The Universal Messaging can have one of the following run-time
status:

Online : Server instance is online.

Failed : Server instance failed. For example, the Universal Messaging server instance
stopped unexpectedly due an error or system failure.

Stopped : Server instance is not running.

Stopping : Server instance is stopping.

Unresponsive : Server instance is running, but it is unresponsive. When none of the server
interfaces are connected to the server.

Unknown : Server instance status cannot be determined.

When you have set up a Universal Messaging cluster, the run-time status indicates if a server
instance is:

Online Master : Server instance is online and it is the master node in the cluster.

Online Slave : Server instance is online and it is the slave node in the cluster.

Error : Server instance is part of a cluster that does not satisfy the requisite quorum.

Universal Messaging and the Command Line Interface

Universal Messaging supports the following Command Central commands:

sagcc create configuration data

sagcc delete configuration data

sagcc get configuration data

sagcc update configuration data

Universal Messaging Administration Guide 10.3 401

3 Using Command Central to Manage Universal Messaging



sagcc get configuration instances

sagcc list configuration instances

sagcc get configuration types

sagcc list configuration types

sagcc exec configuration validation create

sagcc exec configuration validation delete

sagcc exec configuration validation update

sagcc create instances

sagcc delete instances

sagcc list instances

sagcc list instances supportedproducts

sagcc get inventory components

sagcc exec lifecycle

sagcc get diagnostics logs

sagcc get diagnostic logs export file

sagcc list diagnostics logs

sagcc get monitoring

sagcc exec administration product

Important:
When a Universal Messaging server instance is running as a service, you cannot perform
administrative tasks such as check the status, or start and stop the server instance.

For general information about using the commands, see Software AG Command Central Help.

Universal Messaging Instance Management Commands

Creating an Instance on the Command Line

The following table lists the parameters that you usewhen you create aUniversalMessaging realm
server, Enterprise Manager, or Template Applications instance using the Command Central
instance management commands.

402 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionParameterCommand

The product ID for the Universal Messaging
realm server, Enterprise Manager, or Template
Applications instance, respectively.

NUMRealmServer,
NUMEnterpriseManager, and
NUMTemplateApplications

sagcc create
instances

Required. A name for the new Universal
Messaging instance.

instance.name=name

Optional. An IP address for the Universal
Messaging server interface. If you do not specify
a value, the default value is 0.0.0.0.

instance.ip=ipAddress

Optional. A port number for the Universal
Messaging server. If you do not specify a value,
the default value is 9000.

instance.port=port

Optional. Absolute path to the Universal
Messaging server data directory. If you do not

instance.dataDir

specify a path, the default directory location is
used for creating the data directory. Location of
the default directory is:
<InstallDir>/UniversalMessaging/server/<InstanceName>

Optional. Absolute path to the Universal
Messaging license file. If you do not specify a

license.file

path, the default license is used. Location of the
default directory is:
<InstallDir>/UniversalMessaging/server/<InstanceName>

Optional. Initial configuration settings for the
UniversalMessaging server instance. Values are:

instance.config.profile={wM|TC|CUSTOM}

wM: webMethods suite use cases.

TC: Standalone use cases.

CUSTOM: Custom profile.

Required if the instance.config.profile
parameter value is CUSTOM. Absolute path to the
custom profile XML file.

instance.config.file=file_path

Optional. Specify if a Windows service will be
registered during instance creation. The default
value is false.

install.service={true|false}

Important:
You cannot rename a Universal Messaging instance.

Universal Messaging Administration Guide 10.3 403

3 Using Command Central to Manage Universal Messaging



Examples

To check if UniversalMessaging supports instancemanagement operations throughCommand
Central for a node with alias “messagingNode”:
sagcc list instances messagingNode supportedproducts

To create a new instance for an installedUniversalMessaging realm serverwith instance name
“umserver” and port number “9000” on a node with alias “messagingNode”:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
instance.ip=0.0.0.0 instance.port=9000

To create a new instance for an installed Universal Messaging server with instance name
“umserver” and port number “9000”, and with a custom data directory path and license file,
on a node with alias “messagingNode”:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
instance.ip=0.0.0.0 instance.port=9000
instance.dataDir=Data_Directory_Absolute_Path
license.file=absolute path to the license file

To create a new instance for an installedUniversalMessaging realm serverwith instance name
"umserver" and port number “9000” on a node with alias “messagingNode”, and provide
initial configuration settings:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
instance.ip=0.0.0.0 instance.port=9000 instance.config.profile=wM or TC

To create a new instance of Universal Messaging server instance named "umserver" on port
number “9000” of the node with alias “messagingNode”, and provide custom initial
configuration settings:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
instance.ip=0.0.0.0 instance.port=9000 instance.config.profile=CUSTOM

instance.config.file=absolute path to the custom profile XML file

To register a Windows service when creating the Universal Messaging server instance named
“umserver” on port number “9000” of the node with alias “messagingNode”:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
install.service=true

To read the following properties of Universal Messaging server named “umserver":

Port number

License path

Interface IP address

Server data directory path

404 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Service status
sagcc list instances messagingNode Universal-Messaging-umserver

Note:
The service associatedwith the instance is automatically deletedwhen the instance is deleted.

To create an Enterprise Manager instance named “EM1”:
sagcc create instances messagingNode NUMEnterpriseManager instance.name=em1
instance.ip=0.0.0.0 instance.port=9000

Use the Universal Messaging Instance Manager tool to delete the Enterprise Manager and
Template Applications instances. You cannot use Command Central commands for deleting
these instances as they are not listed in the product inventory.

Note:
You can create a Template Applications instance using the same command used to create
an Enterprise Manager instance.

Updating an Instance on the Command Line

To update the “umserver” Universal Messaging server instance existing on the node with alias
“messagingNode”:
sagcc update instances messagingNode Universal-Messaging-umserver
install.service=true or false

Deleting an Instance on the Command Line

To delete the “umserver” Universal Messaging server instance existing on the node with alias
“messagingNode”:
sagcc delete instances messagingNode Universal-Messaging-umserver

Configuration Types That the Universal Messaging Server
Supports
The Universal Messaging realm server run-time component supports creating instances of the
configuration types listed in the following table.

Use to...Configuration Type

Configure and manage users of a Universal Messaging
server instance. COMMON-LOCAL-USERS-userId

COMMON-LOCAL-USERS

supports configuring the user ID and password of each
user. By default, the users have administrator privileges
for the Universal Messaging server instance.

Universal Messaging Administration Guide 10.3 405

3 Using Command Central to Manage Universal Messaging



Use to...Configuration Type

Configure the Universal Messaging-specific SagLic
license file.

COMMON-LICENSE

View the location of a Universal Messaging server
instance’s license file.

COMMON-LICLOC

You cannot change the location of the license file.

Extended Java system properties.COMMON-JAVASYSPROPS

Extended JVM options.COMMON-JVM-OPTIONS

Configure the following JNDI connection factories:UM-JNDI-CF

Connection Factory

Topic Connection Factory

Queue Connection Factory

XA Connection Factory

Configure the following JNDI destinations:UM-JNDI-DEST

Topics

Queues

Configure an active/active Universal Messaging cluster.COMMON-CLUSTER

Configure the initialmemory size andmaximummemory
size of a Universal Messaging server instance.

COMMON-MEMORY

Configure the Universal Messaging server interfaces.COMMON-PORTS

Note:

You cannot change the protocol, bind address,
port number, or alias of a port of an existing server
interface.
If you change the SSL certificates of a secured
interface, you must restart the interface.

Create and manage Universal Messaging zones.UM-ZONE

Create and manage Universal Messaging channels.UM-CHANNELS

Create and manage Universal Messaging queues.UM-QUEUES

ManageUniversalMessagingAccess Control List (ACL).UM-REALM-ACL

Manage Universal Messaging security groups.UM-GROUPS

DEPRECATED. Use COMMON-JAVASYSPROPS.COMMON-SYSPROPS

406 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



User Configuration Commands
You can perform the following user configuration tasks on a Universal Messaging server instance
from the command line interface:

List the path and the users existing in the user repository using the
sagcc get configuration instances node_alias Universal-Messaging-umserver command.

Retrieve information about a specific user using the
sagcc get configuration instances node_alias Universal-Messaging-umserver
COMMON-LOCAL-USERS-user name command.

Add new users to the user repository using the
sagcc create configuration data node_alias Universal-Messaging-umserver
COMMON-LOCAL-USERS --input absolute path to the XML file containing the user ID and
password command.

Update or change the password of an existing user using the
sagcc update configuration data node_alias Universal-Messaging-umserver
COMMON-LOCAL-USERS-user name --input absolute path to the XML file containing new
password command.

Delete existing users from the user repository using the
sagcc delete configuration data node_alias Universal-Messaging-umserver
COMMON-LOCAL-USERS-user name command.

Information to authenticate the users of a Universal Messaging server instance is stored in the
user repository (users.txt file) of the Universal Messaging server instance. The users.txt file is
generated only after you create a new internal user. While creating the user repository, if you
specify a relative path in the jaas.conf file, the users.txt file will be created in a directory relative
to the bin directory of the Universal Messaging server instance.

The path to the users.txt file is added in the jaas.conf file present in
<InstallDir>/UniversalMessaging/server/<InstanceName>/bin/jaas.conf. If you specify a relative
path in the jaas.conf file, the users.txt file will be created in a directory relative to the bin directory
of the Universal Messaging server instance.

Examples

To list the path of the user repository and the users of a Universal Messaging server instance:
sagcc get configuration instances sag01 Universal-Messaging-umserver

where umserver is the name of the Universal Messaging server instance and sag01 is the alias
name of the installation where umserver is running.

To retrieve information of a Universal Messaging server instance user:
sagcc get configuration instances sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user1

Universal Messaging Administration Guide 10.3 407

3 Using Command Central to Manage Universal Messaging



where umserver is the name of theUniversalMessaging server instance, sag01 is the alias name
of the installation where umserver is running, and user1 is the user ID of the user.

To add a user to a Universal Messaging server instance:
sagcc create configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS --input c:\inputxmls\user2.xml

where umserver is the name of theUniversalMessaging server instance, sag01 is the alias name
of the installation where umserver is running, and user2.xml is file that contains the user ID
and the password of the new user.

The user2.xml file has the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<User id="user2">
<Password>test</Password>
</User>

To update the password of a Universal Messaging server instance user:
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user2 --input c:\inputxmls\user2.xml

where umserver is the name of theUniversalMessaging server instance, sag01 is the alias name
of the installation where umserver is running, and user2.xml is the file that contains the new
password of the specified user.

To delete a Universal Messaging server instance user:
sagcc delete configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user2

where umserver is the name of the Universal Messaging server instance and sag01 is the alias
name of the installation where umserver is running.

License Configuration Commands
You can perform the following licensemanagement tasks on aUniversalMessaging server instance
from the Command Central command-line interface:

View the license details of a Universal Messaging server instance using the
sagcc get configuration data node_alias Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging command.

View the license location of a Universal Messaging server instance using the
sagcc get configuration data node_alias Universal-Messaging-umserver
COMMON-LICLOC-Universal-Messaging command.

Add a Universal Messaging license key file with the specified alias to the Command Central
license keymanager using the sagcc add license-tools keys license key alias -i absolute
path to the license file command.

408 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Update a license key file assigned to the specified license key alias using the sagcc update
configuration license node_alias Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging license key alias command.

Examples

To view the license details of a Universal Messaging server instance with
"Universal-Messaging-umserver" component ID that runs in the installation with alias name
“sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging

To view the license file location of a Universal Messaging server instance with
"Universal-Messaging-umserver" component ID that runs in the installation with alias name
“sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-LICLOC-Universal-Messaging

To add a Universal Messaging license key file with the license key alias "um_lic" to the
Command Central license key manager:
sagcc add license-tools keys um_lic -i C:\umlicense\new_license.xml

To update a license key file assigned to the license key alias "um_lic" with
"Universal-Messaging-umserver" component ID that runs in the installation with alias name
“sag01” :
sagcc update configuration license sag01 Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging um_lic

Port Configuration Commands
You can create, update, and delete a port for a Universal Messaging server instance using the
Command Central command-line interface.

Create a port using the sagcc create configuration data node_alias
Universal-Messaging-umserver COMMON-PORTS --input_port_configuration.xml --password
Command Central password command.

The input port configuration XML file should be of the following format:
<PortSettings>

<Port alias="nhp1">
<Enabled>true</Enabled>
<Type>STANDARD</Type>
<Number>9001</Number>
<Protocol>NHP</Protocol>
<Backlog>100</Backlog>
<ExtendedProperties>

<Property name="autostart">true</Property>
<Property name="allowforinterrealm">true</Property>
<Property name="authtime">1000</Property>

Universal Messaging Administration Guide 10.3 409

3 Using Command Central to Manage Universal Messaging



<Property name="EnableNIO">true</Property>
<Property name="acceptThreads">2</Property>
<Property name="receivebuffersize">1310721</Property>
<Property name="SelectThreads">4</Property>
<Property name="advertise">true</Property>
<Property name="allowclientconnections">true</Property>
<Property name="Backlog">100</Property>
<Property name="Alias"/>
<Property name="keyAlias"/>
<Property name="sendbuffersize">1310721</Property>
<Property name="EnableHTTP11">true</Property>
<Property name="EnableJavaScript">true</Property>
<Property name="CORSAllowCredentials">true</Property>
<Property name="CORSAllowedOrigins">*</Property>
<Property name="AjaxLPActiveDelay">100</Property>
<Property name="EnableWebSockets">true</Property>
<Property name="EnableGZipLP">true</Property>
<Property name="MinimumBytesBeforeGZIP">1000</Property>
<Property name="AjaxLPIdleDelay">60000</Property>
<Property name="header1Name">foo</Property>
<Property name="header1Value">bar</Property>
<Property name="header1UserAgent">mozilla</Property>

</ExtendedProperties>
</Port>

</PortSettings>

Modify the configuration of a port using the sagcc update configuration data node_alias
Universal-Messaging-umserver COMMON-PORTS-port name --input_port_configuration.xml
--password Command Central password command.

Delete a port using the sagcc delete configuration data node_alias
Universal-Messaging-umserver COMMON-PORTS-port name --input_port_configuration.xml
--password Command Central password command.

Examples

To create a port for aUniversalMessaging server instancewith "Universal-Messaging-umserver"
component ID that runs in the installation with alias name “sag01”, where input_port.xml is
an XML file containing port configuration information:
sagcc create configuration data sag01 Universal-Messaging-umserver
COMMON-PORTS --input_port.xml --password myccpassword

To update or modify port configuration for a Universal Messaging server instance with
"Universal-Messaging-umserver" component ID that runs in the installation with alias name
“sag01”, where input_port.xml is an XML file containing the updated port configuration
information, and nhp1 is the name of the port to be updated:
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-PORTS-nhp1 --input_port.xml --password myccpassword

Todelete a port for aUniversalMessaging server instancewith "Universal-Messaging-umserver"
component ID that runs in the installation with alias name “sag01”, where input_port.xml is
an XML file containing the updated port configuration information, and nhp1 is the name of
the port to be deleted:

410 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



sagcc delete configuration data sag01 Universal-Messaging-umserver
COMMON-PORTS-nhp1 --input_port.xml --password myccpassword

Security Group Configuration Commands
You can retrieve the security group configuration data for a Universal Messaging server instance
using the sagcc get configuration data node_alias Universal-Messaging-serverName
UM-GROUPS-groupName command.

To retrieve the security group configuration information for a UniversalMessaging server instance
with "Universal-Messaging-umserver" component ID that runs in the installation with alias name
“sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-GROUPS-Everyone

Realm ACL Configuration Commands
You can view the realmACL configuration information for a Universal Messaging server instance
in XML format using the sagcc get configuration data node_alias
Universal-Messaging-serverName UM-REALM-ACL command.

To view the realm ACL configuration information for a Universal Messaging server instance with
"Universal-Messaging-umserver" component ID that runs in the installation with alias name
“sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-REALM-ACL

General Properties Configuration Commands
You can view configuration properties for a specific configuration group by using the sagcc
get configuration data command.

You can update the configuration properties by using the sagcc update configuration data
command.

For information about the configuration properties that the Universal Messaging realm server
supports, see “General Properties” on page 373.

Usage Notes

Parameter names are case sensitive. For parameter values of enumeration type, set values
ranging from 0 to n tomap to the corresponding enumeration values in the CommandCentral
user interface.

The sagcc update configuration data command exits and displays an error at the first instance
of a wrong parameter definition. For example, the command will exit displaying an error if
the MonitorTimer property is assigned a string value.

Universal Messaging Administration Guide 10.3 411

3 Using Command Central to Manage Universal Messaging



Examples

To view the cluster configuration properties for the Universal-Messaging-umserver server
instance:
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-SYSPROPS-Data_Stream_Config

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. Data_Stream_Config is the name of the configuration group.

To update cluster configuration properties for Universal-Messaging-umserver server instance:
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-SYSPROPS-Data_Stream_Config --input c:\datastreamconfig.properties

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running.

COMMON-SYSPROPS-Cluster_Config is the configuration instance ID where COMMON-SYSPROPS is
the configuration type and Data_Stream_Config is the name of the configuration group.

datastreamconfig.properties is the properties file containing the modified configuration
parameters.

The properties file should contain parameter values in the following format:

MonitorTimer=10000
OffloadMulticastWrite=false

SendInitialMapping=true

JNDI Asset Configuration Commands
You can create, view, update, and delete a JNDI asset. Ensure that the Universal Messaging server
instance is running before running the following commands.

View all the configuration types for a Universal Messaging server instance using the sagcc
get configuration types node_alias Universal-Messaging-umserver command.

View all the configuration instances for a Universal Messaging server instance using the sagcc
get configuration instances node_alias Universal-Messaging-umserver command.

Create a new JNDI connection factory by passing parameters defined in an XML file using the
sagcc create configuration data node_alias Universal-Messaging-umserver UM-JNDI-CF
-i absolute path to the XML file command. You can create the following connection factory
types: ConnectionFactory, TopicConnectionFactory, QueueConnectionFactory, and
XAConnectionFactory.

The XML file should contain the parameters in the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>

412 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



<name>connection_factory_name</name>
<type>connection_factory_type</type>
<url>connection_factory_binding_url</url>
<durableType>type of durable</durableType>

</connectionFactory>

Note:
The parameters name, type, and url are required, and the durableType parameter is optional.

Create a new JNDI destination by passing parameters defined in an XML file using the sagcc
create configuration data node_alias Universal-Messaging-umserver UM-JNDI-DEST -i
absolute path to the XML file command. You can create the following destination types:
Topic and Queue.

The XML file should contain the parameters in the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<destination>
<name>destination_name</name>
<type>destination_type</type>
<storeName>jms_channel_or_queue_name</storeName>
<autoCreateDest>true/false</autoCreateDest>

</destination>

name parameter can include upper and lower case alphabetic characters, digits (0-9), double
colon (::), slash (/), and periods (.), for example, destination1. Use the double colon (::) for
specifying nested name space, for example, destination1::destination2.A combination of special
characters in a name is not allowed, for example, destination1::destination2/destination3.
storeName parameter can include upper and lower case alphabetic characters, digits (0-9),
double colon (::), slash (/), and underscores (_) but cannot include periods (.).

Retrieve information about a specific JNDI connection factory using the sagcc get
configuration data node_alias Universal-Messaging-umserver
UM-JNDI-CF-connection_factory_name command.

Retrieve information about a specific JNDI destination using the sagcc get configuration
data node_alias Universal-Messaging-umserver UM-JNDI-DEST-destination_name command.

Update a JNDI connection factory by passing the newparameters defined in an XMLfile using
the sagcc update configuration data node_alias Universal-Messaging-umserver
UM-JNDI-CF-connection_factory_name -i absolute path to the XML file command.

Important:
You can update the URL and the durableType property, you cannot update the name of the
connection factory.

Delete a JNDI connection factory using the sagcc delete configuration data node_alias
Universal-Messaging-umserver UM-JNDI-CF-connection_factory_name command.

Delete a JNDI destination using the sagcc delete configuration data node_alias
Universal-Messaging-umserver UM-JNDI-DEST-destination_name command.

Note:

Universal Messaging Administration Guide 10.3 413

3 Using Command Central to Manage Universal Messaging



Deleting a JNDI destinationwill not delete the channel or queue that exists on the Universal
Messaging server instance.

Usage Notes

Updating JNDI destinations is not supported.

Creating a connection factory anddestinationwith the same name is not allowed for aUniversal
Messaging server instance.

Examples

To view all the configuration types for a Universal Messaging server instance:
sagcc get configuration types sag01 Universal-Messaging-umserver

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running.

To view all the configuration instances for a Universal Messaging server instance:
sagcc get configuration instances sag01 Universal-Messaging-umserver

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running.

To create a new JNDI connection factory by passing parameters defined in an XML file:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF -i C:\jndi\connecton_factory.xml

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-JNDI-CF is the configuration type and C:\jndi\connecton_factory.xml is the
absolute path to the XML file in which the parameters are defined. Example of properties
defined in the XML file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
<name>connectionfactory1</name>
<type>ConnectionFactory</type>
<url>nhp://124.597.890:9100</url>
<durableType>Shared</durableType>

</connectionFactory>

To create a new JNDI destination by passing parameters defined in an XML file:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST -i C:\jndi\destination.xml

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-JNDI-DEST is the configuration type and C:\jndi\destination.xml is the absolute
path to the XML file in which the parameters are defined. Example of properties defined in
the XML file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

414 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



<destination>
<name>topicLookup</name>
<type>destination1</type>
<storeName>topic1</storeName>
<autoCreateDest>true</autoCreateDest>

</destination>

To retrieve information about a specific JNDI connection factory:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionfactory1

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-JNDI-CF is the configuration type and connectionfactory1 is the name of the
JNDI connection factory from which information is to be retrieved.

To retrieve information about a specific JNDI destination:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST-destination1

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-JNDI-DEST is the configuration type and destination1 is the name of the JNDI
destination from which information is to be retrieved.

To update a JNDI connection factory by passing the new parameters defined in an XML file:
sagcc update configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionfactory1 -i C:\jndi\update.xml

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-JNDI-CF is the configuration type, onnectionfactory1 is the name of the
connection factory to be updated, and C:\jndi\update.xml is the absolute path to the XML file
in which the updated parameters are defined. Example of properties defined in the XML file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
<name>connectionfactoryupdated</name>
<type>ConnectionFactory</type>
<url>nhp://124.597.890:9100</url>
<durableType>Serial</durableType>

</connectionFactory>

To delete a JNDI connection factory:
sagcc delete configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionfactory1

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-JNDI-CF is the configuration type and connectionfactory1 is the name of the
JNDI connection factory.

To delete a JNDI destination:
sagcc delete configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST-destination1

Universal Messaging Administration Guide 10.3 415

3 Using Command Central to Manage Universal Messaging



sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-JNDI-DEST is the configuration type and destination1 is the name of the JNDI
destination.

Channel and Queue Configuration Commands
Ensure that the Universal Messaging server instance is running before executing the following
commands:

View all the configuration instances for a Universal Messaging server instance using the sagcc
get configuration instances node_alias Universal-Messaging-umserver command.

Create a channel on a Universal Messaging server instance using the sagcc create
configuration data node_alias Universal-Messaging-umserver UM-CHANNELS -i absolute
path to the XML file containing channel properties command .

Update a channel on a Universal Messaging server instance using the sagcc update
configuration data node_alias Universal-Messaging-umserver UM-CHANNELS-channel_name
-f xml -i absolute path to the XML file containing channel properties command.

Create a queue on aUniversalMessaging server instance using the sagcc create configuration
data node_alias Universal-Messaging-umserver UM-QUEUES -i absolute path to the XML
file containing queue properties command.

Update a queue on aUniversalMessaging server instance using the sagcc update configuration
data node_alias Universal-Messaging-umserver UM-QUEUES-queue_name -f xml -i absolute
path to the XML file containing channel properties command.

Retrieve the configuration information of a specific channel using the sagcc get configuration
data node_alias Universal-Messaging-umserver UM-CHANNELS-channel_name command.

Retrieve the configuration information of a specific queue using the sagcc get configuration
data node_alias Universal-Messaging-umserver UM-QUEUES-queue_name command.

Examples

To view all the configuration instances for a Universal Messaging server instance:
sagcc get configuration instances sag01 Universal-Messaging-umserver

sag01 is the alias name of the installation where the Universal-Messaging-umserver server
instance is running.

To create a channel on a Universal Messaging server instance:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-CHANNELS -i C:\Channels\channel_create.xml

sag01 is the alias name of the installation where the Universal-Messaging-umserver server
instance is running. UM-CHANNELS is the configuration type and channel_create.xml is an XML
file containing the channel attributes of the new channel that is created.

Format of the channel_create.xml file:

416 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Channel>

<name>channel1</name>
<type>Persistent</type>
<ttl>0</ttl>
<capacity>0</capacity>

.......
</Channel>

To update a channel on a Universal Messaging server instance:
sagcc update configuration data sag01 Universal-Messaging-umserver
UM-CHANNELS-channel1 -f xml -i C:\Channels\channel_edited.xml

sag01 is the alias name of the installation where the Universal-Messaging-umserver server
instance is running. UM-CHANNELS-channel1 is the configuration type, in which channel1 is the
name of the channel. channel_edited.xml is an XML file containing the channel attributes to
be updated.

Format of the channel_edited.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Channel>

<name>channel1</name>
<type>Persistent</type>
<ttl>50000</ttl>
<capacity>50000</capacity>
<deadEventStore/>
<engine>JMS Engine</engine>

......
</Channel>

To create a queue on a Universal Messaging server instance:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-QUEUES -i C:\queues\queue_create.xml

sag01 is the alias name of the installation where the Universal-Messaging-umserver server
instance is running. UM-QUEUES is the configuration type and queue_create.xml is an XML file
containing the attributes of the new queue.

Format of the queue_create.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Queue>

<name>queue1</name>
<type>Persistent</type>
<ttl>78</ttl>
<capacity>99</capacity>
<parent>umserver</parent>

......
</Queue>

To update a specific queue on a Universal Messaging server instance:
sagcc update configuration data sag01 Universal-Messaging-umserver
UM-QUEUES-queue1 -f xml -i C:\queues\queue_edited.xml

Universal Messaging Administration Guide 10.3 417

3 Using Command Central to Manage Universal Messaging



sag01 is the alias name of the installation where the Universal-Messaging-umserver server
instance is running. UM-QUEUES-queue1 is the configuration type, in which queue1 is the name
of the queue to update. queue_edited.xml is an XML file containing the queue attributes to be
updated.

Format of the queue_edited.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Queue>

<name>queue1</name>
<type>Persistent</type>
<ttl>50000</ttl>
<capacity>50000</capacity>
<parent>umserver</parent>
<deadEventStore/>

......
</Queue>

To retrieve configuration information about a specific channel:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-CHANNELS-channel1

sag01 is the alias name of the installation where the Universal-Messaging-umserver server
instance is running. UM-CHANNELS-channel1 is the configuration type, in which channel1 is the
name of the channel.

To retrieve configuration information about a specific queue:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-QUEUES-queue1

sag01 is the alias name of the installation where the Universal-Messaging-umserver server
instance is running. UM-QUEUES-queue1 is the configuration type, in which queue1 is the name
of the queue.

Zone Configuration Commands
Ensure that the Universal Messaging server instances are running before running the following
commands.

Retrieve zone configuration information for a Universal Messaging server instance using the
sagcc get configuration data node_alias Universal-Messaging-umserver UM-ZONE command.

Create a zone using the sagcc create configuration data node_alias
Universal-Messaging-umserver UM-ZONE -i=path to the XML file containing the zone
configuration command.

Note:
Provide the absolute path to the XML file if the XML file is not in the same directory from
which the command is run.

418 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Update a zone using the sagcc update configuration data node_alias
Universal-Messaging-umserver UM-ZONE -i=path to the XML file containing the updated
zone configuration command.

Note:
Provide the absolute path to the XML file if the XML file is not in the same directory from
which the command is run.

Delete a zone using the sagcc delete configuration data node_alias
Universal-Messaging-umserver UM-ZONE command. The delete command deletes the zone in
which umserver belongs. You can remove specific server instances from a zone by removing
the server instances in the updated zone configuration XML file, and then using the update
zone command.

Examples

To retrieve zone configuration information for a Universal Messaging server instance:
sagcc get configuration data sag01 Universal-Messaging-umserver UM-ZONE

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-ZONE is the configuration type for zones.

To create a zone:
sagcc create configuration data sag01 Universal-Messaging-umserver UM-ZONE
-i=C:\zones\zone_create.xml

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-ZONE is the configuration type for zones. And, c:\zones\zones_create.xml
is the absolute path to the location where the zone configuration XML file is located.

Format of the zone_create.xml file for zone with realms:
<?xml version="1.0" encoding="UTF-8"?>
<Zone>
<name>RealmZone</name>
<type>Realm</type>
<realms>
<server name="um_realm1">
<url>nsp://localhost:9701</url>

</server>
<server name="um_realm2">
<url>nsp://localhost:9702</url>

</server>
</realms>
<clusters/>

</Zone>

Format of the zone_create.xml file for a zone with clusters:
<?xml version="1.0" encoding="UTF-8"?>
<Zone>
<name>ClusterZone</name>
<type>Cluster</type>

Universal Messaging Administration Guide 10.3 419

3 Using Command Central to Manage Universal Messaging



<realms />
<clusters>
<server name="um_cluster1">
<url>nsp://localhost:9704</url>
<clusterName />
<status />

</server>
<server name="um_cluster2">
<url>nsp://localhost:9705</url>
<clusterName />
<status />

</server>
</clusters>

</Zone>

To update a zone:
sagcc update configuration data sag01 Universal-Messaging-umserver UM-ZONE
-i=C:\zones\zone_update.xml

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-ZONE is the configuration type for zones. And, c:\zones\zone_update.xml
is the absolute path to the location where the zone configuration XML file is located.

Note:
zone_update.xml file should be in the same format as the XML file used to create zones.
You can substitute the updated configuration values in place of the old values.

To delete a zone:
sagcc delete configuration data local Universal-Messaging-umserver UM-ZONE

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-ZONE is the configuration type for zones.

Java System Properties Configuration Commands
Restart theUniversalMessaging server instance after running the commands for the configuration
changes to take effect.

Retrieve the Java system properties for a Universal Messaging server instance using the sagcc
get configuration data node_alias Universal-Messaging-umserver COMMON-JAVASYSPROPS
command.

Update the Java system properties for a Universal Messaging server instance using the sagcc
get configuration data node_alias Universal-Messaging-umserver COMMON-JAVASYSPROPS
-i absolute path to the XML file containing the updated configuration command.

Examples

To retrieve the Java system properties for a Universal Messaging server instance:
sagcc get configuration data local Universal-Messaging-umserver1
COMMON-JAVASYSPROPS

420 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



To update the Java system properties for a Universal Messaging server instance:
sagcc update configuration data local Universal-Messaging-umserver1
COMMON-JAVASYSPROPS -i C:\javasysprop.xml

JVM Options Configuration Commands
Restart theUniversalMessaging server instance after running the commands for the configuration
changes to take effect.

Retrieve the JVM options for a Universal Messaging server instance using the sagcc get
configuration data node_alias Universal-Messaging-umserver COMMON-JVM-OPTIONS command.

Update the JVM options for a Universal Messaging server instance using the sagcc get
configuration data node_alias Universal-Messaging-umserver COMMON-JVM-OPTIONS -i
absolute path to the XML file containing the updated configuration command.

Examples

To retrieve the JVM options for a Universal Messaging server instance:
sagcc get configuration data local Universal-Messaging-umserver1
COMMON-JVM-OPTIONS

To update the JVM options for a Universal Messaging server instance:
sagcc update configuration data local Universal-Messaging-umserver1
COMMON-JVM-OPTIONS -i C:\javasysprop.xml

The XML file containing the updated JVM options has the following format:
<?xml version="1.0"?>
-<jvmOptions>
<option>-XX:+TraceClassLoading</option>
</jvmOptions>

Cluster Configuration Commands

Before You Create or Update a Universal Messaging Cluster

Make sure the server instances that you want to add to the cluster are running.

Verify that the permissions on the server machines allow connections to the other servers in
the cluster.

Make sure the /naming/defaultContext channel exists only on one or none of the nodes that
will form the cluster. The Universal Messaging server instance used as a JNDI provider uses
the /naming/defaultContext channel to store JMS references and JNDI objects. If the channel
exists on multiple nodes, you cannot create the cluster.

If you have created custom composite templates for Command Central 9.9 or earlier, ensure
that you remove the Universal Messaging server instance name suffix from

Universal Messaging Administration Guide 10.3 421

3 Using Command Central to Manage Universal Messaging



COMMON-CLUSTER configuration type in the composite template when applying the
composite template in Command Central 9.10 or later. For example:

In Command Central 9.9 and earlier:
um-cluster:

description: Cluster configuration for two UM instances
products:

NUMRealmServer:
${node.host}:
instance.port: ${um.instance.port}
instance.ip: ${um.host}
runtimeComponentId: Universal-Messaging-${instance.name}
configuration:

Universal-Messaging-${instance.name}:
COMMON-CLUSTER:

COMMON-CLUSTER-${instance.name}: &umClusterConfig
Name: ${um.cluster}
Servers: # two UM instances cluster
Server:

-
"@name": ${um.host}
URL: "nsp://${um.host}:${um.instance.port}"

-
"@name": ${um.host2}
URL: "nsp://${um.host2}:${um.instance.port2}"

In Command Central 9.10 and later:
um-cluster:

description: Cluster configuration for two UM instances
products:

NUMRealmServer:
${node.host}:
instance.port: ${um.instance.port}
instance.ip: ${um.host}
runtimeComponentId: Universal-Messaging-${instance.name}
configuration:

Universal-Messaging-${instance.name}:
COMMON-CLUSTER:

COMMON-CLUSTER: &umClusterConfig
Name: ${um.cluster}
Servers: # two UM instances cluster
Server:

-
"@name": ${um.host}
URL: "nsp://${um.host}:${um.instance.port}"

-
"@name": ${um.host2}
URL: "nsp://${um.host2}:${um.instance.port2}"

Creating a Universal Messaging Cluster

To create an active/active cluster of Universal Messaging server instances, specify the cluster
configuration details in an XML input file and supply the input file as an argument of the sagcc
create configuration data command. Specify the following settings in the XML file:

Cluster name (required). A cluster name that is unique to the installation.

422 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Server instances (required). The name, URL, and port of each server node in the cluster.

Sites (optional). The name of the site to which each server node belongs. siteName is a server
level property.

Primary site (optional). The name of the primary site, if you have configured sites in the cluster.
primeSite is a cluster level property that holds the name of the site, which is flagged as isPrime.

Examples

To create a new clusterwith the following configurations specified in the umSalesClusterConfig.xml
file:

Cluster name: umSales

Cluster sites: site1 and site2

Primary site: site1

Server instances in site1: um9000, um9001

Server instances in site2: um9002, um9003
sagcc create configuration data sag01 Universal-Messaging-um9001
COMMON-CLUSTER --input C:\inputxmls\umSalesClusterConfig.xml

where sag01 is the alias name of the installation in which the Universal-Messaging-um9001 server
instance is running. The cluster configurations are specified in the umSalesClusterConfig.xml file
as follows:
<?xml version="1.0" encoding="UTF-8"?>
<ClusterSettings>
<Name>umSales</Name>
<Servers>
<Server name="um9000">

<URL>nsp://127.0.0.1:9000</URL>
<ExtendedProperties>

<Property name="siteName">site1</Property>
</ExtendedProperties>

</Server>
<Server name="um9001">

<URL>nsp://127.0.0.1:9001</URL>
<ExtendedProperties>

<Property name="siteName">site1</Property>
</ExtendedProperties>

</Server>
<Server name="um9002">

<URL>nsp://127.0.0.1:9002</URL>
<ExtendedProperties>

<Property name="siteName">site2</Property>
</ExtendedProperties>

</Server>
<Server name="um9003">

<URL>nsp://127.0.0.1:9003</URL>
<ExtendedProperties>

<Property name="siteName">site2</Property>
</ExtendedProperties>

Universal Messaging Administration Guide 10.3 423

3 Using Command Central to Manage Universal Messaging



</Server>
</Servers>
<ExtendedProperties>

<Property name="primeSite">site1</Property>
</ExtendedProperties>

</ClusterSettings>

Usage Notes

A Universal Messaging server instance can be part of only one cluster.

If you remove all the server instances from a site, the site will be deleted. Server instance deletion
is not allowed if the deletion operation leaves fewer than two server instances in the cluster.

Viewing Cluster Details

To retrieve the following details of the Universal Messaging cluster in an XML file, specify one of
the server instances of the cluster in the sagcc get configuration data command.

Name of the cluster

Name, URL, and port of each Universal Messaging server instance in the cluster

Site information, if sites are configured

To view the details of the cluster configuration of the um9001UniversalMessaging server instance:
sagcc get configuration data sag01 Universal-Messaging-um9001 COMMON-CLUSTER

where sag01 is the alias name of the installationwhere Universal-Messaging-um9001 server instance
is running.

Updating a Universal Messaging Cluster

To update a Universal Messaging cluster:

The XMLfile used for configuring a clustermust contain all the specifications for the cluster.When
you update a cluster, you only edit the parameters that specify the change; other specifications in
the cluster configuration file should not be changed. You can make these Universal Messaging
cluster configurations changes:

Edit the cluster configuration XML file to...To...

Include the name, URL, and port of the server
instances that you want to add to the cluster.

Add one ormore server instances to the existing
cluster

Remove the specifications of the server instances
that you want to remove from the existing
cluster.

Remove one or more server instances from the
existing cluster

Set the siteName extended property of the
corresponding server instances.

Create sites and assign server instances to sites

424 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Edit the cluster configuration XML file to...To...

Assign the name of the prime site to the
primeSite cluster level property.

