
Natural for Ajax

Java Pages Development

Version 9.3.2

February 2025

This document applies to Natural for Ajax Version 9.3.2 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2009-2025 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or registered trademarks of Software GmbH
and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned herein may be
trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its subsidiaries is located at
https://softwareag.com/licenses.

Use of this software is subject to adherence to Software GmbH's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the LegalNotices available under "License Terms andConditions forUse of SoftwareGmbH
Products / Copyright and Trademark Notices of Software GmbH Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software GmbH.

Document ID: AT-NJX-DEVELOPMENT-JAVA-932-20250213

Table of Contents

Java Pages Development .. vii
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

I Binding between Page and Adapter .. 5
2 Phases of Adapter Processing ... 7

SET/INVOKE/GET Phase - The Default Phases ... 8
INIT Phase when Adapter is Constructed ... 9
DESTROY Phase when Adapter is Deregistered ... 10

3 Class Binding ... 11
Direct Class Binding ... 12
Generic Class Binding .. 13

4 Types of Property Binding ... 15
5 Java Bean Property Binding .. 17

Class Binding .. 18
Method Binding ... 18
Property Binding .. 19
Access Path Restrictions ... 22

6 Dynamic Access Property Binding .. 25
Interface IDynamicAccess .. 26
Example .. 26

7 XML Property Binding .. 31
8 Getting Information about Access Paths ... 33
9 Exception Management Inside an Adapter Object ... 37

Normal Exceptions are to be Handled by the Application 38
Errors and Runtime Exceptions - The Default Behavior 39
Interrupting the Application Designer Request Processing -
AdapterNotAvailableError .. 40
Errors and Runtime Exceptions - The Special Behavior 41

10 Additional Interfaces ... 43
Extending the Set of Simple Data Types .. 44
Avoid the Getting of Certain Simple Data Type Properties 45
Exchanging Objects by Converter Objects ... 46

II Details on Session Management ... 47
11 HTTP Sessions - Application Designer Sessions ... 49
12 Application Designer Session - Application Designer Subsessions 51
13 Application Designer Subsession - Application Designer Adapter Objects 53
14 How Things Start ... 55

Starting an Application Designer Session .. 56
Starting Additional Application Designer Subsessions 56

15 How Things End .. 59
End of an Application Designer Session .. 60

iii

End of an Application Designer Subsession .. 60
End of an Application Designer Adapter .. 60

16 Workplace Management .. 61
17 Saving Context Data .. 63

Different Levels of Context .. 64
Accessing the Context .. 64
Typical Usage Scenarios ... 65

18 Session IDs ... 67
III Becoming a Member of the Startup Process .. 69

19 Overview ... 71
20 Startup Class .. 73
21 Registration .. 75

IV Adapting the Look & Feel ... 77
22 Introduction ... 79
23 Style Sheet File ... 81
24 Writing a New Style Sheet File .. 83
25 Selecting the Right Style Sheet .. 85
26 Dynamic Selection of the Style Sheet File .. 87

What You Can Do ... 88
Example .. 88

27 Static Selection of the Style Sheet File .. 91
V Multi-Language Management in Java Applications .. 93

28 Multi-Language Management in Java Applications ... 95
Defining the Language at Runtime .. 96
Dealing with Literals inside Your Adapter .. 96

VI Online Help Management ... 99
29 Basics .. 101

Supported Controls .. 102
Way from Control to Online Help Page ... 102
Content of HTML Page .. 104
Where to Put the HTML Help Files ... 105
HELPICON Properties ... 105

30 Customizing the Online Help Pop-up ... 109
Creating a Project-Specific Pop-up ... 111
Runtime Behavior ... 111

31 Other URL Rules? .. 113
32 Other Types of F1-Online Help? .. 115

VII Appendices ... 117
33 Appendix A - Call Sequence for Adapter .. 119

Normal Call Sequence .. 120
Call Sequence when a Subsession is Destroyed ... 121
Call Sequence when a Session is Destroyed ... 122
Error/ Runtime Exceptions ... 122
Pay Attention when Overwriting ... 122

34 Appendix B - Usage of Methods Inherited from the Adapter Class 123

Java Pages Developmentiv

Java Pages Development

Access to Lookup Session Context ... 124
Access to Application Designer Session Context ... 125
Access to other Adapters .. 125
Error Output ... 125
Page Navigation ... 126
Opening of Pop-up Dialogs .. 126
Frame Communication ... 126
Closing of a Page .. 127
Multi Language Management .. 127

35 Appendix C - Data Types to be Used by Adapter Properties 129
Supported Data Types .. 130
Data Types for Managing Date and Time .. 130

36 Appendix D - Class Loader Concepts ... 131
Design Time - Runtime .. 132
Class Loader Hierarchy .. 132
Preparing for Runtime ... 135

37 Appendix E - StartCISPage Servlet .. 137
Normal Calling of a Page ... 138
Appending Application Parameters .. 138
Controlling the Session Life Cycle ... 138
Controlling the Session ID .. 139
Setting Default Parameters ... 139
Mixing Parameters ... 140
Setting Parameters with the HTTP Method POST ... 140

vJava Pages Development

Java Pages Development

vi

Java Pages Development

Transferring data between the page which runs inside the
browser and the adapter object

Binding between Page and Adapter

In-depth details about session management.Details on Session Management

Initialise an initialise this application, for example, by setting
up somedatabase connectionapplication, for example, by setting
up a database connection

Becoming a Member of the Startup
Process

How tomodify the default renderingwith the help of style sheetsAdapting the Look & Feel

Java-specific customizations of multi-language managementMulti-Language Management in Java
Applications

Additional Java-specific concepts, strategies, and approachesAppendices

vii

viii

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

Product Training

You can find helpful product training material on our Learning Portal at https://learn.software-
ag.com.

Tech Community

You can collaborate with Software GmbH experts on our Tech Communitywebsite at https://tech-
community.softwareag.com. From here you can, for example:

Java Pages Development2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://learn.softwareag.com/
https://learn.softwareag.com/
https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software GmbH news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://containers.softwareag.com/products and discover additional Software GmbH resources.

Product Support

Support for Software GmbH products is provided to licensed customers via our Empower Portal
athttps://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareGmbHproducts provide functionalitywith respect to processing of personal data accord-
ing to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps
are documented in the respective administration documentation.

3Java Pages Development

About this Documentation

https://github.com/softwareag/
https://containers.softwareag.com/products/
https://containers.softwareag.com/products/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

I Binding between Page and Adapter

One of the basic concepts of the Application Designer environment is to provide a simple mech-
anism for transferring data between the pagewhich runs inside the browser and the adapter object
which runs inside Application Designer. The page renders content, while the adapter provides
content.

Between the page and the adapter, there is a binding which is defined during development time:

■ A page is bound to an adapter class by the PAGE tag.
■ Controls are bound to properties and methods of the adapter class.

At runtime, this binding definition is used inside Application Designer for accessing the adapter
objects to pull and push data.

The information provided in this part is organized under the following headings:

Phases of Adapter Processing

Class Binding

Types of Property Binding

Java Bean Property Binding

Dynamic Access Property Binding

XML Property Binding

Getting Information about Access Paths

Exception Management Inside an Adapter Object

Additional Interfaces

5

6

2 Phases of Adapter Processing

■ SET/INVOKE/GET Phase - The Default Phases .. 8
■ INIT Phase when Adapter is Constructed ... 9
■ DESTROY Phase when Adapter is Deregistered ... 10

7

SET/INVOKE/GET Phase - The Default Phases

An adapter object is the logical representation of a page. The page runs inside the GUI client, the
adapter runs inside the Java server.

The user changes information on the page (e.g. inputs some values into field controls) and operates
some functions (e.g. chooses a button). Every time a function is invoked, a request is initiated from
the client. The request contains all data thatwas changed on the client, and it contains the command
(e.g. the method to be called; sometimes there is no explicit command but the request just is a
“data transfer request”, e.g. when having defined FLUSH="server"with a FIELD control).

The request is processed in three phases:

■ (activate)
■ SET phase
■ INVOKE phase
■ GET phase
■ (passivate)

During the SET phase, Application Designer passes all changed property values into the property
representations of the server side adapter object. In the following INVOKE phase, the method is
called that is associated with the request. In the GET phase, Application Designer checks all
property values if they have changed. If a change happened (i.e. during the INVOKE phase, some
property valueswere changed), then the changes are communicated back as response to the client.

The SET and GET phases have dedicated methods which are called inside the adapter in order to
signalize the start and end of the phases:

■ SET phase:

reactOnDataTransferStart();
set...();
set...();
set...();
reactOnDataTransferEnd();

■ GET phase:

Java Pages Development8

Phases of Adapter Processing

reactOnDataCollectionStart();
get...();
get...();
get...();
reactOnDataCollectionEnd();

You can use the methods for diverse purposes:

■ reactOnDataTransferStart()
You may want to initialize certain internal data that needs to be initialized for each request
processing.

■ reactOnDataTransferEnd()
You may want to check which properties actually have changed and which application checks
have to be invoked.

■ reactOnDataCollectionStart()
You may want to build up some interim objects for complex data structures that allow a faster
response for the following get calls.

■ reactOnDataCollectionEnd()
You may want to set certain data to initial values - in case they were changed during request
processing.

INIT Phase when Adapter is Constructed

The INIT phase is processed only once per adapter instance - at the point of time when it is con-
structed.

The INIT phase is internally processed in two steps:

■ Creation of the adapter object via the new operator (without any parameters).
■ init()

Application Designer first creates an instance of an adapter object and then calls the init()
method of the object.

Important: Many functions inside your adapter class (extended fromApplication Designer's
Adapter class) are only available after having constructed the object. Application Designer
first creates the instance of the object and then internally registers the object inside its internal
data structures (session management, etc.). The init()method is called after the internal
registration. All functions that require the adapter object to be correctly registered will fail
when being called inside the constructor, but will not fail if called in the init()method.

Best practice: use the init()method as constructor for an adapter object.

9Java Pages Development

Phases of Adapter Processing

DESTROY Phase when Adapter is Deregistered

The DESTROY phase is processed only once per adapter instance - when Application Designer
has internally deregistered the adapter instance:

The DESTROY phase consists of one method that is called inside the adapter:

■ destroy()

Application Designer's sessionmanagement deregisters all adapters when a subsession or session
is closed. All associated adapters are internally deregistered so that they are available for garbage
collection. In addition, each instance receives a destroy signal so that it can internally pass back
resources that it used.

Java Pages Development10

Phases of Adapter Processing

3 Class Binding

■ Direct Class Binding ... 12
■ Generic Class Binding .. 13

11

For each page, there must be one adapter class. The name of the adapter class is given inside the
PAGE tag of a page by the corresponding model property. Several page definitions can point to
one adapter class, for example, when you have several page variants to display the same logical
content.

The Application Designer runtime can create an adapter instance of a page in two ways:

1. Direct Class Binding
The Application Designer runtime directly tries to create an adapter instance from the name in
the model property of the PAGE tag of the page.

2. Generic Class Binding
If the direct class binding does not succeed, the Application Designer runtime tries to create a
generic adapter instance that has to be made accessible by the application.

Option 1 is the typical one. Option 2 is a solution if you require an adapter to be used very gener-
ically inside your framework.

Direct Class Binding

The following page definition forces the Application Designer runtime to look for a Test1Adapter
class inside the package com.softwareag.cis.test:

<page model="com.softwareag.cis.test.Test1Adapter">
...
...
...

</page>

The class itself is derived typically from the class com.softwareag.cis.server.Adapter:

package com.softwareag.cis.test;

import com.softwareag.cis.server.Adapter;

public class Test1Adapter extends Adapter
{

// --
// constructor - without parameters
// --

public Test1Adapter()
{
}

// --
// public access

Java Pages Development12

Class Binding

// --

/** The init message is called when an object is created and all
* runtime aspects are correctly set inside the adapter. */
public void init()
{

...

...
}

}

The default constructor is required (without any parameters).

Generic Class Binding

If the runtime does not find the class, it tries to find a generic one. The name of the generic class
is created in the following way:

■ The package name is taken from the model property of the PAGE tag of your page definition.
■ The class name is "GenericAdapter".

Example: if you bind a page to the class com.softwareag.cis.test.Test2Adapter and the runtime
system cannot locate the class Test2Adapter, the system tries to load the class GenericAdapter in
the same package as the class that could not be found:

<page model="com.softwareag.cis.test.Test2Adapter">
...
...
...

</page>

The generic adapter is just a normal adapter which typically supports the dynamic binding of
properties (see below).

package com.softwareag.cis.test;

import com.softwareag.cis.server.Adapter;

public class GenericAdapter extends Adapter
{

/** */
public void init()
{

System.out.println("My original class name is " + this.m_modelName);
}

}

13Java Pages Development

Class Binding

Each adapter object can access the m_modelNamemember. This member is set after the initialisation
of the object. It holds the original adapter name to which the page refers.

Java Pages Development14

Class Binding

4 Types of Property Binding

There are different types of binding techniques that are provided:

■ Java Bean binding - the adapter provides set/get methods.
■ Dynamic access binding - the adapter provides the implementation of a generic interface to
access its data.

■ XML access binding - the property values are kept within XML files, together with the page
layout.

15

16

5 Java Bean Property Binding

■ Class Binding ... 18
■ Method Binding ... 18
■ Property Binding ... 19
■ Access Path Restrictions .. 22

17

Class Binding

The page binding is defined in the PAGE tag of your page definition. The PAGE tag points to a
class supporting the interface com.softwareag.cis.server.IModel. There is a class
com.softwareag.cis.server.Adapterwhich implements this interface - which should be used
to build adapter classes as subclasses of Adapter.

Example:

<page model="com.softwareag.cis.demo.DemoAdapter" ...>
...
...
...

</page>

The above definition points to a class which looks as follows:

package com.softwareag.cis.demo;

import com.softwareag.cis.server.*;

public class DemoAdapter
extends Adapter

{
// constructor - either no constructor or a constructor
// without any parameters
public DemoAdapter()
{
}
...
...

}

Note that the adapter class has at least a default constructor (without any parameters).

Method Binding

Controls triggering a method inside the adapter are bound to a method name of the adapter. The
method implementation itself must be a method without any parameters.

Example:

Java Pages Development18

Java Bean Property Binding

<button name="Save" method="doSave" ...>
</button>

The above button definition points to a method inside the adapter class which looks as follows:

public void doSave()
{

...

...
}

Property Binding

Controls presenting or manipulating data of the adapter are bound to properties of the adapter.
There is a flexible concept available that makes it possible for you to use the following:

■ Simple Properties which are Provided Directly by the Adapter
■ Simple Properties which are Provided by Embedded Objects of the Adapter
■ Array Properties which are Provided Directly by the Adapter
■ Array Properties which are Provided by Embedded Objects of the Adapter

Simple Properties which are Provided Directly by the Adapter

This is the easiest way of binding: the property name which you specify in the definition of the
control is provided directly by the adapter object - by a corresponding set and get method. It de-
pends on the control whether you have to provide both set and get methods or just one of them.

Following the Java Bean conventions, the first character of the property name is written as a cap-
ital letter inside the corresponding set or get method.

The get method must return a value which is either a simple data type or a “simple” object. A list
of supported return values is shown inAppendix C -Data Types to beUsed byAdapter Properties.
The set methodmust offer one parameter to update its value at runtime. The parameter typemust
either be a simple data type or one of the classes that are listed in appendix C.

Example:

<field valueprop="name" ...></field>
<field valueprop="age" ...></field>
<field valueprop="weight" ...></field>
<field valueprop="birthday" ...></field>

The above field definitions are bound to the following set/get methods:

19Java Pages Development

Java Bean Property Binding

public void setName(String value) { ... }
public String getName() { ... }

public void setAge(int value) { ... }
public String getAge() { ... }

public void setWeight(float value) { ... }
public float getWeight() { ... }

public void setBirthday(Cdate value) { ... }
public Cdate getBirthday() { ... }

The correct property name starts with a lowercase letter, because the first letter is always converted
to lowercase. Example:

<field valueprop="cAPITAL" ...></field>

The above field definition.is bound to the following set/get method:

public void setCAPITAL(String value) { ... }
public String getCAPITAL() { ... }

Simple Properties which are Provided by Embedded Objects of the Adapter

Properties can also be provided by an embedded object of the adapter. The embedded object itself
must be accessible by a corresponding get method.

Example:

<field valueprop="address.street"></field>

The above field definition points to a value which is provided in the following way:

public class XYZAdapter
extends com.softwareag.cis.server.Adapter

{
// access in the adapter to the address object
public Address getAddress() { ... }

}

public class Address
{

public String getStreet() { ... }
public void setStreet(String value) { ... }

}

You can build any chaining of properties you desire.

Java Pages Development20

Java Bean Property Binding

As shown in the example, embedded objects need not be adapter objects. Only the root object is
required to be an adapter.

Array Properties which are Provided Directly by the Adapter

You can use array properties and can access them directly within your binding definitions. An
array property always returns an array of objects, each object providing either simple properties
or array properties. The type of the object array is not relevant for theApplicationDesigner runtime.
If you just return "Object[]" as a result of the method, this is sufficient.

Example:

<field valueprop="addresses[0].street" ...></field>

The above field definition points to a property which is implemented in the following way:

public class XYZAdapter
extends com.softwareag.cis.server.Adapter

{
// access in the adapter to the address object
public Address[] getAddresses() { ... }

}

public class Address
{

public String getStreet() { ... }
public void setStreet(String value) { ... }

}

Note that the name used inside the control definition for binding (addresses[0].street in the
our example) can either be entered manually or is implicitly created by some controls. Example:
in a TEXTGRID control, specify an array property for the entire control and a simple property inside
the COLUMN definition:

<textgrid arrayprop="addresses" ...>
<column property="street" ...></column>
<column property="city" ...></column>

</textgrid>

The TEXTGRID control itself uses these definitions to ask for the properties addresses[0].street,
addresses[0].city, addresses[1].street, addresses[1].city etc. at runtime.

Note that it is not possible to access an array of simple objects directly. It is not possible to define
a field in the following way

21Java Pages Development

Java Bean Property Binding

<field valueprop="streets[0]"></field>

having a method:

public String[] getStreets() { ... }

You always have to go through an array of objects where each element itself provides access to
simple properties.

Array Properties which are Provided by Embedded Objects of the Adapter

You can use any combination of Simple Properties which are Provided by EmbeddedObjects of the Adapter
and Array Properties which are Provided Directly by the Adapter.

Example: define access to array properties in the following way:

<field valueprop="person.addresses[0].street" ...></field>

<textgrid arrayprop="person.addresses" ...>
<column property="street" ...></column>
<column property="city" ...></column>

</textgrid>

Access Path Restrictions

At runtime, Application Designer transfers the data from the adapter to the client. For accessing
the data, it uses the following strategy:

■ It asks the adapter object for all properties. This means, it calls all get methods that are defined
as public methods.

■ If the get method returns a simple value, is marked to be transferred. (Whether it is really
transferred, depends also on the delta management between the client and the server.)

■ If the get method returns an object (e.g. an address object as used in the previous sections) or
an array of objects, these objects are used for further drill down.

This mechanism is flexible on the one side, but dangerous on the other side: the Application De-
signer runtime will load all objects by following up the get methods.

Consequently, there is a certain access path restriction inside theApplicationDesigner environment:
if you generate a page (either by the Layout Painter or by the logical interfaces to the HTML gen-
erator) an access path restriction file is generated in addition. The HTML generator parses all tags
of a page; the controls themselves are bound to properties. This information is collected and
written to a file.

Java Pages Development22

Java Bean Property Binding

This file is stored in the directory /accesspath below the project directory. Please have a look at the
files generated implicitly with your pages: the file contains a list of all access paths that are valid
to be followed by runtime.

The name of the access path file is the same as the name of the page, but has the extension .access.
Be aware of the fact that this access path file is inevitably important to avoid “mass loading” of
data. Therefore, it must be a part of your software deployment.

23Java Pages Development

Java Bean Property Binding

24

6 Dynamic Access Property Binding

■ Interface IDynamicAccess ... 26
■ Example .. 26

25

Dynamic access binding is an additional binding technique that can be used together with Java
Bean binding as described in the previous section. Dynamic access binding does not require an
explicit definition of a set/get method for each property but is able to access the properties by
generic data access functions.

Adapter objects, aswell as embedded objects that are accessed inside the access path,may optionally
support the interface IDynamicAccess. In this interface, you declare that there are additional
properties to be accessed by generic access methods.

Interface IDynamicAccess

The interface definition looks as follows:

public interface IDynamicAccess
{

public String[] findDynamicAccessProperties();
public Class getClassForProperty(String property);
public void setPropertyValue(String propertyName, Object value);
public Object getPropertyValue(String propertyName);
public void invokeMethod(String methodName);

}

It informs which dynamic properties are supported. In addition, you have to specify which class
of a property it is. You can use any of the classes that are listed in Appendix C - Data Types to be
Used by Adapter Properties for simple-value properties - and any class you desire for embedded
object properties that you follow inside your access path. If you return a null value as a result of
the getClassForProperty()method, the runtime returns the value as a String object.

Besides, you have to implement the generic set and get functions for property access.

There is a generic method invoked, e.g. when the user chooses a button in the page bound to a
dynamically called method.

Example

The following example shows an adapter object that has twoBean properties (firstName, lastName)
and three dynamic properties (street, city, birthday):

Java Pages Development26

Dynamic Access Property Binding

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IDynamicAccess;
import com.softwareag.cis.util.CDate;

public class DynamicAccess_Adapter
extends Adapter
implements IDynamicAccess

{
String m_firstName;
String m_lastName;
String m_street;
String m_city;
CDate m_birthday;

public String[] findDynamicAccessProperties()
{

return new String[] {"street","city","birthday"};
}

public void setPropertyValue(String propertyName, Object value)
{

if (propertyName.equals("street")) m_street = (String)value;
else if (propertyName.equals("city")) m_city = (String)value;
else if (propertyName.equals("birthday")) m_birthday = (CDate)value;
else throw new Error("No property " + propertyName + " available");

}

public Object getPropertyValue(String propertyName)
{

if (propertyName.equals("street")) return m_street;
if (propertyName.equals("city")) return m_city;
if (propertyName.equals("birthday")) return m_birthday;
throw new Error("No property " + propertyName + " available");

}

public Class getClassForProperty(String propertyName)
{

if (propertyName.equals("birthday")) return CDate.class;
// default: null ==> String is assumed by runtime
return null;

}

public void invokeMethod(String methodName) {}

// --
// bean properties
// --
public void setFirstName(String value) { m_firstName = value; }
public String getFirstName() { return m_firstName; }
public void setLastName(String value) { m_lastName = value; }

27Java Pages Development

Dynamic Access Property Binding

public String getLastName() { return m_lastName; }
}

Specifying a layout definition, there is no difference between the dynamic access properties and
the bean properties.