Assign a site as the prime site of a cluster

Remove the siteName extended property of the
corresponding server instances.

Remove one or more server instances from a
cluster site

Remove the site definitions of all the server
instances in the cluster.

Remove sites from a cluster

To update the configuration of the cluster that contains the um9001 server instance:
sagcc update configuration data sag01 Universal-Messaging-um9001
COMMON-CLUSTER --input C:\inputxmls\umSalesClusterConfig.xml

where sag01 is the alias name of the installationwhere Universal-Messaging-um9001 server instance
is running.

Usage Notes

A Universal Messaging server instance can be part of only one cluster.

If you remove all the server instances from a site, the site will be deleted. Server instance deletion
is not allowed if the deletion operation leaves fewer than two server instances in the cluster.

Deleting a Universal Messaging Cluster

To delete Universal Messaging cluster:

Delete the cluster by specifying one of the server instances of the cluster using the sagcc delete
configuration data command.

Example:

To delete the cluster that contains the um9001 server instance:
sagcc delete configuration data sag01 Universal-Messaging-um9001
COMMON-CLUSTER

where sag01 is the alias name of the installationwhere Universal-Messaging-um9001 server instance
is running.

Migrating a Universal Messaging Cluster

You can migrate a Universal Messaging cluster automatically even if the nodes are installed on
multiple hosts.

To automatically migrate a Universal Messaging cluster:

1. Add the following extended property to the source UniversalMessaging cluster configuration
XML file:

Universal Messaging Administration Guide 10.3 425

3 Using Command Central to Manage Universal Messaging



<ExtendedProperties>
<Property name="crossHostMigration">true</Property>

</ExtendedProperties>

2. Run the sagcc update configuration data command.

A remote realms bootstrap configuration file is created in the Universal Messaging_directory/
bin.

Channel and Queue Monitoring Commands
You can retrieve information about channels and queues using the following commands:

View the list of administration namespaces using the sagcc get administration component
node_alias Universal-Messaging-umserver command.

Retrieve all the configuration information about a channel in XML format using the sagcc get
configuration data node_alias Universal-Messaging-umserver UM-CHANNELS-channel name
command.

Retrieve information about the options available for monitoring channels using the sagcc get
administration component node_alias Universal-Messaging-umserver channels command.

List the channels on aUniversalMessaging server instance using the sagcc get administration
component node_alias Universal-Messaging-umserver channels list command.

Retrieve the status of a specific channel in TSV format using sagcc get administration
component node_alias Universal-Messaging-umserver channels status name=channel name
command.

Retrieve a list of durable subscribers on a specific channel in TSV format using the sagcc get
administration component node_alias Universal-Messaging-umserver channels
durablesubscribers name=channel name command.

Delete a durable subscriber subscribed to a channel using sagcc exec administration component
node_alias Universal_Messaging-umserver channels deletedurablesubscriber
name=channel_name durablesubscriber=durable subscriber name

Examples

To view the list of administration namespaces:
sagcc get administration component sag01 Universal-Messaging-umserver

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running.

To retrieve all the configuration information about a channel:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-CHANNELS-channelname

426 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. UM-CHANNELS is the configuration type and channelname is the name of the channel
from which the information is to be retrieved.

To retrieve information about the options available for monitoring channels:
sagcc get administration component sag01 Universal-Messaging-umserver channels

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running.

To retrieve the list of channels on a Universal Messaging server instance:
sagcc get administration component sag01 Universal-Messaging-umserver channels
list

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. list is the command to list all the channels in a server instance.

To retrieve the status of a specific channel in TSV format:
sagcc get administration component sag01 Universal-Messaging-umserver channels
status name=channel_name

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running.channel_name is the channel name for which the status is to be retrieved.

To retrieve a list of durable subscribers on a specific channel in TSV format:
sagcc get administration component sag01 Universal-Messaging-umserver channels
durablesubscribers name=channel_name

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. channel_name is the name of the channel from which the durable subscribers list is
to be retrieved.

To delete a durable subscriber subscribed to a channel:
sagcc exec administration component sag01 Universal_Messaging-umserver channels
deletedurablesubscriber name=channel_name durablesubscriber=durable_subscriber_name

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. channel_name is the name of the channel, and durable_subscriber_name is the name
of the durable subscriber that has to be deleted from this channel.

Durable Subscribers Monitoring Commands
You can monitor durable subscribers using the following commands:

View the list of administration namespaces using the cc get administration component
node_alias Universal-Messaging-umserver command.

Retrieve information about the options available for monitoring durable subscribers using
thecc get administration component node_alias Universal-Messaging-umserver
durablesubscribers command.

Universal Messaging Administration Guide 10.3 427

3 Using Command Central to Manage Universal Messaging



Retrieve the list of durable subscribers of an Universal Messaging server instance using:

sagcc get administration component node_alias Universal-Messaging-umserver
durablesubscribers list -f xml command for XML format.

sagcc get administration component node_alias Universal-Messaging-umserver
durablesubscribers list -f tsv command for TSV format.

sagcc get administration component node_alias Universal-Messaging-umserver
durablesubscribers list -f csv command for CSV format.

Retrieve the attributes of a specific durable subscriber using:

sagcc get administration component node_alias Universal-Messaging-umserver
durablesubscribers details channel=channel_name name=durable subscriber name -f xml
command for XML format.

sagcc get administration component node_alias Universal-Messaging-umserver
durablesubscribers details channel=channel_name name=durable subscriber name -f TSV
command for TSV format.

sagcc get administration component node_alias Universal-Messaging-umserver
durablesubscribers details channel=channel_name name=durable subscriber name -f CSV
command for CSV format.

Retrieve specific attributes of the durable subscribers using the cc get administration
component node_alias Universal-Messaging-umserver durablesubscribers list -f tsv or
csv properties=comma separated attribute list command.

Retrieve the list of events for a durable subscriber using the cc get administration component
node_alias Universal-Messaging-umserver durablesubscribers getDurableEvents
durableName=durable name chanName=channel name

Purge a specified range of events using the cc get administration component node_alias
Universal-Messaging-umserver durablesubscribers purgeStartEndID startEID=start event
ID endEID=end event ID durableName=durable subscriber name chanName=channel_name

Purge all events using the cc get administration component node_alias
Universal-Messaging-umserver durablesubscribers purgeAll durableName=durable subscriber
name chanName=channel_name command.

Purge events by filtering events using the cc get administration component node_alias
Universal-Messaging-umserver durablesubscribers purgeFilter durableName=durable
subscriber name chanName=channel_name filter=the filter expression command.

Delete a durable subscriber using the sagcc exec administration component node_alias
Universal-Messaging-umserver durablesubscribers delete channel=channel_name
name=durable subscriber name

Examples

To list all the administration namespaces:

428 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



sagcc get administration component sag01 Universal-Messaging-umserver

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running.

To retrieve information about the options available for monitoring durable subscribers:
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running.

To retrieve the list of durable subscribers in a Universal Messaging server instance:

XML format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f xml

TSV format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f tsv

CSV format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f csv

To retrieve attributes of the durable subscribers:

XML format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers details channel=channelname name=durable_subscriber_name
-f xml

TSV format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers details channel=channelname name=durable_subscriber_name
-f tsv

CSV format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers details channel=channelname name=durable_subscriber_name
-f csv

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. channelname is the name of the channel, and durable_subscriber_name is the name
of the durable subscriber from which the attributes are to be retrieved.

To retrieve the attributes specific attributes of a durable subscriber:
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f tsv properties=name,channel,lastEventID,

Universal Messaging Administration Guide 10.3 429

3 Using Command Central to Manage Universal Messaging



outStandingEvents

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. name, channel, lastEventID, and outStandingEvents are attribute values to be
retrieved.

To retrieve the list of events for a durable subscriber:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers getDurableEvents durableName=durablename
chanName=channelname

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. durablename is the name of the durable subscriber, and channelname is the name of
the channel on which the durable subscriber exists.

To purge a specified range of events:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeStartEndID startEID=10 endEID=20
durableName=durablename chanName=channelname

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. startEID is the the start event ID for the range, endEID is the end event ID of the
range, durablename is the name of the durable subscriber, and channelname is the name of the
channel on which the durable subscriber exists.

To purge all the events for a durable subscriber:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeAll durableName=durablename chanName=channelname

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. durablename is the name of the durable subscriber, and channelname is the name of
the channel on which the durable subscriber exists.

To purge events by filtering events:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeFilter durableName=durablename chanName=channelname
filter=size BETWEEN 10.0 AND 12.0

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. durablename is the name of the durable subscriber, and channelname is the name of
the channel on which the durable subscriber exists.

To delete a durable subscriber:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers delete channel=channelname name=DS3

sag01 is the alias name of the installationwhere Universal-Messaging-umserver server instance
is running. channelname is the name of the channel onwhich the durable subscriber exists, and
durablename is the name of the durable subscriber.

430 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Commands for Snooping on Channels

Important:
The snoop commands work with Command Central 10.4 and higher.

You use the sagcc exec administration component command to snoop on events on a Universal
Messaging channel. All snooping operations are performed for a particular user. You can do the
following:

Start snooping on events on a channel for a specific user.

List the snooped events on a channel for a specific user.

View details of a snooped event on a channel for a specific user.

Purge snooped events on a channel for a specific user.

Stop snooping on events on a channel for a specific user.

Start Snooping on a Channel

To start snooping on events on a channel for a specific user:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels startSnoop name=channel_name user=user_name

To start snooping on events on a channel for a specific user with filtering criteria:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels startSnoop name=channel_name user=user_name [fromeid=first_event_id]
[toeid=last_event_id] [filter=filter_string]

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance on which you want to snoop.

Universal-Messaging-server_instance_name

Required. The name of the channel on which you want to
snoop.

name=channel_name

Required. The username of the user for whom you want
to start snooping.

user=user_name

Optional. The ID of the first event in the event range on
which you want to start snooping.

[fromeid=first_event_id]

Optional. The ID of the last event in the event range on
which you want to start snooping.

[toeid=last_event_id]

Universal Messaging Administration Guide 10.3 431

3 Using Command Central to Manage Universal Messaging



ValueArgument or Option

Optional. Additional filtering criteria based on the
properties of the event.

[filter=filter_string]

Usage Notes

When you want to start snooping on a range of events:

If you do not specify fromeid, the range of events starts with the first event on the channel and
ends with the event specified for toeid.

If you do not specify toeid, the range of events starts with the event specified for fromeid and
ends with the last event on the channel.

Examples

To start snooping on events on channel "channel2", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01",
for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels startSnoop name=channel2 user=Administrator

To start snooping on the events with IDs from "2" to "10" on channel "channel2", created on
the server instancewith ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels startSnoop name=channel2 user=Administrator fromid=2 toid=10

List Snooped Events on a Channel

To list the snooped events on a channel for a specific user in TSV format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels snoop name=channel_name user=user_name

To list the snooped events on a channel for a specific user in XML format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels snoop name=channel_name user=user_name -f|--format xml

To list the snooped events on a channel for a specific user in JSON format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels snoop name=channel_name user=user_name -f|--format json

432 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance for which you want to list snooped events.

Universal-Messaging-server_instance_name

Required. The name of the channel for which you want to
list snooped events.

name=channel_name

Required. The username of the user for whom you want
to list snooped events.

user=user_name

Optional. Whether to list the snooped events in XML or
JSON format.

[-f|--format {xml|json}]

Usage Notes

If the Universal Messaging server becomes unavailable after the snoop on the channel started,
CommandCentral stops snooping all channels on thatUniversalMessaging server for all Command
Central users. If you run the command that lists snooped events while the Universal Messaging
server is unavailable, the system returns "snoopStarted=false" and an empty list of events.

Examples

To list the snooped events in TSV format on channel "channel2", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels snoop name=channel2 user=Administrator

To list the snooped events in JSON format on channel "channel2", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels snoop name=channel2 user=Administrator --format json

View Details of a Snooped Event on a Channel

To retrieve the details of a snooped event on a channel for a specific user in TSV format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels event name=channel_name user=user_name id=event_id

To retrieve the details of a snooped event on a channel for a specific user in XML format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name

Universal Messaging Administration Guide 10.3 433

3 Using Command Central to Manage Universal Messaging



channels event name=channel_name user=user_name id=event_id -f|--format xml

To retrieve the details of a snooped event on a channel for a specific user in JSON format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels event name=channel_name user=user_name id=event_id -f|--format json

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance.

Universal-Messaging-server_instance_name

Required. The name of the channel on which the snooped
event is published.

name=channel_name

Required. The username of the user for whom you want
to retrieve the snooped event.

user=user_name

Required. The ID of the event that you want to view.id=event_id

Optional. Whether to view the snooped event in XML or
JSON format.

[-f|--format {xml|json}]

Usage Notes

The TSV format is tabular and does not display the header and properties of an event. To see the
header and properties of an event, use the XML or JSON format.

Examples

To view details of a snooped event with ID "2" in TSV format on channel "channel2", created
on the server instance with ID "Universal-Messaging-umserver" that is installed in the
installation with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels event name=channel2 user=Administrator id=2

To view details of a snooped event with ID "2" in XML format on channel "channel2", created
on the server instance with ID "Universal-Messaging-umserver" that is installed in the
installation with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels event name=channel2 user=Administrator id=2 --format xml

Purge Snooped Events on a Channel

To purge a snooped event from a channel and the snooped events list for a specific user:

434 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels purgeEvent name=channel_name user=user_name id=event_id

To purge a range of snooped events from a channel and the snooped events list for a specific
user:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
channels purgeEvents name=channel_name user=user_name
[fromeid=first_event_id] [toeid=last_event_id]

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance on which you want to purge snooped events.

Universal-Messaging-server_instance_name

Required. The name of the channel on which you want to
purge events.

name=channel_name

Required. The username of the user for whom you want
to purge event.

user=user_name

Requiredwith the sagcc exec administration component
purgeEvent command. The ID of the event to purge.

id=event_id

Optional. The ID of the first event in the event range that
you want to purge.

[fromeid=first_event_id]

Optional. The ID of the last event in the event range that
you want to purge.

[toeid=last_event_id]

Usage Notes

When you want to purge a range of snooped events:

If you do not specify fromeid, all events from the first one on the channel to the one with ID
smaller than or equal to toeid are purged.

If you do not specify toeid, all events from the one with ID greater than or equal to fromeid
to the last one on the channel are purged.

If you do not specify both fromeid and toeid, all events on the channel are purged.

Examples

To purge a snooped event with ID "2" from channel "channel2", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":

Universal Messaging Administration Guide 10.3 435

3 Using Command Central to Manage Universal Messaging



sagcc exec administration component sag01 Universal-Messaging-umserver
channels purgeEvent name=channel2 user=Administrator id=2

To purge the snooped events with IDs from "2" to "6" from channel "channel2", created on the
server instance with ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels purgeEvents name=channel2 user=Administrator fromid=2 toid=6

Stop Snooping on a Channel

To stop snooping on events on a channel for a specific user:
sagcc exec administration component node_alias Universal-Messaging-server_instance_name
channels stopSnoop name=channel_name user=user_name

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance on which you want to stop snooping.

Universal-Messaging-server_instance_name

Required. The name of the channel on which you want to
stop snooping.

name=channel_name

Required. The username of the user for whom you want
to stop snooping.

user=user_name

Examples

To stop snooping for events on channel "channel2", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01", for
user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
channels stopSnoop name=channel2 user=Administrator

Commands for Snooping on Queues

Important:
The snoop commands work with Command Central 10.4 and higher.

You use the sagcc exec administration component command to snoop on events on a Universal
Messaging queue. All snooping operations are performed for a particular user. You can do the
following:

Start snooping on events on a queue for a specific user.

List the snooped events on a queue for a specific user.

436 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



View details of a snooped event on a queue for a specific user.

Purge all snooped events on a queue for a specific user.

Stop snooping on events on a queue for a specific user.

Start Snooping on a Queue

To start snooping on events on a queue for a specific user:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
queues startSnoop name=queue_name user=user_name

To start snooping on events on a queue for a specific user with filtering criteria:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
queues startSnoop name=queue_name user=user_name [fromeid=first_event_id]
[toeid=last_event_id] [filter=filter_string]

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance on which you want to snoop.

Universal-Messaging-server_instance_name

Required. The name of the queue on which you want to
snoop.

name=queue_name

Required. The username of the user for whom you want
to start snooping.

user=user_name

Optional. The ID of the first event in the event range on
which you want to start snooping.

[fromeid=first_event_id]

Optional. The ID of the last event in the event range on
which you want to start snooping.

[toeid=last_event_id]

Optional. Additional filtering criteria based on the
properties of the event.

[filter=filter_string]

Usage Notes

When you want to start snooping on a range of events:

If you do not specify fromeid, the range of events starts with the first event on the queue and
ends with the event specified for toeid.

If you do not specify toeid, the range of events starts with the event specified for fromeid and
ends with the last event on the queue.

Universal Messaging Administration Guide 10.3 437

3 Using Command Central to Manage Universal Messaging



Examples

To start snooping on events on queue "queue1", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01",
for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues startSnoop name=queue1 user=Administrator

To start snooping on the events with IDs from "2" to "10" on queue "queue1", created on the
server instance with ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues startSnoop name=queue1 user=Administrator fromid=2 toid=10

List Snooped Events on a Queue

To list the snooped events on a queue for a specific user in TSV format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
queues snoop name=queue_name user=user_name

To list the snooped events on a queue for a specific user in XML format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
queues snoop name=queue_name user=user_name -f|--format xml

To list the snooped events on a queue for a specific user in JSON format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
queues snoop name=queue_name user=user_name -f|--format json

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance for which you want to list snooped events.

Universal-Messaging-server_instance_name

Required. The name of the queue for which you want to
list snooped events.

name=queue_name

Required. The username of the user for whom you want
to list snooped events.

user=user_name

Optional. Whether to list the snooped events in XML or
JSON format.

[-f|--format {xml|json}]

438 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Usage Notes

If the Universal Messaging server becomes unavailable after the snoop on the queue started,
Command Central stops snooping on all queues on that Universal Messaging server for all
Command Central users. If you run the command that lists snooped events while the Universal
Messaging server is unavailable, the system returns "snoopStarted=false" and an empty list of
events.

Examples

To list the snooped events in TSV format on queue "queue1", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues snoop name=queue1 user=Administrator

To list the snooped events in JSON format on queue "queue1", created on the server instance
with ID "Universal-Messaging-umserver" that is installed in the installation with alias name
"sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues snoop name=queue1 user=Administrator --format json

View Details of a Snooped Event on a Queue

To retrieve the details of a snooped event on a queue for a specific user in TSV format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
queues event name=queue_name user=user_name id=event_id

To retrieve the details of a snooped event on a queue for a specific user in XML format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
queues event name=queue_name user=user_name id=event_id -f|--format xml

To retrieve the details of a snooped event on a queue for a specific user in JSON format:
sagcc exec administration component node_alias
Universal-Messaging-server_instance_name
queues event name=queue_name user=user_name id=event_id -f|--format json

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance.

Universal-Messaging-server_instance_name

Universal Messaging Administration Guide 10.3 439

3 Using Command Central to Manage Universal Messaging



ValueArgument or Option

Required. The name of the queue on which the snooped
event is published.

name=queue_name

Required. The username of the user for whom you want
to retrieve the snooped event.

user=user_name

Required. The ID of the event that you want to view.id=event_id

Optional. Whether to view the snooped event in XML or
JSON format.

[-f|--format {xml|json}]

Usage Notes

The TSV format is tabular and does not display the header and properties of an event. To see the
header and properties of an event, use the XML or JSON format.

Examples

To view details of a snooped event with ID "2" in TSV format on queue "queue1", created on
the server instancewith ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues event name=queue1 user=Administrator id=2

To view details of a snooped event with ID "2" in XML format on queue "queue1", created on
the server instancewith ID "Universal-Messaging-umserver" that is installed in the installation
with alias name "sag01", for user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues event name=queue1 user=Administrator id=2 --format xml

Purge Snooped Events on a Queue

To purge all snooped events from a queue and the snooped events list for a specific user:
sagcc exec administration component node_alias Universal-Messaging-server_instance_name
queues purgeEvents name=queue_name user=user_name

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance on which you want to purge snooped events.

Universal-Messaging-server_instance_name

Required. The name of the queue on which you want to
purge events.

name=queue_name

440 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



ValueArgument or Option

Required. The username of the user for whom you want
to purge event.

user=user_name

Usage Notes

You cannot purge a single event or a range of events from a queue.

Examples

To purge all snooped events from queue "queue1", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01", for
user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues purgeEvents name=queue1 user=Administrator

Stop Snooping on a Queue

To stop snooping on events on a queue for a specific user:
sagcc exec administration component node_alias Universal-Messaging-server_instance_name
queues stopSnoop name=queue_name user=user_name

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance on which you want to stop snooping.

Universal-Messaging-server_instance_name

Required. The name of the queue on which you want to
stop snooping.

name=queue_name

Required. The username of the user for whom you want
to stop snooping.

user=user_name

Examples

To stop snooping for events on queue "queue1", created on the server instance with ID
"Universal-Messaging-umserver" that is installed in the installation with alias name "sag01", for
user "Administrator":
sagcc exec administration component sag01 Universal-Messaging-umserver
queues stopSnoop name=queue1 user=Administrator

Universal Messaging Administration Guide 10.3 441

3 Using Command Central to Manage Universal Messaging



Event Publishing Commands

Important:
The event publishing commands work with Command Central 10.4 and higher.

You use the cc exec administration component command to publish and republish events on a
Universal Messaging channel or queue.

To publish an event on a channel:
cc exec administration component node_alias Universal-Messaging-server_instance_name
channels publish name=channel_name data=event_content [tag=event_tag] [ttl=ttl_value]
[persistent={true|false}] [transient={true|false}] [properties=properties_string]

[pubcount=publish_count] [sendasprotobuf={true|false}]
[protobufdescriptor=protobuf_descriptor]

To republish a snooped event on a channel:
cc exec administration component node_alias Universal-Messaging-server_instance_name
channels publish name=channel_name data=event_content id=original_event_id
user=user_name republish=true [tag=event_tag] [ttl=ttl_value]
[persistent={true|false}] [transient={true|false}] [properties=properties_string]

[pubcount=publish_count] [sendasprotobuf={true|false}]
[protobufdescriptor=protobuf_descriptor] [purgeoriginal={true|false}]

To publish an event on a queue:
cc exec administration component node_alias Universal-Messaging-server_instance_name
queues publish name=queue_name data=event_content [tag=event_tag] [ttl=ttl_value]
[persistent={true|false}] [transient={true|false}] [properties=properties_string]

[pubcount=publish_count] [sendasprotobuf={true|false}]
[protobufdescriptor=protobuf_descriptor]

To republish a snooped event on a queue:
cc exec administration component node_alias Universal-Messaging-server_instance_name
queues publish name=queue_name data=event_content republish=true [tag=event_tag]
[ttl=ttl_value] [persistent={true|false}] [transient={true|false}]
[properties=properties_string] [pubcount=pub_count]
[sendasprotobuf=[{true|false}] [protobufdescriptor=protobuf_descriptor]

Arguments and Options

ValueArgument or Option

Required. The ID of the Universal Messaging server
instance on which you want to publish or republish an
event.

Universal-Messaging-server_instance_name

Required. The name of the channel or queue on which
you want to publish or republish an event.

name=channel_or_queue_name

442 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



ValueArgument or Option

Required. The content of the event.data=event_content

Optional. The tag of the event.[tag=event_tag]

Optional. The time-to-live (TTL) of the event in
milliseconds. Defines how long the event remains

[ttl=ttl_value]

available on the channel or queue. If you specify a TTL
of 0, the event remains on the channel or queue
indefinitely.

Optional. Whether the event is persistent. Values are:[persistent={true|false}]

true

false (default)

Optional. Whether the event is transient. Values are:[transient={true|false}]

true

false (default)

Required when republishing an event on a channel.
The ID of the original event.

id=original_event_id

Required when republishing an event on a channel.
The user name of the user who started snooping on the
event on the channel.

user=user_name

Required when republishing an event on a channel or
queue.Whether to republish the snooped event. Values
are:

republish={true|false}

true

false (default)

Optional.Whether to purge the original event from the
channel. Values are:

[purgeoriginal={true|false}]

true

false (default)

Optional. A string that contains event properties in the
following JSON format:

[properties=properties_string]

[ { name: "property1_name", type: "property1_type",
value: property1_value }, { name: "property2_name",
type: "property2_type", value: property2_value },
… ]

Universal Messaging Administration Guide 10.3 443

3 Using Command Central to Manage Universal Messaging



ValueArgument or Option

where

propertyX_name is the name of the property.

propertyX_type is the type of the property and can
have one of the following values: int, byte, long,
short, float, double, boolean, char, string, int[],
byte[], long[], short[], float[], double[],
boolean[], char[], and string[].

propertyX_value is the value of the property.

Optional. The number of times to republish an event.
If you omit pubcount, the option defaults to 1.

[pubcount=pub_count]

Optional. Whether to convert the event content in the
data option to a Protobuf event thatmatches a Protobuf

[sendasprotobuf={true|false}]

schema specified in the protobufdescriptor option and
already uploaded on the channel or queue. Values are:

true

false (default)

For more information about working with Protobuf
events, see the "Google Protocol Buffers" section in the
Universal Messaging Concepts guide.

Required only for Protobuf events. The Protobuf file
descriptor that defines the message schema to be used

[protobufdescriptor=

protobuf_descriptor] for converting the event content in the data option to a
Protobuf event.

For more information about working with Protobuf
events, see the "Google Protocol Buffers" section in the
Universal Messaging Concepts guide.

Usage Notes

When you use the properties option, consider the following information:

Include the -f json option to specify the format of the properties string.

Enclose char and string property values, and values with spaces in double quotes ("). If
the value contains double quotes, replace them with a backslash and double quotes (\").

For array values, specify a valid JSON array of the corresponding type.

When you want to publish a Protobuf event, consider the following information:

444 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



Before publishing a Protobuf event, youmust upload on the channel or queue the Protobuf
file descriptor that defines the Protobuf schema, as part of a file descriptor set. For
information about uploading a Protobuf file descriptor set on a channel or queue, see
“Channel Configuration” on page 377 or “Queue Configuration” on page 381.

The value of the data option is a JSON string that represents the Protobuf event.

The value of the protobufdescriptor option is the name of the Protobuf file descriptor that
defines the message schema.

Before republishing a snooped event on a channel or queue, you must start snooping on the
channel or queue and obtain the event ID.

Examples

To publish an event with event data "CustomerOrders" and event tag "COrders" on channel
"channel2" that is created on the server instance with ID "Universal-Messaging-umserver",
installed in the installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver channels
publish name=channel2 data=CustomerOrders tag=COrders

To publish a persistent event with event data "CustomerOrders", event tag "COrders", and
TTL "10000" three times on queue "queue1" that is created on the server instance with ID
"Universal-Messaging-umserver", installed in the installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver queues
publish name=queue1 data=CustomerOrders tag=COrders ttl=10000
persistent=true pubcount=3

To publish an event with event data "CustomerOrders", event tag "COrders", and custom
properties in JSON format on queue "queue1" that is created on the server instance with ID
"Universal-Messaging-umserver", installed in the installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver queues
publish name=queue1 data=CustomerOrders tag=COrders
properties="[ { name: \"orderNumber\", type: \"string\", value: \"F18LP\" },
{ name: \"items\", type: \"int\", value: 3 },
{ name: \"itemIds\", type:\"int[]\", value: [ 509, 19, 100 ] } ]" -f json

To publish a Protobuf event on channel "channel2" that is created on the server instance with
ID "Universal-Messaging-umserver", installed in the installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver channels
publish name=channel2
data="{ header: { id: 1, time: 1541163198345 },
contents: { intData: 124, doubleData: 3.141593, stringData: \"Software AG\" } }"
protobufdescriptor=Event sendasprotobuf=true

The example assumes that a Protobuf file descriptor set containing the following descriptors
has already been uploaded on "channel2". The Protobuf event in the example is created from
the "Event"message type in the file descriptor set. The event data is a valid JSON string that
represents a message of type "Event" and has the same fields as the "Event"message type.
file {

Universal Messaging Administration Guide 10.3 445

3 Using Command Central to Manage Universal Messaging



name: "EventWrapper"
package: "um"
dependency: "HeaderWrapper"
dependency: "ContentsWrapper"
message_type {

name: "Event"
field {

name: "header"
number: 1
label: LABEL_REQUIRED
type: TYPE_MESSAGE
type_name: "Header"

}
field {

name: "contents"
number: 2
label: LABEL_REQUIRED
type: TYPE_MESSAGE
type_name: "Contents"

}
}

}
file {
name: "HeaderWrapper"
package: "um"
message_type {

name: "Header"
field {

name: "id"
number: 1
label: LABEL_REQUIRED
type: TYPE_INT32

}
field {

name: "time"
number: 2
label: LABEL_REQUIRED
type: TYPE_SINT64

}
}

}
file {
name: "ContentsWrapper"
package: "um"
message_type {

name: "Contents"
field {

name: "intData"
number: 1
label: LABEL_REQUIRED
type: TYPE_SINT32

}
field {

name: "doubleData"
number: 4
label: LABEL_REQUIRED
type: TYPE_DOUBLE

}
field {

name: "stringData"

446 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



number: 5
label: LABEL_REQUIRED
type: TYPE_STRING

}
}

}

To republish an event with ID "3", modified event data "CancelledCustomerOrders", and
modified event tag "CCOrders", snooped by user "Administrator", on channel "channel2" that
is created on the server instance with ID "Universal-Messaging-umserver", installed in the
installation with alias name "sag01":
cc exec administration component sag01 Universal-Messaging-umserver channels
publish name=channel2 data=CnacelledCustomerOrders tag=CCOrders
republish=true id=3 user=Administrator

Server Inventory Commands
sagcc get inventory components and sagcc list inventory components gets and lists Universal
Messaging inventory:

The commands retrieve information about the Universal Messaging server instances configured
in the <InstallDir>/UniversalMessaging/<InstanceName> directory in an installation. Information
from all the folders under the server directory, except templates, is displayed.

ValueProperty

Universal-Messaging-ServerInstanceNameDisplay name

Universal-Messaging-ServerInstanceNameRun-time component ID

NUMRealmServerProduct ID

PROCESSRun-time component category

Note:
ServerInstanceName can include upper and lower case alphabetic characters, digits (0-9), and
underscores (_) but cannot include hyphens (-), periods (.), and colons (:).

Server Instance Migration Commands
Ensure that the targetUniversalMessaging server has themigration utility installed. For information
about the migration utility, see Upgrading Software AG Products.

Important:
You must run the commands in the context and order documented in Upgrading Software AG
Products. Otherwise, you may experience unpredictable results, possibly including corruption
of your installation and data.

View the command line help for the migration utility using the sagcc list administration
product node_alias NUMRealmServer migration help command.

Universal Messaging Administration Guide 10.3 447

3 Using Command Central to Manage Universal Messaging



Migrate all Universal Messaging server instances present in a source installation using the
sagcc exec administration product node_alias NUMRealmServer migration migrate
srcDir=SAG_Installation_directory command.

Note:
Use this command when migrating from Universal Messaging server version 9.8 and later.

Start migration by providing the source Universal Messaging instance name using the sagcc
exec administration product node_alias NUMRealmServer migration migrate
srcDir=SAG_Installation_directory
instanceName=instance_name[,instance_name,instance_name...] command .

Note:
Use this command when migrating from Universal Messaging server version 9.8 and later.

Start migration by passing arguments and using the migrate.dat file using the sagcc exec
administration product node_alias NUMRealmServer migration migrate
srcDir=SAG_Installation_directory importFile=migrate.dat command.

Note:
Use this command when migrating from Universal Messaging server 9.0 through 9.7. The
argument silent is set to true and continueOnError is set to false by default.

Start migration using the zip file from the old product installation using the sagcc exec
administration product node_alias NUMRealmServer migration migrate
srcFile=old_installation.zip importFile=migrate.dat command.

Start migration using the zip file from the old product installation and specifying the source
UniversalMessaging instance nameusing the sagcc exec administration product node_alias
NUMRealmServer migration migrate srcFile=old_installation.zip
instanceName=instance_name[,instance_name,instance_name...] command.

View APIs under the migration namespace using the sagcc list administration product
node_alias NUMRealmServer migration command.

View if Universal Messaging supports migration as a custom API using the sagcc list
administration product node_alias NUMRealmServer command.

Examples

To view the command line help:
sagcc list administration product sag01 NUMRealmServer migration help

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. Help is the
command to view the migration tool's command line help.

To migrate all Universal Messaging server instances present in a source installation:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG

448 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. migrate is the
command to access themigration tool. scrDir is the source Software AG installation directory.

To startmigrating an older server instance to a new NUMRealmServer server instance by providing
the source instance name:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG
instanceName=umserver1,umserver2

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. migrate is the
command to access themigration tool. scrDir is the source Software AG installation directory.
instanceName contains the comma-separated names of the Universal Messaging instances that
will be migrated.

To start migrating an older server instance to a new NUMRealmServer server instance using the
migrate.dat file:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG
silent=true importFile=migrate.dat

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. migrate is the
command to access themigration tool. scrDir is the source Software AG installation directory.
importFile specifies the data file containing the migration settings.

To start migration using the zip file from the old product installation:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcFile=99Src.zip importFile=migrate.dat

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. migrate is the
command to access the migration tool. scrFile argument is used to provide the name of the
zip file from the source Universal Messaging instance. importFile specifies the archive file
path containing migration settings.

To view APIs under the migration namespace for the NUMRealmServer server instance:
sagcc list administration product sag01 NUMRealmServer migration

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running.

To view if Universal Messaging supports migration as a custom API:
sagcc list administration product sag01 NUMRealmServer

where sag01 is the alias name of the installation where NUMRealmServer server instance is
running.

Universal Messaging Administration Guide 10.3 449

3 Using Command Central to Manage Universal Messaging



Lifecycle Actions for Universal Messaging Server
The following table lists the actions that Universal Messaging supports with the sagcc exec
lifecycle command and the operation taken against a UniversalMessaging serverwhen an action
is executed.

DescriptionAction

Starts theUniversal Messaging server instance. When successful, the
Universal Messaging server instance run-time status is set to ONLINE.

start

Stops theUniversalMessaging server instance. TheUniversalMessaging
server run-time status is STOPPED.

stop

Stops, then restarts the Universal Messaging server instance. The
Universal Messaging server run-time status is set to ONLINE.

restart

Run-time Monitoring States for Universal Messaging Server
The sagcc get monitoring runtimestate and sagcc get monitoring state commands provide
information about the following key performance indicators (KPIs) for a Universal Messaging
server instance:

DescriptionKPI

Indicates the utilization of JVM memory.JVM memory usage

TheKPI uses the followingmarginal, critical, andmaximumvalues:

Marginal is 80% of the maximum JVMmemory.

Critical is 95% of the maximum JVMmemory.

Maximum is 100% of the maximum JVMmemory.

Indicates the total number of events currentlywaiting to be processed
by the fanout engine. If the fanout backlog is more than the critical

Fanout backlog

value, there is a possibility that the subscribers receive the published
events after some delay.

The KPI uses the followingmarginal, critical, andmaximumvalues:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-watermark) of fanout
backlog. Default is 100.

450 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



DescriptionKPI

Indicates the total number of tasks in the read, write, and common
read/write pools. If the number of read and write tasks queued is

Tasks queued for read and
write

more than the critical value, it indicates that theUniversalMessaging
server instance is unable to match the speed of the publishers and
subscribers.

The KPI uses the followingmarginal, critical, andmaximumvalues:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water mark) of read
and write tasks queued. Default is 100.

Run-time Monitoring Statuses for Universal Messaging Server
The following table lists the run-time statuses that a Universal Messaging server instance can
return in response to the sagcc get monitoring state command, and the meaning of each status.

Note:
Universal Messaging server instance does not return the STARTING and STOPPING statuses.

MeaningRun-time Status

Universal Messaging server instance is running.ONLINE

Universal Messaging server instance is not running due
to some failure. LOCK file exists.

FAILED

Universal Messaging instance is being stopped. LOCK
file exists.

STOPPING

Universal Messaging server instance is not running
because it was shut down normally. LOCK file does not
exist.

STOPPED

Universal Messaging server instance does not respond
to a ping operation. LOCK file exists and the Universal
Messaging server instance is running.

UNRESPONSIVE

The status ofUniversalMessaging server instance cannot
be determined.

UNKNOWN

Server instance is online and it is the master node in the
cluster.

ONLINE_MASTER

Server instance is online and it is the slave node in the
cluster.

ONLINE_SLAVE

Universal Messaging Administration Guide 10.3 451

3 Using Command Central to Manage Universal Messaging



MeaningRun-time Status

Server instance is part of a cluster that does not satisfy
the requisite quorum.

ERROR

452 Universal Messaging Administration Guide 10.3

3 Using Command Central to Manage Universal Messaging



4 Comparison of Enterprise Manager and Command

Central Features
The following table compares the availability of features of Enterprise Manager with their
availability in CommandCentral. The EnterpriseManager features are listed in alphabetical order.

The table represents the status of available features at the time of the first release of version 10.3.
Later re-releases of version 10.3 might contain features not available in the initial release.

Supported in Command
Central

Enterprise Manager FeatureArea

NoView audit log entries:Audit

Order by user, type etc. Stream or archive
audit file

YesCreate a join form a channel ...Channel/Queue

set name

source channel

remote realm/cluster for inter-cluster joins

filter

hope count

purge forward

archival

YesView and/or delete named objectsChannel/Queue

View outstanding events, configuration,
etc.

view messages

purge messages

view status e.g. last eventID

Universal Messaging Administration Guide 10.3 453



Supported in Command
Central

Enterprise Manager FeatureArea

YesCreate channel ...Channel/Queue

name, type, ttl, capacity, deadevent store

JMS engine and merge engine

protobuf descriptor

channel key (with name and depth)

full storage properties

YesUpdate protocol buffer definitionChannel/Queue

YesView/modify incoming/outgoing joinsChannel/Queue

YesView and modify ACLsChannel/Queue

PartialEdit channel/queueChannel/Queue

Properties can be changed but
any messages on the

Full storage properties dialogue

channel/queue will not be
retained

NoPublish to any channel/queueChannel/Queue

Full message properties dialogue

NoCreate a copy of any channel/queue with
option to edit specific fields/settings

Channel/Queue

PartialView store level connection lists and statsChannel/Queue

Find under:Bounce and redirect connections

durables stats page, along with
other durable details

NoBulk apply ACL changes to folders of
channels or queues

Channel/Queue

NoPurge eventsChannel/Queue

from EID

to EID

filter

purge all

454 Universal Messaging Administration Guide 10.3

4 Comparison of Enterprise Manager and Command Central Features



Supported in Command
Central

Enterprise Manager FeatureArea

NoPerform maintenanceChannel/Queue

NoSnoop events on storeChannel/Queue

Edit and republish events with full message
edit dialogue

NoSnoop (edit and republish) message content
of events encoded as protocol buffers

Channel/Queue

YesCreate/delete clustersCluster

Set name of cluster at creation time

YesModify Cluster membershipCluster

PartialSee Clusterwide stats:Cluster

cluster members and their state
can be viewed

cluster matrix (state of each node as seen
by other nodes)

event rates

connections

etc.

NoOptionally choose tomigrate stores at cluster
migration and warn of conflicts

Cluster

YesAllow creating, deleting, starting, stopping
of interfaces

Comms

YesView and edit all configuration options
available on interfaces, including JavaScript
configuration

Comms

NoView live per-interface level stats
(connections, idle threads, etc.)

Comms

NoSet up via lists on interfacesComms

NoConfigure, add, delete and view multicast
configuration and state

Comms

Multicast configuration:

view configuration and state

configure, add. delete

YesShared memoryComms

Universal Messaging Administration Guide 10.3 455

4 Comparison of Enterprise Manager and Command Central Features



Supported in Command
Central

Enterprise Manager FeatureArea

View configuration

Configure, add and delete

NoBounce and redirect connectionsComms

NoView details per connectionConnection

NoAdd datagroup and their properties:DataGroups

name

multicast

priority

conflation:merge/drop/interval

NoDelete datagroupDataGroups

NoPublish to any datagroup (including default
datagroup)

DataGroups

Full message properties dialogue

NoAdd/remove datagroups from other
datagroups

DataGroups

NoAdd, modify, view inter-cluster connectionsInter-cluster
connections

NoAdd joins between stores in different clusters
or on remote realms (unclustered)

Inter-cluster, joins

YesEnterprise Manager tab ConfigRealm

Viewand change realm configuration options

YesConnect to realmsRealm

Auto-discover other realms in cluster

YesDisplay IP/host and port of realms/clustersRealm

Yes, with some additional
options

View logs:

UM log

Realm

stream log to file

filter log

force roll log

456 Universal Messaging Administration Guide 10.3

4 Comparison of Enterprise Manager and Command Central Features



Supported in Command
Central

Enterprise Manager FeatureArea

YesApply namespace filter to see only partial list
of resources on realm

Realm

... but separate for channels and
queues

PartialView all channels/queues/datagroupsRealm

Exception:

DataGroups

PartialView graphs of ...Realm

Limited to:event history/rate

Fanout backlogheap memory usage

JVM memorydirect memory usage

Queued tasks of a server

No graphs

PartialEvent statusRealm

Find under:consumed

channelspublished

memory configconsumed/published rates

connection rates

numbers

current

total numbers of channels

datagroups

data streams

Memory usage

total free used change

direct total

direct free

PartialBulk apply ACLs to all channels or queues.Realm

Universal Messaging Administration Guide 10.3 457

4 Comparison of Enterprise Manager and Command Central Features



Supported in Command
Central

Enterprise Manager FeatureArea

... available using templates

PartialView all known connected realms and their
state

Realms

Stats are only shown in the
channels

NoView ...Realm

current connections

rate of connections

total connections

And for each connection see ...

protocol

user

host

connection description, including
ephemeral port, language and name

YesEnterprise Manager tab JNDIRealm

View and modify JNDI on the realm

NoAdd/Remove realms from each otherRealm

Mount realms in namespace

NoImport/Export full/partial realmXMLRealm

... but most configurations can
be exported

NoRequest ...Realm

maintenance

thread dump

release of cached memory

roll of server log

PartialEnterprise Manager tabMonitoring > TopRealm

View ...

458 Universal Messaging Administration Guide 10.3

4 Comparison of Enterprise Manager and Command Central Features



Supported in Command
Central

Enterprise Manager FeatureArea

CPU usage

garbage collection

heap usage

per channel stats on disk and memory
usage

YesSet resource specific ACLs on realm, channel
and queue.

Security

Add/removeACLs including security groups.

YesDefine user security groups with name and
member IP

Security

Add/remove members to groups, including
other groups

YesAdd/remove, modify sitesSites

Modify prime site membership

NoView all threadpool:Threads

YesZones:Zones

Add

Modify

Configure

Universal Messaging Administration Guide 10.3 459

4 Comparison of Enterprise Manager and Command Central Features



460 Universal Messaging Administration Guide 10.3

4 Comparison of Enterprise Manager and Command Central Features



5 Setting up Active/Passive Clustering with Shared

Storage

■   About Active/Passive Clustering ................................................................................... 462

■   Overview of Active/Passive Clustering on Windows ..................................................... 466

■   Overview of Active/Passive Clustering on UNIX ........................................................... 467

■   Configuring a Universal Messaging Active/Passive Cluster on UNIX ........................... 469

Universal Messaging Administration Guide 10.3 461



About Active/Passive Clustering

Active/passive clustering is a solution that uses clustering software and special purpose hardware
to minimize system downtime. Active/passive clusters are groups of computing resources that
are implemented to provide high availability of software and hardware computing services.
Active/passive clusters operate by having redundant groups of resources (such as CPU, disk
storage, network connections, and software applications) that provide service when the primary
system resources fail.

In a high availability active/passive clustered environment, one of the nodes in the cluster will be
active and the other nodes will be inactive. When the active node fails, the cluster fails over to one
of the inactive nodes automatically. As a part of this failover process, clustering software will start
the resources on the redundant node in a predefined order (or resource dependency) to ensure
that the entire node comes back up correctly.

Universal Messaging can run in an active/passive cluster environment, underWindows or UNIX.
This approach does not provide load balancing or scalability.

Active/Passive Clustering Requirements
You need the following to configure a Software AG Universal Messaging active/passive cluster:

Cluster control software to manage the clusters on Windows or UNIX.

Shared Storage for sharing data files.

IP address for running the Universal Messaging cluster service.

Universal Messaging installed on the cluster nodes in the same directory path (for example,
C:\SoftwareAG_UM). In the installations, the data directory path for the shared storage must
be the same.

Important:UniversalMessaging installationmust be identical on all cluster nodes. All instances
of Universal Messagingmust point to the sameUniversal Messaging storage files on the shared
storage.

Universal Messaging Capabilities for Active/Passive Clustering
The following capabilities of Universal Messaging enable the vendor-specific cluster control
software to monitor and manage Universal Messaging in an active/passive cluster.

Functionality to start, stop, and monitor the servers.

Ability to store the server’s state information and data on a shared disk.

Ability to survive a crash and restart itself in a known state.

Ability to meet license requirements and host name dependencies.

462 Universal Messaging Administration Guide 10.3

5 Setting up Active/Passive Clustering with Shared Storage



Virtual IP Address of an Active/Passive Cluster
A virtual IP address is like any other IP address except it does not have a specific host or node to
resolve to. It resolves at run time to a server wherever the IP is physically bound and reachable
on the network.

For client applications to access the services in an active/passive cluster in a transparent way, the
virtual IP address of the cluster must be supplied to the client applications. This virtual IP address
is usually referred to as the "logical host." This logical host identity is a network address (or host
name) and is not tied to a single cluster server.

When there is a failover, the cluster control software will resolve the virtual IP address to the
physical IP address of the current active server in the cluster. The client application is not affected
in any way other than experiencing a brief outage of the services.

Failover Mechanism in an Active/Passive Cluster
Universal Messaging runs as a service in a cluster. Within an active/passive cluster, there only be
a single instance of Universal Messaging server running at any given time. The other Universal
Messaging servers are inactive.

In a clustered environment, when a client makes a request to a server, the server handles the
request much the same as in an unclustered environment, except that the server writes the client
information to a shared disk instead of a private data store.

The following diagram illustrates the flow of documents through a typical clustered environment.

Universal Messaging Administration Guide 10.3 463

5 Setting up Active/Passive Clustering with Shared Storage



DescriptionSteps

Universal Messaging clients use the virtual IP address of the cluster to connect
to the active/passive Universal Messaging cluster.

1

Cluster control software forwards the client request to the active server in the
cluster.

2

The active server reads data from or writes data to the shared storage.3

Universal Messaging returns the results to the client application.4

The following diagram illustrates the failover in a clustered environment. If a server fails,
subsequent requests for the session are redirected to a spare server in the cluster that is currently
active and running.

464 Universal Messaging Administration Guide 10.3

5 Setting up Active/Passive Clustering with Shared Storage



DescriptionSteps

Universal Messaging clients use the virtual IP address of the cluster to connect
to the active/passive Universal Messaging cluster.

1

The active server experiences failure and shuts down.2

The cluster software returns the error code to the client.3

Cluster control software marks the spare server as active.4

Cluster control software forwards the client request to the active server in the
cluster.

5

The active server reads data from or writes data to the shared storage.6

Universal Messaging returns the results to the client application.7

Cluster Verification
A cluster installation consultant will typically perform the cluster installation for you; however,
verify the following to make sure that the cluster is installed properly:

Universal Messaging Administration Guide 10.3 465

5 Setting up Active/Passive Clustering with Shared Storage



The shared drive can be accessed from the cluster nodes.

The virtual IP address of the cluster is accessible on the public network.

Only one Universal Messaging server instance in the cluster can access the shared drive at any
given time.

Roles and Responsibilities for Configuring an Active/Passive
Cluster
ConfiguringUniversalMessaging in a high-availability cluster requires the efforts of the following
people:

System administrator

Cluster vendor’s installation consultant

Universal Messaging administrator

ResponsibilitiesRole

Perform system and network administration tasks.System administrator

Install cluster hardware and software (for example,
Windows Server, Veritas, HP ServiceGuard, IBM HACMP,
or Oracle Solaris Cluster) installation.

Cluster vendor’s installation
consultant

Install Universal Messaging and high availability (HA)
scripts.

Universal Messaging
administrator

Overview of Active/Passive Clustering on Windows

This section describes how to configure Universal Messaging with shared storage on Windows
Server 2008 R2, Windows Server 2012 R2, and Windows Server 2016.

How Does Universal Messaging Run in a Windows Cluster?
In a Windows cluster environment, Universal Messaging runs as a service or as an application
defined within a Windows cluster group. You use the Failover Cluster Manager to configure and
monitor the Universal Messaging servers and all the associated resources. For more information
about the settings in Failover Cluster Manager, see the Microsoft Windows Failover Cluster
Manager manuals.

Active/Passive Cluster Configuration on Windows Server
Perform the following steps to configure Universal Messagingfor high availability.

466 Universal Messaging Administration Guide 10.3

5 Setting up Active/Passive Clustering with Shared Storage



1. Mount and configure the shared drive, and add the shared drive to the cluster. For more
information about adding and configuring a shared drive, see the Microsoft Server
documentation for your Microsoft Server version.

2. Install Universal Messaging on the cluster nodes.

Use the same directory name on all cluster nodes. Ensure that the data directory path for the
shared storage is the same in all the installations (for example, C:\SoftwareAG_UM). The data
directory path in the Server_Common.conf configuration files must correctly refer to the same
shared storage path. For example, the data directory path in all the nodes is specified as
wrapper.java.additional.4="-DDATADIR=H:\UMSharedStorage\Data".

Note:
If you want to make changes that will be automatically migrated in a future
upgrade/migration, you need to set the corresponding properties in the Custom_Server_
Common.conf file. This is described in the section “JVM Options” on page 385.

3. Create the Universal Messaging cluster in Windows Server. See the Microsoft Server
documentation for instructions to create a failover cluster.

4. Create the Universal Messaging cluster group. Define all the resources and dependencies
required to run Universal Messaging.

5. Configure Universal Messaging as a clustered service.

You can run Universal Messaging as a service or an application.

6. Customize theUniversalMessaging startup behavior. For instructions to configure the startup
behavior, see the relevant Microsoft Server documentation.

You can configure the number of possible attempts for starting theUniversalMessaging server
before failover.

7. Verify failover in the cluster using Windows Server tools.

You or a system administrator can verify failover when there is a hardware failure.

8. Ensure that the installation and configuration enables theUniversalMessaging server to failover
correctly from one cluster node to the other.

Overview of Active/Passive Clustering on UNIX

This section describes how to configure Universal Messaging with shared storage on UNIX.

Universal Messaging Administration Guide 10.3 467

5 Setting up Active/Passive Clustering with Shared Storage



Cluster Monitoring Scripts
The cluster control software determines the health of the servers by periodically probing the servers
using the monitor scripts. When the cluster control software determines that one of the servers in
the cluster has failed, it will shut down that server and start the server on the spare node.

You must incorporate the UNIX shell scripts for starting, stopping, and monitoring the servers in
the cluster control software's infrastructure. Youmight have to customize code to enable the cluster
control software to invoke these UNIX shell scripts.

Summary of Active/Passive Cluster Configuration on UNIX
This section is written primarily to a Universal Messaging administrator to gain a better
understanding of the configuration process.

To configure Universal Messaging in an active/passive cluster

1. Ask the cluster vendor’s installation consultant to perform these tasks:

a. Install the HA cluster environment.

b. Configure the HA cluster environment including the shared disk storage.

2. Ask the system administrator to perform these tasks:

a. Administer the HA cluster environment so it is ready for software installation.

b. Configure the external network connection to the HA cluster and create the virtual host
(virtual IP address) for the HA cluster.

3. Ask the cluster vendor’s installation consultant and the system administrator to test the basic
HA installation to ensure it functions properly.

4. Install and configure Universal Messaging on the cluster nodes with the help of the cluster
vendor’s installation consultant.

For information about how to install the cluster nodes and configure the cluster, see
“Configuring a Universal Messaging Active/Passive Cluster on UNIX” on page 469.

5. Verify that Universal Messaging runs on the cluster node. For instructions, see “Verify the
Universal Messaging Server Installation” on page 469.

6. Make sure the cluster is installed properly and configured. For information, see “Verify Failover
in the Cluster” on page 470.

468 Universal Messaging Administration Guide 10.3

5 Setting up Active/Passive Clustering with Shared Storage



7. Configure and test the scripts according to the cluster vendor’s specification for starting,
stopping, and monitoring the Universal Messaging servers. For instructions, see “Configure
the Start, Stop, and Status Scripts” on page 470.

8. Verify failover in the cluster. For instructions, see “Verify Failover in the Cluster” on page 470.

Configuring a Universal Messaging Active/Passive Cluster on
UNIX

Install Universal Messaging on Cluster Nodes
When you install Universal Messaging on cluster nodes, you must:

Follow the instructions in the Using Software AG Installer guide.

Work with the cluster vendor's installation consultant to prepare the cluster node to respond
to the virtual IP address and have access to the storage files on the shared storage.

To install Universal Messaging on cluster nodes

1. Install Universal Messaging on the first cluster node and configure to use the shared storage.

2. Unmount the shared storage from cluster node 1 and mount it on cluster node 2.

3. Make the first cluster node inactive.

4. Install Universal Messaging on the second cluster node and configure it to use the shared
storage.

5. Make the second cluster node active so that it will respond to the virtual IP address and have
access to the storage files on the shared storage.

Verify the Universal Messaging Server Installation
Use the Universal Messaging Enterprise Manager to verify that the Universal Messaging server
is properly installed and working.

To verify that the servers are installed properly

1. Start the Enterprise Manager.

2. Connect to the servers that are part of the cluster.

3. Verify the status of the servers in the cluster.

Universal Messaging Administration Guide 10.3 469

5 Setting up Active/Passive Clustering with Shared Storage



Configure the Start, Stop, and Status Scripts
Incorporate the scripts of each cluster node into the cluster control software with the help of the
cluster vendor’s installation consultant.

To configure the start, stop, and status scripts of a server

1. Provide the location of the start and stop scripts to the cluster vendor consultant.

The scripts to start and stop a Universal Messaging server are located here:

Universal Messaging_directory /server/server_name/bin/nserver to start the server.

Universal Messaging_directory /server/server_name/bin/nstopserver to stop the server.

2. Implement a status script using the Universal Messaging API and provide the script to the
cluster vendor consultant. For example, to return the server time stamp, you can use:
Universal Messaging_directory /java/server_name/bin/ngetservertime.

Important:
When you have basic authentication enabled on the server, you must configure the
UM_PASSWORD or PASS_PASSWORD_IN_CONSOLE property before running the ngetservertime
command. Formore information about UM_PASSWORD and PASS_PASSWORD_IN_CONSOLE, see the
sectionRunning the Java Sample Applicationswhen Basic Authentication is Enabled in theDeveloper
Guide.

a. Modify env.sh and change last command from “$SHELL” to “$SHELL $*”.

b. Run this command to monitor the server status:

./env.sh -c "ngetservertime" | grep "Server Time"

Verify Failover in the Cluster
Test the entire cluster with an application to make sure that the cluster functions properly. With
the help of the system administrator and the cluster vendor’s installation consultant, you can verify
the cluster configuration and installation by causing a failover.

To verify failover in a cluster

1. In the EnterpriseManager, provide the virtual IP address of the cluster to connect to the server
and view the status.

2. Shut down the server on cluster node 1.

3. Start the server on cluster node 2 or let the cluster software start the server on cluster node 2.

470 Universal Messaging Administration Guide 10.3

5 Setting up Active/Passive Clustering with Shared Storage



4. Verify the status of the servers.

Universal Messaging Administration Guide 10.3 471

5 Setting up Active/Passive Clustering with Shared Storage



472 Universal Messaging Administration Guide 10.3

5 Setting up Active/Passive Clustering with Shared Storage



6 Command Line Administration Tools

■   Introduction to the Administration Tools ........................................................................ 474

■   Starting the Tools using the Tools Runner Application ................................................. 474

■   Performing Standard Administration Tasks on Realms and Clusters ........................... 476

■   Running a Configuration Health Check ........................................................................ 482

■   The "Realm Information Collector" Diagnostic Tool ...................................................... 492

■   The ExportEventsFromOfflineMemFile Tool ................................................................. 499

■   The RepublishEventsFromOfflineFile Tool .................................................................... 502

■   Syntax reference for command line tools ..................................................................... 503

Universal Messaging Administration Guide 10.3 473



Introduction to the Administration Tools

Universal Messaging provides a set of command line tools that allow you to performmany of the
common actions available through Universal Messaging. Examples of how to use the tools are
also provided.

The tools can in general be grouped into the following categories:

DescriptionCategory

This is a set of tools for performing many of the common
administration actions available through Universal Messaging.

General administration
tasks

For example, the CreateChannel tool allows you to create a channel
on a specified realm,with a number of optional arguments - including
TTL,ACLs, andmanymore - available through the parameters passed
to the tool.

This tool allows you to check your configuration setup for either a
single realm or for a cluster. The tool notifies you of any errors or
inconsistencies in your setup.

Configuration health
checker

You can run the health check on a running system (realm or cluster).
You can also run the health check offline on the basis of XML files
containing the configuration of a realm or cluster (one XML
configuration file per realm).

These tools are described in the following sections.

Starting the Tools using the Tools Runner Application

To run a tool, you start the Tools Runner application and pass the name of the required tool as a
parameter to this application, as well as any additional parameters required by the tool.

The Tools Runner application is located in <InstallDir>/UniversalMessaging/tools/runner.

To start the Tools Runner application, use the appropriate command for Windows or Linux:

Windows:
runUMTool.bat

Linux:
runUMTool.sh

If you run Tools Runner with no arguments, this displays a list of installed tools, as well as
instructions for using the Tools Runner, as shown in the following image.

474 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Running a Tool

To run a specific tool, you pass the name of the tool as the first argument to the Tools Runner
application. Doing so without any additional arguments will print the usage for the specific tool.
For example, running
runUMTool.bat CreateChannel

will print the usage for the CreateChannel tool. The usage contains a description of the tool, and
a list of the required and optional arguments that you can supply. Argumentswhich have a specific
set of legal values will have these values displayed here. Also included in the usage are command
line examples of running the tool.

To run a tool with additional arguments, each of the required arguments must be specified in the
command. For example, the CreateChannel tool requires both a realm name and channel name to
be specified:
runUMTool.bat CreateChannel -rname=nsp://localhost:9000 -channelname=channel

Universal Messaging Administration Guide 10.3 475

6 Command Line Administration Tools



Additional optional arguments can be appended to the command in the same way; adding a
channel type to the CreateChannel tool command would then be:
runUMTool.bat CreateChannel -rname=nsp://localhost:9000 -channelname=channel
-type=R

Using the Debug Logging option

You can use the optional enableDebug argument on the command line to create a log file that shows
the progress of the tool while it is running. It will log most of the exceptions that can occur during
the tool execution. For example:
runUMTool.bat DumpACL -rname=nhp://localhost:11000 -enableDebug

The log file is called toolsLog.log and is located in the same directory as the Tools Runner
application.

Performing Standard Administration Tasks on Realms and
Clusters

Using the Tools Runner application, you can launch command line tools for performing standard
administration tasks on realms and clusters.

Tools are available to perform tasks such as:

Creating, deleting and monitoring channels and queues

Creating clusters

Adding, modifying and deleting interfaces (HTTP, HTTPS, SSL, Sockets)

Adding and deleting ACL entries for channels, queues and realms

For example, the CreateChannel tool allows you to create a channel on a specified realm, with a
number of optional arguments - including TTL, ACLs, and many more - available through the
parameters passed to the tool.

To see the complete set of administration tools available, start the Tools Runner applicationwithout
any parameters, as described in the section “Starting the Tools using the Tools Runner
Application” on page 474.

The following table lists the available tools. The tools are organized according into categories,
according to the general purpose for which the tools are used.

DescriptionTool name / Category

For the command line syntax of the tools in this category,
see the section “Syntax: Store Tools” on page 503.

Category: Store tools

476 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



DescriptionTool name / Category

Creates a channelwith the specified name on the specified
server. A single permission can be set during channel

CreateChannel

creation using optional arguments. For adding a set of
permissions use the client API.

Creates a Durable with the specified name and type on
the specified channel.

CreateDurable

Joins two channels.CreateJoin

Creates a queue with the specified name on the specified
server. A single permission can be set during queue

CreateQueue

creation using optional arguments. For adding a set of
permissions use the client API.

Deletes a channelwith the specified name on the specified
session.

DeleteChannel

Deletes aDurablewith the specified name on the specified
channel.

DeleteDurable

Deletes a join between two channels.DeleteJoin

Deletes a queue with the specified name on the specified
session.

DeleteQueue

Gets the attributes and storage properties of a specified
channel in a specified realm.

GetChannelInfo

Displays the durables details saved in a .nsb file.GetDurablesInfo

Gets the attributes of a specific Durable in a specific
channel.

GetDurableInfo

Gets the current state of durables on a realm, sorted by a
given field.

GetDurableStatus

Displays the event details present in the memory file(s).GetEventsInfo

Identifies channels containing Durables with a large
number of outstanding events.

IdentifyLargeDurableOutstandingEvents

Lists details of the channels on the specified server.ListChannels

Lists joins on a given realm.ListJoins

Monitors the channels and queues in a realm and prints
totals.

MonitorChannels

Purges events from a channel with the specified name on
the specified session.

PurgeEvents

Universal Messaging Administration Guide 10.3 477

6 Command Line Administration Tools



DescriptionTool name / Category

For the command line syntax of the tools in this category,
see the section “Syntax: Cluster Tools” on page 516.

Category: Cluster tools

Checks the cluster state by a given RNAME,which is part
of a cluster.

ClusterState

Creates a cluster with the specified name, consisting of
the specified realms.

CreateCluster

Dumps the state of named objects (durables) on channels
present on the specified cluster servers.

DumpClusterNamedObjectsState

For the command line syntax of the tools in this category,
see the section “Syntax: Interface Tools” on page 518.

Category: Interface tools

Adds an HTTP interface on the specified adapter and
port, on the specified realm.

AddHTTPInterface

Adds an HTTPS interface on the specified adapter and
port, on the specified realm.

AddHTTPSInterface

Adds a sharedmemory interface with the specified path,
buffer size and timeout, on the specified realm.

AddSHMInterface

Adds an SSL interface on the specified adapter and port,
on the specified realm.

AddSSLInterface

Adds a socket interface on the specified adapter and port,
on the specified realm.

AddSocketInterface

Deletes the specified interface from the specified realm.DeleteInterface

Modifies the specified interface on the specified realm.ModifyInterface

For the command line syntax of the tools in this category,
see the section “Syntax: DataGroupTools” on page 527.

Category: Data group tools

Adds a child data group to a parent data group. Both of
these data groups must exist.

AddDataGroup

Creates a data group with the specified name on the
specified server. Additionally, conflation attributes and
other options of the data group can be set.

CreateDataGroup

Removes the data group with the specified name from
the server.

DeleteDataGroup

478 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



DescriptionTool name / Category

Listens for data group events on a realm.ListenDataGroup

Publishes messages to a data group.PublishDataGroup

For the command line syntax of the tools in this category,
see the section “Syntax: Publish Tools” on page 530.

Category: Publish tools

Publishes events to a channel.PublishChannel

Publishes an XML document to a channel.PublishChannelXML

Publishes events to a store, using compression.PublishCompressed

Publishes events to a queue.PublishQueue

Publishes events, as a part of a transaction, to a channel
or queue.

PublishTX

For the command line syntax of the tools in this category,
see the section “Syntax: Subscribe Tools” on page 533.

Category: Subscribe tools

Peeks all events on a queue and prints statistics for the
bandwidth rates.

PeekQueue

Reads all the messages from a channel.SubscribeChannel

Listens for messages on a channel.SubscribeChannelAsync

Listens for messages on a channel. Running the tool with
the same "-name" argument will continue reading from
the last unconsumed event.

SubscribeChannelAsyncDurable

Listens for messages on a channel. Running the tool with
the same "-name" argument will continue reading from
the last unconsumed event.

SubscribeChannelDurable

Listens for compressed messages on a channel.SubscribeCompressed

Reads all the messages from a queue.SubscribeQueue

Listens for messages on a queue.SubscribeQueueAsync

For the command line syntax of the tools in this category,
see the section “Syntax: Security Tools” on page 538.

Category: Security tools

Adds an ACL entry on the specified channel for the
specified user and host, on the specified session.

AddChannelACLEntry

Universal Messaging Administration Guide 10.3 479

6 Command Line Administration Tools



DescriptionTool name / Category

Adds an ACL entry on the specified container for the
specified user and host.

AddContainerACLEntry

Adds an ACL entry on the specified queue for the
specified user and host, on the specified session.

AddQueueACLEntry

Adds an ACL entry on the specified realm for the
specified user and host.

AddRealmACLEntry

Adds a security group to the specified realm with the
specified name.

AddSecurityGroup

Adds a specified user and host subject to a given security
group on a specified realm.

AddUserToSecurityGroup

Deletes the ACL entry from the specified channel with
the specified user and host.

DeleteChannelACLEntry

Removes an ACL entry from the specified container with
the specified user and host.

DeleteContainerACLEntry

Deletes an ACL entry from the specified queue with the
specified user and host.

DeleteQueueACLEntry

Removes an ACL entry from the specified realmwith the
specified user and host.

DeleteRealmACLEntry

Removes a security group from the specified realm with
the specified name.

DeleteSecurityGroup

Dumps all the ACL data for a realm.DumpACL

Updates an ACL entry on the specified channel for the
specified user and host, on the specified session.

ModifyChannelACLEntry

AddContainerACLEntry adds an ACL entry on the
specified container for the specified user and host.

ModifyContainerACLEntry

Updates an ACL entry on the specified queue for the
specified user and host, on the specified session.

ModifyQueueACLEntry

Modifies an ACL entry on the specified realm for the
specified user and host.

ModifyRealmACLEntry

Removes a specified user from a given security group on
the specified realm.

RemoveUserFromSecurityGroup

For the command line syntax of the tools in this category,
see the section “Syntax: Zone Tools” on page 551.

Category: Zone tools

480 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



DescriptionTool name / Category

Adds a realm to a specified realm's zone.AddMemberToZone

Creates a zone with the specified name containing the
specified realms.

CreateZone

Deletes a zone with the specified name on the specified
session.

DeleteZone

Removes a realm from its current zone.RemoveMemberFromZone

For the command line syntax of the tools in this category,
see the section “Syntax: JMS Tools” on page 553.

Category: JMS tools

Creates a JMS connection factorywith the specified server.CreateConnectionFactory

Creates a JMS queue with the specified name on the
specified session.

CreateJMSQueue

Creates a JMS topic with the specified name on the
specified session.

CreateJMSTopic

Publishes one or more messages to a JMS queue or topic.JMSPublish

Reads messages arriving to a JMS destination.JMSSubscribe

Modifies settings of a JMS connection factory on the
specified server.

ModifyConnectionFactory

Views settings of a JMS connection factory on the specified
server.

ViewConnectionFactory

For the command line syntax of the tools in this category,
see the section “Syntax: Recovery Tools” on page 563.

Category: Recovery tools

Adds a new interface to an offline realm.AddInterfaceOffline

Removes an interface from an offline realm using
configuration data.

DeleteInterfaceOffline

Dumps the list of interfaces for a specified offline realm.DumpInterfacesOffline

Modifies an interface of an offline realm.ModifyInterfaceOffline

Modifies the prime flag of a sitewhile the realm is offline.ModifyPrimeFlagOffline

For the command line syntax of the tools in this category,
see the section “Syntax: Durable Tools” on page 568.

Category: Durable tools

Universal Messaging Administration Guide 10.3 481

6 Command Line Administration Tools



DescriptionTool name / Category

Gets all events for all durables or all events for a specific
durable.

ViewDurableEvent

For the command line syntax of the tools in this category,
see the section “Syntax: Miscellaneous Tools” on
page 569.

Category: Miscellaneous

Edits realm configuration parameters.EditRealmConfiguration

Exports a selected realm to an XML file.ExportRealmXML

Runs theHealthChecker tool for analysing configuration
items and highlighting robustness improvements.

HealthChecker

Formore details, see the section “Running aConfiguration
Health Check” on page 482.

Imports a realm from an XML file.ImportRealmXML

For the command line syntax of the tools in this category,
see the section “Syntax: Site Tools” on page 573.

Category: Site tools

Creates a site with the specified name, consisting of the
specified nodes.

CreateSite

Deletes a site with the specified name from all the nodes
associated with it.

DeleteSite

Toggles the specified site's prime status.SetPrimeSite

Displays the configuration of the sites.ShowSites

For the command line syntax of the tools in this category,
see the section “Syntax: Diagnostic Tools” on page 575.

Category: Diagnostic tools

Collects diagnostic information from a realm server
installation and stores it in a zip archive.

RealmInformationCollector

Formore details, see the section “The "Realm Information
Collector" Diagnostic Tool” on page 492.

Running a Configuration Health Check

Overview

The HealthChecker is a tool for checking the correctness of a realm or cluster configuration.

482 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



The tool is primarily intended for use by SoftwareAG support staff for analyzing possible problems
in customer configurations, but you might also find it useful for checking your configuration.

The tool can be used in the following ways:

To check the configuration of a live realm (which can be a single entity or a node of a cluster)
or a cluster. If the realm is a node of the cluster, the checks will also be automatically executed
against all the other cluster members.

To do an offline check of the configuration of a realm or cluster, based on configuration
information that has been exported to XMLfiles. Each such XMLfile contains the configuration
data of a realm, regarding channels, queues, durables, datagroups, etc. The tool will only run
the checks against all the cluster members if their XML paths are given explicitly in the call of
the tool.

Typical configuration aspects that can be checked in a clustered realm are:

Datagroups:

Datagroups belonging to a clustermust be present on all nodes of the cluster and their attributes
must be the same.

Durables:

Durables belonging to clusterwide channels should also be clusterwide. Theymust be present
on all nodes of the cluster and their attributes must be the same.

Joins:

Joins between clusterwide channels must be present on all nodes of the cluster and their
attributes have to be the same.

Stores:

Stores belonging to a cluster must be present on all nodes of the cluster and their attributes
and properties must be the same.

Typical configuration aspects that can be checked in a non-clustered realm are:

Durables:

Durables belonging to a non-clustered realm must be non-clusterwide and must be attached
to a non-clusterwide channel.

Stores:

Some store configurations may impact the performance of the system and they need to be
highlighted.

Checks against a live realm

The checks that can be run against a live realm are the following:

Universal Messaging Administration Guide 10.3 483

6 Command Line Administration Tools



Default
check?

DescriptionName of Check

YCheck if datagroups are coherent across all nodes
of the cluster.

DataGroupMismatchCheck

YCheck if durables are coherent across all nodes of
the cluster.

DurableMismatchCheck

YCheck the number of remaining events to be
consumed in a shared durable. If the number is

DurableSubscriberLargeStoreCheck

greater than the threshold a warning will be
displayed. The default value for the threshold is
1000.

This check takes an additional parameter
-threshold that allows you to specify a custom
value for the threshold.

YCheck and display the status of a running
environment.

EnvironmentStateCheck

The HealthChecker first checks if the server
configuration property Enable Flow Control in the
configuration group Server Protection (see the
note after this table) is set to true. If it is set to true
then theHealthCheckerwill checkwhat percentage
of memory is taken by events from thewhole heap
memory. If the percentage is between 70 and 80,
or between 80 and 90, or above 90, an appropriate
warning will be displayed.

The general idea is that Server Protection
mechanism gradually slows the consumption of
events from clients when a certain threshold is
reached, and 70-80, 80-90 and >90 are these
thresholds.

The degree of slowing down is marked by these
three server configuration properties:
FlowControlWaitTimeOne, FlowControlWaitTimeTwo
and FlowControlWaitTimeThree. These represent a
period of time,measured inmilliseconds, bywhich
client publishing requests will be delayed when
the corresponding threshold has been reached.

Threshold 70%-80%: A warning message is
displayed that client publishing requests will be
delayed by FlowControlWaitTimeOnemilliseconds.

484 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Default
check?

DescriptionName of Check

Threshold 80%-90%: A warning message is
displayed that client publishing requests will be
delayed by FlowControlWaitTimeTwomilliseconds.

Threshold 90%-100%: An error message is
displayed that client publishing requests will be
delayedby FlowControlWaitTimeThreemilliseconds.

YCheck if the nodes of a given cluster havematching
fix levels.

FixLevelCheck

YCheck JNDI status and mismatches for stores.JNDIStatusCheck

YCheck if joins are coherent across all nodes of the
cluster.

JoinMismatchCheck

Check that channel/queue resources have either
TTL or Capacity configured to a non-zero value. If

ResourcesSafetyLimitsCheck

both of these values are zero, this means that the
channel/queue is not configured with any safety
limits.

YCheck if the server configuration properties in the
configuration group Server Protection group (see

ServerProtectionConsistencyCheck

the note after this table) are coherent across the
nodes of a cluster against a running environment.

YCheck the memory usage of stores.StoreMemoryCheck

YCheck if stores are coherent across all nodes of the
cluster.

StoreMismatchCheck

Check store warnings on the specified realm.StoreWarningsCheck

A "Y" in the column "Default check?" indicates that the check is included in the -mode=default
setting (see the topic The -mode parameter below).

Important:
When the tool checks for outstanding durable events or event ID mismatches in a live
environment, there is a chance of gettingwarningmessages, even though the cluster is working
correctly. This is because the check is not atomic for the live cluster, so a small synchronization
discrepancy can be expected.

Note:
For further information about the server configuration parameters and the configuration group
Server Protectionmentioned in the table above, see the section “Realm Configuration” on
page 49.

Universal Messaging Administration Guide 10.3 485

6 Command Line Administration Tools



Checks against a realm's stored XML configuration

The checks that can be run against a stored XML configuration are the following:

Default
check?

DescriptionName of Check

YCheck if datagroups are coherent across all
nodes of the cluster.

XMLDataGroupMismatchCheck

YCheck if durables are coherent across all nodes
of the cluster.

XMLDurableMismatchCheck

YCheck if the nodes of a given cluster have
matching fix levels.

XMLFixLevelCheck

YCheck JNDI status and mismatches for stores.XMLJNDIStatusCheck

YCheck if joins are coherent across all nodes of
the cluster.

XMLJoinMismatchCheck

Check that channel/queue resources have either
TTL orCapacity configured to a non-zero value.

XMLResourcesSafetyLimitsCheck

If both of these values are zero, this means that
the channel/queue is not configured with any
safety limits.

YCheck if the server configuration properties in
the configuration group Server Protection are

XMLServerProtectionConsistencyCheck

coherent across the nodes of a cluster against
the exported configurations from the nodes.

YCheck if stores are coherent across all nodes of
the cluster.

XMLStoreMismatchCheck

Check store warnings on the specified realm.XMLStoreWarningsCheck

Command Usage

The syntax is as follows:
runUMTool HealthChecker [-rname=<rname> | -xml=/path/to/xml1,...]

[-check=<checktype>[,<checktype> ...] ]
[-mode=<modetype>]
[-include=<checktype>[,<checktype> ...] ]
[-exclude=<checktype>[,<checktype> ...] ]
[-<additionalParameter1>=<value>] [-<additionalParameter2>=<value>] ...

Displaying help text

To display a help text showing a summary of the command usage, call the HealthChecker without
parameters:

486 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



runUMTool HealthChecker

Running a health check of a running realm
runUMTool HealthChecker -rname=–rname=nsp://localhost:11000

This will run the HealthChecker tool against the given running realm.