The layout definition for the above page looks as follows:

<page model="DynamicAccess_Adapter">
<titlebar name="Dynamic Access">
</titlebar>
<header withdistance="false">

<button name="Save">
</button>

</header>
<pagebody>

<rowarea name="Address Data">
<itr>

<label name="First Name" width="100">
</label>
<field valueprop="firstName" length="20">
</field>

</itr>
<itr>

<label name="Last Name" width="100">
</label>
<field valueprop="lastName" length="20">
</field>

</itr>
<itr>

<label name="Street" width="100">
</label>

Java Pages Development28

Dynamic Access Property Binding

<field valueprop="street" length="20">
</field>

</itr>
<itr>

<label name="City" width="100">
</label>
<field valueprop="city" length="20">
</field>

</itr>
<itr>

<label name="Birthday" width="100">
</label>
<field valueprop="birthday" length="20" datatype="date">
</field>

</itr>
</rowarea>

</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

29Java Pages Development

Dynamic Access Property Binding

30

7 XML Property Binding

Use XML property binding with the following:

■ ICONLIST control,
■ MENU control,
■ ROWTABSUBPAGES control, or
■ for any simple property.

XML property binding uses XML files to access property values. Use the prefix "XML:" to indicate
XML property binding.

<itr visibleprop="XML:isHomeAddressVisible">
...

</itr>

You see that the visibility of the row container is controlled by the XML property
isHomeAddressVisible. An XML property is bound to a property tag (name-value pair).

<property name="isHomeAddressVisible" value="true">
</property>

The overall page layout is bound to an XML data file that contains all the property tags.

<xmlproperties>
<property name="isHomeAddressVisible" value="true">
</property>
<property name="isBusinessAddressVisible" value="false">
</property>

</xmlproperties>

The XML data file contains two property tags. With the first property, isHomeAddressVisible is
set to "true"; with the second property, isBusinessAddressVisible is set to "false". At runtime,

31

you can switch between XML data files by changing the “XML data mode”. Just use the following
method in order to use the correct XML data file method:

Adapter.setXMLDataMode

Thefiles are keptwithin directory <webapp>/<project>/xmldata. EachXMLdatamode is represented
by a subdirectory. By default, the Application Designer server accesses the XML files within the
directory default.

cis
project

xmldata
default

PersonInfoAdapter.xml
fullinfo

PersonInfoAdapter.xml

Java Pages Development32

XML Property Binding

8 Getting Information about Access Paths

Sometimes you need to get detailed information about a page accessing its adapter. Or, in other
words: you want to get a detailed list of all the properties and objects which are referenced by
your page definition to the corresponding adapter object.

For this reason, there is the class CheckAccessPath in the com.softwareag.cis.server package
providing this information. The class has a getInstance()method to obtain an instance; the class
has two additional methods:

public String[] findAccessedObjects(String application,
String reference);

public String[] findAccessedProperties(String application,
String reference);

In both methods, the parameters are "application" and "reference". "application" is the application
project in which a page is defined. "reference" is the name of the page itself, without ".xml".

The findAccessedObjectsmethod returns a String array of all objects referenced in this page. An
object is referenced if the properties are not directly plugged to the adapter itself but to subobjects.
Example: if you bind a FIELD to the VALUEPROP "address.street" then "address" is the returned
name.

The findAccessedPropertiesmethod returns a String array of all properties referenced in the
page which are not complex properties, but simple value properties.

In the cisdemos project (which is part of the installation), there is a page "ShowAccessPaths" and
the corresponding class ShowAccessPathsAdapter that shows an example of how to use the
CheckAccessPathmethods. The page allows you to enter the application name and the page name,
and returns a list of referenced objects and properties:

33

In the class definition of the corresponding adapter, the code (finding the information about access
paths) looks as follows:

// --
// inner classes
// --
 public class Info
{
 // property >objects[*].name<
 // property >properties[*].name<
 String m_name;
 public String getName() { return m_name; }
 public void setName(String value) { m_name = value; }
}

// --
// property access
// --

// property >app<
String m_app = "";
public String getApp() { return m_app; }
public void setApp(String value) { m_app = value; }

// property >page<

Java Pages Development34

Getting Information about Access Paths

String m_page = "";
public String getPage() { return m_page; }
public void setPage(String value) { m_page = value; }

// array property >objects[*]<
TEXTGRIDCollection m_objects = new TEXTGRIDCollection();
public TEXTGRIDCollection getObjects() { return m_objects; }

// array property >properties[*]<
TEXTGRIDCollection m_properties = new TEXTGRIDCollection();
public TEXTGRIDCollection getProperties() { return m_properties; }

// --
// public usage
// --

/** */
public void onShowAccessPath()
{
 // check
 if (m_app.trim().length() == 0)
 {
 outputMessage(MT_ERROR,"Please specify application project");
 return;
 }
 if (m_page.trim().length() == 0)
 {
 outputMessage(MT_ERROR,"Please specify page");
 return;
 }
 // fill data
 m_properties.clear();
 m_objects.clear();
 String[] objects = ↩
CheckAccessPath.getInstance().findAccessedObjects(m_app,m_page);
 String[] properties = ↩
CheckAccessPath.getInstance().findAccessedProperties(m_app,m_page);
 for (int i=0; i<objects.length; i++)
 {
 Info info = new Info();
 info.m_name = objects[i];
 m_objects.add(info);
 }
 for (int i=0; i<properties.length; i++)
 {
 Info info = new Info();
 info.m_name = properties[i];
 m_properties.add(info);
 }
 }
}

35Java Pages Development

Getting Information about Access Paths

36

9 Exception Management Inside an Adapter Object

■ Normal Exceptions are to be Handled by the Application ... 38
■ Errors and Runtime Exceptions - The Default Behavior ... 39
■ Interrupting the Application Designer Request Processing - AdapterNotAvailableError 40
■ Errors and Runtime Exceptions - The Special Behavior ... 41

37

Application Designer binds its page processing to adapter objects providing properties and
methods - as explained in the previous sections. What happens if an error happens at runtime,
e.g. an error occurs in themethod of an adapter object that is called after the user pressed a button?

Normal Exceptions are to be Handled by the Application

The first rule is: normal exceptions (i.e. no “Errors”, no “Runtime Exceptions”) are to be handled
by the application itself.

This means: a property is provided by the corresponding set/get methods (or by an equivalent
method when using dynamic binding). The methods must not throw any exception, i.e. in their
declarations there is no "throws" element.

Example for a correct implementation:

public void setFirstName(String value)
{

...

...
}
public String getFirstName()
{

...

...
}

The following example is an incorrect implementation because application exceptions are thrown:

public void setFirstName(String value)
throws ApplException

{
...
...

}
public String getFirstName()

throws ApplException
{

...

...
}

Consequence: Application Designer passes values from the browser front end into the adapter
object, invokes certain activities inside this object and collects data from the object to pass data
changes back to the browser. Application exceptions are not relevant fromApplication Designer's
point of view - they only affect the application internally.

Java Pages Development38

Exception Management Inside an Adapter Object

Errors and Runtime Exceptions - The Default Behavior

Of course your application still can throw “Error” exceptions or “Runtime” exceptions. These are
the exceptions that need not be declared inside a method's code - but that can be thrown any time
at any place.

If Application Designer receives an error or runtime exception, Application Designer displays a
page by default in which the error information is shown.

In addition, Application Designer writes a full stack dump into its runtime log.

39Java Pages Development

Exception Management Inside an Adapter Object

Interrupting the Application Designer Request Processing - AdapterNotAvail-
ableError

Theremay be some situations - within a special environment context - that do not allow to process
the page at all. Maybe you have a page that requires a user to be logged on; if the Application
Designer request processing starts now, you may decide with the method
reactOnDataCollectionStart that you do not want to start the request since it does not make
sense at all and just causes exceptions.

The only thing you want to do in such a scenario is to “escape” to a page which helps out of the
situation. For example, if youmiss logon information, youwant to “escape” to the logon page and
return to your original page afterwards.

The Java error class AdapterNotAvailableError is provided for this reason. The following adapter
code shows an example on how to handle this error:

package com.softwareag.cis.demoapps;

...

...

public class Rescue1Adapter
extends Adapter

{
...
...
/** start of data transfer */
public void reactOnDataTransferStart()
{

super.reactOnDataTransferStart();
// fetch user and sytem info from session context
m_user = (String)findSessionContext().lookup("rescueexample/user",false);

m_system = (String)findSessionContext().lookup("rescueexample/system",false);
// if not logged on ==> switch to rescue2 page
if (m_user == null ||

m_system == null)
{

// prepare Rescue2 page
Rescue2Adapter r2a = (Rescue2Adapter)findAdapter(Rescue2Adapter.class);
r2a.init("Rescue1.html");
// throw error in order to interrupt normal processing and switch
// to Rescue2 page
throw new AdapterNotAvailableError("Rescue2.html");

}
}
...

Java Pages Development40

Exception Management Inside an Adapter Object

...
}

Inside the reactOnDataTransferStartmethod, a user and a system variable are read from the
session context. If one of them is null, the adapter decides to switch to page Rescue2.html and
throws an AdapterNotAvailableError error. Before, it pre-fetches the page adapter of the page
to escape to and initializes the page with certain information (in this example, it passes its own
page name).

The error page is opened inside the same subsession as the one throwing the error.

Errors and Runtime Exceptions - The Special Behavior

There is a set of methods available in the adapter with which you can influence the standard error
behavior:

■ handleErrorDuringInitPhase()

■ handleErrorDuringSetPhase()

■ handleErrorDuringInvokePhase()

■ handleErrorDuringGetPhase()

Depending on the method you have the following possibilities:

■ handleErrorDuringInitPhase()
This method is called when an error occurs in the initmethod of the adapter.

■ handleErrorDuringSetPhase() andhandleErrorDuringGetPhase()
These methods are called when an error occurs during the set and the get phase of the adapter
request processing.

You may throw an AdapterNotAvailableError to navigate to a page of your own in order to
present to the user detailed error information - and maybe also some way to solve the error.

■ handleErrorDuringInvokePhase()
This method is called when an error occurs during the invoke phase of the adapter request
processing.

You can decide whether normal Application Designer runtime processing continues, whether
you want to navigate to an error handling page (via PageNotAvailableError), or whether the
standard error processing of Application Designer is done.

See the API documentation (Java Doc) for further details.

41Java Pages Development

Exception Management Inside an Adapter Object

42

10 Additional Interfaces

■ Extending the Set of Simple Data Types .. 44
■ Avoid the Getting of Certain Simple Data Type Properties .. 45
■ Exchanging Objects by Converter Objects .. 46

43

Some additional interfaces are available which allow you tomodify the binding behavior between
a page and its adapter object. The interfaces are available via
com.softwareag.cis.server.IInteractionSessionMgrwhich represents a general interface to
the Application Designer runtime.

You receive an instance of IInteractionSessionMgt in the following way:

...

...
IInteractionSessionMgr iism = InteractionSessionMgrFactory.getInteractionSessionMgr();
...
... ↩

Extending the Set of Simple Data Types

As described previously in this part, Application Designer collects all the properties of an adapter
object (and its contained objects) when collecting the data in order to respond to the browser client.

The way Application Designer collects the data for a certain object is:

■ ApplicationDesigner collects all the properties that represent simple data types (int, float, String,
BigDecimal, CDate, etc.; see Appendix C - Data Types to be Used by Adapter Properties).

■ Application Designer investigates all properties that are non-simple datatypes and that are part
of the access path of a certain page.

Somtimes you want to add a certain class to be managed as “Simple Datatype Class”, i.e. Applic-
ationDesignerwill not treat objects of this class as non-simple objects but will treat them as simple
objects.

Simple objects have to provide a class implementation that

■ provides a constructor in which the value is passed as a string object, and
■ provides a toString()method to get the String representation of the contained value.

Example of a valid class:

public class ExtendedString
{

String m_value;
public ExtendedString(String value)
{

m_value = value;

}
public String toString()
{

Java Pages Development44

Additional Interfaces

return m_value;
}
...
...