Running a health check of a stored realm configuration
runUMTool HealthChecker -xml=/path/to/xml1.xml, /path/to/xml2.xml

This will run the HealthChecker tool against the realm configurations stored in the given XML
files.

The -check parameter

This parameter allows you to explicitly specify the check or checks that you want to be executed.
No other checks will be included. This parameter can only be used together with the -rname or
-xml parameter; the other additional parameters have nomeaning in the context of -check so they
can't be used.

Example - Execute only the Store Warnings Check check against the running realm:
runUMTool HealthChecker –rname=nsp://localhost:11000

-check=StoreWarningsCheck

Example - Execute only the Store Warnings Check and Fix Level Check checks against the running
realm:
runUMTool HealthChecker –rname=nsp://localhost:11000

-check=StoreWarningsCheck, FixLevelCheck

The -mode parameter

This parameter allows you to select a predefined set of checks without having to name the checks
explicitly. The -mode and -check parameters are mutually exclusive.

The mode parameter can take one of the following values:

default - this value selects the recommended minimal subset of checks. This is the default
option.

all - this mode selects all checks.

If neither -mode nor -check is specified, the default set of checks will be executed.

The -include and -exclude parameters

You can use the -include and -exclude parameters to further refine the set of checks that have
been selected by the -mode parameter. You can use -include and -exclude in the same call of the
health checker, as long as they do not specify the same check.

include - Run all checks from the set defined by the -mode parameter, and additionally include
the check or checks specified by this parameter. The parameter may contain a single check or
a comma-separated list of checks.

Universal Messaging Administration Guide 10.3 487

6 Command Line Administration Tools



exclude - Run all checks from the set defined by the -mode parameter, except the specified
check or checks. The parametermay contain a single check or a comma-separated list of checks.

The -<additionalParameter> parameters

Some of the health checks allow you to specify one or more additional parameters when calling
theHealthChecker. The name andpurpose of each additional parameter is specific to the individual
health check being run.

For example, the DurableSubscriberLargeStoreCheck check allows you to specify the additional
parameter -threshold=<value>, which defines a threshold for the number of remaining events to
be consumed in a shared durable.

The following general rules apply:

Each additional parameter has a default value, so if you do not specify the additional parameters
explicitly, the default values will be taken.

If multiple additional parameters and multiple checks are specified, each individual check
uses only its own additional parameters.

The additional parameters can be given in any order.

Checks that do not require additional parameters will ignore the additional parameters.

Syntax Examples

Example - Execute all available checks for live realm check:
runUMTool HealthChecker –rname=nsp://localhost:11000 -mode=all

Example - Execute all the available checks except the ones mentioned.
runUMTool HealthChecker –rname=nsp://localhost:11000

-mode=all –exclude=JNDIStatusCheck, FixLevelCheck, JoinMismatchCheck

Example - Execute the default set of checks, adding the StoreWarningsCheckwhich is not part of
the default set.
runUMTool HealthChecker –rname=nsp://localhost:11000

-mode=default –include= StoreWarningsCheck

Example - Execute the default set of checks but excluding the JNDIStatusCheck, FixLevelCheck
and adding the StoreWarningsCheck.
runUMTool HealthChecker –rname=nsp://localhost:11000

-mode=default –include= StoreWarningsCheck
–exclude=JNDIStatusCheck, FixLevelCheck

Note:
The previous examples are based on live checks using the -realm parameter. The same logic
applies if you use the -xml parameter instead, but the names of the checks need to be adapted
to the appropriate XML checks.

488 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Full Example

The following example compares the XML configuration files of two realms in a cluster. The realms
are named realm0 and realm1, and their configuration files are named clustered_realm0.xml and
clustered_realm1.xml.

XML configuration file clustered_realm0.xml for realm0:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<NirvanaRealm name="realm0" exportDate="2016-11-08Z"
comment="Realm configuration from realm0" version="BuildIdentifier"
buildInfo="BuildIdentifier">
<ClusterSet>

<ClusterEntry name="cluster1">
<ClusterMember name="realm1" rname="nsp://localhost:11010/"

canBeMaster="true"/>
<ClusterMember name="realm0" rname="nsp://localhost:11000/"

canBeMaster="true"/>
</ClusterEntry>

</ClusterSet>
<ChannelSet>

<ChannelEntry>
<ChannelAttributesEntry name="channel1" TTL="0" capacity="5" EID="0"

clusterWide="true" jmsEngine="false" mergeEngine="false"
type="PERSISTENT_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="false" EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

<ChannelJoinSet>
<ChannelJoinEntry filter="" hopcount="50" to="channel2"

from="channel1" allowPurge="false" archival="false"/>
</ChannelJoinSet>

</ChannelEntry>
<ChannelEntry>

<ChannelAttributesEntry name="channel2" TTL="0" capacity="0" EID="0"
clusterWide="true" jmsEngine="false" mergeEngine="false"
type="RELIABLE_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false"
SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="false"
EnableCaching="true" CacheOnReload="true"
EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

<DurableSet>
<durableEntry name="durable1" EID="-1" outstandingEvents="0"

clusterWide="true" persistent="true"
priorityEnabled="false" shared="true"/>

</DurableSet>
</ChannelEntry>

</ChannelSet>
<QueueSet>

<QueueEntry>

Universal Messaging Administration Guide 10.3 489

6 Command Line Administration Tools



<ChannelAttributesEntry name="queue1" TTL="0" capacity="0" EID="0"
clusterWide="true" jmsEngine="false" mergeEngine="false"
type="RELIABLE_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="true" EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

</QueueEntry>
</QueueSet>

</NirvanaRealm>

XML configuration file clustered_realm1.xml for realm1:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<NirvanaRealm name="realm1" exportDate="2016-11-16Z"
comment="Realm configuration from realm1"
version="BuildIdentifier" buildInfo="BuildIdentifier">
<ClusterSet>

<ClusterEntry name="cluster1">
<ClusterMember name="realm1" rname="nsp://localhost:11010/"

canBeMaster="true"/>
<ClusterMember name="realm0" rname="nsp://localhost:11000/"

canBeMaster="true"/>
</ClusterEntry>

</ClusterSet>
<ChannelSet>

<ChannelEntry>
<ChannelAttributesEntry name="channel1" TTL="0" capacity="5" EID="0"

clusterWide="true" jmsEngine="false" mergeEngine="false"
type="RELIABLE_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="false" EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

<ChannelJoinSet>
<ChannelJoinEntry filter="" hopcount="10" to="channel2"

from="channel1" allowPurge="false" archival="false"/>
</ChannelJoinSet>

</ChannelEntry>
<ChannelEntry>

<ChannelAttributesEntry name="channel2" TTL="0" capacity="0" EID="0"
clusterWide="true" jmsEngine="false" mergeEngine="false"
type="RELIABLE_TYPE"/>

<StorePropertiesEntry HonorCapacityWhenFull="false"
SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
PerformAutomaticMaintenance="false" EnableCaching="true"
CacheOnReload="true" EnableReadBuffering="true"
ReadBufferSize="10240" Priority="4" EnableMulticast="false"
StampDictionary="0" MultiFileEventsPerSpindle="50000"/>

</ChannelEntry>
</ChannelSet>
<DataGroupSet>

<DataGroupEntry>
<DataGroupAttributesEntry name="dg1" id="3422373812" priority="1"

multicastenabled="false"/>

490 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



</DataGroupEntry>
</DataGroupSet>

</NirvanaRealm>

From a first analysis we can say that these two realms belong to the same cluster (cluster1) and
that they both contain various stores, joins and data groups. But let's see what happens when we
run the HealthChecker tool specifying both XML files and running all the checks. Note that we
need to exclude the XMLServerProtectionConsistencyCheck since the specified XML files do not
contain the RealmConfiguration section.

Here is the call of the tool (using Windows syntax) and the result:
runUMTool.bat HealthChecker -xml=clustered_realm0.xml,clustered_realm1.xml

-exclude=XMLServerProtectionConsistencyCheck
HealthChecker Tool - Version: 1.0

XML JOIN MISMATCHES CHECK
ERROR: Join from (channel1) to (channel2) HopCount mismatch [realm1] does not

equal [realm0]

XML JNDI PROPERTIES CHECK
WARN: Realm realm0: No JNDI entry for store channel1
WARN: Realm realm0: No JNDI entry for store channel2
WARN: Realm realm0: No JNDI entry for store queue1
WARN: Realm realm1: No JNDI entry for store channel1
WARN: Realm realm1: No JNDI entry for store channel2

XML DURABLE STATUS CHECK
ERROR: Could not find durable (durable1) on realm [realm1] but it is present

on [realm0]

XML STORE MISMATCHES CHECK
WARN: Store (channel1) Type mismatch [realm1] does not equal [realm0]
ERROR: Could not find store (queue1) on realm [realm1] but it is present

on realm [realm0]

XML DATAGROUP MISMATCHES CHECK
ERROR: Could not find Data Group (dg1) on realm [realm0] but it is present

on realm [realm1]

These errors and warnings tell us:

Joins: a join between two clusterwide channels has to be the same on all the nodes - in our case
there is a mismatch in the HopCount;

JNDIs: these simplewarnings are saying: "Are you sure that you don't need any JNDI for these
stores?";

Durables: if a durable is clusterwide, then it has to be present on all the other nodes (and it
has to be the same);

Universal Messaging Administration Guide 10.3 491

6 Command Line Administration Tools



Stores: if a store is clusterwide, then it has to be the same on all the other nodes.

Datagroups: the same rule applies for datagroups, which are always clusterwide and have to
be present on all the other nodes.

The "Realm Information Collector" Diagnostic Tool

Overview

RealmInformationCollector is a command-line diagnostic tool that gathers files and live data from
one or more Universal Messaging realm servers. The tool makes it easier for you to collect
information that Software AG support may require to diagnose issues with Universal Messaging,
but the information collected may also be useful for internal support within your organization.

The tool can be executed in live and offline mode:

Live mode: In live mode, the specified Universal Messaging realm server(s) must be running.

The tool will collect files that contain operational data for each running realm server, but will
also attempt to connect to and gather information directly from each running server process.

Offline mode: In offline mode, the specified Universal Messaging realm server(s) must be
offline.

In this mode, the tool will only collect files that contain operational data for each realm server.

The mode of operation (either offline or live) is a mandatory argument and must be specified
when running the tool. Youmust ensure that the specified Universal Messaging realm servers are
stopped when -mode=offline, or running when -mode=live.

Depending on the mode, the tool will collect different files. For example, in live mode, it will not
collect the content of realm server's "data" directory, because thismight cause failures on the server.

The tool collects information by executing a list of collectors. Each collector is responsible for
gathering a specific subset of the realm's information.

Collectors for a live realm server

The collectors that can be run against a live realm server are shown in the following table. Path
names of files and directories given in the table are the installation defaults.

Default
collector?

DescriptionName of Collector

YCollects environment information froma running realm server.env

This includes all JVM system properties and the list of
Universal Messaging interfaces.

492 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Default
collector?

DescriptionName of Collector

YAcquires health information froma running realm server using
the HealthChecker tool. See the section “Running a
Configuration Health Check” on page 482 for details.

healthchecker

Acquires a heap dump from a running realm server.heapdump

Note:
This collector is not available on all platforms. See the
section Operational Issues below for related information.

Collects the heap dump directory of a realm server.heapdumps

The location of this directory is
<InstallDir>/UniversalMessaging/server/<realmname>/heap_dumps.

See the section TheDump file for Out-of-Memory Errors (OOME)
in the Installation Guide for related information about heap
dumps.

YCollects the product's installation log files.installlogs

These files are located in <InstallDir>/install/logs.

YCollects the realm server's manager log.instancemgr

This file is located in
<InstallDir>/UniversalMessaging/tools/InstanceManager/instanceLog.txt.

YCollects the JAAS configuration of a realm server.jaas

This file is located in
<InstallDir>/UniversalMessaging/server/<realmname>/bin/jaas.conf.

YCollects the license file of a realm server.license

This file is located in
<InstallDir>/UniversalMessaging/server/<realmname>/licence.xml.

YCollects logs of a realm server.logs

The location of the file is
<InstallDir>/UniversalMessaging/server/<realmname>/data/nirvana.log.
If there are any rolled log files in addition to the current log
file, for example nirvana.log_<timestamp1> and
nirvana.log_<timestamp2>, these are collected also.

YCollects operating system and hardware information. The
collectorwill gather hardware, processor,memory, file system,

osinfo

and network information from the operating system. The data

Universal Messaging Administration Guide 10.3 493

6 Command Line Administration Tools



Default
collector?

DescriptionName of Collector

will be stored in the file generated/osinfo.txt in the generated
archive.

The osinfo tool runs on Windows, Apple macOS, Red Hat
Enterprise Linux, and Solaris operating systems.

YCollects the plugins directory of a realm server.plugins

This directory is located at
<InstallDir>/UniversalMessaging/server/<realmname>/plugins.

YCollects information about processes in the operating system.
The collector records the top 20 processes in terms of CPU

psinfo

consumption and stores the data in the generated/osinfo.txt
file in the generated archive.

The psinfo collector runs together with the osinfo collector,
which is selected by default. If you try to run psinfowithout
osinfo, the system returns an error.

The psinfo tool runs on Windows, Apple macOS, Red Hat
Enterprise Linux, and Solaris operating systems.

YCollects the realm configuration properties of a realm server.
The properties are listed in the section “Realm

realmconfig

Configuration” on page 49. The collector delivers the
configuration properties as a serialized XML file.

YCollects the security file of a realm server.secfile

This file is located at
<InstallDir>/UniversalMessaging/server/<realmname>/bin/secfile.conf.

YCollects the Tanuki service wrapper configuration of a realm
server.

tanukiconf

This includes the files nserverdaemon.conf, Server_Common.conf
and Custom_Server_Common.conf, located at
<InstallDir>/UniversalMessaging/server/<realmname>/bin.

YCollects Tanuki service wrapper logs of a realm server.tanukilogs

This file is located at
<InstallDir>/UniversalMessaging/server/<realmname>/bin/UMRealmService.log.
If there are any rolled log files in addition to the current log
file, for example UMRealmService.log.1 and
UMRealmService.log.2, these are collected also.

494 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Default
collector?

DescriptionName of Collector

YGenerates three thread dumps of a realm server. The dumps
are taken at 15-second intervals. Having three dumps instead
of one canmake it easier to analyze time-related thread issues.

threaddump

YCollects the realm server version. The version will be stored
in the file UniversalMessaging/lib/nServer.jar_version.txt
in the generated archive.

version

A "Y" in the column "Default collector?" indicates that the collector is included by default when
you run the RealmInformationCollector tool.

Collectors for an offline realm server

The collectors that can be run against an offline realm server are the following (collectors that can
be used also against a live realm server are indicated). Path names of files and directories given
in the table are the installation defaults.

Default
collector?

DescriptionName of Collector

Collects the data directory of a realm server.data

The location of this directory is
<InstallDir>/UniversalMessaging/server/<realmname>/data.

(Same as the live collector)heapdumps

Y(Same as the live collector)installlogs

Y(Same as the live collector)instancemgr

Y(Same as the live collector)jaas

Y(Same as the live collector)license

Y(Same as the live collector)logs

Y(Same as the live collector)osinfo

Y(Same as the live collector)plugins

Y(Same as the live collector)psinfo

Y(Same as the live collector)secfile

Y(Same as the live collector)tanukiconf

Y(Same as the live collector)tanukilogs

Universal Messaging Administration Guide 10.3 495

6 Command Line Administration Tools



Default
collector?

DescriptionName of Collector

Y(Same as the live collector)version

Command Usage

The syntax is as follows:
runUMTool RealmInformationCollector

-mode=live|offline [-username=<username> -password=<password>]
-instance=*|<instanceName>[,<instanceName> ...]
[-include=<collectorName>[,<collectorName> ...] ]
[-exclude=<collectorName>[,<collectorName> ...] ]
[-outputfile=<dir_or_file>]

Displaying help text

To display a help text showing a summary of the command usage, call the
RealmInformationCollector tool without parameters:
runUMTool RealmInformationCollector

The -mode parameter

This parameter allows you to select the execution mode of the tool. The mode parameter is
mandatory and can take one of the following values:

live - the RealmInformationCollector tool will collect operational data files for each running
realm server and also attempt to connect and gather information directly from each running
realm server

offline - the tool will collect operational data files only

In live mode, all specified realm servers (see the -instance parameter) must be running, whereas
in offline mode, all specified realm servers must be stopped.

Also in live mode, the following collectors will connect to each specified running realm server to
gather information, and will store the information in the following files under
UniversalMessaging/server/<InstanceName>/generated in the generated archive:

Generated fileCollector name

envinfo.txtenv

RealmConfig.xmlrealmconfig

healthchecker.txthealthchecker

Three thread dump files, generated at 15-second intervals, named
threaddump_<timestamp>.txt

threaddump

The -username and -password parameters

496 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



When establishing the connection to a live realm server, the RealmInformationCollector tool will
authenticate using the current operating system user. It is therefore recommended to run the
RealmInformationCollector tool using the same user as the one used to run the realm server.

You can specify a different user using the -username and -password arguments.

The -instance parameter

This parameter allows you to select the set of realm servers to collect information from. The
parameter ismandatory andmust contain either a single realm server name or a comma-separated
list of realm server names. The specified realm servers must be available in the installation where
the RealmInformationCollector tool is run from. You can specify -instance=* to select all installed
realm servers.

The -include and -exclude parameters

You can use the -include and -exclude parameters to further refine the set of collectors that have
been selected by the -mode parameter. You can use -include and -exclude in the same call of the
RealmInformationCollector tool as long as they do not specify the same collector name.

include - Run all default collectors available with the specified -mode parameter, and
additionally include the collector or collectors specified by this parameter. The parametermay
contain a single collector name or a comma-separated list of collector names.

exclude - Run all default collectors available with the specified -mode parameter, except the
specified collector or collectors. The parameter may contain a single collector name or a
comma-separated list of collector names.

The -output parameter

Specifies the path where the generated zip archive will be stored.

If the path specifies a directory without a filename, the directory must already exist. The archive
file will be generated in the specified directory using the following naming convention:
<InstallDir>_<mode>_<timestamp>.zip

For example, if the product installation directory is C:\SoftwareAG and the
RealmInformationCollector tool is executedwith -mode=live, the generated archivewill be named
for example SoftwareAG_live_20171120100757940.zip

If the path specifies a directory with a filename, the directory must already exist but the file must
not already exist, and the tool will use the filename you specify.

If the parameter is not specified, the tool will generate an archive with a name corresponding to
the naming convention mentioned above, and store the archive under the directory
<InstallDir>/UniversalMessaging/tools/runner.

Syntax Examples

Example: Execute default collectors in offline mode against the umserver instance:
runUMTool RealmInformationCollector -mode=offline -instance=umserver

Universal Messaging Administration Guide 10.3 497

6 Command Line Administration Tools



Example: Execute default collectors and also optional collectors data and heapdumps in offlinemode
against the umserver instance:
runUMTool RealmInformationCollector

-mode=offline -instance=umserver -include=data,heapdumps

Example: Execute default collectors and the optional collectors data and heapdumps, excluding the
jaas collector, in offline mode against all realm server instances:
runUMTool RealmInformationCollector

-mode=offline -instance=* -include=data,heapdumps -exclude=jaas

Example: Execute default collectors in live mode against the umserver instance:
runUMTool RealmInformationCollector -mode=live -instance=umserver

Example: Execute the default collectors and optional collectors heapdump and heapdumps in live
mode against the umserver instance:
runUMTool RealmInformationCollector

-mode=live -instance=umserver -include=heapdump,heapdumps

Example: Execute the default collectors and optional collectors heapdump and heapdumps, excluding
the jaas collector, in live mode against the umserver and umserver2 instances:
runUMTool RealmInformationCollector

-mode=live -instance=umserver,umserver2 -include=heapdump,heapdumps -exclude=jaas

Example: Execute the default collectors and optional collectors heapdump and heapdumps in live
mode against the umserver instance and specify a custom location of the generated zip archive:
runUMTool RealmInformationCollector

-mode=live -instance=umserver -include=heapdump,heapdumps
-outputfile=C:/SoftwareAG_umserver_live.zip

Operational Issues

OnWindows, if the product installation directory path is too long, acquiring a live heap dump
may fail with the error "CreateProcess error=267, The directory name is invalid". You canwork
around this error by configuring the -outputFile parameter to use a shorter directory/file path,
for example C:/SoftwareAG_live.zip.

The RealmInformationCollector tool does not support connecting via SSL-secured network
interfaces to the realm server. If all realm server network interfaces are secured using SSL, live
collectors which need to connect to the server (env, realmconfig, healthchecker, threaddump)
will fail to connect to the server. You canwork around this by configuring a temporary non-SSL
secured network interface.

Live heap dump generation using the heapdump collector is only available with the JVM that
is delivered with the Universal Messaging distribution kit onWindows and Solaris machines.
This feature is currently not available for use with other JVMs.

The RealmInformationCollector toolmight fail to acquire a live heap dump if the tool runwith
a different operating system user than the one used for running the realm server. It is

498 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



recommended to run the tool with the same operating system user that was used to run the
realm server.

The ExportEventsFromOfflineMemFile Tool

Overview

The ExportEventsFromOfflineMemFile tool is a command-line recovery tool that dumps events
from mem files of Universal Messaging realm server stores to XML format. Selector based event
filtering can be applied while dumping with the tool.

The output file will contain a first element describing the export details and then a list of events.
The ExportDetails element contains the tool version number and the protocol buffer file descriptor
set in base64-encoded format, if the protocol buffer file descriptor set was specified by the user
when starting the export tool.

Event structure in the output file

In XML output files, the Event element contains the following information:
id: event EID (nPublished.getKey());
size: event size (nPublished.getSize());
chanID: event ChannelAttributesId (nPublished.getChannelAttributesId());
ttl: event TTL (nPublished.getTTL());
tag: event tag (nPublished.getTag());
eventData: event data;
persistent: event isPersistent property (nPublished.isPersistant());
transient: event isTransientPropery(nPublished.isTransient());
headerProps: event header attributes;
dictionaryProps: event dictionary properties;

For now, the XML output file event eventData value is base64-encoded.

XML output file example
<?xml version="1.0" encoding="utf-8"?>
<EventsDetails>

<ExportDetails>
<ToolVersion>1.0</ToolVersion>

<Descriptor>CtwCCgxTY2hvb2wucHJvdG8i7gEKBlBlcnNvbhISCgRuYW1lGAEgAigJUgRuYW1lEg4KAmlkGAIgAigFUgJpZBIUCgVlbWFpbBgDIAEoCVIFZW1haWwSKQoFcGhvbmUYBCADKAsyEy5QZXJzb24uUGhvbmVOdW1iZXJSBXBob25lGlIKC1Bob25lTnVtYmVyEhYKBm51bWJlchgBIAIoCVIGbnVtYmVyEisKBHR5cGUYAiABKA4yES5QZXJzb24uUGhvbmVUeXBlOgRIT01FUgR0eXBlIisKCVBob25lVHlwZRIKCgZNT0JJTEUQABIICgRIT01FEAESCAoEV09SSxACIk4KBlNjaG9vbBIhCgdzdHVkZW50GAEgAygLMgcuUGVyc29uUgdzdHVkZW50EiEKB3RlYWNoZXIYAiACKAsyBy5QZXJzb25SB3RlYWNoZXJCC0IJU2Nob29sU3Vi</Descriptor>
</ExportDetails>
<Events>

<Event>
<id>0</id>
<size>306</size>
<chanID>63565653663178134</chanID>
<ttl>0</ttl>
<tag>tag0</tag>
<eventData>dGVzdGRhdGFib2R5MCBkYXRh</eventData>
<persistent>true</persistent>
<transient>false</transient>
<dictionaryProps>

<item>

Universal Messaging Administration Guide 10.3 499

6 Command Line Administration Tools



<name>string_key</name>
<value>value0</value>
<type>String</type>

</item>
<item>

<name>boolean_key</name>
<value>true</value>
<type>Boolean</type>

</item>
<item>

<name>int_key</name>
<value>0</value>
<type>Integer</type>

</item>
<item>

<name>long_key</name>
<value>0</value>
<type>Long</type>

</item>
<item>

<name>short_key</name>
<value>0</value>
<type>Short</type>

</item>
<item>

<name>byte_key</name>
<value>0</value>
<type>Byte</type>

</item>
<item>

<name>char_key</name>
<value>0</value>
<type>Character</type>

</item>
<item>

<name>byte_arr_key</name>
<value>dGVzdDA=</value>
<type>byte[]</type>

</item>
<item>

<name>float_key</name>
<value>0.0</value>
<type>Float</type>

</item>
<item>

<name>double_key</name>
<value>0.0</value>
<type>Double</type>

</item>
</dictionaryProps>
<headerProps>

<item>
<name>nrvpub.time</name>
<value>1588946429779</value>
<type>Long</type>

</item>
<item>

<name>nrvpub.host</name>
<value>127.0.0.1</value>
<type>String</type>

500 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



</item>
<item>

<name>nrvpub.name</name>
<value>ekob</value>
<type>String</type>

</item>
<item>

<name>JMSDeliveryMode</name>
<value>PERSISTENT</value>
<type>String</type>

</item>
<item>

<name>JMSPriority</name>
<value>4</value>
<type>Byte</type>

</item>
</headerProps>

</Event>
</Events>

</EventsDetails>

Input parameters

-protobufdescriptor

The -protobufdescriptor input parameter is an optional parameter specifying the path to the
protocol buffer file descriptor set. In this version, filtering events based on protobuf event data is
not performed. The protobuf descriptorwill be exported to the XML format file in the ExportDetails
section just for information.

The protocol buffer file descriptor set can be received as:
protoc.exe <proto_file_name>.proto
--descriptor_set_out=<protocol_buffer_file_descriptor_set_name>.fds

If the input parameter protobufdescriptor is specified and the mem file's store is a protobuf
channel with the same protobuf descriptor, the protocol buffer descriptor will be exported to the
output file as a base64-encoded string.

If the input parameter protobufdescriptor is specified but thememfile's store is a protobuf channel
with a different protobuf descriptor, then dumping will not be performed.

If the input parameter protobufdescriptor is specified but the mem file's store is not a protobuf
channel, then the event will be considered as nPublished events anyway. The protocol buffer
descriptor will be exported to the output file as a base64-encoded string.

batchsize

This parameter can be optionally specified when running the tool. It defines the number of events
whichwill be read/loaded to thememory/from thememfile, filtered and thenwritten to the output
file as a single batch. The default value of the batch size is 100.

Universal Messaging Administration Guide 10.3 501

6 Command Line Administration Tools



The RepublishEventsFromOfflineFile Tool

The RepublishEventsFromOfflineFile tool is a command-line recovery tool that imports events
into aUniversalMessaging realm server store (channel or queue) from any of the following sources:

An XML file

Importing can be done from an XML file produced by the ExportEventsFromOfflineMemFile
tool. The XML file is a copy of the store's persistent memory file (or multiple memory files for
a multi-file store). Selector based event filtering can be applied while importing with the tool.
Republishing is done as transaction event publishing.

Input files

Importing can be done from offline memory files of the store taken from the parent realm's
data directory. The offline memory files have the filetype *.mem. When importing multi-file
stores, you specify the folder that contains the *.mem files. When importing a mixed/persistent
store, you specify a single .mem file.

When you invoke the tool, you can specify either a mem file (or mem folder name), or an XML
file, but not a combination of these options.

The -protobufdescriptor input parameter

Filtering based on protobuf event data will be performed starting from v10.3 and not performed
in earlier versions.

Import from the mem file of a protobuf store

If the import is performed from a protobuf store'smemfile and the protobufdescriptor parameter
specified is the same as for the "source" channel, and the "republish" channel has the protocol
buffer file descriptor set, events will be republished as protobuf events.

If the import is performed from a protobuf store'smemfile and the protobufdescriptor parameter
specified is the same as for the "source" channel, but the "republish" channel has another protocol
buffer file descriptor or is not a protobuf channel, then event republishing will not be done.

If the import is performed from a protobuf store's memfile but the protobufdescriptor parameter
is not specified, events will be republished as non-protobuf events to a non-protobuf store and as
protobuf events to a store with the protocol buffer file descriptor set.

Import from mem file of non-protobuf store

If the import is performed from a non-protobuf store's mem file and the protobufdescriptor
parameter is not specified, events will be republished as non-protobuf events to any channel.

If the import is performed from a non-protobuf store's mem file and the protobufdescriptor
parameter is specified and coincides with the descriptor of the "republish" channel, events will be
republished as non-protobuf events.

502 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



But if the import is performed from a non-protobuf store's mem file and the protobufdescriptor
parameter is specified and does not coincidewith the descriptor of the "republish" channel, events
will not be republished.

Import from an XML file

If the source file belongs to (was exported from) a protobuf channel's mem file, events will be
republished as protobuf events to a store with the protobuf descriptor and as non-protobuf events
to other channels.

If the protobufdescriptor parameter is specified, the tool will validate if the "republish" channel
has the same protocol buffer file descriptor set.

The -batchsize input parameter

This parameter can be optionally specified when running the tool. It defines the number of events
which will be read/loaded to the memory/ from the mem/XML file, filtered and then published
to the "destination" store as a single batch.

The default batch size is 100.

Syntax reference for command line tools

Syntax: Store Tools

CreateChannel
Tool name:
CreateChannel

Description:
Creates a channel with the specified name on the specified server.
A single permission can be set during channel creation using
optional arguments.
For adding a set of permissions use the client API.

Usage:
runUMTool CreateChannel -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
CreateChannel -rname=nsp://localhost:8080 -channelname=channel0

-maxevents=10

Required arguments:
rname :

URL of the realm to which the channel will be connected.
channelname :

Name of the channel to be created.

Optional Parameters:
maxevents :

Capacity of the new store (default 0).
ttl :

Universal Messaging Administration Guide 10.3 503

6 Command Line Administration Tools



Time to Live for the new store (default 0).
type :

Type of the new store (default S).
R - Reliable (stored in memory), with persistent EIDs
P - Persistent (stored on disk)
S - Simple (stored in memory)
T - Transient (no server-based storage)
M - Mixed (allows both memory and persistent events)
O - Off-Heap
G - Paged (uses a memory-mapped file for storage)

publishkeys :
Set of publish keys for the new store (default null).
Multiple pairs - each pair is separated by a ';'
Pairs - each name and depth is separated by a ','

e.g. name,depth;name2,depth2
isclusterwide :

Whether the new store is cluster-wide.
Will only work if the realm is part of a cluster.

usejmsengine :
Whether to use the JMS style fanout engine.

usemergeengine :
Whether to use the merge style fanout engine.

isautodelete :
Whether the store is auto-deleted upon disconnection of its creator.

isdurable :
Whether the store is durable (restores after a server restart).

isautomaintenance :
Whether the store will have automatic maintenance as events are
being removed.

honourcapacity :
Whether the store capacity setting will prevent publishing of any more
data once full.

enablecaching :
Whether the server will cache events in memory or will always refer back
to the file-backed store.

cacheonreload :
Whether the server will cache events in memory for fast replay upon restart.

enablereadbuffering :
Whether reads will be buffered to optimise the I/O access to the
file-based store.

readbuffersize :
The size in bytes of the buffer to use when read buffering (default 10240).

enablemulticast :
Whether multicast is supported on the new store.

synceachwrite :
Whether each write to the store will also call sync on the file system
to ensure all data is written to disk.

syncbatchsize :
Maximum size of batch written to disk on sync.

syncbatchtime :
Time for writing data to disk on sync.

fanoutarchivetarget :
Name of fanout archive target to be configured.

priority :
The default message priority for events on the new store.

stampdictionary :
StampDictionary setting value for the new store.

subject :
The subject in format user@host for which the permission
will be set. For a group permission, this value will be set

504 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



as a group name. If this parameter is missing, the other parameters
related to the permission entry are considered invalid.

group :
Whether a group permission entry must be created. Such permissions
can be applied during channel creation only for already existing
security groups.

manage :
Whether the subject or group has permissions to manage ACLs
(default is set to false).

publish :
Whether the subject or group has permissions to publish
events to this channel (default is set to false).

subscribe :
Whether the subject or group has permissions to subscribe to the
channel (default is set to false).

purge :
Whether the subject or group has permissions to purge events
from the channel (default is set to false).

fullprivileges :
Whether the subject or group has full permissions for this channel

(default is set to false).
getlasteid :

Whether the subject or group has permissions to get the last event ID
(default is set to false).

named :
Whether the subject or group has permissions to use named
subscription on the channel (default is set to false).

multifileeventsperspindle :
Number of events that will be stored per individual file for a store

(default is 50000).
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

CreateDurable
Tool name:
CreateDurable

Description:
Creates a Durable (also known as Named Object) with the specified name and type
on the specified channel.

Usage:
runUMTool CreateDurable -rname=<rname> -channelname=<channelname>

-durablename=<durablename> -durabletype=<durabletype> [optional_args]

Examples:
CreateDurable -rname=nsp://localhost:8080 -channelname=channel0

-durablename=durable0 -durabletype=N

Required arguments:

rname :
URL of the realm to list the details of all the channels within.

channelname :
Name of the channel on which the Durable will be created.

durablename :

Universal Messaging Administration Guide 10.3 505

6 Command Line Administration Tools



Name of the Durable to be created.
durabletype :

Type of the new Durable.
N - Named
P - Priority
SQ - Shared queue
S - Shared
SE - Serial

Optional Parameters:

isclusterwide :
Whether the durable should be created in the entire cluster.

username :
Your Universal Messaging server username

password :
Your Universal Messaging server password

CreateJoin
Tool name:
CreateJoin

Description:
Joins two channels.

Usage:
runUMTool CreateJoin -rname=<rname> -channelhost=<channelhost>

-channeldest=<channeldest> [optional_args]

Examples:
CreateJoin -rname=nsp://localhost:8080 -rnamedest=nsp://localhost:8090

-channelhost=source -channeldest=destination

Required arguments:
rname :

URL of the realm from which the source channel will be retrieved.
channelhost :

Name of the source channel.
channeldest :

Name of the destination channel.

Optional Parameters:
rnamedest :

URL of the realm from which the destination channel
will be retrieved (default is set to be -rname).

routed :
Set routed parameter (default is set to be false).

hopcount :
Set maximum number of hops (default is set to be 10).

selector :
Set selector string (default is set to be null).

allowpurge :
Set allowPurge parameter when connecting to a channel
(default is set to be true).

createtwoway :
Set createtwoway parameter to create a two way
channel join (default is set to be false)

username :

506 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Your Universal Messaging server username.
password :

Your Universal Messaging server password.

CreateQueue
Tool name:
CreateQueue

Description:
Creates a queue with the specified name on the specified server.
A single permission can be set during queue creation using
optional arguments. For adding a set of permissions use the client API.

Usage:
runUMTool CreateQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:
CreateQueue -rname=nsp://localhost:8080 -queuename=queue0 -maxevents=10

Required arguments:
rname :

URL of the realm to which the queue will be connected.

queuename :
Name of the queue to be created.

Optional Parameters:

maxevents :
Capacity of the new store (default 0).

ttl :
Time to Live for the new store (default 0).

type :
Type of the new store (default S).
R - Reliable (stored in memory), with persistent EIDs
P - Persistent (stored on disk)
S - Simple (stored in memory)
T - Transient (no server-based storage)
M - Mixed (allows both memory and persistent events)
O - Off-Heap
G - Paged (uses a memory-mapped file for storage)

isclusterwide :
Whether the new store is cluster-wide.
Will only work if the realm is part of a cluster.

usejmsengine :
Whether to use the JMS style fanout engine.

usemergeengine :
Whether to use the merge style fanout engine.

isautodelete :
Whether the store is auto-deleted upon disconnection of its creator.

isdurable :
Whether the store is durable (restores after a server restart).

isautomaintenance :
Whether the store will have automatic maintenance as
events are being removed.

Universal Messaging Administration Guide 10.3 507

6 Command Line Administration Tools



honourcapacity : Whether the store capacity setting will prevent
publishing of any more data once full.

enablecaching :
Whether the server will cache events in memory
or will always refer back to the file-backed store.

cacheonreload :
Whether the server will cache events in memory for fast replay
upon restart.

enablereadbuffering :
Whether reads will be buffered to optimise the I/O access
to the file-based store.

readbuffersize :
The size in bytes of the buffer to use when read buffering
(default 10240).

enablemulticast :
Whether multicast is supported on the new store.

synceachwrite :
Whether each write to the store will also call sync on the file system
to ensure all data is written to disk.

syncbatchsize :
Maximum size of batch written to disk on sync.

syncbatchtime :
Time for writing data to disk on sync.

fanoutarchivetarget :
Name of fanout archive target to be configured.

priority :
The default message priority for events on the new store.

stampdictionary :
StampDictionary setting value for the new store.

subject :
The subject in format user@host for which the permission
will be set. For a group permission this value will be
set as a group name. If this parameter is missing the other
parameters related to the permission entry are
considered invalid.

group :
Whether a group permission entry must be created.
Such permissions can be applied during channel creation only
for already existing security groups.

manage :
Whether the subject or group has permissions to manage
ACLs (default is set to false).

fullprivileges : Whether the subject or group has full permissions
for this channel (default is set to false).

purge :
Whether the subject or group has permissions to purge
events from the channel (default is set to false).

pop :
Whether the subject or group has permissions to pop events
from the queue (default is set to false).

peek :
Whether the subject or group has permissions to peek events
from this queue (default is set to false).

push :
Whether the subject or group has permissions to push events
in the queue (default is set to false).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

508 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



DeleteChannel
Tool name:
DeleteChannel

Description:
Deletes a channel with the specified name on the specified realm.