}

The class is registered by using the method IInteractionSessionMgr.
registerPropertyAccessSimpleDatatypeExtension():

IInteractionSessionMgr iism;
iism = InteractionSessionMgrFactory.getInteractionSessionMgr();
iism.registerPropertyAccessSimpleDatatypeExtension(ExtendedString.class);

Nowhaving an adapter object (or follow-on object such as grid item) providing a property of type
ExtendedString, Application Designer will not drill down the object but will use the object's
toString()method to get its value and will use the object's constructor to pass new values to the
application.

Avoid the Getting of Certain Simple Data Type Properties

In the previous sections, the general rule was explained: if Application Designer investigates an
object during the get-data phase, then

■ it takes all simple data type properties, and
■ it takes those complex data type properties that are required by the corresponding page.

There is one possibility to fine-control the getting of simple data type properties: Every object that
is investigated byApplicationDesigner during the get phase (e.g. the adapter object) can implement
the interface com.softwareag.cis.server.IControlPropertyAccess. The interface is defined as
follows:

public interface IControlPropertyAccess
{

public String[] findPropertiesNotToBeCollected();
}

When the interface is implemented, the get methods that are passed back by the
findPropertiesNotToBeCollected()method are not processed.

Note that the method is called once per class - the first time Application Designer interacts with
an object. You cannot tell Application Designer by this interface to sometimes use the property
and sometimes not.

45Java Pages Development

Additional Interfaces

Exchanging Objects by Converter Objects

When Application Designer is accessing properties that are non-simple data type objects, there is
the possibility to exchange the object and tell ApplicationDesigner to use a converter object instead.

The interfaces are:

■ With IInteractionSessionMgr.registerPropertyAccessConverter(Class forClass,
IPropertyAccess Converter converter) you can register a class (parameter converter) that
is used as converter for another class (parameter forClass).

■ The converter class itself must support the interface IPropertyAccessConverter that looks as
follows:

public interface IPropertyAccessConverter
{

public Object getConvertedObject(Object propertyValue);
}

For more details, see the JavaDoc API documentation.

Java Pages Development46

Additional Interfaces

II Details on Session Management

InWorking with Page Navigation, there is a brief description on howApplication Designermanages
sessions. This part provides more details about session management.

In principle, the session management is hidden inside Application Designer. If you write normal
applications running in theApplicationDesignerworkplace environment, you do not have to care
about session management at all: you do not have to somehow collect data from a session object
in order to work with it or do something similar.

However, reading this part is interesting for you if you want to know the following:

■ What is the life cycle of an adapter?
■ What amount of data is kept in an adapter?
■ How does Application Designer internally arrange adapters?

This part is especially important for you if you:

■ write a workplace-like application which serves as a frame for content applications;
■ not only have Application Designer pages in your web application but also other servlets or JSP
pages.

The information provided in this part is organized under the following headings:

HTTP Sessions - Application Designer Sessions

Application Designer Session - Application Designer Subsessions

Application Designer Subsession - Application Designer Adapter Objects

How Things Start

How Things End

Workplace Management

Saving Context Data

Session IDs

47

48

11 HTTP Sessions - Application Designer Sessions

If you have already developed servlets/JSPs, your first question will be: how do Application De-
signer sessions relate to HTTP sessions?

ApplicationDesigner adapters are living in sessionswhich are administered inside theApplication
Designer runtime environment. The sessions are kept in parallel to HTTP sessions, i.e. HTTP ses-
sionsmay be used by other servlets/JSPs thatmay be part of yourweb application - but Application
Designer itself does not require them. It is no problem to reach HTTP sessions from an adapter
object via an API.

Why is ApplicationDesigner not using straightHTTP sessions? The problem is thatHTTP sessions
are sometimes the same for multiple browser instances. If you open a new browser instance from
an existing browser instance (for example, with the Internet Explorer), then the corresponding
session object on the server is shared between the browser instances. In the Application Designer
sessionmanagement, each instance of a browser (and if youwant: each frame inside one browser)
has its own clearly assigned session.

49

The above diagram shows the following:

■ There are three browser instances sharing one HTTP session.
■ Each browser instance has one related Application Designer session.
■ There is an API from the Application Designer runtime to access the HTTP session.

Java Pages Development50

HTTP Sessions - Application Designer Sessions

12 Application Designer Session - Application Designer

Subsessions

TheApplicationDesigner session concept knows one level below theApplicationDesigner session:
the Application Designer subsession. Adapter objects are living inside one subsession - and there
can be multiple subsessions within one session.

Let us approach the subsessions by a practical example:

In the diagram, the Application Designer demo workplace is shown. Inside the workplace, three
activities have been opened. The "AddressManagement" application is currently active. In addition,
the workplace is also running.

51

See the next section Application Designer Subsession - Application Designer Adapter Objects for
further information on this example.

Java Pages Development52

Application Designer Session - Application Designer Subsessions

13 Application Designer Subsession - Application Designer

Adapter Objects

Each of the activities listed in the previous section Application Designer Session - Application
Designer Subsessions is represented by a subsession on the server side. Each subsession itself is
holding the adapters for the activity.

53

In the diagram above, the activity "Address Management" is shown in detail. It consists of several
pages between which the user navigates. Each page belongs to one adapter of a certain class. The
adapter instances are managed inside the subsession.

The general rules for administering adapter instances are:

■ For each adapter class, there is one instance inside one subsession. This means: if you have
several different pages betweenwhich you navigate inside one activity, and all pages are bound
to the sameAdapter class, then all pages areworkingwith the same server side adapter instance.

■ Adapter instances start to live when they are first accessed (e.g. by a page requesting them).
They are kept as instances for the whole life cycle of a subsession - if not explicitly destroyed
by the application via an API call.

Basically, there are two types of sessions:

■ Each browser connected to Application Designer opens a new session inside the server. When
closing the browser or navigating to another web page, this session is automatically destroyed
at the server side.

■ Within a session there are subsessions. Each subsession represents the state of one interaction
process inside the browser. In the Application Designer workplace environment, you can open
multiple parallel interaction processes, and you can switch from one to another. You may have
other environments inwhich you do notwant to offer themulti-interaction processmanagement
- and only have one subsession for the whole life cycle of a session.

Inside a subsession, the adapter instances are created. All navigation is done between pages that
belong to the same subsession. See alsoWorking with Page Navigation.

Java Pages Development54

Application Designer Subsession - Application Designer Adapter Objects

14 How Things Start

■ Starting an Application Designer Session ... 56
■ Starting Additional Application Designer Subsessions ... 56

55

Starting an Application Designer Session

The proper start of a session is to open an Application Designer page via the StartCISPage servlet.

Example: If you start the "HelloWorld!" pagewith the followingURL, a newApplicationDesigner
session object with a new session ID is automatically created on the server side:

http://localhost:51000/cis/servlet/StartCISPage?PAGEURL=/cisyourfirstproject/helloworld.html

The logical counter part of the page - theHelloWorldAdapter object - is opened inside a subsession
that is automatically created inside the Application Designer session.

You see that inside one Application Designer session, there is always at least one subsession.

Starting Additional Application Designer Subsessions

You may use your pages in a mode in which you always work inside one Application Designer
subsession - the one which was created during the StartCISPage procedure. But maybe youwant
to start additional subsessions.

There are two good reasons for starting additional subsessions:

Java Pages Development56

How Things Start

■ Separate life cycles of activities
A subsession is keeping all adapter instances which play a role inside the processing of a certain
activity. By closing the subsession, all adapter objects belonging to the subsession are released
and can be caught by the garbage collector. In other words: a subsession is something like the
life cycle manager for its contained adapters.

Consequence: if you have multiple activities running in parallel, then each activity has its own
life cycle, e.g. it can be closed individually without any consequence for the life cycle of the
other activities.

■ Isolated activities
The adapter objects are created per subsession. This means: you can run one and the same
activity in parallel - represented by two subsessions. In both subsessions, adapters are built up
in parallel - completely isolated from one another.

Programming applications inside “multi document interface”-like programs, (e.g. applications
inside the Application Designer workplace) is therefore simple: each document (activity) is as-
sociated with its own subsession. The workplace just coordinates that the correct page is linked
to the correct subsession at the appropriate point of time.

The starting of a new Application Designer subsession is done by opening a page inside a frame
or inside an Application Designer subpage via Application Designer APIs.

ApplicationDesigner offers APIs (in class com.softwareag.cis.server.Adapter) to openApplic-
ation Designer pages in a certain frame. These APIs always have one “simple” variant and one
“complex” variant:

■ Simple Variant

protected void openCISPageInTarget(String pageURL,
String target)

By calling this method, you open a certain page in a certain frame. The page is automatically
linked to the subsession of the adapter calling this method.

■ Complex Variant:

protected void openCISPageInTarget(String pageURL,
String subsessionId,
String target)

By calling this method you open a certain page in a certain frame. But now you can explicitly
pass a new subsessionId to be used for the page's adapter.

The proper call for a page which should belong to a new subsession is:

57Java Pages Development

How Things Start

...

...

public void onOpenNewPage()
{

// create new subsession id
String newSSID = UniqueIdMgmt.createPseudoGUID();
openCISPageInTarget("...URL...",newSSID,"...TARGET...");

}
...
...

Java Pages Development58

How Things Start

15 How Things End

■ End of an Application Designer Session ... 60
■ End of an Application Designer Subsession .. 60
■ End of an Application Designer Adapter ... 60

59

End of an Application Designer Session

A session normally ends if the page which was opened with the StartCISPage servlet is closed.
This happens for example:

■ if the user shuts down the browser,
■ if the user loads a new page into the frame in which the StartCISPage servlet was called previ-
ously.

In other words: the session is normally kept alive as long as the user stays in the Application De-
signer environment.

Why “normally”? If a session is without user interaction for a long time, the session is timed out
on the server side. When the user comes back to continue interaction, a corresponding message
appears. The duration until a session is timed out is configurable; see the description of the ciscon-
fig.xml file in the Configuration documentation for details.

If a session ends, all its subsessions and all adapters in the subsessions are automatically ended.

End of an Application Designer Subsession

A subsession is ended via an API. There are two APIs available:

■ Via the interface com.softwareag.cis.server.IInteractionManager.
■ Via the method endProcess()which your adapters inherit from the Adapter class.

For further information, see the JavaDoc documentation.

End of an Application Designer Adapter

Adapters typically stay alive until the subsession ends in which they are living. There is also an
API available to directly end adapters:

■ Method Adapter.markThisAdapterForDestroy().
■ Via the interface IInteractionProcesswhich you receive inside an adapter via
this.m_interactionProcess.

Java Pages Development60

How Things End

16 Workplace Management

After reading the previous sections, youmay now see in a better waywhat the task of a workplace
management inside Application Designer is: a workplace is an application on its own having the
task to administer content applications both from the graphical and the sessionmanagement point
of view.

The workplace management is responsible for the proper assignment of subsessions to activities.
The life cycle of subsessions is typically controlled by the workplace.

61

62

17 Saving Context Data

■ Different Levels of Context .. 64
■ Accessing the Context .. 64
■ Typical Usage Scenarios .. 65

63

Sometimes it is useful to save context data centrally inside a session context and to use these data
like a session-global variable. You should be very restrictive with this option - otherwise you may
end up in a scenario in which any kind of data exchange is done by the context.

Different Levels of Context

The session management allows you to hold context information at two levels:

■ Session Context
Within the session context, save data that you want to access from everywhere inside your ad-
apters.

■ Subsession Context
Within the subsession context, save data which you want to access from everywhere inside a
subsession.

Two different subsessions have also two different subsession contexts, i.e. the saved data are
kept independent per subsession.

Accessing the Context

You obtain the context(s) by calling methods which are inherited from the Adapter class:

■ findSessionContext()
Returns a context which is held for each session.

■ findSubSessionContext()
Returns a context which is held for each subsession.

Both methods return a com.softwareag.cis.context.ILookupContext interface. This interface
offers the possibility to bind and look up any objects.

public interface ILookupContext
{

public Object lookup(String s, boolean reactWithErrorIfNotExist);
public void bind(String s, Object o);
public void releaseAllReferences();

}

When binding objects to a context, use a naming convention that is similar to the naming of your
Java classes to avoid naming conflicts. Example:

Java Pages Development64

Saving Context Data

...
findSessionContext.bind("com/yourcompany/application/parameter");
...

The context can be cleaned up by the releaseAllReferences()method. It is integrated into Ap-
plication Designer's session management.

Typical Usage Scenarios

Examples of typical data that you save at the session context level:

■ Name of the user who is currently logged on.
■ Name of the system to which the user is currently logged on.
■ Language in which the user is logged on.

Examples of typical data that you save at the subsession context level:

■ ID of the object you are processing.
■ Temporary data you want to pass from one page to another.

65Java Pages Development

Saving Context Data

66

18 Session IDs

Each session - session or subsession - holds an ID.

■ Session
The ID of the session is unique inside one instance of Application Designer. If you have two
Application Designer installations running, the same ID may be used inside both servers.

■ Subsession
The ID of a subsession is unique inside one session. If you havemultiple sessions running inside
one Application Designer instance, the same subsession ID may be used in two sessions.

You can access the IDs from your adapter in the following way:

public class TestAdapter
extends com.softwareag.cis.server.Adapter

{
...
...
public void xxx()
{

...
String sessionId = this.m_interactionProcess.getSessionId();
String subsessionId = this.m_interactionProcess.getProcessId();
...

}
...
...

}

67

68

III Becoming a Member of the Startup Process

There may be the demand to become a member of the startup process of Application Designer:
for example, in some cases you have an application which is accessed by Application Designer -
by corresponding adapter classes. Typically, you have to initialise this application, for example,
by setting up some database connection.

This initialisation takes time and should be done on startup of Application Designer - instead of
the first time a user interacts with the application.

The information provided in this part is organized under the following headings:

Overview

Startup Class

Registration

69

70

19 Overview

It is quite easy to integrate your application inside Application Designer at startup time. You have
to

■ provide a startup class supporting the interface
com.softwareag.cis.server.IServletInitHandler,

■ register this class by editing a configuration file inside Application Designer.

71

72

20 Startup Class

The following code shows a simple Java class that can be registered inside the startup process of
Application Designer:

package com.softwareag.cis.test;

import javax.servlet.*;
import com.softwareag.cis.server.*;

public class StartDemo
implements IServletInitHandler

{

public void init(ServletConfig conf)
{

System.out.println("StartDemo: started!");
System.out.println("StartDemo: started!");
System.out.println("StartDemo: started!");
System.out.println("StartDemo: started!");
System.out.println("StartDemo: started!");

}

public void destroy()
{

System.out.println("StartDemo: destroyed!");
System.out.println("StartDemo: destroyed!");
System.out.println("StartDemo: destroyed!");
System.out.println("StartDemo: destroyed!");
System.out.println("StartDemo: destroyed!");

}

}

It supports the interface com.softwareag.cis.server.IServletInitHandler that requires the
implementation of themethods init and destroy. The initmethod takes the servlet configuration

73

as parameter with which the Application Designer's servlet itself is initialised. See the document-
ation of the servlet functions (e.g. in the reference documentation for the servlet API) for more
details.

Java Pages Development74

Startup Class

21 Registration

This class must be registered in the /config/statapps.xml configuration file to be integrated into the
startup process of Application Designer. The file looks as follows:

<startapps>
<start class="com.softwareag.cis.test.StartDemo"/>

</startapps>

Just add a new "start" line and specify the class name. The classmust be accessible during runtime.

75

76

IV Adapting the Look & Feel

One of the guiding principles of ApplicationDesigner is to provide high-quality controls by simply
specifying tags inside a layout definition. Each tag is rendered when generating the intelligent
HTML page into various HTML and JavaScript statements. The HTML statements contain the
specification of the display style of each control. For example, a label is rendered into a table cell
having a defined background (typically a bottom line), a defined text size, etc.

This part describes how to modify the default rendering with the help of style sheets in order to
adapt the look and feel to your needs.

The information provided in this part is organized under the following headings:

Introduction

Style Sheet File

Writing a New Style Sheet File

Selecting the Right Style Sheet

Dynamic Selection of the Style Sheet File

Static Selection of the Style Sheet File

77

78

22 Introduction

There are different possibilities for adapting the look and feel - depending on what you want to
do:

1. Overwrite the style definition in individual controls by specifying the style property. Offered
for all controls holding text information inside (label, button, field, etc.) and for all container
controls (areas, tables, rows, etc.).

2. Exchange the central style sheet file containing all style information for controls. Furthermore,
specify your own style sheet: define a style sheet file for a page statically or switch between
style sheets dynamically (e.g. user-dependent).

3. Create new controls by yourself and place them into the Application Designer design and
runtime environment.

Option 1 is typically used if you like the default style provided by Application Designer - but you
want to change it for some pages. For example, you want the text of the button to appear in red -
instead of black for some buttons.

Option 2 is typically used if you have to adapt the style of the controls to some customer-specific
style. For example, if you want to change the font "Verdana" that is used inside the Application
Designer style, or if you want to introduce a new color scheme. Option 2 does not require any
changes inside the page layout definitions - the style is completely separated from the layout. You
do not have to regenerate your XML definitions at all.

Option 3 is used if you need new controls. There is an open API that allows you to add your own
controls in a simple way.

Option 1 is discussed inWorking with Controls (in the Java Page Layout documentation). Option 3
is explained in the Java Custom Controls documentation. This part focuses on option 2 - exchanging
the style sheet.

79

80

23 Style Sheet File

The style information of all controls is defined in the file <your-webapplication>/cis/styles/CIS_DE-
FAULT.css. The style information is sorted alphabetically. Omit the prefix "ROW" or "COL" for
container controls - e.g. you find the style information of the "ROWAREA" in "AREA".

.AREATable
{

font-size: 10pt;
border-width: 0;
background-color: #E0D8C8;
border: 1 solid #808080

}
.AREATitleCell
{

font-size: 8pt;
color: #808080;
background-color: #00006C

}
.AREALeftFromTitleCell
{

font-size: 8pt;
color: #808080;
background-color: #00006C

}
.AREARightFromTitleCell
{

font-size: 8pt;
color: #808080;
background-color: #00006C

}
.AREALinks
{

color: #FFFFFF;
text-decoration: none

}

81

Take further information out of the comments describing when which style class used.

Java Pages Development82

Style Sheet File

24 Writing a New Style Sheet File

Style sheet files should be created and maintained with the Style Sheet Editor. This tool covers
style sheet manipulation on a very low level. Maintaining style sheets with the Style Sheet Editor
means that all information that you enter is kept separate from the style sheet itself.

From release to release, Application Designer adds new controls to its control library. As a con-
sequence, the style sheet template is typically enhanced with every new control. When you work
with the Style Sheet Editor, this is done automatically. You just have to regenerate your own style
sheet file.

Otherwise (if you have manually created your own style sheet file), you always have to have to
embed the enhancements into your style sheet file when Application Designer does style sheet
changes: you have to copy the additional Application Designer style classes from the standard
Application Designer style sheet file (CIS_DEFAULT.css) into your own style sheet file. Use a diff-
viewer/diff-editor to do this.

83

84

25 Selecting the Right Style Sheet

An intelligent HTML page (generated inside Application Designer) links to a style sheet file. The
selection of the style sheet file is done in the following way:

■ Dynamic selection (default):
The name of the style sheet file is determined by a property style of your adapter class. If this
is not specified, the default Application Designer style sheet is chosen. The style property is
provided automatically. See Dynamic Selection of the Style Sheet File for further information.

■ Static selection:
The name of the style sheet file is defined in the page by specifying the stylesheetfile property
of the "page" tag. See Static Selection of the Style Sheet File.

Static selection takes precedence over dynamic selection, i.e. if static selection is defined, dynamic
selection is not taken into consideration anymore.

Typically, you define the style sheet file name statically only for certain pages: for those pages you
want to be sure that they do not differ from the defined look and feel.

85

86

26 Dynamic Selection of the Style Sheet File

■ What You Can Do .. 88
■ Example .. 88

87

The style sheet file is determined by your adapter:

■ There is a property stylewith its corresponding getStyle()method implemented in the inherited
class com.softwareag.cis.server.Adapter. The style property returns the URL of the used
style sheet file.

■ The Adapter class derives the URL of the style sheet file from the Application Designer session
context. Access the Application Designer session context by the protected property
m_sessionContext. The m_sessionContext object provides a setStyle() and getStyle()
method. To change the style sheet file inside the adapter, do the following:

public void ...()
{

...
m_sessionContext.setStyle("...yourStyleURL... ");
...

}

What You Can Do

There are two options that you can use in parallel:

■ You can take over the getStyle()method in your adapter from the Adapter class. In this case,
you can set the session's style sheet via m_sessionContext.setStyle(...), as described.

■ You can write your own getStyle()method and can apply any other rule you might think of
on your own.

Example

Inside the ApplicationDesigner demoworkplace, there is a function to select a style sheet for your
current session:

Java Pages Development88

Dynamic Selection of the Style Sheet File

The program lists all available style sheets in the directory <webapp>/styles/. If you select one style
sheet file, then the selected style sheet is internally passed to the session context as described in
the previous section.

Consequently, all pages in the content area of the workplace will be renderedwith this style sheet.

The style of theworkplace itself will not change: theworkplace adapter overwrites the getStyle()
method: with the workplace, you can pass its style sheet file when dynamically defining the
workplace.

89Java Pages Development

Dynamic Selection of the Style Sheet File

90

27 Static Selection of the Style Sheet File

It makes sense for some pages to define the style sheet file statically. In this case, it cannot be
changed dynamically. This can be done inside the XML layout definition of the page with the
"page" tag.

<page model="xyz"
pagename="xyz.html"
stylesheetfile="/HTMLBasedGUI/general/layout.css">

...

...

...
</page>

91

92

V Multi-Language Management in Java Applications

93

94

28 Multi-Language Management in Java Applications

■ Defining the Language at Runtime .. 96
■ Dealing with Literals inside Your Adapter .. 96

95

This chapter describes Java-specific customizations of multi-language management.

Detailed information on themulti-languagemanagement is provided inMulti-LanguageManagement

Defining the Language at Runtime

With the protectedmember m_sessionContext, you find or set the currently active language used
by the multi-language management:

...
m_sessionContext.setLanguage("de");
...

The value passed to the session context is only validwithin the context of current session. Therefore,
different users can be logged on to the system choosing different languages.

The string, which is passed to the setLanguage()method of m_sessionContext, represents the
name of the directory in which the CSV files are stored. You are not bound to the "de" and "en"
directories; you can add any other directories representing additional languages.

Dealing with Literals inside Your Adapter

Use method replaceLiteral of the inherited Adapter class to replace messages:

...
this.outputMessage("S",replaceLiteral("APP1","successFileSaved"));
...

The first parameter is an abbreviation - the file name of the multi-language file. The second para-
meter is the text ID that should be translated into text as described previously.

It is also possible to pass parameters of your application to the multi-language management. For
example, if you want to show a success message which informs that file "xyz" was saved, proceed
as follows:

...
String fileName = "xyz";
this.outputMessage("S",replaceLiteral("APP1","successFileSaved",fileName));
...