Usage:
runUMTool DeleteChannel -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
DeleteChannel -rname=nsp://localhost:8080 -channelname=channel0

Required arguments:
rname :

URL of the realm to which the channel will be connected.

channelname :
Name of the channel to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteDurable
Tool name:
DeleteDurable

Description:
Deletes a Durable with the specified name on the specified channel.

Usage:
runUMTool DeleteDurable -rname=<rname> -channelname=<channelname>

-durablename=<durablename> [optional_args]

Examples:
DeleteDurable -rname=nsp://localhost:8080 -channelname=channel0

-durablename=durable0

Required arguments:

rname :
URL of the realm to list the details of all the channels within.

channelname :
Name of the channel from which the Durable will be deleted.

durablename :
Name of the Durable to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Universal Messaging Administration Guide 10.3 509

6 Command Line Administration Tools



DeleteJoin
Tool name:
DeleteJoin

Description:
Deletes a join between two channels.

Usage:
runUMTool DeleteJoin -rname=<rname> -channelhost=<channelhost>

-channeldest=<channeldest> [optional_args]

Examples:
DeleteJoin -rname=nsp://localhost:8080 -rnamedest=nsp://localhost:8090

-channelhost=source -channeldest=destination

Required arguments:
rname :

URL of the realm from which the source channel will be retrieved.
channelhost :

Name of the source channel.
channeldest :

Name of the destination channel.

Optional Parameters:
rnamedest :

URL of the realm from which the destination channel
will be retrieved (default is set to be -rname).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteQueue
Tool name:
DeleteQueue

Description:
Deletes a queue with the specified name on the specified realm.

Usage:
runUMTool DeleteQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:
DeleteQueue -rname=nsp://localhost:8080 -queuename=queue0

Required arguments:
rname :

URL of the realm to which the queue is connected.
queuename :

Name of the queue to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

510 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



ExportProtobufDefinitions
Tool Name:
ExportProtobufDefinitions

Description:
Exports the protobuf definitions from a store with the specified name on the specified
server.

Usage:
runUMTool ExportProtobufDefinitions -rname=<rname> -storename=<storename>

-dirname=<dirname> [optional_args]
Examples:
ExportProtobufDefinitions -rname=nsp://localhost:9000 -storename=store0

-dirname=/../build/change-management/test/protobuf/
Required arguments:

rname :
URL of the session to which the store will be connected.

storename :
Name of the store from which to export the protobuf definitions.

dirname :
Directory in which to save the exported definition files.
If the directory that you entered does not exist, the tool creates the directory.

Optional Parameters:

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

GetChannelInfo
Tool name:
GetChannelInfo

Description:
Gets the attributes and storage properties of a specified channel
in a specified realm.

Usage:
runUMTool GetChannelInfo -rname=<rname> -cname=<cname> [optional_args]

Examples:
GetChannelInfo -rname=nsp://localhost:8080 -cname=channel0 -format=plaintext

Required arguments:
rname :

URL of the realm to which the channel will be connected.
cname :

Name of the channel to return info for.

Optional Parameters:
format :

Format to print output in (plaintext/xml/json).
username :

Your Universal Messaging server username.

password :

Universal Messaging Administration Guide 10.3 511

6 Command Line Administration Tools



Your Universal Messaging server password.

GetDurableInfo
Tool name:
GetDurableInfo

Description:
Gets the attributes of a specific Durable in a specific channel.

Usage:
runUMTool GetDurableInfo -rname=<rname> -channelname=<channelname>

-durablename=<durablename> [optional_args]

Examples:
GetDurableInfo -rname=nsp://localhost:8080 -channelname=channel0

-durablename=durable0 -format=plaintext

Required arguments:
rname :

URL of the realm to list the details of all the channels within.
channelname :

Name of the channel from where to get the Durable.
durablename :

Name of the Durable to return info for.

Optional Parameters:
format :

Format to print output in (plaintext/xml/json).
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

GetDurablesInfo
Tool name:
GetDurablesInfo

Description:
Displays the durables details saved in a .nsb file.

Usage:
runUMTool GetDurablesInfo -nsbfileloc=<nsbfileloc> [optional_args]

Examples:
GetDurablesInfo -nsbfileloc=C:\filepath

Required arguments:
nsbfileloc :

Absolute path for the nsb files location. This can be a folder
which consists of multiple nsb files or a single nsb file.

Optional Parameters:
textfileexport :

Path to a text file in which the .nsb content will be saved.
Must be an absolute path to a text file or the name of a
text file which will be created in the working directory.

username :
Your Universal Messaging server username.

512 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



password :
Your Universal Messaging server password.

GetDurableStatus
Tool name:
GetDurableStatus

Description:
Gets the current state of durables on a realm, sorted by a given field.

Usage:
runUMTool GetDurableStatus -rname=<rname> [optional_args]

Examples:
GetDurableStatus -rname=nsp://localhost:8080 -sort=storesize -v=true

Required arguments:

rname :
URL of the realm to find durables for.

Optional Parameters:
sort :

Field to sort objects by. May be depth, depthtx, storesize,
lasteid, lastread or lastwrite (default lastread).

v :
Whether the final output includes all fields or only
the one specified. May be true or false (default false).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

GetEventsInfo
Tool name:
GetEventsInfo

Description:
Display the events details present in the memory file.

Usage:
runUMTool GetEventsInfo -memfileloc=<memfileloc> -storetype=<storetype>

[optional_args]

Examples:
GetEventsInfo -memfileloc=C:\filename -storetype=mixed

Required arguments:
memfileloc :

Absolute path for the memory files location. This can be a folder
which consists of multiple memory files or a single memory file.

storetype :
Store type of channel/queue. It will be either Mixed or Persistent.

Optional Parameters:
eventfactory :

Option to specify the type of the Event factory, by default
nServerEventFactory is used.

Universal Messaging Administration Guide 10.3 513

6 Command Line Administration Tools



perfmaintenance :
Option to remove the free memory in the memory file (yes or no).
UM server must be down during maintenance.

additionalevtinfo :
Option to get the additional event details (yes or no).

exportfileformat :
Option to specify the file format to export the event data.
File formats supported are txt, xml.

exportfilepath :
Option to specify the absolute file path to export the event data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

IdentifyLargeDurableOutstandingEvents
Tool name:
IdentifyLargeDurableOutstandingEvents

Description:
Identifies channels containing Durable with a large number
of outstanding events.

Usage:
runUMTool IdentifyLargeDurableOutstandingEvents -rname=<rname>

-threshold=<threshold> [optional_args]

Examples:
IdentifyLargeDurableOutstandingEvents -rname=nsp://localhost:8080

-threshold=100

Required arguments:
rname :

URL of the realm to list the details of all the channels within.

threshold :
Long value representing the tolerated number of outstanding events.

Optional Parameters:
username :

Your Universal Messaging server username.

password : Your Universal Messaging server password.

ListChannels
Tool name:
ListChannels

Description:
Lists details of the channels on the specified server.

Usage:
runUMTool ListChannels -rname=<rname> [optional_args]

Examples:
ListChannels -rname=nsp://localhost:8080

Required arguments:

514 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



rname :
URL of the realm to list the details of all the channels within.

Optional Parameters:

format :
Format to print output in (plaintext/xml/json).

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ListJoins
Tool name:
ListJoins

Description:
Lists joins on a given realm.

Usage:
runUMTool ListJoins -rname=<rname> [optional_args]

Examples:
ListJoins -rname=nsp://localhost:8080 -v=true

Required arguments:
rname :

URL of the realm to which we will connect.

Optional Parameters:
v :

Output additional information for each join.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

MonitorChannels
Tool name:
MonitorChannels

Description:
Monitors the channels and queues in a realm and prints totals.

Usage:
runUMTool MonitorChannels -rname=<rname> [optional_args]

Examples:
MonitorChannels -rname=nsp://localhost:8080 -channelname=channel0

-format=plaintext
MonitorChannels -rname=nsp://localhost:8080 -channelname=queue1

-format=plaintext

Required arguments:
rname :

URL of the realm to monitor channels and queues for.

Universal Messaging Administration Guide 10.3 515

6 Command Line Administration Tools



Optional Parameters:
channelname :

Name of a specific channel or queue to monitor
format :

Format to print output in (plaintext/xml/json)
username :

Your Universal Messaging server username.
password : Your Universal Messaging server password.

PurgeEvents
Tool name:
PurgeEvents

Description:
Purges events from a channel with the specified name on the
specified realm.

Usage:
runUMTool PurgeEvents -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
PurgeEvents -rname=nsp://localhost:8080 -channelname=channel0

Required arguments:
rname :

URL of the realm to which the channel will be connected.
channelname :

Name of the channel to be created.

Optional Parameters:
starteid :

Starting event ID of range to purge.
endeid :

Ending event ID of range to purge.
selector :

Selector query to filter which events to purge.
purgejoins :

Whether to purge events from joined channels.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: Cluster Tools

ClusterState
Tool name:
ClusterState

Description:
Checks the cluster state by a given RNAME, which is part of a cluster.

Usage:
runUMTool ClusterState -rname=<rname> [optional_args]

516 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Examples:
ClusterState -rname=nsp://localhost:8080

Required arguments:
rname :

Name of a realm, which is part of a cluster.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

CreateCluster
Tool name:
CreateCluster

Description:
Creates a cluster with the specified name, consisting of the specified realms.

Usage:
runUMTool CreateCluster -clustername=<clustername> -convertlocal=<convertlocal>

-rnames=<rnames> [optional_args]

Examples:
CreateCluster -clustername=cluster0 -convertlocal=true

-rnames=nsp://localhost:8080,nsp://localhost:9090

Required arguments:
clustername :

Name of the cluster to be created.
convertlocal :

Whether the local stores of the master should be converted
to cluster-wide stores.

rnames :
Server URLs to be included in the cluster. Can be more than one,
separated by a comma.
The proper format is [nsp/nhp/nsps/nhps]://[hostname]:[port] or
shm://[path/to/file].

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DumpClusterNamedObjectsState
Tool name:
DumpClusterNamedObjectsState

Description:
Dumps the state of named objects (also called durable subscriptions)
on channels present on the specified cluster servers.

Usage:
runUMTool DumpClusterNamedObjectsState -rnames=<rnames>

-verbosemode=<verbosemode> [optional_args]

Universal Messaging Administration Guide 10.3 517

6 Command Line Administration Tools



Examples:
DumpClusterNamedObjectsState -rnames=nsp://localhost:8080,nsp://localhost:9090

-verbosemode=true

Required arguments:
rnames :

Comma-separated list of rNames of clustered nodes.
verbosemode :

Set true to see all node states; set false to see only those
with mismatched node states.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: Interface Tools

AddHTTPInterface
Tool name:
AddHTTPInterface

Description:
Adds a HTTP interface on the specified adapter and port,
on the specified realm.

Usage:
runUMTool AddHTTPInterface -rname=<rname> -adapter=<adapter> -port=<port>

[optional_args]

Examples:
AddHTTPInterface -rname=nsp://localhost:8080 -adapter=0.0.0.0 -port=9090

-usewebsockets=true

Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be created, is connected.

adapter :
Adapter (network card) to which interface will bind.

port : Port on which the interface will listen.

Optional Parameters:
usehttp1.1 :

Whether to use HTTP1.1.
usewebsockets :

Whether WebSockets are used.
ajaxactivedelay :

Time to wait (for additional events) before delivering to
Long Poll style subscribers.

ajaxidledelay :
Time to wait before returning from a Long Poll call if no events
have been received.

isnativecomet :
Whether JavaScript is enabled on the interface.

allowedorigins :

518 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Set the Allowed Origins for CORS as a comma-separated list of origins
(use '*' to allow all), e.g. origin1,origin2,origin3

crossorigincredentials :
Whether to allow credentials header to be sent with CORS requests.

enablegzip :
Whether or not GZIP compression is enabled for javascript Long Poll
connections.

minimumbytes :
Set the minimum number of bytes in a packet before GZIP
is enabled (default 1000).

autostart :
Whether this interface will automatically be started when
the realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections or not.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client
has to authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this
interface when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddHTTPSInterface
Tool name:
AddHTTPSInterface

Description:
Adds a HTTPS interface on the specified adapter and port,
on the specified server.

Usage:
runUMTool AddHTTPSInterface -rname=<rname> -adapter=<adapter> -port=<port>
[optional_args]

Examples:
AddHTTPSInterface -rname=nsp://localhost:8080 -adapter=0.0.0.0 -port=9090

Universal Messaging Administration Guide 10.3 519

6 Command Line Administration Tools



-alias=myAlias

Required arguments:

rname :
URL of the realm to which the realm node, on which the interface
will be created, is connected.

adapter :
Adapter (network card) to which interface will bind.

port :
Port on which the interface will listen.

Optional Parameters:
alias :

Set the certificate name/alias that this interface will use to
select its certificate from a keystore with multiple entries.

keystore :
Set the keystore file that this interface uses to load the certificate.

kspassword :
Set the keystore password that this interface will use to
access the keystore file specified.

truststore :
Set the truststore file against which this interface will
validate the client certificate.

tspassword :
Sets the truststore password that the server uses to access the
trust store.

privatepassword :
Private key password; used so that the key can be loaded
from the key store.

ciphers :
Names of the ciphers enabled for use by this interface, as a
comma-separated list of ciphers, e.g. cipher1,cipher2,cipher3.

rndalg :
Set the SecureRandom algorithm to use for this interface.

rndprov :
Set the SecureRandom provider to use for this interface.

clientcertrequired :
Whether this interface requires SSL client authentication.

crl :
Set the certificate revocation list file name that the interface
should use to check incoming SSL connections.

crlclassname :
Name of the class used to validate a client connection.

provider :
Name of the JSSE provider to use for the interface.

usehttp1.1 :
Whether to use HTTP1.1.

usewebsockets :
Whether WebSockets are used.

ajaxactivedelay :
Time to wait (for additional events) before delivering
to Long Poll style subscribers.

ajaxidledelay :
Time to wait before returning from a Long Poll call if
no events have been received.

isnativecomet :
Whether JavaScript is enabled on the interface.

allowedorigins :
Set the Allowed Origins for CORS as a comma-separated list of origins

520 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



(use '*' to allow all), e.g. origin1,origin2,origin3.
crossorigincredentials :

Whether to allow credentials header to be sent with CORS requests.
enablegzip :

Whether or not GZIP compression is enabled for javascript
Long Poll connections.

minimumbytes :
Set the minimum number of bytes in a packet before GZIP
is enabled (default 1000).

autostart :
Whether this interface will automatically be started when
the realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client
has to authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this interface
when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddSHMInterface
Tool name:
AddSHMInterface

Description:
Adds a shared memory interface with the specified path, buffer size and
timeout, on the specified server.

Usage:
runUMTool AddSHMInterface -rname=<rname> -path=<path> [optional_args]

Examples:
AddSHMInterface -rname=nsp://localhost:11000 -path=/dev/shm -buffer=1024

-timeout=2000 -autostart=true

Universal Messaging Administration Guide 10.3 521

6 Command Line Administration Tools



Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be created, is connected.

path :
The path where the shared memory files will be stored.

Optional Parameters:
buffer :

The size of the shared memory buffer which will be used. If not
provided a default value of 1024000 will be used.

timeout :
The timeout value that will be used for read / write. If not
provided a default value of 20000 will be used.

autostart :
Whether this interface will be automatically started when
the Realm Server starts. Default is set to true.

interrealmallow :
Sets whether this interface is allowed to be used
in inter realm / cluster communication. Default is set to false.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddSSLInterface
Tool name:
AddSSLInterface

Description:
Adds a SSL interface on the specified adapter and port,
on the specified server.

Usage:
runUMTool AddSSLInterface -rname=<rname> -adapter=<adapter> -port=<port>

[optional_args]

Examples:
AddSSLInterface -rname=nsp://localhost:8080 -adapter=0.0.0.0 -port=9090

-alias=myAlias

Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be created, is connected.

adapter :
Adapter (network card) to which interface will bind.

port :
Port on which the interface will listen.

Optional Parameters:
alias :

Set the certificate name/alias that this interface will use to
select its certificate from a keystore with multiple entries.

keystore :
Set the keystore file that this interface uses to load the
certificate.

kspassword :
Set the keystore password that this interface will use to

522 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



access the keystore file specified.
truststore :

Set the truststore file against which this interface will
validate the client certificate.

tspassword :
Sets the truststore password that the server uses to access
the trust store.

privatepassword :
Private key password; used so that the key can be loaded
from the key store.

ciphers :
Names of the ciphers enabled for use by this interface,
as a comma-separated list of ciphers, e.g. cipher1,cipher2,cipher3.

rndalg :
Set the SecureRandom algorithm to use for this interface.

rndprov :
Set the SecureRandom provider to use for this interface.

clientcertrequired :
Whether this interface requires SSL client authentication.

crl :
Set the certificate revocation list file name that the interface
should use to check incoming SSL connections.

crlclassname :
Name of the class used to validate a client connection.

provider :
Name of the JSSE provider to use for the interface.

autostart :
Whether this interface will automatically be started when the
realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client has to
authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this interface
when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Universal Messaging Administration Guide 10.3 523

6 Command Line Administration Tools



AddSocketInterface
Tool name:
AddSocketInterface

Description:
Adds a socket interface on the specified adapter and port,
on the specified server.

Usage:
runUMTool AddSocketInterface -rname=<rname> -adapter=<adapter> -port=<port>

[optional_args]

Examples:
AddSocketInterface -rname=nsp://localhost:8080 -adapter=0.0.0.0 -port=9090

-autostart=true

Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be created, is connected.

adapter :
Adapter (network card) to which interface will bind.

port :
Port on which the interface will listen.

Optional Parameters:
autostart :

Whether this interface will automatically be started when the
realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in
inter realm/cluster communication.

allowclientconnections :
Whether this interface can accept client connections.

allownio :
Whether NIO is enabled on the interface.

authtimeout :
Set the number of milliseconds that the remote client has
to authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this interface
when sending data.

username :
Your Universal Messaging server username.

password :

524 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Your Universal Messaging server password.

DeleteInterface
Tool name:
DeleteInterface

Description:
Deletes the specified interface from the specified server.

Usage:
runUMTool DeleteInterface -rname=<rname> -interface=<interface>

[optional_args]

Examples:
DeleteInterface -rname=nsp://localhost:8080 -interface=interface0

Required arguments:
rname :

URL of the realm to which the realm node, from which the interface
will be deleted, is connected.

interface :
Name of the interface to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ModifyInterface
Tool name:
ModifyInterface

Description:
Modifies the specified interface on the specified server .

Usage:
runUMTool ModifyInterface -rname=<rname> -interface=<interface>

-command=<command> [optional_args]

Examples:
ModifyInterface -rname=nsp://localhost:9000 -interface=interface0

-command=modify -usewebsockets=true

Required arguments:
rname :

URL of the realm to which the realm node, on which the interface
will be modified, is connected.

interface :
Name of the interface to be modified.

command :
Whether the interface is to be stopped (STOP), started (START),
or have its fields modified (MODIFY).

Optional Parameters:
usehttp1.1 :

Whether to use HTTP1.1.
usewebsockets :

Universal Messaging Administration Guide 10.3 525

6 Command Line Administration Tools



Whether WebSockets are used.
ajaxactivedelay :

Time to wait (for additional events) before delivering
to Long Poll style subscribers.

ajaxidledelay :
Time to wait before returning from a Long Poll call if no
events have been received.

isnativecomet :
Whether JavaScript is enabled on the interface.

allowedorigins :
Set the Allowed Origins for CORS as a comma-separated list of origins
(use '*' to allow all), e.g. origin1,origin2,origin3.

crossorigincredentials :
Whether to allow credentials header to be sent with CORS requests.

enablegzip :
Whether or not GZIP compression is enabled for javascript
Long Poll connections.

minimumbytes :
Set the minimum number of bytes in a packet before GZIP is
enabled (default 1000).

alias :
Set the certificate name/alias that this interface will use to
select its certificate from a keystore with multiple entries.

keystore :
Set the keystore file that this interface uses to load the certificate.

kspassword :
Set the keystore password that this interface will use to
access the keystore file specified.

truststore :
Set the truststore file against which this interface will
validate the client certificate.

tspassword :
Sets the truststore password that the server uses to access
the trust store.

privatepassword :
Private key password; used so that the key can be loaded
from the key store.

ciphers :
Names of the ciphers enabled for use by this interface,
as a comma-separated list of ciphers, e.g. cipher1,cipher2,cipher3.

rndalg :
Set the SecureRandom algorithm to use for this interface.

rndprov :
Set the SecureRandom provider to use for this interface.

clientcertrequired :
Whether this interface requires SSL client authentication.

crl :
Set the certificate revocation list file name that the interface
should use to check incoming SSL connections.

crlclassname :
Name of the class used to validate a client connection.

provider :
Name of the JSSE provider to use for the interface.

autostart :
Whether this interface will automatically be started when the
realm server starts.

advertise :
Set the current advertise status for this interface.

allowinterrealm :
Whether this interface is allowed to be used in

526 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



inter realm/cluster communication.
allowclientconnections :

Whether this interface can accept client connections.
allownio :

Whether NIO is enabled on the interface.
authtimeout :

Set the number of milliseconds that the remote client has
to authenticate with the server.

backlog :
Set the number of connections to queue before the Operating System
will send rejects to the remote client.

threads :
Set the thread pool size handling the client connections.

selectthreads :
Set the number of select threads used by NIO.

adapteralias :
Set the interface's alias.

receivebuffersize :
Set the socket buffer size in bytes used by this
interface when receiving data.

sendbuffersize :
Set the socket buffer size in bytes used by this interface
when sending data.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Data Group Tools

AddDataGroup
Tool name:
AddDataGroup

Description:
Adds a child data group to a parent data group.
Both of these data groups must exist.

Usage:
runUMTool AddDataGroup -rname=<rname> -datagroupname=<datagroupname>

-parentname=<parentname> [optional_args]

Examples:
AddDataGroup -rname=nsp://localhost:9000 -datagroupname=mydatagroup01

-parentname=mydatagroup02

Required arguments:
rname :

Connection URL to the realm where the data groups exist.
datagroupname :

Name of the child data group.
parentname :

Name of the parent data group.

Optional Parameters:
username :

Your Universal Messaging server username.

Universal Messaging Administration Guide 10.3 527

6 Command Line Administration Tools



password :
Your Universal Messaging server password.

CreateDataGroup
Tool name:
CreateDataGroup

Description:
Creates a data group with the specified name on the specified server.
Additionally, conflation attributes and other options of the data group
can be set.

Usage:
runUMTool CreateDataGroup -rname=<rname> -datagroupname=<datagroupname>

[optional_args]

Examples:
CreateDataGroup -rname=nsp://localhost:9000 -datagroupname=mydatagroup01

-confinterval=2000 -enablemulticast=true

Required arguments:
rname :

Connection URL to the realm where the data group will be created.
datagroupname :

Name of the data group to be created.

Optional Parameters:
enablemulticast :

Whether multicast is supported on the new data group.
priority :

The default message priority for events on the new data group.
dropexpired :

Don't send events that are made obsolete by newer ones.
confinterval :

Interval at which all the events are sent.
confaction :

Action to take when multiple events arrive for this data group.
0 = drop old events
1 = merge events

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteDataGroup
Tool name:
DeleteDataGroup

Description:
Removes the data group with the specified name from the server.

Usage:
runUMTool DeleteDataGroup -rname=<rname> -datagroupname=<datagroupname>

[optional_args]

Examples:
DeleteDataGroup -rname=nsp://localhost:9000 -datagroupname=mydatagroup01

528 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Required arguments:
rname :

Connection URL to the realm from which the data group will be deleted.
datagroupname :

Name of the data group to be deleted.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ListenDataGroup
Tool name:
ListenDataGroup

Description:
Listens for data group events on a Universal Messaging realm.

Usage:
runUMTool ListenDataGroup -rname=<rname> [optional_args]

Examples:
ListenDataGroup -rname=nsp://localhost:9000

Required arguments:
rname :

Connection URL to the realm from which messages will be received.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

PublishDataGroup
Tool name:
PublishDataGroup

Description:
Publishes messages to a data group.

Usage:
runUMTool PublishDataGroup -rname=<rname> -datagroupname=<datagroupname>

[optional_args]

Examples:
PublishDataGroup -rname=nsp://localhost:9000 -datagroupname=mydatagroup01

-size=20

Required arguments:
rname :

Connection URL to the realm to which the messages will be published.
datagroupname :

Name of the data group to publish to.

Optional Parameters:
message :

Universal Messaging Administration Guide 10.3 529

6 Command Line Administration Tools



Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

size :
Size of the message to send. Message will be generated.
You can't use -message along with -size.

count :
How many times to send the event. Default 1.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Publish Tools

PublishChannel
Tool name:
PublishChannel

Description:
Publishes events to a Universal Messaging channel.

Usage:
runUMTool PublishChannel -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
PublishChannel -rname=nsp://localhost:9000 -channelname=mychannel

-message="hello world"

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of the channel on the Universal Messaging Realm.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the event. Default 1.

size :
Size in bytes of the message to send. Message will be generated.
You can't use -message along with -size.

properties :
Properties, if any, of the event. Expected syntax is
"propertyName1:value1;propertyName2:value2",
e.g. "shirt:green;price:80;sleeve:long".

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

530 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



PublishChannelXML
Tool name:
PublishChannelXML

Description:
Publishes an XML document to a Universal Messaging channel.

Usage:
runUMTool PublishChannelXML -rname=<rname> -channelname=<channelname>

-file=<file> [optional_args]

Examples:
PublishChannelXML -rname=nsp://localhost:9000 -channelname=mychannel

-file=C:\myDoc.xml

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of the channel on the Universal Messaging Realm.
file :

File path of the XML document to send.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

PublishCompressed
Tool name:
PublishCompressed

Description:
Publishes events to a store, using compression.

Usage:
runUMTool PublishCompressed -rname=<rname> -storename=<storename>

[optional_args]

Examples:
PublishCompressed -rname=nsp://localhost:9000 -storename=mychannel

-message="hello world"

Required arguments:
rname :

Connection URL to the realm where the store exists.
storename :

Name of the store or queue on the Universal Messaging Realm.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the event. Default 1.

size :
Size in bytes of the message to send. Message will be generated.

Universal Messaging Administration Guide 10.3 531

6 Command Line Administration Tools



You can't use -message along with -size.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

PublishQueue
Tool name:
PublishQueue

Description:
Publishes events to a queue.

Usage:
runUMTool PublishQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:
PublishQueue -rname=nsp://localhost:9000 -queuename=myqueue

-message="hello world"

Required arguments:
rname :

Connection URL to the realm where the channel exists.
queuename :

Name of the queue on the Universal Messaging Realm.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the event. Default 1.

size :
Size in bytes of the message to send. Message will be generated.
You can't use -message along with -size.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

PublishTX
Tool name:
PublishTX

Description:
Publishes events, as a part of a transaction, to a Universal Messaging
channel or queue.

Usage:
runUMTool PublishTX -rname=<rname> -storename=<storename> [optional_args]

Examples:
PublishTX -rname=nsp://localhost:9000 -storename=myStore

-message="hello world" -count=20 -txsize=5
PublishTX -rname=nsp://localhost:9000 -storename=myStore -size=2048

Required arguments:
rname :

532 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Connection URL to the realm where the channel exists.
storename :

Name of the channel or queue on the Universal Messaging Realm.

Optional Parameters:
message :

Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the event. Default 1.

size :
Size in bytes of the message to send. Message will be generated.
You can't use -message along with -size.

txsize :
How many events to batch in a single transaction. Default 1.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Subscribe Tools

PeekQueue
Tool name:
PeekQueue

Description:
Peeks all events on a Universal Messaging queue and prints statistics for
the bandwidth rates.

Usage:
runUMTool PeekQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:

PeekQueue -rname=nsp://localhost:9000 -queuename=myqueue

Required arguments:
rname :

Connection URL to the realm where the channel exists.
queuename :

Name of a queue on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
statevents :

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Universal Messaging Administration Guide 10.3 533

6 Command Line Administration Tools



SubscribeChannel
Tool name:
SubscribeChannel

Description:
Reads all the messages from a Universal Messaging channel.

Usage:
runUMTool SubscribeChannel -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
SubscribeChannel -rname=nsp://localhost:9000 -channelname=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of a channel on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
starteid :

Starting EID of the messages to consume.
statevents :

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeChannelAsync
Tool name:
SubscribeChannelAsync

Description:
Listens for messages on a Universal Messaging channel.

Usage:
runUMTool SubscribeChannelAsync -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
SubscribeChannelAsync -rname=nsp://localhost:9000 -channelname=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of a channel on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
starteid :

Start event ID of the messages to consume.

534 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



statevents :
How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeChannelAsyncDurable
Tool name:
SubscribeChannelAsyncDurable

Description:
Listens for messages on a Universal Messaging channel.
Running the tool with the same "-name" argument will continue reading
from the last unconsumed event.

Usage:
runUMTool SubscribeChannelAsyncDurable -rname=<rname>

-channelname=<channelname> [optional_args]

Examples:
SubscribeChannelAsyncDurable -rname=nsp://localhost:9000 -channelname=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of a channel on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
name :

Unique name of the durable subscriber. The name will be created
if it doesn't exist. Default is "STGE".

starteid :
Start EID of the messages to consume.

persistent :
Whether the durable name will exist after Universal Messaging
server reset. Default is false.

clusterwide :
Whether the durable name should be registered in the entire
cluster. Default is false.

autoack :
Whether each event will be automatically acknowledged by the API.
Default is true.

statevents :
How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeChannelDurable
Tool name:

Universal Messaging Administration Guide 10.3 535

6 Command Line Administration Tools



SubscribeChannelDurable
Description:
Listens for messages on a Universal Messaging channel.
Running the tool with the same "-name" argument will continue reading
from the last unconsumed event.

Usage:
runUMTool SubscribeChannelDurable -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
SubscribeChannelDurable -rname=nsp://localhost:9000 -channelname=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
channelname :

Name of a channel on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
name :

Unique name of the durable subscriber. The name will be created if
it doesn't exist. Default is "STGE".

starteid :
Start event ID of the messages to consume.

persistent :
Whether the durable name will exist after Universal Messaging
server reset. Default is false.

clusterwide :
Whether the durable name should be registered in the entire
cluster. Default is false.

autoack :
Whether each event will be automatically acknowledged by the API.
Default is true.

statevents :
How many events to peek before printing event statistics.
Default 1000.

timeout :
Maximum wait time (milliseconds) when attempting to synchronously
retrieve message from the server. Default is 1000ms.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeCompressed
Tool name:
SubscribeCompressed

Description:
Listens for compressed messages on a Universal Messaging channel.

Usage:
runUMTool SubscribeCompressed -rname=<rname> -storename=<storename>

[optional_args]

Examples:

536 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



SubscribeCompressed -rname=nsp://localhost:9000 -storename=channel

Required arguments:
rname :

Connection URL to the realm where the channel exists.
storename :

Name of a channel or queue on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
starteid :

If the chosen store is a channel, only messages with ID greater
than this will be consumed.

statevents :
How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeQueue
Tool name:
SubscribeQueue

Description:
Reads all the messages from a Universal Messaging queue.

Usage:
runUMTool SubscribeQueue -rname=<rname> -queuename=<queuename> [optional_args]

Examples:
SubscribeQueue -rname=nsp://localhost:9000 -queuename=myqueue

Required arguments:
rname :

Connection URL to the realm where the channel exists.
queuename :

Name of a queue on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
transacted :

Set to true to use transacted subscriber. Default is false.
statevents :

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

SubscribeQueueAsync
Tool name:
SubscribeQueueAsync

Universal Messaging Administration Guide 10.3 537

6 Command Line Administration Tools



Description:
Listens for messages on a Universal Messaging queue.

Usage:
runUMTool SubscribeQueueAsync -rname=<rname> -queuename=<queuename>
[optional_args]

Examples:
SubscribeQueueAsync -rname=nsp://localhost:9000 -queuename=myqueue

Required arguments:
rname :

Connection URL to the realm where the channel exists.
queuename :

Name of a queue on the Universal Messaging Realm.

Optional Parameters:
selector :

Optional filter for the messages.
transacted :

Set to true to use transacted subscriber. Default is false.
statevents :

How many events to peek before printing event statistics.
Default 1000.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Security Tools

AddChannelACLEntry
Tool name:
AddChannelACLEntry

Description:
Adds an ACL entry on the specified channel for the specified user and host,
on the specified realm.

Usage:
runUMTool AddChannelACLEntry -channelname=<channelname> -rname=<rname>

-type=<type> [optional_args]

Examples:
AddChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=group -groupname=security_group0 -fullprivileges=true
AddChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=subject -user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
channelname :

Name of the channel to which the ACL entry is being applied.
rname :

URL of the server on which the channel exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

538 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
cangetlasteid :

Specify that the 'get last EID' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.
cannamed :

Specify that the 'named' ACL permission should be added.
canpop :

Specify that the 'pop' ACL permission should be added.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

AddContainerACLEntry
Tool name:
AddContainerACLEntry

Description:
Adds an ACL entry on the specified container for the specified user and host.

Usage:
runUMTool AddContainerACLEntry -containername=<containername> -rname=<rname>

-type=<type> [optional_args]

Examples:
AddContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=group -groupname=security_group0 -fullprivileges=true

AddContainerACLEntry -rname=nsp://localhost:8080 -containername=container0
-type=subject -user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
containername :

Name of the container to which the ACL entry is being applied.
rname :

URL of the server from which to start searching for the container.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:

Universal Messaging Administration Guide 10.3 539

6 Command Line Administration Tools



groupname :
Name of the group for which ACL is being updated.

user :
User for which ACL is being updated.

host :
Host for which ACL is being updated.

canlistacl :
Specify that the 'list' ACL permission should be added.

canmodifyacl :
Specify that the 'modify' ACL permission should be added.

fullprivileges :
Specify that the 'full permissions' ACL permission should be added.

cangetlasteid :
Specify that the 'get last EID' ACL permission should be added.

canread :
Specify that the 'read' ACL permission should be added.

canwrite :
Specify that the 'write' ACL permission should be added.

canpurge :
Specify that the 'purge' ACL permission should be added.

cannamed :
Specify that the 'named' ACL permission should be added.

canpop :
Specify that the 'pop' ACL permission should be added.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddQueueACLEntry
Tool name:
AddQueueACLEntry

Description:
Adds an ACL entry on the specified queue for the specified user and host,
on the specified realm.

Usage:
runUMTool AddQueueACLEntry -queuename=<queuename> -rname=<rname> -type=<type>

[optional_args]

Examples:
AddQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0 -type=group

-groupname=security_group0 -fullprivileges=true
AddQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0 -type=subject

-user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
queuename :

Name of the queue to which the ACL entry is being applied.
rname :

URL of the server on which the queue exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.

540 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



user :
User for which ACL is being updated.

host :
Host for which ACL is being updated.

canlistacl :
Specify that the 'list' ACL permission should be added.

canmodifyacl :
Specify that the 'modify' ACL permission should be added.

fullprivileges :
Specify that the 'full permissions' ACL permission should
be added.

canread :
Specify that the 'read' ACL permission should be added.

canwrite :
Specify that the 'write' ACL permission should be added.

canpurge :
Specify that the 'purge' ACL permission should be added.

canpop :
Specify that the 'pop' ACL permission should be added.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddRealmACLEntry
Tool name:
AddRealmACLEntry

Description:
Adds an ACL entry on the specified realm for the specified user and host.

Usage:
runUMTool AddRealmACLEntry -rname=<rname> -type=<type> [optional_args]

Examples:
AddRealmACLEntry -rname=nsp://localhost:8080 -type=group

-groupname=security_group0 -fullprivileges=true
AddRealmACLEntry -rname=nsp://localhost:8080 -type=subject -user=username

-host=127.0.0.1 -fullprivileges=true

Required arguments:

rname :
URL of the realm to which the ACL entry is being applied.

type :
Type of ACL entry, either 'group' or 'subject'. If group is chosen,

'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.

Universal Messaging Administration Guide 10.3 541

6 Command Line Administration Tools



fullprivileges :
Specify that the 'full permissions' ACL permission should be added.

canuseadminapi :
Specify that the 'use admin api' ACL permission should be added.

canmanagerealms :
Specify that the 'manage realms' ACL permission should be added.

canmanagejoins :
Specify that the 'manage joins' ACL permission should be added.

canmanagechannels :
Specify that the 'manage channels' ACL permission should be added.

canaccess :
Specify that the 'access' ACL permission should be added.

canoverrideconnectioncount :
Specify that the 'override connection count' ACL permission should be added.

canconfigure :
Specify that the 'configuration' ACL permission should be added.

canmanagedatagroups :
Specify that the 'manage data groups' ACL permission should be added.

canpublishglobaldatagroups :
Specify that the 'publish global data groups' ACL permission should
be added.

cantakeownershipdatagroups :
Specify that the 'take ownership of data groups' ACL permission should
be added.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

AddSecurityGroup
Tool name:
AddSecurityGroup

Description:
Adds a security group to the specified realm with the specified name.

Usage:
runUMTool AddSecurityGroup -rname=<rname> -groupname=<groupname> [optional_args]

Examples:

AddSecurityGroup -rname=nsp://localhost:8080 -groupname=security_group0

Required arguments:
rname :

URL of the realm to which the security group is being added.
groupname :

Name of the security group to be added.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

AddUserToSecurityGroup
Tool name:

542 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



AddUserToSecurityGroup
Description:
Adds a specified user and host subject to a given security group on a
specified realm.

Usage:
runUMTool AddUserToSecurityGroup -rname=<rname> -groupname=<groupname>

-user=<user> -host=<host> [optional_args]

Examples:

AddUserToSecurityGroup -rname=nsp://localhost:8080 -groupname=security_group0
-user=username -host=127.0.0.1

Required arguments:
rname :

URL of the realm on which is the security group.
groupname :

Name of the security group to which the user is being added.
user :

User of the subject being added to security group.
host :

Host of the subject being added to security group.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteChannelACLEntry
Tool name:
DeleteChannelACLEntry

Description:
Deletes the ACL entry from the specified channel with the specified user
and host.