The corresponding line in the CSV file (APP1.csv) in the \en directory for English looks like:

Java Pages Development96

Multi-Language Management in Java Applications

...
successFileSave;File &1 was saved successfully
...

The "&1" is automatically replaced with the file name. There are other variants of the
replaceLiteral()method available to pass 2 or 3 parameters. In this case, use &1, &2 and &3 in
the text definition.

97Java Pages Development

Multi-Language Management in Java Applications

98

VI Online Help Management

TheApplicationDesigner environment provides for a simple but very useful online helpmanage-
ment. You can easily plug help information behind controls or pages.

The information provided in this documentationpart is organized under the following headings:

Basics

Customizing the Online Help Pop-up

Other URL Rules?

Other Types of F1-Online Help?

99

100

29 Basics

■ Supported Controls .. 102
■ Way from Control to Online Help Page ... 102
■ Content of HTML Page ... 104
■ Where to Put the HTML Help Files .. 105
■ HELPICON Properties .. 105

101

Supported Controls

Online help is accessible from the following controls:

■ TITLEBAR (online help for a whole page)
■ FIELD
■ CHECKBOX
■ RADIOBUTTON
■ COMBOFIX
■ COMBODYN2

In addition, you can place special HELPICON controls at any point of your page.

Online help is either activated by pressing F1 inside the controls or by clicking on the corresponding
icon.

Way from Control to Online Help Page

Each control that supports online help offers a property helpid. In this property, you define an
ID that is used for building aURL. This points to the pagewhich appearswhen invoking the online
help for the control.

Let us have a look at the following page:

Inside the XML layout definition, you see the helpid definitions:

Java Pages Development102

Basics

<rowarea name="Controls Demo">
 <itr>
 <label name="FIELD" width="110" labelstyle="font-weight:bold">
 </label>
 <label name="Partner Number" width="150">
 </label>
 <field valueprop="businessPartnerNumber" width="150" ↩
helpid="BusinessPartnerInput">
 </field>
 </itr>
 <itr>
 <label name="COMBOFIX" width="110" labelstyle="font-weight:bold">
 </label>
 <label name="Partner Type" width="150">
 </label>
 <combofix valueprop="partnerType" width="150" size="1" helpid="PartnerType">
 <combooption name="Private" value="private">
 </combooption>
 <combooption name="Business" value="business">
 </combooption>
 <combooption name="Other" value="other">
 </combooption>
 </combofix>
 </itr>
 <itr>
 <label name="COMBOFIX" width="110" labelstyle="font-weight:bold">
 </label>
 <label name="Account Type" width="150">
 </label>
 <combodyn valueprop="accountType" optarrayprop="accountTypeOptions" size="1"
 width="150" helpid="AccountType">
 </combodyn>
 </itr>
 <itr>
 <label name="RADIOBUTTON" width="110" labelstyle="font-weight:bold">
 </label>
 <label name="Simulation" width="150">
 </label>
 <hdist>
 </hdist>
 <label name="Yes" asplaintext="true">
 </label>
 <radiobutton valueprop="simulation" value="on" helpid="Simulation">
 </radiobutton>
 <hdist width="10">
 </hdist>
 <label name="No" asplaintext="true">
 </label>
 <radiobutton valueprop="simulation" value="off" helpid="Simulation">
 </radiobutton>
 <hdist>
 </hdist>

103Java Pages Development

Basics

 </itr>
 <itr>
 <label name="CHECKBOX" width="110" labelstyle="font-weight:bold">
 </label>
 <label name="Check for Duplicates" width="150">
 </label>
 <checkbox valueprop="checkDuplicates" helpid="CheckForDuplicates">
 </checkbox>
 </itr>
 <itr>
 <label name="HELPICON" width="110" labelstyle="font-weight:bold">
 </label>
 <label name="Further Help" width="150">
 </label>
 <helpicon helpid="FurtherHelp">
 </helpicon>
 <hdist>
 </hdist>
 </itr>
</rowarea>

The default way how a URL is derived out of a help ID is:

URL = /<name of web application> +
/<application project> +
/help +
/<language> +
/<helpid>.html

Example: in the standardApplicationDesigner installation, in the project "cisdemos", being logged
on in English, the help ID "AccountType" is transferred to:

/cis/cisdemos/help/en/AccountType.html

Content of HTML Page

The content of the HTML page which is called is completely up to you.

Java Pages Development104

Basics

Where to Put the HTML Help Files

Consequently, the files containing the online help are located inside the following directory:

<web application directory>/
<application project>

help/
<language>/

<helpid>.html

HELPICON Properties

Basic

OptionalHelp id that is passed to the online help management when the user
clicks onto the icon.

helpid

OptionalURL of image that is displayed inside the control. Any image type (.gif,
.jpg, ...) that your browser does understand is valid.

iconurl

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is generated directly
into your project's folder. Specifiying "images/xyz.gif" will point into a
directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif"will point to an image of a neighbour
project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to themulti lanaguagemanagement - representing
the tooltip text that is used for the control.

titletextid

OptionalName of an adapter property that provides the information if this control
is displayed or not. As consequence you can control the visibility of the
control dynamically.

visibleprop

The server side property needs to be of type "boolean".

OptionalName of the adapter parameter that provides the information if this
control is displayed or not. As consequence you can control the visibility
of the control dynamically.

visibleprop

105Java Pages Development

Basics

trueOptionalIf set to "true" then 2 pixels of distance are kept on the left and on the
right of the icon.

withdistance

false
Reason behing: if arranging several icons inside one table row (ITR, TR)
then a certain distance is kept between the icons when this property is
set to "true".

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself is part of a
row (e.g. ITR or TR). Sometimes the size of the column is bigger than the

rightsize of the control itself. In this case the "align" property specifies the
position of the control inside the column. Inmost cases you do not require
the align control to be explicitly defined because the size of the column
around the controls exactly is sized in the same way as the contained
control.

If you want to directly control the alignment of text: in most text based
controls there is an explicit property "textalign" in which you align the
control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part of a
row (e.g. ITR or TR). Sometimtes the size of the column is bigger than

bottomthe size of the control. In this case the "align" property specify the position
of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control the
number of columns your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns. 3

4The property onlymakes sense in table rows that are snychronizedwithin
one container (i.e. TR, STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not synched. 5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control the
number of rows your control occupies. By default it is "1" - but you may
want to define the control to span over more than one columns. 3

4The property onlymakes sense in table rows that are snychronizedwithin
one container (i.e. TR, STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not synched. 5

50

int-value

Java Pages Development106

Basics

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

107Java Pages Development

Basics

108

30 Customizing the Online Help Pop-up

■ Creating a Project-Specific Pop-up .. 111
■ Runtime Behavior .. 111

109

The HTML page that is shown when you press F1 or when you click on the HELPICON control is
application-specific. Application Designer integrates this HTML page as a subpage into a corres-
ponding pop-up. By default, a fixed pop-up is used for all Application Designer projects. For ex-
ample:

The application-specific HTML page is used as the content of this pop-up. However, the pop-up
itself has always a fixed look-and-feel and a fixed size.

A fixed pop-up size is not always the best match for all applications; and some applications might
want to modify the appearance of the pop-up, for example, by adding an image. Therefore, it is
also possible to use a project-specific pop-up instead of the default pop-up.

Java Pages Development110

Customizing the Online Help Pop-up

Creating a Project-Specific Pop-up

Each online help pop-upmust have the name popuponlinehelp.xml. By default, the popuponlinehelp.xml
file of the projectHTMLBasedGUI is used.

To create a popuponlinehelp.xml file in your project

1 In the navigation frame of the development workplace, choose the button which represents
your project.

2 Choose theNew Layout command in the navigation frame.

3 In theName text box of the resulting dialog, enter the name "popuponlinehelp.xml". Adifferent
name will not be accepted when you create a template for an online help pop-up.

4 Choose the layout template which is named "Online Help Pop-up".

A new popuponlinehelp.xml file is created in the current project.

The corresponding layout is shown in the Layout Painter. You can now customize your pop-
up: you can modify all design-time properties. However, all bindings such as the model
property of the page and the valueprop property of the subpage must not be modified.

5 To define a specific size, modify the pop-up properties popupwidth and popupheight.

You can also add images (for example, a company logo) to the pop-up.

Runtime Behavior

Application Designer first checks whether a layout with the name "popuponlinehelp" exists in the
application project which is currently executed. If such a layout is found, it will be used.

If a layout with the name "popuponlinehelp" is not found in the application project, the default
"popuponlinehelp" layout of the projectHTMLBasedGUIwill be used.

111Java Pages Development

Customizing the Online Help Pop-up

112

31 Other URL Rules?

The rules defining how to build a URL based on a help ID are kept behind an interface:

public interface IOHManager
{

/** returns the URL for the page to be opened. */
public String getOnlineHelpURL(String project,

String page,
String helpId,
String language);

}

You canwrite your own implementation of this interface inwhich you apply your rules. The result
must be a valid URL which is opened inside a pop-up.

Formore details, see the JavaAPI documentation for the package com.softwareag.cis.onlinehelp.

113

114

32 Other Types of F1-Online Help?

Maybe the standard way of offering online help - displaying a modal pop-up containing corres-
ponding text - is not the one that you want to use for your application. Maybe you want to open
the help in a certain frame of a frameset definition or maybe youwant to pass context information
of your current adapter into the help system.

In this case, you can use the interface com.softwareag.cis.onlinehelp.IExtendedOHManager:

public interface IExtendedOHManager
{

public void processOnlineHelpRequest(Adapter requestingAdapter,
String project,
String page,
String helpId,
String language);

}

See the Java API documentation for more information.

115

116

VII Appendices

The following appendices are available:

Describes how an incoming request by the browser client
is processed inside an adapter.

Appendix A - Call Sequence for Adapter

Gives information about adapter classes and how to use
them.

Appendix B -Usage ofMethods Inherited from
the Adapter Class

Describes the various data types that can be used by
adapter properties.

AppendixC -Data Types to beUsedbyAdapter
Properties

Gives information about class loader management.Appendix D - Class Loader Concepts

Describes the StartCISPage servlet that is used to open
intelligent HTML pages.

Appendix E - StartCISPage Servlet

117

118

33 Appendix A - Call Sequence for Adapter

■ Normal Call Sequence .. 120
■ Call Sequence when a Subsession is Destroyed .. 121
■ Call Sequence when a Session is Destroyed ... 122
■ Error/ Runtime Exceptions ... 122
■ Pay Attention when Overwriting .. 122

119

This chapter describes howan incoming request by the browser client is processed inside an adapter.
The request contains all the changes of properties that have been made at client side.

Normal Call Sequence

■ init()
This method is called only once - when creating the adapter inside a subsession. Before calling
this method, Application Designer makes sure that the adapter instance is properly registered
inside the Application Designer environment. Therefore - for example - you have access to the
session management: use the findSessionContext() or findSubSessionContext()method in
order to look for some values inside the init()method. It is not possible to use the
find...SessionContext()methods inside the constructor of an adapter - since the session is
not yet assigned to the adapter instance.

When navigating between pages (using the switchToPage() or openPopupPage()method), the
corresponding adapter objects are only created once. For example, if you navigate from page
"A" to page "B" and back to page "A", the adapter of page "A" does not change. The init()
method is only called once - at the time the adapter is instanciated.

■ activate(...)
This method is implemented by the Adapter class already. You only need to overwrite this
method if you want to passivate the state between requests. In this case, you can activate this
state inside your implemented method of your adapter class. If you use the adapter class to co-
operate, for example, with components running in a container of an application server, you
should synchronize the state passivation with the container's passivation.

■ reactOnDataTransferStart()
Thismethod is calledwhen the transfer of the changed properties starts. You can initialize some
internal members at this time. If you overwrite this method, do not forget to include themethod
of the super-class (Adapter.reactOnDataTransferStart()) into your method implementation!

■ setXxx(), setYyy(), ...
Now, the set methods of the changed properties of the browser client are transferred. It is very
important that your implemented set methods never cause an exception or an error.

■ reactOnDataTransferEnd()
Thismethod is called after setting the changed properties. Use thismethod to performoperations
you always want to execute when processing a request.

■ invoke()-Method
If the request has a method call inside, the method is invoked now.

■ processAsDefault()
If the request has no method call, this standard method is called.

Java Pages Development120

Appendix A - Call Sequence for Adapter

■ reactOnDataCollectionStart()
Thismethod is calledwhen the transfer of adapter properties starts. Use thismethod, for example,
for performance improvements during the following get methods, for example, by building
temporary objects.

■ getXxx(), getYyy()
All get methods of the adapter - including array elements which may be passed back by - are
called.

■ reactOnDataColletionEnd()
This method is calledwhen data collection is finished. Temporary objects - which youmay have
created for performance reasons - can be released for garbage collection now.

■ passivate(...)
This method is the counterpart of the activate method.

Call Sequence when a Subsession is Destroyed

■ endProcess()
This method is called inside the adapter if the user decides to terminate the subsession. For ex-
ample, in the Application Designer workplace environment, this method is called whenever
the user chooses the close button of a page.

You can deny closing a subsession in your implemented method:

public class ABCAdapter
extends com.softwareag.cis.server.Adapter

{
...
...
public void endProcess()
{

// veto the endProcess in case of unsaved data
if (changedDataNotSaved == true)
{

this.outputMessage("E","Please save data first");
return;

}
// close subsession
super.endProcess();

}
}

121Java Pages Development

Appendix A - Call Sequence for Adapter

Call Sequence when a Session is Destroyed

If a session is removed from Application Designer - for example, if the user closes the browser or
if a system administrator removes the session - the adapter instances are informed in the following
way:

■ destroy()
In your implementedmethod, clean up all resources bound to your adapter instance. You cannot
deny the destroying of the session - but you can react.

Error/ Runtime Exceptions

Error and runtime exceptions occurring during the adapter request processing may be handled
centrally inside your adapter. For more details, see Binding between Page and Adapter.

Pay Attention when Overwriting

The methods named above are already implemented with default behavior inside the class
com.softwareag.cis.server.Adapter. Pay attention when overwriting these methods inside
your adapter and always include the super-class's processing into your own implementation. The
first statement inside your implementation should call the super-class method:

public class ABCAdapter
extends com.softwareag.cis.server.Adapter

{
...
...
public void reactOnDataTransferStart()
{

super.reactOnDataTransferStart();
// now own implementation
...
...

}
}

Java Pages Development122

Appendix A - Call Sequence for Adapter

34 AppendixB - Usage ofMethods Inherited from theAdapter

Class
■ Access to Lookup Session Context ... 124
■ Access to Application Designer Session Context .. 125
■ Access to other Adapters .. 125
■ Error Output ... 125
■ Page Navigation .. 126
■ Opening of Pop-up Dialogs .. 126
■ Frame Communication .. 126
■ Closing of a Page .. 127
■ Multi Language Management ... 127

123

Inside the Application Designer management, adapters have to provide a defined interface to be
managed correctly by the system. This interface is declared by
com.softwareag.cis.Server.IAdapter. In order to have a high level of comfort during developing
adapters, you should derive your adapter classes from the super-class
com.softwareag.cis.Server.Adapter. This class already provides some useful methods.

Access to Lookup Session Context

As you know, session management defines sessions (corresponding to one browser instance) and
subsessions (corresponding to one process inside the Application Designer workplace). There is
the possibility to bind and look for parameters on both levels:

■ Adapter.findSessionContext() - returns the context which is on top of all subsessions. All
adapters inside one session refer to the same session context.

■ Adapter.findSubSessionContext() - returns the context which is held per subsession. Only
adapters - belonging to the same subsession - share this context.

The result is a context supporting the interface com.softwareag.cis.context.ILookupContext.
This interface provides two important methods:

public Object lookup(String s, boolean reactWithErrorIfNotExist);
public void bind(String s, Object o);

The session context is used, for example, to refer to the current user who is logged in, the chosen
language, etc. The subsession context is used to share data inside a subsession.

Do not use the context as global variable buffers in a very intensiveway. It will end up in programs
relying on a lot of context information to be available - and sooner or later no one knows what has
to be in the context when starting the program.

Via the methods

■ Adapter.findSessionId()

■ Adapter.findSubsessionId()

you can access the internally used representations of session ID and subsession ID.

Java Pages Development124

Appendix B - Usage of Methods Inherited from the Adapter Class

Access to Application Designer Session Context

Application Designer uses its own lookup session management in order to store information of a
session. You can access and manipulate this information by calling your adapter's method:

■ Adapter.findCISessionContext() - returns a concrete session context object.

Inside the session context, the following parameters are kept:

■ date format
■ time format
■ language
■ style
■ decimal separator
■ and other information.

Have a look at the JavaDoc API documentation for more details.

Access to other Adapters

Access other adapters inside the same subsession by the methods:

■ Adapter.findAdapter(class) - returns the adapter instance for a given class. Method init()
is already called when passing back the instance - but only if the adapter was not used before.

Use thismethod before navigating between pages in order to prepare the adapter that will be used
by the next page.

Error Output

You can display error messages inside the status bar (if it is defined in the page layout) by using
the methods:

■ outputMessage(String, String (, String))

First, pass a string for the type of message. This is needed to display a corresponding icon inside
the status bar. There are constants defined inside the Adapter for specifying the type:

■ Adapter.MT_ERROR

125Java Pages Development

Appendix B - Usage of Methods Inherited from the Adapter Class

■ Adapter.MT_WARNING

■ Adapter.MT_SUCCESS

The second string is the message being shown.

The third string - which is optional - is the long text description of the message. It becomes visible
by a dialog if the user clickswith themouse on themessage. If you do not specify a long description,
the normal message is used.

Page Navigation

Navigate to a page by using the method:

■ switchToPage(String pageName)

The "pageName" is the URL - either relative or absolute - of the next page.

Opening of Pop-up Dialogs

You can open a page inside a pop-up dialog by using the method:

■ openPopup(String pageName).

The "pageName" is the URL - either relative or absolute - of the page that is displayed inside the
dialog.

You can specify pop-up parameters of the pop-up you open with openPopup() by using the
methods:

■ setPopupTitle(String title)

■ setPopupPageFeatures(String pageFeatures)

Frame Communication

There are various methods to communicate to other frames:

■ openPageInTarget

■ openCISPageInTarget

■ invokeMethodInTarget

Java Pages Development126

Appendix B - Usage of Methods Inherited from the Adapter Class

■ refreshTarget

■ sizeTarget

Closing of a Page

The default method used for closing a page is endProcess(). It is provided by the Adapter class.
The tasks performed by the endProcess()method are:

■ The current subsession is closed and de-registered inside the session management.
■ The current page is de-registered from the workplace management - if it was registered before.

Calling the endProcess()method ensures that all memory resources are released for the corres-
ponding subsession.

The endProcess()method is called by clicking inside the page on the close icon at the top right
corner of the page. You can also call it directly inside an adapter, e.g. if you want to close the
subsession as reaction to the user's entered data.

Multi Language Management

You can access the multi language management using the methods:

■ replaceLiteral(String application, String textid)

■ replaceLiteral(String application, String textid, String param1)

■ replaceLiteral(String application, String textid, String param1, String param2)

■ replaceLiteral(String application, String textid, String param1, String param2,
Stirng param3)

The application is the name for the abbreviation of a defined application area for which literals
are defined. In the file-based multi language management, it represents the name of a CSV file
that holds the text identified by a text ID.

127Java Pages Development

Appendix B - Usage of Methods Inherited from the Adapter Class

128

35 AppendixC - Data Types to beUsed byAdapter Properties

■ Supported Data Types .. 130
■ Data Types for Managing Date and Time .. 130

129

TheApplicationDesignermanagement is very flexible by allowing various data types for properties
of an adapter.

Supported Data Types

■ String
■ int, long, short, byte
■ float, double
■ BigDecimal
■ boolean
■ CDate
■ CTime
■ CTimeStamp

Data Types for Managing Date and Time

The java.util.Time class is very powerful, but also very complex to use for business applications.
Therefore, three classes are introduced to deal with date and time:

■ com.softwareag.cis.util.CDate

■ com.softwareag.cis.util.CTime

■ com.softwareag.cis.util.CTimeStamp

See the JavaDoc documentation for further details.

Dates and times are transferred as strings betweenApplicationDesigner and the intelligentHTML
page:

■ YYYYMMDD format for dates.
■ HHMMSS format for times.
■ YYYYMMDDHHMMSSMMM format for timestamps.

The interpretation and formatting of these strings to valid formats is done automatically.

Java Pages Development130

Appendix C - Data Types to be Used by Adapter Properties

36 Appendix D - Class Loader Concepts

■ Design Time - Runtime ... 132
■ Class Loader Hierarchy ... 132
■ Preparing for Runtime ... 135

131

An explicit class loader management was introduced to support the following scenarios:

■ Classes are automatically found in the context of Application Designer without specifying a
CLASSPATH variable.

■ Classes can be stored inside an application project directory - separated from other application
projects.

■ During development time, easily run newpages togetherwith the latest classeswithout restarting
the server.

This chapter explains the class loader concepts used inside Application Designer.

Design Time - Runtime

The class loader concepts are designed to simplify the development of pages and their logical
representations on the server side: adapters.

At runtime, they should only be used if you are not running in a cluster - i.e. if you do not distribute
your application server on multiple nodes. When running in a cluster, classes should be located
exactly there, where the application server specifications allow them to be located. Inside the Ap-
plication Designer configuration, you can select which mode you are running in - for details, see
Design Time Mode and Runtime Mode in the Configuration and Administration documentation.

After explaining the class loader concepts in this chapter, at the endwe explainwhat to do in order
to change a design time environment into a runtime environment.

Class Loader Hierarchy

Application Designer runs as a web application inside a servlet engine - by default, the Tomcat
servlet engine is used. The class loader used by the servlet engine is called “web application
loader” in the following text.

The Application Designer environment itself is running in the context of the web application
loader. This class loader is looking for classes as specified by the servlet engine. Therefore the
Application Designer runtimemust be accessable by this class loader. For Tomcat, this is achieved
by placing the cis.jar file inside the <installdir>/tomcat/webapps/ROOT/WEB-INF/lib directory.

The following topics are covered below:

■ Application Class Loader
■ Initialisation of Your Application
■ Guidelines for Development
■ Classpath Extensions in cisconfig.xml

Java Pages Development132

Appendix D - Class Loader Concepts

■ Loading Resource Files

Application Class Loader

The application classes (adapter classes) are loaded by the class loadermanagement of Application
Designer. This class loader looks for Java classes as follows:

■ All .class files inside the directory:

<webapp>/softwareag/appclasses/classes
■ All .jar files inside the directory:

<webapp>/softwareag/appclasses/lib
■ All .class files inside any application project under the directory:

<webapp>/<project>/appclasses/classes
■ All .jar files inside any application project under the directory:

/<webapp>/<project>/appclasses/lib
■ All classes that are referenced in the classpath extension that can be defined in the Application
Designer configuration (cisconfig.xml).

Unlike normal class loader hierarchies, the application class loader always tries to resolve a class
inside its application directories first. Only if the class is not found, the parent class loader is called
- the web application loader. The benefit is that application classes are totally separated from the
servlet engine classes - e.g. by using XMLparser libraries. You are not bound to the parser delivered
with the servlet engine.