Usage:
runUMTool DeleteChannelACLEntry -channelname=<channelname> -rname=<rname>

-type=<type> [optional_args]

Examples:
DeleteChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=group -groupname=security_group0
DeleteChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=subject -user=username -host=127.0.0.1

Required arguments:

channelname :
Name of the channel from which the ACL entry is being removed.

rname :
URL of the server on which the channel exists.

type :
Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:

Universal Messaging Administration Guide 10.3 543

6 Command Line Administration Tools



groupname :
Name of the group for which the ACL entry is being removed.

user :
User for which the ACL entry is being removed.

host :
Host for which the ACL entry is being removed.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteContainerACLEntry
Tool name:
DeleteContainerACLEntry

Description:
Removes an ACL entry from the specified container with the specified user
and host.

Usage:
runUMTool DeleteContainerACLEntry -containername=<containername> -rname=<rname>

-type=<type> [optional_args]

Examples:
DeleteContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=group -groupname=security_group0
DeleteContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=subject -user=username -host=127.0.0.1

Required arguments:
containername :

Name of the container from which the ACL entry is being removed.
rname :

URL of the server from which to start searching for the container.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which the ACL entry is being removed.
user :

User for which the ACL entry is being removed.
host :

Host for which the ACL entry is being removed.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteQueueACLEntry
Tool name:
DeleteQueueACLEntry

Description:
Deletes the ACL entry from the specified queue with the specified user and host.

544 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Usage:
runUMTool DeleteQueueACLEntry -queuename=<queuename> -rname=<rname>
-type=<type> [optional_args]

Examples:
DeleteQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0

-type=group -groupname=security_group0
DeleteQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0

-type=subject -user=username -host=127.0.0.1

Required arguments:
queuename :

Name of the queue from which the ACL entry is being removed.
rname :

URL of the server on which the queue exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which the ACL entry is being removed.
user :

User for which the ACL entry is being removed.
host :

Host for which the ACL entry is being removed.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteRealmACLEntry
Tool name:
DeleteRealmACLEntry

Description:
Removes an ACL entry from the specified realm with the specified user and host.

Usage:
runUMTool DeleteRealmACLEntry -rname=<rname> -type=<type> [optional_args]

Examples:
DeleteRealmACLEntry -rname=nsp://localhost:8080 -type=group

-groupname=security_group0
DeleteRealmACLEntry -rname=nsp://localhost:8080 -type=subject -user=username

-host=127.0.0.1

Required arguments:
rname :

URL of the realm from which the ACL entry is being removed.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which the ACL entry is being removed.
user :

User for which the ACL entry is being removed.

Universal Messaging Administration Guide 10.3 545

6 Command Line Administration Tools



host :
Host for which the ACL entry is being removed.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteSecurityGroup
Tool name:
DeleteSecurityGroup

Description:
Removes a security group from the specified realm with the specified name.

Usage:
runUMTool DeleteSecurityGroup -rname=<rname> -groupname=<groupname>

[optional_args]

Examples:
DeleteSecurityGroup -rname=nsp://localhost:8080 -groupname=security_groupp

Required arguments:
rname :

URL of the realm from which the security group is being removed.
groupname :

Name of the security group to be removed.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DumpACL
Tool name:
DumpACL

Description:
Dumps all the ACL data for a realm.

Usage:
runUMTool DumpACL -rname=<rname> [optional_args]

Examples:
DumpACL -rname=nsp://localhost:8080
DumpACL -rname=nsp://localhost:8080 -format=XML
DumpACL -rname=nsp://localhost:8080 -format=JSON

Required arguments:
rname :

URL of the realm for which to dump the ACL data.

Optional Parameters:
format :

Which format to output ACL data. Defaults to plaintext, other
options are: plaintext, xml, json.

username :
Your Universal Messaging server username.

546 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



password :
Your Universal Messaging server password.

ModifyChannelACLEntry
Tool name:
ModifyChannelACLEntry

Description:
Updates an ACL entry on the specified channel for the specified user and
host, on the specified realm.

Usage:
runUMTool ModifyChannelACLEntry -channelname=<channelname> -rname=<rname>

-type=<type> [optional_args]

Examples:
ModifyChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=group -groupname=security_group0 -fullprivileges=true
ModifyChannelACLEntry -rname=nsp://localhost:8080 -channelname=channel0

-type=subject -user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
channelname :

Name of the channel on which the ACL entry is being updated.
rname :

URL of the server on which the channel exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
cangetlasteid :

Specify that the 'get last EID' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.
cannamed :

Specify that the 'named' ACL permission should be added.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Universal Messaging Administration Guide 10.3 547

6 Command Line Administration Tools



ModifyContainerACLEntry
Tool name:
ModifyContainerACLEntry

Description:
AddContainerACLEntry adds an ACL entry on the specified container for the
specified user and host.

Usage:
runUMTool ModifyContainerACLEntry -containername=<containername> -rname=<rname>

-type=<type> [optional_args]

Examples:
ModifyContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=group -groupname=security_group0 -fullprivileges=true
ModifyContainerACLEntry -rname=nsp://localhost:8080 -containername=container0

-type=subject -user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
containername :

Name of the container to which the ACL entry is being applied.
rname :

URL of the server from which to start searching for the container.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
cangetlasteid :

Specify that the 'get last EID' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.
cannamed :

Specify that the 'named' ACL permission should be added.
canpop :

Specify that the 'pop' ACL permission should be added.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

548 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



ModifyQueueACLEntry
Tool name:
ModifyQueueACLEntry

Description:
Updates an ACL entry on the specified queue for the specified user and host,
on the specified realm.

Usage:
runUMTool ModifyQueueACLEntry -queuename=<queuename> -rname=<rname> -type=<type>

[optional_args]

Examples:
ModifyQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0 -type=group

-groupname=security_group0 -fullprivileges=true
ModifyQueueACLEntry -rname=nsp://localhost:8080 -queuename=queue0 -type=subject

-user=username -host=127.0.0.1 -fullprivileges=true

Required arguments:
queuename :

Name of the queue on which the ACL entry is being updated.
rname :

URL of the server on which the queue exists.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.
fullprivileges :

Specify that the 'full permissions' ACL permission should be added.
canread :

Specify that the 'read' ACL permission should be added.
canwrite :

Specify that the 'write' ACL permission should be added.
canpurge :

Specify that the 'purge' ACL permission should be added.
canpop :

Specify that the 'pop' ACL permission should be added.
username :

Your Universal Messaging server username.
password : Your Universal Messaging server password.

ModifyRealmACLEntry
Tool name:
ModifyRealmACLEntry

Description:
Modifies an ACL entry on the specified realm for the specified user and host.

Universal Messaging Administration Guide 10.3 549

6 Command Line Administration Tools



Usage:
runUMTool ModifyRealmACLEntry -rname=<rname> -type=<type> [optional_args]

Examples:
ModifyRealmACLEntry -rname=nsp://localhost:8080 -type=group

-groupname=security_group0 -fullprivileges=true
ModifyRealmACLEntry -rname=nsp://localhost:8080 -type=subject -user=username

-host=127.0.0.1 -fullprivileges=true

Required arguments:
rname :

URL of the realm on which ACL is being updated.
type :

Type of ACL entry, either 'group' or 'subject'. If group is chosen,
'groupname' must be set. Otherwise 'user' and 'host' must be set.

Optional Parameters:
groupname :

Name of the group for which ACL is being updated.
user :

User for which ACL is being updated.
host :

Host for which ACL is being updated.
canlistacl :

Specify that the 'list' ACL permission should be added.
canmodifyacl :

Specify that the 'modify' ACL permission should be added.

fullprivileges :
Specify that the 'full permissions' ACL permission should be added.

canuseadminapi :
Specify that the 'use admin api' ACL permission should be added.

canmanagerealms :
Specify that the 'manage realms' ACL permission should be added.

canmanagejoins :
Specify that the 'manage joins' ACL permission should be added.

canmanagechannels :
Specify that the 'manage channels' ACL permission should be added.

canaccess :
Specify that the 'access' ACL permission should be added.

canoverrideconnectioncount :
Specify that the 'override connection count' ACL permission should be added.

canconfigure :
Specify that the 'configuration' ACL permission should be added.

canmanagedatagroups :
Specify that the 'manage data groups' ACL permission should be added.

canpublishglobaldatagroups :
Specify that the 'publish global data groups' ACL permission should be added.

cantakeownershipdatagroups :
Specify that the 'take ownership of data groups' ACL permission should be added.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

550 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



RemoveUserFromSecurityGroup
Tool name:
RemoveUserFromSecurityGroup

Description:
Removes a specified user from a given security group on the specified realm.

Usage:
runUMTool RemoveUserFromSecurityGroup -rname=<rname> -groupname=<groupname>

-user=<user> -host=<host> [optional_args]

Examples:
RemoveUserFromSecurityGroup -rname=nsp://localhost:8080

-groupname=security_group0 -user=username -host=127.0.0.1

Required arguments:
rname :

URL of the realm on which the security group resides.
groupname :

Name of the security group user is being removed from.
user :

User being removed from security group.
host :

Host of subject being removed from security group.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: Zone Tools

AddMemberToZone
Tool name:
AddMemberToZone

Description:
Adds a realm to a specified realm's zone.

Usage:
runUMTool AddMemberToZone -rname=<rname> -zonememberrname=<zonememberrname>

[optional_args]

Examples:
AddMemberToZone -rname=nsp://localhost:8080 -zonememberrname=nsp://localhost:9090

Required arguments:
rname :

URL of the realm you want to add to the zone.
zonememberrname :

URL of a realm in the zone you want to expand.

Optional Parameters:
username :

Your Universal Messaging server username.

Universal Messaging Administration Guide 10.3 551

6 Command Line Administration Tools



password :
Your Universal Messaging server password.

CreateZone
Tool name:
CreateZone

Description:
Creates a zone with the specified name containing the specified realms.

Usage:
runUMTool CreateZone -rnames=<rnames> -zonename=<zonename> [optional_args]

Examples:
CreateZone -rnames=nsp://localhost:8080,nsp://localhost:9090 -zonename=zone0

Required arguments:
rnames :

Comma separated list of URLs of the realms which the zone will contain.
zonename :

Name of the zone to be created.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteZone
Tool name:
DeleteZone

Description:
Deletes a zone with the specified name on the specified realm.

Usage:
runUMTool DeleteZone -rname=<rname> [optional_args]

Examples:
DeleteZone -rname=nsp://localhost:8080
DeleteZone -rname=nsp://localhost:8080 -removejoins=true

Required arguments:
rname :

URL of a realm which belongs to the zone to be deleted.

Optional Parameters:
removejoins :

Whether to remove intra-zone connections when the zone
is deleted. Defaults to false.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

552 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



RemoveMemberFromZone
Tool name:
RemoveMemberFromZone

Description:
Removes a realm from its current zone.

Usage:
runUMTool RemoveMemberFromZone -rname=<rname> [optional_args]

Examples:
RemoveMemberFromZone -rname=nsp://localhost:8080
RemoveMemberFromZone -rname=nsp://localhost:8080 -removejoins=true

Required arguments:
rname :

URL of the realm you want to remove from the zone.

Optional Parameters:
removejoins :

Whether or not to remove realm links with the former zone member.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: JMS Tools

Note:
The JMS Client for Universal Messaging supports JMS 1.1. Currently we do not support JMS
2.0.

CreateConnectionFactory
Tool name:
CreateConnectionFactory

Description:
Creates a JMS connection factory with the specified server.

Usage:
runUMTool CreateConnectionFactory -rname=<rname> -factoryname=<factoryname>

-destinationname=<destinationname> [optional_args]

Examples:
CreateConnectionFactory -rname=nsp://localhost:8080 -factoryname=factory0

-destinationname=channel0

Required arguments:
rname :

URL of the realm to which the ConnectionFactory is attached.
factoryname :

Name of the connection factory to create.
destinationname :

JMS Destination, only required for AMPQ connections.

Universal Messaging Administration Guide 10.3 553

6 Command Line Administration Tools



Optional Parameters:
factorytype :

Connection factory type to be created. By default, it is ConnectionFactory
if no parameter is passed.
Possible values are:

-factorytype=default (Creates a ConnectionFactory)
-factorytype=queue (Creates a QueueConnectionFactory)
-factorytype=topic (Creates a TopicConnectionFactory)
-factorytype=xa (Creates an XAConnectionFactory)

providerurl :
URL of the local realm from which JNDI entries will be looked up.
When using an AMPQ connection this should be changed to:

amqp://localhost:9000
when using a plain AMPQ connection, connecting to
a standard nsp interface

amqps://localhost:9000
when using a plain AMPQ connection over a
secure socket connection, connecting to a nsps interface

Hint: AMPQ connections work only over nsp and nsps interfaces, they won't
work over nhp or nhps .

contextfactory :
The name of the ContextFactory class to use
(default: com.pcbsys.nirvana.nSpace.NirvanaContextFactory).
When using an AMPQ connection this should be changed to:
org.apache.qpid.jms.jndi.JmsInitialContextFactory
to use the QPID Proton JMS Client libraries;

org.apache.qpid.amqp_1_0.jms.jndi.PropertiesFileInitialContextFactory
to use the QPID Legacy JMS Client libraries

Hint: AMPQ connections work only over nsp and nsps interfaces, they won't
work over nhp or nhps.

autocreateresource :
If set will create resources on the server when performing a lookup
on a queue or channel.

synctopicacks :
Specifies for a specific connection whether the topic acknowledgements
will be sent synchronously.

syncqueueacks :
Specifies for a specific connection whether the queue acknowledgements
will be sent synchronously.

writehandler :
Specifies for a specific connection the write handler type to use.
Ignored unless between 1-4.

adapterbuffer :
Specifies for a specific connection the adapter send / receive buffer size.
If the value is 0 or less it is ignored .

syncnamedtopicacks :
Specifies for a specific connection whether the durable topic
acknowledgements will be sent synchronously.

permittedkeepalivesmissed :
Set the number of keep server keep alives the client is allowed to miss
before detecting a network issue and terminating the connection.

connectiontimeout :
Set the timeout used for connection / reconnection to realms.
If the connection fails to establish within this time-frame it will fail.

disconnectafterclusterfailure :
If connected to a cluster of realms, and cluster quorum is lost,
this flag determines whether the client will be disconnected.

usejmsengine :
JMS engine ensures no events are available for topic replay

554 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



unless durable subscriptions are being used. Non JMS engine fanout enables
events to be stored even after events are delivered. Default is true.

reconnectinterval :
If a client is disconnected, and Immediate Reconnect is set to true,
this value represents the interval between reconnect attempts.

immediatereconnect :
If a client is disconnected, this flag will indicate whether the client
will immediately reconnect and attempt to reconnect as fast as possible,
rather than rely on a back off period.

autoreconnectafteracl :
If a client is disconnected because of a security change, this flag
will indicate whether the automatic session reconnection logic will kick in.

threadpoolsize :
Gets the maximum number of threads used by the client for delivery of
all messages to listeners.

redeliveredsize :
Specifies the maximum number of messages that the client will keep
reference to if they are marked as redelivered.

unackedsize :
The client will keep a list of messages that have not been
acknowledged. This value sets the maximum size of this list.

useinfinitewindowsize :
When set to true, the consumer can consume as many events as required
before committing.

windowsize :
When synchronously consuming messages from the server, they will be
delivered in batches (windows). This property sets the size of that window.

autoackcount :
With AUTO acknowledgement mode, in order to improve performance,
the acknowledgement of messages can be batched so that not every message
consumed results in communication with the server. This value determines
how many events can be consumed before an acknowledgement is sent to the
server.

globalstorecapacity :
Each topic or queue store can have a maximum number of messages that
can exist before no more messages are allowed to be published.

synctime :
When file sync is set, you can buffer the sync calls into batches
in order to prevent the underlying system from being overloaded during
busy periods. This value specifies the maximum time in milliseconds between
sync calls. The smaller the value, the more frequent the sync will be
called on the physical file system.

syncbatchsize :
When file sync is set, you can buffer the sync calls into batches
in order to prevent the underlying system from being overloaded
during busy periods. This value specifies the number of messages in
each batch. The smaller the value, the more frequent the sync will
be called on the physical file system.

initialconnectionretrycount :
When a connection is first established, the default number of
connection attempts is 2. This allows this value to be overridden.

syncsendpersistent :
For each persistent message written to the server, ensure the send
is a synchronous call.

syncwritestodisc :
For each persistent message written to the server, perform a
file system sync to ensure the OS has written the data.

enabledurablepriority :
If enabled, durable subscriptions of the same name can exist on
the same topic, but only the first in will consume the events for

Universal Messaging Administration Guide 10.3 555

6 Command Line Administration Tools



that subscription.
enablesinglequeueack :

If enabled, message acknowledgements on a queue consumer will
only acknowledge that specific message rather than all messages
consumed prior to that message, on that queue.

enablesingleshareddurableack :
If enabled, message acknowledgements on a shared durable consumer
will only acknowledge that specific message rather than all messages
consumed prior to that message, on that shared durable.

enableshareddurable :
If enabled, durable subscriptions of the same name can exist on
the same topic, and events will be distributed in a round robin
fashion to each subscriber using that name (i.e. once and once only per
durable name).

maxreconnectattempts :
When getConxExceptionOnFailure() is enabled, this value is used to
prevent the disconnection exceptions being thrown via the
ExceptionListener on the JMS Connection. The default value is -1, which
represents infinite retries.

conxexceptiononretryfailure :
When enabled, any disconnections from the JMS Connection will not result
in an Exception being generated through the ExceptionListener.
An exception will only be thrown to the ExceptionListener when the
getMaxReconAttempts() value is reached.

retrycommit :
Determines whether the commit call to a transacted session will
retry if any exceptions are detected, rather than simply throw an exception.

randomrnames :
Allows the list of RNAME urls to be randomised to provide simple load
balancing across a list of servers.

enablemultiplexedconnections :
Support the use of a shared physical connection by multiple sessions
when the same topic or queue is used by multiple receivers.

durabletype :
Type of the new Durable:
N - Named
P - Priority
SQ - Shared queue
S - Shared
Serial - Serial

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

CreateJMSQueue
Tool name:
CreateJMSQueue

Description:
Creates a JMS queue with the specified name on the specified realm.

Usage:
runUMTool CreateJMSQueue -rname=<rname> -factoryname=<factoryname>
-queuename=<queuename> [optional_args]

Examples:
CreateJMSQueue -rname=nsp://localhost:8080 -factoryname=factory0
-queuename=queue0

556 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Required arguments:
rname :

URL of the realm to which the queue will be connected.
factoryname :

Name of the connection factory to locate.
queuename :

Name of the queue to be created.

Optional Parameters:
maxevents :

Capacity of the new store (default 0).
synceachwrite :

Whether each write to the store will also call sync on the
file system to ensure all data is written to disk.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

CreateJMSTopic
Tool name:
CreateJMSTopic

Description:
Creates a JMS topic with the specified name on the specified realm.

Usage:
runUMTool CreateJMSTopic -rname=<rname> -factoryname=<factoryname>

-channelname=<channelname> [optional_args]

Examples:
CreateJMSTopic -rname=nsp://localhost:8080 -factoryname=factory0

-channelname=channel0

Required arguments:
rname :

URL of the realm to which the channel will be connected.
factoryname :

Name of the connection factory to locate.
channelname :

Name of the channel to be created.

Optional Parameters:
maxevents :

Capacity of the new store (default 0).
synceachwrite :

Whether each write to the store will also call sync on the
file system to ensure all data is written to disk.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

JMSPublish
Tool name:
JMSPublish

Universal Messaging Administration Guide 10.3 557

6 Command Line Administration Tools



Description:
Publishes one or more messages to a JMS queue or topic.

Usage:
runUMTool JMSPublish -rname=<rname> -connectionfactory=<connectionfactory>

-destination=<destination> [optional_args]

Examples:
JMSPublish -rname=nsp://localhost:9000 -connectionfactory=factory

-destination=topic -message=hello

Required arguments:
rname :

Connection URL to the realm where the data group will be created.
connectionfactory :

Name of the connection factory in the Universal Messaging Realm's
JNDI namespace. Must exist.

destination :
Name of the JMS destination (queue or topic). Must exist.

Optional Parameters:
size :

Size of the message to send. Message will be generated. You can't use
-message along with -size.

message :
Message to send. Put the message in quotes if it contains spaces.
You can't use -size along with -message.

count :
How many times to send the message. Default is 1.

transacted :
If the session is transacted. Default is false.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

JMSSubscribe
Tool name:
JMSSubscribe

Description:
Reads messages arriving to a JMS destination.

Usage:
runUMTool JMSSubscribe -rname=<rname> -connectionfactory=<connectionfactory>
-destination=<destination> [optional_args]

Examples:
JMSSubscribe -rname=nsp://localhost:9000 -connectionfactory=factory
-destination=topic

Required arguments:
rname :

Connection URL to the realm where the data group will be created.
connectionfactory :

Name of the connection factory in the Universal Messaging Realm's
JNDI namespace. Must exist.

destination :
Name of the JMS destination (queue or topic). Must exist.

558 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Optional Parameters:
transacted :

If the session is transacted. Default is false.
selector :

Optional JMS message selector.
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ModifyConnectionFactory
Tool name:
ModifyConnectionFactory

Description:
Modifies settings of a JMS connection factory on the specified server.

Usage:
runUMTool ModifyConnectionFactory -rname=<rname> -factoryname=<factoryname>
-destinationname=<destinationname> [optional_args]

Examples:
ModifyConnectionFactory -rname=nsp://localhost:8080 -factoryname=factory0
-destination=channel0

Required arguments:
rname :

URL of the realm to which the ConnectionFactory is attached.
factoryname :

Name of the connection factory to locate.
destinationname :

JMS Destination, only required for AMPQ connections.

Optional Parameters:
providerurl :

URL of the local realm from which JNDI entries will be looked up.
When using an AMPQ connection this should be changed to:

amqp://localhost:9000
when using a plain AMPQ connection, connecting to a

standard nsp interface.
amqps://localhost:9000

when using a plain AMPQ connection over a secure socket connection,
connecting to a nsps interface.

Hint: AMPQ connections work only over nsp and nsps interfaces, they won't
work over nhp or nhps.

contextfactory :
The name of the ContextFactory class to use
(default: com.pcbsys.nirvana.nSpace.NirvanaContextFactory)
When using an AMPQ connection this should be changed to:

org.apache.qpid.jms.jndi.JmsInitialContextFactory
to use the QPID Proton JMS Client libraries;

org.apache.qpid.amqp_1_0.jms.jndi.PropertiesFileInitialContextFactory
to use the QPID Legacy JMS Client libraries.

Hint: AMPQ connections work only over nsp and nsps interfaces, they won't
work over nhp or nhps.

autocreateresource :
If set will create resources on the server when performing a lookup
on a queue or channel.

Universal Messaging Administration Guide 10.3 559

6 Command Line Administration Tools



synctopicacks :
Specifies for a specific connection whether the topic
acknowledgements will be sent synchronously.

syncqueueacks :
Specifies for a specific connection whether the queue
acknowledgements will be sent synchronously.

writehandler :
Specifies for a specific connection the write handler type to use.
Ignored unless between 1-4.

adapterbuffer :
Specifies for a specific connection the adapter send / receive
buffer size. If the value is 0 or less it is ignored.

syncnamedtopicacks :
Specifies for a specific connection whether the durable
topic acknowledgements will be sent synchronously.

permittedkeepalivesmissed :
Set the number of keep server keep alives the client is allowed
to miss before detecting a network issue and terminating the connection.

connectiontimeout :
Set the timeout used for connection / reconnection to realms.
If the connection fails to establish within this time-frame it will
fail.

disconnectafterclusterfailure :
If connected to a cluster of realms, and cluster quorum is lost,
this flag determines whether the client will be disconnected.

usejmsengine :
JMS engine ensures no events are available for topic replay
unless durable subscriptions are being used. Non JMS engine fanout enables
events to be stored even after events are delivered. Default is true.

reconnectinterval :
If a client is disconnected, and Immediate Reconnect is set to true,
this value represents the interval between reconnect attempts.

immediatereconnect :
If a client is disconnected, this flag will indicate whether the client
will immediately reconnect and attempt to reconnect as fast as possible,
rather than rely on a back off period.

autoreconnectafteracl :
If a client is disconnected because of a security change, this flag
will indicate whether the automatic session reconnection logic will
kick in.

threadpoolsize :
Gets the maximum number of threads used by the client for
delivery of all messages to listeners.

redeliveredsize :
Specifies the maximum number of messages that the client
will keep reference to if they are marked as redelivered.

unackedsize :
The client will keep a list of messages that have not been
acknowledged. This value sets the maximum size of this list.

useinfinitewindowsize :
When set to true, the consumer can consume as many events as required
before committing.

windowsize :
When synchronously consuming messages from the server, they
will be delivered in batches (windows). This property sets the size of that
window.

autoackcount :
With AUTO acknowledgement mode, in order to improve performance,
the acknowledgement of messages can be batched so that not every message
consumed results in communication with the server. This value determines

560 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



how many events can be consumed before an acknowledgement is sent to the
server.

globalstorecapacity :
Each topic or queue store can have a maximum number of messages that
can exist before no more messages are allowed to be published.

synctime :
When file sync is set, you can buffer the sync calls into batches
in order to prevent the underlying system from being overloaded during
busy periods. This value specifies the maximum time in milliseconds between
sync calls. The smaller the value, the more frequent the sync will be
called on the physical file system.

syncbatchsize :
When file sync is set, you can buffer the sync calls into
batches in order to prevent the underlying system from being overloaded
during busy periods. This value specifies the number of messages in each
batch. The smaller the value, the more frequent the sync will be called on
the physical file system.

initialconnectionretrycount :
When a connection is first established, the default number of
connection attempts is 2. This allows this value to be overridden.

syncsendpersistent :
For each persistent message written to the server, ensure the send
is a synchronous call.

syncwritestodisc :
For each persistent message written to the server, perform a file system
sync to ensure the OS has written the data.

enabledurablepriority :
If enabled, durable subscriptions of the same name can exist on the
same topic, but only the first in will consume the events for that subscription.

enablesinglequeueack :
If enabled, message acknowledgements on a queue consumer will only
acknowledge that specific message rather than all messages consumed prior
to that message, on that queue.

enablesingleshareddurableack :
If enabled, message acknowledgements on a shared durable consumer will
only acknowledge that specific message rather than all messages
consumed prior to that message, on that shared durable.

enableshareddurable :
If enabled, durable subscriptions of the same name can
exist on the same topic, and events will be distributed in a round robin
fashion to each subscriber using that name (ie once and once only per
durable name).

maxreconnectattempts :
When getConxExceptionOnFailure() is enabled, this value is used to
prevent the disconnection exceptions being thrown via the
ExceptionListener on the JMS Connection. The default value is -1, which
represents infinite retries.

conxexceptiononretryfailure :
When enabled, any disconnections from the JMS Connection will not
result in an Exception being generated through the ExceptionListener.
An exception will only be thrown to the ExceptionListener when the
getMaxReconAttempts() value is reached.

retrycommit :
Determines whether the commit call to a transacted session will
retry if any exceptions are detected, rather than simply throw an exception.

randomrnames :
Allows the list of RNAME urls to be randomised to provide simple
load balancing across a list of servers.

enablemultiplexedconnections :

Universal Messaging Administration Guide 10.3 561

6 Command Line Administration Tools



Support the use of a shared physical connection by multiple sessions
when the same topic or queue is used by multiple receivers.

durabletype :
Type of the new Durable:
N - Named
P - Priority
SQ - Shared queue
S - Shared
Serial - Serial

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ViewConnectionFactory
Tool name:
ViewConnectionFactory

Description:
Views settings of a JMS connection factory on the specified server.

Usage:
runUMTool ViewConnectionFactory -rname=<rname> -factoryname=<factoryname>

-destinationname=<destinationname> [optional_args]

Examples:
ViewConnectionFactory -rname=nsp://localhost:8080 -factoryname=factory0

-destinationname=channel0

Required arguments:
rname :

URL of the realm to which the ConnectionFactory is attached.
factoryname :

Name of the connection factory to locate.
destinationname :

JMS Destination, only required for AMPQ connections.

Optional Parameters:
providerurl : URL of the local realm from which JNDI entries will be looked up

When using an AMPQ connection this should be changed to:;
amqp://localhost:9000 - when using a plain AMPQ connection, connecting to

a standard nsp interface
amqps://localhost:9000 - when using a plain AMPQ connection over a

secure socket connection, connecting to a nsps interface
Hint: AMPQ connections work only over nsp and nsps interfaces, they won't

work over nhp or nhps.
contextfactory :

The name of the ContextFactory class to use
(default: com.pcbsys.nirvana.nSpace.NirvanaContextFactory).
When using an AMPQ connection this should be changed to:

org.apache.qpid.jms.jndi.JmsInitialContextFactory
to use the QPID Proton JMS Client libraries;

org.apache.qpid.amqp_1_0.jms.jndi.PropertiesFileInitialContextFactory
to use the QPID Legacy JMS Client libraries.

Hint: AMPQ connections work only over nsp and nsps interfaces, they won't
work over nhp or nhps.

username :
Your Universal Messaging server username.

password :

562 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Your Universal Messaging server password.

Syntax: Recovery Tools

AddInterfaceOffline
Tool name:
AddInterfaceOffline

Description:
Adds a new interface to an offline realm.

Usage:
runUMTool AddInterfaceOffline -dirname=<dirname> -protocol=<protocol>

-adapter=<adapter> -port=<port> [optional_args]

Examples:
AddInterfaceOffline -dirname=~/realmDirectories/realm0/data/ -protocol=socket

-adapter=0.0.0.0 -port=11000

Required arguments:
dirname :

Data directory of the realm to add interface to.
protocol :

Protocol for the interface to use.
adapter :

Adapter the interface wants setting to.
port :

Port that the interface will listen on.

Optional Parameters:
interface :

Name of the interface to be created.
autostart :

Whether or not the interface should be autostarted when the realm
starts.

canadvertise :
Whether or not the interface will be advertised.

authtimeout :
Number of milliseconds for authorisation timeout.

interrealm :
Whether or not this interface should be used for inter-realm
communication.

clientconnections :
Whether or not this interface should be used for client
connections.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

DeleteInterfaceOffline
Tool name:
DeleteInterfaceOffline

Description:
Removes an interface from an offline realm using config data.

Universal Messaging Administration Guide 10.3 563

6 Command Line Administration Tools



Usage:
runUMTool DeleteInterfaceOffline -dirname=<dirname> -interface=<interface>

[optional_args]

Examples:
DeleteInterfaceOffline -dirname=~/realmDirectories/realm0/data/ -interface=nhp0

Required arguments:
dirname :

Data directory of the realm to dump interfaces for.
interface :

Name of the interface to be removed.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DumpInterfacesOffline
Tool name:
DumpInterfacesOffline

Description:
Dumps the list of interfaces for a specified offline realm.

Usage:
runUMTool DumpInterfacesOffline -dirname=<dirname> [optional_args]

Examples:
DumpInterfacesOffline -dirname=~/realmDirectories/realm0/data/

Required arguments:
dirname :

Data directory of the realm to dump interfaces for.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ExportEventsFromOfflineMemFile
Tool name:
ExportEventsFromOfflineMemFile

Description:
Dumps events from offline mem file to XML file optionally using selector based

filtering.
Usage:
runUMTool ExportEventsFromOfflineMemFile

-memfileloc=<memfileloc> -xmlfilename=<xmlfilename> [optional_args]
Examples:
ExportEventsFromOfflineMemFile

-memfileloc=C:\source_folder\protobuf_channel94fab9fe6d3a92
-dumpdata=true
-xmlfilename=C:\destination_folder\file_name.xml

564 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



-protobufdescriptor="C:\folder\School.fds"
ExportEventsFromOfflineMemFile

-memfileloc=C:\source_folder\channel_name.mem
-dumpdata=true
-xmlfilename=C:\destination_folder\file_name.xml
-starteid=10 -endeid=30

ExportEventsFromOfflineMemFile
-memfileloc=C:\source_folder\mixed_channel_name231859db942796.mem
-xmlfilename=C:\destination_folder\file_name.xml
-selector="EVENTDATA.AS-STRING(0, 8) = 'data2702'"
-batchsize=1000

Required arguments:
memfileloc :

Required parameter specifying the absolute path for the location of the
memory file. The path can also be the location of a folder that contains
multiple mem files.
A folder with mem files can be specified only for multi-file storage.
A single memory file can be specified only for mixed/persistent store.

xmlfilename :
Required parameter specifying XML file path to export events to.

Optional Parameters:

selector :
Optional parameter specifying the selector to filter the events.

dumpdata :
Optional parameter, when set to true the tool will dump event data (base64 encoded).
Default value is true.

starteid :
Optional parameter specifying the startEID of event from mem file
to start filtering/dumping from (default = 0).

endeid :
Optional parameter specifying the endEID of event from mem file to filter/dump to

(if not specified, filtering/dumping will be done till the last storage event id).

protobufdescriptor:
Optional parameter specifying the path to protocol buffer file descriptor.
Specified protocol buffer file descriptor will be exported to XML format file
to ExportDetails section.

batchsize :
Optional parameter specifying the events batch size to read from mem file
and dump to output file, default value is 100.

ModifyInterfaceOffline
Tool name:
ModifyInterfaceOffline

Description:
Modifies and interface of an offline realm.

Usage:
runUMTool ModifyInterfaceOffline -dirname=<dirname> -interface=<interface>

[optional_args]

Examples:
ModifyInterfaceOffline -dirname=~/realmDirectories/realm0/data/

-interface=nhp0 -port=11000

Required arguments:

Universal Messaging Administration Guide 10.3 565

6 Command Line Administration Tools



dirname :
Data directory of the realm to dump interfaces for.

interface :
Name of the interface to be modified.

Optional Parameters:
adapter :

Adapter the interface wants setting to.
port :

Port that the interface will be set to.
autostart :

Whether or not the interface should be autostarted when the
realm starts.

canadvertise :
Whether or not the interface will be advertised.

authtimeout :
Number of milliseconds for authorisation timeout.

interrealm :
Whether or not this interface should be used for inter-realm
communication.

clientconnections :
Whether or not this interface should be used for client
connections.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ModifyPrimeFlagOffline
Tool name:
ModifyPrimeFlagOffline

Description:
Modifies the prime flag of a site while a realm is offline.

Usage:
runUMTool ModifyPrimeFlagOffline -datadirectory=<datadirectory> [optional_args]

Examples:
ModifyPrimeFlagOffline -datadirectory=~/realmDirectories/realm0/data/
(This will show current state of prime flag per cluster sites)

ModifyPrimeFlagOffline -datadirectory=~/realmDirectories/realm0/data/
-Site1=true -Site2=false

(This will set prime flag to true on site1 and to false on site 2 in
directory ~/realmDirectories/realm0/data/ )

Required arguments:
datadirectory :

Data directory of the realm to be modified.

Optional Parameters:

force :
Skip confirmation step before modifying cluster sites.

NOTE - if you want to edit the prime flag for sites inside a cluster you need to
specify it like an optional parameter :

-<site_name>=<new_value>.

566 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



You need to specify the value of the flag for all sites inside the cluster.
For example, if you want to set the prime flag to true on Site1 and you have
another site called Site2, the optional parameter will look like :

-Site1=true -Site2=false

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

RepublishEventsFromOfflineFile
Tool Name:
RepublishEventsFromOfflineFile

Description:
Imports events from an XML or .mem file, optionally using selector based filter,
and republishes events to specified store.

Usage:
runUMTool RepublishEventsFromOfflineFile -realm=<realm>

-channelname=<channelname>
-memfileloc/xmlfilename=<source_file_path> [optional_args]

Examples:
RepublishEventsFromOfflineFile

-memfileloc=C:\source_folder\proto_channelb31238f42a49b
-selector="EVENTDATA.AS-STRING(0, 8) = 'data2702'"
-realm="nhp://0.0.0.0:11000"
-channelname="destination_queue_name" -starteid=0 -endeid=90

RepublishEventsFromOfflineFile
-xmlfilename=C:\source_folder\filename.xml
-selector="EVENTDATA.TAG = '3' or EVENTDATA.TAG = '33'"
-realm="nhp://0.0.0.0:11000" -channelname="destination_channel_name"
-endeid=50 -batchsize=1000

Required arguments:
realm :

Required parameter specifying realm server name/address for republishing events.

channelname :
Required parameter specifying destination store name for republishing events.

memfileloc :
Parameter specifying absolute path for the memory file location.
The path can also be the location of a folder that contains
multiple mem files.
A folder with mem files can be specified only for multi-file storage,
and a single memory file can be specified only for mixed/persistent store.
One source file should be specified: memfileloc or xmlfilename.

xmlfilename :
Parameter specifying an XML file path to import events from.
One source file should be specified: memfileloc or xmlfilename.

Optional Parameters:
protobufdescriptor:

Optional parameter specifying the path to protocol buffer file descriptor.
When specified then republish tool will check if destination channel has
the same protocol buffer file descriptor.
No event filtering based on protobuf event data will be performed in
versions earlier than 10.3.

selector :
Optional parameter specifying the selector to filter the events.

Universal Messaging Administration Guide 10.3 567

6 Command Line Administration Tools



started :
Optional parameter specifying the startEID of event from source file
to start filtering/importing from (default = 0).

endeid :
Optional parameter specifying the endEID of event from source file to filter/import

to.
If not specified, filtering/importing will be done till last storage event id).

batchsize :
Optional parameter specifying the event batch size used for import and republishing

events
to the store (default = 100).

Syntax: Durable Tools

ViewDurableEvent
Tool name:
ViewDurableEvent

Description:
Gets all events for all durables or all events for a specific durable.
The tool has two required parameters (rname , channelname) and two optional
parameters (durablename , maxevents , startid). By default, if no optional
parameters are added it will list the events on all durables. Default number
of events is 1000 per durable.