Inside the Application Designer session management, a session is bound to an application class
loader instance. Therefore the application class loader - which was instanciated when the session
was created - is kept in the session during its whole life cycle. All objects created inside this session
use this instance of the class loader.

In case of changing classes inside the softwareag/appclasses or the corresponding application-project
subdirectories, you can force to create a new class loader used in all sessions which are created
afterwards. This means, that you can upgrade your system without disturbing running sessions.
Old sessions are still using their old classes; new sessions are using new classes.

By choosing the button Use latest Version of Applications for new Sessions, a new class loader
instance is generated.

A new class loader instance can also be created during development inside the Layout Painter.
See also the "Hello World!" example in the First Steps and its section If you Change the Adapter.

133Java Pages Development

Appendix D - Class Loader Concepts

Initialisation of Your Application

Every time a new instance of a class loader generated, the initialisation process of your application
is also performed. This guarantees that, for example, all static variables you may use internally
can be correctly initialised by your initialisation procedure.

The initialisation of applications is described in the Becoming a Member of the Startup Process
section of the Java Pages Development documentation.

Guidelines for Development

The guidelines you have to follow during development are quite simple:

■ Always put all your application/adapter classes inside the softwareag/appclasses directory or in
the corresponding project directories. When using the project management (which is strongly
recommended), store the classes in the project directories so that you can easily copy projects
as self-containing units between different Application Designer installations.

■ Do not put classes into the servlet engine's class loader's class path.
■ Avoid class duplicates (a .class file in the /classes subdirectory also contained in a jar file inside
the /lib subdirectory).

■ Reload the classes by creating a new class loader instance. To see the effects re-logon. (The re-
logon can be done by refreshing the browser.)

Classpath Extensions in cisconfig.xml

In the cisconfig.xml file, you can define the possibility to explicitly include defined directories or
jar/zip/etc. files in the application class loader. The following example shows a cisconfig.xml file
containing a class loader extension:

<cisconfig ...>
<classpathextension path="c:/development/centralclasses/classes/"/>
<classpathextension path="c:/development/centralclasses/libs/central.jar"/>

</cisconfig>

Consequence: you can also include classes that are located outside the web application's directory
structure into the application class loader of Application Designer.

Pay attention: if defining directories that contain .class files, then the path definition inside the
classpath extension must end with a slash (/).

Java Pages Development134

Appendix D - Class Loader Concepts

Loading Resource Files

TheApplicationDesigner application class loader does only load classes to be loaded into the Java
virtual machine. It is not able to load resource files that you might access from your code.

Place resource files into the web application class loader, below the directory <webapps>/WEB-
INF/classes/ so that they are loaded in a correct way.

Preparing for Runtime

The following topics are covered below:

■ Basics
■ Example

Basics

As explained in the previous section, the Application Designer class loader concepts are very
useful for design time purposes. What is the price? The Application Designer class loader finds
its classes by accessing the file system. It uses for this reason the cis.home parameter inside the
<webapp>/WEB-INF/web.xml file in order to know the file root directory of the web application.

At runtime - especially if your application server distributes the load on several physical nodes -
this is dangerous: each node may have its own directory structure and you cannot specify one
root directory anymore in which the web application is located.

Consequence: for running in these scenarios, you have to prepare your application accordingly -
i.e. you have to place your classes at the places where the application server definition defines
them to be located.

The normal directories to put classes in are:

■ <webapp>/WEB-INF/lib for libraries (.jar files).
■ <webapp>/WEB-INF/classes for single class files (.class files).

In addition, youmust switch off the flag "useownclassloader" inside the cisconfig.xml. Consequently,
the Application Designer application class loader will not be used at all - all classes are loaded by
the web application loader.

135Java Pages Development

Appendix D - Class Loader Concepts

Example

Example: let us assume that you have set up the Application Designer application project "pro-
jectxyz". The classes for this project are located in

■ <webapp>/projectxyz/appclasses/classes/*.class and
■ <webapp>/projectxyz/appclasses/lib/*.jar

so that the Application Designer class loader can reach them.

For changing to the runtime scenario, just copy the *.class and *.jar files from your project directory
into the corresponding standard directories.

Java Pages Development136

Appendix D - Class Loader Concepts

37 Appendix E - StartCISPage Servlet

■ Normal Calling of a Page .. 138
■ Appending Application Parameters .. 138
■ Controlling the Session Life Cycle ... 138
■ Controlling the Session ID ... 139
■ Setting Default Parameters .. 139
■ Mixing Parameters ... 140
■ Setting Parameters with the HTTP Method POST .. 140

137

The StartCISPage servlet is the central servlet that is used in order to open intelligent HTMLpages.
It was already mentioned several times in this documentation. This chapter describes certain at-
tributes that you can pass inside the servlet call.

Normal Calling of a Page

A normal page is called in the following way:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html

The StartCISPage servlet creates a frameset page around the intelligent HTML page that provides
for specific functions that are internally required.

Appending Application Parameters

Application parameters can be passed by just appending the name and the value of the parameters
to the URL. Each parameter must be the name of a property that is provided for by the server side
adapter.

Example: the adapter provides for a property company. When opening a page via

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&company=softwareag

then the setCompanymethod of the adapter is called and the value "softwareag" is passed.

This is a very simple and powerful way to pass parameters through the URL.

Controlling the Session Life Cycle

A page relates to adapters living inside a session on server side. A session is opened by default
when referencing a page via StartCISPage. By default, it is closed when the initial StartCISPage
page is removed - either by closing the browser or by loading a different URL into it.

You can explicitly control this automated removal of sessionswith the parameter ONUNLOADBEHAVIOR.
If you call a page in the following way, the session is not removed when the page is removed:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&ONUNLOADBEHAVIOUR=NOTHING

Java Pages Development138

Appendix E - StartCISPage Servlet

Controlling the Session ID

By default, a new session ID is internally generated when opening a page by StartCISPage. But
you can also pass the session ID and the subsession ID explicitly. This might be of interest if you
require to control the Application Designer session management from outside.

Calling a page in the following way

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&SESSIONID=4711&SUBSESSIONID=5

will internally open the session with ID 4711 - or use 4711 if it already exists. The same applies on
subsession level.

Pay attention: if you use this possibility, then you are responsible for managing session IDs in
such a way that they are unique.

Setting Default Parameters

Language

As described inMulti LanguageManagement, ApplicationDesigner internally holds a language per
session. This language can be set from outside:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&LANGUAGE=E

Default Style Sheet

By calling

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&SESSIONCSS=../softwareag/styles/CIS_PARROTT.css&DEFAULTCSS=../softwareag/styles/CIS_PARROTT.css

you define that the CIS_PARROTT style sheet is used instead of the default style sheet. Of course,
you can reference any style sheet of your own.

139Java Pages Development

Appendix E - StartCISPage Servlet

Mixing Parameters

All parameters can be mixed without any restrictions.

Setting Parameters with the HTTP Method POST

Instead of adding the parameters to the URL, you can also use the HTTP method POST to set the
parameters in an HTML form.

Example (similar to the example under Appending Application Parameters, but with POST):

<html>
<head>
<title>Start Application Designer Demo Application</title>
<script type="text/javascript">
function submitStart() {
document.forms["myform"].submit();
}
</script>
</head>
<body>
<form id="myform" name="myform" action="servlet/StartCISPage" method="post">
<input type="hidden" name="PAGEURL" value="/<project>/<pagename>" />
Company: <input type="input" name="company" value="softwareag" />

</form>
Start Demo
<div id="status">Click on Start Demo</div>

</body>
</html>

Java Pages Development140

Appendix E - StartCISPage Servlet

	Java Pages Development
	Table of Contents
	Java Pages Development
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Binding between Page and Adapter
	2 Phases of Adapter Processing
	SET/INVOKE/GET Phase - The Default Phases
	INIT Phase when Adapter is Constructed
	DESTROY Phase when Adapter is Deregistered

	3 Class Binding
	Direct Class Binding
	Generic Class Binding

	4 Types of Property Binding
	5 Java Bean Property Binding
	Class Binding
	Method Binding
	Property Binding
	Simple Properties which are Provided Directly by the Adapter
	Simple Properties which are Provided by Embedded Objects of the Adapter
	Array Properties which are Provided Directly by the Adapter
	Array Properties which are Provided by Embedded Objects of the Adapter

	Access Path Restrictions

	6 Dynamic Access Property Binding
	Interface IDynamicAccess
	Example

	7 XML Property Binding
	8 Getting Information about Access Paths
	9 Exception Management Inside an Adapter Object
	Normal Exceptions are to be Handled by the Application
	Errors and Runtime Exceptions - The Default Behavior
	Interrupting the Application Designer Request Processing - AdapterNotAvailableError
	Errors and Runtime Exceptions - The Special Behavior

	10 Additional Interfaces
	Extending the Set of Simple Data Types
	Avoid the Getting of Certain Simple Data Type Properties
	Exchanging Objects by Converter Objects

	II Details on Session Management
	11 HTTP Sessions - Application Designer Sessions
	12 Application Designer Session - Application Designer Subsessions
	13 Application Designer Subsession - Application Designer Adapter Objects
	14 How Things Start
	Starting an Application Designer Session
	Starting Additional Application Designer Subsessions

	15 How Things End
	End of an Application Designer Session
	End of an Application Designer Subsession
	End of an Application Designer Adapter

	16 Workplace Management
	17 Saving Context Data
	Different Levels of Context
	Accessing the Context
	Typical Usage Scenarios

	18 Session IDs

	III Becoming a Member of the Startup Process
	19 Overview
	20 Startup Class
	21 Registration

	IV Adapting the Look & Feel
	22 Introduction
	23 Style Sheet File
	24 Writing a New Style Sheet File
	25 Selecting the Right Style Sheet
	26 Dynamic Selection of the Style Sheet File
	What You Can Do
	Example

	27 Static Selection of the Style Sheet File

	V Multi-Language Management in Java Applications
	28 Multi-Language Management in Java Applications
	Defining the Language at Runtime
	Dealing with Literals inside Your Adapter

	VI Online Help Management
	29 Basics
	Supported Controls
	Way from Control to Online Help Page
	Content of HTML Page
	Where to Put the HTML Help Files
	HELPICON Properties

	30 Customizing the Online Help Pop-up
	Creating a Project-Specific Pop-up
	Runtime Behavior

	31 Other URL Rules?
	32 Other Types of F1-Online Help?

	VII Appendices
	33 Appendix A - Call Sequence for Adapter
	Normal Call Sequence
	Call Sequence when a Subsession is Destroyed
	Call Sequence when a Session is Destroyed
	Error/ Runtime Exceptions
	Pay Attention when Overwriting

	34 Appendix B - Usage of Methods Inherited from the Adapter Class
	Access to Lookup Session Context
	Access to Application Designer Session Context
	Access to other Adapters
	Error Output
	Page Navigation
	Opening of Pop-up Dialogs
	Frame Communication
	Closing of a Page
	Multi Language Management

	35 Appendix C - Data Types to be Used by Adapter Properties
	Supported Data Types
	Data Types for Managing Date and Time

	36 Appendix D - Class Loader Concepts
	Design Time - Runtime
	Class Loader Hierarchy
	Application Class Loader
	Initialisation of Your Application
	Guidelines for Development
	Classpath Extensions in cisconfig.xml
	Loading Resource Files

	Preparing for Runtime
	Basics
	Example

	37 Appendix E - StartCISPage Servlet
	Normal Calling of a Page
	Appending Application Parameters
	Controlling the Session Life Cycle
	Controlling the Session ID
	Setting Default Parameters
	Language
	Default Style Sheet

	Mixing Parameters
	Setting Parameters with the HTTP Method POST