Usage:
runUMTool ViewDurableEvent -rname=<rname> -channelname=<channelname>

[optional_args]

Examples:
ViewDurableEventWith required parameters: -rname=nhp://localhost:11000

-channelname=testchan With optional parameters:
-rname=nhp://localhost:11000 -channelname=testchan
-durablename=testdurable -maxevents=100 -startid=50 -displayanydata=true

Required arguments:
rname :

Name of the realm.
channelname :

Channel which durable is subscribed to.

Optional Parameters:
durablename :

The name of the durable to browse events.(Optional Parameter).
maxevents :

The number of maximum events to display.(Optional Parameter).
startid :

The EID of the starting event to display events from.
(Optional Parameter)

displayanydata :
If the data displayed should be of any kind. By default
only UTF-8 encoded data is shown. (Optional Parameter)

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

568 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Syntax: Miscellaneous Tools

EditRealmConfiguration
Tool name:
EditRealmConfiguration

Description:
Edits realm configuration parameters.

Usage:
runUMTool EditRealmConfiguration -rname=<rname> [optional_args]

Examples:
EditRealmConfiguration -rname=nsp://localhost:9000 -listgroupconfiguration=all
(This will show all realm configuration parameters and their current value)

EditRealmConfiguration -rname=nsp://localhost:9000
-listgroupconfiguration=Thread_Pool_Config

(This will show Thread Pool Config parameters and their current values)

EditRealmConfiguration -rname=nsp://localhost:9000
-Audit_Settings.ChannelACL=false -Join_Config.MaxQueueSizeToUse=50

(This will set channelACL to false and MaxQueueSizeToUse to 50)

Required arguments:
rname :

Connection URL to the realm you want to edit configuration.

Optional Parameters:

NOTE - If you want to edit a realm configuration parameter you should
specify it like an optional parameter :
-<group_name>.<parameter>=<new_value>
where space is escaped in <group_name> by using an underscore("_").
For example, if you want to change the parameter ChannelACL in the
group Audit Settings to "true" the optional parameter will look like:
-Audit_Settings.ChannelACL=true

listgroupconfiguration :
The configuration group for which you want to see values of parameters.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ExportRealmXML
Tool name:
ExportRealmXML

Description:
Exports selected realm to an XML file.

Usage:
runUMTool ExportRealmXML -rname=<rname> -filename=<filename> [optional_args]

Universal Messaging Administration Guide 10.3 569

6 Command Line Administration Tools



Examples:
ExportRealmXML -rname=nsp://localhost:9000 -filename=test.xml -exportall=true
(This will export all the information)

ExportRealmXML -rname=nsp://localhost:9000 -filename=test.xml -realms=true
-realmconfiguration=true -channels=true -queues=true

(This will export information about realm set, realm configuration, channels
and queues)

Required arguments:
rname :

Connection URL to the realm you want to export.
filename :

File name where the information will be exported.

Optional Parameters:
exportall :

Export all information for the chosen realm.
clusters :

Include Cluster information in the export file.
datagroups :

Include DataGroups information in the export file.
realmall :

Export all information for realm including RealmSet,
RealmConfiguration, RealmSchedulerSet and RealmACLS(RealmPermissionSet)

realms :
Include RealmSet information in the export file.

realmconfiguration :
Include RealmConfiguration information in the export file.

realmschedule :
Include RealmSchedulerSet information in the export file.

realmacls :
Include RealmACLS (RealmPermissionSet) information in the export file.

channelsall :
Export all information for channels in the chosen realm
including ChannelEntry, ChannelACLs (ChannelPermissionSet), ChannelJoins,
DurableSet and JNDI Configuration.

channels :
Include ChannelEntry information in the export file.

channelacls :
Include ChannelACLs (ChannelPermissionSet) information in
the export file.

channeljoins :
Include ChannelJoins information in the export file.

durables :
Include DurableSet information in the export file.

jndiconfig :
Include JNDI Configuration information in the export file.

interfacesall :
Export all information for interfaces in the chosen realm
including Interfaces, InterfaceVIA (ACLs) and Interface Plugins.

interfaces :
Include Interfaces information in the export file.

interfacevia :
Include InterfaceVIA (ACLs) information in the export file.

plugins :
Include Interface Plugins information in the export file.

queuesall :

570 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Export all information for interfaces in the chosen realm
including QueueEntry and QueueACLs (QueuePermissionSet).

queues :
Include QueueEntry information in the export file.

queueacls :
Include QueueACLs (QueuePermissionSet) information in the export file.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

HealthChecker
Tool name:
HealthChecker

Description:
Tool for analysing configuration items and highlighting robustness improvements.

Usage:
runUMTool HealthChecker [optional_args]

Examples:
HealthChecker -rname=nsp://localhost:11000
HealthChecker -xml=/path/to/xml1,/path/to/xml2,...
HealthChecker -rname=nsp://localhost:11000 -check=checkname1,checkname2,...
HealthChecker -xml=/path/to/xml1,/path/to/xml2 -check=checkname1,checkname2,...
HealthChecker -rname=nsp://localhost:11000 -exclude=checkname1,checkname2,...
HealthChecker -xml=/path/to/xml1,/path/to/xml2
-exclude=checkname1,checkname2,...

HealthChecker -rname=nsp://localhost:11000 -include=checkname1,checkname2,...
HealthChecker -xml=/path/to/xml1,/path/to/xml2
-include=checkname1,checkname2,...

HealthChecker -rname=nsp://localhost:11000 -mode=default
-include=checkname1,checkname2,...

HealthChecker -xml=/path/to/xml1,/path/to/xml2 -mode=default
-include=checkname1,checkname2,...

HealthChecker -rname=nsp://localhost:11000 -mode=all
-exclude=checkname1,checkname2,...

HealthChecker -xml=/path/to/xml1,/path/to/xml2 -mode=all
-exclude=checkname1,checkname2,...

HealthChecker -rname=nsp://localhost:11000 -mode=all
-exclude=checkname1,checkname2,... -additionalArg1=... -additionalArg2=...

HealthChecker -xml=/path/to/xml1,/path/to/xml2 -mode=all
-exclude=checkname1,checkname2,... -additionalArg1=... -additionalArg2=...

Required arguments:

Optional Parameters:
mode :

Defines the initial set of 'HealthChecker' checks that the user can
manipulate (with 'exclude' or 'include' options).
There are two modes :

default:
This option gives access to the recommended minimal subset of
checks. This is the default option if mode is not specified.

all:
This option gives access to all checks. Executed without
'exclude' or 'check' it will execute all HealthChecker checks.

Universal Messaging Administration Guide 10.3 571

6 Command Line Administration Tools



check :
Run only the specified check or checks. It should not be used together
with 'mode','include' or 'exclude arguments.

exclude :
Run all checks from the specified set (see 'mode') except the
specified check or checks. The parameter may contain a single check
or a comma-separated list of checks.

include :
Run all checks available with the given mode and additionally
include the check(s) specified via this parameter. The parameter may
contain a single check to include or a comma-separated list of checks.

additionalArg<n>:
Some of the health checks allow you to specify one or more additional
parameters when calling the HealthChecker. The name and purpose of each
additional parameter is specific to the individual health check being run.
For example, the DurableSubscriberLargeStoreCheck check allows you
to specify the additional parameter -threshold=<value>, which defines
a threshold for the number of remaining events to be consumed in a
shared durable.
All additional parameters are passed to all the HealthChecker checks;
if any given check has the capability to process any of the additional
arguments then it will, and the given check will ignore any
additional parameters that it cannot process.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

ImportRealmXML
Tool name:
ImportRealmXML

Description:
Imports selected realm from an XML file

Usage:
runUMTool ImportRealmXML -rname=<rname> -filename=<filename> [optional_args]

Examples:
ImportRealmXML -rname=nsp://localhost:9000 -filename=test.xml -importall=true
(This will import all the information present in selected file)

ImportRealmXML -rname=nsp://localhost:9000 -filename=test.xml -realms=true
-realmconfiguration=true -channels=true -queues=true

(This will import information about realm set, realm configuration, channels and
queues if present in selected file)

Required arguments:
rname :

Connection URL to the realm you want to import configuration.
filename :

File name from which the information will be imported.

Optional Parameters:
importall :

Import all information for the chosen realm.
clusters :

Import Cluster information if present in file.

572 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



datagroups :
Import Data Groups information if present in file.

realmall :
Import all information for realm including RealmSet,
RealmConfiguration, RealmSchedulerSet and RealmACLS(RealmPermissionSet)
if present in file.

realms :
Import RealmSet information if present in file.

realmconfiguration :
Import RealmConfiguration information if present in file.

realmschedule :
Import RealmSchedulerSet information if present in file.

realmacls :
Import RealmACLS(RealmPermissionSet) information if present in file.

channelsall :
Import all information for channels including ChannelEntry,
ChannelACLs (ChannelPermissionSet), ChannelJoins, DurableSet and
JNDI Configuration if present in file.

channels :
Import ChannelEntry information if present in file.

channelacls :
Import ChannelACLS information if present in file.

channeljoins :
Import ChannelJoins information if present in file.

durables :
Import DurableSet information if present in file.

jndiconfig :
Import JNDI Configuration information if present in file.

interfacesall :
Import all information for interfaces including Interfaces,
InterfaceVIA (ACLs) and Interface Plugins if present in file.

interfaces :
Import Interfaces information if present in file.

interfacevia :
Import InterfaceVIA (ACLs) information if present in file.

plugins :
Import Interface Plugins information if present in file.

queuesall :
Import all information for interfaces including QueueEntry and
QueueACLs (QueuePermissionSet) if present in file.

queues :
Import QueueEntry information if present in file.

queueacls :
Import QueueACLs (QueuePermissionSet) information if present in
file.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Syntax: Site Tools

CreateSite
Tool name:
CreateSite

Description:

Universal Messaging Administration Guide 10.3 573

6 Command Line Administration Tools



Creates a site with the specified name, consisting of the specified nodes.

Usage:
runUMTool CreateSite -sitename=<sitename> -rnames=<rnames> [optional_args]

Examples:
CreateSite -sitename=site0 -rnames=nsp://localhost:11000,nsp://localhost:11010

Required arguments:
sitename :

Name of the site to be created.
rnames :

Server URLs to be considered for the site. Can be more than one URL,
separated by a comma.
The proper format is [nsp/nhp/nsps/nhps]://[hostname]:[port] or
shm://[path/to/file].

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

DeleteSite
Tool name:
DeleteSite

Description:
Deletes a site with the specified name from all the nodes associated with it.

Usage:
runUMTool DeleteSite -sitename=<sitename> -rname=<rname> [optional_args]

Examples:
DeleteSite -sitename=site0 -rname=nsp://localhost:11000

Required arguments:
sitename :

Name of the site to be deleted.
rname :

Server URL to be considered for the site. Can be more than one URL,
separated by a comma.
The proper format is [nsp/nhp/nsps/nhps]://[hostname]:[port] or
shm://[path/to/file].

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

SetPrimeSite
Tool name:
SetPrimeSite

Description:
Toggles the specified site's prime status.

574 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Usage:
runUMTool SetPrimeSite -sitename=<sitename> -rname=<rname>

-setprime=<setprime> [optional_args]

Examples:
SetPrimeSite -sitename=site0 -rname=nhp://localhost:11000 -setprime=true

Required arguments:
sitename :

Name of the site to be configured.
rname :

Server URL to be considered for the site.
setprime :

True/False flag to set/unset a site being the prime site.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

ShowSites
Tool name:
ShowSites

Description:
Displays the configuration of the sites.

Usage:
runUMTool ShowSites -rname=<rname> [optional_args]

Examples:
ShowSites -rname=nhp://localhost:11000

Required arguments:
rname :

Server URL to be considered for the site.

Optional Parameters:
username :

Your Universal Messaging server username.
password :

Your Universal Messaging server password.

Syntax: Diagnostic Tools

RealmInformationCollector
Tool name:
RealmInformationCollector

Description:
Collects diagnostic information from a Universal Messaging realm server
installation and stores it in a zip archive.

Usage:
runUMTool RealmInformationCollector -mode=<mode> -instance=<instance>

Universal Messaging Administration Guide 10.3 575

6 Command Line Administration Tools



[optional_args]

Examples:
RealmInformationCollector -mode=offline -instance=umserver
RealmInformationCollector -mode=offline -instance=umserver

-include=data,heapdumps
RealmInformationCollector -mode=offline -instance=*
RealmInformationCollector -mode=live -instance=umserver,umserver2

-include=heapdump
RealmInformationCollector -mode=live -instance=umserver,umserver2

-exclude=jaas,plugins
RealmInformationCollector -mode=live -instance=umserver,umserver2

-outputfile=/path/to/outputfile.zip

Required arguments:
mode : Operating mode, either 'offline' or 'live'.

The chosen mode determines what information is collected.
If 'offline' is specified, the tool will ensure that all instances to collect
information from are not running.
If 'live' is specified, the tool will ensure that all instances are running.

In live mode, certain Universal Messaging directories/files are not collected,
because reading them may cause failures on the server.
For example, if the content of the data directory is needed, it can be
collected only in offline mode.

The following collectors will be executed by default in live mode:
tanukilogs - Collects Tanuki wrapper logs of an UM server instance.
secfile - Collects the security file of an UM server instance.
installlogs - Collects SoftwareAG installer logs.
tanukiconf - Collects Tanuki wrapper configuration of an UM server

instance.
env - Collects environment information from a running UM server.
license - Collects the license file of an UM server instance.
realmconfig - Exports realm configuration from a running UM server instance.

instancemgr - Collects Universal Messaging instance manager logs.
healthchecker - Acquires health information from a running UM server instance

using UM HealthChecker tool
jaas - Collects JAAS configuration of an UM server instance.
threaddump - Generates 3 thread dumps of a running UM server instance.
plugins - Collects plugins directory of an UM server instance.

Collectors not enabled per default in live mode (need to be explicitly included):

heapdump - Acquires heap dump from a running UM server instance.
Note: This collector is not available on all platforms.

heapdumps - Collects heap dumps directory of an UM server instance.

The following collectors will be executed by default in offline mode:
tanukilogs - Collects Tanuki wrapper logs of an UM server instance.
secfile - Collects the security file of an UM server instance.
installlogs - Collects SoftwareAG installer logs.
tanukiconf - Collects Tanuki wrapper configuration of an UM server instance.

license - Collects the license file of an UM server instance.
instancemgr - Collects Universal Messaging instance manager logs.
jaas - Collects JAAS configuration of an UM server instance.
logs - Collects logs of an UM server instance.
plugins - Collects plugins directory of an UM server instance.

576 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



Collectors not enabled per default in offline mode (need to be explicitly
included):

data - Collects data directory of an UM server instance.
heapdumps - Collects heap dumps directory of an UM server instance.

instance :
Specifies a comma-separated list of realm server instance names to
collect information from. Specify '*' to include all available instances.

Optional Parameters:
outputfile :

The directory or file to write generated archive to.
If a directory is specified, it must exist.
If a file is specified and it is already present, the tool will fail.
If this argument is omitted, the tool will generate the archive in the
current working directory.

exclude :
Specifies a comma-separated list of collector names to exclude.
See 'mode' for list of available collectors.

include :
Specifies a comma-separated list of collector names to include.
See 'mode' for list of available collectors.

username :
Your Universal Messaging server username.

password :
Your Universal Messaging server password.

Universal Messaging Administration Guide 10.3 577

6 Command Line Administration Tools



578 Universal Messaging Administration Guide 10.3

6 Command Line Administration Tools



7 Universal Messaging Administration API

■   Introduction ................................................................................................................... 580

■   Administration API Package Documentation ................................................................ 583

■   Namespace Objects ..................................................................................................... 583

■   Realm Server Management ......................................................................................... 589

■   Security ........................................................................................................................ 597

■   Management Information ............................................................................................. 601

Universal Messaging Administration Guide 10.3 579



Universal Messaging provides a feature rich Administration API capable of capturing all metrics,
management and audit information from Universal Messaging realms. The API allows you to
control and administer all aspects of any Universal Messaging realm or clusters of realms.

Universal Messaging's Enterprise Manager GUI has been written entirely using the Universal
Messaging Administration API as a means of demonstrating how useful the API can be for the
management of your messaging infrastructure.

Some example code showing how to use the Universal Messaging management API can be found
in the examples section.

The Administration API is available in the following languages:

Java

C#.NET

C++

Note:
The Administration APIs for C# and C++ are deprecated and will be removed from the product
distribution in the next official release.

Introduction

Getting Started

The Universal Messaging Admin API (see the Package Documentation) allows management,
configuration, audit and monitoring of all aspects of a Universal Messaging realm server.

The starting point for the Admin API is connecting to a realm. In order to connect to a realm using
the Admin API, you need to ensure you are familiar with the concept of an RNAME. Once you
have the RNAME that corresponds to your realm, you can then connect to the realm.

The way you connect to a realm is by constructing an nRealmNode object. The nRealmNode object is
the main object you need to access all of the objects you wish to configure, monitor and manage:
String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nRealmNode realm = new nRealmNode(nsa);

Universal Messaging namespace

Access to resources on a Universal Messaging realms, or indeed objects in a multi Universal
Messaging realm server namespace, is based on a simple tree structure, where the nRealmNode is
the root of the tree. All nodes within the tree are subclasses of a base class nNode. From the root, it
is possible to obtain references to all child nodes. Child nodesmay be other realm nodes, containers
(folders containing other realms, channels etc), channels and queues.

For example, to obtain an enumeration of all child nodes within a realm node, simply call the
following:

580 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



Java:
Enumeration children = realm.getNodes();

C#:
System.Collections.IEnumerator children = realm.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

From this enumeration you can then perform operations on the child nodes. For example, if you
have a realm with 1 channel and 1 queue, and wanted to find the number of events currently on
each, the following code would do that:

Example: Finding out how many events are on a channel / queue

Java:
while (children.hasMoreElements()) {

nNode child = (nNode)children.nextElement();
if (child instanceof nLeafNode) {

nLeafNode leaf = (nLeafNode)child;
System.out.println("Leaf node contains "+leaf.getCurrentNumberOfEvents());

}
}

C#:
while (children.MoveNext()){
nNode child = (nNode)children.Current;

if (child is nLeafNode) {
nLeafNode leaf = (nLeafNode)child;
Console.WriteLine("Leaf node contains "+leaf.getCurrentNumberOfEvents());

}
}

C++:
void searchNodes(fSortedList nodes)

for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end();
iterator++)

{
nNode *pNode = iterator->second;
int type = pNode->getType ();
if (type == fBase::LEAFNODE)
{

printf("Leaf node contains %ll events",pNode->getCurrentNumberOfEvents());
}

}
}

The namespace structure is dynamic and is managed asynchronously for you, so as and when
objects are created, deleted modified, stopped or started, the namespace will manage those state
changes and keep the structure up to date automatically.

Universal Messaging Administration Guide 10.3 581

7 Universal Messaging Administration API



Management / Configuration / Security

As well as the namespace nodes, there are also other objects that can be obtained from the nodes
but which are not part of the namespace tree structure.

For example, from an nRealmNode it is possible to obtain the following objects:

nClusterNode - The cluster node that this realm may be part of, allowing the administration
of Universal Messaging realm clusters

nACL - The realm acl object (see “Realm Entitlements” on page 214), allowing control of the
ACL permissions (see “Access Control Lists” on page 597)

nInterfaceManager - The realm interface manager, allows me to add, remove, stop, start
interfaces on a realm (see “Interfaces” on page 589)

nSchedulerManager - the scheduler manager allows me to control scheduled tasks (see
“Scheduling” on page 591) on the realm

nConfigGroup - an enumeration of these corresponds to all configuration (see “Config” on
page 592) and tuning parameters for a given realm.

From an nLeafNode which could be a channel or a queue, the following objects are available:

nACL - The leaf node acl object, allows me to control acl permissions (see “Channel
Entitlements” on page 216) for resources

nJoinInfo - All join information associated with a channel or queue

Monitoring

As well access to the channel resources as described above, there are also many monitoring tools
available to developers that provide information asynchronously as and when events occur on a
realm. This can be extremely useful in ongoing real time management of one or more Universal
Messaging Realm servers.

For example, for a realm node you can provide listeners for the following :

Connections - get notified as new connections (see “Connection Information” on page 607) to
the realm occur, showing connection information

Creation /Deletions / Stop / Start - get notifiedwhen newobjects are created, deleted,modified,
stopped or started (see “nRealmNode” on page 601) (for example new channels being created,
acls being changed etc)

State Changes - get notified when changes occur to any of the objects in the namespace (see
“nLeafNode” on page 605), such as events being published / consumed. All updates are
asynchronously received from the realm server and the API manages those changes for you.

Audit / Logging - when security or state changes occur, get notified of audit events, as well
as remotely receiving log file information from the server.

582 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



The following sections in this guide will work through in more detail, each of what has been
discussed above.

Administration API Package Documentation

The Administration API is provided in the package com.pcbsys.nirvana.nAdminAPI

The API documentation is available in the Universal Messaging Reference Guide section of the
documentation.

Namespace Objects

nRealmNode
Universal Messaging's namespace contains objects that can be administered, monitored and
configured. The nRealmNode object in the nAdminAPI, corresponds to aUniversalMessagingRealm
server process. The nRealmNode is used to make an admin connection to a realm.

In order to connect to a realm you need to ensure you are familiar with the concept of an RNAME.
Once you have the RNAME that corresponds to your realm, you can then construct the nRealmNode
and connect to the corresponding realm. This is achieved by the following calls:

Java:
String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nRealmNode realm = new nRealmNode(nsa);

C++:
std::string rName = "nsp://127.0.0.1:9000";
nSessionAttributes* nsa=new nSessionAttributes(rName);
nRealmNode* realm = new nRealmNode(nsa);

By constructing an nRealmNode, and connecting to a realm, the realm node will automatically
begin receiving status information from the realm periodically, as well as when things occur.

nRealmNode

The nRealmNode is the root of a Universal Messaging Realm's namespace, which is a tree like
structure that contains child nodes. The tree nodes are all subclasses of a base class nNode. Each
node corresponds to one of the following node subclasses:

nRealmNode - other realm nodes that have been added to this realm's namespace

nContainer - folders, if there was a channel called /eur/uk/rates, there would be a child
nContainer node called, 'eur' which would have a child called 'uk' etc.

nLeafNode - these correspond to channels and queues

Universal Messaging Administration Guide 10.3 583

7 Universal Messaging Administration API



The nRealmNode itself is a subclass of the nContainer class. To obtain an enumeration of all child
nodes within a realm node, simply call the following:

Java:
Enumeration children = realm.getNodes();

C#:
System.Collections.IEnumerator children = realm.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

Once you have this enumeration of nodes, you can then perform the various operations on those
nodes available through the nAdminAPI.

If you know the name of the child node youwish to obtain a reference to, you can use the following
method:

Java:
nNode found = realm.findNode("/eur/uk/rates");

C++:
nNode* found = realm->findNode("/eur/uk/rates");

Which should return you an nLeafNode that corresponds to the channel called '/eur/uk/rates'.

As well as obtaining references to existing nodes, it is also possible to create and delete channels
and queues using the nRealmNode. For example, to create a channel called '/eur/fr/rates', we would
write the following code:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.SIMPLE_TYPE);
cattrib.setName(“/eur/fr/rates”);
nLeafNode channel = realm.createChannel(cattrib);

C++:
nChannelAttributes* cattrib = new nChannelAttributes();
cattrib->setMaxEvents(0);
cattrib->setTTL(0);
cattrib->setType(nChannelAttributes.SIMPLE_TYPE);
cattrib->setName(“/eur/fr/rates”);
nLeafNode* channel = realm->createChannel(cattrib);

To remove channel or a queue, you can simply call the following method on your realm node
(using the channel created above):
realm.delLeafNode(channel);

C++:

584 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



realm->delLeafNode(channel);

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the “Enterprise Manager Guide” on page 9.

nLeafNode (Channels and Queues)
Once you are familiar with the concept of the Universal Messaging Namespace, as discussed in
the nRealmNode guide (see “nRealmNode” on page 583), you can then begin to use the other
administration objects associated with a realm's Namespace.

In this section the nLeafNode is discussed. It is assumed you are aware of how to create an
nRealmNode for this section, and have a general understanding of Universal Messaging's publish
/ subscribe and message queue technologies

nLeafNode

The nLeafNode is either a channel or a queue, and is, as its name suggests, an end point of a branch
of the namespace tree. An nLeafNode's parent is always an instance of nContainer. Since
nRealmNode is a subclass of nContainer, sometimes an nLeafNode's parent is also an instance of
an nRealmNode. For example, consider the following 2 channels within the namespace:
/eur/uk/rates
/rates

The nLeafNode that corresponds to the channel '/eur/uk/rates' will have a parent which is an
instance of nContainer, and is called 'uk', whereas the nLeafNode that corresponds to the channel
'/rates' has a parent which is also an instance of nContainer, however is is also an instance of an
nRealmNode (i.e. the namespace root), since it does not contain any folder information in its name.

As channels and queues are created, they are added to the nRealmNode's tree structure as
nLeafNodes. This is allmanaged for you anddoes not require you tomodify the structure.However
it is possible to be notified when changes to the namespace occur so that your application can
handle it as you see fit. This is discussed in more detail in the Management Information section
of this guide.

To determine if an nLeafNode is a channel or a queue, there are 2 simple methods you can use.
The following code snippet search the namespace and print out whether each leaf node it finds is
a channel or a queue.

Example : Find channels and queues in the namespace

Java:
public void searchNodes(nContainer container)
Enumeration children = container.getNodes();
while (children.hasMoreElements()) {

nNode child = (nNode)children.nextElement();
if (child instanceof nContainer) {

searchNodes((nContainer)child);
} else if (child instanceof nLeafNode) {

nLeafNode leaf = (nLeafNode)child;
if (leaf.isChannel) {

Universal Messaging Administration Guide 10.3 585

7 Universal Messaging Administration API



System.out.println("Leaf Node "+leaf.getName()+" is a channel");
} else if (leaf.isQueue()) {
System.out.println("Leaf Node "+leaf.getName()+" is a queue");

}
}

}
}

C#:
public void searchNodes(nContainer container)
System.Collections.IEnumerator children = realm.getNodes();
while (children.MoveNext()){
nNode child = (nNode)children.Current;

if (child is nContainer) {
searchNodes((nContainer)child);

} else if (child is nLeafNode) {
nLeafNode leaf = (nLeafNode)child;
if (leaf.isChannel) {
Console.WriteLine("Leaf Node "+leaf.getName()+" is a channel");

} else if (leaf.isQueue()) {
Console.WriteLine("Leaf Node "+leaf.getName()+" is a queue");

}
}

}
}

C++:
void searchNodes(fSortedList nodes)

for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end();
iterator++)

{
nNode *pNode = iterator->second;
int type = pNode->getType ();
if (type == fBase::LEAFNODE)
{

if(iterator->second->isChannel()){
printf("Leaf Node %s is a Channel");

} else if(iterator->second->isQueue()){
printf("Leaf Node %s is a Queue");

}
}
else if (type == fBase::CONTAINER)
{

searchNodes(((nContainer*)pNode)->getNodes());
}

}
}

In the above code example, by the searchNodes(realm)method searches the namespace from the
realm node, and this isChannel() and isQueue() methods are used to determine whether each leaf
node is a queue or a channel.

Associatedwith each leaf node, is the nChannelAttributes for the queue or channel, this is obtained
by using the getAttributes()method, so it is possible to determine the characteristics of each leaf node.

Each leaf node also has an associated nACL object that can be modified to change security
permissions for users. This is discussed in more detail in the security section of this guide.

586 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Realm Federation
A Universal Messaging Realm is an instance of the server and a container for resources. Each
Universal Messaging Realm defines a namespace of its own but it is possible to merge the
namespaces of multiple Realms into one large one. This is known as realm federation.

Note:
Clustering and Realm Federation are mutually exclusive. If a realm is a member of a cluster,
you cannot use the realm for federation. Similarly, if a realm is part of a federation, the realm
cannot be used for clustering.

While adding aUniversalMessagingRealm into the namespace of another, there is one compulsory
options and two optional. The compulsory option is the RNAME of that Realm. The optional
parameter is the mount point that the Realm should be added in the existing Realm.

If you are specifying the name of the Realm you are adding it should be specified exactly as it
appears in the Enterprise Manager. It appears adjacent to the globe icon specifying the realm to
which this realm is being added.

AUniversalMessagingRealm can also be added to another Realm's namespace using the Enterprise
Manager (see “Realm Federation” on page 587).

A Realm is added into the namespace of another programmatically as follows.

Java, C#:
//Create an instance of the Universal Messaging Realm object to be added
String rname = "nsp://remoteHost:9002";
nRealm nr = new nRealm( realmName, rname);
//Set the mountpoint in the local realm's Namespace
nr.setMountPoint( mountPnt );
//Add the remote realm to the local one.
//assuming mySession has already been connected to your local realm
mySession.addRealm( nr );

C++
//Create an instance of the Universal Messaging Realm object to be added
string rname = "nsp://remoteHost:9002";
nRealm* nr = new nRealm( realmName, rname);
//Set the mountpoint in the local realm's Namespace
nr->setMountPoint( mountPnt );
//Add the remote realm to the local one.
//assuming mySession has already been connected to your local realm
mySession->addRealm( nr );

Universal Messaging Administration Guide 10.3 587

7 Universal Messaging Administration API



Example Usage of a Federated Universal Messaging Namespace

You can then provide filters for channel joins across the multiple realms you have added to the
namespace. This allows you to ensure that events are routed to the correct channel based on the
content of the event.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins. The description details the usage based on the Enterprise Manager, but
the same general principles apply if you are using the API.

For example, if channel1 on Realm1 is joined to channels channel2, channel3, channel4, channel5
on realmsRealm2, Realm3, Realm4, Realm5, and each event is published using an nEventProperties
dictionary that contains a key called 'DESTINATION'.

If each channel join from channel1 is created with a filter, for example for the join from channel1
to channel2 on Realm2 the filter would be:
DESTINATION='realm2'

This guarantees only those events that are published to channel1 and that contain 'realm2' in the
'DESTINATION' key will be published to channel2 on Realm2.

For further example code demonstrating adding Universal Messaging Realms to a names space
please see the addRealm example.

Channel Join
Joining a channel to another allows you to set up content routing such that events on the source
channel will be passed on to the destination channel also. Joins also support the use of filters thus
enabling dynamic content routing.

Channels can be joined using the Universal Messaging Enterprise Manager GUI or
programmatically.

In joining two Universal Messaging channels there is one compulsory option and two optional
ones. The compulsory option is the destination channel. The optional parameters are themaximum
join hops and a JMS message selector to be applied to the join.

Note:
For a description of the general principles involved in creating channel joins, see the section
Creating Channel Joins in the Administration Guide. The description details the usage based on
the Enterprise Manager, but the same general principles apply if you are using the API.

Channel joins can be created using the nmakechanjoin join sample application which is provided
in the <InstallDir>/UniversalMessaging/server/<InstanceName>/bin directory of the Universal
Messaging installation. For further information on using this example please see the nmakechanjoin
example page.

Universal Messaging joins are created as follows:

588 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



Java, C#:
//Obtain a reference to the source channel
nChannel mySrcChannel = mySession.findChannel( nca );
//Obtain a reference to the destination channel
nChannel myDstChannel = mySession.findChannel( dest );
//create the join
mySrcChannel.joinChannel( myDstChannel, true, jhc, SELECTOR );

C++:
//Obtain a reference to the source channel

nChannel* mySrcChannel = mySession->findChannel( nca );
//Obtain a reference to the destination channel
nChannel* myDstChannel = mySession->findChannel( dest );
//create the join
mySrcChannel->joinChannel( myDstChannel, true, jhc, SELECTOR );

Realm Server Management

Interfaces
Universal Messaging Realm servers provide the ability for connections to be made using any
available physical network interface on the servermachine. For example, if amachine has 4 physical
network interfaces, Universal Messaging provides the ability to bind specific network interface
addresses to specific ports and different protocols. This provides the ability to run segment the
communication between client and server. There is no limit to the number of separate interfaces
that can be run on a Universal Messaging realm server.

For example, a Realm Server that is visible to Internet users may have 4 Network cards, each one
having its ownphysical IP address and hostname. Two of the network interfacesmay be externally
visible, while the other 2 may be only visible on internal sub-nets.

The 2 external interfacesmay be specified as using nhp, and nhps on ports 80 and 443 respectively,
since for firewall purposes, these ports are the most commonly accessible ports to external clients
connecting to the realm. The remaining internal interfaces, visible to internal client connections
do not have the same restrictions, and so could be defined as using nsp and nsps protocols on
other ports, say 9000 and 9002 respectively.

What this guarantees is separation of internal and external connections based on network interface
and protocol.

nInterfaceManager

When you have connected to a realm, and have a reference to an nRealmNode object (see
“nRealmNode” on page 583), you can access an object called nInterfaceManager, which provides
the ability to add, modify, delete, stop and start interfaces on the Universal Messaging realm. To
get access to this object, you can call the following method from a realm node:

Java, C#:
nInterfaceManager iMgr = realm.getInterfaceManager();

Universal Messaging Administration Guide 10.3 589

7 Universal Messaging Administration API



C++:
nInterfaceManager* iMgr = realm->getInterfaceManager();

Using the nInterfaceManager object you can then obtain a list of known interfaces for that realm:

Java:
Vector ifaces = iMgr.getInterfaces();

C#:
List ifaces = iMgr.getInterfaces();

C++:
int numInterfaces; nInterfaceStatus** pTemp = iMgr->getInterfaces(numInterfaces);

All interfaces extend a base class called nInterface. There are 4 types of interface object that
correspond to the different types of protocols that an interface can use. These are:

nSocketInterface - standard socket interface, Universal Messaging protocol is nsp

nHTTPInterface - http interface, Universal Messaging protocol is nhp

nSSLInterface - ssl socket interface, Universal Messaging protocol is nsps

nHTTPSInterface - https interface, Universal Messaging protocl is nhps

Each of these interface objects contain standard configuration information and allows the same
operations to be performed on them. For example, if there is an interface called 'nsp1', and you
wanted to change the 'autostart' property to true (i.e. make the interface start automatically when
the realm is started) this can be achieved with the following code:

Java, C#:
nInterface iface = iMgr.findInterface("nsp0");
iface.setAutostart(true);
iMgr.modInterface(iface);

C++:
nInterface* iface = iMgr->findInterface("nsp0");
iface->setAutostart(true);
iMgr->modInterface(iface);

Which will modify the interface configuration at the server, stop and restart the interface. When
performing a modInterface operation, if you are modifying the interface that your nRealmNode
is connected to, you will be disconnected and reconnected when the interface restarts. This is
important to remember when using the stop method of an interface too, since if you stop the
interface you are connected to, you cannot start it again, since your connection needs to be active,
and the stop operation will close your connection. If you wish to restart an interface you should
therefore do it from a connection which has been made via another interface.

590 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



Example: creating an NHPS interface

You can create an NHPS interface using code such as the following:
nRealmNode rnode = ...;
nHTTPSInterface nhps = new nHTTPSInterface("0.0.0.0", 9443,
autoStart);
nhps.setKeyStore(keystore);
nhps.setKeyStorePassword(kpass);
nhps.setPrivateKeyPassword(kpass);
nhps.setTrustStore(tstore);
nhps.setTrustStorePassword(tpass);
rnode.getInterfaceManager().addInterface(nhps);

Scheduling
UniversalMessagingRealm servers provide the ability for scheduling tasks. Tasks can be scheduled
to execute based on certain conditions being met.

These conditions can be either time based (scheduling) or event based (triggers).

UniversalMessaging scheduling is achieved through the creation of numerous scheduling scripts.
Each script can contain multiple definitions of triggers and tasks.

TheUniversalMessaging server parses these scripts and sets up the triggers and tasks accordingly.
For more information on the script grammar, there is a section in the enterprise manager guide
which deals with writing scheduling scripts.

nSchedulerManager

When you have connected to a realm, and have a reference to an nRealmNode object (see
“nRealmNode” on page 583), you can access an object called nSchedulerManager, which provides
you with the ability to add, modify, delete scheduling scripts. To get access to this object, you can
call the following method from a realm node:

Java, C#:
nSchedulerManager sMgr = realm.getSchedulerManager();

C++:
nSchedulerManager* sMgr = realm->getSchedulerManager();

Using the nSchedulerManager object you can then obtain a list of scheduler objects for the realm:

Java:
Enumeration schedulers = sMgr.getNodes();

C#:
System.Collections.IEnumerator schedulers = sMgr.getNodes();

C++:

Universal Messaging Administration Guide 10.3 591

7 Universal Messaging Administration API



fSortedList nodes = pNode->getNodes();

Thismethod returns an enumeration of nScheduler objects. The nScheduler objects each correspond
to a particular scheduling script.

The following code shows you how to construct a new scheduler object using a sample script that
will log a message to the realm server log every hour, signified by the 'every 60' condition: {Please
Note: typically this script would be read from a script file or it could be entered directly into the
realm enterprise manager GUI.}

Java, C##:
String source = "scheduler myScheduler {\n";
String logString = "Sample script : ";
source += "\n";
source += "\n";
source += " initialise{\n";
source += " Logger.setlevel(0);\n";
source += " }\n";
source += " every 60"{\n";
source += " Logger.report(\""+logString+"\");\n";
source += " }\n";
source += "}\n";
sMgr.add(source, "user@localhost", false);

C++:
stringstream s;
s<<"scheduler myScheduler {\n";
string logString = "Sample script : ";
s<<"\n";
s<<"\n";
s<<"initialise{\n";
s<<"Logger.setlevel(0);\n";
s<<"}\n";
s<<"every 60"{\n";
s<<"fLogger::report(\""+logString+"\");\n";
s<<"}\n";
s<<"}\n";
sMgr->add(source, "user@localhost", false);

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Config
Universal Messaging Realm servers contain a large number of configurable parameters These
parameters can be modified using the nAdminAPI.

The Universal Messaging Realm config can also be managed via the Realm enterprise manager
(see “Realm Configuration” on page 49). This also provides a useful guide to the configuration
groups and their specific config entities.

592 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



nConfigGroup

When connected to a realm, and using a reference to an nRealmNode object (see “nRealmNode” on
page 583), you can access configuration objects that correspond to a group of configuration entries.
To get access to the config groups, call the following method from a realm node:

Java, C#
Enumeration children = realm.getNodes();

C++
fSortedList nodes = pNode->getNodes();

The enumeration will contain a number of nConfigGroup objects. Each nConfigGroup contains a
number of nConfigEntry objects, each one corresponds to a specific configurable parameter in the
realm server.

For example, to change the log level of the realm server, we need to obtain the config group called
'Logging Config' and set the 'fLoggerLevel' property:

Java, C#:
nConfigGroup grp = realm.getConfigGroup("Logging Config");
nConfigEntry entry = grp.find("fLoggerLevel");
entry.setValue("0");

C++
nConfigGroup* grp = realm->getConfigGroup("Logging Config");
nConfigEntry* entry = grp->find("fLoggerLevel");
entry->setValue("0");

For a definitive list of available configuration groups and their specific properties please see “Realm
Configuration” on page 49 in the enterprise manager guide.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Clustering
Universal Messaging provides the ability to group Realm servers together to form a cluster. A
cluster is a logical group of realm servers that share common resources. The resources and any
operations performed on then are replicated across all cluster members. Clients connecting to
'Realm A' in cluster 1, are able to access the same logical objects as clients connecting to Realms B
or C in cluster1.

The state of these objects is fully replicated by each realm in the cluster. For example, if you create
a queue (queue1) within cluster 1, it is physically created in realms A, B and C. If there are 3
consumers on queue1, say one on each of realms A, B and C respectively, each realm in the cluster
will be aware as each message is consumed and removed from the different physical queue1
objects in the 3 realms.

Universal Messaging Administration Guide 10.3 593

7 Universal Messaging Administration API



If one of the realms within cluster1 stops, due to a hardware or network problems, then clients
can automatically reconnect to any of the other realms and start from the same point in time on
any of the other realms in the cluster.

This ensures a number of things:

Transparency - Any client can connect to anyUniversalMessaging realm serverwithin a cluster
and see the same cluster objects with the same state. Clients disconnected from one realmwill
automatically be reconnected to another cluster realm.

24 x 7 Availability - If one server stops, the other realms within the cluster will take over the
work, providing an always on service

nClusterNode

Using the nAdmin API, if you wish to create a cluster that contains 3 realms, and you know the
RNAME values for all 3, then the following call will create the cluster.

Java, C#, C++:
String[] RNAME= {"nsp://127.0.0.1:9000",
"nsp://127.0.0.1:10000","nsp://127.0.0.1:11000"};
nRealmNode realms[] = new nRealmNode[RNAME.length];
nClusterMemberConfiguration[] config = new nClusterMemberConfiguration[RNAME.length];
for (int x = 0; x < RNAME.length; x++) {
// you don't have to create the realm nodes
// here, since the member configuration will create
// them for you from the RNAME values
realms[x] = new nRealmNode(new nSessionAttributes(RNAME[x]));
config[x]=new nClusterMemberConfiguration(realms[x], true);

}
nClusterNode cluster = nClusterNode.create("cluster1", config);

Once the cluster node is created, each realm node within the cluster will know of the other realms
within the cluster, and be aware of the cluster they are part of. For example, calling the following
method:

Java, C#, C++:
nClusterNode cluster = realms[0].getCluster();

will return the cluster node just created with the realm with nsp://127.0.0.1:9000 for an RNAME.

Cluster nodes contain information about the member realms (nRealmNode objects) as well as the
current state of the cluster members. This information can be found by calling the
getClusterConnectionStatus()method on the cluster node, which returns a vector of nClusterStatus objects,
each of which corresponds to a realm.

nRealmlNode

Once a realm becomes part of a cluster, channels and queues can be created that are part of the
cluster, as well as standard local resources within the realms. For example, if you were to us the
following calls:

594 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



Java, C#, C++:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.PERSISTENT_TYPE);
cattrib.setClusterWide(true);
cattrib.setName(“clusterchannel”);
nLeafNode=.createChannel(cattrib);
realms[0].createChannel(cattrib);

Thiswould create a channel that is visible to all realmswithin a cluster. Any administrative changes
made to this channel such as ACL modifications will also be propagated to all cluster members
in order for the channel to be kept in sync across all realms.

Inter-Cluster Connections

Inter-cluster connections can be created programmatically through the Administration API. To
do this, connect to a realmNode in each cluster and then do the following:

Java, C#, C++:
cluster1realm1.getCluster().registerRemoteCluster(cluster2realms1.getCluster());

Similarly, the inter-cluster connection can be removed programmatically:

Java, C#, C++:
cluster1realm1.getCluster().deregisterRemoteCluster(cluster2realm1.getCluster());

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Multicast
A common way to add a multicast configuration is via the Enterprise Manager (see “Multicast
Configuration” on page 289) but you can also do this programmatically.

Creating the nMulticastConfiguration

In order to create an nMulticastConfiguration object you need to specify two parameters:

multicastAddress - Multicast IP address to use

adapter - Network adapter address of your multicast configuration

Java, C#:
String multicastAddress = "227.0.0.98";

String adapter = "10.150.12.1";
nMulticastConfiguration mConf = new nMulticastConfiguration(multicastAddress,

adapter);

Universal Messaging Administration Guide 10.3 595

7 Universal Messaging Administration API



C++:
std::string multicastAddress = "227.0.0.98";

std::string adapter = "10.150.12.1";
nMulticastConfiguration* mConf = new nMulticastConfiguration(multicastAddress,

adapter);

Enabling multicast for cluster communication

In order to use multicast for intra-cluster communication you need to set a flag on the
nMulticastConfiguration:

Java, C#:
mConf.setUseForCluster(true);

C++:
mConf->setUseForCluster(true);

Enabling multicast on DataGroups

When you create a DataGroup you have the option to enable multicast delivery. However you
also need to enable multicast for DataGroups on the multicast configuration:

Java, C#:
mConf.setUseForDataGroups(true);

C++:
mConf->setUseForDataGroups(true);

Then (after the configuration has been applied) when you create a DataGroup you need to set the
enableMulticast flag to true:

Java, C#:
boolean enableMulticast = true;

String name = "newGroup";
mySession.createDataGroup(name,enableMulticast);

C++:
bool enableMulticast = true;

std::string name = "newGroup";
mySession->createDataGroup(name,enableMulticast);

Applying the multicast configuration

In order to register the new configuration on the server you will need to connect to a Universal
Messaging Realm and establish an nRealmNode (see “nRealmNode” on page 583). You can then
get a reference to the nMulticastManager:

Java, C#:

596 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



nMulticastManager mMgr = realm.getMulticastManager();

C++:
nMulticastManager* mMgr = realm->getMulticastManager();

You can now use the nMulticastManager to send the new configuration to the server:

Java, C#:
mMgr.addMulticastConfiguration(mConf);

C++:
mMgr->addMulticastConfiguration(mConf);

Security

Access Control Lists
The Universal Messaging Administration API allows Access Control Lists (ACLs) to be set using
the nACL object defines a set of nACLEntry objects that consist of a user subject and a value that
corresponds to the operations permitted for that subject. With an nACL object, it is possible to
added, delete and modify acl entries for specific subjects.

The nACL Object

There are subclasses of the base nACLEntry object. These are :

nRealmACLEntry - defines permissions for a specific subject on the Universal Messaging
Realm server itself

nChannelACLEntry - defines permissions for a subject on a channel or queue

ACL Lists can contain any combination and number of user@host entries, along with Security
Groups (see “Nirvana Admin API - Nirvana Security Groups” on page 597).

Nirvana Admin API - Nirvana Security Groups
The Administration API allows groups of users to be defined. These groups can then be used in
ACL lists in-place of individual ACL entries for each user.

Security Groups can contain any number of users (user@host pairs), and may also include other
Security Groups.

A new security group can be registered as follows:

Java, C#, C++:

nSecurityGroup grp = new nSecurityGroup("mySecurityGroup");
grp.add(add(new nSubject("user@host");

Universal Messaging Administration Guide 10.3 597

7 Universal Messaging Administration API



realmNode.getSecurityGroupManager.registerSecurityGroup(grp);

The SecurityGroupManager can be used to edit memberships ofmultiple groups at the same time,
for example:

Java, C#, C++:
nSecurityGroupManager mgr = realmNode.getSecurityGroupManager();
mgr.registerGroupMembers(group,members);
//Members can be a single subject(user@host), a group, or a collection
//containing many subjects, groups or a combination of these.

Once a security group has been registered, it can be added into ACL lists as you would normally
add a user@host entry. Subsequent changes to the membership of the group will be reflected in
which users have permissions for the corresponding resources.

Java, C#, C++:
nSecurityGroup grp = securityGroupManager.getGroup("myGroupName");
nChannelACLEntry aclEntry = new nChannelACLEntry(grp);
aclEntry.setFullPrivileges(true);
leafNode.addACLEntry(aclEntry);

Groups can also be deregistered from the realm. This will remove the group and will remove the
group reference fromall ACL listswhere the group currently appears. Aswith the other examples,
this can be done via the nSecurityGroupManager:

Java, C#, C++:
mgr.deregisterSecurityGroup(grp);

Aswith all ACLs inUniversalMessaging, privileges are cumulative. Thismeans that, for example,
if a user is in a group which has publish permissions on a channel, but not subscribe permissions,
the user will no be able to subscribe on the channel. Then, if an ACL entry is added on the channel
for his specific username/host pair, with subscribe but no publish permissions, the user will then
be able to both subscribe (from the non-groupACLpermission), and publish (from the groupACL
permission).

Deeply nested Security Groups hierarchies are generally discouraged, since this type of
configuration can negatively impact the speed of checking ACLs, and may result in worse
performance than a shallow hierarchy.

Realm Access Control List (nACL)
When you have connected to a realm, and have a reference to an nRealmNode object (see
“nRealmNode” on page 583), you can access an the realm's acl object. This object contains a list of
nRealmACLEntry objects that represent a subject and a set permissions for various operations on
a realm.

You can also, add, delete and modify acl entry objects. To obtain the realm acl object, simply call
the following method from a realm node:

Java, C#:

598 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



nACL acl = realm.getACLs();

C++:
nACL* acl = realm->getACLs();

nRealmACLEntry

Once you have the acl object, you can then add, remove or modify acl entries:

To find a specific acl entry from the realm acl, you can search the acl using the subject. For example,
if I wished to change the default permissions for the *@* subject (i.e. the default permission for a
realm), I could use the following code:
nRealmACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false);
acl.replace(entry);
realm.setACLs(acl);

C++:
nRealmACLEntry* entry = acl->find("Everyone");
entry->setFullPrivileges(false);
acl->replace(entry);
realm->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Channel Access Control List (nACL)
When connected to aUniversalMessaging realm server ,with a reference to an nRealmNode object
(see “nRealmNode” on page 583) it is possible to get a reference to an nLeafNode (see “nLeafNode
(Channels and Queues)” on page 585) that corresponds to a channel. This can then be used to get
access the node's nACL . This object contains a list of nChannelACLEntry objects that represent a
subject and a set permissions for various operations on a channel. There is a separate
nChannelACLEntry object for each subject that has been permissioned on the nLeafNode.

You can also, add, delete and modify ACL entry objects.

In order to obtain a reference to the correct channel ACL object for a channel called
"/products/prices", simply call the following method from a realm node:

Java, C#, C++:
nLeafNode chan = realm.findNode("/products/prices");
nACL acl = chan.getACLs();

C++:
nLeafNode* chan = realm->findNode("/products/prices");
nACL* acl = chan->getACLs();

Universal Messaging Administration Guide 10.3 599

7 Universal Messaging Administration API



nChannelACLEntry

Once you have the ACL object, you can then add, remove or modify acl entries:

To find a specific ACL entry from the channel ACL, the ACL object can be searched using the
subject.

For example, to change the default permissions for the *@* subject (i.e. the default permission for
the channel), the following code can be used:

Java, C#:
nChannelACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false);
acl.replace(entry);
chan.setACLs(acl);

C++:
nChannelACLEntry* entry = acl->find("Everyone");
entry->setFullPrivileges(false);
acl->replace(entry);
chan->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Click here to see example of how to modify channel ACLs programmatically or to see example of
modifying ACLs using the enterprise manager.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Queue Access Control List
When you have connected to a realm, and have a reference to an nRealmNode object (see
“nRealmNode” on page 583), and an nLeafNode (see “nLeafNode (Channels and Queues)” on
page 585) that corresponds to a queue, you can access the node's ACL object. This object contains
a list of nChannelACLEntry objects that represent a subject and a set permissions for various
operations on a queue.

You can also, add, delete and modify acl entry objects. To obtain the queue ACL object, simply
call the following method from a realm node:

Java, C#:
nLeafNode queue = realm.findNode("/eur/uk/orders");
nACL acl = queue.getACLs();

C++:
nLeafNode* queue = realm->findNode("/eur/uk/orders");
nACL* acl = queue->getACLs();

Once you have the acl object, you can then add, remove or modify acl entries:

600 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



nChannelACLEntry

To find a specific ACL entry from the queue ACL, you can search the ACL using the subject. For
example, if I wished to change the default permissions for the *@* subject (i.e. the default permission
for the queue), I could use the following code:

Java, C#:
nChannelACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false):
acl.replace(entry);
queue.setACLs(acl);

C++:
nChannelACLEntry* entry = acl.find("Everyone");
entry->setFullPrivileges(false):
acl->replace(entry);
queue->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Click here to see example of how to add queue ACLs programmatically or to see example of
modifying ACLs using the enterprise manager.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Management Information

nRealmNode
The Universal Messaging admin API provides real time asynchronous management information
on all objects within a realm server. By creating an nRealmNode (see “nRealmNode” on page 583),
and connecting to a realm, information is automatically delivered to the nRealmNode object from
the realm. This information is delivered periodically in summary form, and also as and when the
state changes for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information available via
the Universal Messaging enterprise manager. A full description of all Realmmanagement screens
is available in the enterprise manager guide. All functionality seen in the enterprise manager can
be easily added to bespoke admin and monitoring processes as it is written entirely using the
Universal Messaging Admin API.

This section discusses the following different types of information that can be obtained through
the nAdmin API for the nRealmNode object:

Status Information

The nRealmNode extends nContainer, that extends nNode which is a subclass of Observable, so
when the status information is received for a realm node, (by default this is every 5 seconds

Universal Messaging Administration Guide 10.3 601

7 Universal Messaging Administration API



although it is configurable (see “Realm Configuration” on page 49) by setting the StatusBroadcast
property under the Global Values config group) the nRealmNode will trigger the update callback
on any knownObservers. For example, if youwrite a class that implements theObserver interface,
it can be added as an observer as follows:

Java, C#, C++:
realm.addObserver(this);

Assuming 'this' is the instance of the class implementing Observer, then the implementation of
the update(Observable obs, Object obj) will be notified that the realm node has changed.

When regular status events are sent, the Observable object referenced in the update method will
be the realm node that you added your observer to, and the Object will be null.

State Change Events

When events occur on a realm node that you have added an observer to, the Observable/Observer
mechanismwill notify you of the details of that event. For example, the following implementation
of the update method of the Observer interface demonstrates how to detect that a new channel or
queue has been created or deleted :

Java, C#:
public void update(Observable obs, Object obj){
if (obs instanceof nContainer) {

if (obj instanceof nLeafNode) {
nLeafNode leaf = (nLeafNode)obj;
nContainer cont = (nContainer)obs;
if (cont.findNode(leaf) == null) {
// node has been deleted
System.out.println("Node "+leaf.getName()+" removed");

} else {
// node has been added
System.out.println("Node "+leaf.getName()+" added");

}
}

}
}

C++:
void ObservableMapping::update(Observable *pObs, void *pObj)
{
if (obs->getType() == fBase::CONTAINER) {

if (obj->getType() == fBase::LEAFNODE) {
nLeafNode leaf = (nLeafNode*)obj;
nContainer cont = (nContainer*)obs;
if (cont->findNode(leaf)) {
// node has been deleted
printf("Node %s removed",leaf->getName());
System.out.println("Node "+leaf.getName()+" removed");

} else {
// node has been added
printf("Node %s added",leaf->getName());

}
}

602 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



}
}

Any changes to the realm ACL will also use the same notification mechanism. For example, if an
ACL entry was changed for a realm, the update method would be fired calling with the realm
node object and the nACLEntry that had been modified.

Logging and Audit

An nRealmNode allows you to asynchronously receive realm log file entries as well as audit file
entries as they occur.

Firstly, for receiving asynchronous log file entries, there is an interface called nLogListener which
your classmust implement. This interface defines a callbackmethod called report(String) that will
deliver each new log entry as a string. Once implemented, the following call will add your log
listener to the realm node:

Java, C#, C++:
realm.addLogListener(this);

Assuming 'this' is the instance of the class implementing the nLogListener interface.

The following is an example of the report(String) method implementation:

Java, C#:
public void report(String msg) {
System.out.println("LOG "+msg);

}

C++:
printf("Log : %s\n", msg);

Secondly, realm servers provide an audit file that tracks object creations and deletions, acl changes,
connection attempts and failures. This information can be very useful for trackingwho has created
ACL entries for example and when they were done.

This information, as with log file entries can be asynchronously received by implementing an
interface called nAuditListener. This interface defines a callbackmethod called audit(nAuditEvent)
that delivers contains the details of the audit entry. Once implemented, the following call will add
your log listener to the realm node:

Java, C#, C++:
realm.addAuditListener(this);

Assuming 'this' is the instance of the class implementing the nAuditListener.

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Universal Messaging Administration Guide 10.3 603

7 Universal Messaging Administration API



nClusterNode
Universal Messaging's admin API provides real time asynchronous information on all objects
within a realm server. By creating an nRealmNode (see “nRealmNode” onpage 583), and connecting
to a realm, information is automatically delivered to the realm node from the realm. This
information is delivered periodically in summary form, and also as and when the state changes
for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information available via
the Universal Messaging enterprise manager. A full description of all Realmmanagement screens
is available in the enterprise manager guide. All functionality seen in the enterprise manager can
be easily added to bespoke admin and monitoring processes as it is written entirely using the
Universal Messaging Admin API.

This section discusses the following different types of information that can be obtained through
the nAdmin API for the nClusterNode object. The nClusterNode corresponds to a cluster that 2
or more realms are members of. Each nRealmNode will have access to its cluster node object once
it has been added to a new or existing cluster:

Status Information

Firstly, in order to detect that a cluster node has been created, one has to observer the realm to
which you are connected.When the realm is added to a cluster, theObserver/Observablemechanism
will notify you of the cluster creation.

As well as implementing the Observer interface to detect new clusters, there is an interface that
can be used to be notified of specific cluster events when clusters already exist. This interface is
the nClusterEventListener. The interface defines various methods that enable your program to
receive callbacks for specific cluster events. When the status changes for a cluster node, this will
trigger an callback on any known listeners of the nClusterNode. For example, when you have
constructed your nRealmNode, if your class implements the nClusterEventListener interface, then
we can do the following:

Java, C#:
realm.addObserver(this);
nClusterNode cluster = realm.getCluster();
if (cluster != null) {
cluster.addListener(this);

}

C++:
pRealm->addObserver(this);
nClusterNode *pCluster = pRealm->getCluster();
pCluster->addListener(this);

If the realm is not part of a cluster, then the getCluster() method will return null. However, by
adding an observer to the realm, if a cluster is created that contains the realm you are connected
to, the update() method of the Observer implementation will notify you that a cluster has been
created. For example, the following code demonstrates how to detect if a cluster has been created
with the realm you are connected to as a member:

604 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



Java, C#:
public void update(Observable o, Object arg) {
if (arg instanceof nClusterNode) {
System.out.println("New cluster formed, name = "+( (nClusterNode)arg).getName());
((nClusterNode)arg).addListener(this);

}
}

C++:
nNode *pNode = iterator->second;
int type = pNode->getType ();

if (type == fBase::LEAFNODE)
{

((nLeafNode*)pNode)->addListener(new nChannelWatch((nLeafNode*)pNode, this));
}

Formore information on how tomonitor cluster nodes programmatically please see the appropriate
code example.

For more information on how to monitor cluster nodes using the enterprise manager please see
the enterprise manager guide.

For more information on Universal Messaging Administration, please see the API documentation
and the Enterprise Manager Guide.

nLeafNode
Universal Messaging's admin API provides real time asynchronous information on all objects
within a realm server. By creating an nRealmNode (see “nRealmNode” onpage 583), and connecting
to a realm, information is automatically delivered to the realm node from the realm. This
information is delivered periodically in summary form, and also as and when the state changes
for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information available via
the Universal Messaging enterprise manager. A full description of all Realmmanagement screens
is available in the enterprise manager guide. All functionality seen in the enterprise manager can
be easily added to bespoke admin and monitoring processes as it is written entirely using the
Universal Messaging Admin API.

This section will discuss the basic information that can be obtained through the nAdmin API for
the nLeafNode object:

Status Events

The nLeafNode extends nNode which is a subclass of Observable, so when the status information
is received for a leaf node, (this occurs only when things change on the channel or queue, i.e. acl,
connections, events published / consumed etc) the nLeafNode will trigger the update callback on
any known Observers. For example, if you write a class that implements the Observer interface,
then we can do the following:

Java, C#:

Universal Messaging Administration Guide 10.3 605

7 Universal Messaging Administration API



Enumeration children = realm.getNodes();
while (children.hasMoreElements();
nNode child = (nNode)children.nextElement();
if (child instanceof nLeafNode) {

child.addObserver(this);
}

}

C++:
pNode->addObserver(this);
pNode->addConnectionListener(new nRealmWatch(this));
fSortedList nodes = registerNodes(pNode->getNodes());
for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end();
iterator++)

{
if (type == fBase::LEAFNODE)

{
((nLeafNode*)pNode)->addListener(new nChannelWatch((nLeafNode*)pNode,

this));
}

}

Assuming 'this' is the instance of the class implementing Observer, then the implementation of
the update(Observable obs, Object obj) will be notified that the leaf node has changed.

When events occur on a leaf node that you have added an observer to, the Observable/Observer
mechanismwill notify you of the details of that event. For example, the following implementation
of the updatemethod of theObserver interface demonstrates how to detect that a channel or queue
acl has been added or deleted:

Java, C#:
public void update(Observable obs, Object obj){
if (obs instanceof nLeafNode) {

if (obj instanceof nACLEntry) {
nLeafNode leaf = (nLeafNode)obs;
nACLEntry entry = (nACLEntry)obj;
if (leaf.isChannel()) {
// acl modified / added / deleted
System.out.println("Channel "+leaf.getName()+" acl event for

"+entry.getSubject());
} else {
// acl modified / added / deleted
System.out.println("Queue "+leaf.getName()+" acl event for

"+entry.getSubject());
}

}
}

}

C++:
void ObservableMapping::update(Observable *pObs, void *pObj)
{
if (obs->getType() == fBase::LEAFNODE) {

if (obj->getType() == fBase::ACLENTRY) {
nLeafNode leaf = (nLeafNode*)obs;
nACLEntry entry = (nACLEntry*)obj;

606 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



if (leaf->isChannel()) {
// acl modified / added / deleted

printf("Channel %s acl event for %s",leaf->getName(),+entry->getSubject());
} else {

// acl modified / added / deleted
printf("Queue %s acl event for %s",leaf->getName(),+entry->getSubject());

}
}

}
}

Formore information onUniversalMessagingAdministration, please see theAPI documentation,
and the Enterprise Manager Guide.

Connection Information
Universal Messaging's admin API provides real time asynchronous information on all objects
within a realm server. By creating an nRealmNode (see “nRealmNode” onpage 583), and connecting
to a realm, information is automatically delivered to the realm node from the realm. This
information is delivered periodically in summary form, and also as and when the state changes
for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information available via
the Universal Messaging enterprise manager. A full description of all Realmmanagement screens
is available in the enterprise manager guide. All functionality seen in the enterprise manager can
be easily added to bespoke admin and monitoring processes as it is written entirely using the
Universal Messaging Admin API.

This section will discuss the connection information that is available through the nAdmin API for
the nRealmNode and the nLeafNode objects:

nRealmNode Connections

The nRealmNode provides the ability to be notified of connections to the realm, and when
connections are closed. When a client attempts a connection, a callback will be made that gives
the details of the connection, such as the user name, hostname, protocol and connection id. When
a user connection is closed, again, you will receive notification. This information can be useful for
monitoring activity on a realm.

In order to receive this kind of information, you need to implement the nConnectionListener class.
This class defines 2 methods, newConnection and delConnection. To receive notifications, you
can use the following method:

Java, C#, C++:
realm.addConnectionListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when connections
are made or closed with the realm.

Universal Messaging Administration Guide 10.3 607

7 Universal Messaging Administration API



nLeafNode Connections

Universal Messaging provides the ability to issue notifications of connections to leaf nodes.
Connections to leaf nodes correspond to subscriptions on a channel, so when a user subscribes to
a channel or removes the subscription, you can be notified. Notification is via a callback that
contains the details of the connection, such as the user name, hostname, protocol, connection id,
durable name and subscription filter.

In order to receive this kind of information, you need to implement the nConnectionListener class.
This class defines 2 methods, newConnection and delConnection. To receive notifications, you
can use the following method:

Java, C#:
leafaddListener(this);

C++:
leaf->addListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when channel
subscriptions are made or removed.

608 Universal Messaging Administration Guide 10.3

7 Universal Messaging Administration API



8 Thread Pool Monitoring

In addition to the thread dumpgeneration provided by the Java ServiceWrapper, you can configure
the Universal Messaging realm servers to monitor the thread pool for slow-running threads and
generate thread dumps when certain events occur. The thread dumps and messages generated
from the user-defined monitoring of the thread pool are logged into Software AG_directory
\UniversalMessaging\server\InstanceName\data\nirvana.log.

The thread poolmonitoring generates thread dumps for stalled or slow-moving tasks, and reports
reduced thread availability. Stalled tasks are tasks that run longer than the specified time.
Slow-moving tasks are tasks that run slower than the timeout for the task execution. You can also
set a threshold for pending tasks to monitor thread availability. You can then use the thread dump
entries in the log to troubleshoot the task execution.

To ensure that the logs are not too big, you can configure the interval at which the server generates
a thread dump.

Thread-Pool Monitoring Configuration Properties

You configure the thread-poolmonitoring properties for a realm in theThread Pool Config group
on the Config tab in the Enterprise Manager.

For information aboutworkingwithUniversalMessaging configuration properties in the Enterprise
Manager, see .

StalledTaskWarningTime
The time in milliseconds before reporting a stalled task. The system writes the information at
the WARNING log level and generates a thread dump. When you change this configuration,
the thread pool monitor interval is updated to monitor at the same time interval as the value
you specify for this property. Valid values range from 10000 to 60000. Default is 60000.

SlowTaskWarningTime
The time in milliseconds before reporting a slow-running task. The server logs the information
at theWARNING log level and generates a thread dump. Valid values range from 1000 to 30000.
Default is 5000.

PendingTaskWarningThreshold
The threshold at which the server starts to warn about the number of pending tasks. When the
number of pending tasks is below the threshold, but over 100, the server logs a WARNING
message. When the number is above the threshold, the server logs an ERROR message. When

Universal Messaging Administration Guide 10.3 609



the server does not find available threads, it logs a message that the thread pool is exhausted.
Valid values range from 100 to 100000. Default is 1000.

ThreadDumpOnSlowTask
Whether to generate a thread dump when the server reports a slow task. Valid values are true
- generate a thread dump, or false - do not generate a thread dump. Default is false.

ThreadDumpInterval
The interval inmilliseconds at which a thread dump is generatedwhen the system reports slow
or stalled tasks, or when the number of pending tasks exceeds the value of
PendingTaskWarningThreshold. The thread dump interval applies across all thread pools in
the JVM instance. Valid values range from 1000 to 600000. Default is 60000.

Examples

In the following example, the slow-moving task warning timeout is set to 1000ms and the server
is configured to generate a thread dump for a slow task. The task completed in 1060ms and the
server reports that the task execution time exceeds 1000ms and generates a thread dump. The
following entries will show in the log:
[Wed Feb 17 07:39:32.790 IST 2021] [ThreadPoolTest-Slow:9] ThreadPool:
<ThreadPool-SlowTasksTest> Slow moving task detected. ThreadPool-SlowTasksTest:9 has
been active
for over 1060(ms) running task class
com.pcbsys.foundation.threads.fThreadPoolTaskReportTest$TestTask, Idle Threads 7,
Allocated
Threads 10, Queued Tasks 0, Task Executed 10
[Wed Feb 17 07:39:32.790 IST 2021] [ThreadPoolTest-Slow:0] ThreadPool:
<ThreadPool-SlowTasksTest>
Slow moving task detected. ThreadPool-SlowTasksTest:0 has been active for over 1060(ms)
running
task class com.pcbsys.foundation.threads.fThreadPoolTaskReportTest$TestTask, Idle
Threads 7,
Allocated Threads 10, Queued Tasks 0, Task Executed 10

[Wed Feb 17 07:39:41.000 IST 2021] [ThreadPoolTest-Slow:7] ThreadPool:
<TThreadPool-SlowTasksTest> Slow moving task detected. ThreadPool-SlowTasksTest:7 has
been active
for over 1020(ms) running task class
com.pcbsys.foundation.threads.fThreadPoolTaskReportTest$TestTask, Idle Threads 7,
Allocated
Threads 10, Queued Tasks 0, Task Executed 10
[Wed Feb 17 07:39:41.000 IST 2021] [ThreadPoolTest-Slow:7] Producing thread dump.
Reason : Slow
moving task detected on thread pool: ThreadPool-SlowTasksTest

In the following example, the threshold for pending tasks is set to 200. Because the number of
pending tasks in the thread pool is 209, the server logs an error message and generates a thread
dump. The following entries will show in the log:
[Wed Feb 17 07:39:39.949 IST 2021] [Time-limited test] ThreadPool:
<ThreadPoolTest-Pending> Pending tasks are above the threshold 200 pending tasks 209,
Idle Threads
0, Allocated Threads 1, Queued Tasks 209, Task Executed 210
[Wed Feb 17 07:39:39.949 IST 2021] [Time-limited test] Producing thread dump. Reason
: Pending

610 Universal Messaging Administration Guide 10.3

8 Thread Pool Monitoring



tasks are above the threshold: 200 pending tasks: 209

Troubleshooting Task Execution

To correct or improve the task execution, you can take the following actions:

In the thread pool configuration, checkwhether you have allocated enough threads. If the logs
report a large number of queued tasks, allocate more threads to the pool.

Check for overall system slowdown, such as disk speed, network speed, CPU speed and
allocation, and JVM garbage collection.

Check for product behavior that might cause a slow performance.

Universal Messaging Administration Guide 10.3 611

8 Thread Pool Monitoring



612 Universal Messaging Administration Guide 10.3

8 Thread Pool Monitoring



9 Data Protection and Privacy

Introduction

Legislation in various parts of the world – such as the General Data Protection Regulation (GDPR)
of the EuropeanUnion (EU) - specifies that personal data cannot be collected andprocessedwithout
a person’s consent or other legitimate basis, and that organizations are responsible for protecting
personal data that is entrusted to them. The concept of “personal data” typically covers details
that can be used to identify a person, such as the person's name, email address or IP address.

Note:
In the different countries of the EU, the GDPRmay be known under another, language-specific
name. For example, it known as the Datenschutz-Grundverordnung (DSGVO) in Germany and
as Règlement Général sur la Protection des Données (RGPD) in France.

Universal Messaging includes personal data such as user names, and client IP addresses / host
names in the logs. Universal Messaging includes personal data in logs for purposes of auditing,
monitoring activity with the server, and diagnosing and correcting problems.

Universal Messaging is a middleware platform on which customers build their own applications.
Most of the data handled by Universal Messaging is arbitrary customer-defined data whose
meaning is defined by the customerwhodeveloped the application. Some of that customer-defined
data may qualify as “personal data”, so if you are developing applications on the Universal
Messaging platform, you should be careful to ensure compliance with laws related to that data.

If Software AG support personnel request you to send diagnostic data such as operational logs
for the purposes of diagnosing product issues, and if this diagnostic data contains personal data,
you should be aware that Software AG has GDPR processes in place to ensure that data is held
securely and deleted when no longer needed.

Summary of Log Files used by Universal Messaging

Universal Messaging uses the log files described in the following table. The log files can contain
personal data associatedwith a current activity, such as a user ID and client IP address. The length
of time that a Universal Messaging server stores log data depends on the log.

Universal Messaging Administration Guide 10.3 613



Log

The log file is named nirvana.log and resides in the
server/<RealmServerName>/data directory. The data remains there for as
long as the log file is retained.

standard server log file

When using the default Universal Messaging logger, the log file policy
is defined by the DefaultLogSize realm server property which defines
themaximumsize of the log file, and the RolledLogFileDepth realm server
property, which defines the number of log files to keep if log rolling is
activated.

The personal data can be removed by either manually removing lines
from the file, or deleting a log file altogether.

The audit log file is named NirvanaAudit.mem and resides in the
server/<RealmServerName>/data/RealmSpecific directory. The data
remains in the audit log file for as long as the file exists.

audit log file

There is no mechanism to partially remove data from this log file. The
onlyway to remove the personal data is by deleting the NirvanaAudit.mem
file.

Ad-hoc creation of data collections

In addition to standard operational data that is collected by Universal Messaging, some data can
be collected on an ad-hoc basis by the Universal Messaging administrator. Such ad-hoc data is
typically written to a location on your file system.

Examples are:

Realm Information Collector
The files collected by the Realm Information Collector tool can include files that may contain
personal data related to messages that are being handled by the server.

Exported Realm Configuration File
When you export a realm's configuration to an XML file for a later re-import, the XML file can
contain personal data, such as user IDs and client IPs related to ACL permissions for accessing
realm components.

Heap Dump
A heap dump (which Software AGmay request you to generate for the purpose of diagnosing
problems) may contain personal data related to messages that are being handled by the server,
or the server's log files.

Protecting and erasing data from log files

As there are many situations in which user names, IP addresses or events containing personal
data may be logged, including by customer-provided plug-ins and third-party libraries, it is not

614 Universal Messaging Administration Guide 10.3

9 Data Protection and Privacy



practical to enumerate all of the log messages that may contain such data, or the set of categories
they may be logged under.

Log files are formatted for reading by human system administrators (notmachines), so rectification
of data contained within them does not make sense, and erasure of data for individual persons is
not practical. The retention of complete information in log files also serves an important and
legitimate purpose, in providing a security audit trail, and the ability to diagnose and fix accidental
or unlawful events compromising the availability, integrity or confidentiality of the application
and personal data it contains.

For these reasons, the recommended approach to protecting personal data in log files is to regularly
rotate the logs (also termed log rolling) in cases where log rotation is activated, and archive the
old log files to a secured location protected by encryption.

Universal Messaging Administration Guide 10.3 615

9 Data Protection and Privacy



616 Universal Messaging Administration Guide 10.3

9 Data Protection and Privacy


	Table of Contents
	About this Documentation
	Online ​Information ​and ​Support
	Data ​Protection

	Overview
	2 Universal ​Messaging ​Enterprise ​Manager
	Introduction
	Starting ​the ​Enterprise ​Manager
	Tab-​by-​Tab ​Overview
	Administration ​Using ​Enterprise ​Manager
	Using ​the ​Enterprise ​Viewer

	3 Using ​Command ​Central ​to ​Manage ​Universal ​Messaging
	Managing Universal ​Messaging ​Using Command ​Central
	Securing ​Communication ​Between Command ​Central ​and Universal ​Messaging
	Securing ​Access ​to ​Command ​Central
	Instance ​Management
	Authentication ​Configuration
	Universal ​Messaging ​Configuration ​Types
	Universal ​Messaging ​Administration ​Types
	Snooping ​on ​Channels
	Snooping ​on ​Queues
	Publishing ​Events
	Universal ​Messaging ​Cloud ​Transformation
	Universal ​Messaging ​Logs
	Universal ​Messaging ​Inventory
	Universal ​Messaging ​Lifecycle ​Actions
	Universal ​Messaging ​KPIs
	Universal ​Messaging ​Run-​time ​Monitoring ​Statuses
	Universal ​Messaging ​and ​the ​Command ​Line ​Interface

	4 Comparison ​of ​Enterprise ​Manager ​and ​Command ​Central ​Features
	5 Setting ​up ​Active/​Passive ​Clustering ​with ​Shared ​Storage
	About ​Active/​Passive ​Clustering
	Overview ​of ​Active/​Passive ​Clustering ​on ​Windows
	Overview ​of ​Active/​Passive ​Clustering ​on ​UNIX
	Configuring ​a Universal ​Messaging ​Active/​Passive ​Cluster ​on ​UNIX

	6 Command ​Line ​Administration ​Tools
	Introduction ​to ​the ​Administration ​Tools
	Starting ​the ​Tools ​using ​the ​Tools ​Runner ​Application
	Performing ​Standard ​Administration ​Tasks ​on ​Realms ​and ​Clusters
	Running ​a ​Configuration ​Health ​Check
	The ​"Realm ​Information ​Collector" ​Diagnostic ​Tool
	The ​ExportEventsFromOfflineMemFile ​Tool
	The ​RepublishEventsFromOfflineFile ​Tool
	Syntax ​reference ​for ​command ​line ​tools

	7 Universal ​Messaging ​Administration ​API
	Introduction
	Administration ​API ​Package ​Documentation
	Namespace ​Objects
	Realm ​Server ​Management
	Security
	Management ​Information

	8 Thread ​Pool ​Monitoring
	9 Data ​Protection ​and ​Privacy

